Statistics 581, Problem Set 1 Solutions

Wellner; 10/3/2018

1. (a) The case $r=1$ of Chebychev's Inequality is known as Markov's Inequality and is usually written $P(|X| \geq \epsilon) \leq E(|X|) / \epsilon$ for an arbitrary random variable X and $\epsilon>0$. For every $\epsilon>1$, find a distribution for X with $E(X)=0$ and $E|X|=1$ that gives equality in Markov's inequality.
(b) Prove for an arbitrary random variable X and $\epsilon>0$

$$
P(|X| \geq \epsilon) \leq E\left\{\frac{\cosh (X)-1}{\cosh (\epsilon)-1}\right\}
$$

Solution: (a) Given $\epsilon>1$, let $X= \pm a>0$ with probability $1 /(2 \epsilon)<$ $1 / 2$ and let $X=0$ with probability $1-1 / \epsilon$. Then

$$
\begin{gathered}
E(X)=a P(X=a)+(-a) P(X=-a)+0 \cdot P(X=0) \\
\quad=a /(2 \epsilon)-a /(2 \epsilon)=0 \\
E|X|=a P(X=a)+a P(X=-a)=a / \epsilon=1
\end{gathered}
$$

if we take $a=\epsilon$. On the other hand

$$
P(|X| \geq \epsilon)=P(X \geq \epsilon)+P(-X \geq \epsilon)=1 /(2 \epsilon)+1 /(2 \epsilon)=1 / \epsilon
$$

so equality holds in Markov's inequality for this fixed $\epsilon>1$.
(b) Note that $g(y) \equiv \cosh (y)-1$ satisfies $g(0)=0$ and $g(-y)=g(y)$. Therefore, for any $\epsilon>0$

$$
P(|X| \geq \epsilon)=P(g(X) \geq g(\epsilon)) \leq \frac{E g(X)}{g(\epsilon)}
$$

where the inequality is just Markov's inequality applied to $Y=g(X)$ and $\epsilon^{\prime}=g(\epsilon)$.
2. Let X and Y be i.i.d. Uniform $(0,1)$ random variables Define $U=$ $X-Y, V=\max (X, Y)=X \vee Y$.
(i) What is the range of (U, V) ?
(ii) Find the joint density function $f_{U, V}(u, v)$ of the pair (U, V). Are U and V independent?

Solution: (i) The range of (X, Y) is $A=\{(x, y): 0 \leq x \leq 1,0 \leq y \leq 1\}$. The range of (U, V) is $B=\{(u, v): 0 \leq u \leq 1, u \leq v \leq 1\} \cup\{(u, v):-1 \leq u<0,-u \leq v \leq 1\}$.

Figure 1: Range of U, V.
(ii) First solution - via Jacobians: The transformation $(X, Y) \rightarrow(U, V)$ is 1-1 and onto from A to B. On the set $x<y$, its inverse is given by $X=U+V, Y=V$; on the set $x>y$, its inverse is given by $X=V, Y=V-U$. These mappings are continuously differentiable on $B^{*} \equiv B \backslash\{(u, v):(0, v)\}=B \backslash$ a null set. On B^{*} the Jacobian of the transformations are

$$
\operatorname{det}\left(\begin{array}{ll}
1 & 1 \tag{1}\\
0 & 1
\end{array}\right)=1 \quad \text { if } x<y, \quad \operatorname{det}\left(\begin{array}{cc}
0 & 1 \\
-1 & 1
\end{array}\right)=1 \quad \text { if } x>y
$$

Thus by the usual transformation of densities formula, the joint density of (U, V) is obtained from $f_{X, Y}(x, y)=1_{[0,1]}(x) 1_{[0,1]}(y)$ as follows:

$$
\begin{aligned}
f_{U, V}(u, v)= & f_{X, Y}(x(u, v), y(u, v))\left|\operatorname{det} \frac{\partial(x, y)}{\partial(u, v)}\right| 1_{[x(u, v)<y(u, v)]} \\
& \quad+f_{X, Y}(x(u, v), y(u, v))\left|\operatorname{det} \frac{\partial(x, y)}{\partial(u, v)}\right| 1_{[x(u, v)>y(u, v)]} \\
= & \left(1_{[0,1]}(u+v) 1_{[0,1]}(v) 1_{[u+v<v]}+1_{[0,1]}(v) 1_{[0,1]}(v-u) 1_{[v>v-u]}\right) \\
= & 1_{B}(u, v) .
\end{aligned}
$$

Thus the joint density of (U, V) is uniform on B. The random variables U and V are clearly not independent since the range of (U, V) is not a product set in R^{2}; moreover, the joint density of (U, V) does not factor into the product of its marginal densities. [The marginal densities are given by

$$
f_{U}(u)=\int f_{U, V}(u, v) d v= \begin{cases}\int_{u}^{1} d v=1-u, & u \in[0,1] \\ \int_{-u}^{1} d v=1+u, & u \in[-1,0)\end{cases}
$$

and

$$
\left.f_{V}(v)=\int f_{U, V}(u, v) d u=\int_{-v}^{v} d u=2 v 1_{[0,1]}(v) .\right]
$$

Second solution by direction calculation of the joint distribution function: Note that we can write

$$
\begin{aligned}
& P(U \leq u, V \leq v) \\
& \quad=P(X-Y \leq u, X \vee Y \leq v)=P(X-Y \leq u, X \leq v, Y \leq v) \\
& \quad=P(Y \geq X-u, X \leq v, Y \leq v) \\
& \quad= \begin{cases}v^{2}-\frac{1}{2}(v-u)^{2}, & \text { if } 0 \leq u \leq v \leq 1, \\
\frac{1}{2}(v+u)^{2}, & \text { if }-1 \leq u<0,0<-u \leq v \leq 1 .\end{cases}
\end{aligned}
$$

(This is easy by pictures!) Computing $\left(\partial^{2} / \partial u \partial v\right) P(U \leq u, V \leq v)$ on each of these pieces separately again yields $f_{U, V}(u, v)=1_{B}(u, v)$. Also note that the marginal distribution functions of U and V are given by $F_{U}(u)=(1 / 2)(1+u)^{2} 1_{[-1,0)}(u)+\left\{1-\frac{1}{2}(1-u)^{2}\right\} 1_{[0,1]}(u)$ on $-1 \leq u \leq 1$ and $F_{V}(v)=v^{2}$ for $0 \leq v \leq 1$.
3. Ferguson, ACILST, $\# 6$, page 7. (a) (This is known as the PólyaCantelli lemma; see Chapter 2, Proposition 2.11, page 10.)
(b) Give an example of the use of this lemma.
(See Lemma 2.11, p. 12, Asymp. Statist. for a multivariate version of this.)

Solution. (a) For the proof, see Ferguson, ACILST page 173. See van der Vaart (1998), page 12, for a sketch of the proof in the multivariate case.
(b) As an example, suppose that a test statistic T_{n} is assumed to have a t_{n-1} distribution under a null hypothesis, $\alpha \in(0,1 / 2)$ and we reject the hull hypothesis H_{0} if $T_{n} \geq t_{n-1, \alpha}$. If in fact T_{n} is not exactly t_{n-1} distributed, but we do have $T_{n} \rightarrow_{d} Z \sim N(0,1)$ under the null hypothesis, what is the asymptotic size of the test? That is, find the limit of $P\left(T_{n} \geq t_{n-1, \alpha}\right)$ under these assumptions. Claim: this is exactly α. Let $\Phi(z)=\int_{-\infty}^{z}(2 \pi)^{-1 / 2} \exp \left(-y^{2} / 2\right) d y$. Then

$$
\begin{aligned}
P\left(T_{n} \geq t_{n-1}\right) & =\left(1-H_{n}\left(t_{n-1}\right)\right) \\
& =\left(1-H_{n}\left(t_{n-1, \alpha}\right)\right)-P\left(Z \geq t_{n-1, \alpha}\right)+P\left(Z \geq t_{n-1, \alpha}\right) \\
& =-\left(H_{n}\left(t_{n-1, \alpha}\right)-\Phi\left(t_{n-1, \alpha}\right)\right)+\left(1-\Phi\left(t_{n-1, \alpha}\right)\right) \\
& \rightarrow 0+1-\Phi\left(z_{\alpha}\right)=\alpha
\end{aligned}
$$

where the convergence in the first term follows from the Pólya- Cantelli lemma and the convergence in the second term follows from $t_{n-1, \alpha} \rightarrow z_{\alpha}$ where z_{α} satisfies $\Phi\left(z_{\alpha}\right)=1-\alpha$.
4. Suppose that for $\theta \in R$,

$$
f_{\theta}(u, v)=\{1+\theta(1-2 u)(1-2 v)\}_{[0,1]^{2}}(u, v)
$$

(a) For what values of θ is f_{θ} a density function on $[0,1]^{2}$?
(b) For the set of θ 's you identified in (a), find the corresponding distribution function F_{θ} and show that it has Uniform $(0,1)$ marginal distributions.
(c) If $(U, V) \sim F_{\theta}$, compute the correlation $\rho(U, V) \equiv \rho$. Does this show any difficulty with this family of distributions as a model of dependence?

Solution: (a) For f_{θ} to be a density function, we must have $f_{\theta}(u, v) \geq 0$ for all $(u, v) \in[0,1]^{2}$ and

$$
\begin{equation*}
\int_{0}^{1} \int_{0}^{1} f_{\theta}(u, v) d u d v=1 \tag{2}
\end{equation*}
$$

Now

$$
\int_{0}^{1} \int_{0}^{1} f_{\theta}(u, v) d u d v=1+\theta \int_{0}^{1} \int_{0}^{1}(1-2 u)(1-2 v) d u d v=1
$$

for all $\theta \in R$ since
$\int_{0}^{1} \int_{0}^{1}(1-2 u)(1-2 v) d u d v=\int_{0}^{1}(1-2 u) d u \int_{0}^{1}(1-2 v) d v=0 \cdot 0=0$, and hence (2) holds for all θ. The requirement that f_{θ} be non-negative is just

$$
1+\theta(1-2 u)(1-2 v) \geq 0 \quad \text { for all }(u, v) \in[0,1]^{2}
$$

or equivalently that

$$
\theta(1-2 u)(1-2 v) \geq-1 \quad \text { for all }(u, v) \in[0,1]^{2}
$$

By monotonicity of $1-2 u$, this holds if and only if it holds for $(u, v) \in$ $\{(0,0),(0,1),(1,0),(1,1)\}$; i.e.

$$
\theta \geq-1, \quad-\theta \geq-1, \quad-\theta \geq-1, \quad \text { and } \quad \theta \geq-1
$$

Thus it follows that f_{θ} is a density function for $\theta \in[-1,1]$, or $|\theta| \leq 1$. (b) The corresponding distribution function F_{θ} is given by

$$
\begin{aligned}
F_{\theta}(u, v) & =\int_{0}^{u} \int_{0}^{v} f_{\theta}(r, s) d r d s \\
& =\int_{0}^{u} \int_{0}^{v}\{1+\theta(1-2 r)(1-2 s)\} d r d s \\
& =u v+\theta \int_{0}^{u}(1-2 r) d r \int_{0}^{v}(1-2 s) d s \\
& =u v+\theta u(1-u) v(1-v) \\
& =u v\{1+\theta(1-u)(1-v)\}
\end{aligned}
$$

Note that

$$
F_{\theta}(u, 1)=u, \quad \text { and } \quad F_{\theta}(1, v)=v,
$$

so F_{θ} has $\operatorname{Uniform}(0,1)$ marginal distributions.
(c) It follows from part (iv) of Proposition 1.4.1, page 20, Chapter 1, that (by taking $G(x)=x, H(x)=x)$)

$$
\begin{aligned}
\operatorname{Cov}(U, V) & =\int_{0}^{1} \int_{0}^{1}\left\{F_{\theta}(u, v)-u v\right\} d u d v \\
& =\int_{0}^{1} \int_{0}^{1} \theta u(1-u) v(1-v) d u d v \\
& =\theta\left(\int_{0}^{1} u(1-u) d u\right)^{2} \\
& =\frac{1}{36} \theta
\end{aligned}
$$

since

$$
\int_{0}^{1} u(1-u) d u=\frac{1}{2} u^{2}-\left.\frac{1}{3} u^{3}\right|_{0} ^{1}=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}
$$

Now since $\operatorname{Var}(U)=\operatorname{Var}(V)=1 / 12($ since they are both $\operatorname{Uniform}(0,1))$, it follows that

$$
\rho(U, V)=\frac{\operatorname{Cov}(U, V)}{\sqrt{\operatorname{Var}(U) \operatorname{Var}(V)}}=\frac{\theta / 36}{\sqrt{(1 / 12)(1 / 12)}}=\frac{\theta}{3} .
$$

Note that this implies that $|\rho(U, V)| \leq 1 / 3$, and hence this family of distributions does not include any distributions on $[0,1]^{2}$ with correlations larger than $1 / 3$ in absolute value.
5. (a) Lehmann \& Casella, TPE, problem 3.5, page 64.

Let S be the support of a distribution on a Euclidean space $(\mathcal{X}, \mathcal{A})$. Then, (i) S is closed; (ii) $P(S)=1$; (iii) S is the intersection of all closed sets C with $P(C)=1$. (The support S of a distribution P on $(\mathcal{X}, \mathcal{A})$ is the set of all points x for which $P(A)>0$ for all open rectangles $A=\left\{\left(x_{1}, \ldots, x_{n}\right): a_{i}<x<b_{i}, i=1, \ldots, n\right\}$ for numbers $a_{i}<b_{i}$ in R.)
(b) Lehmann \& Casella, TPE, problem 3.6, page 64.

Show that if P and Q are two probability measures over the same Euclidean space which are equivalent (i.e. P is absolutely continuous
with respect to Q and Q is absolutely continuous with respect to P), then they have the same support.
(c) Lehmann \& Casella, TPE, problem 3.7, page 64.

Let P and Q assign probabilities

$$
\begin{aligned}
& P: \quad P(X=1 / n)=p_{n}>0, \quad n=1,2, \ldots \quad\left(\sum_{n} p_{n}=1\right), \\
& Q: \quad P(X=0)=1 / 2 ; \quad P(X=1 / n)=q_{n}>0, \quad n=1,2, \ldots\left(\sum_{n} q_{n}=1 / 2\right) .
\end{aligned}
$$

Then, show that P and Q have the same support but are not equivalent.

Solution: (a) (i) Suppose that S is not closed. Then there exists a sequence $\left\{x_{n}\right\} \subset S$ such that $x_{n} \rightarrow x_{0} \in S^{c}$. But then, for every $\epsilon>0$ there is an open ball $B\left(x_{0}, \epsilon\right)$ such that $x_{n} \in B\left(x_{0}, \epsilon\right)$ for $n \geq N_{\epsilon}$. Since each x_{n} is a support point, $P\left(B\left(x_{0}, \epsilon\right)\right)>0$ for each $\epsilon>0$. But for any open set A with $x_{0} \in A, B\left(x_{0}, \epsilon\right) \subset A$ for some $\epsilon>0$, and hence $P(A) \geq P\left(B\left(x_{0}, \epsilon\right)>0\right.$. But this implies $x_{0} \in S$. Contradiction. Thus S is closed.
(ii) $P(S)=1$. From (i) S is closed, so S^{c} is open. Since $x \in S^{c}$ if and only if $x \in A_{x}$ with A_{x} an open rectangle satisfying $P\left(A_{x}\right)=0$. Thus $S^{c} \subset \cup_{x} A_{x}$. By the Lindelöf theorem, for any such open covering $\left\{A_{x}\right\}_{x \in S^{c}}$ of $S^{c} \subset R^{d}$, there is a countable subcollection $\left\{A_{x_{n}}\right\}$ which covers $S^{c}: S^{c} \subset \cup_{n} A_{x_{n}}$. Then we have

$$
P\left(S^{c}\right) \leq P\left(\cup_{n} A_{x_{n}}\right) \leq \sum_{n} P\left(A_{x_{n}}\right)=\sum_{n} 0=0 .
$$

Hence $P(S)=1$.
(iii) We want to show that $S=\cap\{C: C$ closed, $P(C)=1\}$. From (i) and (ii) we know that S is in the collection of sets on the right side, so it follows that $S \supset \cap\{C: C$ closed, $P(C)=1\}$. Thus it remains to show that $S \subset \cap\{C: C$ closed, $P(C)=1\}$. Equivalently, it remains to show that $S^{c} \supset \cup\left\{C^{c}: C^{c}\right.$ open, $\left.P\left(C^{c}\right)=0\right\}$. But if $x \in \cup\left\{C^{c}: C^{c}\right.$ open, $\left.P\left(C^{c}\right)=0\right\}$, then $x \in C^{c}$ for some C^{c} open with $P\left(C^{c}\right)=0$, and hence also $x \in A \subset C^{c}$ for some open rectangle A (an open ball centered at x for the metric $\|y\|=\max _{1 \leq i \leq d}\left|x_{i}\right|$) with $P(A) \leq P\left(C^{c}\right)=0$. Hence $x \in S^{c}$.
(b) Suppose that P and Q are equivalent: i.e. $Q \prec \prec P$ and $P \prec \prec Q$. Then for any open set $A, P(A)=0$ if and only if $Q(A)=0$. This implies that for any closed set A^{c},

$$
P\left(A^{c}\right)=1 \quad \text { if and only if } \quad Q\left(A^{c}\right)=1 .
$$

This implies that the minimal closed set S_{P} with $P\left(S_{P}\right)=1$ is also the minimal closed set S_{Q} with $Q\left(S_{Q}\right)=1$; i.e. $S_{P}=\operatorname{supp}(P)=$ $\operatorname{supp}(Q)=S_{Q}$.
(c) Since $P(X=1 / n)=p_{n}>0$ for $n=1,2, \ldots$ with $\sum_{1}^{\infty} p_{n}=1$, it follows that $\operatorname{supp}(P)=\{0, \ldots, 1 / n, \ldots, 1 / 2,1\}$, which is closed. Similarly, Since $Q(X=1 / n)=q_{n}>0$ for $n=1,2, \ldots$ with $\sum_{1}^{\infty} q_{n}=1 / 2$, and $Q(X=0)=1 / 2$, it follows that $\operatorname{supp}(Q)=\{0, \ldots, 1 / n, \ldots, 1 / 2,1\}=$ $\operatorname{supp}(P)$. But $P(\{0\})=0$ while $Q(\{0\})=1 / 2$, so $Q \prec \prec P$ fails. Thus Q and P are not equivalent.

