
Statistics 581, Problem Set 1 Solutions
Wellner; 10/3/2018

1. (a) The case r = 1 of Chebychev’s Inequality is known as Markov’s In-
equality and is usually written P (|X| ≥ ε) ≤ E(|X|)/ε for an arbitrary
random variable X and ε > 0. For every ε > 1, find a distribution
for X with E(X) = 0 and E|X| = 1 that gives equality in Markov’s
inequality.
(b) Prove for an arbitrary random variable X and ε > 0

P (|X| ≥ ε) ≤ E

{
cosh(X)− 1

cosh(ε)− 1

}
.

Solution: (a) Given ε > 1, let X = ±a > 0 with probability 1/(2ε) <
1/2 and let X = 0 with probability 1− 1/ε. Then

E(X) = aP (X = a) + (−a)P (X = −a) + 0 · P (X = 0)

= a/(2ε)− a/(2ε) = 0,

E|X| = aP (X = a) + aP (X = −a) = a/ε = 1

if we take a = ε. On the other hand

P (|X| ≥ ε) = P (X ≥ ε) + P (−X ≥ ε) = 1/(2ε) + 1/(2ε) = 1/ε,

so equality holds in Markov’s inequality for this fixed ε > 1.
(b) Note that g(y) ≡ cosh(y) − 1 satisfies g(0) = 0 and g(−y) = g(y).
Therefore, for any ε > 0

P (|X| ≥ ε) = P (g(X) ≥ g(ε)) ≤ Eg(X)

g(ε)

where the inequality is just Markov’s inequality applied to Y = g(X)
and ε′ = g(ε).

2. Let X and Y be i.i.d. Uniform(0, 1) random variables Define U =
X − Y , V = max(X, Y ) = X ∨ Y .

(i) What is the range of (U, V )?

(ii) Find the joint density function fU,V (u, v) of the pair (U, V ). Are
U and V independent?
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Solution: (i) The range of (X, Y ) is
A = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. The range of (U, V ) is

B = {(u, v) : 0 ≤ u ≤ 1, u ≤ v ≤ 1} ∪ {(u, v) : −1 ≤ u < 0,−u ≤ v ≤ 1} .
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Figure 1: Range of U, V .
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(ii) First solution - via Jacobians: The transformation (X, Y )→ (U, V )
is 1-1 and onto from A to B. On the set x < y, its inverse is given
by X = U + V , Y = V ; on the set x > y, its inverse is given by
X = V , Y = V − U . These mappings are continuously differentiable
on B∗ ≡ B \ {(u, v) : (0, v)} = B \ a null set. On B∗ the Jacobian of
the transformations are

det

(
1 1
0 1

)
= 1 if x < y, det

(
0 1
−1 1

)
= 1 if x > y.

(1)
Thus by the usual transformation of densities formula, the joint density
of (U, V ) is obtained from fX,Y (x, y) = 1[0,1](x)1[0,1](y) as follows:

fU,V (u, v) = fX,Y (x(u, v), y(u, v))| det
∂(x, y)

∂(u, v)
|1[x(u,v)<y(u,v)]

+ fX,Y (x(u, v), y(u, v))| det
∂(x, y)

∂(u, v)
|1[x(u,v)>y(u,v)]

=
(
1[0,1](u+ v)1[0,1](v)1[u+v<v] + 1[0,1](v)1[0,1](v − u)1[v>v−u]

)
= 1B(u, v) .

Thus the joint density of (U, V ) is uniform on B. The random variables
U and V are clearly not independent since the range of (U, V ) is not a
product set in R2; moreover, the joint density of (U, V ) does not factor
into the product of its marginal densities. [The marginal densities are
given by

fU(u) =

∫
fU,V (u, v)dv =

{ ∫ 1

u
dv = 1− u, u ∈ [0, 1]∫ 1

−u dv = 1 + u, u ∈ [−1, 0)

and

fV (v) =

∫
fU,V (u, v)du =

∫ v

−v
du = 2v1[0,1](v).]

Second solution by direction calculation of the joint distribution func-
tion: Note that we can write

P (U ≤ u, V ≤ v)

= P (X − Y ≤ u,X ∨ Y ≤ v) = P (X − Y ≤ u,X ≤ v, Y ≤ v)

= P (Y ≥ X − u,X ≤ v, Y ≤ v)

=

{
v2 − 1

2
(v − u)2, if 0 ≤ u ≤ v ≤ 1,

1
2
(v + u)2, if − 1 ≤ u < 0, 0 < −u ≤ v ≤ 1 .
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(This is easy by pictures!) Computing (∂2/∂u∂v)P (U ≤ u, V ≤ v) on
each of these pieces separately again yields fU,V (u, v) = 1B(u, v). Also
note that the marginal distribution functions of U and V are given by
FU(u) = (1/2)(1+u)21[−1,0)(u)+{1− 1

2
(1−u)2}1[0,1](u) on −1 ≤ u ≤ 1

and FV (v) = v2 for 0 ≤ v ≤ 1.

3. Ferguson, ACILST, #6, page 7. (a) (This is known as the Pólya-
Cantelli lemma; see Chapter 2, Proposition 2.11, page 10.)
(b) Give an example of the use of this lemma.
(See Lemma 2.11, p. 12, Asymp. Statist. for a multivariate version of
this.)

Solution. (a) For the proof, see Ferguson, ACILST page 173. See van
der Vaart (1998), page 12, for a sketch of the proof in the multivariate
case.
(b) As an example, suppose that a test statistic Tn is assumed to have
a tn−1 distribution under a null hypothesis, α ∈ (0, 1/2) and we reject
the hull hypothesis H0 if Tn ≥ tn−1,α. If in fact Tn is not exactly
tn−1 distributed, but we do have Tn →d Z ∼ N(0, 1) under the null
hypothesis, what is the asymptotic size of the test? That is, find the
limit of P (Tn ≥ tn−1,α) under these assumptions. Claim: this is exactly
α. Let Φ(z) =

∫ z
−∞(2π)−1/2 exp(−y2/2)dy. Then

P (Tn ≥ tn−1) = (1−Hn(tn−1))

= (1−Hn(tn−1,α))− P (Z ≥ tn−1,α) + P (Z ≥ tn−1,α)

= −(Hn(tn−1,α)− Φ(tn−1,α)) + (1− Φ(tn−1,α))

→ 0 + 1− Φ(zα) = α

where the convergence in the first term follows from the Pólya- Cantelli
lemma and the convergence in the second term follows from tn−1,α → zα
where zα satisfies Φ(zα) = 1− α.

4. Suppose that for θ ∈ R,

fθ(u, v) = {1 + θ(1− 2u)(1− 2v)}1[0,1]2(u, v).

(a) For what values of θ is fθ a density function on [0, 1]2?
(b) For the set of θ’s you identified in (a), find the corresponding dis-
tribution function Fθ and show that it has Uniform(0, 1) marginal dis-
tributions.
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(c) If (U, V ) ∼ Fθ, compute the correlation ρ(U, V ) ≡ ρ. Does this
show any difficulty with this family of distributions as a model of de-
pendence?

Solution: (a) For fθ to be a density function, we must have fθ(u, v) ≥ 0
for all (u, v) ∈ [0, 1]2 and∫ 1

0

∫ 1

0

fθ(u, v)dudv = 1 . (2)

Now ∫ 1

0

∫ 1

0

fθ(u, v)dudv = 1 + θ

∫ 1

0

∫ 1

0

(1− 2u)(1− 2v)dudv = 1

for all θ ∈ R since∫ 1

0

∫ 1

0

(1− 2u)(1− 2v)dudv =

∫ 1

0

(1− 2u)du

∫ 1

0

(1− 2v)dv = 0 · 0 = 0 ,

and hence (2) holds for all θ. The requirement that fθ be non-negative
is just

1 + θ(1− 2u)(1− 2v) ≥ 0 for all (u, v) ∈ [0, 1]2 ,

or equivalently that

θ(1− 2u)(1− 2v) ≥ −1 for all (u, v) ∈ [0, 1]2 .

By monotonicity of 1− 2u, this holds if and only if it holds for (u, v) ∈
{(0, 0), (0, 1), (1, 0), (1, 1)}; i.e.

θ ≥ −1, −θ ≥ −1, −θ ≥ −1, and θ ≥ −1 .

Thus it follows that fθ is a density function for θ ∈ [−1, 1], or |θ| ≤ 1.
(b) The corresponding distribution function Fθ is given by

Fθ(u, v) =

∫ u

0

∫ v

0

fθ(r, s)drds

=

∫ u

0

∫ v

0

{1 + θ(1− 2r)(1− 2s)}drds

= uv + θ

∫ u

0

(1− 2r)dr

∫ v

0

(1− 2s)ds

= uv + θu(1− u)v(1− v)

= uv {1 + θ(1− u)(1− v)} .
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Note that
Fθ(u, 1) = u , and Fθ(1, v) = v ,

so Fθ has Uniform(0, 1) marginal distributions.
(c) It follows from part (iv) of Proposition 1.4.1, page 20, Chapter 1,
that (by taking G(x) = x, H(x) = x))

Cov(U, V ) =

∫ 1

0

∫ 1

0

{Fθ(u, v)− uv}dudv

=

∫ 1

0

∫ 1

0

θu(1− u)v(1− v)dudv

= θ

(∫ 1

0

u(1− u)du

)2

=
1

36
θ

since ∫ 1

0

u(1− u)du =
1

2
u2 − 1

3
u3
∣∣∣1
0

=
1

2
− 1

3
=

1

6
.

Now since V ar(U) = V ar(V ) = 1/12 (since they are both Uniform(0, 1)),
it follows that

ρ(U, V ) =
Cov(U, V )√
V ar(U)V ar(V )

=
θ/36√

(1/12)(1/12)
=
θ

3
.

Note that this implies that |ρ(U, V )| ≤ 1/3, and hence this family of
distributions does not include any distributions on [0, 1]2 with correla-
tions larger than 1/3 in absolute value.

5. (a) Lehmann & Casella, TPE, problem 3.5, page 64.
Let S be the support of a distribution on a Euclidean space (X ,A).
Then, (i) S is closed; (ii) P (S) = 1; (iii) S is the intersection of all
closed sets C with P (C) = 1. (The support S of a distribution P
on (X ,A) is the set of all points x for which P (A) > 0 for all open
rectangles A = {(x1, . . . , xn) : ai < x < bi, i = 1, . . . , n} for numbers
ai < bi in R.)
(b) Lehmann & Casella, TPE, problem 3.6, page 64.
Show that if P and Q are two probability measures over the same
Euclidean space which are equivalent (i.e. P is absolutely continuous
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with respect to Q and Q is absolutely continuous with respect to P ),
then they have the same support.
(c) Lehmann & Casella, TPE, problem 3.7, page 64.
Let P and Q assign probabilities

P : P (X = 1/n) = pn > 0, n = 1, 2, . . . (
∑
n

pn = 1),

Q : P (X = 0) = 1/2; P (X = 1/n) = qn > 0, n = 1, 2, . . . (
∑
n

qn = 1/2).

Then, show that P and Q have the same support but are not equivalent.

Solution: (a) (i) Suppose that S is not closed. Then there exists a
sequence {xn} ⊂ S such that xn → x0 ∈ Sc. But then, for every ε > 0
there is an open ball B(x0, ε) such that xn ∈ B(x0, ε) for n ≥ Nε. Since
each xn is a support point, P (B(x0, ε)) > 0 for each ε > 0. But for
any open set A with x0 ∈ A, B(x0, ε) ⊂ A for some ε > 0, and hence
P (A) ≥ P (B(x0, ε) > 0. But this implies x0 ∈ S. Contradiction. Thus
S is closed.
(ii) P (S) = 1. From (i) S is closed, so Sc is open. Since x ∈ Sc if
and only if x ∈ Ax with Ax an open rectangle satisfying P (Ax) = 0.
Thus Sc ⊂ ∪xAx. By the Lindelöf theorem, for any such open covering
{Ax}x∈Sc of Sc ⊂ Rd, there is a countable subcollection {Axn} which
covers Sc: Sc ⊂ ∪nAxn . Then we have

P (Sc) ≤ P (∪nAxn) ≤
∑
n

P (Axn) =
∑
n

0 = 0 .

Hence P (S) = 1.
(iii) We want to show that S = ∩{C : C closed, P (C) = 1}. From
(i) and (ii) we know that S is in the collection of sets on the right
side, so it follows that S ⊃ ∩{C : C closed, P (C) = 1}. Thus it
remains to show that S ⊂ ∩{C : C closed, P (C) = 1}. Equivalently,
it remains to show that Sc ⊃ ∪{Cc : Cc open, P (Cc) = 0}. But if
x ∈ ∪{Cc : Cc open, P (Cc) = 0}, then x ∈ Cc for some Cc open with
P (Cc) = 0, and hence also x ∈ A ⊂ Cc for some open rectangle A
(an open ball centered at x for the metric ‖y‖ = max1≤i≤d |xi|) with
P (A) ≤ P (Cc) = 0. Hence x ∈ Sc.
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(b) Suppose that P and Q are equivalent: i.e. Q ≺≺ P and P ≺≺ Q.
Then for any open set A, P (A) = 0 if and only if Q(A) = 0. This
implies that for any closed set Ac,

P (Ac) = 1 if and only if Q(Ac) = 1 .

This implies that the minimal closed set SP with P (SP ) = 1 is also
the minimal closed set SQ with Q(SQ) = 1; i.e. SP = supp(P ) =
supp(Q) = SQ.
(c) Since P (X = 1/n) = pn > 0 for n = 1, 2, . . . with

∑∞
1 pn = 1, it

follows that supp(P ) = {0, . . . , 1/n, . . . , 1/2, 1}, which is closed. Simi-
larly, Since Q(X = 1/n) = qn > 0 for n = 1, 2, . . . with

∑∞
1 qn = 1/2,

andQ(X = 0) = 1/2, it follows that supp(Q) = {0, . . . , 1/n, . . . , 1/2, 1} =
supp(P ). But P ({0}) = 0 while Q({0}) = 1/2, so Q ≺≺ P fails. Thus
Q and P are not equivalent.
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