Statistics 581, Problem Set 1 Solutions Wellner; 10/3/2018

1. (a) The case r = 1 of Chebychev's Inequality is known as Markov's Inequality and is usually written $P(|X| \ge \epsilon) \le E(|X|)/\epsilon$ for an arbitrary random variable X and $\epsilon > 0$. For every $\epsilon > 1$, find a distribution for X with E(X) = 0 and E|X| = 1 that gives equality in Markov's inequality.

(b) Prove for an arbitrary random variable X and $\epsilon > 0$

$$P(|X| \ge \epsilon) \le E\left\{\frac{\cosh(X) - 1}{\cosh(\epsilon) - 1}\right\}.$$

Solution: (a) Given $\epsilon > 1$, let $X = \pm a > 0$ with probability $1/(2\epsilon) < 1/2$ and let X = 0 with probability $1 - 1/\epsilon$. Then

$$E(X) = aP(X = a) + (-a)P(X = -a) + 0 \cdot P(X = 0)$$

= $a/(2\epsilon) - a/(2\epsilon) = 0,$

$$E|X| = aP(X = a) + aP(X = -a) = a/\epsilon = 1$$

if we take $a = \epsilon$. On the other hand

$$P(|X| \ge \epsilon) = P(X \ge \epsilon) + P(-X \ge \epsilon) = 1/(2\epsilon) + 1/(2\epsilon) = 1/\epsilon,$$

so equality holds in Markov's inequality for this fixed $\epsilon > 1$. (b) Note that $g(y) \equiv \cosh(y) - 1$ satisfies g(0) = 0 and g(-y) = g(y). Therefore, for any $\epsilon > 0$

$$P(|X| \ge \epsilon) = P(g(X) \ge g(\epsilon)) \le \frac{Eg(X)}{g(\epsilon)}$$

where the inequality is just Markov's inequality applied to Y = g(X)and $\epsilon' = g(\epsilon)$.

- 2. Let X and Y be i.i.d. Uniform(0,1) random variables Define U = X Y, $V = \max(X, Y) = X \lor Y$.
 - (i) What is the range of (U, V)?
 - (ii) Find the joint density function $f_{U,V}(u, v)$ of the pair (U, V). Are U and V independent?

Solution: (i) The range of (X, Y) is $A = \{(x, y) : 0 \le x \le 1, 0 \le y \le 1\}$. The range of (U, V) is $B = \{(u, v) : 0 \le u \le 1, u \le v \le 1\} \cup \{(u, v) : -1 \le u < 0, -u \le v \le 1\}$.

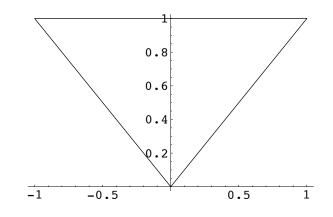


Figure 1: Range of U, V .

(ii) First solution - via Jacobians: The transformation $(X, Y) \to (U, V)$ is 1-1 and onto from A to B. On the set x < y, its inverse is given by X = U + V, Y = V; on the set x > y, its inverse is given by X = V, Y = V - U. These mappings are continuously differentiable on $B^* \equiv B \setminus \{(u, v) : (0, v)\} = B \setminus a$ null set. On B^* the Jacobian of the transformations are

$$\det \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = 1 \qquad \text{if } x < y, \qquad \det \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix} = 1 \qquad \text{if } x > y.$$
(1)

Thus by the usual transformation of densities formula, the joint density of (U, V) is obtained from $f_{X,Y}(x, y) = 1_{[0,1]}(x)1_{[0,1]}(y)$ as follows:

$$f_{U,V}(u,v) = f_{X,Y}(x(u,v), y(u,v)) |\det \frac{\partial(x,y)}{\partial(u,v)} |1_{[x(u,v) < y(u,v)]} + f_{X,Y}(x(u,v), y(u,v)) |\det \frac{\partial(x,y)}{\partial(u,v)} |1_{[x(u,v) > y(u,v)]} = (1_{[0,1]}(u+v)1_{[0,1]}(v)1_{[u+v < v]} + 1_{[0,1]}(v)1_{[0,1]}(v-u)1_{[v > v-u]}) = 1_B(u,v).$$

Thus the joint density of (U, V) is uniform on B. The random variables U and V are clearly not independent since the range of (U, V) is not a product set in \mathbb{R}^2 ; moreover, the joint density of (U, V) does not factor into the product of its marginal densities. [The marginal densities are given by

$$f_U(u) = \int f_{U,V}(u,v)dv = \begin{cases} \int_u^1 dv = 1 - u, & u \in [0,1]\\ \int_{-u}^1 dv = 1 + u, & u \in [-1,0) \end{cases}$$

and

$$f_V(v) = \int f_{U,V}(u,v) du = \int_{-v}^{v} du = 2v \mathbf{1}_{[0,1]}(v).$$

Second solution by direction calculation of the joint distribution function: Note that we can write

$$\begin{split} P(U &\leq u, V \leq v) \\ &= P(X - Y \leq u, X \lor Y \leq v) = P(X - Y \leq u, X \leq v, Y \leq v) \\ &= P(Y \geq X - u, X \leq v, Y \leq v) \\ &= \begin{cases} v^2 - \frac{1}{2}(v - u)^2, & \text{if } 0 \leq u \leq v \leq 1, \\ \frac{1}{2}(v + u)^2, & \text{if } -1 \leq u < 0, \ 0 < -u \leq v \leq 1. \end{cases} \end{split}$$

(This is easy by pictures!) Computing $(\partial^2/\partial u \partial v)P(U \leq u, V \leq v)$ on each of these pieces separately again yields $f_{U,V}(u,v) = 1_B(u,v)$. Also note that the marginal distribution functions of U and V are given by $F_U(u) = (1/2)(1+u)^2 1_{[-1,0)}(u) + \{1 - \frac{1}{2}(1-u)^2\} 1_{[0,1]}(u)$ on $-1 \leq u \leq 1$ and $F_V(v) = v^2$ for $0 \leq v \leq 1$.

3. Ferguson, ACILST, #6, page 7. (a) (This is known as the Pólya-Cantelli lemma; see Chapter 2, Proposition 2.11, page 10.)
(b) Give an example of the use of this lemma.
(See Lemma 2.11, p. 12, Asymp. Statist. for a multivariate version of this.)

Solution. (a) For the proof, see Ferguson, ACILST page 173. See van der Vaart (1998), page 12, for a sketch of the proof in the multivariate case.

(b) As an example, suppose that a test statistic T_n is assumed to have a t_{n-1} distribution under a null hypothesis, $\alpha \in (0, 1/2)$ and we reject the hull hypothesis H_0 if $T_n \geq t_{n-1,\alpha}$. If in fact T_n is not exactly t_{n-1} distributed, but we do have $T_n \to_d Z \sim N(0, 1)$ under the null hypothesis, what is the asymptotic size of the test? That is, find the limit of $P(T_n \geq t_{n-1,\alpha})$ under these assumptions. Claim: this is exactly α . Let $\Phi(z) = \int_{-\infty}^{z} (2\pi)^{-1/2} \exp(-y^2/2) dy$. Then

$$P(T_n \ge t_{n-1}) = (1 - H_n(t_{n-1}))$$

= $(1 - H_n(t_{n-1,\alpha})) - P(Z \ge t_{n-1,\alpha}) + P(Z \ge t_{n-1,\alpha})$
= $-(H_n(t_{n-1,\alpha}) - \Phi(t_{n-1,\alpha})) + (1 - \Phi(t_{n-1,\alpha}))$
 $\rightarrow 0 + 1 - \Phi(z_{\alpha}) = \alpha$

where the convergence in the first term follows from the Pólya- Cantelli lemma and the convergence in the second term follows from $t_{n-1,\alpha} \to z_{\alpha}$ where z_{α} satisfies $\Phi(z_{\alpha}) = 1 - \alpha$.

4. Suppose that for $\theta \in R$,

$$f_{\theta}(u,v) = \{1 + \theta(1 - 2u)(1 - 2v)\}\mathbf{1}_{[0,1]^2}(u,v).$$

(a) For what values of θ is f_{θ} a density function on $[0, 1]^2$?

(b) For the set of θ 's you identified in (a), find the corresponding distribution function F_{θ} and show that it has Uniform(0, 1) marginal distributions.

(c) If $(U, V) \sim F_{\theta}$, compute the correlation $\rho(U, V) \equiv \rho$. Does this show any difficulty with this family of distributions as a model of dependence?

Solution: (a) For f_{θ} to be a density function, we must have $f_{\theta}(u, v) \ge 0$ for all $(u, v) \in [0, 1]^2$ and

$$\int_{0}^{1} \int_{0}^{1} f_{\theta}(u, v) du dv = 1.$$
(2)

Now

$$\int_0^1 \int_0^1 f_\theta(u, v) du dv = 1 + \theta \int_0^1 \int_0^1 (1 - 2u)(1 - 2v) du dv = 1$$

for all $\theta \in R$ since

$$\int_0^1 \int_0^1 (1-2u)(1-2v) du dv = \int_0^1 (1-2u) du \int_0^1 (1-2v) dv = 0 \cdot 0 = 0,$$

and hence (2) holds for all θ . The requirement that f_{θ} be non-negative is just

$$1 + \theta(1 - 2u)(1 - 2v) \ge 0$$
 for all $(u, v) \in [0, 1]^2$,

or equivalently that

$$\theta(1-2u)(1-2v) \ge -1$$
 for all $(u,v) \in [0,1]^2$.

By monotonicity of 1-2u, this holds if and only if it holds for $(u, v) \in \{(0,0), (0,1), (1,0), (1,1)\}$; i.e.

$$\theta \ge -1, \qquad -\theta \ge -1, \qquad -\theta \ge -1, \qquad \text{and} \quad \theta \ge -1.$$

Thus it follows that f_{θ} is a density function for $\theta \in [-1, 1]$, or $|\theta| \leq 1$. (b) The corresponding distribution function F_{θ} is given by

$$\begin{aligned} F_{\theta}(u,v) &= \int_{0}^{u} \int_{0}^{v} f_{\theta}(r,s) dr ds \\ &= \int_{0}^{u} \int_{0}^{v} \{1 + \theta(1 - 2r)(1 - 2s)\} dr ds \\ &= uv + \theta \int_{0}^{u} (1 - 2r) dr \int_{0}^{v} (1 - 2s) ds \\ &= uv + \theta u(1 - u)v(1 - v) \\ &= uv \{1 + \theta(1 - u)(1 - v)\} . \end{aligned}$$

Note that

$$F_{\theta}(u, 1) = u$$
, and $F_{\theta}(1, v) = v$,

so F_{θ} has Uniform(0, 1) marginal distributions. (c) It follows from part (iv) of Proposition 1.4.1, page 20, Chapter 1, that (by taking G(x) = x, H(x) = x))

$$Cov(U,V) = \int_0^1 \int_0^1 \{F_\theta(u,v) - uv\} dudv$$

=
$$\int_0^1 \int_0^1 \theta u(1-u)v(1-v) dudv$$

=
$$\theta \left(\int_0^1 u(1-u) du\right)^2$$

=
$$\frac{1}{36} \theta$$

since

$$\int_0^1 u(1-u)du = \frac{1}{2}u^2 - \frac{1}{3}u^3\Big|_0^1 = \frac{1}{2} - \frac{1}{3} = \frac{1}{6}$$

Now since Var(U) = Var(V) = 1/12 (since they are both Uniform(0, 1)), it follows that

$$\rho(U,V) = \frac{Cov(U,V)}{\sqrt{Var(U)Var(V)}} = \frac{\theta/36}{\sqrt{(1/12)(1/12)}} = \frac{\theta}{3}.$$

Note that this implies that $|\rho(U, V)| \leq 1/3$, and hence this family of distributions does not include any distributions on $[0, 1]^2$ with correlations larger than 1/3 in absolute value.

5. (a) Lehmann & Casella, TPE, problem 3.5, page 64.

Let S be the support of a distribution on a Euclidean space $(\mathcal{X}, \mathcal{A})$. Then, (i) S is closed; (ii) P(S) = 1; (iii) S is the intersection of all closed sets C with P(C) = 1. (The support S of a distribution P on $(\mathcal{X}, \mathcal{A})$ is the set of all points x for which P(A) > 0 for all open rectangles $A = \{(x_1, \ldots, x_n) : a_i < x < b_i, i = 1, \ldots, n\}$ for numbers $a_i < b_i$ in R.)

(b) Lehmann & Casella, TPE, problem 3.6, page 64.

Show that if P and Q are two probability measures over the same Euclidean space which are equivalent (i.e. P is absolutely continuous

with respect to Q and Q is absolutely continuous with respect to P), then they have the same support.

(c) Lehmann & Casella, TPE, problem 3.7, page 64. Let P and Q assign probabilities

$$P: P(X = 1/n) = p_n > 0, \quad n = 1, 2, \dots \quad (\sum_n p_n = 1),$$
$$Q: P(X = 0) = 1/2; \quad P(X = 1/n) = q_n > 0, \quad n = 1, 2, \dots (\sum_n q_n = 1/2).$$

Then, show that P and Q have the same support but are not equivalent.

Solution: (a) (i) Suppose that S is not closed. Then there exists a sequence $\{x_n\} \subset S$ such that $x_n \to x_0 \in S^c$. But then, for every $\epsilon > 0$ there is an open ball $B(x_0, \epsilon)$ such that $x_n \in B(x_0, \epsilon)$ for $n \ge N_{\epsilon}$. Since each x_n is a support point, $P(B(x_0, \epsilon)) > 0$ for each $\epsilon > 0$. But for any open set A with $x_0 \in A$, $B(x_0, \epsilon) \subset A$ for some $\epsilon > 0$, and hence $P(A) \ge P(B(x_0, \epsilon) > 0)$. But this implies $x_0 \in S$. Contradiction. Thus S is closed.

(ii) P(S) = 1. From (i) S is closed, so S^c is open. Since $x \in S^c$ if and only if $x \in A_x$ with A_x an open rectangle satisfying $P(A_x) = 0$. Thus $S^c \subset \bigcup_x A_x$. By the Lindelöf theorem, for any such open covering $\{A_x\}_{x \in S^c}$ of $S^c \subset R^d$, there is a countable subcollection $\{A_{x_n}\}$ which covers S^c : $S^c \subset \bigcup_n A_{x_n}$. Then we have

$$P(S^c) \le P(\bigcup_n A_{x_n}) \le \sum_n P(A_{x_n}) = \sum_n 0 = 0.$$

Hence P(S) = 1.

(iii) We want to show that $S = \cap \{C : C \text{ closed}, P(C) = 1\}$. From (i) and (ii) we know that S is in the collection of sets on the right side, so it follows that $S \supset \cap \{C : C \text{ closed}, P(C) = 1\}$. Thus it remains to show that $S \subset \cap \{C : C \text{ closed}, P(C) = 1\}$. Equivalently, it remains to show that $S^c \supset \cup \{C^c : C^c \text{ open}, P(C^c) = 0\}$. But if $x \in \cup \{C^c : C^c \text{ open}, P(C^c) = 0\}$, then $x \in C^c$ for some C^c open with $P(C^c) = 0$, and hence also $x \in A \subset C^c$ for some open rectangle A(an open ball centered at x for the metric $||y|| = \max_{1 \le i \le d} |x_i|$) with $P(A) \le P(C^c) = 0$. Hence $x \in S^c$. (b) Suppose that P and Q are equivalent: i.e. $Q \prec \prec P$ and $P \prec \prec Q$. Then for any open set A, P(A) = 0 if and only if Q(A) = 0. This implies that for any closed set A^c ,

$$P(A^c) = 1$$
 if and only if $Q(A^c) = 1$.

This implies that the minimal closed set S_P with $P(S_P) = 1$ is also the minimal closed set S_Q with $Q(S_Q) = 1$; i.e. $S_P = \text{supp}(P) =$ $\text{supp}(Q) = S_Q$. (c) Since $P(X = 1/n) = p_n > 0$ for n = 1, 2, ... with $\sum_{1}^{\infty} p_n = 1$, it follows that $\text{supp}(P) = \{0, ..., 1/n, ..., 1/2, 1\}$, which is closed. Simi-

follows that $\operatorname{supp}(P) = \{0, \ldots, 1/n, \ldots, 1/2, 1\}$, which is closed. Similarly, Since $Q(X = 1/n) = q_n > 0$ for $n = 1, 2, \ldots$ with $\sum_{1}^{\infty} q_n = 1/2$, and Q(X = 0) = 1/2, it follows that $\operatorname{supp}(Q) = \{0, \ldots, 1/n, \ldots, 1/2, 1\} = \operatorname{supp}(P)$. But $P(\{0\}) = 0$ while $Q(\{0\}) = 1/2$, so $Q \prec \prec P$ fails. Thus Q and P are not equivalent.