Statistics 581, Problem Set 2 Solutions

Wellner; 10/12/2018

1. Suppose that X_{1}, X_{2}, \ldots is a sequence of random variables such that $X_{1} \sim \operatorname{Uniform}(0,1)$, and for $n=1,2, \ldots$ the conditional distribution of X_{n+1} given X_{1}, \ldots, X_{n} is uniform on $\left[0, c X_{n}\right]$ for a number $c \in(\sqrt{3}, 2)$.
(a) Compute $E\left(X_{n}^{r}\right)$ for $r>0$.
(b) Show that X_{n} converges to 0 in mean, but X_{n} does not converge to 0 in quadratic mean.
(c) Does $X_{n} \rightarrow_{\text {a.s. }} 0$?

Solution: (a) We compute

$$
\begin{aligned}
E\left(X_{n+1}^{r}\right) & =E\left\{E\left(X_{n+1}^{r} \mid X_{n}\right)\right\} \\
& =E\left(\int_{0}^{c X_{n}} y^{r} \frac{1}{c X_{n}} d y\right) \\
& =E\left(\frac{1}{c X_{n}(r+1)}\left(c X_{n}\right)^{r+1}\right)=\frac{c^{r}}{(r+1)} E\left(X_{n}^{r}\right) \\
& =\frac{c^{2 r}}{(r+1)^{2}} E\left(X_{n-1}^{r}\right)=\cdots=\left(\frac{c^{r}}{(r+1)}\right)^{n} E\left(X_{1}\right) \\
& =\left(\frac{c^{r}}{(r+1)}\right)^{n} \frac{1}{r+1} .
\end{aligned}
$$

(b) When $r=1$ the expression on the right side in the last display become $(c / 2)^{n} \cdot 2^{-1} \rightarrow 0$ since $c / 2<1$. When $r=2$ it reduces to $\left(c^{2} / 3\right)^{n} \cdot(1 / 3) \rightarrow \infty$ since $c^{2} / 3>1$.
(c) Note that for any $\epsilon>0$ and $r=1$ we have

$$
P\left(X_{n} \geq \epsilon\right) \leq \epsilon^{-1} E\left(X_{n}\right) \leq \epsilon^{-1}(c / 2)^{(n-1)} / 2
$$

where $(c / 2)<1$ and hence

$$
\sum_{n=1}^{\infty} P\left(X_{n} \geq \epsilon\right) \leq \frac{1}{2 \epsilon} \sum_{n=1}^{\infty}(c / 2)^{(n-1)}<\infty
$$

Thus $X_{n} \rightarrow_{\text {a.s. }} 0$ by the Borel-Cantelli lemma.
2. Wellner 581 Course Notes, Chapter 1, Exercise 4.1, page 19. (Show just the first equality in each case; we will do the second equalities later.)

Solution: To see that the first equality in (11) holds, we use Fubini's theorem as follows:

$$
\begin{aligned}
E(X) & =\int_{0}^{\infty} x d F(x)=\int_{0}^{\infty} \int_{0}^{x} d t d F(x)=\int_{0}^{\infty} \int_{0}^{\infty} 1_{[0, x)}(t) d t d F(x) \\
& =\int_{0}^{\infty} \int_{0}^{\infty} 1_{[0, x)}(t) d F(x) d t=\int_{0}^{\infty} \int_{(t, \infty)} d F(x) d t=\int_{0}^{\infty}(1-F(t)) d t
\end{aligned}
$$

To see that equality holds in (12), we proceed much as the proof of (11) after separating the expectation into two terms:

$$
\begin{aligned}
E X & =\int_{0}^{\infty} x d F(x)+\int_{-\infty}^{0} x d F(x) \\
& =\int_{0}^{\infty}\left(\int_{0}^{x} d t\right) d F(x)-\int_{-\infty}^{0}\left(\int_{x}^{0} d t\right) d F(x) \\
& =\int_{0}^{\infty} \int_{0}^{\infty} 1\{t<x\} d F(x) d t-\int_{-\infty}^{0} \int_{-\infty}^{0} 1\{x \leq t\} d F(x) d t \\
& =\int_{0}^{\infty}(1-F(t)) d t-\int_{-\infty}^{0} F(t) d t .
\end{aligned}
$$

The proof of (13) goes much as the proof of (11), but using the substitution $x^{r}=r \int_{0}^{x} t^{r-1} d t$:

$$
\begin{aligned}
E\left(X^{r}\right) & =\int_{0}^{\infty} x^{r} d F(x)=\int_{0}^{\infty} \int_{0}^{x} r t^{r-1} d t d F(x)=\int_{0}^{\infty} \int_{0}^{\infty} 1_{[0, x)}(t) r t^{r-1} d t d F(x) \\
& =\int_{0}^{\infty}\left(\int_{0}^{\infty} 1_{[0, x)}(t) d F(x)\right) r t^{r-1} d t \\
& =\int_{0}^{\infty} \int_{(t, \infty)} d F(x) r t^{r-1} d t=\int_{0}^{\infty} r t^{r-1}(1-F(t)) d t
\end{aligned}
$$

3. Ferguson, ACILST, $\# 4$, page 6 :
(a) Give an example of random variables X_{n} such that $E\left|X_{n}\right| \rightarrow 0$ and $E\left|X_{n}\right|^{2} \rightarrow 1$.
(b) Give an example of a sequence of random variables X_{n} such that $X_{n} \rightarrow_{p} 0$ and $E X_{n} \rightarrow 0$, but $X_{n} \rightarrow_{a . s .} 0$ fails.
(c) Suppose that Y has a standard Cauchy distribution with density $f(y)=\left(\pi\left(1+y^{2}\right)\right)^{-1}$. Find a sequence of random variables Y_{n} such that $Y_{n} \rightarrow_{2} Y$, but Y_{n} does not converge to Y almost surely.

Solution: (a) If $X_{n}=a_{n}$ with probability p_{n} and $X_{n}=0$ with probability $1-p_{n}$, then $E\left(X_{n}\right)=a_{n} p_{n}$ and $E\left(X_{n}^{2}\right)=a_{n}^{2} p_{n}=1$ if $p_{n}=1 / a_{n}^{2}$. Then $E\left(X_{n}\right)=a_{n} / a_{n}^{2}=1 / a_{n} \rightarrow 0$ if $a_{n} \rightarrow \infty$. Ferguson's solution on page 173 takes $a_{n}=n$; the same holds for any sequence $a_{n} \rightarrow \infty$.
(b) Let $U \sim$ Uniform $(0,1)$. The "dancing functions" are defined by $X_{n, k}=1_{\left[(k-1) / 2^{n}, k / 2^{n}\right)}(U), k=1, \ldots, 2^{n}, n=1,2, \ldots$. Let $\left\{Y_{m}\right\}_{m \geq 1}$
be defined by $Y_{m}=X_{n, k}$ if $m=\left(\sum_{j=1}^{n} 2^{j}\right)+k=2^{n+1}-2+k$ with $1 \leq k \leq 2^{n}$. Then for $\epsilon \in(0,1)$,

$$
P\left(\left|Y_{m}\right|>\epsilon\right)=P\left(\left|X_{n, k}\right|>\epsilon\right)=2^{-n} \rightarrow 0
$$

so $Y_{m} \rightarrow_{p} 0$, but for every $U(\omega) \in(0,1)$ we have $Y_{m}(\omega)=1$ for infinitely many m 's and also $Y_{m}(\omega)=0$ for infinitely many m 's. Hence

$$
0=\liminf Y_{m}<\limsup Y_{m}=1 \quad \text { a.s. }
$$

and it follows that Y_{m} does not converge to 0 almost surely. To see that $E Y_{m} \rightarrow 0$, note that Y_{m} takes on only the values 0 and 1 , and hence $Y_{m} \sim \operatorname{Bernoulli}\left(p_{m}\right)$ where $p_{m}=p_{n, k}=2^{-n}$ for $m=2^{n+1}+k$ with $1 \leq k \leq 2^{n}$. Thus $E\left(Y_{m}^{2}\right) \leq 1 \cdot E\left(Y_{m}\right)=p_{m} \rightarrow 0$ as $m \rightarrow \infty$.
(c) Let V_{n} be a sequence of random variables as in (b) satisfying $V_{n} \rightarrow_{p}$ 0 , and $E V_{n}^{2} \rightarrow 0$, but such that V_{n} does not converge to 0 a.s., and define $Y_{n} \equiv Y+V_{n}$. Then $E\left(Y_{n}-Y\right)^{2}=E V_{n}^{2} \rightarrow 0$ but $Y_{n}=Y+V_{n}$ does not converge almost surely to Y since V_{n} does not converge a.s. to 0 .
4. vdV, Asymp. Statist., problem 5, page 24: Find an example of a sequence $\left(X_{n}, Y_{n}\right)$ such that $X_{n} \rightarrow_{d} X, Y_{n} \rightarrow_{d} Y$, but $\left(X_{n}, Y_{n}\right)$ does not converge in distribution.

Solution: Suppose that $X_{n}=U \sim \operatorname{Uniform}(0,1)$ for every n and let $Y_{2 n}=U, Y_{2 n-1}=1-U$ for $n=1,2, \ldots$. Then $X_{n} \stackrel{d}{=} U$ for every n and $Y_{n} \sim U$ for every n since $1-U \stackrel{d}{=} U$. But $\left(X_{n}, Y_{n}\right)$ does not converge in distribution: for every even integer n the random vector has a uniform distribution on $\{(x, x): 0 \leq x \leq 1\}$ while for every odd integer n the random vector $\left(X_{n}, Y_{n}\right)$ has a uniform distribution on $\{(x, 1-x): 0 \leq x \leq 1\}$. (Note that since $\left\{X_{n}\right\}$ is tight and $\left\{Y_{n}\right\}$ is tight it follows that $\left\{\left(X_{n}, Y_{n}\right)\right\}$ is tight, and by Prohorov's theorem the exist subsequences $\left(X_{n^{\prime}}, Y_{n^{\prime}}\right)$ which do converge in distribution. In the present example there are exactly two such subsequences.
5. (See vdV, Asymp. Stat., section 11.1, pages 153-156.)

Suppose that Y is a random variable with $E\left(Y^{2}\right)<\infty$, let X be another random variable on the same probability space as Y, and consider finding a (measurable) function g of X with $E g^{2}(X)<\infty$ so that
$E(Y-g(X))^{2}$ is "small".
(a) Show that

$$
\inf _{g: \mathbb{R} \rightarrow \mathbb{R}, E g^{2}(X)<\infty} E(Y-g(X))^{2}=E(Y-E(Y \mid X))^{2}
$$

so that the minimizer is exactly $g_{0}(X) \equiv E(Y \mid X)$.
(b) Show that $E\{(Y-E(Y \mid X)) g(X)\}=0$ for all $g(X) \in L_{2}(P)$.
(c) Interpret the results in (a) and (b) geometrically (i.e. in the Hilbert space $L_{2}(P)$ of square integrable random variables with the inner product $\langle X, Y\rangle \equiv E(X Y)$.

Solution: (a) Note that

$$
\begin{align*}
E(Y-g(X))^{2}= & E(Y-E(Y \mid X)+E(Y \mid X)-g(X))^{2} \\
= & E(Y-E(Y \mid X))^{2}+E(E(Y \mid X)-g(X))^{2} \\
& +2 E\{(Y-E(Y \mid X))(E(Y \mid X)-g(X))\} \\
= & E(Y-E(Y \mid X))^{2}+E(E(Y \mid X)-g(X))^{2} \tag{1}
\end{align*}
$$

since, by computing conditionally on X,

$$
\begin{aligned}
& E\{(Y-E(Y \mid X))(E(Y \mid X)-g(X))\} \\
& \quad=E E\{(Y-E(Y \mid X))(E(Y \mid X)-g(X)) \mid X\} \\
& \quad=E\{(E(Y \mid X)-g(X)) E\{(Y-E(Y \mid X)) \mid X\}\} \\
& \quad=E\{(E(Y \mid X)-g(X)) \cdot 0\}=0
\end{aligned}
$$

From (1) we conclude that

$$
E(Y-g(X))^{2} \geq E(Y-E(Y \mid X))^{2}
$$

with equality if and only if $g(X)=E(Y \mid X)$ almost surely.
(b) By a computation similar to that in (a) we have, for any $g(X) \in$ $L_{2}(P)$,

$$
\begin{aligned}
E\{(Y-E(Y \mid X)) g(X)\} & =E E\{(Y-E(Y \mid X)) g(X) \mid X\} \\
& =E\{g(X) E\{(Y-E(Y \mid X)) \mid X\}\} \\
& =E\{g(X) \cdot 0\}=0
\end{aligned}
$$

(c) The result in (a) shows that $E(Y \mid X)$ is the "projection" of Y onto the sub-space of all $L_{2}(P)$ random variables which are measurable functions of X. The result in (b) shows that the "residual" $Y-E(Y \mid X)$ resulting from projecting Y onto $L_{2}\left(P_{X}\right)$ is orthogonal to the subspace $L_{2}\left(P_{X}\right)$ of all square integrable functions of X.

