
Statistics 581, Problem Set 2 Solutions
Wellner; 10/12/2018

1. Suppose that X1, X2, . . . is a sequence of random variables such that
X1 ∼ Uniform(0, 1), and for n = 1, 2, . . . the conditional distribution of
Xn+1 given X1, . . . , Xn is uniform on [0, cXn] for a number c ∈ (

√
3, 2).

(a) Compute E(Xr
n) for r > 0.

(b) Show that Xn converges to 0 in mean, but Xn does not converge
to 0 in quadratic mean.

(c) Does Xn →a.s. 0?

Solution: (a) We compute

E(Xr
n+1) = E{E(Xr

n+1|Xn)}

= E

(∫ cXn

0

yr
1

cXn

dy

)
= E

(
1

cXn(r + 1)
(cXn)r+1

)
=

cr

(r + 1)
E(Xr

n)

=
c2r

(r + 1)2
E(Xr

n−1) = · · · =
(

cr

(r + 1)

)n

E(X1)

=

(
cr

(r + 1)

)n
1

r + 1
.

(b) When r = 1 the expression on the right side in the last display
become (c/2)n · 2−1 → 0 since c/2 < 1. When r = 2 it reduces to
(c2/3)n · (1/3)→∞ since c2/3 > 1.
(c) Note that for any ε > 0 and r = 1 we have

P (Xn ≥ ε) ≤ ε−1E(Xn) ≤ ε−1(c/2)(n−1)/2

where (c/2) < 1 and hence
∞∑
n=1

P (Xn ≥ ε) ≤ 1

2ε

∞∑
n=1

(c/2)(n−1) <∞.

Thus Xn →a.s. 0 by the Borel-Cantelli lemma.

2. Wellner 581 Course Notes, Chapter 1, Exercise 4.1, page 19. (Show just
the first equality in each case; we will do the second equalities later.)

Solution: To see that the first equality in (11) holds, we use Fubini’s
theorem as follows:

E(X) =

∫ ∞
0

xdF (x) =

∫ ∞
0

∫ x

0

dtdF (x) =

∫ ∞
0

∫ ∞
0

1[0,x)(t)dtdF (x)

=

∫ ∞
0

∫ ∞
0

1[0,x)(t)dF (x)dt =

∫ ∞
0

∫
(t,∞)

dF (x)dt =

∫ ∞
0

(1− F (t))dt.
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To see that equality holds in (12), we proceed much as the proof of (11)
after separating the expectation into two terms:

EX =

∫ ∞
0

xdF (x) +

∫ 0

−∞
xdF (x)

=

∫ ∞
0

(∫ x

0

dt

)
dF (x)−

∫ 0

−∞

(∫ 0

x

dt

)
dF (x)

=

∫ ∞
0

∫ ∞
0

1{t < x}dF (x)dt−
∫ 0

−∞

∫ 0

−∞
1{x ≤ t}dF (x)dt

=

∫ ∞
0

(1− F (t))dt−
∫ 0

−∞
F (t)dt.

The proof of (13) goes much as the proof of (11), but using the substi-
tution xr = r

∫ x

0
tr−1dt:

E(Xr) =

∫ ∞
0

xrdF (x) =

∫ ∞
0

∫ x

0

rtr−1dtdF (x) =

∫ ∞
0

∫ ∞
0

1[0,x)(t)rt
r−1dtdF (x)

=

∫ ∞
0

(∫ ∞
0

1[0,x)(t)dF (x)

)
rtr−1dt

=

∫ ∞
0

∫
(t,∞)

dF (x)rtr−1dt =

∫ ∞
0

rtr−1(1− F (t))dt.

3. Ferguson, ACILST, #4, page 6:
(a) Give an example of random variables Xn such that E|Xn| → 0 and
E|Xn|2 → 1.
(b) Give an example of a sequence of random variables Xn such that
Xn →p 0 and EXn → 0, but Xn →a.s. 0 fails.
(c) Suppose that Y has a standard Cauchy distribution with density
f(y) = (π(1 + y2))−1. Find a sequence of random variables Yn such
that Yn →2 Y , but Yn does not converge to Y almost surely.

Solution: (a) If Xn = an with probability pn and Xn = 0 with proba-
bility 1− pn, then E(Xn) = anpn and E(X2

n) = a2npn = 1 if pn = 1/a2n.
Then E(Xn) = an/a

2
n = 1/an → 0 if an → ∞. Ferguson’s solution on

page 173 takes an = n; the same holds for any sequence an →∞.
(b) Let U ∼ Uniform(0, 1). The “dancing functions” are defined by
Xn,k = 1[(k−1)/2n,k/2n)(U), k = 1, . . . , 2n, n = 1, 2, . . .. Let {Ym}m≥1
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be defined by Ym = Xn,k if m = (
∑n

j=1 2j) + k = 2n+1 − 2 + k with
1 ≤ k ≤ 2n. Then for ε ∈ (0, 1),

P (|Ym| > ε) = P (|Xn,k| > ε) = 2−n → 0

so Ym →p 0, but for every U(ω) ∈ (0, 1) we have Ym(ω) = 1 for infinitely
many m’s and also Ym(ω) = 0 for infinitely many m’s. Hence

0 = lim inf Ym < lim supYm = 1 a.s.

and it follows that Ym does not converge to 0 almost surely. To see
that EYm → 0, note that Ym takes on only the values 0 and 1, and
hence Ym ∼ Bernoulli(pm) where pm = pn,k = 2−n for m = 2n+1 + k
with 1 ≤ k ≤ 2n. Thus E(Y 2

m) ≤ 1 · E(Ym) = pm → 0 as m→∞.
(c) Let Vn be a sequence of random variables as in (b) satisfying Vn →p

0, and EV 2
n → 0, but such that Vn does not converge to 0 a.s., and

define Yn ≡ Y + Vn. Then E(Yn − Y )2 = EV 2
n → 0 but Yn = Y + Vn

does not converge almost surely to Y since Vn does not converge a.s.
to 0.

4. vdV, Asymp. Statist., problem 5, page 24: Find an example of a
sequence (Xn, Yn) such that Xn →d X, Yn →d Y , but (Xn, Yn) does
not converge in distribution.

Solution: Suppose that Xn = U ∼ Uniform(0, 1) for every n and let

Y2n = U , Y2n−1 = 1 − U for n = 1, 2, . . .. Then Xn
d
= U for every

n and Yn ∼ U for every n since 1 − U
d
= U . But (Xn, Yn) does not

converge in distribution: for every even integer n the random vector
has a uniform distribution on {(x, x) : 0 ≤ x ≤ 1} while for every
odd integer n the random vector (Xn, Yn) has a uniform distribution
on {(x, 1 − x) : 0 ≤ x ≤ 1}. (Note that since {Xn} is tight and {Yn}
is tight it follows that {(Xn, Yn)} is tight, and by Prohorov’s theorem
the exist subsequences (Xn′ , Yn′) which do converge in distribution. In
the present example there are exactly two such subsequences.

5. (See vdV, Asymp. Stat., section 11.1, pages 153 - 156.)
Suppose that Y is a random variable with E(Y 2) < ∞, let X be an-
other random variable on the same probability space as Y , and con-
sider finding a (measurable) function g of X with Eg2(X) <∞ so that
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E(Y − g(X))2 is “small”.
(a) Show that

inf
g:R→R,Eg2(X)<∞

E(Y − g(X))2 = E(Y − E(Y |X))2

so that the minimizer is exactly g0(X) ≡ E(Y |X).
(b) Show that E{(Y − E(Y |X))g(X)} = 0 for all g(X) ∈ L2(P ).
(c) Interpret the results in (a) and (b) geometrically (i.e. in the Hilbert
space L2(P ) of square integrable random variables with the inner prod-
uct 〈X, Y 〉 ≡ E(XY ).

Solution: (a) Note that

E(Y − g(X))2 = E(Y − E(Y |X) + E(Y |X)− g(X))2

= E(Y − E(Y |X))2 + E(E(Y |X)− g(X))2

+ 2E{(Y − E(Y |X))(E(Y |X)− g(X))}
= E(Y − E(Y |X))2 + E(E(Y |X)− g(X))2 (1)

since, by computing conditionally on X,

E{(Y − E(Y |X))(E(Y |X)− g(X))}
= EE{(Y − E(Y |X))(E(Y |X)− g(X))|X}
= E {(E(Y |X)− g(X))E{(Y − E(Y |X))|X}}
= E {(E(Y |X)− g(X)) · 0} = 0.

From (1) we conclude that

E(Y − g(X))2 ≥ E(Y − E(Y |X))2

with equality if and only if g(X) = E(Y |X) almost surely.
(b) By a computation similar to that in (a) we have, for any g(X) ∈
L2(P ),

E{(Y − E(Y |X))g(X)} = EE{(Y − E(Y |X))g(X)|X}
= E{g(X)E{(Y − E(Y |X))|X}}
= E{g(X) · 0} = 0.

(c) The result in (a) shows that E(Y |X) is the “projection” of Y
onto the sub-space of all L2(P ) random variables which are measurable
functions of X. The result in (b) shows that the “residual” Y −E(Y |X)
resulting from projecting Y onto L2(PX) is orthogonal to the subspace
L2(PX) of all square integrable functions of X.
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