Statistics 581, Problem Set 2 Solutions
Wellner; 10/12/2018

1. Suppose that X7, Xy, ... is a sequence of random variables such that
Xj ~ Uniform(0,1), and for n = 1,2, ... the conditional distribution of
X,11 given X1, ..., X,, is uniform on [0, cX,] for a number c € (v/3,2).
(a) Compute E(X) for r > 0.

(b) Show that X, converges to 0 in mean, but X,, does not converge
to 0 in quadratic mean.
(c) Does X,, =45 07

Solution: (a) We compute
E(X5) = E{E(X;|X)}
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(b) When r = 1 the expression on the right side in the last display
become (c/2)" - 271 — 0 since ¢/2 < 1. When r = 2 it reduces to
(?/3)™ - (1/3) — oo since ¢?/3 > 1.
(c) Note that for any € > 0 and r = 1 we have

P(X,>¢€) <e'B(X,) <e'(c/2)"V)2

where (¢/2) < 1 and hence

o0 1 o0
P(X, >¢€) < — 2)("=1) o,
; ( _6)_26;1(6/) 00

Thus X,, =, 0 by the Borel-Cantelli lemma.

2. Wellner 581 Course Notes, Chapter 1, Exercise 4.1, page 19. (Show just
the first equality in each case; we will do the second equalities later.)

Solution: To see that the first equality in (11) holds, we use Fubini’s
theorem as follows:

B(X) = / 2dF(x / / dtdF (x / / Lo () dtdF ()
_ /0 /0 Lo (O)dF (2)dt = /0 /(tm)dF(x)dt: /O (1= P(t))dt.
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To see that equality holds in (12), we proceed much as the proof of (11)
after separating the expectation into two terms:

EX = /OooxdF(m)+/0 2dF ()

—00

_ /OOO (/Oxdt) dF (z) —/L (/:dt) dF (x)
_ /OOO /Oool{t<x}dF(a:)dt—/_Ooo /_iol{asét}dF(x)dt

_ /Ooo(l—F(t))dt—/_OooF(t)dt.

The proof of (13) goes much as the proof of (11), but using the substi-
tution 2" =r [ t"dt:

E(X") :/ a"dF (z // rt"tdtdF(z //1[095 Yrt"dtdF (x)
= [ ([ twotar@) rear
= / /m yrt"rdt = /Ooort“l(l—F(t))dt.

. Ferguson, ACILST, #4, page 6:

(a) Give an example of random variables X, such that E|X,,| — 0 and
E|X,|? — 1.

(b) Give an example of a sequence of random variables X,, such that
X, —p 0and EX,, = 0, but X,, =, 0 fails.

(c) Suppose that Y has a standard Cauchy distribution with density
fly) = (m7(1 +y*))~'. Find a sequence of random variables Y,, such
that Y,, —2 Y, but Y,, does not converge to Y almost surely.

Solution: (a) If X,, = a,, with probability p, and X,, = 0 with proba-
bility 1 — p,,, then E(X,,) = a,p, and F(X?) = a?p, = 1 if p, = 1/a?.
Then E(X,) = a,/a2 = 1/a, — 0 if a,, — oo. Ferguson’s solution on
page 173 takes a,, = n; the same holds for any sequence a,, — oo.

(b) Let U ~ Uniform(0,1). The “dancing functions” are defined by
ka = 1[(k_1)/2n7k/2n)(U), k = 1, SN ,2”, n = 1,2, .... Let {Ym}m21
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be defined by Y, = Xy if m = (357, 2) + k = 2" — 2 4+ k with
1 <k < 2" Then for e € (0,1),

P(|Y,| >€) =P(| Xpkl >€¢)=2""—=10

so Y., —, 0, but for every U(w) € (0,1) we have Y,,,(w) = 1 for infinitely
many m’s and also Y,,(w) = 0 for infinitely many m’s. Hence

0 =liminfY,, < limsupY,, =1 a.s.

and it follows that Y, does not converge to 0 almost surely. To see
that FY,, — 0, note that Y,, takes on only the values 0 and 1, and
hence Y,, ~ Bernoulli(p,,) where p,, = p,x = 27" for m = 2" + k
with 1 <k < 2" Thus E(Y,?) <1-E(Y,,) = pm — 0 as m — oo.

(c) Let V,, be a sequence of random variables as in (b) satisfying V,, —,
0, and EV?? — 0, but such that V,, does not converge to 0 a.s., and
define Y, =Y +V,. Then E(Y,, - Y)?=EV? - 0but Y, =Y +V,
does not converge almost surely to Y since V,, does not converge a.s.
to 0.

. vdV, Asymp. Statist., problem 5, page 24: Find an example of a
sequence (X,,,Y,) such that X,, —; X, Y, —; Y, but (X,,Y,) does
not converge in distribution.

Solution: Suppose that X,, = U ~ Uniform(0, 1) for every n and let
Yoo = U, Yo 1 =1—-U forn = 1,2,.... Then X, L U for every
n and Y, ~ U for every n since 1 — U 2 U. But (Xn,Y,) does not
converge in distribution: for every even integer n the random vector
has a uniform distribution on {(z,z) : 0 < z < 1} while for every
odd integer n the random vector (X,,Y,) has a uniform distribution
on {(z,1 —xz): 0 <z <1}. (Note that since {X,} is tight and {Y,,}
is tight it follows that {(X,,Y,)} is tight, and by Prohorov’s theorem
the exist subsequences (X, Y,,) which do converge in distribution. In
the present example there are exactly two such subsequences.

. (See vdV, Asymp. Stat., section 11.1, pages 153 - 156.)

Suppose that Y is a random variable with E(Y?) < oo, let X be an-
other random variable on the same probability space as Y, and con-
sider finding a (measurable) function g of X with E¢*(X) < oo so that



E(Y —g(X))?* is “small”.
(a) Show that

inf E(Y —g(X))*=E(Y — E(Y|X))?

gR—R,Eg2(X)<oo

so that the minimizer is exactly go(X) = E(Y|X).
(b) Show that E{(Y — E(Y'|X))g(X)} =0 for all g(X) € Ly(P).
(c) Interpret the results in (a) and (b) geometrically (i.e. in the Hilbert

space Lo(P) of square integrable random variables with the inner prod-
uct (X,Y) = E(XY).

Solution: (a) Note that
E(Y —g(X))* = E(Y - E(Y|X)+E(Y|X) - g(X))*
= E(Y - E(Y|X))" + E(E(Y|X) — g(X))*
+2B{(Y - E(V|X))(E(Y|X) — g(X))}
= E(Y - E(Y|X))+ E(E(Y|X) - g(X))* (1)
since, by computing conditionally on X,
E{(Y - E(Y[X))(E(Y|X) — g(X))}

= BE{(Y - E(V[X))(E(Y]X) - g(X))|X}

= E{(EY]X) - g(X))E{(Y — E(Y|X))[X}}

= E{(E(Y[X)-g(X))-0} =0.
From (1) we conclude that

BE(Y —g(X))* > BE(Y — E(Y|X))?
with equality if and only if g(X) = F(Y|X) almost surely.
(b) By a computation similar to that in (a) we have, for any g(X) €
Ly(P),
B{(Y — ECVIX))g(X)} = BE{(Y — E(Y|X))g(X)|X}
= BE{g(X)E{(Y - E(Y|X))|X}}
~ B{g(x)-0} 0.

(¢c) The result in (a) shows that E(Y|X) is the “projection” of Y
onto the sub-space of all Ly(P) random variables which are measurable
functions of X. The result in (b) shows that the “residual” Y — E(Y'|X)

resulting from projecting Y onto Ls(Px) is orthogonal to the subspace
Ly(Px) of all square integrable functions of X.



