Statistics 581, Problem Set 3 Solutions
Wellner; 10/18/2018

1. Ferguson, ACILST, page 34, problem 1(a) (modified slightly):
Suppose that X, X, ... are i.i.d. in R? with distribution giving probability 6; to
(1,0), probability #, to (0,1)", 3 to (—1,0)" and 64 to (0,—1)" where #; > 0 for
j: 1,2,3,4 and 91 +62+93+94 =1.
(a) Find p = E(Xy).
(b) Compute E(X; X7) and ¥ = E(X; — u)(X; — p)T.
(c) Find the limiting distribution of \/n(X, — ) and describe the resulting
approximation to the distribution of X,,.
(d) Find values of (6, ...,0,) such that ¥ has rank 1 and det(X) = 0.

Solution: (a) The mean vector y is

ey =)o () on( ) e 4)-(375)

(b) The second moment matrix F(X X7T) is

10 00 10 00
B(XXT) = 91<0 1>+ 92<0 1)+93(0 0)+ 94(0 1)
91+93 0
0 Oy +0, )7

and hence the covariance matrix ¥ = E(XX7T) — E(X)E(X)T is

x = ( 91393 92294 ) - ( @ feégig?i 04) " (79293—)(55)2_ " )

04+ 05— (0, — 052 —(61 — 05)(0 — 04)
- ( — (01— 03)(0s — 01) (B2 + 04) — (6 — 0,)? )

(¢) By the multivariate CLT, the limiting distribution of /n(X, — u) is Na(0%).
Thus the approximating normal distribution of X, is centered at y with covariance
matrix n ¥,

(d) The determinant of 3 is given by

det(X) = {(01 + 0s) — (61 — 03)2} {(02 + 0n) — (02 — 04)2} — (61 — 05)2(6 — 0.)>.

This equals 0 if y = 0, = 0 or if §; = 03 = 0. In the first case

5 01 +05—(01—05)* 0\ [ 1—(01—63)? 0
N 0 0/ 0 0 )’

and in the second case

Z:(g (92+94)—0(92—94)2>:(8 1_(920_94)2)
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2. (Van der Vaart, page 24)
(a) Suppose that X,, and Y,, are independent random vectors with X,, —4 X and
Y, —q Y. Show that (X,,,Y,) —4 (X,Y) where X and Y are independent.
(b) Suppose that P(X,, = i/n) = 1/n for i = 1,2,...,n. show that X,, —4 X ~
Uniform(0, 1).
(c) Consider the X,,’s as in (b). Show that there exists a Borel set B such that
P(X, € B) =1but P(X € B) = 0. In particular, with P, = £(X,,) and P = £L(X),
drv(P,, P) =1 for each n.

Solution:(a) Since X,, —4 X in R™ and Y,, —4 Y in R¥ (as random vectors), we
know that their characteristic functions also converge pointwise: for every s € R™,

t € R”,
ox,(s) = Be® Xn — B = ¢x(s) and
dv,(t) = Be' M = BV = oy (1),

Then, since X,, and Y,, are independent,

- T T - T T
(meYn(s,t) —_ Eels Xn+ttYs, — Eezs XnEe'Lt Y,

— ¢X(S) . qby(t)

This implies that (X, Y,) —4 (X,Y) where X and Y are independent.
(b) Note that for each x € [0, 1]

F.(x)=P(X, <z)=|nz|]/n—>2=PX <x)

It follows that X,, — X ~ Uniform(0, 1).
(c) Let B={1/n,...,n/n =1}. Then P(X, € B) =1 but P(X € B) = 0. Thus
dry(P,, P) = 1.

3. ACILST, page 34, problem 5: Suppose that X, X5, ... are i.i.d. random variables
with mean o and variance 0® < oo. Let T, = Y 7 2,;X; where the {2,;}]_,
are given numbers. Let u, = E(T,) and o2 = Var(T,). Use the Lindeberg-

Feller central limit theorem to show that (7, — p,)/on —a Z ~ N(0,1) if
maxi<j<n ZTZLJ-/ Z?Zl zflj — 0 as n — oo.

Solution: Let Y; = X; — u so that E(Y;) = 0 and Var(Y;) = o2 We also let
Xni = 2,,;Y; so that T, — 1, = >0 | Xpi, and note that o2 = Var(T,) = 02> | 22,.
To prove the claimed asymptotic normality we need to check that the Lindeberg-
condition holds. For € > 0 we want to show that

LF,(¢) = %ZE {X21{|X| > €0} — 0
n =1

for every € > 0. But we note that

n n 1/2
1
L = 3 e A e (355) )
n =1

=1



n

n 1/2
1 ) ,
< L aE s e (Y4 )
1 n
= BV > e0 Z/mx i}
— 0

by the dominated convergence theorem with dominating function Y} since E(Y}?) <
0.

. (a) ACILST, problem 4, page 49: Let X, ..., X, be a sample of size n from the beta
distribution Beta ((9, 1) with # > 0. Show that the method of moments estimate of
0is 0, = X,/(1—X,).

(b) Find the asymptotic distribution of ,,.

(c) Is 0, asymptotically linear? If so, find the influence function of 0.

(d) Find the Cramér-Rao lower bound for estimation of # and compare it to the
asymptotic variance you found in (b).

Solution: (a) If Y ~ Beta(a, ), then E(Y) = o/(a + ), so EgX; = 0/(0 + 1).

Thus the method of moments estimator 6, of 0 satisfies X, = 6,,/(f, + 1). Thus
0, = X,/(1 —X,) as claimed.

(b) Now Var(Y) = af/((a + B)*(a+ B+ 1)), so Vare(X1) = 6/((6 + 1)%(0 + 2)).

Thus /n(X,, — Eg(X1)) —¢ N(0,Vary(X,)), and by the delta method with g(y) =

y/(1 —y) we find that

Vil = 0) sa BN (0, s ) = N (0. 2950 ) = w0

(c) Note that the density fy of one observation is fy(z) = 021 1)(z). Thus
log fo(z) = logf + (6 — 1) log z, and the score function for 6 is lp(z) = 67! + log x.
This yields Iy = FE {—Igg(Xl)} = 0~2. Thus the Cramér - Rao bound for unbiased
estimators 6, of 6 is given by Varg(v/n(6, —0)) > 6> = CRLB(0). Note that this is
strictly smaller than the asymptotic variance of the method of moments estimator
0, found in (b). In fact 6, is severely inefficient for small values of € since the ratio
CRLB(0)/V# — 0 as 6 — 0; see Figure 1.

(d) From the extended delta method discussed in class on 10 October, with g(v) =
v/(1 =), ¢(v) =1/(1 —v)? it follows that

Vi (9(Xn) = 9(Ee(X)) — g (Eg(X)) (X0 — Ep(X)) = 0,(1).
Since ¢(X,) = 0, and g(Ey(X)) = 6 it follows that

~ 1

= = (0PN~ Bi(X) + 0y(1)



Thus 6, is asymptotically linear with influence function

V(@) = do(r) = (1+0)* (2 — Ey(X)).
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Figure 1: Ratio CRLB(0)/V} as a function of 0

5. Suppose that X;,..., X, are i.id. with E(X;) = pu, Var(X;) = 0? < oo, and
E|X1|% < 0o. Let M;,, =n"t>" (X, — X,)’ be the j—th sample central moment
for j €{2,3,...}.

(a) ACILST, page 49, problem 3.

(b) Find the joint asymptotic distribution of \/n((X,, Mo, M3,)* — (1, 0%, m3)T)
where m3 = E(X; — p)? is the population 3rd central moment.

(c) Find the asymptotic distribution of \/n(ks3, — k3) where k3, = M3, /]\/[2322 is the
sample skewness and k3 = m3/0o? is the population skewness. (See vdV Example
3.5, page 29.)

Solution: (a) M3, is location invariant, so we may assume without loss of generality
that 4 = F(X;) = 0. As a first step, note that

My, = n 'S (X?=3X2.-X,+3X.X, - X,)
i=1
= X3,-3X?, +2X,
—, E(X?)—3E(X?) - E(X)+2(E(X))?
= E(X°)-0+0=E(X?)
by the WLLN and the Mann-Wald theorem. Now by the multivariate CLT, assuming
that F(X°) < oo

X, — B(X)
vn | X2, - E(X?) | =4 Z~ N3(0,%)
X3, — B(X?)
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where, with 1, = E(X*),

K2 w3 Ha
Y= p3  pa-— M% M5 — Haft3
Ha M5 — Hoft3 e — M%

Furthermore,

\/E(M:s,n —mgz) = \/ﬁ(g(Xn,ﬁn,Fn) —9(0, pa, p3))
where
g(u,v,w) = w — 3vu + 2u®
is differentiable at (u,v,w) = (0, pa, 13) with
g (u,v,w) = (=3v + 6u?, —3u, 1), so that ¢'(0,ps,ps3) = (—3pus,0,1).
It follows from the delta-method (or g—prime theorem) that, with 0% = ps,
\/E(MB,n —mgz) = \/ﬁ(g(yn,ﬁn,ﬁn) —9(0, p2, p13))

—a (—3p2,0,1)Z = Z3 — 3us 7y

~  N(0, s + 90° — 60°14).
Note that when X ~ N(0,0?%) with uy = 30 this becomes N (0, 609).
(b) Now we regard g in (a) above as g3 where g = (g1, 92, g3)T with

g1(u,v,w) = u, go(u, v, w) = v — u?, g3(u, v, w) = w — 3vu + 2u’.

Thus

Vo (u,v,w) = (1,O,O)T,
Vg (u,v,w) = (—2u, 1,0)T,
Vgs(u,v,w) = (=3v+6u’ —3u,1)7,

and we find that

1 00
9'(0, pa, p13) = 0 10
—3M2 01
Thus by the delta-method
X,—0 Z B B
\/ﬁ M27TL —0? —d Za = Z ~ N3(O, 2)
M?),n — ms3 Z3 — 302Z1
where
_ o? 3 e — 30t
¥o= 143 fig — ot ps — 30° i3
pra — 30 s — 307y pug +90° — 60% 1y
o’ 3 o'
= 143 o4(2+72) 0" (s /0 — 3r3)

oty 0% (us/0® — 3k3) 0%(e/0% — 9 — 6y,
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Note that pg — 30" = 04(jus/0* — 3) = 075 in the notation of the 581 course notes,
example 2.3.2 (so that uz — o = o*(uz/o* — 1) = 0*(2 + 72)), while

s — 30y = 0°(us/0” — 3z /0’),
pe +90° —60%y = ®(ug/0® +9 — 6pa/a”).

(¢) To find the limiting distribution of k3, we use the delta method again in
combination with the result of (b): now g(u,v,w) = w/v*? is differentiable at
v # 0 with derivative ¢'(u, v, w) = (0, (—3/2)v=>?w,v™3/2) so that

d(0,0% ms) = (0, —(3/2)0%(ms/0?),07?) = (0, —(3/2)0 k3,0~ %).

Thus it follows from the delta method that

\/ﬁ(’%&n - /i?)) = \/ﬁ(g(ynu MQ,nu M3,7L) - 9(07 027 m3))
—d 0'7323 — (3/2)0’721'{322
~ N(0,V?)

where
e 9 s

V2= 52— 9~ 6m+ Jr3(2+ ) — 3k (; ~ 3k3)
Note that when X ~ N(0,0%) we have k3 = 0, 72 = 0 and pg/0® = 15, so that
V2 =15—9=06. Thus if X ~ N(p,0?) the test “reject H : X ~ N(p,0?) in favor
of Kgpew © k3 # 0 1f |V/nkg,| > \/éza/g” has approximate size « for large n; i.e.
Prorm (VT3 0| > V624s2) = P(IV6Z| > V624)2) = @ as n — o0.
The following development was not part of the problem as stated, but I discussed

it in class on 17 October. If the distribution function F' of X has k3 # 0, then
(assuming that E|X|® < oo)

PF(l\/ﬁlﬁg,H > \/éza/g) = PF(|\/E(K,3,n — K,g) + \/ﬁ/f3| > \/Eza/g) — 1

as n — oo since |\/nk3| — oo and |/n(ksn — K3)] = Op(1). What about the
(local asymptotic power) of this test? For example, what if X ~ F, with density
flz;a) = 2¢(x)®(ax)? This f is the skew-normal family of densities. Figure
2 shows the densities f(z;«) for a € {0,1,3,10} (in blue, magenta, purple, and
green).

It turns out that the skewness of this family is given by
ka(Fa) = V2(4 — 1) /(1 + (1 — 2)a?)*/%;

see Azzalini (2014), The Skew-Normal and Related Families, pages 30 - 31. Figure
2 shows the densities f(z;«) for a € {0,1,3,10} (in blue, magenta, purple, and
green). This function of « has first two derivatives equal to zero at a = 0, and it
seems natural to reparametrize by a(3) = /3. See Figures 3 and 4. Then with

/@3(}7}3) = Kk3(Fgs) = (m +\(72—T(4_;);)2€3>3/2




Figure 2: The densities f(z;a) for o € {0, 1, 3,10}

it follows that

V2(4 — )b V2(4 — )b

Vimala) = G o mE

Then, modulo an argument using a triangular array multivariate CLT or reasoning
via contiguity theory (see Chapter 3),

Py, (|Vnksn| > V6zap)
= Pp, (IWnlksn — ks(Eypi)) + vViks(Fyre)| > V62as2)
— P(V6Z +V2(4 — )b/ (1 — 22| > V6202).

Thus we can approximate the power of the skewness test of normality for these
particular skew-normal (local) alternatives.
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Figure 3: The function o — k3(F,)
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Figure 4: The function 5 +— k3(F}p)



