
Statistics 581, Problem Set 3 Solutions

Wellner; 10/18/2018

1. Ferguson, ACILST, page 34, problem 1(a) (modified slightly):
Suppose that X1, X2, . . . are i.i.d. in R2 with distribution giving probability θ1 to
(1, 0)′, probability θ2 to (0, 1)′, θ3 to (−1, 0)′ and θ4 to (0,−1)′ where θj ≥ 0 for
j = 1, 2, 3, 4 and θ1 + θ2 + θ3 + θ4 = 1.
(a) Find µ = E(X1).
(b) Compute E(X1X

T
1 ) and Σ = E(X1 − µ)(X1 − µ)T .

(c) Find the limiting distribution of
√
n(Xn − µ) and describe the resulting

approximation to the distribution of Xn.
(d) Find values of (θ1, . . . , θ4) such that Σ has rank 1 and det(Σ) = 0.

Solution: (a) The mean vector µ is

µ = E(X1) = θ1

(
1
0

)
+ θ2

(
0
1

)
+ θ3

(
−1
0

)
+ θ4

(
0
−1

)
=

(
θ1 − θ3
θ2 − θ4

)
.

(b) The second moment matrix E(XXT ) is

E(XXT ) = θ1

(
1 0
0 1

)
+ θ2

(
0 0
0 1

)
+ θ3

(
1 0
0 0

)
+ θ4

(
0 0
0 1

)
=

(
θ1 + θ3 0

0 θ2 + θ4

)
,

and hence the covariance matrix Σ = E(XXT )− E(X)E(X)T is

Σ =

(
θ1 + θ3 0

0 θ2 + θ4

)
−
(

(θ1 − θ3)2 (θ1 − θ3)(θ2 − θ4
(θ1 − θ3)(θ2 − θ4) (θ2 − θ4)2

)
=

(
θ1 + θ3 − (θ1 − θ3)2 −(θ1 − θ3)(θ2 − θ4)
−(θ1 − θ3)(θ2 − θ4) (θ2 + θ4)− (θ2 − θ4)2

)
(c) By the multivariate CLT, the limiting distribution of

√
n(Xn − µ) is N2(0Σ).

Thus the approximating normal distribution of Xn is centered at µ with covariance
matrix n−1Σ.
(d) The determinant of Σ is given by

det(Σ) =
{

(θ1 + θ3)− (θ1 − θ3)2
}{

(θ2 + θ4)− (θ2 − θ4)2
}
− (θ1 − θ3)2(θ2 − θ4)2.

This equals 0 if θ2 = θ4 = 0 or if θ1 = θ3 = 0. In the first case

Σ =

(
θ1 + θ3 − (θ1 − θ3)2 0

0 0

)
=

(
1− (θ1 − θ3)2 0

0 0

)
,

and in the second case

Σ =

(
0 0
0 (θ2 + θ4)− (θ2 − θ4)2

)
=

(
0 0
0 1− (θ2 − θ4)2

)
.
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2. (Van der Vaart, page 24)
(a) Suppose that Xn and Yn are independent random vectors with Xn →d X and
Yn →d Y . Show that (Xn, Yn)→d (X, Y ) where X and Y are independent.
(b) Suppose that P (Xn = i/n) = 1/n for i = 1, 2, . . . , n. show that Xn →d X ∼
Uniform(0, 1).
(c) Consider the Xn’s as in (b). Show that there exists a Borel set B such that
P (Xn ∈ B) = 1 but P (X ∈ B) = 0. In particular, with Pn = L(Xn) and P = L(X),
dTV (Pn, P ) = 1 for each n.

Solution:(a) Since Xn →d X in Rm and Yn →d Y in Rk (as random vectors), we
know that their characteristic functions also converge pointwise: for every s ∈ Rm,
t ∈ Rk,

φXn(s) = Eeis
TXn → Eeis

TX = φX(s) and

φYn(t) = Eeit
TYn → Eeit

TY = φY (t).

Then, since Xn and Yn are independent,

φXn,Yn(s, t) = Eeis
TXn+tTYn = Eeis

TXnEeit
TYn

→ φX(s) · φY (t).

This implies that (Xn, Yn)→d (X, Y ) where X and Y are independent.
(b) Note that for each x ∈ [0, 1]

Fn(x) = P (Xn ≤ x) = bnxc/n→ x = P (X ≤ x)

It follows that Xn → X ∼ Uniform(0, 1).
(c) Let B = {1/n, . . . , n/n = 1}. Then P (Xn ∈ B) = 1 but P (X ∈ B) = 0. Thus
dTV (Pn, P ) = 1.

3. ACILST, page 34, problem 5: Suppose that X1, X2, . . . are i.i.d. random variables
with mean µ and variance σ2 < ∞. Let Tn =

∑n
j=1 znjXj where the {znj}nj=1

are given numbers. Let µn = E(Tn) and σ2
n = V ar(Tn). Use the Lindeberg-

Feller central limit theorem to show that (Tn − µn)/σn →d Z ∼ N(0, 1) if
max1≤j≤n z

2
nj/
∑n

j=1 z
2
nj → 0 as n→∞.

Solution: Let Yi ≡ Xi − µ so that E(Yi) = 0 and V ar(Yi) = σ2. We also let
Xni ≡ zniYi so that Tn−µn =

∑n
i=1Xni, and note that σ2

n = V ar(Tn) = σ2
∑n

i=1 z
2
ni.

To prove the claimed asymptotic normality we need to check that the Lindeberg-
condition holds. For ε > 0 we want to show that

LFn(ε) =
1

σ2
n

n∑
i=1

E
{
X2
ni1{|Xni| > εσn

}
→ 0

for every ε > 0. But we note that

LFn(ε) =
1

σ2
n

n∑
i=1

E

z2niY 2
i 1{|zni||Yi| > εσ

(
n∑
i=1

z2ni

)1/2

}


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≤ 1

σ2
n

n∑
i=1

z2niE

Y 2
i 1{max

1≤i≤n
|zni||Yi| > εσ

(
n∑
i=1

z2ni

)1/2

}


=

1

σ2
E

Y 2
1 1{|Y1|2 > εσ

√√√√ n∑
i=1

z2ni/ max
1≤i≤n

|zni|}


→ 0

by the dominated convergence theorem with dominating function Y 2
1 since E(Y 2

1 ) <
∞.

4. (a) ACILST, problem 4, page 49: Let X1, . . . , Xn be a sample of size n from the beta
distribution Beta (θ, 1) with θ > 0. Show that the method of moments estimate of
θ is θ̂n = Xn/(1−Xn).
(b) Find the asymptotic distribution of θ̂n.
(c) Is θ̂n asymptotically linear? If so, find the influence function of θ̂n.
(d) Find the Cramér-Rao lower bound for estimation of θ and compare it to the
asymptotic variance you found in (b).

Solution: (a) If Y ∼ Beta(α, β), then E(Y ) = α/(α + β), so EθX1 = θ/(θ + 1).
Thus the method of moments estimator θ̂n of θ satisfies Xn = θ̂n/(θ̂n + 1). Thus
θ̂n = Xn/(1−Xn) as claimed.
(b) Now V ar(Y ) = αβ/((α + β)2(α + β + 1)), so V arθ(X1) = θ/((θ + 1)2(θ + 2)).
Thus

√
n(Xn −Eθ(X1))→d N(0, V arθ(X1)), and by the delta method with g(y) ≡

y/(1− y) we find that

√
n(θ̂n − θ)→d ġ(Eθ(X1))N

(
0,

θ

(θ + 1)2(θ + 2)

)
= N

(
0,
θ(θ + 1)2

(θ + 2)

)
≡ N(0, V 2

θ ).

(c) Note that the density fθ of one observation is fθ(x) = θxθ−11(0,1)(x). Thus

log fθ(x) = log θ + (θ − 1) log x, and the score function for θ is l̇θ(x) = θ−1 + log x.

This yields Iθ = E
{
−l̈θθ(X1)

}
= θ−2. Thus the Cramér - Rao bound for unbiased

estimators θ̃n of θ is given by V arθ(
√
n(θ̃n− θ)) ≥ θ2 ≡ CRLB(θ). Note that this is

strictly smaller than the asymptotic variance of the method of moments estimator
θ̂n found in (b). In fact θ̂n is severely inefficient for small values of θ since the ratio
CRLB(θ)/V 2

θ → 0 as θ → 0; see Figure 1.
(d) From the extended delta method discussed in class on 10 October, with g(v) =
v/(1− v), g′(v) = 1/(1− v)2 it follows that

√
n
(
g(Xn)− g(Eθ(X)

)
− g′(Eθ(X))(Xn − Eθ(X)) = op(1).

Since g(Xn) = θ̂n and g(Eθ(X)) = θ it follows that

√
n(θ̂n − θ) =

1

(1− Eθ(X))2
1√
n

n∑
i=1

(Xi − Eθ(X)) + op(1)

=
1√
n

n∑
i=1

(1 + θ)2(Xi − Eθ(X)) + op(1).
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Thus θ̂n is asymptotically linear with influence function

ψ(x) ≡ ψθ(x) = (1 + θ)2(x− Eθ(X)).
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Figure 1: Ratio CRLB(θ)/V 2
θ as a function of θ

5. Suppose that X1, . . . , Xn are i.i.d. with E(X1) = µ, V ar(X1) = σ2 < ∞, and
E|X1|6 <∞. Let Mj,n ≡ n−1

∑n
i=1(Xi −Xn)j be the j−th sample central moment

for j ∈ {2, 3, . . .}.
(a) ACILST, page 49, problem 3.
(b) Find the joint asymptotic distribution of

√
n((Xn,M2,n,M3,n)T − (µ, σ2,m3)

T )
where m3 ≡ E(X1 − µ)3 is the population 3rd central moment.

(c) Find the asymptotic distribution of
√
n(κ3,n−κ3) where κ3,n ≡M3,n/M

3/2
2,n is the

sample skewness and κ3 ≡ m3/σ
3 is the population skewness. (See vdV Example

3.5, page 29.)

Solution: (a)M3,n is location invariant, so we may assume without loss of generality
that µ = E(X1) = 0. As a first step, note that

M3,n = n−1
n∑
i=1

(X3
i − 3X2

i ·Xn + 3XiXn −X
3

n)

= X3
n − 3X2

n + 2X
3

n

→p E(X3)− 3E(X2) · E(X) + 2(E(X))3

= E(X3)− 0 + 0 = E(X3)

by the WLLN and the Mann-Wald theorem. Now by the multivariate CLT, assuming
that E(X6) <∞

√
n

 Xn − E(X)

X2
n − E(X2)

X3
n − E(X3)

→d Z ∼ N3(0,Σ)
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where, with µk ≡ E(Xk),

Σ =

 µ2 µ3 µ4

µ3 µ4 − µ2
2 µ5 − µ2µ3

µ4 µ5 − µ2µ3 µ6 − µ2
3

 .

Furthermore,
√
n(M3,n −m3) =

√
n(g(Xn, X2

n, X3
n)− g(0, µ2, µ3))

where

g(u, v, w) = w − 3vu+ 2u3

is differentiable at (u, v, w) = (0, µ2, µ3) with

g′(u, v, w) = (−3v + 6u2,−3u, 1), so that g′(0, µ2, µ3) = (−3µ2, 0, 1).

It follows from the delta-method (or g−prime theorem) that, with σ2 ≡ µ2,
√
n(M3,n −m3) =

√
n(g(Xn, X2

n, X3
n)− g(0, µ2, µ3))

→d (−3µ2, 0, 1)Z = Z3 − 3µ2Z1

∼ N(0, µ6 + 9σ6 − 6σ2µ4).

Note that when X ∼ N(0, σ2) with µ4 = 3σ4 this becomes N(0, 6σ6).
(b) Now we regard g in (a) above as g3 where g = (g1, g2, g3)

T with

g1(u, v, w) = u, g2(u, v, w) = v − u2, g3(u, v, w) = w − 3vu+ 2u3.

Thus

∇g1(u, v, w) = (1, 0, 0)T ,

∇g2(u, v, w) = (−2u, 1, 0)T ,

∇g3(u, v, w) = (−3v + 6u3,−3u, 1)T ,

and we find that

g′(0, µ2, µ3) =

 1 0 0
0 1 0
−3µ2 0 1

 .

Thus by the delta-method

√
n

 Xn − 0
M2,n − σ2

M3,n −m3

 →d

 Z1

Z2

Z3 − 3σ2Z1

 ≡ Z̃ ∼ N3(0, Σ̃)

where

Σ̃ =

 σ2 µ3 µ4 − 3σ4

µ3 µ4 − σ4 µ5 − 3σ2µ3

µ4 − 3σ4 µ5 − 3σ2µ3 µ6 + 9σ6 − 6σ2µ4


=

 σ2 µ3 σ4γ2
µ3 σ4(2 + γ2) σ5(µ5/σ

5 − 3κ3)
σ4γ2 σ5(µ5/σ

5 − 3κ3) σ6(µ6/σ
6 − 9− 6γ2

 .
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Note that µ4− 3σ4 = σ4(µ4/σ
4− 3) = σ4γ2 in the notation of the 581 course notes,

example 2.3.2 (so that µ3 − σ4 = σ4(µ3/σ
4 − 1) = σ4(2 + γ2)), while

µ5 − 3σ2µ3 = σ5(µ5/σ
5 − 3µ3/σ

3),

µ6 + 9σ6 − 6σ2µ4 = σ6(µ6/σ
6 + 9− 6µ4/σ

4).

(c) To find the limiting distribution of κ3,n we use the delta method again in
combination with the result of (b): now g(u, v, w) = w/v3/2 is differentiable at
v 6= 0 with derivative g′(u, v, w) = (0, (−3/2)v−5/2w, v−3/2) so that

g′(0, σ2,m3) = (0,−(3/2)σ−2(m3/σ
3), σ−3) = (0,−(3/2)σ−2κ3, σ

−3).

Thus it follows from the delta method that

√
n(κ3,n − κ3) =

√
n(g(Xn,M2,n,M3,n)− g(0, σ2,m3))

→d σ−3Z̃3 − (3/2)σ−2κ3Z̃2

∼ N(0, V 2)

where

V 2 =
µ6

σ6
− 9− 6γ2 +

9

4
κ23(2 + γ2)− 3κ3

(µ5

σ5
− 3κ3

)
.

Note that when X ∼ N(0, σ2) we have κ3 = 0, γ2 = 0 and µ6/σ
6 = 15, so that

V 2 = 15− 9 = 6. Thus if X ∼ N(µ, σ2) the test “reject H : X ∼ N(µ, σ2) in favor
of Kskew : κ3 6= 0 if |

√
nκ3,n| >

√
6zα/2” has approximate size α for large n; i.e.

Pnorm(|
√
nκ3,n| >

√
6zα/2)→ P (|

√
6Z| >

√
6zα/2) = α as n→∞.

The following development was not part of the problem as stated, but I discussed
it in class on 17 October. If the distribution function F of X has κ3 6= 0, then
(assuming that E|X|6 <∞)

PF (|
√
nκ3,n| >

√
6zα/2) = PF (|

√
n(κ3,n − κ3) +

√
nκ3| >

√
6zα/2)→ 1

as n → ∞ since |
√
nκ3| → ∞ and |

√
n(κ3,n − κ3)| = Op(1). What about the

(local asymptotic power) of this test? For example, what if X ∼ Fα with density
f(x;α) = 2φ(x)Φ(αx)? This f is the skew-normal family of densities. Figure
2 shows the densities f(x;α) for α ∈ {0, 1, 3, 10} (in blue, magenta, purple, and
green).

It turns out that the skewness of this family is given by

κ3(Fα) =
√

2(4− π)α3/(π + (π − 2)α2)3/2;

see Azzalini (2014), The Skew-Normal and Related Families, pages 30 - 31. Figure
2 shows the densities f(x;α) for α ∈ {0, 1, 3, 10} (in blue, magenta, purple, and
green). This function of α has first two derivatives equal to zero at α = 0, and it
seems natural to reparametrize by α(β) = β1/3. See Figures 3 and 4. Then with

κ3(F̃β) = κ3(Fβ1/3) =

√
2(4− π)β

(π + (π − 2)β2/3)3/2
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Figure 2: The densities f(x;α) for α ∈ {0, 1, 3, 10}

it follows that

√
nκ3(F̃b/√n) =

√
2(4− π)b

(π + (π − 2)(b/n1/2)2/3)3/2
→
√

2(4− π)b

π3/2
.

Then, modulo an argument using a triangular array multivariate CLT or reasoning
via contiguity theory (see Chapter 3),

PF̃b/
√
n
(|
√
nκ3,n| >

√
6zα/2)

= PF̃b/
√

n
(|
√
n(κ3,n − κ3(F̃b/n1/2)) +

√
nκ3(F̃b/n1/2)| >

√
6zα/2)

→ P (|
√

6Z +
√

2(4− π)b/(π − 2)3/2| >
√

6zα/2).

Thus we can approximate the power of the skewness test of normality for these
particular skew-normal (local) alternatives.
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Figure 3: The function α 7→ κ3(Fα)
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Figure 4: The function β 7→ κ3(F̃β)
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