Statistics 581

Problem Set 5 Solutions
Wellner; 10/31/2018

1. van der Vaart, problem 3.8, page 34, modified. Let X7, ..., X}, bei.i.d. Bernoulli(p)
with 0 <p < 1.
(a) Find the limit distribution of \/n(X, to ph).
(b) Show that E[X,

. | = oo for every n.
(c) Connect the example in (a) to a result in the 581 Course Notes, Section 2.4.

Solution: (a) By the Lindeberg CLT it follows easily that /n(X, — p) —¢ Z ~
N(0,p(1 — p)). Furthermore, g(y) = y~' is differentiable at p > 0 with derivative
g (p) = —p~2. It then follows from the delta-method that

V(g(Xa) = 9(p)) —a g'(0)Z ~ N(0.g'(p)*p(1 = p)) = N(0, (1 —p)/p°).
(b) On the other hand, since P,(nX,, = 0) = P,(Bin(n,p) =0) = (1 — p)" > 0, and
hence E,{X, '} > (n/0) - (1 —p)" = oc.
(c) Letting Y, = v/n(X, —p~!) we have ¥, —4 Yo ~ N(0, (1 — p)/p®) while from
(b)

BY| > EY,| > ViE(X, ~p) = oo,

so we have 0 < E|Yy| = /(1 —p)/p?E|N(0,1)| < liminf E|Y,| = co. Thus strict
inequality can occur in Proposition 2.4.6 of the Chapter 2 notes, page 25.

2. van der Vaart, problem 3.6, page 34: Let X1,..., X, beii.d. with expectation p and
variance 1. Find constants a,, and b,such that a,, (Yi —b,,) converges in distribution
when p =0 or u # 0.

Solution: When p = 0, we can take b, = 0 for all n and a, = n. Then with
Z ~ N(0,1),

(X, —0) = {VaX,}? = (Va(X, — 0} =, 22 =

by the Lindeberg (ordinary) CLT and the continuous mapping theorem. When
i # 0, then we can take a, = y/n and b, = p?: then we have

2
VAR = 1) 54217 ~ N(0,442)
by the Lindeberg CLT (again) followed by the delta-method.

3. van der Vaart, problem 19.4, page 290: Suppose that X;,...,X,, and Yi,...,Y,
are independent samples from distribution functions F' and G respectively. The
Kolmogorov-Smirnov statistic for testing the null hypothesis H : F = G versus
K : F # G is the supremum distance K, ,, = ||F,, — G, ||« between the empirical
distributions of the two samples.

(a) Find the limiting distribution of y/mn/N K, , under the null hypothesis. Do
this first assuming that Ay = m/N =m/(m+n) — X € [0,1] as mAn — co. What
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can you say if the latter hypothesis is dropped?

(b) Show that the Kolmogorov - Smirnov test is asymptotically consistent against
every alternative F' # G.

(c) Find the asymptotic power function as a function of (Ag, Ag) for alternatives
(Fn, Gy) where {F,,} and {G,} satisfy, much as in our discussion in class on 26
October, ||F, — Fotoo — 0, ||Gn — Folleo — 0 and, for functions Agr, Ag : [0,1] — R,
IV/m(Fa — Fo) = Ap(Fo)[lee = 0 and [|v/n(Gy — Fo) — Ac(Fp)l — 0.

Solution: (a) If we assume that Ay = m/N — X € [0, 1], then we have

mn
_Kmm = “IF - (G )Hoo

N =n[f - 1)\ - Pl
in¢jm - RVl

o VAU (F) = VAUY (F)||os
i\mu

where U* and UY are independent Brownian bridge processes on [0, 1] and since

the process U = VIUX — VAUY is again a Brownian bridge process: note that it is
clearly Gaussian and it has

EU®) = VAUX@E) - VAU (1) =0-0=0, and
EU(s)U(t) = XEUX(s)UX(t) + AEUY (5)UY (¢)
= MsAt—st)+AsAt—st)=sAt— st

Thus under the null hypothesis the limiting distribution of the two sample statistic
is just ||U]|o, the same limiting distribution as for the one-sample K-S statistic as
in Example 2.5.1 in Chapter 2 of the course notes. If Ay = m/N does not converge
to a fixed A € [0,1] as m A n — oo, then since \y takes values in the compact set
0,1], starting with an arbitrary subsequence {Ay/} we can always find a further
subsequence { Ay~ } such that Ay~ converges to some A € [0,1]. Then the preceding
argument shows that along this subsequence we have /mn/NK,,, —4 ||U|co-
Since this limit is the same for any initial subsequence { N'}, we conclude that the
convergence holds for the full sequence y/mn/N K, ,, and that the limit distribution
is just ||U]| for all m An — oo.

(b) When the alternative hypothesis holds, i.e. F' # G, then the Glivenko-Cantelli
theorem implies that

IFm — Flloo —as. 0 and ||G, — G| —as. 0.
Then we have

HFm - Gn”oo —a.s. HF - GHoo > 0.



Thus we can write

mn

mn
= [V AvVm(F, —VAnVn(G, - G) + \/ 2(F - G)lls

> \/WHF o) &Hw P - VAN IVA(G. - Ol

by the trlangle inequality

= Ny An(F = )l — Oy(1)

—, 00 if mAn— oo
and either limsupAy <1 or lirrjlvinf Ay > 0.
N

Thus when F' # G and either limsupy Ay < 1 or liminfy Ay > 0 we have

mn
Pra ( WK’”’” > /\a) —1

(c) Under local alternatives {F},,} and {G,,} satisfying the hypotheses of the problem
statement and assuming that Ay — A, we have, by an argument similar to that of

(a),

P B~ Ga) =\ (VI — ) + V(P — F)
- \/E (ﬁ(Gn - Gn) + \/E(Gn - FO))

= VMUY(F) + Ax(Fy)} — VMUY (Fy) + Ay (Fo)}
L UR) + VIAK(Fy) - VAAy (),

Thus with A = VA ¥ — VAAy, the power of the two - sample K-S test under these
local alternative satisfies

Pr,c (VIn/NFp = Gulloo > Aa) = P (JU+ Al > M)

. Suppose that Xi,..., X, are i.i.d. Cauchy(0,1); so the density of each X; with
respect to Lebesgue measure on R is f(z) =71+ 2!, z € R.

(a) Compute the distribution function F' of the X;’s.

) Compute and plot the inverse distribution function F=! corresponding to F.

) For what values of r > 0 is F|X;|" < 00?

) Find the distribution function of M,, = maxj<;<,X;.

) For what values of r is E|M,|" < co?

) Find a sequence of constants b, so that M, /b, —4 and find the limiting
distribution. [Hint: see Ferguson, ACLST, Theorem 14, page 95.]

(g) Find the densities of M, /b, with b, as in (f). Do these densities converge
pointwise to a limit density? If so, what can you conclude from Scheffé’s theorem?

(b
(c
(d
(e
(f



Solution: (a) F(z) = (1/7) [*_(1+*)~'dt = (1 / ){arctan(x) + 7/2}.

(b) Setting F'(z) = u and solvmg for = FY(u) yields F~'(u) = tan(n(u —
1/2)). Note that F~'(1/2) = tan(0) = 0; F~(1) = tan(n/2) = oo, and F~(0) =
tan(—m/2) = —oo.

(c) We compute

1 > 1
Ewm:=—/ "

if »r < 1. Since

E|Xi|" < oo if and only if r < 1.
(d) Since the X;’s are i.i.d. with distribution function F,

Fy,(z) =P(M, <z)=P(X; <z,....X, <z)=F(x)".
(e) First, note that
L—Flar, (@) = P(IMy| > @) = P(UL[1X] > 2]) < ) P(Xi| > ) = n(1—Fix, ()

i=1

where Fix,|(z) = P(|X,| <) = F(x) — F(—x). Hence
BT = [0 R )t
0

< / rt" 'n(1 — Fx(t))dt
0
= nE|X1|T < 00

if < 1 by part (d). But since E|M,|" > E|X;|" = oo if r > 1, we conclude that
E|M,|" <ooifandonlyifr<1

(f) Note that 1—F(z) = n~* [*(1+¢*)~'dt ~ 1/(7x) in the sense that z(1—F(z)) —
1/mas x — oc. [Thls follows easily by writing the left side as (1 — F(x))/(z~!) and
using L’Hopital’s rule.] Hence for b,, — oo and = > 0

Faropp(x) = P(M, < xb,) = F(xb,)" by part d
and, with ¢, = xb,(1 — F(xb,)) — 1/,

Fag o, () = F(xbn)" = (1= (1= F(xb,)))"
= (1= [zbn(1 = F(xbn))]/ (2bn))"
= (1 —c,/xby)".
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From this last expression it becomes clear that the choice b, = n yields,
Eypop, (2) = exp(=1/7z) = G(z),  for x >0,

while for z <0
FMn/bn (I) —0

since F(zb,) < 1/2 for x < 0. Note that G(0) = exp(—o0) = 0, G is monotone
increasing, and G(co0) = exp(0) = 1. In fact, G is a member of the Weibull family
with shape parameter —1, and is one of the three different families that can arise
as limit distributions of maxima of independent rv’s; see e.g. Ferguson (1996), A
Course in Large Sample Theory, page 95.

(g) The density of Fyy, s, = F'(xby)™ is given by

fat o, () = nF (xb,)" "t f(xby,)by,

n—1
c 1
= 1— = Y
( xbn> T+ (zby)2) "

— exp(—l/(wx))% =g(z) when b, =n.

Thus Scheffé’s theorem yields

1 oo
drv (P Pe) = [ Ifunle) = g(@ldz 0

as n — 0o. It would be interesting to know more about the rates of convergence in
theorems of this type.

. Suppose that Xi,..., X, are i.i.d. with the Weibull distribution Fy given by
1 — Fy(z) = exp(—(z/a)’), x>0

where § = (o, 5) € (0,00) x (0, 00).
(a) Find the inverse (or quantile function) F, '(u) corresponding to Fy in terms of
a, 5, and u € (0,1), and show that

1 1
log F; ' (u) = loga + B log log (m) .
(b) Fix t € (0,1/2). Use the t—th and (1 — t)—th quantiles of the X;’s, namely
F-1(t) and F, }(1 —t), to obtain simple consistent estimators &, and 3, of a and f3.
Prove that your estimators are consister}t.
(c) Prove that your estimators &, and (3, satisfy

A

oy — @
Bn - 5
and identify ¥ as a function of «, 3, and t. )

(d) How would you choose t to minimize the asymptotic variance of 3,7

vn ( ) —q N2(0,)



Solution: (a) Since 1 — Fy(z) = exp(—(z/a)?), it follows we can solve Fy(z) = u
for z = F; ' (u). This yields

Fy'(u) = a(~log(1 —u)'/?,

1
(1) log F; *(u) zloga+ﬁloglog<1_ ) :

(b) Since we can estimate F, '(t) and F, '(1—t) respectively by F,,}(¢) and F;,}(1—
t) respectively, the relationship in (1) suggests that we estimate o and 3 as the
solutions & and ( of the pair of equations

1
(2) logIF (1) zlogd—i—gloglogl/(l—t),
1
(3) logIF,:l(l—t)zlogd—l—gloglogl/t.

Letting A; = loglog1/(1 —t), and B, = loglog 1/t, we find that

1/f = 5 (o, (1 1) ~ logF, (1)

= a;logF (1 —t)+ b logF, (1)

and
— A B,
logay = logF- (1 —¢t) + log F
g Atg( ) t_Atg())
= ctlogJFn (t)—l—dtlogJFg (1—1)
where
1
ay = ———, by = —ay, ¢ = —Aay d; = Bia, .
— A,

Since (F,1(t),F; 2 (1 — 1)) —as (F,'(t), F; ' (1 — t)), Tt follows easily by the
continuous mapping theorem that

1 1
E —a.s. @ log Fe_l(l —t) + b log Fe_l(t) = B,

and
log & —,.6. ¢ log Fg’l(l —t) + d; log Fe’l(t) =loga,

and hence by the continuous mapping theorem, (&, B) —as (@, 0).
(c) First, we know that

(1)

t(1—t) 2
2 —1(1_— —1 —1(1_
Y = ( 2 (F t2(1 t)) f(F (tl)%{(j’) (1-t)) ) .
SETT@) F(F-H (1)) fAHE(1)
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where




This implies that

logF M (1 —t) —log (1 — 1)
\/ﬁ( glog]F;l(t)—loiF_l(t)

D ( 1/F—10(1—t) 1/F91(t) ) ‘

) —a DZ ~ Ny(0,DXDT)

where

Hence it follows that

\/ﬁ( 1/B—-1/p )

log & — log

B logF 1 (1 —¢) —log F~1(1 —t)
o Mﬁ( ° logFgl(t)—loiF_l(t) )

—4 MDZ ~ Ny(0, MDXD"MT).

- ay bt - 1 —1
=)= ()

Finally, with g(z,y) = (91(2), 92(y)), g1(x) = 1/z, g2(y) = expy, we find, by the
delta-method, that

a(27d)
a—
—q VgMDZ ~ Ny(0,VgMDXD" MV g")

2
Vg—(ﬁo 2)

We begin combining all this by noting that DX D7 involves the function

e - o (o)) "2 (e () -
— B(1-u)log (ﬁ)

at the points u =t and u = 1 — ¢t. Computing DX D7 yields

where

where

1-t t
pypT - 5—2( #oa(1/0)? (1—t)1og<1/tglog(1/(1—t>>)
(=0 Tog(1/) og(1/(1=0)  (1-D){og(1/(T-D))?

52 ( s1(t)  s12(t) > .

S12 (t) S99 (t)

Since the matrix M just depends on ¢, we find that the matrix

T T o o Ti(t) ri2(?)
MDY.D"M* = " "a; ( ria(t) Too(t) ) )
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where

Tll(t) = 811(15) — 2812(t) + S99 (t)
ri2(t) = Bi(s12(t) — s22(t)) — Ae(s11(t) — 512(t))
T929 (t) = A?Sll(t) — 2AtBt812<t> + Bt2822(t) .

Thus we conclude that the asymptotic covariance matrix of (B , &) is given by

T /T T o [ BPria(t) ara(t)
VgMPED™ MV = a, ( 067‘12(t) (a/ﬁ)2r22(t) ) '

(d) The asymptotic variance of /3 is
52611527°11(t) = 52 (811(75) — 2812(t) + 822(t)) af .

This is minimized by ¢ = to ~ .10725, and the minimum value is 3?(1.13264) >
3%(6/72) see Figures 1 and 2 below. This ad-hoc estimator 3 based on quantiles is
inefficient; its asymptotic variance (for any value of ¢, including the minimizing t,)
is larger than the best possible asymptotic variance, which is 3%(6/7%) as we will
see in Chapter 3.)

The asymptotic variance of & is
(a/B)*a;raa(t) = (a/B)* (Afs11(t) — 2A,Bysi2(t) + Bfsaa(t)) -

This is minimized by ¢ = ¢y ~ .2295, and the minimum value is (a/3)*(1.423) >
(a/B)%(1.11) see Figures 3 and 4 below. This ad-hoc estimator § based on
quantiles is also inefficient; its asymptotic variance (for any value of ¢, including
the minimizing ty) is larger than the best possible asymptotic variance, which is

about (a/f3)%(1.11) as we will see in Chapter 3.



