Statistics 581, Problem Set 6 Solutions

Wellner; 11/07/2018

1. A. Compute and plot the score for location $-f^{\prime}(x) / f(x)$ when:
(a) $f=\phi$, the standard normal density;
(b) $f(x)=\exp (-x) /(1+\exp (-x))^{2}$ (logistic);
(c) $f(x)=(1 / 2) \exp (-|x|)$ (double exponential);
(d) $f(x)=t_{k}$, the t-density with k-degrees of freedom;
(e) $f(x)=\exp (-x) \exp (-\exp (-x))$;
(f) $f(x)=2 \phi(x) \Phi(a x)$ where $\Phi(x)$ is the standard normal d.f. and $a>0$;
(g) $f(x)=1 /\left(\pi\left(1+x^{2}\right)\right)$, the standard Cauchy density.
B. A density f is called \log-concave if $\log f$ is a concave function. Let $s<0$. A density f is called s-concave if f^{s} is convex.
Which of the densities in (a) - (f) are log-concave?
Which of the densities in (a) - (f) are s-concave for some $s<0$?
Which of the densities in (a) - (f) are symmetric about 0 ?

Solution: A.

(a) For the normal density $f=\phi,-\log f(x)=(1 / 2) \log (2 \pi)+x^{2} / 2$, so $(-\log f)^{\prime}(x)=x$, and $(-\log f)^{\prime \prime}(x)=1$.
(b) For the logistic density $f(x)=e^{-x} /\left(1+e^{-x}\right)^{2}$, so

$$
\begin{aligned}
(-\log f(x)) & =x+2 \log \left(1+e^{-x}\right), \\
(-\log f(x))^{\prime} & =1-2 e^{-x} /\left(1+e^{-x}\right)=\left(1-e^{-x}\right) /\left(1+e^{-x}\right) \\
& =F(x)-(1-F(x))=2 F(x)-1, \\
(-\log f(x))^{\prime \prime} & =2 f(x) \geq 0 .
\end{aligned}
$$

(c) For the Laplace density $f(x)=(1 / 2) \exp (-|x|)$, so

$$
\begin{aligned}
(-\log f(x)) & =\log (2)+|x| \\
(-\log f(x))^{\prime}(x) & =\operatorname{sign}(x) 1\{x \neq 0\}+\text { undefined } 1\{x=0\} \\
(-\log f(x))^{\prime \prime}(x) & =0 \cdot 1\{x \neq 0\}+\text { undefined } 1\{x=0\}
\end{aligned}
$$

(d) For the $t_{k}-$ distribution $f_{k}(x)=c_{k}\left(1+x^{2} / k\right)^{-(k+1) / 2}$, so

$$
\begin{aligned}
(-\log f(x)) & =-\log c_{k}+\frac{k+1}{2} \log \left(1+x^{2} / k\right), \\
(-\log f(x))^{\prime} & =\frac{(k+1}{2} \frac{2 x / k}{1+x^{2} / k}=\frac{k+1}{k} \frac{x}{\left(1+x^{2} / k\right)}, \\
(-\log f(x))^{\prime \prime} & ==\frac{k+1}{k}\left\{\frac{1-x^{2} / k}{\left(1+x^{2} / k\right)^{2}}\right\}
\end{aligned}
$$

(e) For the Gumbel density $f(x)=\exp \left(-x-e^{-x}\right)$,

$$
\begin{aligned}
(-\log f(x)) & =x+e^{-x} \\
(-\log f(x))^{\prime} & =1-e^{-x} \\
(-\log f(x))^{\prime \prime} & =e^{-x}
\end{aligned}
$$

(f) For the skew-normal density $f_{a}(x)=2 \phi(x) \Phi(a x)$, so that

$$
\begin{aligned}
(-\log f(x)) & =-\log 2-\log \phi(x)-\log \Phi(a x) \\
(-\log f(x))^{\prime} & =x-\frac{a \phi(a x)}{\Phi(a x)} \\
(-\log f(x))^{\prime \prime} & =1+\frac{a^{2} x \phi(x)}{\Phi(a x)}+\frac{a^{2} \phi^{2}(a x)}{\Phi(a x)^{2}}
\end{aligned}
$$

(g) The Cauchy density $f(x)=1 /\left(\pi\left(1+x^{2}\right)\right)$ is a special case of the t_{k} density in (d): thus the score for location is $-\left(f^{\prime} / f\right)(x)=x /\left(1+x^{2}\right)$. Note that this is not a monotone function of x, and hence the Cauchy density is not log-concave. It is $s-$ concave with $s=-1 / 2$.

Figure 1: Symmetric densities: (a)-blue, Gaussian; (b)-green, logistic; (c)-magenta, Laplace; (d)-purple, Student t_{3}

Figure 2: Asymmetric densities: (e)-red, Gumbel; (f)-black, skew-normal, $a=.7$
B. The normal, logistic, double exponential (or Laplace), Gumbel, and skew-normal densities in (a), (b), (c), (e), and (f) are all log-concave with monotone increasing score functions for location. The t_{k} density in (d) is not log-concave. But the t_{k} density is s-concave with $s=-1 /(k+1)$ since with $f_{k}(x)=c_{k}\left(1+x^{2} / k\right)^{-(k+1) / 2}$ we have

$$
f_{k}(x)^{s}=c_{k}^{-1 /(k+1)} \cdot\left(1+x^{2} / k\right)^{1 / 2}
$$

Figure 3: Score functions for location, symmetric densities: (a)-blue, Gaussian; (b)-green, logistic; (c)-magenta, Laplace; (d)-purple, Student t_{3}

Figure 4: Score functions for location, asymmetric densities: (e)-red, Gumbel; (f)-black, skew-normal, $a=.7$
which is a convex function (of x). The Cauchy density is the special case of the t_{k} family with $k=1$, and hence is $s-$ concave with $s=-1 / 2$.
The normal, logistic, Laplace, and t_{k} densities are all symmetric about 0 , while the Gumbel and skew-normal densities are not symmetric.
2. Suppose that $Z \sim N(0,1)$ and, for $\mu \in R$ and $\sigma>0$, that $X=\mu+\sigma Z \sim P_{\mu, \sigma}=$ $N\left(\mu, \sigma^{2}\right)$.
(a) Compute the likelihood ratio

$$
\frac{d P_{\mu, \sigma}}{d P_{0, \sigma}}(x)=\frac{\sigma^{-1} \phi((x-\mu) / \sigma)}{\sigma^{-1} \phi(x / \sigma)} \quad \text { and } \quad Y \equiv \log \frac{d P_{\mu, \sigma}}{d P_{0, \sigma}}(X) .
$$

What is the distribution of Y under $P_{0, \sigma}$ and under $P_{\mu, \sigma}$?
(b) Plot the function

$$
l(\mu ; X) \equiv \log \frac{d P_{\mu, \sigma}}{d P_{0, \sigma}}(X)
$$

as a function of μ.
(c) Find the maximum value of the function $l(\mu ; X)$ in (b) (as a function of μ) and the value of $\mu \equiv \hat{\mu}$ which achieves the maximum.
(d) What is the distribution of $\hat{\mu}$ under $P_{0, \sigma}$ and under $P_{\mu, \sigma}$? What is the distribution of $l(\hat{\mu} ; X)$ under $P_{0, \sigma}$ and under $P_{\mu, \sigma}$?

Solution: (a) The likelihood ratio

$$
\begin{aligned}
\frac{d P_{\mu, \sigma}}{d P_{0, \sigma}}(x) & =\frac{\sigma^{-1} \phi((x-\mu) / \sigma)}{\sigma^{-1} \phi(x / \sigma)}=\frac{\exp \left(-(x-\mu)^{2} /\left(2 \sigma^{2}\right)\right)}{\exp \left(-x^{2} /\left(2 \sigma^{2}\right)\right)} \\
& =\exp \left(\frac{\mu}{\sigma^{2}} x-\frac{1}{2} \frac{\mu^{2}}{\sigma^{2}}\right)
\end{aligned}
$$

Hence

$$
Y \equiv \log \frac{d P_{\mu, \sigma}}{d P_{0, \sigma}}(X)=\frac{\mu}{\sigma} \frac{X}{\sigma}-\frac{1}{2} \frac{\mu^{2}}{\sigma^{2}} .
$$

Under $P_{0, \sigma}$ we find that $E(Y)=0-\frac{\mu^{2}}{2 \sigma^{2}}$ and $\operatorname{Var}(Y)=\mu^{2} / \sigma^{2} \equiv V^{2}$ so that

$$
Y \sim N\left(-\frac{1}{2} V^{2}, V^{2}\right) \quad \text { under } \quad P_{0, \sigma}
$$

Under $P_{\mu, \sigma}$ a similar computation gives $E(Y)=\mu^{2} / \sigma^{2}-\mu^{2} /\left(2 \sigma^{2}\right)=V^{2} / 2$ and $\operatorname{Var}(Y)=V^{2}$, so

$$
Y \sim N\left(\frac{1}{2} V^{2}, V^{2}\right) \quad \text { under } P_{\mu, \sigma}
$$

(b) and (c). The function

$$
l(\mu, \sigma ; X) \equiv \log \frac{d P_{\mu, \sigma}}{d P_{0, \sigma}}(X)=\frac{\mu}{\sigma} \frac{X}{\sigma}-\frac{\mu^{2}}{2 \sigma^{2}}=\frac{X^{2}}{2 \sigma^{2}}-\frac{1}{2} \frac{(X-\mu)^{2}}{\sigma^{2}}
$$

is quadratic in μ with maximum value $X^{2} /\left(2 \sigma^{2}\right)$ which is achieved at $\mu=\hat{\mu} \equiv X$.
D. Under $P_{0, \sigma}, \hat{\mu}=X \sim N\left(0, \sigma^{2}\right)$ and $l(\hat{\mu}, \sigma ; X)=X^{2} /\left(2 \sigma^{2}\right) \sim \chi_{1}^{2} / 2$. Under $P_{\mu, \sigma}$, $\hat{\mu}=X \sim N\left(\mu, \sigma^{2}\right)$ and $l(\hat{\mu}, \sigma ; X)=X^{2} /\left(2 \sigma^{2}\right) \sim \chi_{1}^{2}(\delta) / 2$ with $\delta=\mu^{2} / \sigma^{2}$.
3. Suppose that $X, X_{1}, X_{2}, \ldots, X_{n}$ are independent Exponential (λ) random variables:

$$
P(X \geq x)=\exp (-\lambda x), \quad x>0
$$

(a) Show that the r-th moment of $X, \mu_{r} \equiv \mu_{r}(\lambda)$ is given by

$$
\mu_{r}(\lambda)=E X^{r}=\frac{\Gamma(r+1)}{\lambda^{r}}
$$

(b) Use the moment calculation in (a) to show that

$$
\frac{\mu_{r}(\lambda)}{\mu_{r+1}(\lambda)}=\frac{\lambda}{r+1}
$$

and hence that the family of estimators $\left\{\hat{\lambda}_{n}^{(k)}\right\}_{k \geq 0}$ given by

$$
\hat{\lambda}_{n}^{(k)} \equiv(k+1) \frac{\overline{X^{k}}}{\overline{X^{k+1}}} \underset{n}{ } \equiv(k+1) \frac{n^{-1} \sum_{1}^{n} X_{i}^{k}}{n^{-1} \sum_{1}^{n} X_{i}^{k+1}}
$$

are all consistent estimators of $\lambda: \hat{\lambda}_{n}^{(k)} \rightarrow_{p} \lambda$ for each $k=0,1,2, \ldots$.
(c) Show that

$$
\sqrt{n}\left(\hat{\lambda}_{n}^{(k)}-\lambda\right) \rightarrow_{d} N\left(0, \sigma_{k}^{2}(\lambda)\right) \text { as } n \rightarrow \infty
$$

and compute $\sigma_{k}^{2}(\lambda)$ explicitly as a function of k and λ.
(d) What is the asymptotic relative efficiency of $\hat{\lambda}_{n}^{(k)}$ to $\widehat{\lambda}_{n} \equiv \hat{\lambda}_{n}^{(0)}=1 / \bar{X}_{n}$ for $k>1$?
(e) Now suppose that X, X_{1}, \ldots, X_{n} are i.i.d. with distribution function F on $(0, \infty)$ where F is not an exponential distribution function. Specify hypotheses on F (or X) which guarantee that $\hat{\lambda}_{n}^{(k)} \rightarrow_{p}$ some natural parameter, say $\lambda_{k}(F)$ defined in terms of F. What hypothesis will be needed to guarantee that $\sqrt{n}\left(\hat{\lambda}_{n}^{(k)}-\lambda_{k}(F)\right) \rightarrow_{d} N\left(0, V^{2}\right)$ for some V^{2} ?

Solution:

(a) We compute

$$
\begin{aligned}
E\left(X^{r}\right) & =\int_{0}^{\infty} x^{r} \lambda e^{-\lambda x} d x=\lambda^{-r} \int_{0}^{\infty}(\lambda x)^{r} e^{-\lambda x} \lambda d x \\
& =\lambda^{-r} \int_{0}^{\infty} y^{(r+1)-1} e^{-y} d y=\lambda^{-r} \Gamma(r+1)
\end{aligned}
$$

(b) It follows from (a) that

$$
\frac{\mu_{r}(\lambda)}{\mu_{r+1}(\lambda)}=\frac{\lambda}{r+1}
$$

and hence

$$
\begin{aligned}
\hat{\lambda}_{n}^{(k)} & \equiv(k+1) \frac{\overline{X_{n}^{k}}}{\overline{X^{k+1}}} \equiv(k+1) \frac{n^{-1} \sum_{1}^{n} X_{i}^{k}}{n^{-1} \sum_{1}^{n} X_{i}^{k+1}} \\
& \rightarrow_{p}(k+1) \frac{\mu_{k}(\lambda)}{\mu_{k+1}(\lambda)}=\lambda
\end{aligned}
$$

(c) Now by the multivariate CLT it follows that

$$
\sqrt{n}\left(\begin{array}{c}
\bar{X}_{n}^{k}-\mu_{k} \\
X_{n}^{k+1} \\
n
\end{array}\right) \mu_{k+1} \underline{Z} \sim N_{2}(0, \Sigma)
$$

where

$$
\begin{aligned}
\Sigma & =\left(\begin{array}{cc}
\frac{\Gamma(2 k+1)-\Gamma(k+1)^{2}}{\lambda^{2 k}} & \frac{\Gamma(2 k+2)-\Gamma(k+1) \Gamma(k+2)}{\lambda^{2 k+1}} \\
\frac{\Gamma(2 k+2)-\Gamma(k+1) \Gamma(k+2)}{\lambda^{2 k+1}} & \frac{\Gamma(2 k+3)-(\Gamma+2)^{2}}{\lambda^{2 k+2}}
\end{array}\right) \\
& =\frac{1}{\lambda^{2 k}}\left(\begin{array}{cc}
\Gamma(2 k+1)-\Gamma(k+1)^{2} & \frac{\Gamma(2 k+2)-\Gamma(k+1) \Gamma(k+2)}{\lambda^{1}} \\
\frac{\Gamma(2 k+2)-\Gamma(k+1) \Gamma(k+2)}{\lambda^{1}} & \frac{\Gamma(2 k+3)-\left(\Gamma(k+2)^{2}\right.}{\lambda^{2}}
\end{array}\right) .
\end{aligned}
$$

Thus by the delta method with $g(u, v)=u / v$, so that $\dot{g}(u, v)=v^{-1}(1,-u / v)$

$$
\begin{aligned}
\sqrt{n}\left(\hat{\lambda}_{n}^{(k)}-\lambda\right) & =(k+1) \sqrt{n}\left(g\left({\overline{X_{n}^{k}}}_{n}, \overline{X^{k+1}}\right)-g\left(\mu_{k}(\lambda), \mu_{k+1}(\lambda)\right)\right. \\
& \rightarrow_{d}(k+1) \dot{g}\left(\mu_{k}(\lambda), \mu_{k+1}(\lambda)\right) \underline{Z} \\
& =\frac{k+1}{\mu_{k+1}(\lambda)}\left(Z_{1}-\frac{\mu_{k}}{\mu_{k+1}} Z_{2}\right) \\
& =\frac{1}{\mu_{k+1}}\left((k+1) Z_{1}-\lambda Z_{2}\right) \\
& \sim \frac{1}{\mu_{k+1}} N\left(0, \lambda^{-2 k} C_{k}\right)=N\left(0, \frac{1}{\lambda^{2 k} \mu_{k+1}^{2}} C_{k}\right) \\
& =N\left(0, \lambda^{2} \frac{C_{k}}{\Gamma(k+2)^{2}}\right) \equiv N\left(0, \lambda^{2} D_{k}\right)
\end{aligned}
$$

where
$C_{k}=(k+1)^{2}\left\{\Gamma(2 k+1)-\Gamma(k+1)^{2}\right\}-2(k+1)\{\Gamma(2 k+2)-\Gamma(k+1) \Gamma(k+2)\}+\Gamma(2 k+3)-\Gamma(k+2)^{2}$.
and (after a bit of algebra)

$$
D_{k}=\frac{\Gamma(2 k+1)}{\Gamma(k+1)^{2}}\left\{1-2 \frac{2 k+1}{k+1}+\frac{(2 k+2)(2 k+1)}{(k+1)^{2}}\right\}=\frac{\Gamma(2 k+1)}{\Gamma(k+1)^{2}} .
$$

(c) When $k=0$, we compute $D_{k}=1$. Thus the asymptotic relative efficiency of $\hat{\lambda}_{n}^{(k)}$ with respect to $\hat{\lambda}_{n}^{(0)}$ is D_{0} / D_{k}. These estimators become inefficient relative to the mean very rapidly as k increases, as is shown by the following plot of the relative efficiency.

Figure 5: Asymptotic relative efficiency of $\hat{\lambda}_{n}^{(k)}$ with respect to $\hat{\lambda}_{n}^{(0)}$

