Statistics 581, Problem Set 6 Solutions
Wellner; 11/07/2018

. A. Compute and plot the score for location —f'(x)/f(x) when:

(a) f = ¢, the standard normal density;

(b) f(x) = exp(—x)/(1 + exp(—z))* (logistic);

(c) f(z) = (1/2) exp(—|x|) (double exponential);

(d) f(z) = ty, the t—density with k—degrees of freedom;

(e) f(z) = exp(—x) exp(— exp(—x));

(f) f(z) = 2¢(x)®(ax) where ®(z) is the standard normal d.f. and a > 0;
(g) f(x) =1/(7(1 + 2?)), the standard Cauchy density.

B. A density f is called log-concave if log f is a concave function. Let s < 0. A
density f is called s—concave if f* is convex.

Which of the densities in (a) - (f) are log-concave?

Which of the densities in (a) - (f) are s—concave for some s < 07

Which of the densities in (a) - (f) are symmetric about 07

Solution: A.
(a) For the normal density f = ¢, —logf(x) = (1/2)log(2m) + 2?/2, so
(—log f)'(z) = x, and (—log f)"(z) = L.
(b) For the logistic density f(x) =e®/(1+e)2, so

(—log f(z)) = x+2log(l+e™ "),

(log f(z)) = 1=2e7"/(1+e ") =(1-e")/(L+e)

= F(z)—(1—-F(x))=2F(z) — 1,
(—log f(x))" = 2f(x) = 0.

(c) For the Laplace density f(z) = (1/2) exp(—|z|), so

(—log f(z)) = log(2) + |x],
(—log f(2)) (z) = sign(z)1{z # 0} + undefined1{z = 0},
(—log f(z))"(z) = 0-1{x # 0} 4+ undefined1{z = 0}.

(d) For the t,— distribution fi(z) = cx(1 + 22/k)~*+D/2 5o

(—log f(x) = —loge+ L log(1+2%/k),
, (B+1 22/ k41 x

(Slog f@) = =15 = Tk Axan
o k+1( 1—-2%/k

(_10gf($)) - T {(1+x2/k:)2}

(e) For the Gumbel density f(z) = exp(
(—log f(z) x+e ",
(log f(z))" = 1—-e7",

(—log f(x))" = e

—r—e "),
/
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(f) For the skew-normal density f,(x) = 2¢(x)®(az), so that

(—log f(x)) = —log2—log¢(z)—log ®(ax),
e fla)) = g 90(a)
(—log f(x)) D(ar)’

e fan 1 @E0) | @ (a)

(g) The Cauchy density f(z) = 1/(w(1 + 2?)) is a special case of the t; density in
(d): thus the score for location is —(f’/f)(z) = x/(1 + z?). Note that this is not
a monotone function of x, and hence the Cauchy density is not log-concave. It is
s—concave with s = —1/2.
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Figure 1: Symmetric densities: (a)-blue, Gaussian; (b)-green, logistic; (c)-magenta,
Laplace; (d)-purple, Student t3
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Figure 2: Asymmetric densities: (e)-red, Gumbel; (f)-black, skew-normal, a = .7

B. The normal, logistic, double exponential (or Laplace), Gumbel, and skew-normal
densities in (a), (b), (c), (e), and (f) are all log-concave with monotone increasing
score functions for location. The ¢, density in (d) is not log-concave. But the t
density is s—concave with s = —1/(k + 1) since with fi(7) = cx(1 + 22/k)~*++D/2
we have

fk(x)s _ Clzl/(k-l-l) . (1 + J]Q/k)l/27



Figure 3: Score functions for location, symmetric densities: (a)-blue, Gaussian; (b)-green,
logistic; (c)-magenta, Laplace; (d)-purple, Student ¢5

Figure 4: Score functions for location, asymmetric densities: (e)-red, Gumbel; (f)-black,
skew-normal, a = .7

which is a convex function (of ). The Cauchy density is the special case of the ¢
family with £ = 1, and hence is s—concave with s = —1/2.

The normal, logistic, Laplace, and t; densities are all symmetric about 0, while the
Gumbel and skew-normal densities are not symmetric.

2. Suppose that Z ~ N(0,1) and, for p € Rand 0 > 0, that X = p+0Z ~ P,, =

N(u,0?).

(a) Compute the likelihood ratio
dByo o '¢((x — p)/o) dB,.,
— 2 (x) = d Y=1 (X)) .
dPy (z) o~ lo(x/o) o o8 dPO’U( )

What is the distribution of ¥ under F, and under P, ,?
(b) Plot the function
l(; X)=1lo %(X)

H; = log Py,
as a function of pu.
(¢) Find the maximum value of the function {(x; X) in (b) (as a function of ) and
the value of y = i which achieves the maximum.
(d) What is the distribution of g under P, and under P,,? What is the
distribution of I(f1; X)) under Py, and under P, ,?
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Solution: (a) The likelihood ratio

dPyo () = o 'o((x —p)/o) _ exp(—(z — p)?/(20?))
dPo» o~lo(z/o) exp(—2?/(202))
poo 1P
Hence P X 1.2
Y =log () = U -5

Under By, we find that E(Y) =0 — % and Var(Y) = u?/o? = V? so that
1
Y ~ N(—§V2,V2) under Py, .

Under P,, a similar computation gives E(Y) = p?/o? — u?/(20%) = V?/2 and
Var(Y)=V? so

1
Y ~ N(§V2,V2) under P, .
(b) and (c). The function

s oy X _ 0 X2 1

Hp, 03 X) = log dPy oco 202 202 2 o?

is quadratic in g with maximum value X?/(20?) which is achieved at u = i = X.
D. Under Py, i = X ~ N(0,0%) and I(ji,0; X) = X?/(20?) ~ x1/2. Under P,,,
=X~ N(u,o%) and l(f1,0; X) = X?/(20?) ~ x3(5)/2 with § = pu?/o?.

. Suppose that X, X7, Xs, ..., X, are independent Exponential(\) random variables:
P(X > z) = exp(—Ax), x> 0.
(a) Show that the r-th moment of X, u,. = p,.(\) is given by

L(r+1)

S\ = EX" =
fr () T

(b) Use the moment calculation in (a) to show that

pr(A) A
:ur—&-l()‘) r+1

and hence that the family of estimators {;\Elk) }e>o0 given by

< Xk n~tS" XE
(k) = n— L2
Ay = (k+ 1)Xk+1n =(k+ 1)W1 S~ xEA

are all consistent estimators of A: A —p Aforeach £ =0,1,2,....
(c) Show that
V(X —X) =4 N(0,02()\) as n — oo

n
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and compute o7(\) explicitly as a function of k and .

(d) What is the asymptotic relative efficiency of AP b0 X, = A =1 /X, for
k>17

(e) Now suppose that X, Xy, ..., X, areii.d. with distribution function F' on (0, c0)
where F'is not an exponential distribution function. Specify hypotheses on F' (or X)

which guarantee that A —, some natural parameter, say A (F) defined in terms of

F. What hypothesis will be needed to guarantee that \/ﬁ(j\%k) —A(F)) =4 N(0,V?)
for some V27

Solution:
(a) We compute

EX") = / ZL‘T)\G_)‘xd:L‘:)\_T/ (Az) e \dx
0 0
= >\T/ YD =lemvdy = XD (r + 1),
0

(b) It follows from (a) that

pr(A) A
:ur—&-l()‘) r+1
and hence

2 ﬁ n~! Zn Xk

k) = no— M Zathi
>\n — (k + 1>Xk+1n — (k + ]‘>n_1 2711 Xik-‘rl

fie(A)
—p (k+1 =
P ( >Mk+1()\)

(¢c) Now by the multivariate CLT it follows that

ﬁn_,ulk:
ﬁ( XFHL — iy ) —a Z ~ N>(0,%)

where

\ \2k+1
I(2k+2)—T(k+1)I'(k+2) [(2k+3)— (T (k+2)2
)\2k+1 )\2k+2

( [(2k+1)—I(k-+1)2 ['(2k+2)—I(k+1)D(k+2) )
2k

1 ( I'2k+1)-T(k+ 1)2 F(2k+2)71“(11c+1)1“(k+2) )

W T'(2k+2)—T(k+1)T'(k+2) F(2k+3)i(l“(k+2)2
AT A2

Thus by the delta method with g(u,v) = u/v, so that ¢(u,v) = v=(1, —u/v)
VAP =X = (kb DVR(g(XFa, XF) = g((N), s (V)
—d (k4 1)g(e(A), pe1(A) Z

k1 (Z1—ﬂ22>

fe+1(A) k1
1
- ((k+1)Z1 — AZy)
Hi+1
1 1
~ N(0,\"%*C,) = N(0, ——C
Hi+1 ( ) ( )\Qkﬂiﬂ ¢)
= N(0 )\QL) = N(0,\*Dy,)
) F(k’+2)2 == ) k
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where
Cr = (k+1)* {T(2k + 1) = T'(k + 1)*} —2(k+1){D(2k+2) D (k+1)T'(k+2) }+T'(2k+3) -T'(k+2)*.

and (after a bit of algebra)

T2k +1) 2k+1  (2k+2)2k+1) T2k +1)
k_l“(k+1)2{ k41 (k +1)2 } T(k+1)2

(¢) When k = 0, we compute Dy = 1. Thus the asymptotic relative efficiency of
AP with respect to A s Do/ Dy. These estimators become inefficient relative to
the mean very rapidly as k increases, as is shown by the following plot of the relative

efficiency.
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Figure 5: Asymptotic relative efficiency of AP with respect to A



