
Statistics 581, Problem Set 6 Solutions

Wellner; 11/07/2018

1. A. Compute and plot the score for location −f ′(x)/f(x) when:
(a) f = φ, the standard normal density;
(b) f(x) = exp(−x)/(1 + exp(−x))2 (logistic);
(c) f(x) = (1/2) exp(−|x|) (double exponential);
(d) f(x) = tk, the t−density with k−degrees of freedom;
(e) f(x) = exp(−x) exp(− exp(−x));
(f) f(x) = 2φ(x)Φ(ax) where Φ(x) is the standard normal d.f. and a > 0;
(g) f(x) = 1/(π(1 + x2)), the standard Cauchy density.

B. A density f is called log-concave if log f is a concave function. Let s < 0. A
density f is called s−concave if f s is convex.
Which of the densities in (a) - (f) are log-concave?
Which of the densities in (a) - (f) are s−concave for some s < 0?
Which of the densities in (a) - (f) are symmetric about 0?

Solution: A.
(a) For the normal density f = φ, − log f(x) = (1/2) log(2π) + x2/2, so
(− log f)′(x) = x, and (− log f)′′(x) = 1.
(b) For the logistic density f(x) = e−x/(1 + e−x)2, so

(− log f(x)) = x+ 2 log(1 + e−x),

(− log f(x))′ = 1− 2e−x/(1 + e−x) = (1− e−x)/(1 + e−x)

= F (x)− (1− F (x)) = 2F (x)− 1,

(− log f(x))′′ = 2f(x) ≥ 0.

(c) For the Laplace density f(x) = (1/2) exp(−|x|), so

(− log f(x)) = log(2) + |x|,
(− log f(x))′(x) = sign(x)1{x 6= 0}+ undefined1{x = 0},
(− log f(x))′′(x) = 0 · 1{x 6= 0}+ undefined1{x = 0}.

(d) For the tk− distribution fk(x) = ck(1 + x2/k)−(k+1)/2, so

(− log f(x)) = − log ck +
k + 1

2
log(1 + x2/k),

(− log f(x))′ =
(k + 1

2

2x/k

1 + x2/k
=
k + 1

k

x

(1 + x2/k)
,

(− log f(x))′′ = =
k + 1

k

{
1− x2/k

(1 + x2/k)2

}
(e) For the Gumbel density f(x) = exp(−x− e−x),

(− log f(x)) = x+ e−x,

(− log f(x))′ = 1− e−x,
(− log f(x))′′ = e−x.
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(f) For the skew-normal density fa(x) = 2φ(x)Φ(ax), so that

(− log f(x)) = − log 2− log φ(x)− log Φ(ax),

(− log f(x))′ = x− aφ(ax)

Φ(ax)
,

(− log f(x))′′ = 1 +
a2xφ(x)

Φ(ax)
+
a2φ2(ax)

Φ(ax)2
.

(g) The Cauchy density f(x) = 1/(π(1 + x2)) is a special case of the tk density in
(d): thus the score for location is −(f ′/f)(x) = x/(1 + x2). Note that this is not
a monotone function of x, and hence the Cauchy density is not log-concave. It is
s−concave with s = −1/2.
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Figure 1: Symmetric densities: (a)-blue, Gaussian; (b)-green, logistic; (c)-magenta,
Laplace; (d)-purple, Student t3
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Figure 2: Asymmetric densities: (e)-red, Gumbel; (f)-black, skew-normal, a = .7

B. The normal, logistic, double exponential (or Laplace), Gumbel, and skew-normal
densities in (a), (b), (c), (e), and (f) are all log-concave with monotone increasing
score functions for location. The tk density in (d) is not log-concave. But the tk
density is s−concave with s = −1/(k + 1) since with fk(x) = ck(1 + x2/k)−(k+1)/2

we have

fk(x)s = c
−1/(k+1)
k · (1 + x2/k)1/2,
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Figure 3: Score functions for location, symmetric densities: (a)-blue, Gaussian; (b)-green,
logistic; (c)-magenta, Laplace; (d)-purple, Student t3
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Figure 4: Score functions for location, asymmetric densities: (e)-red, Gumbel; (f)-black,
skew-normal, a = .7

which is a convex function (of x). The Cauchy density is the special case of the tk
family with k = 1, and hence is s−concave with s = −1/2.
The normal, logistic, Laplace, and tk densities are all symmetric about 0, while the
Gumbel and skew-normal densities are not symmetric.

2. Suppose that Z ∼ N(0, 1) and, for µ ∈ R and σ > 0, that X = µ + σZ ∼ Pµ,σ =
N(µ, σ2).
(a) Compute the likelihood ratio

dPµ,σ
dP0,σ

(x) =
σ−1φ((x− µ)/σ)

σ−1φ(x/σ)
and Y ≡ log

dPµ,σ
dP0,σ

(X) .

What is the distribution of Y under P0,σ and under Pµ,σ?
(b) Plot the function

l(µ;X) ≡ log
dPµ,σ
dP0,σ

(X)

as a function of µ.
(c) Find the maximum value of the function l(µ;X) in (b) (as a function of µ) and
the value of µ ≡ µ̂ which achieves the maximum.
(d) What is the distribution of µ̂ under P0,σ and under Pµ,σ? What is the
distribution of l(µ̂;X) under P0,σ and under Pµ,σ?
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Solution: (a) The likelihood ratio

dPµ,σ
dP0,σ

(x) =
σ−1φ((x− µ)/σ)

σ−1φ(x/σ)
=

exp(−(x− µ)2/(2σ2))

exp(−x2/(2σ2))

= exp

(
µ

σ2
x− 1

2

µ2

σ2

)
.

Hence

Y ≡ log
dPµ,σ
dP0,σ

(X) =
µ

σ

X

σ
− 1

2

µ2

σ2
.

Under P0,σ we find that E(Y ) = 0− µ2

2σ2 and V ar(Y ) = µ2/σ2 ≡ V 2 so that

Y ∼ N(−1

2
V 2, V 2) under P0,σ .

Under Pµ,σ a similar computation gives E(Y ) = µ2/σ2 − µ2/(2σ2) = V 2/2 and
V ar(Y ) = V 2, so

Y ∼ N(
1

2
V 2, V 2) under Pµ,σ .

(b) and (c). The function

l(µ, σ;X) ≡ log
dPµ,σ
dP0,σ

(X) =
µ

σ

X

σ
− µ2

2σ2
=
X2

2σ2
− 1

2

(X − µ)2

σ2

is quadratic in µ with maximum value X2/(2σ2) which is achieved at µ = µ̂ ≡ X.
D. Under P0,σ, µ̂ = X ∼ N(0, σ2) and l(µ̂, σ;X) = X2/(2σ2) ∼ χ2

1/2. Under Pµ,σ,
µ̂ = X ∼ N(µ, σ2) and l(µ̂, σ;X) = X2/(2σ2) ∼ χ2

1(δ)/2 with δ = µ2/σ2.

3. Suppose that X,X1, X2, . . . , Xn are independent Exponential(λ) random variables:

P (X ≥ x) = exp(−λx), x > 0.

(a) Show that the r-th moment of X, µr ≡ µr(λ) is given by

µr(λ) = EXr =
Γ(r + 1)

λr
.

(b) Use the moment calculation in (a) to show that

µr(λ)

µr+1(λ)
=

λ

r + 1

and hence that the family of estimators {λ̂(k)
n }k≥0 given by

λ̂(k)
n ≡ (k + 1)

Xk
n

Xk+1
n

≡ (k + 1)
n−1

∑n
1 X

k
i

n−1
∑n

1 X
k+1
i

are all consistent estimators of λ: λ̂
(k)
n →p λ for each k = 0, 1, 2, . . ..

(c) Show that √
n(λ̂(k)

n − λ)→d N(0, σ2
k(λ)) as n→∞
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and compute σ2
k(λ) explicitly as a function of k and λ.

(d) What is the asymptotic relative efficiency of λ̂
(k)
n to λ̂n ≡ λ̂

(0)
n = 1/Xn for

k > 1?
(e) Now suppose that X,X1, . . . , Xn are i.i.d. with distribution function F on (0,∞)
where F is not an exponential distribution function. Specify hypotheses on F (or X)

which guarantee that λ̂
(k)
n →p some natural parameter, say λk(F ) defined in terms of

F . What hypothesis will be needed to guarantee that
√
n(λ̂

(k)
n −λk(F ))→d N(0, V 2)

for some V 2?

Solution:
(a) We compute

E(Xr) =

∫ ∞
0

xrλe−λxdx = λ−r
∫ ∞

0

(λx)re−λxλdx

= λ−r
∫ ∞

0

y(r+1)−1e−ydy = λ−rΓ(r + 1).

(b) It follows from (a) that
µr(λ)

µr+1(λ)
=

λ

r + 1

and hence

λ̂(k)
n ≡ (k + 1)

Xk
n

Xk+1
n

≡ (k + 1)
n−1

∑n
1 X

k
i

n−1
∑n

1 X
k+1
i

→p (k + 1)
µk(λ)

µk+1(λ)
= λ.

(c) Now by the multivariate CLT it follows that

√
n

(
Xk

n − µk
Xk+1

n − µk+1

)
→d Z ∼ N2(0,Σ)

where

Σ =

(
Γ(2k+1)−Γ(k+1)2

λ2k
Γ(2k+2)−Γ(k+1)Γ(k+2)

λ2k+1

Γ(2k+2)−Γ(k+1)Γ(k+2)
λ2k+1

Γ(2k+3)−(Γ(k+2)2

λ2k+2

)

=
1

λ2k

(
Γ(2k + 1)− Γ(k + 1)2 Γ(2k+2)−Γ(k+1)Γ(k+2)

λ1
Γ(2k+2)−Γ(k+1)Γ(k+2)

λ1
Γ(2k+3)−(Γ(k+2)2

λ2

)
.

Thus by the delta method with g(u, v) = u/v, so that ġ(u, v) = v−1(1,−u/v)
√
n(λ̂(k)

n − λ) = (k + 1)
√
n(g(Xk

n, Xk+1
n)− g(µk(λ), µk+1(λ))

→d (k + 1)ġ(µk(λ), µk+1(λ))Z

=
k + 1

µk+1(λ)

(
Z1 −

µk
µk+1

Z2

)
=

1

µk+1

((k + 1)Z1 − λZ2)

∼ 1

µk+1

N(0, λ−2kCk) = N(0,
1

λ2kµ2
k+1

Ck)

= N(0, λ2 Ck
Γ(k + 2)2

) ≡ N(0, λ2Dk)
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where

Ck = (k+1)2
{

Γ(2k + 1)− Γ(k + 1)2
}
−2(k+1){Γ(2k+2)−Γ(k+1)Γ(k+2)}+Γ(2k+3)−Γ(k+2)2.

and (after a bit of algebra)

Dk =
Γ(2k + 1)

Γ(k + 1)2

{
1− 2

2k + 1

k + 1
+

(2k + 2)(2k + 1)

(k + 1)2

}
=

Γ(2k + 1)

Γ(k + 1)2
.

(c) When k = 0, we compute Dk = 1. Thus the asymptotic relative efficiency of

λ̂
(k)
n with respect to λ̂

(0)
n is D0/Dk. These estimators become inefficient relative to

the mean very rapidly as k increases, as is shown by the following plot of the relative
efficiency.
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Figure 5: Asymptotic relative efficiency of λ̂
(k)
n with respect to λ̂

(0)
n
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