Statistics 581, Problem Set 7 Solutions

Wellner; 11/15/2018

1. Suppose that $X \sim \operatorname{Beta}(\alpha, \beta)$; i.e. X has density p_{θ} given by

$$
p_{\theta}(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1} 1_{(0,1)}(x), \quad \theta=(\alpha, \beta) \in(0, \infty) \times(0, \infty) \equiv \Theta .
$$

Consider estimation of:
A. $q_{A}(\theta) \equiv E_{\theta} X$. B. $q_{B}(\theta) \equiv F_{\theta}\left(x_{0}\right)$ for a fixed x_{0}; here $F_{\theta}(x) \equiv P_{\theta}(X \leq x)$.
(i) Compute $I(\theta)=I(\alpha, \beta)$; compare Lehmann \& Casella page 127, Table 6.1
(ii) Compute $q_{A}(\theta), q_{B}(\theta), \dot{q}_{A}(\theta)$, and $\dot{q}_{B}(\theta)$.
(iii) Find the efficient influence functions for estimation of q_{A} and q_{B}.
(iv) Compare the efficient influence functions you find in (iii) with the influence functions ψ_{A} and ψ_{B} of the natural nonparametric estimators \bar{X}_{n} and $\mathbb{F}_{n}\left(x_{0}\right)$ respectively. Does $\psi_{A} \in \dot{\mathcal{P}}$? Does $\psi_{B} \in \dot{\mathcal{P}}$ hold?

Solution: For the $\operatorname{Beta}(\alpha, \beta)$ density:

$$
p_{\theta}(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1} 1_{(0,1)}(x) .
$$

Thus

$$
\log p_{\theta}(x)=(\alpha-1) \log x+(\beta-1) \log (1-x)+\log \Gamma(\alpha+\beta)-\log \Gamma(\alpha)-\log \Gamma(\beta),
$$

and hence

$$
\begin{aligned}
& i_{\alpha}(x)=\log x+\psi(\alpha+\beta)-\psi(\alpha) \\
& i_{\beta}(x)=\log (1-x)+\psi(\alpha+\beta)-\psi(\beta)
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
& \ddot{l}_{\alpha \alpha}(x)=\psi^{\prime}(\alpha+\beta)-\psi^{\prime}(\alpha), \\
& \ddot{l}_{\alpha \beta}(x)=\psi^{\prime}(\alpha+\beta), \\
& \ddot{l}_{\beta \beta}(x)=\psi^{\prime}(\alpha+\beta)-\psi^{\prime}(\beta) .
\end{aligned}
$$

Hence

$$
I(\theta)=\left(\begin{array}{cc}
\psi^{\prime}(\alpha)-\psi^{\prime}(\alpha+\beta) & -\psi^{\prime}(\alpha+\beta) \tag{0.1}\\
-\psi^{\prime}(\alpha+\beta) & \psi^{\prime}(\beta)-\psi^{\prime}(\alpha+\beta)
\end{array}\right)
$$

This is positive definite for all $\alpha>0, \beta>0$.
(ii). Now $q_{A}(\theta)=\alpha /(\alpha+\beta)$, and

$$
q_{B}(\theta)=P_{\theta}\left(X \leq x_{0}\right)=\int_{0}^{x_{0}} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1} d x
$$

Therefore

$$
\begin{aligned}
\dot{q}_{A}^{T}(\theta)=\left(\frac{\partial}{\partial \alpha} q_{A}, \frac{\partial}{\partial \beta} q_{A}\right) & =\left(\frac{\beta}{(\alpha+\beta)^{2}},-\frac{\alpha}{(\alpha+\beta)^{2}}\right)=(\alpha+\beta)^{-2}(\beta,-\alpha) \\
& =\operatorname{Cov}_{\theta}\left(X-E_{\theta}(X), \dot{i}_{\theta}^{T}(X)\right)
\end{aligned}
$$

while, with

$$
\begin{aligned}
\dot{q}_{B}(\theta) & =\binom{E_{\theta}\left(1_{\left(0, x_{0}\right]}(X) \log X\right)+(\psi(\alpha+\beta)-\psi(\alpha)) F_{\theta}\left(x_{0}\right)}{\left.E_{\theta}\left(1_{\left(0, x_{0}\right]} X\right) \log (1-X)\right)+(\psi(\alpha+\beta)-\psi(\beta)) F_{\theta}\left(x_{0}\right)} \\
& =\operatorname{Cov}_{\theta}\left[\left(1_{\left[0, x_{0}\right]}(X)-F_{\theta}\left(x_{0}\right)\right), i_{\theta}^{T}\right]
\end{aligned}
$$

(iii). The scores are given by

$$
i_{\theta}(x)=\binom{i_{\alpha}(x)}{i_{\beta}(x)}=\binom{\log (x)-(\psi(\alpha)-\psi(\alpha+\beta))}{\log (1-x)-(\psi(\beta)-\psi(\alpha+\beta))}
$$

and the information matrix is as given in (0.1) Thus

$$
I^{-1}(\theta)=\frac{1}{\operatorname{det} I(\theta)}\left(\begin{array}{cc}
\psi^{\prime}(\beta)-\psi^{\prime}(\alpha+\beta) & \psi^{\prime}(\alpha+\beta) \\
\psi^{\prime}(\alpha+\beta) & \psi^{\prime}(\alpha)-\psi^{\prime}(\alpha+\beta)
\end{array}\right)
$$

where

$$
\operatorname{det}(I(\theta))=\left(\psi^{\prime}(\alpha)-\psi^{\prime}(\alpha+\beta)\right)\left(\psi^{\prime}(\beta)-\psi^{\prime}(\alpha+\beta)\right)-\psi^{\prime}(\alpha+\beta)^{2}
$$

and the efficient influence function for estimation of q_{A} is

$$
\tilde{l}_{A}(x)=\dot{q}_{A}(\theta)^{T} I^{-1}(\theta) \dot{l}_{\theta}(x) \in \dot{\mathcal{P}}
$$

and hence is a (centered) linear combination of $\log x$ and $\log (1-x)$. Note that $X-E_{\theta}(X) \notin\left[\dot{l}_{\theta}\right]=\dot{\mathcal{P}}$, and hence the sample mean is inefficient for estimation of $E_{\theta}(X)$ in this model.
Similarly, $\tilde{l}_{B}(x)=\dot{q}_{B}(\theta) I^{-1}(\theta) \dot{l}_{\theta}(x)$; unfortunately, this does not simplify much, largely due to the fact that $1_{\left[0, x_{0}\right]}(X)-F_{\theta}\left(x_{0}\right) \notin\left[\dot{i}_{\theta}\right]=\dot{\mathcal{P}}$.
(iv) The information bound for estimation of q_{A} is

$$
\begin{aligned}
I^{-1}\left(P \mid q_{A}, \mathcal{P}\right) & =\dot{q}_{A}^{T} I^{-1}(\theta) \dot{q}_{A} \\
& =(\alpha+\beta)^{-4}(\beta,-\alpha) \frac{1}{\operatorname{det} I(\theta)}\left(\begin{array}{cc}
\psi^{\prime}(\beta)-\psi^{\prime}(\alpha+\beta) & \psi^{\prime}(\alpha+\beta) \\
\psi^{\prime}(\alpha+\beta) & \psi^{\prime}(\alpha)-\psi^{\prime}(\alpha+\beta)
\end{array}\right)\binom{\beta}{-\alpha} \\
& <\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta-1)}=\operatorname{Var}_{\theta}(X)
\end{aligned}
$$

where the inequality holds since $\psi_{A}(X)=\left(X-E_{\theta}(X)\right) \notin \dot{\mathcal{P}}$. Similarly,

$$
I^{-1}\left(P \mid q_{B}, \mathcal{P}\right)=\dot{q}_{B}^{T} I^{-1}(\theta) \dot{q}_{B}
$$

which does not simplify appreciably because $1_{\left[0, x_{0}\right]}(X)-F_{\theta}\left(x_{0}\right) \notin\left[\dot{l}_{\theta}\right]=\dot{\mathcal{P}}$. However, since we know that $\tilde{l}_{B}=\Pi\left(1_{\left[0, x_{0}\right]}(x)-F\left(x_{0}\right) \mid \dot{\mathcal{P}}\right)$, it follows easily that

$$
I^{-1}\left(P \mid q_{B}, \mathcal{P}\right)<E_{\theta}\left(1_{\left[0, x_{0}\right]}(X)-F_{\theta}\left(x_{0}\right)\right)^{2}=F_{\theta}\left(x_{0}\right)\left(1-F_{\theta}\left(x_{0}\right)\right) ;
$$

i.e. it is possible to improve on the natural nonparametric estimators \bar{X}_{n} and $\mathbb{F}_{n}\left(x_{0}\right)$ of $q_{A}(\theta)=E_{\theta}(X)$ and $q_{B}(\theta)=F_{\theta}\left(x_{0}\right)$ when the model holds. (If we had considered $q_{C}(\theta)=E_{\theta} \log (X /(1-X))$ or $q_{D}(\theta)=E_{\theta} \log X$, this story would change! It is also an instructive exercise to consider the sub-model consisting of the beta densities with $\alpha=\beta$.)
2. Suppose that $X \sim F_{\theta}=\operatorname{exponential}(\theta)$ with density $f_{\theta}(x)=\theta e^{-\theta x} 1_{(0, \infty)}(x)$ and $Y \sim G_{\eta}$ independent of X with densities $\left\{g_{\eta}: \eta \in R^{+}\right\}$, a regular parametric model on $(0, \infty)$. Consider the following three scenarios for observation of X or functions of X :
(a) Uncensored: we observe X and Y.
(b) Right-censored: we observe

$$
T(X, Y)=(X \wedge Y, 1\{X \leq Y\} \equiv(\min \{X, Y\}, 1\{X \leq Y\}) \equiv(Z, \Delta)
$$

(c) Interval-censored (case 1): we observe $S(X, Y)=(Y, 1\{X \leq Y\}) \equiv(Y, \Delta)$.
(i) Find the joint density of (X, Y) and joint distributions of $T(X, Y)$ and $S(X, Y)$.
(ii) Find the scores for θ and η in each of the three scenarios (a), (b), and (c). (Let $(\partial / \partial \eta) \log g_{\eta}(y) \equiv a(y)$ with $a \in L_{2}^{0}\left(G_{\eta}\right)$.)
(iii) Compute and compare $I_{X, Y}(\theta), I_{T(X, Y)}(\theta)$, and $I_{S(X, Y)}(\theta)$. Make the comparisons in general and then explicitly by making one or more choices of the family $\left\{g_{\eta}\right\}$.

Solution: (i) In case (a) when we observe X and Y the joint density of X, Y is simply $f_{\theta}(x) g_{\eta}(y)=\theta \exp (-\theta x) g_{\eta}(y)$. In case (b) the joint density $p(z, \delta)=$ $p(z, \delta ; \theta, \eta)$ (with respect to Lebesgue measure on $(0, \infty)$ times counting measure on $\{0,1\}$) is given by

$$
p(z, \delta)=\left\{\left(1-G_{\eta}(z)\right) f_{\theta}(z)\right\}^{\delta}\left\{\left(1-F_{\theta}(z)\right) g_{\eta}(z)\right\}^{1-\delta} .
$$

In case (c) the joint density $p(y, \delta)=p(y, \delta ; \theta, \eta)$ of $S(X, Y)=(Y, \Delta)$ given by

$$
p(y, \delta)=F_{\theta}(y)^{\delta}\left(1-F_{\theta}(y)\right)^{1-\delta} g_{\eta}(y)
$$

(ii) In case (a),

$$
\log p_{X, Y}(x, y ; \theta, \eta)=\log f_{\theta}(x)+\log g_{\eta}(y)=\log \theta-\theta x+\log g_{\eta}(y)
$$

and hence the scores for θ and η are

$$
\begin{aligned}
& \dot{i}_{\theta}(x, y)=\theta^{-1}-x \\
& i_{\eta}(x, y)=a(y)
\end{aligned}
$$

In case (b) we find that

$$
\begin{aligned}
\log p(z, \delta ; \theta, \eta) & =\delta\left(\log f_{\theta}(z)+\log \left(1-G_{\eta}(z)\right)\right\}+(1-\delta)\left\{\log g_{\eta}(z)+\log \left(1-F_{\theta}(z)\right)\right\} \\
& =\delta \log f_{\theta}(z)+(1-\delta) \log \left(1-F_{\theta}(z)\right)+(1-\delta) g_{\eta}(z)+\delta\left(1-G_{\eta}(z)\right)
\end{aligned}
$$

Thus the scores for θ and η are given by

$$
\begin{aligned}
& i_{\theta}(z, \delta)=\delta\left(\theta^{-1}-z\right)+(1-\delta)(-z)=\theta^{-1} \delta-z \\
& i_{\eta}(z, \delta)=(1-\delta) a(z)+\delta\left(1-G_{\eta}(z)\right)^{-1} \int_{z}^{\infty} a(y) d G_{\eta}(y)
\end{aligned}
$$

In case (c),

$$
\log p(y, \delta ; \theta, \eta)=\delta F_{\theta}(y)+(1-\delta)\left(1-F_{\theta}(y)\right)+\log g_{\eta}(y)
$$

Thus the scores for θ and η are given by

$$
\begin{aligned}
i_{\theta}(y, \delta) & =\left\{\frac{\delta}{F_{\theta}(y)} \frac{\partial}{\partial \theta} F_{\theta}(y)+\frac{(1-\delta)}{1-F_{\theta}(y)}\left(-\frac{\partial}{\partial \theta} F_{\theta}(y)\right\}\right. \\
& =\left\{\frac{\delta}{F_{\theta}(y)}-\frac{(1-\delta)}{1-F_{\theta}(y)}\right\} \frac{\partial}{\partial \theta} F_{\theta}(y) \\
& =\left\{\frac{\delta}{F_{\theta}(y)}-\frac{(1-\delta)}{1-F_{\theta}(y)}\right\}(y \exp (-\theta y) \\
& =\left\{\delta-F_{\theta}(y)\right\} \frac{y\left(1-F_{\theta}(y)\right)}{F_{\theta}(y)\left(1-F_{\theta}(y)\right)}, \\
i_{\eta}(y, \delta) & =a(y) .
\end{aligned}
$$

(iii) In case (a), the information matrix for (θ, η) is given by

$$
I_{X, Y}(\theta, \eta)=\left(\begin{array}{cc}
\theta^{-2} & 0 \\
0 & E a^{2}(Y)
\end{array}\right)
$$

and hence the information for θ is simply θ^{-2}.
(b) In case (b),

$$
\begin{aligned}
I_{11}(\theta, \eta) & =E_{\theta, \eta} \dot{l}_{\theta}^{2}(Z, \Delta) \\
& =E_{\theta, \eta}\left(\theta^{-1} \Delta-Z\right)^{2}
\end{aligned}
$$

But we can also calculate

$$
\ddot{l}_{\theta, \theta}(z, \delta)=-\theta^{-2} \delta,
$$

and hence

$$
\begin{align*}
I_{11}(\theta, \eta) & =-E_{\theta, \eta} \ddot{\eta}_{\theta, \theta}(Z, \Delta)=\theta^{-2} P_{\theta, \eta}(\Delta=1) \tag{0.2}\\
& =\theta^{-2} \int_{0}^{\infty} F_{\theta} d G_{\eta}=\theta^{-2} E_{\eta} g(\theta Y) \leq \theta^{-2} \tag{0.3}
\end{align*}
$$

where $g(v) \equiv 1-e^{-v}$ where the inequality is strict if $P_{\eta}(Y<\infty)>0$. Note that

$$
\ddot{l}_{\theta, \eta}(z, \delta)=0,
$$

and hence $I_{12}(\theta, \eta)=I_{21}(\theta, \eta)=0$. Thus we conclude that the information for θ is simply $I_{11}(\theta, \eta)=\theta^{-2} P_{\theta, \eta}(\Delta=1)$ as calculated in (0.3). When $Y \sim \operatorname{Exponential}(\eta)$ this yields

$$
\begin{aligned}
I_{11 \cdot 2}(\theta, \eta) & =\theta^{-2} \int_{0}^{\infty}(1-\exp (-\theta y) \eta \exp (-\eta y) d y \\
& =\theta^{-2}\left\{1-\eta \int_{0}^{\infty} \exp (-(\theta+\eta) y)\right\} \\
& =\theta^{-2}\left\{1-\frac{\eta}{\theta+\eta}\right\} \\
& =\theta^{-2} \frac{\theta}{\theta+\eta}=\theta^{-2} \frac{1}{1+r} \text { with } r \equiv \eta / \theta
\end{aligned}
$$

(c) In case (c), since $(\Delta \mid Y) \sim \operatorname{Bernoulli}\left(F_{\theta}(Y)\right)$ we calculate conditionally on Y to find that

$$
\begin{aligned}
I_{11}(\theta, \eta) & =E_{\theta, \eta} i_{\theta}(Y, \Delta)^{2} \\
& =E_{\theta, \eta}\left\{F_{\theta}(Y)\left(1-F_{\theta}(Y)\right)\right\} \frac{Y^{2}\left(1-F_{\theta}(Y)\right)^{2}}{F_{\theta}(Y)^{2}\left(1-F_{\theta}(Y)\right)^{2}} \\
& =\theta^{-2} E_{\theta, \eta} \frac{(\theta Y)^{2}\left(1-F_{\theta}(Y)\right)}{F_{\theta}(Y)} \\
& =\theta^{-2} E_{\eta} h(\theta Y)
\end{aligned}
$$

where $h(v) \equiv v^{2} e^{-v} /\left(1-e^{-v}\right)$ is a bounded function vanishing at 0 and ∞ and $\|h\|_{\infty} \leq .65$; see Figure yy.

Figure 1: The functions $g(v)=1-e^{-v}$ and $h(v)=v^{2} e^{-v} /\left(1-e^{-v}\right)$.
Again by computing conditionally we see that

$$
\begin{aligned}
I_{12}(\theta, \eta) & =E_{\theta, \eta} i_{\theta}(Y, \Delta) \dot{i}_{\eta}(Y, \Delta) \\
& =E\left\{E\left\{\left.\left(\Delta-F_{\theta}(Y)\right) \frac{Y a(Y)}{F_{\theta}(Y)} \right\rvert\, Y\right\}\right\} \\
& =E\left\{\frac{Y a(Y)}{F_{\theta}(Y)} E\left\{\left(\Delta-F_{\theta}(Y)\right) \mid Y\right\}\right\} \\
& =0
\end{aligned}
$$

Thus the information for θ based on observation of $S(X, Y)=(Y, \Delta)$ is

$$
I_{11}(\theta, \eta)=\theta^{-2} E_{\eta} h(\theta Y) \leq \theta^{-2} E_{\eta} g(\theta Y) \leq \theta^{-2}
$$

where $h(v) \equiv v^{2} e^{-v} /\left(1-e^{-v}\right) \leq 1-e^{-v} \equiv g(v)$; to see this last inequality note it holds if and only if

$$
v^{2} e^{-v} \leq\left(1-e^{-v}\right)^{2}=1-2 e^{-v}+e^{-2 v},
$$

or, if and only if

$$
\left(2+v^{2}\right) e^{-v} \leq 1+e^{-2 v} \text { or, if and only if } 2+v^{2} \leq e^{v}+e^{-v},
$$

or, if and only if

$$
1+\frac{v^{2}}{2} \leq \frac{1}{2}\left(e^{v}+e^{-v}\right)
$$

and this last inequality is indeed true.
When $Y \sim \operatorname{Exponential}(\eta)$ this becomes

$$
I_{11}(\theta, \eta)=\theta^{-2} 2 \frac{\eta}{\theta} \zeta(3,1+\eta / \theta)=\theta^{-2} 2 r \zeta(3,1+r)
$$

where $\zeta(s, a)=\sum_{k=0}^{\infty}(k+a)^{-s}$ is the generalized zeta function and (again) $r \equiv \eta / \theta$. Figure 4 shows $I_{X, Y}(\theta) / I_{T(X, Y)}(\theta)$ and $I_{X, Y}(\theta) / I_{S(X, Y)}(\theta)$ when $Y \sim \operatorname{Exponential}(\eta)$ as a function of $r \equiv \eta / \theta$.

Figure 2: ARE's $I_{X, Y}(\theta) / I_{T(X, Y)}(\theta)$ and $I_{X, Y}(\theta) / I_{S(X, Y)}(\theta)$ as a function of r
3. Suppose that we want to model the survival of twins with a common genetic defect, but with one of the two twins receiving some treatment. Let X represent the survival time of the untreated twin and let Y represent the survival time of the treated twin. One (overly simple) preliminary model might be to assume that X and Y are independent with $\operatorname{Exponential}(\eta)$ and $\operatorname{Exponential}(\theta \eta)$ distributions, respectively:

$$
f_{\theta, \eta}(x, y)=\eta e^{-\eta x} \eta \theta e^{-\eta \theta y} 1_{(0, \infty)}(x) 1_{(0, \infty)}(y)
$$

Compute the Cramér-Rao lower bound for unbiased estimates of θ based on $Z=$ X / Y, the maximal invariant for the group of scale changes $g(x, y)=(c x, c y)$ with $c>0$. Compared this bound to the information bounds for estimation of θ based on observation of (X, Y) when η is known and unknown.

Solution: A. We compute, for $w \geq 0$,

$$
\begin{aligned}
P(W>w) & =P(X / Y>w)=P(X>w Y) \\
& =\int_{0}^{\infty} \int_{w y}^{\infty} \eta^{2} \theta e^{-\eta x} e^{-\eta \theta y} d x d y \\
& =\int_{0}^{\infty} \eta \theta e^{-\eta \theta y}\left(\int_{w y}^{\infty} \eta e^{-\eta x} d x\right) d y \\
& =\int_{0}^{\infty} \eta \theta e^{-\eta \theta y} e^{-\eta \theta y} d y \\
& =\eta \theta \int_{0}^{\infty} e^{-\eta(\theta+w) y} d y=\frac{\theta}{\theta+w}
\end{aligned}
$$

[Alternatively, $\eta X \sim \operatorname{Exp}(1), \theta \eta Y \sim \operatorname{Exp}(1)$ are independent so $2 \eta X \sim \chi_{2}^{2}, 2 \theta \eta Y \sim$ χ_{2}^{2} are independent. Thus $W / \theta=(2 \eta X / 2) /(2 \eta \theta Y / 2) \sim F_{2,2}$ with density given by (1.2.13).] Thus the density of W is given by

$$
f_{W}(w ; \theta)=\frac{\theta}{(\theta+w)^{2}} 1_{(0, \infty)}(w)
$$

Hence the score for θ based on observation of W is

$$
\mathrm{i}_{\theta}(w)=\frac{1}{\theta}-\frac{2}{\theta+w},
$$

and the information for θ based on W is

$$
\begin{aligned}
I_{W}(\theta) & =E_{\theta}\left(\dot{\mathrm{l}}_{\theta}(W)^{2}\right)=-E_{\theta} \ddot{\mathrm{l}}_{\theta} \\
& =\frac{1}{\theta^{2}}-2 \int_{0}^{\infty} \frac{\theta}{(\theta+w)^{4}} d w=\frac{1}{3 \theta^{2}}
\end{aligned}
$$

Hence the information bound for estimation of θ based on observation of W is $3 \theta^{2}$. B. When we observe (X, Y), the scores for θ and η are given by

$$
\mathrm{i}_{\theta}(x, y)=\frac{1}{\theta}-\eta y, \quad \mathrm{i}_{\eta}(x, y)=\frac{2}{\eta}-(x+\theta y)
$$

and the second derivatives are

$$
\ddot{\mathrm{l}}_{\theta \theta}(x, y)=-\theta^{-2}, \quad \ddot{\mathrm{i}}_{\eta \eta}(x, y)=-2 / \eta^{2}, \quad \text { and } \quad \ddot{\mathrm{l}}_{\theta \eta}(x, y)=-y
$$

Hence the information matrix for (θ, η) is given by

$$
I(\theta, \eta)=\left(\begin{array}{cc}
1 / \theta^{2} & 1 /(\theta \eta) \\
1 /(\theta \eta) & 2 / \eta^{2}
\end{array}\right)
$$

Thus when η is known, the information for θ is $1 / \theta^{2}$ and the information bound based on observation of (X, Y) is θ^{2}. When η is unknown the information for θ is

$$
\begin{aligned}
I_{\theta \theta \cdot \eta} & =I_{11 \cdot 2}=I_{11}-I_{12} I_{22}^{-1} I_{21} \\
& =1 / \theta^{2}-(\theta \eta)^{-2} \eta^{2} / 2=1 /\left(2 \theta^{2}\right),
\end{aligned}
$$

and the information bound for estimation of θ is $2 \theta^{2}$. Thus lack of knowledge of η costs a factor of two in the bound.
C. Reduction to W cost a factor of 3 in the bound as compared to the bound based on (X, Y) when η is known and a factor of $3 / 2$ in the bound based on (X, Y) when η is unknown. Thus reduction to W does not seem to be advisable. We can do better by basing estimation on both X and Y !
4. Suppose that $\theta=\left(\theta_{1}, \theta_{2}\right) \in \Theta \subset R^{k}$ where $\theta_{1} \in R$ and $\theta_{2} \in R^{k-1}$. Show that:
A. $\mathbf{l}_{1}^{*}=\dot{\mathbf{l}}_{1}-I_{12} I_{22}^{-1} \dot{\mathbf{l}}_{2}$ is orthogonal to $\left[\dot{\mathbf{l}}_{2}\right] \equiv\left\{a^{\prime} \dot{\mathbf{l}}_{2}: a \in R^{k-1}\right\}$ in $L_{2}\left(P_{\theta}\right)$.
B. $I_{11 \cdot 2}=\inf _{c \in R^{k-1}} E_{\theta}\left(\dot{\mathbf{l}}_{1}-c^{\prime} \mathbf{l}_{2}\right)^{2}$ and that the infimum is achieved when $c^{\prime}=I_{12} I_{22}^{-1}$.

Thus

$$
I_{11 \cdot 2}=E_{\theta}\left(\dot{\mathbf{l}}_{1}-I_{12} I_{22}^{-1} \dot{\mathrm{l}}_{2}\right)^{2}=E_{\theta}\left[\left(\mathbf{l}_{\theta}^{*}\right)^{2}\right]
$$

C. Prove the formulas (15) and (16) on page 21 of the Chapter 3 notes and interpret these formulas geometrically.

Solution: A. Note that for any $a \in R^{k-1}$ we have

$$
\begin{aligned}
E_{\theta}\left[l_{1}^{*} i_{2}^{T} a\right] & =E_{\theta}\left\{\left(i_{1}-I_{12} I_{22}^{-1} \dot{l}_{2}\right) \dot{l}_{2}^{T} a\right\} \\
& =\left\{E_{\theta}\left\{i_{i} i_{2}^{T}\right\}-I_{12} I_{22}^{-1} E_{\theta}\left\{i_{2} \dot{i}_{2}^{T}\right\}\right\} a \\
& =\left\{I_{12}-I_{12}\right\} a=0
\end{aligned}
$$

Thus l_{1}^{*} is orthogonal to $\left[\dot{l}_{2}\right]$ in $L_{2}\left(P_{\theta}\right)$.
B. Note that for any $c \in R^{k-1}$ we have

$$
\begin{aligned}
& E_{\theta}\left(\dot{l}_{1}-c^{\prime} i_{2}\right)^{2} \\
& \quad=E_{\theta}\left(\dot{l}_{1}-I_{12} I_{22}^{-1} i_{2}+I_{12} I_{22}^{-1} \dot{l}_{2}-c^{\prime} \dot{l}_{2}\right)^{2} \\
& \quad=E_{\theta}\left(i_{1}-I_{12} I_{22}^{-1} i_{2}\right)^{2}+E_{\theta}\left(\left(I_{12} I_{22}^{-1}-c^{\prime}\right) \dot{i}_{2}\right)^{2} \\
& \quad=I_{11}-I_{12} I_{22}^{-1} I_{21}+E_{\theta}\left(\left(I_{12} I_{22}^{-1}-c^{\prime}\right) \dot{l}_{2}\right)^{2} \\
& \quad \geq I_{11 \cdot 2}
\end{aligned}
$$

with equality if and only if $c^{\prime}=I_{12} I_{22}^{-1}$. Here the second equality uses the orthogonality proved in A.
C. Formula (16) says that

$$
\begin{equation*}
\tilde{l}_{1}=I_{11}^{-1} \dot{l}_{1}-I_{11}^{-1} I_{12} \tilde{l}_{2} \tag{0.4}
\end{equation*}
$$

One way to derive this is as indicated on page 21: since $\tilde{l}=I^{-1} \dot{l}$ we have

$$
\tilde{l}_{1}=I^{11} \dot{l}_{1}+I^{12} \dot{l}_{2} \quad \text { and } \quad \tilde{l}_{2}=I^{21} \dot{l}_{1}+I^{22} \dot{l}_{2}
$$

Hence it follows that

$$
\begin{aligned}
\tilde{l}_{1} & +I_{11}^{-1} I_{12} \tilde{l}_{2} \\
& =I^{11} \dot{l}_{1}+I^{12} \dot{l}_{2}+I_{11}^{-1} I_{12}\left(I^{21} \dot{l}_{1}+I^{22} \dot{l}_{2}\right) \\
& =I_{11}^{-1}\left\{\left(I_{11} I^{11}+I_{12} I^{21}\right) \dot{l}_{1}+\left(I_{11} I^{12}+I_{12} I^{22}\right) \dot{l}_{2}\right\} \\
& =I_{11}^{-1}\left\{I \text { dent } \cdot \dot{l}_{1}+0 \cdot \dot{l}_{2}\right\} \\
& =I_{11}^{-1} \dot{l}_{1} .
\end{aligned}
$$

Rearranging yields (0.4). Note that this indentity decomposes the efficient influence function \tilde{l}_{1} in the larger model with both θ_{1} and θ_{2} unknown into its projection onto the efficient influence function in the sub-model when θ_{2} is known, namely $I_{11}^{-1} \dot{l}_{1}$, and a term which is orthogonal to $\left[\dot{i}_{1}\right]$. Formula (17) follows immediately from (16) in view of orthogonality of the two terms:

$$
\begin{aligned}
I_{11 \cdot 2}^{-1} & =E\left[\widetilde{l}_{1} \widetilde{l}_{1}^{T}\right]=E\left[I_{11}^{-1} \mathbf{i}_{1} \mathbf{1}_{1}^{T} I_{11}^{-1}\right]+I_{11}^{-1} I_{12} E\left[\widetilde{\mathbf{l}}_{2} \widetilde{1}_{2}^{T}\right] I_{21} I_{11}^{-1} \\
& =I_{11}^{-1}+I_{11}^{-1} I_{12} I_{22 \cdot 1}^{-1} I_{21} I_{11}^{-1} .
\end{aligned}
$$

