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Wellner; 11/15/2018

1. Suppose that X ∼ Beta(α, β); i.e. X has density pθ given by

pθ(x) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−11(0,1)(x), θ = (α, β) ∈ (0,∞)× (0,∞) ≡ Θ .

Consider estimation of:
A. qA(θ) ≡ EθX. B. qB(θ) ≡ Fθ(x0) for a fixed x0; here Fθ(x) ≡ Pθ(X ≤ x).
(i) Compute I(θ) = I(α, β); compare Lehmann & Casella page 127, Table 6.1
(ii) Compute qA(θ), qB(θ), q̇A(θ), and q̇B(θ).
(iii) Find the efficient influence functions for estimation of qA and qB.
(iv) Compare the efficient influence functions you find in (iii) with the influence
functions ψA and ψB of the natural nonparametric estimators Xn and Fn(x0)
respectively. Does ψA ∈ Ṗ? Does ψB ∈ Ṗ hold?

Solution: For the Beta(α, β) density:

pθ(x) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−11(0,1)(x).

Thus

log pθ(x) = (α− 1) log x+ (β − 1) log(1− x) + log Γ(α + β)− log Γ(α)− log Γ(β),

and hence

l̇α(x) = log x+ ψ(α + β)− ψ(α),

l̇β(x) = log(1− x) + ψ(α + β)− ψ(β).

Furthermore,

l̈αα(x) = ψ′(α + β)− ψ′(α),

l̈αβ(x) = ψ′(α + β),

l̈ββ(x) = ψ′(α + β)− ψ′(β).

Hence

I(θ) =

(
ψ′(α)− ψ′(α + β) −ψ′(α + β)
−ψ′(α + β) ψ′(β)− ψ′(α + β)

)
. (0.1)

This is positive definite for all α > 0, β > 0.
(ii). Now qA(θ) = α/(α + β), and

qB(θ) = Pθ(X ≤ x0) =

∫ x0

0

Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1 dx,
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Therefore

q̇TA(θ) =

(
∂

∂α
qA,

∂

∂β
qA

)
= (

β

(α + β)2
,− α

(α + β)2
) = (α + β)−2(β,−α)

= Covθ(X − Eθ(X), l̇Tθ (X)),

while, with

q̇B(θ) =

(
Eθ(1(0,x0](X) logX) + (ψ(α + β)− ψ(α))Fθ(x0)

Eθ(1(0,x0](X) log(1−X)) + (ψ(α + β)− ψ(β))Fθ(x0)

)
= Covθ[(1[0,x0](X)− Fθ(x0)), l̇Tθ ] .

(iii). The scores are given by

l̇θ(x) =

(
l̇α(x)

l̇β(x)

)
=

(
log(x)− (ψ(α)− ψ(α + β))

log(1− x)− (ψ(β)− ψ(α + β))

)
and the information matrix is as given in (0.1) Thus

I−1(θ) =
1

detI(θ)

(
ψ′(β)− ψ′(α + β) ψ′(α + β)

ψ′(α + β) ψ′(α)− ψ′(α + β)

)
where

det(I(θ)) = (ψ′(α)− ψ′(α + β))(ψ′(β)− ψ′(α + β))− ψ′(α + β)2,

and the efficient influence function for estimation of qA is

l̃A(x) = q̇A(θ)T I−1(θ)l̇θ(x) ∈ Ṗ

and hence is a (centered) linear combination of log x and log(1 − x). Note that
X − Eθ(X) /∈ [l̇θ] = Ṗ , and hence the sample mean is inefficient for estimation of
Eθ(X) in this model.
Similarly, l̃B(x) = q̇B(θ)I−1(θ)l̇θ(x); unfortunately, this does not simplify much,
largely due to the fact that 1[0,x0](X)− Fθ(x0) /∈ [l̇θ] = Ṗ .
(iv) The information bound for estimation of qA is

I−1(P |qA,P) = q̇TAI
−1(θ)q̇A

= (α + β)−4(β,−α)
1

detI(θ)

(
ψ′(β)− ψ′(α + β) ψ′(α + β)

ψ′(α + β) ψ′(α)− ψ′(α + β)

)(
β
−α

)
<

αβ

(α + β)2(α + β − 1)
= V arθ(X)

where the inequality holds since ψA(X) = (X − Eθ(X)) /∈ Ṗ . Similarly,

I−1(P |qB,P) = q̇TBI
−1(θ)q̇B,

which does not simplify appreciably because 1[0,x0](X)−Fθ(x0) /∈ [l̇θ] = Ṗ . However,

since we know that l̃B = Π(1[0,x0](x)− F (x0)|Ṗ), it follows easily that

I−1(P |qB,P) < Eθ(1[0,x0](X)− Fθ(x0))2 = Fθ(x0)(1− Fθ(x0));

2



i.e. it is possible to improve on the natural nonparametric estimators Xn and Fn(x0)
of qA(θ) = Eθ(X) and qB(θ) = Fθ(x0) when the model holds. (If we had considered
qC(θ) = Eθ log(X/(1−X)) or qD(θ) = Eθ logX, this story would change! It is also
an instructive exercise to consider the sub-model consisting of the beta densities
with α = β.)

2. Suppose that X ∼ Fθ = exponential(θ) with density fθ(x) = θe−θx1(0,∞)(x) and
Y ∼ Gη independent of X with densities {gη : η ∈ R+}, a regular parametric model
on (0,∞). Consider the following three scenarios for observation of X or functions
of X:
(a) Uncensored: we observe X and Y .
(b) Right-censored: we observe

T (X, Y ) = (X ∧ Y, 1{X ≤ Y } ≡ (min{X, Y }, 1{X ≤ Y }) ≡ (Z,∆).

(c) Interval-censored (case 1): we observe S(X, Y ) = (Y, 1{X ≤ Y }) ≡ (Y,∆).
(i) Find the joint density of (X, Y ) and joint distributions of T (X, Y ) and S(X, Y ).
(ii) Find the scores for θ and η in each of the three scenarios (a), (b), and (c). (Let
(∂/∂η) log gη(y) ≡ a(y) with a ∈ L0

2(Gη).)
(iii) Compute and compare IX,Y (θ), IT (X,Y )(θ), and IS(X,Y )(θ). Make the
comparisons in general and then explicitly by making one or more choices of the
family {gη}.

Solution: (i) In case (a) when we observe X and Y the joint density of X, Y
is simply fθ(x)gη(y) = θ exp(−θx)gη(y). In case (b) the joint density p(z, δ) =
p(z, δ; θ, η) (with respect to Lebesgue measure on (0,∞) times counting measure on
{0, 1}) is given by

p(z, δ) = {(1−Gη(z))fθ(z)}δ{(1− Fθ(z))gη(z)}1−δ.

In case (c) the joint density p(y, δ) = p(y, δ; θ, η) of S(X, Y ) = (Y,∆) given by

p(y, δ) = Fθ(y)δ(1− Fθ(y))1−δgη(y).

(ii) In case (a),

log pX,Y (x, y; θ, η) = log fθ(x) + log gη(y) = log θ − θx+ log gη(y),

and hence the scores for θ and η are

l̇θ(x, y) = θ−1 − x,
l̇η(x, y) = a(y).

In case (b) we find that

log p(z, δ; θ, η) = δ(log fθ(z) + log(1−Gη(z))}+ (1− δ){log gη(z) + log(1− Fθ(z))}
= δ log fθ(z) + (1− δ) log(1− Fθ(z)) + (1− δ)gη(z) + δ(1−Gη(z)).

Thus the scores for θ and η are given by

l̇θ(z, δ) = δ(θ−1 − z) + (1− δ)(−z) = θ−1δ − z,

l̇η(z, δ) = (1− δ)a(z) + δ(1−Gη(z))−1
∫ ∞
z

a(y)dGη(y).

3



In case (c),

log p(y, δ; θ, η) = δFθ(y) + (1− δ)(1− Fθ(y)) + log gη(y).

Thus the scores for θ and η are given by

l̇θ(y, δ) =

{
δ

Fθ(y)

∂

∂θ
Fθ(y) +

(1− δ)
1− Fθ(y)

(− ∂

∂θ
Fθ(y)

}
=

{
δ

Fθ(y)
− (1− δ)

1− Fθ(y)

}
∂

∂θ
Fθ(y)

=

{
δ

Fθ(y)
− (1− δ)

1− Fθ(y)

}
(y exp(−θy)

= {δ − Fθ(y)} y(1− Fθ(y))

Fθ(y)(1− Fθ(y))
,

l̇η(y, δ) = a(y).

(iii) In case (a), the information matrix for (θ, η) is given by

IX,Y (θ, η) =

(
θ−2 0
0 Ea2(Y )

)
,

and hence the information for θ is simply θ−2.
(b) In case (b),

I11(θ, η) = Eθ,η l̇
2
θ(Z,∆)

= Eθ,η(θ
−1∆− Z)2.

But we can also calculate
l̈θ,θ(z, δ) = −θ−2δ,

and hence

I11(θ, η) = −Eθ,η l̈θ,θ(Z,∆) = θ−2Pθ,η(∆ = 1) (0.2)

= θ−2
∫ ∞
0

FθdGη = θ−2Eηg(θY ) ≤ θ−2 (0.3)

where g(v) ≡ 1− e−v where the inequality is strict if Pη(Y <∞) > 0. Note that

l̈θ,η(z, δ) = 0,

and hence I12(θ, η) = I21(θ, η) = 0. Thus we conclude that the information for θ is
simply I11(θ, η) = θ−2Pθ,η(∆ = 1) as calculated in (0.3). When Y ∼ Exponential(η)
this yields

I11·2(θ, η) = θ−2
∫ ∞
0

(1− exp(−θy)η exp(−ηy)dy

= θ−2
{

1− η
∫ ∞
0

exp(−(θ + η)y)

}
= θ−2

{
1− η

θ + η

}
= θ−2

θ

θ + η
= θ−2

1

1 + r
with r ≡ η/θ.
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(c) In case (c), since (∆|Y ) ∼ Bernoulli(Fθ(Y )) we calculate conditionally on Y to
find that

I11(θ, η) = Eθ,η l̇θ(Y,∆)2

= Eθ,η{Fθ(Y )(1− Fθ(Y ))} Y 2(1− Fθ(Y ))2

Fθ(Y )2(1− Fθ(Y ))2

= θ−2Eθ,η
(θY )2(1− Fθ(Y ))

Fθ(Y )

= θ−2Eηh(θY )

where h(v) ≡ v2e−v/(1 − e−v) is a bounded function vanishing at 0 and ∞ and
‖h‖∞ ≤ .65; see Figure yy.
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Figure 1: The functions g(v) = 1− e−v and h(v) = v2e−v/(1− e−v).

Again by computing conditionally we see that

I12(θ, η) = Eθ,η l̇θ(Y,∆)l̇η(Y,∆)

= E

{
E

{
(∆− Fθ(Y ))

Y a(Y )

Fθ(Y )
|Y
}}

= E

{
Y a(Y )

Fθ(Y )
E {(∆− Fθ(Y ))|Y }

}
= 0.

Thus the information for θ based on observation of S(X, Y ) = (Y,∆) is

I11(θ, η) = θ−2Eηh(θY ) ≤ θ−2Eηg(θY ) ≤ θ−2

where h(v) ≡ v2e−v/(1 − e−v) ≤ 1 − e−v ≡ g(v); to see this last inequality note it
holds if and only if

v2e−v ≤ (1− e−v)2 = 1− 2e−v + e−2v,

or, if and only if

(2 + v2)e−v ≤ 1 + e−2v or, if and only if 2 + v2 ≤ ev + e−v,
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or, if and only if

1 +
v2

2
≤ 1

2
(ev + e−v);

and this last inequality is indeed true.

When Y ∼ Exponential(η) this becomes

I11(θ, η) = θ−22
η

θ
ζ(3, 1 + η/θ) = θ−22rζ(3, 1 + r)

where ζ(s, a) =
∑∞

k=0(k+a)−s is the generalized zeta function and (again) r ≡ η/θ.
Figure 4 shows IX,Y (θ)/IT (X,Y )(θ) and IX,Y (θ)/IS(X,Y )(θ) when Y ∼ Exponential(η)
as a function of r ≡ η/θ.
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Figure 2: ARE’s IX,Y (θ)/IT (X,Y )(θ) and IX,Y (θ)/IS(X,Y )(θ) as a function of r

3. Suppose that we want to model the survival of twins with a common genetic defect,
but with one of the two twins receiving some treatment. Let X represent the survival
time of the untreated twin and let Y represent the survival time of the treated
twin. One (overly simple) preliminary model might be to assume that X and Y are
independent with Exponential(η) and Exponential(θη) distributions, respectively:

fθ,η(x, y) = ηe−ηxηθe−ηθy1(0,∞)(x)1(0,∞)(y)

Compute the Cramér-Rao lower bound for unbiased estimates of θ based on Z =
X/Y , the maximal invariant for the group of scale changes g(x, y) = (cx, cy) with
c > 0. Compared this bound to the information bounds for estimation of θ based
on observation of (X, Y ) when η is known and unknown.

Solution: A. We compute, for w ≥ 0,

P (W > w) = P (X/Y > w) = P (X > wY )

=

∫ ∞
0

∫ ∞
wy

η2θe−ηxe−ηθydxdy

=

∫ ∞
0

ηθe−ηθy
(∫ ∞

wy

ηe−ηxdx

)
dy

=

∫ ∞
0

ηθe−ηθye−ηθydy

= ηθ

∫ ∞
0

e−η(θ+w)ydy =
θ

θ + w
.
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[Alternatively, ηX ∼ Exp(1), θηY ∼ Exp(1) are independent so 2ηX ∼ χ2
2, 2θηY ∼

χ2
2 are independent. Thus W/θ = (2ηX/2)/(2ηθY/2) ∼ F2,2 with density given by

(1.2.13).] Thus the density of W is given by

fW (w; θ) =
θ

(θ + w)2
1(0,∞)(w) .

Hence the score for θ based on observation of W is

l̇θ(w) =
1

θ
− 2

θ + w
,

and the information for θ based on W is

IW (θ) = Eθ(l̇θ(W )2) = −Eθ l̈θ

=
1

θ2
− 2

∫ ∞
0

θ

(θ + w)4
dw =

1

3θ2
.

Hence the information bound for estimation of θ based on observation of W is 3θ2.
B. When we observe (X, Y ), the scores for θ and η are given by

l̇θ(x, y) =
1

θ
− ηy , l̇η(x, y) =

2

η
− (x+ θy) ,

and the second derivatives are

l̈θθ(x, y) = −θ−2, l̈ηη(x, y) = −2/η2 , and l̈θη(x, y) = −y .

Hence the information matrix for (θ, η) is given by

I(θ, η) =

(
1/θ2 1/(θη)

1/(θη) 2/η2

)
.

Thus when η is known, the information for θ is 1/θ2 and the information bound
based on observation of (X, Y ) is θ2. When η is unknown the information for θ is

Iθθ·η = I11·2 = I11 − I12I−122 I21

= 1/θ2 − (θη)−2η2/2 = 1/(2θ2) ,

and the information bound for estimation of θ is 2θ2 . Thus lack of knowledge of η
costs a factor of two in the bound.
C. Reduction to W cost a factor of 3 in the bound as compared to the bound based
on (X, Y ) when η is known and a factor of 3/2 in the bound based on (X, Y ) when
η is unknown. Thus reduction to W does not seem to be advisable. We can do
better by basing estimation on both X and Y !

4. Suppose that θ = (θ1, θ2) ∈ Θ ⊂ Rk where θ1 ∈ R and θ2 ∈ Rk−1. Show that:
A. l∗1 = l̇1 − I12I−122 l̇2 is orthogonal to [l̇2] ≡ {a′l̇2 : a ∈ Rk−1} in L2(Pθ).
B. I11·2 = infc∈Rk−1 Eθ(l̇1−c′l̇2)2 and that the infimum is achieved when c′ = I12I

−1
22 .

Thus
I11·2 = Eθ(l̇1 − I12I−122 l̇2)

2 = Eθ[(l
∗
θ)

2] .
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C. Prove the formulas (15) and (16) on page 21 of the Chapter 3 notes and interpret
these formulas geometrically.

Solution: A. Note that for any a ∈ Rk−1 we have

Eθ[l
∗
1 l̇
T
2 a] = Eθ

{
(l̇1 − I12I−122 l̇2)l̇

T
2 a
}

=
{
Eθ

{
l̇1l̇

T
2

}
− I12I−122 Eθ

{
l̇2l̇

T
2

}}
a

= {I12 − I12}a = 0 .

Thus l∗1 is orthogonal to [l̇2] in L2(Pθ).
B. Note that for any c ∈ Rk−1 we have

Eθ(l̇1 − c′l̇2)2

= Eθ(l̇1 − I12I−122 l̇2 + I12I
−1
22 l̇2 − c′l̇2)2

= Eθ(l̇1 − I12I−122 l̇2)
2 + Eθ((I12I

−1
22 − c′)l̇2)2

= I11 − I12I−122 I21 + Eθ((I12I
−1
22 − c′)l̇2)2

≥ I11·2

with equality if and only if c′ = I12I
−1
22 . Here the second equality uses the

orthogonality proved in A.
C. Formula (16) says that

l̃1 = I−111 l̇1 − I−111 I12l̃2 . (0.4)

One way to derive this is as indicated on page 21: since l̃ = I−1l̇ we have

l̃1 = I11l̇1 + I12l̇2 and l̃2 = I21l̇1 + I22l̇2 .

Hence it follows that

l̃1 + I−111 I12l̃2

= I11l̇1 + I12l̇2 + I−111 I12(I
21l̇1 + I22l̇2)

= I−111

{
(I11I

11 + I12I
21)l̇1 + (I11I

12 + I12I
22)l̇2

}
= I−111

{
Ident · l̇1 + 0 · l̇2

}
= I−111 l̇1 .

Rearranging yields (0.4). Note that this indentity decomposes the efficient influence
function l̃1 in the larger model with both θ1 and θ2 unknown into its projection onto
the efficient influence function in the sub-model when θ2 is known, namely I−111 l̇1,
and a term which is orthogonal to [l̇1]. Formula (17) follows immediately from (16)
in view of orthogonality of the two terms:

I−111·2 = E[l̃1l̃
T
1 ] = E[I−111 l̇1l̇

T
1 I
−1
11 ] + I−111 I12E [̃l2̃l

T
2 ]I21I

−1
11

= I−111 + I−111 I12I
−1
22·1I21I

−1
11 .
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