Statistics 581, Problem Set 8 Solutions

Wellner; 11/22/2018

1. (a) Show that if $\theta_{n}=c n^{-1 / 2}$ and T_{n} is the Hodges super-efficient estimator discussed in class, then the sequence $\left\{\sqrt{n}\left(T_{n}-\theta_{n}\right)\right\}$ is uniformly square-integrable.
(b) Let $R_{n}(\theta) \equiv n E_{\theta}\left(T_{n}-\theta\right)^{2}$ where T_{n} is the Hodges superefficient estimator as in Example 3.3.1 (so $T_{n}=\delta_{n}$ of Example 2.5, Lehmann and Casella pages 440-443). Show that $R_{n}\left(n^{-1 / 4}\right) \rightarrow \infty$ as $n \rightarrow \infty$.

Solution: (a) First recall that (with $\left.\delta_{n}=T_{n}\right)$ since $\sqrt{n}(\bar{X}-\theta) \stackrel{d}{=} Z \sim N(0,1)$ we can write

$$
\begin{aligned}
\sqrt{n}\left(T_{n}-\theta\right) & =\sqrt{n}\left(\bar{X}_{n} 1_{\left[\left|\bar{X}_{n}\right|>n^{-1 / 4}\right]}+a \bar{X}_{n} 1_{\left[\left|\bar{X}_{n}\right| \leq n^{-1 / 4}\right]}-\theta\right) \\
& \stackrel{d}{=} Z 1_{\left[|Z+\theta \sqrt{n}|>n^{1 / 4}\right]}+[a Z+\sqrt{n} \theta(a-1)] 1_{\left[|Z+\theta \sqrt{n}| \leq n^{1 / 4}\right]} \\
& =Z+[(a-1) Z+(a-1) \sqrt{n} \theta] 1_{\left[|Z+\theta \sqrt{n}| \leq n^{1 / 4}\right]} \\
& =Z-(1-a)[Z+\sqrt{n} \theta] 1_{\left[|Z+\theta \sqrt{n}| \leq n^{1 / 4}\right]} .
\end{aligned}
$$

Thus (as we showed in class) when $\theta_{n}=c n^{-1 / 2}$ we have

$$
\begin{align*}
\sqrt{n}\left(T_{n}-\theta_{n}\right) & \stackrel{d}{=} Z 1_{\left[|Z+c|>n^{1 / 4}\right]}+[a Z+c(a-1)] 1_{\left[|Z+c| \leq n^{1 / 4}\right]} \\
& =Z+[(a-1) Z+(a-1) c] 1_{\left[|Z+c| \leq n^{1 / 4}\right]} \\
& =Z-(1-a)[Z+c] 1_{\left[|Z+c| \leq n^{1 / 4}\right]} . \tag{1}
\end{align*}
$$

Thus

$$
\begin{aligned}
Y_{n} & \equiv\left\{\sqrt{n}\left(T_{n}-\theta_{n}\right)\right\}^{2} \\
& \stackrel{d}{=}\left\{Z-(1-a)[Z+c] 1_{\left[|Z+c| \leq n^{1 / 4}\right]}\right\}^{2} \\
& \leq 2\left(Z^{2}+(1-a)^{2}(Z+c)^{2}\right) \equiv Y
\end{aligned}
$$

where

$$
E(Y)=2\left(E\left(Z^{2}\right)+(1-a)^{2} E(Z+c)^{2}\right)<\infty .
$$

Thus

$$
\limsup _{n \rightarrow \infty} E\left\{Y_{n} 1_{\left[Y_{n} \geq \lambda\right]}\right\} \leq E\left\{Y 1_{[Y \geq \lambda]}\right\} \rightarrow 0
$$

as $\lambda \rightarrow \infty$. Hence $\left\{Y_{n}\right\}$ is uniformly integrable; that is, $\left\{\sqrt{n}\left(T_{n}-\theta_{n}\right)\right\}$ is uniformly square-integrable.
(b) (a') Note that the identity (1) in (a) above holds. Thus

$$
\begin{aligned}
b_{n}(\theta) & =E_{\theta}\left(T_{n}\right)-\theta \\
& =n^{-1 / 2}\left\{E Z-(1-a) E[Z+\sqrt{n} \theta] 1_{\left[|Z+\theta \sqrt{n}| \leq n^{1 / 4}\right]}\right\} \\
& =-\frac{1-a}{\sqrt{n}} E[Z+\sqrt{n} \theta] 1_{\left[|Z+\theta \sqrt{n}| \leq n^{1 / 4}\right]} \\
& =-\frac{1-a}{\sqrt{n}} \int_{-n^{1 / 4}}^{n^{1 / 4}} x \phi(x-\sqrt{n} \theta) d x
\end{aligned}
$$

since $Z+\theta \sqrt{n} \sim N(\theta \sqrt{n}, 1)$.
(b') Differentiating the result in (a^{\prime}) gives

$$
\begin{aligned}
b_{n}^{\prime}(\theta) & =-\frac{1-a}{\sqrt{n}} \int_{-n^{1 / 4}}^{n^{1 / 4}} x \phi^{\prime}(x-\sqrt{n} \theta)(-\sqrt{n}) d x \\
& =-(1-a) \int_{-n^{1 / 4}}^{n^{1 / 4}} x(x-\sqrt{n} \theta) \phi(x-\sqrt{n} \theta) d x \quad \text { since } \phi^{\prime}(x)=-x \phi(x) \\
& \rightarrow 0 \quad \text { if } \theta \neq 0
\end{aligned}
$$

by the dominated convergence theorem since $x(x-\sqrt{n} \theta) \phi(x-\sqrt{n} \theta) 1_{\left[-n^{1 / 4}, n^{1 / 4]}\right.}(x) \rightarrow$ 0 for each fixed x and is dominated by the integrable function $4 e^{-1} \phi(x) /(|\theta| \wedge 1)$ (for $n \geq(3 /|\theta|)^{4}$).
Details of this domination: For $|x| \leq n^{1 / 4}$ it follows that

$$
|x||x-\sqrt{n} \theta| \leq n^{1 / 4}\left|-n^{1 / 4}-\sqrt{n} \theta\right| \leq n^{1 / 2}+n^{3 / 4}|\theta| \leq 2 n^{3 / 4}(|\theta| \vee 1)
$$

while

$$
\begin{aligned}
\phi(x-\sqrt{n} \theta) & =\phi(x) \exp \left(\sqrt{n} \theta x-n \theta^{2} / 2\right) \\
& \leq \phi(x) \exp \left(|\theta| n^{3 / 4}-n \theta^{2} / 2\right) \\
& =\phi(x) \exp \left(|\theta| n^{3 / 4}\left(1-n^{1 / 4}|\theta| / 2\right)\right) \\
& \leq \phi(x) \exp \left(-\frac{1}{2}|\theta| n^{3 / 4}\right) \quad \text { if } 1-n^{1 / 4}|\theta| / 2<-1 / 2
\end{aligned}
$$

or, equivalently, when $n>(3 /|\theta|)^{4}$. Combining these two bounds yields

$$
\begin{aligned}
|x||x-\sqrt{n} \theta| \phi(x-\sqrt{n} \theta) & \leq \phi(x) n^{3 / 4} 2(|\theta| \vee 1) \exp \left(-|\theta| n^{3 / 4} / 2\right) \\
& =\phi(x) \begin{cases}2 n^{3 / 4} \exp \left(-|\theta| n^{3 / 4} / 2\right) \quad \text { if }|\theta|<1 \\
2 n^{3 / 4}|\theta| \exp \left(-|\theta| n^{3 / 4} / 2\right) & \text { if }|\theta| \geq 1\end{cases} \\
& =\phi(x) \begin{cases}(4 /|\theta|)\left(n^{3 / 4}|\theta| / 2\right) \exp \left(-|\theta| n^{3 / 4} / 2\right) & \text { if }|\theta|<1 \\
4\left(n^{3 / 4}|\theta| / 2\right) \exp \left(-|\theta| n^{3 / 4} / 2\right) & \text { if }|\theta| \geq 1\end{cases} \\
& \leq \frac{4 e^{-1}}{|\theta| \wedge 1} \phi(x) .
\end{aligned}
$$

(b), Second (more elegant) solution: from the lecture notes, 3.3 (3), it follows that

$$
R_{n}(\theta)=E\left[n\left(T_{n}-\theta\right)^{2}\right]=n \operatorname{Var}\left[T_{n}\right]+n b_{n}(\theta)^{2} \geq a^{2}+n b_{n}(\theta)^{2}
$$

Using the formula for $b_{n}(\theta)$ from part (a) above, it follows that it is enough to show that

$$
\left|\int_{-n^{1 / 4}}^{n^{1 / 4}} x \phi\left(x-n^{1 / 4}\right) d x\right| \rightarrow \infty
$$

But we have, with $Z \sim N(0,1)$ (and hence $E|Z|<\infty$),

$$
\left|\int_{-n^{1 / 4}}^{n^{1 / 4}} x \phi\left(x-n^{1 / 4}\right) d x\right|=\left|\int_{-2 n^{1 / 4}}^{0}\left(y+n^{1 / 4}\right) \phi(y) d y\right|
$$

$$
\begin{aligned}
& \geq\left|n^{1 / 4} \int_{-2 n^{1 / 4}}^{0} \phi(y) d y\right|-\left|\int_{-2 n^{1 / 4}}^{0} y \phi(y) d y\right| \\
& \geq n^{1 / 4}\left(\Phi(0)-\Phi\left(-2 n^{1 / 4}\right)\right)-E|Z| \\
& \rightarrow \infty
\end{aligned}
$$

2. (Super-efficiency at two parameter values) Suppose that X_{1}, \ldots, X_{n} are i.i.d. $N(\theta, 1)$ where $\theta \in \mathbb{R})$ Let $a, b \in[0,1)$ and define the estimator T_{n} as follows:

$$
T_{n}= \begin{cases}\bar{X}_{n} & \text { if }\left|\bar{X}_{n}-1\right|>n^{-1 / 4} \text { and }\left|\bar{X}_{n}+1\right|>n^{-1 / 4}, \\ a \bar{X}_{n}+(1-a) & \text { if }\left|\bar{X}_{n}-1\right| \leq n^{-1 / 4} \\ b \bar{X}_{n}+(1-b)(-1) & \text { if }\left|\bar{X}_{n}+1\right| \leq n^{-1 / 4}\end{cases}
$$

(a) Find the limiting distribution of $\sqrt{n}\left(T_{n}-\theta\right)$ when:
(i) $\theta \neq 1$ and $\theta \neq-1$; (ii) $\theta=1$; (iii) $\theta=-1$.
(b) Find the limiting distribution of $\sqrt{n}\left(T_{n}-\theta_{n}\right)$ when:
(i) $\theta_{n}=1+c n^{-1 / 2}$; (ii) $\theta_{n}=-1+c n^{-1 / 2}$.
(c) Could we have super-efficiency at a countable collection of parameter values?

Solution: (a) Note that $\sqrt{n}\left(\bar{X}_{n}-\theta\right) \stackrel{d}{=} Z \sim N(0,1)$ for all $\theta \in \mathbb{R}$ and $n \in \mathbb{N}$. Thus we find that

$$
\begin{aligned}
& \sqrt{n}\left(T_{n}-\theta\right)=\sqrt{n}\left(\bar{X}_{n}-\theta\right) 1_{\left[\left|\bar{X}_{n}-1\right|>n^{1 / 4}\right]} \cdot 1_{\left[\left|\bar{X}_{n}+1\right|>n^{1 / 4}\right]} \\
& +\sqrt{n}\left(a \bar{X}_{n}+(1-a)-\theta\right) 1_{\left[\left|\bar{X}_{n}-1\right| \leq n^{1 / 4}\right]} \\
& +\sqrt{n}\left(a \bar{X}_{n}-(1-b)-\theta\right) 1_{\left[\left|\bar{X}_{n}+1\right| \leq n^{1 / 4}\right]} \\
& \stackrel{d}{=} Z \cdot 1_{\left[\sqrt{n}\left|\bar{X}_{n}-\theta+\theta-1\right|>n^{1 / 4}\right]} 1_{\left[\sqrt{n}\left|\bar{X}_{n}-\theta+\theta+1\right|>n^{1 / 4}\right]} \\
& +\left\{a \sqrt{n}\left(\bar{X}_{n}-\theta\right)+\sqrt{n}(a \theta-\theta+(1-a))\right\} 1_{\left[\left|\sqrt{n}\left(\bar{X}_{n}-\theta\right)+\sqrt{n}(\theta-1)\right| \leq n^{1 / 4}\right]} \\
& +\left\{b \sqrt{n}\left(\bar{X}_{n}-\theta\right)+\sqrt{n}(b \theta-\theta-(1-b))\right\} 1_{\left[\left|\sqrt{n}\left(\bar{X}_{n}-\theta\right)+\sqrt{n}(\theta+1)\right| \leq n^{1 / 4}\right]} \\
& \rightarrow_{d}\left\{\begin{array}{ll}
Z & \text { if } \theta \neq 1, \theta \neq-1, \\
a Z & \text { if } \theta=1, \\
b Z & \text { if } \theta=-1,
\end{array}\right\} \\
& \sim N\left(0, V^{2}(\theta)\right)
\end{aligned}
$$

where

$$
V^{2}(\theta)=1_{\{-1,1\}}(\theta)+a^{2} 1_{\{1\}}(\theta)+b^{2} 1_{\{-1\}}(\theta) .
$$

(b) If $\theta=\theta_{n}=1+c n^{1 / 2}$,

$$
\begin{aligned}
\sqrt{n}\left(T_{n}-\theta_{n}\right) & \stackrel{d}{=} Z 1_{\left[|Z+c|>n^{1 / 4}\right]}+(a Z+c(a-1)) 1_{\left[|Z+c| \leq n^{1 / 4}\right]}+o_{p}(1) \\
& \rightarrow_{d} a Z+c(a-1) \sim N\left(c(a-1), a^{2}\right) .
\end{aligned}
$$

In the same way, if $\theta=\theta_{n}=-1+c n^{1 / 2}$, we find that

$$
\sqrt{n}\left(T_{n}-\theta_{n}\right) \rightarrow_{d} b Z+c(b-1) \sim N\left(c(b-1), b^{2}\right) .
$$

(c) A similar construction works to yield superefficiency at all $\theta \in \mathbb{Z}=$ $\{0, \pm 1, \pm 2, \ldots\}$.
3. Suppose that X_{1}, \ldots, X_{n} are i.i.d. with distribution function F having a continuous density function f. Let \mathbb{F}_{n} be the empirical distribution function of the X_{i} 's, suppose that b_{n} is a sequence of positive numbers, and let

$$
\hat{f}_{n}(x)=\frac{\mathbb{F}_{n}\left(x+b_{n}\right)-\mathbb{F}_{n}\left(x-b_{n}\right)}{2 b_{n}}
$$

(a) Compute $E\left\{\hat{f}_{n}(x)\right\}$ and $\operatorname{Var}\left(\hat{f}_{n}(x)\right)$.
(b) Show that $E \hat{f}_{n}(x) \rightarrow f(x)$ if $b_{n} \rightarrow 0$.
(c) Show that $\operatorname{Var}\left(\hat{f}_{n}(x)\right) \rightarrow 0$ if $b_{n} \rightarrow 0$ and $n b_{n} \rightarrow \infty$.
(d) Use some appropriate central limit theorem to show that (perhaps under some suitable further conditions that you might need to specify)

$$
\sqrt{2 n b_{n}}\left(\hat{f}_{n}(x)-E \hat{f}_{n}(x)\right) \rightarrow_{d} N(0, f(x))
$$

Hint: Write $\hat{f}_{n}(x)$ in terms of some Bernoulli random variables and identify $p=p_{n}$.

Solution: (a) First note that $2 n b_{n}=n\left(\mathbb{F}_{n}\left(x+b_{n}\right)-\mathbb{F}_{n}\left(x-b_{n}\right)\right)$ is a $\operatorname{Binomial}\left(n, p_{n}\right)$ random variable with $p_{n}=F\left(x+b_{n}\right)-F\left(x-b_{n}\right)$. Hence if $b_{n} \rightarrow 0$

$$
\begin{aligned}
E \widehat{f}_{n}(x) & =\frac{F\left(x+b_{n}\right)-F\left(x-b_{n}\right)}{2 b_{n}}=\frac{p_{n}}{2 n b_{n}} \\
& =\frac{1}{2}\left\{\frac{F\left(x+b_{n}\right)-F(x)}{b_{n}}+\frac{F(x)-F\left(x-b_{n}\right)}{b_{n}}\right\} \\
& \rightarrow \frac{1}{2}\{f(x)+f(x)\}=f(x)
\end{aligned}
$$

(b) Furthermore

$$
\begin{aligned}
\operatorname{Var}\left(\widehat{f}_{n}(x)\right) & =\frac{n p_{n}\left(1-p_{n}\right)}{\left(2 n b_{n}\right)^{2}} \\
& =\frac{1}{2 n b_{n}} \frac{p_{n}}{2 b_{n}}\left(1-p_{n}\right) \\
& \rightarrow 0 \cdot f(x) \cdot 1=0
\end{aligned}
$$

if $n b_{n} \rightarrow \infty$ and $b_{n} \rightarrow 0$.
(c) Since $2 n b_{n} \widehat{f}_{n}(x)=\sum_{i=1}^{n} X_{n i}$ where $X_{n i} \sim \operatorname{Bernoulli}\left(p_{n}\right)$, it follows that $\sigma_{n i}^{2}=$ $p_{n}\left(1-p_{n}\right)$ so that $\sigma_{n}^{2}=\operatorname{Var}\left(\sum_{i=1}^{n} X_{n i}\right)=n p_{n}\left(1-p_{n}\right)$, and

$$
\begin{aligned}
\gamma_{n} \equiv \sum_{i=1}^{n} \gamma_{n i} & =\sum_{i=1}^{n} E\left|X_{n i}-\mu_{n i}\right|^{3} \\
& =n p_{n}\left(1-p_{n}\right)\left\{\left(1-p_{n}\right)^{2}+p_{n}^{2}\right\} \\
& \leq 2 n p_{n}\left(1-p_{n}\right)
\end{aligned}
$$

so that

$$
\gamma_{n} / \sigma^{3} \leq \frac{2}{\sqrt{n p_{n}\left(1-p_{n}\right)}}=\frac{2}{\sqrt{n b_{n}\left(p_{n} / b_{n}\right)\left(1-p_{n}\right)}} \rightarrow 0
$$

if $b_{n} \rightarrow 0$ and $n b_{n} \rightarrow \infty$. Thus, by the Liapunov CLT,

$$
\frac{2 n b_{n}\left(\widehat{f}_{n}(x)-E \widehat{f}(x)\right)}{\sqrt{n p_{n}\left(1-p_{n}\right)}} \rightarrow N(0,1)
$$

if $b_{n} \rightarrow 0$ and $n b_{n} \rightarrow \infty$. Thus

$$
\begin{aligned}
\sqrt{2 n b_{n}}\left(\widehat{f}_{n}(x)-E \widehat{f}_{n}(x)\right) & =\frac{2 n b_{n}\left(\widehat{f}_{n}(x)-E \widehat{f}_{n}(x)\right)}{\sqrt{n p_{n}\left(1-p_{n}\right)}} \sqrt{\frac{n p_{n}\left(1-p_{n}\right)}{2 n b_{n}}} \\
& \rightarrow N(0,1) \sqrt{f(x)}=N(0, f(x))
\end{aligned}
$$

4. Suppose that $(T \mid Z) \sim \operatorname{Weibull}\left(\lambda^{-1} e^{-\gamma Z}, \beta\right)$, and $Z \sim G_{\eta}$ on R with density g_{η} with respect to some dominating measure μ. Thus the conditional cumulative hazard function $\Lambda(t \mid z)$ is given by

$$
\Lambda_{\gamma, \lambda, \beta}(t \mid z)=\left(\lambda e^{\gamma Z} t\right)^{\beta}=\lambda^{\beta} e^{\beta \gamma Z} t^{\beta}
$$

and hence

$$
\lambda_{\gamma, \lambda, \beta}(t \mid z)=\lambda^{\beta} e^{\beta \gamma Z} \beta t^{\beta-1}
$$

(Recall that $\lambda(t)=f(t) /(1-F(t))$ and

$$
\Lambda(t) \equiv \int_{0}^{t} \lambda(s) d s=\int_{0}^{t}(1-F(s))^{-1} d F(s)=-\log (1-F(t))
$$

if F is continuous.) Thus it makes sense to re-parametrize by defining $\theta_{1} \equiv \beta \gamma$ (this is the parameter of interest since it reflects the effect of the covariate $Z), \theta_{2} \equiv \lambda^{\beta}$, and $\theta_{3} \equiv \beta$. This yields

$$
\lambda_{\theta}(t \mid z)=\theta_{3} \theta_{2} \exp \left(\theta_{1} z\right) t^{\theta_{3}-1}
$$

You may assume that

$$
a(z) \equiv(\partial / \partial \eta) \log g_{\eta}(z)
$$

exists and $E\left\{a^{2}(Z)\right\}<\infty$. Thus Z is a "covariate" or "predictor variable", θ_{1} is a "regression parameter" which affects the intensity of the (conditionally) Weibull variable T, and $\theta=\left(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right)$ where $\theta_{4} \equiv \eta$.
(a) Derive the joint density $p_{\theta}(t, z)$ of (T, Z) for the re-parametrized model.
(b) Find the information matrix for θ. What does the structure of this matrix say about the effect of $\eta=\theta_{4}$ being known or unknown about the estimation of $\theta_{1}, \theta_{2}, \theta_{3}$?
(c) Find the information and information bound for θ_{1} if the parameters θ_{2} and θ_{3} are known.
(d) What is the information bound for θ_{1} if just θ_{3} is known to be equal to 1 ?
(e) Find the efficient score function and the efficient influence function for estimation of θ_{1} when θ_{3} is known.
(f) Find the information $I_{11 \cdot(2,3)}$ and information bound for θ_{1} if the parameters θ_{2} and θ_{3} are unknown. (Here both θ_{2} and θ_{3} are in "the second block".)
(g) Find the efficient score function and the efficient influence function for estimation
of θ_{1} when θ_{2} and θ_{3} are unknown.
(h) Specialize the calculations in (d) - (g) to the case when $Z \sim \operatorname{Bernoulli}\left(\theta_{4}\right)$ and compare the information bounds.

Solution: (a) Integrating $\lambda_{\theta}(t \mid z)$ with respect to t gives

$$
\Lambda_{\theta}(t \mid z)=\theta_{2} \exp \left(\theta_{1} z\right) t^{\theta_{3}}
$$

and hence the conditional survival function $1-F_{\theta}(t \mid z)$ is given by

$$
\begin{equation*}
1-F_{\theta}(t \mid z)=\exp \left(-\Lambda_{\theta}(t \mid z)\right)=\exp \left(-\theta_{2} \exp \left(\theta_{1} z\right) t^{\theta_{3}}\right) \tag{2}
\end{equation*}
$$

It follows that

$$
f_{\theta}(t \mid z)=\theta_{2} \theta_{3} e^{\theta_{1} z} t^{\theta_{3}-1} \exp \left(-\theta_{2} e^{\theta_{1} z} t^{\theta_{3}}\right),
$$

and hence that

$$
\begin{aligned}
p_{\theta}(y, z) & =f_{\theta}(y \mid z) g_{\eta}(z)=\theta_{2} \theta_{3} e^{\theta_{1} z} t^{\theta_{3}-1} \exp \left(-\theta_{2} e^{\theta_{1} z} t^{\theta_{3}}\right) g_{\eta}(z) \\
& ==\theta_{2} \theta_{3} e^{\theta_{1} z} t^{\theta_{3}-1} \exp \left(-\theta_{2} e^{\theta_{1} z} t^{\theta_{3}}\right) g_{\theta_{4}}(z)
\end{aligned}
$$

(b) We first calculate the scores for θ. Note that the random variable $W \equiv$ $\theta_{2} \exp \left(\theta_{1} Z\right) Y^{\theta_{3}}$ has, conditionally on Z, a standard Exponential(1) distribution:

$$
P_{\theta}(W>w \mid Z)=P_{\theta}\left(\theta_{2} \exp \left(\theta_{1} Z\right) Y^{\theta_{3}}>w \mid Z\right)=e^{-w}
$$

by (2). We calculate

$$
\begin{aligned}
l(\theta \mid Y, Z) & =\log p_{\theta}(Y, Z) \\
& =\log \theta_{2}+\log \theta_{3}+\theta_{1} Z+\left(\theta_{3}-1\right) \log Y-\theta_{2} e^{\theta_{1} Z} Y^{\theta_{3}}+\log g_{\theta_{4}}(Z) \\
\mathrm{i}_{1}(Y, Z) & =Z-Z \theta_{2} e^{\theta_{1} Z} Y^{\theta_{3}}=Z(1-W) \\
\mathrm{i}_{2}(Y, Z) & =\frac{1}{\theta_{2}}-\frac{\theta_{2} e^{\theta_{1} Z} Y^{\theta_{3}}}{\theta_{2}}=\frac{1}{\theta_{2}}(1-W), \\
\mathrm{i}_{3}(Y, Z) & =\frac{1}{\theta_{3}}+\log Y-\theta_{2} e^{\theta_{1} Z} Y^{\theta_{3}} \log Y \\
& =\frac{1}{\theta_{3}}+\log Y\left\{1-\theta_{2} e^{\theta_{1} Z} Y^{\theta_{3}}\right\} \\
& =\frac{1}{\theta_{3}}\left\{1+\log \frac{\theta_{2} e^{\theta_{1} Z} Y^{\theta_{3}}}{\theta_{2} e^{\theta_{1} Z}}\{1-W\}\right\} \\
& =\frac{1}{\theta_{3}}\left\{1+\left\{\log W-\log \left(\theta_{2} e^{\theta_{1} Z}\right)\right\}\{1-W\}\right\} \\
& =\frac{1}{\theta_{3}}\left\{[1-(W-1) \log W]+(W-1) \log \left(\theta_{2} e^{\theta_{1} Z}\right)\right\} \\
\mathrm{i}_{4}(Y, Z) & =a(Z)=a(Z, \eta) .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
\ddot{\mathrm{1}}_{13}(Y, Z) & =-Z \theta_{2} e^{\theta_{1} Z} Y^{\theta_{3}} \log Y=-Z \frac{1}{\theta_{3}} \theta_{2} e^{\theta_{1} Z} Y^{\theta_{3}} \log \left(\frac{\theta_{2} e^{\theta_{1} Z} Y^{\theta_{3}}}{\theta_{2} e^{\theta_{1} Z}}\right) \\
& =-\frac{Z}{\theta_{3}} W\left\{\log W-\log \left(\theta_{2} e^{\theta_{1} Z}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{z}{\theta_{3}} W\left\{\log W-\log \left(\theta_{2}\right)-\theta_{1} Z\right\} \\
\ddot{\mathrm{i}}_{23}(Y, Z) & =-e^{\theta_{1} Z} Y^{\theta_{3}} \log Y=-\frac{1}{\theta_{2} \theta_{3}} \theta_{2} e^{\theta_{1} Z} Y^{\theta_{3}} \log \left(\frac{\theta_{2} e^{\theta_{1} Z} Y^{\theta_{3}}}{\theta_{2} e^{\theta_{1} Z}}\right) \\
& =-\frac{1}{\theta_{2} \theta_{3}} W\left\{\log W-\log \left(\theta_{2} e^{\theta_{1} Z}\right)\right\} \\
& =-\frac{1}{\theta_{2} \theta_{3}} W\left\{\log W-\log \left(\theta_{2}\right)-\theta_{1} Z\right\}, \\
\ddot{\mathrm{I}}_{33}(Y, Z) & =-\frac{1}{\theta_{3}^{2}}\left\{1+W\left[\log W-\log \left(\theta_{2} e^{\theta_{1} Z}\right]^{2}\right\} .\right.
\end{aligned}
$$

Thus we calculate easily:

$$
\begin{aligned}
& I_{11}(\theta)= E_{\theta}\left(\dot{\mathrm{i}}_{1}(Y, Z)^{2}\right)=E_{\theta}\left\{E\left[Z^{2}(1-W)^{2} \mid Z\right]\right\} \\
&= E\left\{Z^{2} E\left[(1-W)^{2} \mid Z\right]\right\}=E\left(Z^{2}\right), \\
& I_{22}(\theta)= E_{\theta}\left(\mathfrak{i}_{2}(Y, Z)^{2}\right)=E_{\theta}\left\{E\left[\theta_{2}^{-2}(1-W)^{2} \mid Z\right]\right\}=\theta_{2}^{-2}, \\
& I_{33}(\theta)= \theta_{3}^{-2}\left\{1+E\left[W(\log W)^{2}\right]-2 E(W \log W)\left\{\log \theta_{2}+\theta_{1} E(Z)\right\}\right. \\
&\left.\quad+E\left\{\left(\log \theta_{2}+\theta_{1} Z\right)^{2}\right\}\right\} \\
&= \theta_{3}^{-2}\left\{1+B^{2}-2 A\left\{\log \theta_{2}+\theta_{1} E(Z)\right\}+E\left\{\left(\log \theta_{2}+\theta_{1} Z\right)^{2}\right\}\right\} \\
&= E_{\theta}\left(\dot{\mathrm{l}}_{1}(Y, Z) \dot{\mathrm{i}}_{2}(Y, Z)\right)=E_{\theta}\left\{E\left[Z \theta_{2}^{-1}(1-W)^{2} \mid Z\right]\right\}=\theta_{2}^{-1} E(Z), \\
& I_{12}(\theta) \\
& I_{13}(\theta)=-E_{\theta}\left\{\ddot{\mathrm{i}}_{13}(Y, Z)\right\} \\
&= \theta_{3}^{-1}\left\{E(Z)\left[A-\log \theta_{2}\right]-\theta_{1} E\left(Z^{2}\right)\right\}, \\
& I_{23}(\theta)=-E_{\theta}\left\{\ddot{\mathrm{i}}_{23}(Y, Z)\right\} \\
&=\left(\theta_{2} \theta_{3}\right)^{-1}\left\{A-\log \theta_{2}-\theta_{1} E(Z)\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
& A \equiv E\{W \log W\}=\int_{0}^{\infty}(w \log w) \exp (-w) d w=1-\gamma \\
& B^{2} \equiv E\left\{W(\log W)^{2}\right\}=\pi^{2} / 6+(1-\gamma)^{2}-1
\end{aligned}
$$

Note that since $\mathrm{i}_{4}(y, z)=a(z)$ is just a function of Z, it follows easily that for $j=1,2,3$ we also have

$$
\begin{aligned}
I_{j 4}(\theta) & =E_{\theta}\left\{\dot{1}_{j}(Y, Z) \dot{\mathbf{i}}_{4}(Y, Z)\right\} \\
& =E\left\{g_{j}(W, Z) a(Z)\right\}=E\left\{E\left[g_{j}(W, Z) a(Z) \mid Z\right]\right\} \\
& =E\left\{a(Z) E\left[g_{j}(W, Z) \mid Z\right]\right\}=E\{a(Z) \cdot 0\}=0
\end{aligned}
$$

Because of this orthogonality, the information bounds for $\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$ are the same when $\theta_{4}=\eta$ is unknown as when it is known.
(c) If θ_{2} and θ_{3} are known, then the information bound for estimation of θ_{1} is just $I_{11}^{-1}(\theta)=1 / E\left(Z^{2}\right)$. It follows that the information matrix for θ is of the following form:

$$
I(\theta)=\left(\begin{array}{cccc}
E\left(Z^{2}\right) & \theta_{2}^{-1} E(Z) & \theta_{3}^{-1} C & 0 \\
\theta_{2}^{-1} E(Z) & \theta_{2}^{-2} & \left(\theta_{2} \theta_{3}\right)^{-1} D & 0 \\
\theta_{3}^{-1} C & \left(\theta_{2} \theta_{3}\right)^{-1} D & \theta_{3}^{-2} E & 0 \\
0 & 0 & 0 & E a^{2}(Z)
\end{array}\right)
$$

where

$$
\begin{aligned}
C & =E(Z)\left(A-\log \theta_{2}\right)-\theta_{1} E\left(Z^{2}\right) \\
D & =A-\log \theta_{2}-\theta_{1} E(Z) \\
E & =1+B^{2}-2 A\left(\log \theta_{2}+\theta_{1} E(Z)\right)+E\left(\log \theta_{2}+\theta_{1} Z\right)^{2}
\end{aligned}
$$

(d) If $\theta_{3}=1$ is known, then the information bound for θ_{1} is $I_{11 \cdot 2}^{-1}$ where

$$
\begin{aligned}
I_{11 \cdot 2}(\theta) & =I_{11}-I_{12} I_{22}^{-1} I_{21} \\
& =E\left(Z^{2}\right)-\left(E(Z) / \theta_{2}\right)^{2} \theta_{2}^{2}=E\left(Z^{2}\right)-(E Z)^{2}=\operatorname{Var}(Z)
\end{aligned}
$$

Thus $I_{11 \cdot 2}^{-1}=1 / \operatorname{Var}(Z)$.
(e) When θ_{3} is known, the efficient score function and the efficient influence function for estimation of θ_{1} are given by

$$
\begin{aligned}
\mathrm{i}_{1}^{*}(Y, Z) & =\mathrm{i}_{1}-I_{12} I_{22}^{-1} \mathbf{i}_{2} \\
& =Z(1-W)-\theta_{2}^{-1} E(Z) \theta_{2}^{2} \frac{1}{\theta_{2}}(1-W) \\
& =Z(1-W)-E(Z)(1-W)=(Z-E(Z))(1-W),
\end{aligned}
$$

and

$$
\begin{aligned}
\widetilde{\mathbf{l}}_{1}(Y, Z) & =I_{11 \cdot 2}^{-1} \mathrm{i}_{1}^{*}(Y, Z) \\
& =\frac{1}{\operatorname{Var}(Z)}(Z-E(Z))(1-W)
\end{aligned}
$$

(f) When both the parameters θ_{2} and θ_{3} are unknown, the information $I_{11 \cdot(2,3)}$ is given by

$$
\begin{align*}
I_{1 \cdot(2,3)} & \equiv I_{11 \cdot 2} \quad \text { where the "second block" contains both } \theta_{2}, \theta_{3} \\
& =I_{11}-I_{12} I_{22}^{-1} I_{21} \tag{3}
\end{align*}
$$

where

$$
\begin{aligned}
& I_{12}=\left(\theta_{2}^{-1} E(Z), \theta_{3}^{-1} C\right), \\
& I_{22}^{-1}=\left(\begin{array}{cc}
\theta_{2}^{2} E & -\theta_{2} \theta_{3} D \\
-\theta_{2} \theta_{3} D & \theta_{3}^{2}
\end{array}\right) \frac{1}{E-D^{2}} .
\end{aligned}
$$

Thus the second term in (3) is

$$
\begin{equation*}
\left\{[E(Z)]^{2} E-2 E(Z) C D+C^{2}\right\} /\left(E-D^{2}\right) \tag{4}
\end{equation*}
$$

Now the denominator is

$$
\begin{aligned}
E-D^{2}= & 1+B^{2}-2 A\left(\log \theta_{2}+\theta_{1} E(Z)\right)+E\left(\log \theta_{2}+\theta_{1} Z\right)^{2} \\
& \quad-\left(A-\log \theta_{2}-\theta_{1} E(Z)\right)^{2} \\
= & 1+B^{2}-2 A\left(\log \theta_{2}+\theta_{1} E(Z)\right)+E\left(\log \theta_{2}+\theta_{1} Z\right)^{2} \\
& -\left[A^{2}-2 A\left(\log \theta_{2}+\theta_{1} E(Z)\right)+\left(\log \theta_{2}+\theta_{1} E(Z)\right)^{2}\right. \\
= & 1+B^{2}-A^{2}+\operatorname{Var}\left[\log \theta_{2}+\theta_{1} Z\right] \\
= & \pi^{2} / 6+\theta_{1}^{2} \operatorname{Var}(Z),
\end{aligned}
$$

and, upon noting that

$$
\begin{aligned}
C-E(Z) D & =E(Z)\left(A-\log \theta_{2}\right)-\theta_{1} E\left(Z^{2}\right)-\left\{E(Z)\left(A-\log \theta_{2}\right)-\theta_{1}[E(Z)]^{2}\right\} \\
& =-\theta_{1} \operatorname{Var}(Z)
\end{aligned}
$$

it follows that the numerator of (4) is

$$
\begin{aligned}
C^{2}-2 E(Z) C D+[E(Z)]^{2} E & =C^{2}-2 E(Z) C D+[E(Z)]^{2} D^{2}+[E(Z)]^{2}\left(E-D^{2}\right) \\
& =(C-E(Z) D)^{2}+[E(Z)]^{2}\left\{\pi^{2} / 6+\theta_{1}^{2} \operatorname{Var}(Z)\right\} \\
& =\theta_{1}^{2}[\operatorname{Var}(Z)]^{2}+[E(Z)]^{2}\left\{\pi^{2} / 6+\theta_{1}^{2} \operatorname{Var}(Z)\right\}
\end{aligned}
$$

It follows that the information for θ_{1} when θ_{2} and θ_{3} are unknown is equal to

$$
\begin{aligned}
I_{11 \cdot(2,3)} & =E\left(Z^{2}\right)-\frac{[E(Z)]^{2}\left\{\pi^{2} / 6+\theta_{1}^{2} \operatorname{Var}(Z)\right\}}{\pi^{2} / 6+\theta_{1}^{2} \operatorname{Var}(Z)} \\
& =\frac{\pi^{2} / 6}{\pi^{2} / 6+\theta_{1}^{2} \operatorname{Var}(Z)} \operatorname{Var}(Z) \leq \operatorname{Var}(Z) \leq E\left(Z^{2}\right)
\end{aligned}
$$

with equality in the first inequality if and only if $\theta_{1}=0$. Note that the information decreases as θ_{1} increases, and it converges to $\pi^{2} /\left(6 \theta_{1}^{2}\right)$ as $\operatorname{Var}(Z) \rightarrow \infty$.
(g) When θ_{2} and θ_{3} are unknown the efficient score function for θ_{1} is, with the "second block" containing both θ_{2} and θ_{3},

$$
\begin{aligned}
\mathbf{l}_{1}^{*}= & \mathbf{i}_{1}-I_{12} I_{22}^{-1} \mathbf{i}_{2} \\
= & \mathbf{i}_{1}-\left(\theta_{2}(E(Z) E-C D), \theta_{3}(C-D E(Z)) \mathbf{i}_{2} /\left(E-D^{2}\right)\right. \\
= & Z(1-W)-\frac{E(Z) E-C D}{E-D^{2}}(1-W) \\
& \quad+\frac{\theta_{1} \operatorname{Var}(Z)}{\pi^{2} / 6+\theta_{1}^{2} \operatorname{Var}(Z)}\left\{[1-(W-1) \log W]+(W-1) \log \left(\theta_{2} e^{\theta_{1} Z}\right)\right\} \\
& =\left\{Z-\frac{E(Z) E-C D+\log \left(\theta_{2} e^{\theta_{1} Z}\right)}{\pi^{2} / 6+\theta_{1}^{2} \operatorname{Var}(Z)}\right\}(1-W) \\
& \quad+\frac{\theta_{1}^{2} \operatorname{Var}(Z)}{\pi^{2} / 6+\theta_{1}^{2} \operatorname{Var}(Z)}\{1-(W-1) \log W\} .
\end{aligned}
$$

(h) When $Z \sim \operatorname{Bernoulli}(\eta)$, then

$$
\begin{aligned}
& I_{11}=E\left(Z^{2}\right)=\eta=\theta_{4}, \\
& I_{11 \cdot 2}=\operatorname{Var}(Z)=\eta(1-\eta)=\theta_{4}\left(1-\theta_{4}\right), \\
& I_{11 \cdot(2,3)}=\frac{\pi^{2} / 6}{\pi^{2} / 6+\theta_{1}^{2} \operatorname{Var}(Z)} \operatorname{Var}(Z) \\
& \quad=\frac{\pi^{2} / 6}{\pi^{2} / 6+\theta_{1}^{2} \eta(1-\eta)} \eta(1-\eta) .
\end{aligned}
$$

The corresponding information bounds are given by the reciprocals of these quantities. See the following figures for comparisons of the information and information bounds.

Figure 1: Plots of $I_{11}, I_{11 \cdot 2}$, and $I_{11 \cdot(2,3)}$ as a function of $\eta=\theta_{4}$, and for $\theta_{1}=.5,1.0,1.5$

Figure 2: Plots of $I_{11}^{-1}, I_{11 \cdot 2}^{-1}$, and $I_{11 \cdot(2,3)}^{-1}$ as a function of $\eta=\theta_{4}$, and for $\theta_{1}=.5,1.0,1.5$

