
Statistics 581, Problem Set 9 Solutions

Wellner; 11/29/2018

1. Suppose that X1, . . . , Xn are i.i.d. Geometric(θ) random variables; that is,
Pθ(X1 = k) = θ(1− θ)k−1 for k = 1, 2, . . . where θ ∈ (0, 1).
(i) Show that the Geometric distribution with parameter θ satisfies the conditions
of Lemma 7.6 of van der Vaart (1998), page 95.
(ii) Compute the information for θ.
(iii) Suggest three different estimators of θ based on the data.
(iv) Which of your estimators are asymptotically efficient in the sense of Hájek’s
convolution theorem?

Solution: (i) sθ(x) =
√
pθ(x) for θ ∈ (0, 1) and x ∈ N, so

ṡθ(x) =
1

2
pθ(x)−1/2

{
(1− θ)x−1 − θ(x1)(1− θ)x−2

}
=

1

2
pθ(x)−1/2ṗθ(x),

which is continuous in θ for each x ∈ N. Furthermore,

ṗθ(x) = pθ(x)

{
1

θ
− x− 1

1− θ

}
and hence

I(θ) = Eθ

(
ṗθ
pθ

(X)

)2

= Eθ

(
1

θ2(1− θ)2
(1− θ − (θX − θ))2

)
= Eθ

(
1

θ2(1− θ)2
(1− θX)2

)
=

1

(1− θ)2
Eθ

(
1

θ
−X

)2

=
1

θ2(1− θ)
.

It follows that the hypotheses of Lemma 7.6 of van der Vaart (1998) page 95 holds
and we conclude that {pθ} is differentiable in quadratic mean.

(ii) log pθ(X) = (X − 1) log(1− θ) + log θ, so the score function is

l̇θ(X) = −X − 1

1− θ
+

1

θ
=

1

θ(1− θ)
(1− θX), and

l̈θθ(X) = − X − 1

(1− θ)2
− 1

θ2
.

Thus the information for θ is, since EθX = 1/θ,

I(θ) =
Eθ(X)− 1

(1− θ)2
+

1

θ2
=

1

θ2(1− θ)
.
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(iii) Since EθX = 1/θ, a method of moments estimator of θ is simply θ̂
(1)
n = 1/Xn.

Since Pθ(X = 1) = θ, another method of moments estimator of θ is

θ̂(2)n ≡ n−1
n∑
i=1

1{1}(Xi) = n−1
n∑
i=1

1{Xi = 1}.

A third estimator θ̂
(3)
n of θ is the MLE obtained by solving the score equation

0 =
n∑
i=1

l̇θ(Xi) = −nXn − n
1− θ

+
n

θ
.

It is easily seen that the solution θ̂
(3)
n = 1/Xn = θ̂

(1)
n .

(iv) Since θ̂
(3)
n = θ̂

(1)
n , these estimators are asymptotically efficient in the sense of

Hájek’s convolution theorem with asymptotic variance 1/I(θ) = θ2(1 − θ). The

empirical probability estimator θ̂
(2)
n has asymptotic variance θ(1 − θ) > θ2(1 − θ)

and hence is asymptotically inefficient (for θ ∈ (0, 1)).

2. Repeat problem 1 above when the Xi’s are i.i.d. Cauchy(θ); i.e. each of the Xi’s
has the common density f(x) = 1/(π(1 + x2)) for x ∈ R and θ ∈ R.

Solution: (i) Now sθ =
√
pθ =

√
f(· − θ), so

ṡθ(x) =
1

2
pθ(x)−1/2ṗθ(x) = −1

2
f(x− θ)−1/2f ′(x− θ)

is continuous in θ for each x ∈ R. Furthermore

ṗθ(x) = pθ(x)

(
−f

′

f
(x− θ)

)
,

and hence

I(θ) = Eθ

(
ṗθ

pθ(X)

)2

=

∫
(f ′(y))2

f(y)
dy =

1

2

is (trivially) continuous in θ. Thus the hypotheses of Lemma 7.6 of van der Vaart
(1998) hold, and we conclude that {pθ : θ ∈ R} is differentiable in quadratic mean.
(ii) See (i) above.
(iii) Since pθ is symmetric about θ one simple estimator of θ is the sample median

θ̂
(1)
n = F−1n (1/2). In a similar way θ̂

(2)
n = (F−1n (p) +F−1n (1− p))/2 is also a consistent

estimator of θ: noting that F−1θ (p) = θ + tan{(p− 1/2)π}

(F−1n (p) + F−1n (1− p))/2 →p (F−1θ (p) + F−1θ (1− p))/2

= θ +
1

2
(tan{(p− 1/2)π}+ tan{−(p− 1/2)π}) = θ.

A third estimator of θ might be the one-step MLE discussed in Section 4.1:

θ̂(3)n = θ̂(1)n + 2n−1
n∑
i=1

l̇θ(Xi; θ̂
(1)
n ).

(iv) The estimators θ̂
(1)
n and θ̂

(2)
n are inefficient; the estimator θ̂

(3)
n is asymptotically

efficient (assuming that the model holds).
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3. Ferguson, problem 4, page 124: Let X and Y be independent random variables with
densities pθ and qθ depending on θ. Assume that the Fisher informations IX(θ) and
IY (θ) for θ based on observing X or Y both exist. Show that the Fisher information
for θ based on observing the pair (X, Y ) is given by IX,Y (θ) = IX(θ) + IY (θ).

Solution: Since X and Y are independent, the joint density is given by

pX,Y (x, y; θ) = pX(x; θ)pY (y; θ).

Then

log pX,Y (x, y; θ) = log pX(x; θ) + log pY (y; θ),

and it follows that the score function for θ based on (X, Y ) is

l̇θ,X,Y (x, y) = l̇θ,X(x) + l̇θ,Y (y),

and the information for θ based on (X, Y ) is

IX,Y (θ) = Eθ l̇
2
θ,X,Y (X, Y ) = Eθ

(
l̇θ,X(X) + l̇θ,Y (Y )

)2
= Eθ l̇

2
θ,X(X) + Eθ l̇

2
θ,Y (Y )

= IX(θ) + IY (θ)

since, by the independence of X and Y ,

Eθ l̇θ,X(X)l̇θ,Y (Y ) = Eθ l̇θ,X(X) · Eθ l̇θ,Y (Y ) = 0 · 0 = 0.

4. Consider the Laplace location family pθ(x) = 2−1 exp(−|x−θ|) for x ∈ R and θ ∈ R.
(a) Does the hypothesis (M5) of Theorem 3.2.22, page 11 of the Course Notes hold
in this case? Does the hypothesis (M4) of Theorem 3.2.2 hold?
(b) Show that the Laplace location family is differentiable in quadratic mean. What
is the consequence of this for the behavior of the local log-likelihood ratios? What
is the resulting information for the location parameter θ?
(c) Apply the methods of section 3.5 to show that with θ0 ∈ R fixed and θn =
θ0 + n−1/2h, then for any estimator Tn of θ we have

lim inf
n→∞

inf
Tn

max{Eθnn|Tn − θn|2, Eθ0n|Tn − θ0|2} ≥ cI(θ0)
−1

for some choice of h and an absolute constant c.

Solution: (a) For the Laplace location family, log pθ(x) = − log 2 − |x − θ| is not
differentiable at θ = x, while it is differentiable at all other values of θ with derivative
l̇θ(x) = sign(x− θ). Thus the hypothesis M4 of Theorem 3.2.2 fails. The hypothesis
M5 also fails since l̇θ(x) is not twice differentiable at θ = x.
(b) The Laplace location family is differentiable in quadratic mean: with l̇θ(x) =
sign(x− θ) as in (a), it suffices to prove that∫ {√

pθ+h −
√
pθ − 2−1hl̇θ

√
pθ

}2

dx = o(|h|2), (0.1)
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and then it follows that I(θ) = Eθ l̇θ(X)2 = 1. To show that (0.1) holds, it suffices
to prove the claim for θ = 0 and h > 0. Then we want to show that∫ (√

ph(x)−
√
p0(x)− (1/2)hsign(x) ·

√
p0(x)

)2
dx = o(h2). (0.2)

But the left side of the last display can be rewritten as

∫ (√
ph(x)

p0(x)
− 1− (1/2)hsign(x)

)2

2−1e−|x|dx

=

∫ (√
e−|x−h|

e−|x|
− 1− (1/2)hsign(x)

)2

2−1e−|x|dx

=

∫ (√
e−(|x−h|−|x|) − 1− (1/2)h · sign(x)

)2
2−1e−|x|dx

=

∫ 0

−∞

(
e−h/2 − 1 + (1/2)h

)2 · 2−1e−|x|dx
+

∫ ∞
h

(
eh/2 − 1− (1/2)h

)2 · 2−1e−|x|dx
+

∫ h/2

0

(
e−(h−2x)/2 − 1− (1/2)h

)2 · 2−1e−|x|dx
+

∫ h

h/2

(
e−(2x−h)/2 − 1− (1/2)h

)2 · 2−1e−|x|dx
where the third and fourth terms are clearly of order O(h5). The first and second
terms are easily bounded by

2−1(e−h/2 − (1− h/2))2 = O(h4) and

2−1(eh/2 − (1 + h/2))2 = O(h4).

Thus we conclude that (0.2) holds with O(h4) instead of o(h2) on the right side.
But this easily yields the desired conclusion.
(c) Let θn = θ0 + hn−1/2. The differentiability in quadratic mean established in (b)
implies that nH2(pθn , pθ0)→ (1/8)h2I(θ0) = h2/16. We conclude from Proposition
3.5.1 that

lim inf
n→∞

inf
Tn

max{Eθnn|Tn − θn|2, Eθ0n|Tn − θ0|2} ≥ (h2/16) exp(−h2/16).

Maximizing this bound with respect to h yields a lower bound of e−1 by choosing
h = 4.

5. Ferguson, problem 6, page 125: What was thought to be a certain species of moth
is attracted to a capture tank at rate λ per day. On the first day, the number X of
moths caught was recorded. It is assumed that X has a Poisson distribution with
mean λ. Later it was pointed out that this species is, in fact, two different similar
species, so a second day of capture was undertaken. This time, the numbers Y1 and
Y2 of moths caught of these species separately were noted. It is assumed that these
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are Poisson random variables with means λ1 and λ2 where λ1 + λ2 = λ, and it is
assumed that X, Y1, and Y2 are independent.
(a) Using X, Y1, and Y2, find the maximum likelihood estimate of λ1 and λ2.
(b) Assuming λ1 and λ2 large, what is the approximate variance of your estimator?

Solution: (a) The joint density of (X, Y1, Y2) is

pX(x)pY1(y1)pY2(y2) = e−λ
λx

x!
· e−λ1 λ

y1
1

y1!
· e−λ1 λ

y1
1

y1!

where λ = λ1 + λ2. Thus

ln(λ1, λ2) = X log λ− λ+ Y1 log λ1 − λ1 + Y2 log λ2 − λ2,

and hence the score equations are

l̇λ1(X, Y1, Y2) =
X

λ1 + λ2
+
Y1
λ1
− 2 = 0,

l̇λ2(X, Y1, Y2) =
X

λ1 + λ2
+
Y2
λ2
− 2 = 0.

Multplying across the first equation by λ1(λ1+λ2) and across the second by λ1(λ1+
λ2) yields

λ1X + (λ1 + λ2)Y1 − 2λ1(λ1 + λ2) = 0,

λ2X + (λ1 + λ2)Y2 − 2λ2(λ1 + λ2) = 0.

Adding these two equations yields

(λ1 + λ2)X + (λ1 + λ2)(Y1 + Y2)− 2(λ1 + λ2)
2 = 0,

and hence (after dividing by λ1 + λ2,

X + Y1 + Y2 ≡ X + Y − 2(λ1 + λ2) = 0.

Thus

λ̂1 + λ̂2 = (1/2)(X + Y ).

Subtracting the two equations yields

(λ1 − λ2)X + (Y1 − Y2)(λ1 + λ2)− 2(λ1 − λ2)(λ1 + λ2),

or

(λ1 − λ2)(X − 2(λ1 + λ2)) = −(Y1 − Y2)(λ1 + λ2),

which in turn yields

λ̂1 − λ̂2 =
−(Y1 − Y2)(X + Y )/2

X − (X + Y )
=

(Y1 − Y2)(1/2)(X + Y )

Y
.
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Adding and subtracting again yields

λ̂1 =
Y1
Y

X + Y

2
≡ g(X, Y1, Y2), and λ̂2 =

Y2
Y

X + Y

2
.

(b) The function g given in the last display by

g(x, y1, y2) =
y1

y1 + y2

(
x+ y1 + y2

2

)
=
y1
2

(
x

y
+ 1

)
has gradient given by

ġ(x, y1, y2) =

(
y1
2y
,
1

2

(
x+ y

y

)
− y1x

2y2
,−y1

2

x

y2

)T
,

so that

ġ(λ, λ1, λ2) =

(
λ1
2λ
, 1− λ1

2λ
,−λ1

2λ

)T
.

Thus the approximate variance of λ̂1 is

ġ(λ, λ1, λ2)
T

 λ 0 0
0 λ1 0
0 0 λ2

 ġ(λ, λ1, λ2)

= λ1 −
λ21
2λ

= λ1

(
1− λ1

2λ

)
.
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