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Preface to the Third Edition

The Third Edition of Testing Statistical Hypotheses brings it into consonance
with the Second Edition of its companion volume on point estimation (Lehmann
and Casella, 1998) to which we shall refer as TPE2. We won’t here comment on
the long history of the book which is recounted in Lehmann (1997) but shall use
this Preface to indicate the principal changes from the 2nd Edition.

The present volume is divided into two parts. Part I (Chapters 1–10) treats
small-sample theory, while Part II (Chapters 11–15) treats large-sample theory.
The preface to the 2nd Edition stated that “the most important omission is an
adequate treatment of optimality paralleling that given for estimation in TPE.”
We shall here remedy this failure by treating the difficult topic of asymptotic
optimality (in Chapter 13) together with the large-sample tools needed for this
purpose (in Chapters 11 and 12). Having developed these tools, we use them in
Chapter 14 to give a much fuller treatment of tests of goodness of fit than was
possible in the 2nd Edition, and in Chapter 15 to provide an introduction to
the bootstrap and related techniques. Various large-sample considerations that
in the Second Edition were discussed in earlier chapters now have been moved to
Chapter 11.

Another major addition is a more comprehensive treatment of multiple testing
including some recent optimality results. This topic is now presented in Chapter
9. In order to make room for these extensive additions, we had to eliminate some
material found in the Second Edition, primarily the coverage of the multivariate
linear hypothesis.

Except for some of the basic results from Part I, a detailed knowledge of small-
sample theory is not required for Part II. In particular, the necessary background
should include: Chapter 3, Sections 3.1–3.5, 3.8–3.9; Chapter 4: Sections 4.1–4.4;
Chapter 5, Sections 5.1–5.3; Chapter 6, Sections 6.1–6.2; Chapter 7, Sections
7.1–7.2; Chapter 8, Sections 8.1–8.2, 8.4–8.5.



viii Preface

Of the two principal additions to the Third Edition, multiple comparisons
and asymptotic optimality, each has a godfather. The development of multiple
comparisons owes much to the 1953 volume on the subject by John Tukey, a
mimeographed version which was widely distributed at the time. It was officially
published only in 1994 as Volume VIII in The Collected Works of John W. Tukey.

Many of the basic ideas on asymptotic optimality are due to the work of Le
Cam between 1955 and 1980. It culminated in his 1986 book, Asymptotic Methods
in Statistical Decision Theory.

The work of these two authors, both of whom died in 2000, spans the achieve-
ments of statistics in the second half of the 20th century, from model-free
data analysis to the most abstract and mathematical asymptotic theory. In ac-
knowledgment of their great accomplishments, this volume is dedicated to their
memory.

Special thanks to George Chang, Noureddine El Karoui, Matt Finkelman,
Nicholas Johnson, Brit Katzen, Mee Young Park, Elizabeth Purdom, Michelle
Quinlan, Armin Schwartzman, Azeem Shaikh and the many students at Stan-
ford University who proofread several versions of the new chapters and worked
through many of the over 300 new problems. The support and suggestions of our
colleagues is greatly appreciated, especially Persi Diaconis, Brad Efron, Susan
Holmes, Balasubramanian Narasimhan, Dimitris Politis, Julie Shaffer, Guenther
Walther and Michael Wolf. Finally, heartfelt thanks go to friends and family who
provided continual encouragement, especially Joe Chavez, Ann Marie and Mark
Hodges, David Fogle, Scott Madover, Tom Neville, David Olachea, Janis and Jon
Squire, Lucy, and Ron Susek.

E. L. Lehmann
Joseph P. Romano

January, 2005
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Small-Sample Theory



1
The General Decision Problem

1.1 Statistical Inference and Statistical Decisions

The raw material of a statistical investigation is a set of observations; these are
the values taken on by random variables X whose distribution Pθ is at least
partly unknown. Of the parameter θ, which labels the distribution, it is assumed
known only that it lies in a certain set Ω, the parameter space. Statistical infer-
ence is concerned with methods of using this observational material to obtain
information concerning the distribution of X or the parameter θ with which it is
labeled. To arrive at a more precise formulation of the problem we shall consider
the purpose of the inference.

The need for statistical analysis stems from the fact that the distribution of X,
and hence some aspect of the situation underlying the mathematical model, is not
known. The consequence of such a lack of knowledge is uncertainty as to the best
mode of behavior. To formalize this, suppose that a choice has to be made between
a number of alternative actions. The observations, by providing information about
the distribution from which they came, also provide guidance as to the best
decision. The problem is to determine a rule which, for each set of values of the
observations, specifies what decision should be taken. Mathematically such a rule
is a function δ, which to each possible value x of the random variables assigns a
decision d = δ(x), that is, a function whose domain is the set of values of X and
whose range is the set of possible decisions.

In order to see how δ should be chosen, one must compare the consequences of
using different rules. To this end suppose that the consequence of taking decision d
when the distribution of X is Pθ is a loss, which can be expressed as a nonnegative
real number L(θ, d). Then the long-term average loss that would result from
the use of δ in a number of repetitions of the experiment is the expectation
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E[L(θ, δ(X))] evaluated under the assumption that Pθ is the true distribution of
X. This expectation, which depends on the decision rule δ and the distribution
Pθ, is called the risk function of δ and will be denoted by R(θ, δ). By basing the
decision on the observations, the original problem of choosing a decision d with
loss function L(θ, d) is thus replaced by that of choosing δ, where the loss is now
R(θ, δ).

The above discussion suggests that the aim of statistics is the selection of
a decision function which minimizes the resulting risk. As will be seen later,
this statement of aims is not sufficiently precise to be meaningful; its proper
interpretation is in fact one of the basic problems of the theory.

1.2 Specification of a Decision Problem

The methods required for the solution of a specific statistical problem depend
quite strongly on the three elements that define it: the class P = {Pθ, θ ∈ Ω} to
which the distribution of X is assumed to belong; the structure of the space D
of possible decisions d; and the form of the loss function L. In order to obtain
concrete results it is therefore necessary to make specific assumptions about these
elements. On the other hand, if the theory is to be more than a collection of
isolated results, the assumptions must be broad enough either to be of wide
applicability or to define classes of problems for which a unified treatment is
possible.

Consider first the specification of the class P. Precise numerical assumptions
concerning probabilities or probability distributions are usually not warranted.
However, it is frequently possible to assume that certain events have equal prob-
abilities and that certain other are statistically independent. Another type of
assumption concerns the relative order of certain infinitesimal probabilities, for
example the probability of occurrences in an interval of time or space as the
length of the internal tends to zero. The following classes of distributions are
derived on the basis of only such assumptions, and are therefore applicable in a
great variety of situations.

The binomial distribution b(p, n) with

P (X = x) =

(
n
x

)
px(1 − p)n−x, x = 0, . . . , n. 0 ≤ p ≤ 1. (1.1)

This is the distribution of the total number of successes in n independent trials
when the probability of success for each trial is p.

The Poisson distribution P (τ) with

P (X = x) =
τx

x!
e−τ , x = 0, 1, . . . , 0 < τ. (1.2)

This is the distribution of the number of events occurring in a fixed interval of
time or space if the probability of more than one occurrence in a very short
interval is of smaller order of magnitude than that of a single occurrence, and if
the numbers of events in nonoverlapping intervals are statistically independent.
Under these assumptions, the process generating the events is called a Poisson
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process. Such processes are discussed, for example, in the books by Feller (1968),
Ross (1996), and Taylor and Karlin (1998).

The normal distribution N(ξ, σ2) with probability density

p(x) =
1√
2πσ

exp

[
− 1

2σ2
(x − ξ)2

]
, −∞ < x, ξ < ∞, 0 < σ. (1.3)

Under very general conditions, which are made precise by the central limit the-
orem, this is the approximate distribution of the sum of a large number of
independent random variables when the relative contribution of each term to
the sum is small.

We consider next the structure of the decision space D. The great variety of
possibilities is indicated by the following examples.

Example 1.2.1 Let X1, . . . , Xn be a sample from one of the distributions (1.1)–
(1.3), that is let the X’s be distributed independently and identically according
to one of these distributions. Let θ be p, τ , or the pair (ξ, σ) respectively, and let
γ = γ(θ) be a real-valued function of θ.

(i) If one wishes to decide whether or not γ exceeds some specified value γ0,
the choice lies between the two decisions d0 : γ > γ0 and d1 : γ ≤ γ0. In specific
applications these decisions might correspond to the acceptance or rejection of a
lot of manufactured goods, of an experimental airplane as ready for flight testing,
of a new treatment as an improvement over a standard one, and so on. The loss
function of course depends on the application to be made. Typically, the loss is 0
if the correct decision is chosen, while for an incorrect decision the losses L(γ, d0)
and L(γ, d1) are increasing functions of |γ − γ0|.

(ii) At the other end of the scale is the much more detailed problem of ob-
taining a numerical estimate of γ. Here a decision d of the statistician is a real
number, the estimate of γ, and the losses might be L(γ, d) = v(γ)w(|d − γ|),
where w is a strictly increasing function of the error |d − γ|.

(iii) An intermediate case is the choice between the three alternatives d0 :
γ < γ0, d1 : γ > γ1, d2 : γ0 ≤ γ ≤ γ1, for example accepting a new treatment,
rejecting it, or recommending it for further study.

The distinction illustrated by this example is the basis for one of the princi-
pal classifications of statistical methods. Two-decision problems such as (i) are
usually formulated in terms of testing a hypothesis which is to be accepted or
rejected (see Chapter 3). It is the theory of this class of problems with which we
shall be mainly concerned here. The other principal branch of statistics is the
theory of point estimation dealing with problems such as (ii). This is the subject
of TPE2. The intermediate problem (iii) is a special case of a multiple decision
procedure. Some problems of this kind are treated in Ferguson (1967, Chapter 6);
a discussion of some others is given in Chapter 9.

Example 1.2.2 Suppose that the data consist of samples Xij , j = 1, . . . , ni,
from normal populations N(ξi, σ

2), i = 1, . . . , s.

(i) Consider first the case s = 2 and the question of whether or not there is
a material difference between the two populations. This has the same structure
as problem (iii) of the previous example. Here the choice lies between the three
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decisions d0 : |ξ2 − ξ1| ≤ ∆, d1 : ξ2 > ξ1 + ∆, d2 : ξ2 < ξ1 − ∆, where ∆ is
preassigned. An analogous problem, involving k + 1 possible decisions, occurs
in the general case of k populations. In this case one must choose between the
decision that the k distributions do not differ materially, d0 : max |ξj − ξi| ≤ ∆,
and the decisions dk : max |ξj − ξi| > ∆ and ξk is the largest of the means.

(ii) A related problem is that of ranking the distributions in increasing order
of their mean ξ.

(iii) Alternatively, a standard ξ0 may be given and the problem is to decide
which, if any, of the population means exceed the standard.

Example 1.2.3 Consider two distributions—to be specific, two Poisson distri-
butions P (τ1), P (τ2)—and suppose that τ1 is known to be less than τ2 but that
otherwise the τ ’s are unknown. Let Z1, . . . , Zn be independently distributed, each
according to either P (τ1) or P (τ2). Then each Z is to be classified as to which
of the two distributions it comes from. Here the loss might be the number of Z’s
that are incorrectly classified, multiplied by a suitable function of τ1 and τ2. An
example of the complexity that such problems can attain and the conceptual as
well as mathematical difficulties that they may involve is provided by the efforts
of anthropologists to classify the human population into a number of homoge-
neous races by studying the frequencies of the various blood groups and of other
genetic characters.

All the problems considered so far could be termed action problems. It was
assumed in all of them that if θ were known a unique correct decision would
be available, that is, given any θ, there exists a unique d for which L(θ, d) = 0.
However, not all statistical problems are so clear-cut. Frequently it is a question
of providing a convenient summary of the data or indicating what information
is available concerning the unknown parameter or distribution. This information
will be used for guidance in various considerations but will not provide the sole
basis for any specific decisions. In such cases the emphasis is on the inference
rather than on the decision aspect of the problem. Although formally it can still
be considered a decision problem if the inferential statement itself is interpreted as
the decision to be taken, the distinction is of conceptual and practical significance
despite the fact that frequently it is ignored.1An important class of such problems,
estimation by interval, is illustrated by the following example. (For the more usual
formulation in terms of confidence intervals, see Sections 3.5, 5.4 and 5.5.)

Example 1.2.4 Let X = (X1, . . . , Xn) be a sample from N(ξ, σ2) and let a de-
cision consist in selecting an interval [L, L] and stating that it contains ξ. Suppose
that decision procedures are restricted to intervals [L(X), L̄(X)] whose expected
length for all ξ and σ does not exceed kσ where k is some preassigned constant.
An appropriate loss function would be 0 if the decision is correct and would oth-
erwise depend on the relative position of the interval to the true value of ξ. In
this case there are many correct decisions corresponding to a given distribution
N(ξ, σ2).

1For a more detailed discussion of this distinction see, for example, Cox (1958), Blyth
(1970), and Barnett (1999).
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It remains to discuss the choice of loss function, and of the three elements
defining the problem this is perhaps the most difficult to specify. Even in the
simplest case, where all losses eventually reduce to financial ones, it can hardly
be expected that one will be able to evaluate all the short- and long-term con-
sequences of an action. Frequently it is possible to simplify the formulation by
taking into account only certain aspects of the loss function. As an illustration
consider Example 1.2.1(i) and let L(θ, d0) = a for γ(θ) ≤ γ0 and L(θ, d1) = b for
γ(θ) > γ0. The risk function becomes

R(θ, δ) =

{
aPθ{δ(X) = d0} if γ ≤ γ0,
bPθ{δ(X) = d1} if γ > γ0,

(1.4)

and is seen to involve only the two probabilities of error, with weights which
can be adjusted according to the relative importance of these errors. Simi-
larly, in Example 1.2.3 one may wish to restrict attention to the number of
misclassifications.

Unfortunately, such a natural simplification is not always available, and in the
absence of specific knowledge it becomes necessary to select the loss function
in some conventional way, with mathematical simplicity usually an important
consideration. In point estimation problems such as that considered in Example
1.2.1(ii), if one is interested in estimating a real-valued function γ = γ(θ), it is
customary to take the square of the error, or somewhat more generally to put

L(θ, d) = v(θ)(d − γ)2. (1.5)

Besides being particularly simple mathematically, this can be considered as an
approximation to the true loss function L provided that for each fixed θ, L(θ, d)
is twice differentiable in d, that L(θ, γ(θ)) = 0 for all θ, and that the error is not
large.

It is frequently found that, within one problem, quite different types of losses
may occur, which are difficult to measure on a common scale. Consider once
more Example 1.2.1(i) and suppose that γ0 is the value of γ when a standard
treatment is applied to a situation in medicine, agriculture, or industry. The

one. Turning down the new method when it is actually superior, or adopting it
when it is not, clearly entails quite different consequences. In such cases it is
sometimes convenient to treat the various loss components, say L1, L2, . . . , Lr,
separately. Suppose in particular that r = 2 and the L1 represents the more
serious possibility. One can then assign a bound to this risk component, that is,
impose the condition

EL1(θ, δ(X)) ≤ α, (1.6)

and subject to this condition minimize the other component of the risk. Example
1.2.4 provides an illustration of this procedure. The length of the interval [L, L̄]
(measured in σ-units) is one component of the loss function, the other being the
loss that results if the interval does not cover the true ξ.

problem is that of comparing some new process with unknown γ to the standard
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1.3 Randomization; Choice of Experiment

The description of the general decision problem given so far is still too narrow in
certain respects. It has been assumed that for each possible value of the random
variables a definite decision must be chosen. Instead, it is convenient to permit the
selection of one out of a number of decisions according to stated probabilities, or
more generally the selection of a decision according to a probability distribution
defined over the decision space; which distribution depends of course on what
x is observed. One way to describe such a randomized procedure is in terms of
a nonrandomized procedure depending on X and a random variable Y whose
values lie in the decision space and whose conditional distribution given x is
independent of θ.

Although it may run counter to one’s intuition that such extra randomiza-
tion should have any value, there is no harm in permitting this greater freedom
of choice. If the intuitive misgivings are correct, it will turn out that the op-
timum procedures always are of the simple nonrandomized kind. Actually, the
introduction of randomized procedures leads to an important mathematical sim-
plification by enlarging the class of risk functions so that it becomes convex. In
addition, there are problems in which some features of the risk function such as
its maximum can be improved by using a randomized procedure.

Another assumption that tacitly has been made so far is that a definite experi-
ment has already been decided upon so that it is known what observations will be
taken. However, the statistical considerations involved in designing an experiment
are no less important than those concerning its analysis. One question in par-
ticular that must be decided before an investigation is undertaken is how many
observations should be taken so that the risk resulting from wrong decisions will
not be excessive. Frequently it turns out that the required sample size depends
on the unknown distribution and therefore cannot be determined in advance as
a fixed number. Instead it is then specified as a function of the observations and
the decision whether or not to continue experimentation is made sequentially at
each stage of the experiment on the basis of the observations taken up to that
point.

Example 1.3.1 On the basis of a sample X1, . . . , Xn from a normal distribution
N(ξ, σ2) one wishes to estimate ξ. Here the risk function of an estimate, for
example its expected squared error, depends on σ. For large σ the sample contains
only little information in the sense that two distributions N(ξ1, σ

2) and N(ξ2, σ
2)

with fixed difference ξ2 − ξ1 become indistinguishable as σ → ∞, with the result
that the risk tends to infinity. Conversely, the risk approaches zero as σ → 0,
since then effectively the mean becomes known. Thus the number of observations
needed to control the risk at a given level is unknown. However, as soon as some
observations have been taken, it is possible to estimate σ2 and hence to determine
the additional number of observations required.

Example 1.3.2 In a sequence of trials with constant probability p of success,
one wishes to decide whether p ≤ 1

2 or p > 1
2 . It will usually be possible to reach a

decision at an early stage if p is close to 0 or 1 so that practically all observations
are of one kind, while a larger sample will be needed for intermediate values of
p. This difference may be partially balanced by the fact that for intermediate
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values a loss resulting from a wrong decision is presumably less serious than for
the more extreme values.

Example 1.3.3 The possibility of determining the sample size sequentially is
important not only because the distributions Pθ can be more or less informative
but also because the same is true of the observations themselves. Consider, for
example, observations from the uniform distribution over the interval (θ − 1

2 , θ +
1
2 ) and the problem of estimating θ. Here there is no difference in the amount
of information provided by the different distributions Pθ. However, a sample
X1, X2, . . . , Xn can practically pinpoint θ if max |Xj − Xi| is sufficiently close
to 1, or it can give essentially no more information then a single observation if
max |Xj −Xi| is close to 0. Again the required sample size should be determined
sequentially.

Except in the simplest situations, the determination of the appropriate sample
size is only one aspect of the design problem. In general, one must decide not
only how many but also what kind of observations to take. In clinical trials, for
example, when a new treatment is being compared with a standard procedure,
a protocol is required which specifies to which of the two treatments each of the
successive incoming patients is to be assigned. Formally, such questions can be
subsumed under the general decision problem described at the beginning of the
chapter, by interpreting X as the set of all available variables, by introducing
the decisions whether or not to stop experimentation at the various stages, by
specifying in case of continuance which type of variable to observe next, and by
including the cost of observation in the loss function.

The determination of optimum sequential stopping rules and experimental
designs is outside the scope of this book. An introduction to this subject is
provided, for example, by Siegmund (1985).

1.4 Optimum Procedures

At the end of Section 1.1 the aim of statistical theory was stated to be the
determination of a decision function δ which minimizes the risk function

R(θ, δ) = Eθ[L(θ, δ(X))]. (1.7)

Unfortunately, in general the minimizing δ depends on θ, which is unknown.
Consider, for example, some particular decision d0, and the decision procedure
δ(x) ≡ d0 according to which decision d0 is taken regardless of the outcome
of the experiment. Suppose that d0 is the correct decision for some θ0, so that
L(θ0, d0) = 0. Then δ minimizes the risk at θ0 since R(θ0, δ) = 0, but presumably
at the cost of a high risk for other values of θ.

In the absence of a decision function that minimizes the risk for all θ, the
mathematical problem is still not defined, since it is not clear what is meant
by a best procedure. Although it does not seem possible to give a definition of
optimality that will be appropriate in all situations, the following two methods
of approach frequently are satisfactory.

The nonexistence of an optimum decision rule is a consequence of the possibil-
ity that a procedure devotes too much of its attention to a single parameter value
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at the cost of neglecting the various other values that might arise. This suggests
the restriction to decision procedures which possess a certain degree of impar-
tiality, and the possibility that within such a restricted class there may exist a
procedure with uniformly smallest risk. Two conditions of this kind, invariance
and unbiasedness, will be discussed in the next section.

Instead of restricting the class of procedures, one can approach the problem
somewhat differently. Consider the risk functions corresponding to two different
decision rules δ1 and δ2. If R(θ, δ1) < R(θ, δ2) for all θ, then δ1 is clearly preferable
to δ2, since its use will lead to a smaller risk no matter what the true value of
θ is. However, the situation is not clear when the two risk functions intersect
as in Figure 1.1. What is needed is a principle which in such cases establishes a
preference of one of the two risk functions over the other, that is, which introduces
an ordering into the set of all risk functions. A procedure will then be optimum if
its risk function is best according to this ordering. Some criteria that have been
suggested for ordering risk functions will be discussed in Section 1.6.

R(!,")

!

Figure 1.1.

A weakness of the theory of optimum procedures sketched above is its de-
pendence on an extraneous restricting or ordering principle, and on knowledge
concerning the loss function and the distributions of the observable random
variables which in applications is frequently unavailable or unreliable. These diffi-
culties, which may raise doubt concerning the value of an optimum theory resting
on such shaky foundations, are in principle no different from those arising in any
application of mathematics to reality. Mathematical formulations always involve
simplification and approximation, so that solutions obtained through their use
cannot be relied upon without additional checking. In the present case a check
consists in an overall evaluation of the performance of the procedure that the
theory produces, and an investigation of its sensitivity to departure from the
assumptions under which it was derived.

The optimum theory discussed in this book should therefore not be understood
to be prescriptive. The fact that a procedure δ is optimal according to some
optimality criterion does not necessarily mean that it is the right procedure to
use, or even a satisfactory procedure. It does show how well one can do in this
particular direction and how much is lost when other aspects have to be taken
into account.
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The aspect of the formulation that typically has the greatest influence on the
solution of the optimality problem is the family P to which the distribution
of the observations is assumed to belong. The investigation of the robustness
of a proposed procedure to departures from the specified model is an indis-
pensable feature of a suitable statistical procedure, and although optimality
(exact or asymptotic) may provide a good starting point, modifications are of-
ten necessary before an acceptable solution is found. It is possible to extend the
decision-theoretic framework to include robustness as well as optimality. Suppose
robustness is desired against some class P ′ of distributions which is larger (possi-
bly much larger) than the give P. Then one may assign a bound M to the risk to
be tolerated over P ′. Within the class of procedures satisfying this restriction, one
can then optimize the risk over P as before. Such an approach has been proposed
and applied to a number of specific problems by Bickel (1984) and Kempthorne
(1988).

Another possible extension concerns the actual choice of the family P, the
model used to represent the actual physical situation. The problem of choosing
a model which provides an adequate description of the situation without being
unnecessarily complex can be treated within the decision-theoretic formulation
of Section 1.1 by adding to the loss function a component representing the com-
plexity of the proposed model. Such approaches to model selection are discussed
in Stone (1981), de Leeuw (1992) and Rao and Wu (2001).

1.5 Invariance and Unbiasedness2

A natural definition of impartiality suggests itself in situations which are sym-
metric with respect to the various parameter values of interest: The procedure is
then required to act symmetrically with respect to these values.

Example 1.5.1 Suppose two treatments are to be compared and that each is
applied n times. The resulting observations X11, . . . , X1n and X21, . . . , X2n are
samples from N(ξ1, σ

2) and N(ξ2, σ
2) respectively. The three available decisions

are d0 : |ξ2 − ξ1| ≤ ∆, d1 : ξ2 > ξ1 + ∆, d2 : ξ2 < ξ1 − ∆, and the loss is wij if
decision dj is taken when di would have been correct. If the treatments are to be
compared solely in terms of the ξ’s and no outside considerations are involved,
the losses are symmetric with respect to the two treatments so that w01 = w02,
w10 = w20, w12 = w21. Suppose now that the labeling of the two treatments as
1 and 2 is reversed, and correspondingly also the labeling of the X’s, the ξ’s,
and the decisions d1 and d2. This changes the meaning of the symbols, but the
formal decision problem, because of its symmetry, remains unaltered. It is then
natural to require the corresponding symmetry from the procedure δ and ask that
δ(x11, . . . , x1n, x21, . . . , x2n) = d0, d1, or d2 as δ(x21, . . . , x2n, x11, . . . , x1n) = d0,
d2, or d1 respectively. If this condition were not satisfied, the decision as to
which population has the greater mean would depend on the presumably quite

2The concepts discussed here for general decision theory will be developed in more
specialized form in later chapters. The present section may therefore be omitted at first
reading.
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accidental and irrelevant labeling of the samples. Similar remarks apply to a
number of further symmetries that are present in this problem.

Example 1.5.2 Consider a sample X1, . . . , Xn from a distribution with density
σ−1f [(x− ξ)/σ] and the problem of estimating the location parameter ξ, say the
mean of the X’s, when the loss is (d − ξ)2/σ2, the square of the error expressed
in σ-units. Suppose that the observations are originally expressed in feet, and
let X ′

i = aX with a = 12 be the corresponding observations in inches. In the
transformed problem the density is σ′−1f [(x′ − ξ′)/σ′] with ξ′ = aξ, σ′ = aσ.
Since (d′ − ξ′)2/σ′2 = (d − ξ)2/σ2, the problem is formally unchanged. The
same estimation procedure that is used for the original observations is therefore
appropriate after the transformation and leads to δ(aX1, . . . , aXn) as an estimate
of ξ′ = aξ, the parameter ξ expressed in inches. On reconverting the estimate into
feet one finds that if the result is to be independent of the scale of measurements,
δ must satisfy the condition of scale invariance

δ(aX1, . . . , aXn)
a

= δ(X1, . . . , Xn) .

The general mathematical expression of symmetry is invariance under a suit-
able group of transformations. A group G of transformations g of the sample
space is said to leave a statistical decision problem invariant if it satisfies the
following conditions:

(i) It leaves invariant the family of distributions P = {Pθ, θ ∈ Ω}, that is, for
any possible distribution Pθ of X the distribution of gX, say Pθ′ , is also in
P. The resulting mapping θ′ = ḡθ of Ω is assumed to be onto3 Ω and 1:1.

(ii) To each g ∈ G, there corresponds a transformation g∗ = h(g) of the decision
space D onto itself such that h is a homomorphism, that is, satisfies the
relation h(g1g2) = h(g1)h(g2), and the loss function L is unchanged under
the transformation, so that

L(ḡθ, g∗d) = L(θ, d).

Under these assumptions the transformed problem, in terms of X ′ = gX, θ′ =
ḡθ, and d′ = g∗d, is formally identical with the original problem in terms of
X, θ, and d. Given a decision procedure δ for the latter, this is therefore still
appropriate after the transformation. Interpreting the transformation as a change
of coordinate system and hence of the names of the elements, one would, on
observing x′, select the decision which in the new system has the name δ(x′),
so that its old name is g∗−1δ(x′). If the decision taken is to be independent of
the particular coordinate system adopted, this should coincide with the original
decision δ(x), that is, the procedure must satisfy the invariance condition

δ(gx) = g∗δ(x) for all x ∈ X, g ∈ G. (1.8)

Example 1.5.3 The model described in Example 1.5.1 is invariant also under
the transformations X ′

ij = Xij + c, ξ′i = ξi + c. Since the decisions d0, d1, and d2

3The term onto is used in indicate that ḡΩ is not only contained in but actually
equals Ω; that is, given any θ′ in Ω, there exists θ in Ω such that ḡθ = θ′.
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concern only the differences ξ2 − ξ1, they should remain unchanged under these
transformations, so that one would expect to have g∗di = di for i = 0, 1, 2. It is in
fact easily seen that the loss function does satisfy L(ḡθ, d) = L(θ, d), and hence
that g∗d = d. A decision procedure therefore remains invariant in the present
case if it satisfies δ(gx) = δ(x) for all g ∈ G, x ∈ X.

It is helpful to make a terminological distinction between situations like that
of Example 1.5.3 in which g∗d = d for all d, and those like Examples 1.5.1
and 1.5.2 where invariance considerations require δ(gx) to vary with g. In the
former case the decision procedure remains unchanged under the transformations
X ′ = gX and is thus truly invariant; in the latter, the procedure varies with g
and may then more appropriately be called equivariant rather than invariant.
Typically, hypothesis testing leads to procedures that are invariant in this sense;
estimation problems (whether by point or interval estimation), to equivariant
ones. Invariant tests and equivariant confidence sets will be discussed in Chapter
6. For a brief discussion of equivariant point estimation, see Bondessen (1983); a
fuller treatment is given in TPE2, Chapter 3.

Invariance considerations are applicable only when a problem exhibits certain
symmetries. An alternative impartiality restriction which is applicable to other
types of problems is the following condition of unbiasedness. Suppose the problem
is such that for each θ there exists a unique correct decision and that each decision
is correct for some θ. Assume further that L(θ1, d) = L(θ2, d) for all d whenever
the same decision is correct for both θ1 and θ2. Then the loss L(θ, d′) depends
only on the actual decision taken, say d′, and the correct decision d. The loss can
thus be denoted by L(d, d′) and this function measures how far apart d and d′

are. Under these assumptions a decision function δ is said to be unbiased with
respect to the loss function L, or L-unbiased, if for all θ and d′

EθL(d′, δ(X)) ≥ EθL(d, δ(X))

where the subscript θ indicates the distribution with respect to which the ex-
pectation is taken and where d is the decision that is correct for θ. Thus δ is
unbiased if on the average δ(X) comes closer to the correct decision than to any
wrong one. Extending this definition, δ is said to be L-unbiased for an arbitrary
decision problem if for all θ and θ′

EθL(θ′, δ(X)) ≥ EθL(θ, δ(X)). (1.9)

Example 1.5.4 Suppose that in the problem of estimating a real-valued param-
eter θ by confidence intervals, as in Example 1.2.4, the loss is 0 or 1 as the interval
[L, L̄] does or does not cover the true θ. Then the set of intervals [L(X), L̄(X)]
is unbiased if the probability of covering the true value is greater than or equal
to the probability of covering any false value.

Example 1.5.5 In a two-decision problem such as that of Example 1.2.1(i), let
ω0 and ω1 be the sets of θ-values for which d0 and d1 are the correct decisions.
Assume that the loss is 0 when the correct decision is taken, and otherwise is
given by L(θ, d0) = a for θ ∈ ω1, and L(θ, d1) = b for θ ∈ ω0. Then

EθL(θ′, δ(X)) =

{
aPθ{δ(X) = d0} if θ′ ∈ ω1,
bPθ{δ(X) = d1} if θ′ ∈ ω0,
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so that (1.9) reduces to

aPθ{δ(X) = d0} ≥ bPθ{δ(X) = d1} for θ′ ∈ ω0,

with the reverse inequality holding for θ ∈ ω1. Since Pθ{δ(X) = d0}+Pθ{δ(X) =
d1} = 1, the unbiasedness condition (1.9) becomes

Pθ{δ(X) = d1} ≤ a
a+b for θ ∈ ω0,

Pθ{δ(X) = d1} ≥ a
a+b for θ ∈ ω1 .

(1.10)

Example 1.5.6 In the problem of estimating a real-valued function γ(θ) with
the square of the error as loss, the condition of unbiasedness becomes

Eθ[δ(X) − γ(θ′)]2 ≥ Eθ[δ(X) − γ(θ)]2 for all θ, θ′.

On adding and subtracting h(θ) = Eθδ(X) inside the brackets on both sides, this
reduces to

[h(θ) − γ(θ′)]2 ≥ [h(θ) − γ(θ)]2 for all θ, θ′.

If h(θ) is one of the possible values of the function γ, this condition holds if and
only if

Eθδ(X) = γ(θ) . (1.11)

In the theory of point estimation, (1.11) is customarily taken as the definition of
unbiasedness. Except under rather pathological conditions, it is both a necessary
and sufficient condition for δ to satisfy (1.9). (See Problem 1.2.)

1.6 Bayes and Minimax Procedures

We now turn to a discussion of some preference orderings of decision procedures
and their risk functions. One such ordering is obtained by assuming that in re-
peated experiments the parameter itself is a random variable Θ, the distribution
of which is known. If for the sake of simplicity one supposes that this distribution
has a probability density ρ(θ), the overall average loss resulting from the use of
a decision procedure δ is

r(ρ, δ) =

∫
EθL(θ, δ(X))ρ(θ) dθ =

∫
R(θ, δ)ρ(θ) dθ (1.12)

and the smaller r(ρ, δ), the better is δ. An optimum procedure is one that
minimizes r(ρ, δ), and is called a Bayes solution of the given decision problem
corresponding to a priori density ρ. The resulting minimum of r(ρ, δ) is called
the Bayes risk of δ.

Unfortunately, in order to apply this principle it is necessary to assume not
only that θ is a random variable but also that its distribution is known. This
assumption is usually not warranted in applications. Alternatively, the right-hand
side of (1.12) can be considered as a weighted average of the risks; for ρ(θ) ≡ 1 in
particular, it is then the area under the risk curve. With this interpretation the
choice of a weight function ρ expresses the importance the experimenter attaches
to the various values of θ. A systematic Bayes theory has been developed which
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interprets ρ as describing the state of mind of the investigator towards θ. For an
account of this approach see, for example, Berger (1985a) and Robert (1994).

If no prior information regarding θ is available, one might consider the max-
imum of the risk function its most important feature. Of two risk functions the
one with the smaller maximum is then preferable, and the optimum procedures
are those with the minimax property of minimizing the maximum risk. Since
this maximum represents the worst (average) loss that can result from the use
of a given procedure, a minimax solution is one that gives the greatest possible
protection against large losses. That such a principle may sometimes be quite un-
reasonable is indicated in Figure 1.2, where under most circumstances one would
prefer δ1 to δ2 although its risk function has the larger maximum.

R(!,")

!

"2

"1

Figure 1.2.

Perhaps the most common situation is one intermediate to the two just de-
scribed. On the one hand, past experience with the same or similar kind of
experiment is available and provides an indication of what values of θ to ex-
pect; on the other, this information is neither sufficiently precise nor sufficiently
reliable to warrant the assumptions that the Bayes approach requires. In such
circumstances it seems desirable to make use of the available information without
trusting it to such an extent that catastrophically high risks might result if it is
inaccurate or misleading. To achieve this one can place a bound on the risk and
restrict consideration to decision procedures δ for which

R(θ, δ) ≤ C for all θ. (1.13)

[Here the constant C will have to be larger than the maximum risk C0 of the min-
imax procedure, since otherwise there will exist no procedures satisfying (1.13).]
Having thus assured that the risk can under no circumstances get out of hand,
the experimenter can now safely exploit his knowledge of the situation, which
may be based on theoretical considerations as well as on past experience; he can
follow his hunches and guess at a distribution ρ for θ. This leads to the selection
of a procedure δ (a restricted Bayes solution), which minimizes the average risk
(1.12) for this a priori distribution subject to (1.13). The more certain one is of
ρ, the larger one will select C, thereby running a greater risk in case of a poor
guess but improving the risk if the guess is good.

Instead of specifying an ordering directly, one can postulate conditions that the
ordering should satisfy. Various systems of such conditions have been investigated
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and have generally led to the conclusion that the only orderings satisfying these
systems are those which order the procedures according to their Bayes risk with
respect to some prior distribution of θ. For details, see for example Blackwell and
Girshick (1954), Ferguson (1967), Savage (1972), Berger (1985a), and Bernardo
and Smith (1994).

1.7 Maximum Likelihood

Another approach, which is based on considerations somewhat different from
those of the preceding sections, is the method of maximum likelihood. It has
led to reasonable procedures in a great variety of problems, and is still playing
a dominant role in the development of new tests and estimates. Suppose for
a moment that X can take on only a countable set of values x1, x2, . . . , with
Pθ(x) = Pθ{X = x}, and that one wishes to determine the correct value of θ,
that is, the value that produced the observed x. This suggests considering for
each possible θ how probable the observed x would be if θ were the true value.
The higher this probability, the more one is attracted to the explanation that the
θ in question produced x, and the more likely the value of θ appears. Therefore,
the expression Pθ(x) considered for fixed x as a function of θ has been called
the likelihood of θ. To indicate the change in point of view, let it be denoted
by Lx(θ). Suppose now that one is concerned with an action problem involving
a countable number of decisions, and that it is formulated in terms of a gain
function (instead of the usual loss function), which is 0 if the decision taken is
incorrect and is a(θ) > 0 if the decision taken is correct and θ is the true value.
Then it seems natural to weight the likelihood Lx(θ) by the amount that can
be gained if θ is true, to determine the value of θ that maximizes a(θ)Lx(θ)
and to select the decision that would be correct if this were the true value of θ.
Essentially the same remarks apply in the case in which Pθ(x) is a probability
density rather than a discrete probability.

In problems of point estimation, one usually assumes that a(θ) is independent
of θ. This leads to estimating θ by the value that maximizes the likelihood Lx(θ),
the maximum-likelihood estimate of θ. Another case of interest is the class of
two-decision problems illustrated by Example 1.2.1(i). Let ω0 and ω1 denote the
sets of θ-values for which d0 and d1 are the correct decisions, and assume that
a(θ) = a0 or a1 as θ belongs to ω0 or ω1 respectively. Then decision d0 or d1 is
taken as a1 supθ∈ω1

Lx(θ) < or > a0 supθ∈ω0
Lx(θ), that is as

sup
θ∈ω0

Lx(θ)

sup
θ∈ω1

Lx(θ)
> or <

a1

a0
. (1.14)

This is known as a likelihood ratio procedure.4

4This definition differs slightly from the usual one where in the denominator on the
left-hand side of (1.14) the supremum is taken over the set ω0 ∪ ω1. The two definitions
agree whenever the left-hand side of (1.14) is ≤ 1, and the procedures therefore agree is
a1 < a0.
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Although the maximum likelihood principle is not based on any clearly defined
optimum considerations, it has been very successful in leading to satisfactory
procedures in many specific problems. For wide classes of problems, maximum
likelihood procedures will be shown in Chapter 13 to possess various asymptotic
optimum properties as the sample size tends to infinity; also see TPE2, Chapter
6. On the other hand, there exist examples for which the maximum-likelihood
procedure is worse than useless; where it is, in fact, so bad that one can do better
without making any use of the observations (see Problem 6.28).

1.8 Complete Classes

None of the approaches described so far is reliable in the sense that the resulting
procedure is necessarily satisfactory. There are problems in which a decision pro-
cedure δ0 exists with uniformly minimum risk among all unbiased or invariant
procedures, but where there exists a procedure δ1 not possessing this particular
impartiality property and preferable to δ0. (Cf. Problems 1.14 and 1.16.) As was
seen earlier, minimax procedures can also be quite undesirable, while the success
of Bayes and restricted Bayes solutions depends on a priori information which
is usually not very reliable if it is available at all. In fact, it seems that in the
absence of reliable a priori information no principle leading to a unique solution
can be entirely satisfactory.

This suggests the possibility, at least as a first step, of not insisting on a unique
solution but asking only how far a decision problem can be reduced without loss
of relevant information. It has already been seen that a decision procedure δ can
sometimes be eliminated from consideration because there exists a procedure δ′

dominating it in the sense that

R(θ, δ′) ≤ R(θ, δ) for all θ
R(θ, δ′) < R(θ, δ) for some θ.

(1.15)

In this case δ is said to be inadmissible; δ is called admissible if no such dominating
δ′ exists. A class C of decision procedures is said to be complete if for any δ not
in C there exists δ′ in C dominating it. A complete class is minimal if it does not
contain a complete subclass. If a minimal complete class exists, as is typically
the case, it consists exactly of the totality of admissible procedures.

It is convenient to define also the following variant of the complete class notion.
A class C is said to be essentially complete if for any procedure δ there exists
δ′ in C such that R(θ, δ′) ≤ R(θ, δ) for all θ. Clearly, any complete class is also
essentially complete. In fact, the two definitions differ only in their treatment of
equivalent decision rules, that is, decision rules with identical risk function. If δ
belongs to the minimal complete class C, any equivalent decision rule must also
belong to C. On the other hand, a minimal essentially complete class need contain
only one member from such a set of equivalent procedures.

In a certain sense a minimal essentially complete class provides the maximum
possible reduction of a decision problem. On the one hand, there is no reason
to consider any of the procedures that have been weeded out. For each of them,
there is included one in C that is as good or better. On the other hand, it is not
possible to reduce the class further. Given any two procedures in C, each of them
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is better in places than the other, so that without additional information it is not
known which of the two is preferable.

The primary concern in statistics has been with the explicit determination of
procedures, or classes of procedures, for various specific decision problems. Those
studied most extensively have been estimation problems, and problems involving
a choice between only two decisions (hypothesis testing), the theory of which
constitutes the subject of the present volume. However, certain conclusions are
possible without such specialization. In particular, two results concerning the
structure of complete classes and minimax procedures have been proved to hold
under very general assumptions.5

(i) The totality of Bayes solutions and limits of Bayes solutions constitute a
complete class.

(ii) Minimax procedures are Bayes solutions with respect to a least favorable a
priori distribution, that is, an a priori distribution that maximizes the as-
sociated Bayes risk, and the minimax risk equals this maximum Bayes risk.
Somewhat more generally, if there exists no least favorable a priori distribu-
tion but only a sequence for which the Bayes risk tends to the maximum, the
minimax procedures are limits of the associated sequence of Bayes solutions.

1.9 Sufficient Statistics

A minimal complete class was seen in the preceding section to provide the
maximum possible reduction of a decision problem without loss of information.
Frequently it is possible to obtain a less extensive reduction of the data, which
applies simultaneously to all problems relating to a given class P = {Pθ, θ ∈ Ω}
of distributions of the given random variable X. It consists essentially in discard-
ing that part of the data which contains no information regarding the unknown
distribution Pθ, and which is therefore of no value for any decision problem
concerning θ.

Example 1.9.1 Trials are performed with constant unknown probability p of
success. If Xi is 1 or 0 as the ith trial is a success or failure, the sample
(X1, . . . , Xn) shows how many successes there were and in which trials they
occurred. The second of these pieces of information contains no evidence as to
the value of p. Once the total number of successes

∑
Xi is known to be equal to

t, each of the
(

n
t

)
possible positions of these successes is equally likely regardless

of p. It follows that knowing
∑

Xi but neither the individual Xi nor p, one can,
from a table of random numbers, construct a set of random variables X ′

1, . . . , X
′
n

whose joint distribution is the same as that of X1, . . . , Xn. Therefore, the infor-
mation contained in the Xi is the same as that contained in

∑
Xi and a table of

random numbers.

5Precise statements and proofs of these results are given in the book by Wald (1950).
See also Ferguson (1967) and Berger (1985a). Additional results and references are given
in Brown and Marden (1989) and Kowalski (1995).



1.9. Sufficient Statistics 19

Example 1.9.2 If X1, . . . , Xn are independently normally distributed with zero
mean and variance σ2, the conditional distribution of the sample point over each
of the spheres,

∑
X2

i = constant, is uniform irrespective of σ2. One can therefore
construct an equivalent sample X ′

1, . . . , X
′
n from a knowledge of

∑
X2

i and a
mechanism that can produce a point randomly distributed over a sphere.

More generally, a statistic T is said to be sufficient for the family P = {Pθ, θ ∈
Ω} (or sufficient for θ, if it is clear from the context what set Ω is being considered)
if the conditional distribution of X given T = t is independent of θ. As in the two
examples it then follows under mild assumptions6 that it is not necessary to utilize
the original observations X. If one is permitted to observe only T instead of X,
this does not restrict the class of available decision procedures. For any value t of
T let Xt be a random variable possessing the conditional distribution of X given t.
Such a variable can, at least theoretically, be constructed by means of a suitable
random mechanism. If one then observes T to be t and Xt to be x′, the random
variable X ′ defined through this two-stage process has the same distribution as
X. Thus, given any procedure based on X, it is possible to construct an equivalent
one based on X ′ which can be viewed as a randomized procedure based solely
on T . Hence if randomization is permitted (and we shall assume throughout that
this is the case), there is no loss of generality in restricting consideration to a
sufficient statistic.

It is inconvenient to have to compute the conditional distribution of X given
t in order to determine whether or not T is sufficient. A simple check is provided
by the following factorization criterion.

Consider first the case that X is discrete, and let Pθ(x) = Pθ{X = x}. Then a
necessary and sufficient condition for T to be sufficient for θ is that there exists
a factorization

Pθ(x) = gθ[T (x)]h(x), (1.16)

where the first factor may depend on θ but depends on x only through T (x),
while the second factor is independent of θ.

Suppose that (1.16) holds, and let T (x) = t. Then Pθ{T = t} =
∑

P0(x
′)

summed over all points x′ with T (x′) = t, and the conditional probability

Pθ{X = x | T = t} =
Pθ(x)

Pθ{T = t} =
h(x)∑
h(x′)

is independent of θ. Conversely, if this conditional distribution does not depend
on θ and is equal to, say k(x, t), then Pθ(x) = Pθ{T = t}k(x, t), so that (1.16)
holds.

Example 1.9.3 Let X1, . . . , Xn be independently and identically distributed
according to the Poisson distribution (1.2). Then

Pτ (x1, . . . , xn) =
τ

∑
xie−nτ

n∏
j=1

xj !
,

6These are connected with difficulties concerning the behavior of conditional prob-
abilities. For a discussion of these difficulties see Sections 2.3–2.5.
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and it follows that
∑

Xi is a sufficient statistic for τ .

In the case that the distribution of X is continuous and has probability density
pX

θ (x), let X and T be vector-valued, X = (X1, . . . , Xn) and T = (T1, . . . Tt) say.
Suppose that there exist functions Y = (Y1, . . . , Yn−r) on the sample space such
that the transformation

(x1, . . . , xn) ↔ (T1(x), . . . , Tr(x), Y1(x), . . . , Yn−r(x)) (1.17)

is 1:1 on a suitable domain, and that the joint density of T and Y exists and is
related to that of X by the usual formula

pX
θ (x) = pT,Y

θ (T (x), Y (x)) · |J |, (1.18)

where J is the Jacobian of (T1, . . . , Tr, Y1, . . . , Yn−r) with respect to (x1, . . . , xn).
Thus in Example 1.9.2, T =

√∑
X2

i , Y1, . . . , Yn−1 can be taken to be the polar

coordinates of the sample point. From the joint density pT,Y
θ (t, y) of T and Y ,

the conditional density of Y given T = t is obtained as

pY |t
θ (y) =

pT,Y
θ (t, y)

∫
pT,Y

θ (t, y′) dy′
(1.19)

provided the denominator is different from zero. Regularity conditions for the
validity of (1.18) are given by Tukey (1958b).

Since in the conditional distribution given t only the Y ’s vary, T is sufficient
for θ if the conditional distribution of Y given t is independent of θ. Suppose
that T satisfies (1.19). Then analogously to the discrete case, a necessary and
sufficient condition for T to be sufficient is a factorization of the density of the
form

pX
θ (x) = gθ[T (x)]h(x). (1.20)

(See Problem 1.19.) The following two examples illustrate the application of the
criterion in this case. In both examples the existence of functions Y satisfying
(1.17)–(1.19) will be assumed but not proved. As will be shown later (Section
2.6), this assumption is actually not needed for the validity of the factorization
criterion.

Example 1.9.4 Let X1, . . . , Xn be independently distributed with normal
probability density

pξ,σ(x) = (2πσ2)−n/2 exp

(
− 1

2σ2

∑
x2

i +
ξ
σ2

∑
xi −

n
2σ2

ξ2

)
.

Then the factorization criterion shows (
∑

Xi,
∑

X2
i ) to be sufficient for (ξ, σ).

Example 1.9.5 Let X1, . . . , Xn be independently distributed according to the
uniform distribution U(0, θ) over the interval (0, θ). Then pθ(x) = θ−n(max xi, θ),
where u(a, b) is 1 or 0 as a ≤ b or a > b, and hence max Xi is sufficient for θ.

An alternative criterion of Bayes sufficiency, due to Kolmogorov (1942), pro-
vides a direct connection between this concept and some of the basic notions
of decision theory. As in the theory of Bayes solutions, consider the unknown
parameter θ as a random variable Θ with an a priori distribution, and assume
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for simplicity that it has a density ρ(θ). Then if T is sufficient, the conditional
distribution of Θ given X = x depends only on T (x). Conversely, if ρ(θ) += 0 for
all θ and if the conditional distribution of Θ given x depends only on T (x), then
T is sufficient for θ.

In fact, under the assumptions made, the joint density of X and Θ is pθ(x)ρ(θ).
If T is sufficient, it follows from (1.20) that the conditional density of Θ given
x depends only on T (x). Suppose, on the other hand, that for some a priori
distribution for which ρ(θ) += 0 for all θ the conditional distribution of Θ given x
depends only on T (x). Then

pθ(x)ρ(θ)∫
pθ′(x)ρ(θ′) dθ′ = fθ[T (x)]

and by solving for pθ(x) it is seen that T is sufficient.
Any Bayes solution depends only on the conditional distribution of Θ given

x (see Problem 1.8) and hence on T (x). Since typically Bayes solutions together
with their limits form an essentially complete class, it follows that this is also
true of the decision procedures based on T . The same conclusion had already
been reached more directly at the beginning of the section.

For a discussion of the relation of these different aspects of sufficiency in more
general circumstances and references to the literature see Le Cam (1964), Roy
and Ramamoorthi (1979) and Yamada and Morimoto (1992). An example of a
statistic which is Bayes sufficient in the Kolmogorov sense but not according to
the definition given at the beginning of this section is provided by Blackwell and
Ramamoorthi (1982).

By restricting attention to a sufficient statistic, one obtains a reduction of
the data, and it is then desirable to carry this reduction as far as possible. To
illustrate the different possibilities, consider once more the binomial Example
1.9.1. If m is any integer less than n and T1 =

∑m
i=1 Xi, T2 =

∑n
i=m+1 Xi,

then (T1, T2) constitutes a sufficient statistic, since the conditional distribution
of X1, . . . , Xn given T1 = t1, T2 = t2 is independent of p. For the same reason, the
full sample (X1, . . . , Xn) itself is also a sufficient statistic. However, T =

∑n
i=1 Xi

provides a more thorough reduction than either of these and than various others
that can be constructed. A sufficient statistic T is said to be minimal sufficient if
the data cannot be reduced beyond T without losing sufficiency. For the binomial
example in particular,

∑n
i=1 Xi can be shown to be minimal (Problem 1.17). This

illustrates the fact that in specific examples the sufficient statistic determined by
inspection through the factorization criterion usually turns out to be minimal.
Explicit procedures for constructing minimal sufficient statistics are discussed in
Section 1.5 of TPE2.

1.10 Problems

Section 1.2

Problem 1.1 The following distributions arise on the basis of assumptions
similar to those leading to (1.1)–(1.3).
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(i) Independent trials with constant probability p of success are carried out until
a preassigned number m of successes has been obtained. If the number of trials
required is X + m, then X has the negative binomial distribution Nb(p, m):

P{X = x} =

(
m + x − 1

x

)
pm(1 − p)x, x = 0, 1, 2 . . . .

(ii) In a sequence of random events, the number of events occurring in any time
interval of length τ has the Poisson distribution P (λτ), and the numbers of events
in nonoverlapping time intervals are independent. Then the “waiting time” T ,
which elapses from the starting point, say t = 0, until the first event occurs, has
the exponential probability density

p(t) = λe−λτ , t ≥ 0.

Let Ti, i ≥ 2, be the time elapsing from the occurrence of the (i − 1)st event
to that of the ith event. Then it is also true, although more difficult to prove,
that T1, T2, . . . are identically and independently distributed. A proof is given,
for example, in Karlin and Taylor (1975).
(iii) A point X is selected “at random” in the interval (a, b), that is, the proba-
bility of X falling in any subinterval of (a, b) depends only on the length of the
subinterval, not on its position. Then X has the uniform distribution U(a, b) with
probability density

p(x) = 1/(b − a), a < x < b.

Section 1.5

Problem 1.2 Unbiasedness in point estimation. Suppose that γ is a continuous
real-valued function defined over Ω which is not constant in any open subset of
Ω, and that the expectation h(θ) = Eθδ(X) is a continuous function of θ for
every estimate δ(X) of γ(θ). Then (1.11) is a necessary and sufficient condition
for δ(X) to be unbiased when the loss function is the square of the error.
[Unbiasedness implies that γ2(θ′)−γ2(θ) ≥ 2h(θ)[γ(θ′)−γ(θ)] for all θ, θ′. If θ is
neither a relative minimum nor maximum of γ, it follows that there exist points
θ′ arbitrarily close to θ both such that γ(θ) + γ(θ′) ≥ and ≤ 2h(θ), and hence
that γ(θ) = h(θ). That this equality also holds for an extremum of γ follows by
continuity, since γ is not constant in any open set.]

Problem 1.3 Median unbiasedness.
(i) A real number m is a median for the random variable Y if P{Y ≥ m} ≥ 1

2 ,
P{Y ≤ m} ≥ 1

2 . Then all real a1, a2 such that m ≤ a1 ≤ a2 or m ≥ a1 ≥ a2

satisfy E|Y − a1| ≤ E|Y − a2|.
(ii) For any estimate δ(X) of γ(θ), let m−(θ) and m+(θ) denote the infimum
and supremum of the medians of δ(X), and suppose that they are continuous
functions of θ. Let γ(θ) be continuous and not constant in any open subset of
Ω. Then the estimate δ(X) of γ(θ) is unbiased with respect to the loss function
L(θ, d) = |γ(θ)−d| if and only if γ(θ) is a median of δ(X) for each θ. An estimate
with this property is said to be median-unbiased.
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Problem 1.4 Nonexistence of unbiased procedures. Let X1, . . . , Xn be indepen-
dently distributed with density (1/a)f((x − ξ)/a), and let θ = (ξ, a). Then
no estimator of ξ exists which is unbiased with respect to the loss function
(d − ξ)k/ak. Note. For more general results concerning the nonexistence of
unbiased procedures see Rojo (1983).

Problem 1.5 Let C be any class of procedures that is closed under the transfor-
mations of a group G in the sense that δ ∈ C implies g∗δg−1 ∈ C for all g ∈ G. If
there exists a unique procedure δ0 that uniformly minimizes the risk within the
class C, then δ0 is invariant.7 If δ0 is unique only up to sets of measure zero, then
it is almost invariant, that is, for each g it satisfies the equation δ(gx) = g∗δ(x)
except on a set Ng of measure 0.

Problem 1.6 Relation of unbiasedness and invariance.
(i) If δ0 is the unique (up to sets of measure 0) unbiased procedure with uniformly
minimum risk, it is almost invariant.
(ii) If Ḡ is transitive and G∗ commutative, and if among all invariant (almost
invariant) procedures there exists a procedure δ0 with uniformly minimum risk,
then it is unbiased.
(iii) That conclusion (ii) need not hold without the assumptions concerning G∗

and Ḡ is shown by the problem of estimating the mean ξ of a normal distribution
N(ξ, σ2) with loss function (ξ − d)2/σ2. This remains invariant under the groups
G1 : gx = x + b, −∞ < b < ∞ and G2 : gx = ax + b, 0 < a < ∞, −∞ < b < ∞.
The best invariant estimate relative to both groups is X, but there does not exist
an estimate which is unbiased with respect to the given loss function.
[(i): This follows from the preceding problem and the fact that when δ is unbiased
so is g∗δg−1.
(ii): It is the defining property of transitivity that given θ, θ′ there exists ḡ such
that θ′ = ḡθ. Hence for any θ, θ′

EθL(θ′, δ0(X)) = EθL(ḡθ, δ0(X)) = EθL(θ, g∗−1δ0(X)).

Since G∗ is commutative, g∗−1δ0 is invariant, so that

R(θ, g∗−1δ0) ≥ R(θ, δ0) = EθL(θ, δ0(X)).]

Section 1.6

Problem 1.7 Unbiasedness in interval estimation. Confidence intervals I =
(L, L̄) are unbiased for estimating θ with loss function L(θ, I) = (θ−L)2+(L̄−θ)2

provided E[ 12 (L + L̄)] = θ for all θ, that is, provided the midpoint of I is an
unbiased estimate of θ in the sense of (1.11).

Problem 1.8 Structure of Bayes solutions.
(i) Let Θ be an unobservable random quantity with probability density ρ(θ), and
let the probability density of X be pθ(x) when Θ = θ. Then δ is a Bayes solution

7Here and in Problems 1.6, 1.7, 1.11, 1.15, and 1.16 the term “invariant” is used in
the general sense (1.8) of “invariant or equivalent.”
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of a given decision problem if for each x the decision δ(x) is chosen so as to
minimize

∫
L(θ, δ(x))π(θ | x) dθ, where π(θ | x) = ρ(θ)pθ(x)/

∫
ρ(θ′)pθ′(x) dθ′ is

the conditional (a posteriori) probability density of Θ given x.
(i) Let the problem be a two-decision problem with the losses as given in Example
1.5.5. Then the Bayes solution consists in choosing decision d0 if

aP{Θ ∈ ω1 | x} < bP{Θ ∈ ω0 | x}

and decision d1 if the reverse inequality holds. The choice of decision is immaterial
in case of equality.
(iii) In the case of point estimation of a real-valued function g(θ) with loss function
L(θ, d) = (g(θ) − d)2, the Bayes solution becomes δ(x) = E[g(Θ) | x]. When
instead the loss function is L(θ, d) = |g(θ) − d|, the Bayes estimate δ(x) is any
median of the conditional distribution of g(Θ) given x.
[(i): The Bayes risk r(ρ, δ) can be written as

∫
[
∫

L(θ, δ(x))π(θ | x) dθ] × p(x) dx,
where p(x) =

∫
ρ(θ′)pθ′(x) dθ′.

(ii): The conditional expectation
∫

L(θ, d0)π(θ | x) dθ reduces to aP{Θ ∈ ω1 | x},
and similarly for d1.]

Problem 1.9 (i) As an example in which randomization reduces the maximum
risk, suppose that a coin is known to be either standard (HT) or to have heads on
both sides (HH). The nature of the coin is to be decided on the basis of a single
toss, the loss being 1 for an incorrect decision and 0 for a correct one. Let the
decision be HT when T is observed, whereas in the contrary case the decision is
made at random, with probability ρ for HT and 1−ρ for HH. Then the maximum
risk is minimized for ρ = 1

3 .
(ii) A genetic setting in which such a problem might arise is that of a couple, of
which the husband is either dominant homozygous (AA) or heterozygous (Aa)
with respect to a certain characteristic, and the wife is homozygous recessive (aa).
Their child is heterozygous, and it is of importance to determine to which genetic
type the husband belongs. However, in such cases an a priori probability is usually
available for the two possibilities. One is then dealing with a Bayes problem, and
randomization is no longer required. In fact, if the a priori probability is p that
the husband is dominant, then the Bayes procedure classifies him as such if p > 1

3
and takes the contrary decision if p < 1

3 .

Problem 1.10 Unbiasedness and minimax. Let Ω = Ω0 ∪ Ω1 where Ω0, Ω1

are mutually exclusive, and consider a two-decision problem with loss function
L(θ, di) = ai for θ ∈ Ωj(j += i) and L(θ, di) = 0 for θ ∈ Ωi(i = 0, 1).
(i) Any minimax procedure is unbiased. (ii) The converse of (i) holds provided
Pθ(A) is a continuous function of θ for all A, and if the sets Ω0 and Ω1 have at
least one common boundary point.
[(i): The condition of unbiasedness in this case is equivalent to sup Rδ(θ) ≤
a0a1/(a0 + a1). That this is satisfied by any minimax procedure is seen by com-
parison with the procedure δ(x) = d0 or = d1 with probabilities a1/(a0 +a1) and
a0/(a0 + a1) respectively.
(ii): If θ0, is a common boundary point, continuity of the risk function implies
that any unbiased procedure satisfies Rδ(θ0) = a0a1/(a0 + a1) and hence sup
Rδ(θ0) = a0a1/(a0 + a1).]
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Problem 1.11 Invariance and minimax. Let a problem remain invariant rel-
ative to the groups G, Ḡ, and G∗ over the spaces X , Ω, and D respectively.
Then a randomized procedure Yx is defined to be invariant if for all x and g the
conditional distribution of Yx given x is the same as that of g∗−1Ygx.
(i) Consider a decision procedure which remains invariant under a finite group
G = {g1, . . . , gN}. If a minimax procedure exists, then there exists one that
is invariant. (ii) This conclusion does not necessarily hold for infinite groups,
as is shown by the following example. Let the parameter space Ω consist of
all elements θ of the free group with two generators, that is, the totality of
formal products π1 . . . πn (n = 0, 1, 2, . . .) where each πi is one of the elements
a, a−1, b, b−1 and in which all products aa−1, a−1a, bb−1, and b−1b have been
canceled. The empty product (n = 0) is denoted by e. The sample point X is
obtained by multiplying θ on the right by one of the four elements a, a−1, b, b−1

with probability 1
4 each, and canceling if necessary, that is, if the random factor

equals π−1
n . The problem of estimating θ with L(θ, d) equal to 0 if d = θ and equal

to 1 otherwise remains invariant under multiplication of X, θ, and d on the left
by an arbitrary sequence π−m . . . π−2π−1(m = 0, 1, . . .). The invariant procedure
that minimizes the maximum risk has risk function R(θ, δ) ≡ 3

4 . However, there
exists a noninvariant procedure with maximum risk 1

4 .
[(i): If Yx is a (possibly randomized) minimax procedure, an invariant minimax
procedure Y ′

x is defined by P (Y ′
x = d) =

∑N
i=1 P (Ygix = g∗

i d)/N .
(ii): The better procedure consists in estimating θ to be π1 . . . πk−1 when π1 . . . πk

is observed (k ≥ 1), and estimating θ to be a, a−1, b, b−1 with probability 1
4 each in

case the identity is observed. The estimate will be correct unless the last element
of X was canceled, and hence will be correct with probability ≥ 3

4 .]

Section 1.7

Problem 1.12 (i) Let X have probability density pθ(x) with θ one of the values
θ1, . . . , θn, and consider the problem of determining the correct value of θ, so
that the choice lies between the n decisions d1 = θ1, . . . , dn = θn with gain
a(θi) if di = θi and 0 otherwise. Then the Bayes solution (which maximizes the
average gain) when θ is a random variable taking on each of the n values with
probability 1/n coincides with the maximum-likelihood procedure. (ii) Let X
have probability density pθ(x) with 0 ≤ θ ≤ 1. Then the maximum-likelihood
estimate is the mode (maximum value) of the a posteriori density of Θ given x
when Θ is uniformly distributed over (0, 1).

Problem 1.13 (i) Let X1, . . . , Xn be a sample from N(ξ, σ2), and consider the
problem of deciding between ω0 : ξ < 0 and ω1 : ξ ≥ 0. If x̄ =

∑
xi/n and

C = (a1/a0)
2/n, the likelihood-ratio procedure takes decision d0 or d, as

√
nx̄√∑

(xi − x̄)2
< k or > k,

where k =
√

C − 1 if C > 1 and k =
√

(1 − C)/C if C < 1.
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(ii) For the problem of deciding between ω0 : σ < σ0 and ω1 : σ ≥ σ0 the
likelihood ratio procedure takes decision d0 or d, as

∑
(xi − x̄)2

nσ2
0

< or > k,

where k is the smaller root of the equation Cx = ex−1 if C > 1, and the larger
root of x = Cex−1 if C < 1, where C is defined as in (i).

Section 1.8

Problem 1.14 Admissibility of unbiased procedures.
(i) Under the assumptions of Problem 1.10, if among the unbiased procedures
there exists one with uniformly minimum risk, it is admissible. (ii) That in general
an unbiased procedure with uniformly minimum risk need not be admissible is
seen by the following example. Let X have a Poisson distribution truncated at
0, so that Pθ{X = x} = θxe−θ/[x!(1 − e−θ)] for x = 1, 2, . . . . For estimating
γ(θ) = e−θ with loss function L(θ, d) = (d−e−θ)2, there exists a unique unbiased
estimate, and it is not admissible.
[(ii): The unique unbiased estimate δ0(x) = (−1)x+1 is dominated by δ1(x) = 0
or 1 as x is even or odd.]

Problem 1.15 Admissibility of invariant procedures. If a decision problem
remains invariant under a finite group, and if there exists a procedure δ0

that uniformly minimizes the risk among all invariant procedures, then δ0 is
admissible.
[This follows from the identity R(θ, δ) = R(ḡθ, g∗δg−1) and the hint given in
Problem 1.11(i).]

Problem 1.16 (i) Let X take on the values θ − 1 and θ + 1 with probability
1
2 each. The problem of estimating θ with loss function L(θ, d) = min(|θ − d|, 1)
remains invariant under the transformation gX = X + c, ḡθ = θ + c, g∗d = d+ c.
Among invariant estimates, those taking on the values X − 1 and X + 1 with
probabilities p and q (independent of X) uniformly minimize the risk. (ii) That the
conclusion of Problem 1.15 need not hold when G is infinite follows by comparing
the best invariant estimates of (i) with the estimate δ1(x) which is X + 1 when
X < 0 and X − 1 when X ≥ 0.

Section 1.9

Problem 1.17 In n independent trials with constant probability p of success,
let Xi = 1 or 0 as the ith trial is a success or not. Then

∑n
i=1 Xi is minimal

sufficient.
[Let T =

∑
Xi and suppose that U = f(T ) is sufficient and that f(k1) = · · · =

f(kr) = u. Then P{T = t | U = u} depends on p.]

Problem 1.18 (i) Let X1, . . . , Xn be a sample from the uniform distribution
U(0, θ), 0 < θ < ∞, and let T = max(X1, . . . , Xn). Show that T is sufficient,
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once by using the definition of sufficiency and once by using the factorization
criterion and assuming the existence of statistics Yi satisfying (1.17)–(1.19).
(ii) Let X1, . . . , Xn be a sample from the exponential distribution E(a, b) with
density (1/b)e−(x−a)/b when x ≥ a (−∞ < a < ∞, 0 < b). Use the factorization
criterion to prove that (min(X1, . . . , Xn),

∑n
i=1 Xi) is sufficient for a, b, assuming

the existence of statistics Yi satisfying (1.17)–(1.19).

Problem 1.19 A statistic T satisfying (1.17)–(1.19) is sufficient if and only if it
satisfies (1.20).

1.11 Notes

Some of the basic concepts of statistical theory were initiated during the first
quarter of the 19th century by Laplace in his fundamental Théorie Analytique
des Probabilités (1812), and by Gauss in his papers on the method of least squares.
Loss and risk functions are mentioned in their discussions of the problem of point
estimation, for which Gauss also introduced the condition of unbiasedness.

A period of intensive development of statistical methods began toward the end
of the century with the work of Karl Pearson. In particular, two areas were ex-
plored in the researches of R. A. Fisher, J. Neyman, and many others: estimation
and the testing of hypotheses. The work of Fisher can be found in his books
(1925, 1935, 1956) and in the five volumes of his collected papers (1971–1973).
An interesting review of Fisher’s contributions is provided by Savage (1976), and
his life and work are recounted in the biography by his daughter Joan Fisher
Box (1978). Many of Neyman’s principal ideas are summarized in his Lectures
and Conferences (1938b). Collections of his early papers and of his joint papers
with E. S. Pearson have been published [Neyman (1967) and Neyman and Pear-
son (1967)], and Constance Reid (1982) has written his biography. An influential
synthesis of the work of this period by Cramér appeared in 1946. Further concepts
were introduced in Lehmann (1950, 1951ab). More recent surveys of the modern
theories of estimation and testing are contained, for example, in the books by
Strasser (1985), Stuart and Ord (1991, 1999), Schervish (1995), Shao (1999) and
Bickel and Doksum (2001).

A formal unification of the theories of estimation and hypothesis testing, which
also contains the possibility of many other specializations, was achieved by Wald
in his general theory of decision procedures. An account of this theory, which
is closely related to von Neumann’s theory of games, is found in Wald’s book
(1950) and in those of Blackwell and Girshick (1954), Ferguson (1967), and Berger
(1985b).



2
The Probability Background

2.1 Probability and Measure

The mathematical framework for statistical decision theory is provided by the
theory of probability, which in turn has its foundations in the theory of measure
and integration. The present chapter serves to define some of the basic concepts of
these theories, to establish some notation, and to state without proof some of the
principal results which will be used throughout Chapters 3–9. In the remainder
of this chapter, certain special topics are treated in more detail. Basic notions of
convergence in probability theory which will be needed for large sample statistical
theory are deferred to Section 11.2.

Probability theory is concerned with situations which may result in different
outcomes. The totality of these possible outcomes is represented abstractly by
the totality of points in a space Z. Since the events to be studied are aggregates
of such outcomes, they are represented by subsets of Z. The union of two sets
C1, C2 will be denoted by C1 ∪C2, their intersection by C1 ∩C2, the complement
of C by Cc = Z − C, and the empty set by 0. The probability P (C) of an event
C is a real number between 0 and 1; in particular

P (0) = 0 and P (Z) = 1 (2.1)

Probabilities have the property of countable additivity,

P
(⋃

Ci

)
=

∑
P (Ci) if Ci ∩ Cj = 0 for all i += j. (2.2)

Unfortunately it turns out that the set functions with which we shall be con-
cerned usually cannot be defined in a reasonable manner for all subsets of Z
if they are to satisfy (2.2). It is, for example, not possible to give a reasonable
definition of “area” for all subsets of a unit square in the plane.
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The sets for which the probability function P will be defined are said to be
“measurable.” The domain of definition of P should include with any set C its
complement Cc, and with any countable number of events their union. By (2.1),
it should also include Z. A class of sets that contains Z and is closed under
complementation and countable unions is a σ-field. Such a class is automatically
also closed under countable intersections.

The starting point of any probabilistic considerations is therefore a space Z,
representing the possible outcomes, and a σ-field C of subsets of Z, representing
the events whose probability is to be defined. Such a couple (Z, C) is called
a measurable space, and the elements of C constitute the measurable sets. A
countably additive nonnegative (not necessarily finite) set function µ defined
over C and such that µ(0) = 0 is called a measure. If it assigns the value 1 to Z,
it is a probability measure. More generally, µ is finite if µ(Z) < ∞ and σ-finite if
there exist C1, C2, . . . in C (which may always be taken to be mutually exclusive)
such that ∪Ci = Z and µ(Ci) < ∞ for i = 1, 2, . . . . Important special cases are
provided by the following examples.

Example 2.1.1 (Lebesgue measure) Let Z be the n-dimensional Euclidean
space En, and C the smallest σ-field containing all rectangles1

R = {(z1, . . . , zn) : ai < zi ≤ bi, i = 1, . . . , n}.

The elements of C are called the Borel sets of En. Over C a unique measure µ
can be defined, which to any rectangle R assigns as its measure the volume of R,

µ(R) =
n∏

i=1

(bi − ai).

The measure µ can be completed by adjoining to C all subsets of sets of measure
zero. The domain of µ is thereby enlarged to a σ-field C′, the class of Lebesgue-
measurable sets. The term Lebesgue-measure is used for µ both when it is defined
over the Borel sets and when it is defined over the Lebesgue-measurable sets.

This example can be generalized to any nonnegative set function ν, which is
defined and countably additive over the class of rectangles R. There exists then,
as before, a unique measure µ over (Z, C) that agrees with ν for all R. This
measure can again be completed; however, the resulting σ-field depends on µ and
need not agree with the σ-field C′ obtained above.

Example 2.1.2 (Counting measure) Suppose the Z is countable, and let C
be the class of all subsets of Z. For any set C, define µ(C) as the number of
elements of C if that number is finite, and otherwise as +∞. This measure is
sometimes called counting measure.

In applications, the probabilities over (Z, C) refer to random experiments or
observations, the possible outcomes of which are the points z ∈ Z. When record-
ing the results of an experiment, one is usually interested only in certain of its

1If π(z) is a statement concerning certain objects z, then {z : π(z)} denotes the set
of all those z for which π(z) is true.
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aspects, typically some counts or measurements. These may be represented by a
function T taking values in some space T .

Such a function generates in T the σ-field B′ of sets B whose inverse image

C = T−1(B) = {z : z ∈ Z, T (z) ∈ B}

is in C, and for any given probability measure P over (Z, C) a probability measure
Q over (T ,B′) defined by

Q(B) = P (T−1(B)). (2.3)

Frequently, there is given a σ-field B of sets in T such that the probability
of B should be defined if and only if B ∈ B. This requires that T−1(B) ∈ C
for all B ∈ B, and the function (or transformation) T from (Z, C) into2(T ,B) is
then said to be C-measurable. Another implication is the sometimes convenient
restriction of probability statements to the sets B ∈ B even though there may
exist sets B /∈ B for which T−1(B) ∈ C and whose probability therefore could be
defined.

Of particular interest is the case of a single measurement in which the function
of T is real-valued. Let us denote it by X, and let A be the class of Borel sets
on the real line X . Such a measurable real-valued X is called a random variable,
and the probability measure it generates over (X ,A) will be denoted by P X and
called the probability distribution of X. The value this measure assigns to a set
A ∈ A will be denoted interchangeably by P X(A) and P (X ∈ A). Since the
intervals {x : x ≤ a} are in A, the probabilities F (a) = P (X ≤ a) are defined for
all a. The function F , the cumulative distribution function (cdf) of X, is nonde-
creasing and continuous on the right, and F (−∞) = 0, F (+∞) = 1. Conversely,
if F is any function with these properties, a measure can be defined over the
intervals by P{a < X ≤ b} = F (b) − F (a). It follows from Example 2.1.1 that
this measure uniquely determines a probability distribution over the Borel sets.
Thus the probability distribution P X and the cumulative distribution function F
uniquely determine each other. These remarks extend to probability distributions
over n-dimensional Euclidean space, where the cumulative distribution function
is defined by

F (a1, . . . , an) = P{X1 ≤ a1, . . . , Xn ≤ an}.

In concrete problems, the space (Z, C), corresponding to the totality of possi-
ble outcomes, is usually not specified and remains in the background. The real
starting point is the set X of observations (typically vector-valued) that are be-
ing recorded and which constitute the data, and the associated measurable space
(X ,A), the sample space. Random variables or vectors that are measurable trans-
formations T from (X ,A) into some (T ,B) are called statistics. The distribution
of T is then given by (2.3) applied to all B ∈ B. With this definition, a statistic
is specified by the function T and the σ-field B. We shall, however, adopt the
convention that when a function T takes on its values in a Euclidean space, unless
otherwise stated the σ-field B of measurable sets will be taken to be the class of

2The term into indicates that the range of T is in T ; if T (Z) = T , the transformation
is said to be from Z onto T .
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Borel sets. It then becomes unnecessary to mention it explicitly or to indicate it
in the notation.

The distinction between statistics and random variables as defined here is
slight. The term statistic is used to indicate that the quantity is a function of
more basic observations; all statistics in a given problem are functions defined
over the same sample space (X ,A). On the other hand, any real-valued statistic
T is a random variable, since it has a distribution over (T ,B), and it will be
referred to as a random variable when its origin is irrelevant. Which term is used
therefore depends on the point of view and to some extent is arbitrary.

2.2 Integration

According to the convention of the preceding section, a real-valued function f
defined over (X ,A) is measurable if f−1(B) ∈ A for every Borel set B on the
real line. Such a function f is said to be simple if it takes on only a finite number
of values. Let µ be a measure defined over (X ,A), and let f be a simple function
taking on the distinct values a1, . . . , am on the sets A1, . . . , Am, which are in A,
since f is measurable. If µ(Ai) < ∞ when ai += 0, the integral of f with respect
to µ is defined by

∫
f dµ =

∑
aiµ(Ai). (2.4)

Given any nonnegative measurable function f , there exists a nondecreasing
sequence of simple functions fn converging to f . Then the integral of f is defined
as ∫

f dµ = lim
n→∞

∫
fn dµ, (2.5)

which can be shown to be independent of the particular sequence of fn’s chosen.
For any measurable function f its positive and negative parts

f+(x) = max[f(x), 0] and f−(x) = max[−f(x), 0] (2.6)

are also measurable, and

f(x) = f+(x) − f−(x).

If the integrals of f+ and f− are both finite, then f is said to be integrable, and
its integral is defined as

∫
f dµ =

∫
f+ dµ −

∫
f− dµ.

If of the two integrals one is finite and one infinite, then the integral of f is
defined to be the appropriate infinite value; if both are infinite, the integral is
not defined.

Example 2.2.1 Let X be the closed interval [a, b], A be the class of Borel sets or
of Lebesgue measurable sets in X , and µ be Lebesgue measure. Then the integral
of f with respect to µ is written as

∫ b

a
f(x) dx, and is called the Lebesgue integral

of f . This integral generalizes the Riemann integral in that it exists and agrees
with the Riemann integral of f whenever the latter exists.
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Example 2.2.2 Let X be countable and consist of the points x1, x2, . . . ; let A
be the class of all subsets of X , and let µ assign measure bi to the point xi. Then
f is integrable provided

∑
f(xi)bi converges absolutely, and

∫
f dµ is given by

this sum.

Let P X be the probability distribution of a random variable X, and let T be a
real-valued statistic. If the function T (x) is integrable, its expectation is defined
by

E(T ) =

∫
T (x) dP X(x). (2.7)

It will be seen from Lemma 2.3.2 in Section 2.3 below that the integration can be
carried out alternatively in t-space with respect to the distribution of T defined
by (2.3), so that also

E(T ) =

∫
t dP T (t). (2.8)

The definition (2.5) of the integral permits the basic convergence theorems.

Theorem 2.2.1 Fatou’s Lemma Let fn be a sequence of measurable functions
such that fn(x) ≥ 0 and fn(x) → f(x), except possibly on a set of x values having
µ measure 0. Then,

∫
fdµ ≤ lim inf

∫
fndµ .

Theorem 2.2.2 Let fn be a sequence of measurable functions, and let fn(x) →
f(x), except possibly on a set of x values having µ measure 0. Then

∫
fn dµ →

∫
f dµ

if any one of the following conditions holds:

(i) Lebesgue Monotone Convergence Theorem: the fn’s are nonneg-
ative and the sequence is nondecreasing;

or

(ii) Lebesgue Dominated Convergence Theorem: there exists an
integrable function g such that |fn(x)| ≤ g(x) for n and x.

or

(iii) General Form: there exist gn and g with |fn| ≤ gn, gn(x) → g(x)
except possibly on a µ null set, and

∫
gndµ →

∫
gdµ.

Corollary 2.2.1 Vitali’s Theorem Suppose fn and f are real-valued measur-
able functions with fn(x) → f(x), except possibly on a set having µ measure 0.
Assume

lim sup
n

∫
f2

n(x)dµ(x) ≤
∫

f2(x)dµ(x) < ∞ .
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Then,
∫

|fn(x) − f(x)|2dµ(x) → 0 .

For a proof of this result, see Theorem 6.1.3 of Hájek, Sidák, and Sen (1999).
For any set A ∈ A, let IA be its indicator function defined by

IA(x) = 1 or 0 as x ∈ A or x ∈ Ac, (2.9)

and let
∫

A

f dµ =

∫
fIA dµ. (2.10)

If µ is a measure and f a nonnegative measurable function over (X ,A), then

ν(A) =

∫

A

f dµ (2.11)

defines a new measure over (X ,A). The fact that (2.11) holds for all A ∈ A is
expressed by writing

dν = f dµ or f =
dν
dµ

. (2.12)

Let µ and ν be two given σ-finite measures over (X ,A). If there exists a function
f satisfying (2.12), it is determined through this relation up to sets of measure
zero, since

∫

A

f dµ =

∫

A

g dµ for all A ∈ A

implies that f = g a.e. µ.3 Such an f is called the Radon–Nikodym derivative of
ν with respect to µ, and in the particular case that ν is a probability measure,
the probability density of ν with respect to µ.

The question of existence of a function f satisfying (2.12) for given measures µ
and ν is answered in terms of the following definition. A measure ν is absolutely
continuous with respect to µ if

µ(A) = 0 implies ν(A) = 0.

Theorem 2.2.3 (Radon–Nikodym) If µ and ν are σ-finite measures over
(X ,A), then there exists a measurable function f satisfying (2.12) if and only
if ν is absolutely continuous with respect to µ.

The direct (or Cartesian) product A × B of two sets A and B is the set of all
pairs (x, y) with x ∈ A, y ∈ B. Let (X ,A) and (Y,B) be two measurable spaces,
and let A× B be the smallest σ-field containing all sets A × B with A ∈ A and
B ∈ B. If µ and ν are two σ-finite measures over (X ,A) and (Y,B) respectively,

3A statement that holds for all points x except possibly on a set of µ-measure zero
is said to hold almost everywhere µ, abbreviated a.e. µ; or to hold a.e. (A, µ) if it is
desirable to indicate the σ-field over which µ is defined.
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then there exists a unique measure λ = µ × ν over (X × Y,A × B), the product
of µ and ν, such that for any A ∈ A, B ∈ B,

λ(A × B) = µ(A)ν(B). (2.13)

Example 2.2.3 Let X ,Y be Euclidean spaces of m and n dimensions, and let
A,B be the σ-fields of Borel sets in these spaces. Then X × Y is an (m + n)-
dimensional Euclidean space, and A× B the class of its Borel sets.

Example 2.2.4 Let Z = (X, Y ) be a random variable defined over (X ×Y,A×
B), and suppose that the random variables X and Y have distributions P X , P Y

over (X ,A) and (Y,B). Then X and Y are said to be independent if the
probability distribution P Z of Z is the product P X × P Y .

In terms of these concepts the reduction of a double integral to a repeated one
is given by the following theorem.

Theorem 2.2.4 (Fubini) Let µ and ν be σ-finite measures over (X ,A) and
(Y,B) respectively, and let λ = µ × ν. If f(x, y) is integrable with respect to λ,
then

(i) for almost all (ν) fixed y, the function f(x, y) is integrable with respect to µ,

(ii) the function
∫

f(x, y) dµ(x) is integrable with respect to ν, and
∫

f(x, y) dλ(x, y) =

∫ [∫
f(x, y) dµ(x)

]
dν(y). (2.14)

2.3 Statistics and Subfields

According to the definition of Section 2.1, a statistic is a measurable transfor-
mation T from the sample space (X ,A) into a measurable space (T ,B). Such a
transformation induces in the original sample space the subfield4

A0 = T−1(B) =
{
T−1(B) : B ∈ B

}
. (2.15)

Since the set T−1[T (A)] contains A but is not necessarily equal to A, the σ-field
A0 need not coincide with A and hence can be a proper subfield of A. On the other
hand, suppose for a moment that T = T (X ), that is, that the transformation T
is onto rather than into T . Then

T
[
T−1(B)

]
= B for all B ∈ B, (2.16)

so that the relationship A0 = T−1(B) establishes a 1:1 correspondence between
the sets of A0 and B, which is an isomorphism—that is, which preserves the set
operations of intersection, union, and complementation. For most purposes it is
therefore immaterial whether one works in the space (X ,A0) or in (T ,B). These
generate two equivalent classes of events, and therefore of measurable functions,
possible decision procedures, etc. If the transformation T is only into T , the above

4We shall use this term in place of the more cumbersome “sub-σ-field.”
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1:1 correspondence applies to the class B′ of subsets of T ′ = T (X ) which belong
to B, rather than to B itself. However, any set B ∈ B is equivalent to B′ = B∩T ′

in the sense that any measure over (X ,A) assigns the same measure to B′ as to
B. Considered as classes of events, A0 and B therefore continue to be equivalent,
with the only difference that B contains several (equivalent) representations of
the same event.

As an example, let X be the real line and A the class of Borel sets, and let
T (x) = x2. Let T be either the positive real axis or the whole real axis, and let
B be the class of Borel subsets of T . Then A0 is the class of Borel sets that are
symmetric with respect to the origin. When considering, for example, real-valued
measurable functions, one would, when working in T -space, restrict attention
to measurable function of x2. Instead, one could remain in the original space,
where the restriction would be to the class of even measurable functions of x.
The equivalence is clear. Which representation is more convenient depends on
the situation.

That the correspondence between the sets A0 = T−1(B) ∈ A0 and B ∈ B
establishes an analogous correspondence between measurable functions defined
over (X ,A0) and (T ,B) is shown by the following lemma.

Lemma 2.3.1 Let the statistic T from (X ,A) into (T ,B) induce the subfield A0.
Then a real-valued A-measurable function f is A0-measurable if and only if there
exists a B-measurable function g such that

f(x) = g[T (x)]

for all x.

Proof. Suppose first that such a function g exists. Then the set

{x : f(x) < r} = T−1({t : g(t) < r})

is in A0, and f is A0-measurable. Conversely, if f is A0-measurable, then the sets

Ain =

{
x :

i
2n

< f(x) ≤ i + 1
2n

}
, i = 0,±1,±2, . . . ,

are (for fixed n) disjoint sets in A0 whose union is X , and there exist Bin ∈ B
such that Ain = T−1(Bin). Let

B∗
in = Bin ∩ {

⋃

j '=i

Bjn}c .

Since Ain and Ajn are mutually exclusive for i += j, the set T−1(Bin ∩ Bjn) is
empty and so is the set T−1(Bin ∩ {B∗

in}c). Hence, for fixed n, the sets B∗
in are

disjoint, and still satisfy Ain = T−1(B∗
in). Defining

fn(x) =
i

2n
if x ∈ Ain, i = 0 ± 1,±2, . . . ,

one can write

fn(x) = gn[T (x)],
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where

gn(t) =






i
2n for t ∈ B∗

in, i = 0 ± 1,±2, . . . ,

0 otherwise.

Since the functions gn are B-measurable, the set B on which gn(t) converges to
a finite limit is in B. Let R = T (X ) be the range of T . Then for t ∈ R,

lim gn[T (x)] = lim fn(x) = f(x)

for all x ∈ X so that R is contained in B. Therefore, the function g defined
by g(t) = lim gn(t) for t ∈ B and g(t) = 0 otherwise possesses the required
properties.

The relationship between integrals of the functions f and g above is given by
the following lemma.

Lemma 2.3.2 Let T be a measurable transformation from (X ,A) into (T ,B), µ
a σ-finite measure over (X ,A), and g a real-valued measurable function of t. If
µ∗ is the measure defined over (T ,B) by

µ∗(B) = µ
[
T−1(B)

]
for all B ∈ B, (2.17)

then for any B ∈ B,
∫

T−1(B)

g[T (x)] dµ(x) =

∫

B

g(t) dµ∗(t) (2.18)

in the sense that if either integral exists, so does the other and the two are equal.

Proof. Without loss of generality let B be the whole space T . If g is the indicator
of a set B0 ∈ B, the lemma holds, since the left- and right-hand sides of (2.18)
reduce respectively to µ[T−1(B0)] and µ∗(B0), which are equal by the definition
of µ∗. If follows that (2.18) holds successively for all simple functions, for all
nonnegative measurable functions, and hence finally for all integrable functions.

2.4 Conditional Expectation and Probability

If two statistics induce the same subfield A0, they are equivalent in the sense of
leading to equivalent classes of measurable events. This equivalence is particu-
larly relevant to considerations of conditional probability. Thus if X is normally
distributed with zero mean, the information carried by the statistics |X|, X2,

e−X2
, and so on, is the same. Given that |X| = t, X2 = t2, e−X2

= e−t2 , it
follows that X is ±t, and any reasonable definition of conditional probability will
assign probability 1

2 to each of these values. The general definition of conditional
probability to be given below will in fact involve essentially only A0 and not the
range space T of T . However, when referred to A0 alone the concept loses much
of its intuitive meaning, and the gap between the elementary definition and that
of the general case becomes unnecessarily wide. For these reasons it is frequently
more convenient to work with a particular representation of a statistic, involving
a definite range space (T ,B).
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Let P be a probability measure over (X ,A), T a statistic with range space
(T ,B), and A0 the subfield it induces. Consider a nonnegative function f which is
integrable (A, P ), that is A-measurable and P -integrable. Then

∫
A

f dP is defined
for all A ∈ A and therefore for all A0 ∈ A0. If follows from the Radon–Nikodym
theorem (Theorem 2.2.3) that there exists a function f0 which is integrable
(A0, P ) and such that

∫

A0

f dP =

∫

A0

f0 dP for all A0 ∈ A0, (2.19)

and that f0 is unique (A0, P ). By Lemma 2.3.1, f0 depends on x only through
T (x). In the example of a normally distributed variable X with zero mean, and
T = X2, the function f0 is determined by (2.19) holding for all sets A0 that are
symmetric with respect to the origin, so that f0(x) = 1

2 [f(x) + f(−x)].
The function f0 defined through (2.19) is determined by two properties:

(i) Its average value over any set A0 with respect to P is the same as that of f ;

(ii) It depends on x only through T (x) and hence is constant on the sets Dx over
which T is constant.

Intuitively, what one attempts to do in order to construct such a function is
to define f0(x) as the conditional P -average of f over the set Dx. One would
thereby replace the single averaging process of integrating f represented by the
left-hand side with a two-stage averaging process such as an iterated integral.
Such a construction can actually be carried out when X is a discrete variable
and in the regular case considered in Section 1.9; f0(x) is then just the condi-
tional expectation of f(X) given T (x). In general, it is not clear how to define
this conditional expectation directly. Since it should, however, possess properties
(i) and (ii), and since these through (2.19) determine f0 uniquely (A0, P ), we
shall take f0(x) of (2.19) as the general definition of the conditional expectation
E[f(X) | T (x)]. Equivalently, if f0(x) = g[T (x)], one can write

E[f(X) | t] = E[f(X) | T = t] = g(t),

so that E[f(X) | t] is a B-measurable function defined up to equivalence (B, P T ).
In the relationship of integrals given in Lemma 2.3.2, if µ = P X , then µ∗ = P T ,
and it is seen that the function g can be defined directly in terms of f through

∫

T−1(B)

f(x) dP X(x) =

∫

B

g(t) dP T (t) for all B ∈ B, (2.20)

which is equivalent to (2.19).
So far, f has been assumed to be nonnegative. In the general case, the

conditional expectation of f is defined as

E[f(X) | t] = E[f+(X) | t] − E[f−(X) | t].

Example 2.4.1 (Order statistics) Let X1, . . . , Xn be identically and inde-
pendently distributed random variables with continuous distribution function,
and let

T (x1, . . . , xn) = (x(1), . . . , x(n))
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where x(1) ≤ · · · ≤ x(n) denote the ordered x’s. Without loss of generality one
can restrict attention to the points with x(1) < · · · < x(n), since the probability
of two coordinates being equal is 0. Then X is the set of all n-tuples with distinct
coordinates, T the set of all ordered n-tuples, and A and B are the classes of
Borel subsets of X and T . Under T−1 the set consisting of the single point a =
(a1, . . . , an) is transformed into the set consisting of the n! points (ai1 , . . . , ain)
that are obtained from a by permuting the coordinates in all possible ways. It
follows that A0 is the class of all sets that are symmetric in the sense that if A0

contains a point x = (x1, . . . , xn), then it also contains all points (xi1 , . . . , xin).
For any integrable function f , let

f0(x) =
1
n!

∑
f(xi1 , . . . , xin),

where the summation extends over the n! permutations of (x1, . . . , xn). Then f0

is A0-measurable, since it is symmetric in its n arguments. Also
∫

A0

f(x1, . . . , xn) dP (x1) . . . dP (xn) =

∫

A0

f(xi1 , . . . , xin) dP (x1) . . . dP (xn),

so that f0 satisfies (2.19). It follows that f0(x) is the conditional expectation of
f(X) given T (x).

The conditional expectation of f(X) given the above statistic T (x) can also be
found without assuming the X’s to be identically and independently distributed.
Suppose that X has a density h(x) with respect to a measure µ (such as Lebesgue
measure), which is symmetric in the variables x1, . . . , xn in the sense that for any
A ∈ A it assigns to the set {x : (xi1 , . . . , xin) ∈ A} the same measure for all
permutations (i1, . . . , in). Let

f0(x1, . . . , xn) =

∑
f(xi1 , . . . , xin)h(xi1 , . . . , xin)∑

h(xi1 , . . . , xin)
;

here and in the sums below the summation extends over the n! permutations
of (x1, . . . , xn). The function f0 is symmetric in its n arguments and hence A0-
measurable. For any symmetric set A0, the integral

∫

A0

f0(x1, . . . , xn)h(xj1 , . . . , xjn) dµ(x1, . . . , xn)

has the same value for each permutation (xj1 , . . . , xjn), and therefore
∫

A0

f0(x1, . . . , xn)h(x1, . . . , xn) dµ(x1, . . . , xn)

=

∫

A0

f0(x1, . . . , xn)
1
n!

∑
h(xi1 , . . . , xin) dµ(x1, . . . , xn)

=

∫

A0

f(x1, . . . , xn)h(x1, . . . , xn) dµ(x1, . . . , xn).

It follows that f0(x) = E[f(X) | T (x)].
Equivalent to the statistic T (x) = (x(1), . . . , x(n)), the set of order statistics, is

U(x) =
(∑

xi,
∑

x2
i , . . . ,

∑
xn

i

)
. This is an immediate consequence of the fact,

to be shown below, that if T (x0) = t0 and U(x0) = u0, then

T−1 ({
t0

})
= U−1 ({

u0})
= S
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where
{
t0

}
and

{
u0

}
denote the sets consisting of the single point t0 and u0 re-

spectively, and where S consists of the totality of points x = (x1, . . . , xn) obtained
by permuting the coordinates of x0 = (x0

1, . . . , x
0
n) in all possible ways.

That T−1
({

t0
})

= S is obvious. To see the corresponding fact for U−1, let

V (x) =




∑

i

xi,
∑

i<j

xixj ,
∑

i<j<k

xixjxk, . . . , x1x2 · · ·xn



 ,

so that the components of V (x) are the elementary symmetric functions v1 =∑
xi, . . . , vn = x1 . . . xn of the n arguments x1, . . . , xn. Then

(x − x1) . . . (x − xn) = xn − v1x
n−1 + v2x

n−2 − · · · + (−1)nvn.

Hence V (x0) = v0 = (v0
1 , . . . , v0

n) implies that V −1({v0}) = S. That then also
U−1({u0}) = S follows from the 1:1 correspondence between u and v established
by the relations (known as Newton’s identities):5

uk − v1uk−1 + v2uk−2 − · · · + (−1)k−1vk−1u1 + (−1)kkvk = 0

for 1 ≤ k ≤ n.

It is easily verified from the above definition that conditional expectation pos-
sesses most of the usual properties of expectation. It follows of course from the
nonuniqueness of the definition that these properties can hold only (B, P T ). We
state this formally in the following lemma.

Lemma 2.4.1 If T is a statistic and the functions f , g, . . . are integrable (A, P ),
then a.e. (B, P T )

(i) E[af(X) + bg(X) | t] = aE[f(X) | t] + bE[g(X) | t];

(ii) E[h(T )f(X) | t] = h(t)E[f(X) | t];

(iii) a ≤ f(x) ≤ b (A, P ) implies a ≤ E[f(X) | t] ≤ b;

(iv) |fn| ≤ g, fn(x) → f(x) (A, P ) implies E[fn(X) | t] → E[f(X) | t].

A further useful result is obtained by specializing (2.20) to the case that B is
the whole space T . One then has

Lemma 2.4.2 If E[|f(X)|] < ∞, and if g(t) = E[f(X) | t], then

E[f(X)] = E[g(T )] ; (2.21)

that is, the expectation can be obtained as the expected value of the conditional
expectation.

Since P{X ∈ A} = E[IA(X)], where IA denotes the indicator of the set A, it
is natural to define the conditional probability of A given T = t by

P (A | t) = E[IA(X) | t]. (2.22)

5For a proof of these relations see for example Turnbull (1952), Section 32.
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In view of (2.20) the defining equation for P (A | t) can therefore be written as

P X (
A ∩ T−1(B)

)
=

∫

A∩T−1(B)

dP X(x) (2.23)

=

∫

B

P (A | t) dP T (t) for all B ∈ B.

It is an immediate consequence of Lemma 2.4.1 that subject to the appropriate
null-set6 qualifications, P (A | t) possesses the usual properties of probabilities,
as summarized in the following lemma.

Lemma 2.4.3 If T is a statistic with range space (T ,B), and A, B, A1, A2, . . .
are sets belonging to A, then a.e. (B, P T )

(i) 0 ≤ P (A | t) ≤ 1;

(ii) if the sets A1, A2, . . . are mutually exclusive,

P
(⋃

Ai | t
)

=
∑

P (Ai | t);

(iii) A ⊂ B implies P (A | t) ≤ P (B | t).

According to the definition (2.22), the conditional probability P (A | t) must
be considered for fixed A as a B-measurable function of t. This is in contrast to
the elementary definition in which one takes t as fixed and considers P (A | t)
for varying A as a set function over A. Lemma 2.4.3 suggests the possibility that
the interpretation of P (A | t) for fixed t as a probability distribution over A
may be valid also in the general case. However, the equality P (A1 ∪ A2 | t) =
P (A1 | t) + P (A2 | t), for example, can break down on a null set that may vary
with A1 and A2, and the union of all these null sets need no longer have measure
zero.

For an important class of cases, this difficulty can be overcome through the
nonuniqueness of the functions P (A | t), which for each fixed A are determined
only up to sets of measure zero in t. Since all determinations of these functions
are equivalent, it is enough to find a specific determination for each A so that for
each fixed t these determinations jointly constitute a probability distribution over
A. This possibility is illustrated by Example 2.4.1, in which the conditional prob-
ability distribution given T (x) = t can be taken to assign probability 1/n! to each
of the n! points satisfying T (x) = t. Sufficient conditions for the existence of such
conditional distributions will be given in the next section. For counterexamples
see Blackwell and Dubins (1975).

6This term is used as an alternative to the more cumbersome “set of measure zero.”
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2.5 Conditional Probability Distributions7

We shall now investigate the existence of conditional probability distributions
under the assumption, satisfied in most statistical applications, that X is a Borel
set in a Euclidean space. We shall then say for short that X is Euclidean and
assume that, unless otherwise stated, A is the class of Borel subsets of X .

Theorem 2.5.1 If X is Euclidean, there exist determinations of the functions
P (A | t) such that for each t, P (A | t) is a probability measure over A.

Proof. By setting equal to 0 the probability of any Borel set in the complement
of X , one can extend the given probability measure to the class of all Borel sets
and can therefore assume without loss of generality that X is the full Euclidean
space. For simplicity we shall give the proof only in the one-dimensional case.
For each real x put F (x, t) = P ((−∞, x] | t) for some version of this conditional
probability function, and let r1, r2, . . . denote the set of all rational numbers in
some order. Then ri < rj implies that F (ri, t) ≤ F (rj , t) for all t except those in a
null set Nij , and hence that F (x, t) is nondecreasing in x over the rationals for all t
outside of the null set N ′ =

⋃
Nij . Similarly, it follows from Lemma 2.4.1(iv) that

for all t not in a null set N ′′, as n tends to infinity lim F (ri +1/n, t) = F (ri, t) for
i = 1, 2, . . . , lim F (n, t) = 1, and lim F (−n, t) = 0. Therefore, for all t outside of
the null set N ′∪N ′′, F (x, t) considered as a function of x is properly normalized,
monotone, and continuous on the right over the rationals. For t not in N ′ ∪ N ′′

let F ∗(x, t) be the unique function that is continuous on the right in x and agrees
with F (x, t) for all rational x. Then F ∗(x, t) is a cumulative distribution function
and therefore determines a probability measure P ∗(A | t) over A. We shall now
show that P ∗(A | t) is a conditional probability of A given t, by showing that
for each fixed A it is a B-measurable function of t satisfying (2.23). This will be
accomplished by proving that for each fixed A ∈ A

P ∗(A | t) = P (A | t) (B, P T ).

By definition of P ∗ this is true whenever A is one of the sets (−∞, x] with x
rational. It holds next when A is an interval (a, b] = (−∞, b] − (−∞, a] with
a, b rational, since P ∗ is a measure and P satisfies Lemma 2.4.3(ii). Therefore,
the desired equation holds for the field F of all sets A which are finite unions
of intervals (ai, bi] with rational end points. Finally, the class of sets for which
the equation holds is a monotone class (see Problem 2.1) and hence contains the
smallest σ-field containing F , which is A. The measure P ∗(A | t) over A was
defined above for all t not in N ′ ∪ N ′′. However, since neither the measurability
of a function nor the values of its integrals are affected by its values on a null set,
one can take arbitrary probability measures over A for t in N ′ ∪N ′′ and thereby
complete the determination.

If X is a vector-valued random variable with probability distribution P X and
T is a statistic defined over (X ,A), let P X|t denote any version of the family

7This section may be omitted at first reading. Its principal application is in the proof
of Lemma 2.7.2(ii) in Section 2.7, which in turn is used only in the proof of Theorem
4.4.1
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of conditional distributions P (A | t) over A guaranteed by Theorem 2.5.1. The
connection with conditional expectation is given by the following theorem.

Theorem 2.5.2 If X is a vector-valued random variable and E|f(X)| < ∞,
then

E[f(X) | t] =

∫
f(x) dP X|t(x) (B, P T ). (2.24)

Proof. Equation (2.24) holds if f is the indicator of any set A ∈ A. It then
follows from Lemma 2.4.1 that it also holds for any simple function and hence
for any integrable function.

The determination of the conditional expectation E[f(X) | t] given by the
right-hand side of (2.24) possesses for each t the usual properties of an expecta-
tion, (i), (iii), and (iv) of Lemma 2.4.1, which previously could be asserted only
up to sets of measure zero depending on the functions f, g, . . . involved. Under
the assumptions of Theorem 2.5.1 a similar strengthening is possible with respect
to (ii) of Lemma 2.4.1, which can be shown to hold except possibly on a null set
N not depending on the function h. It will be sufficient for the present purpose to
prove this under the additional assumption that the range space of the statistic T
is also Euclidean. For a proof without this restriction see for example Billingsley
(1995).

Theorem 2.5.3 If T is a statistic with Euclidean domain and range spaces
(X ,A) and (T ,B), there exists a determination P X|t of the conditional probabil-
ity distribution and a null set N such that the conditional expectation computed
by

E[f(X) | t] =

∫
f(x) dP X|t(x)

satisfies for all t /∈ N .

E[h(T )f(X) | t] = h(t)E[f(X) | t]. (2.25)

Proof. For the sake of simplicity and without essential loss of generality suppose
that T is real-valued. Let P X|t(A) be a probability distribution over A for each t,
the existence of which is guaranteed by Theorem 2.5.1. For B ∈ B, the indicator
function IB(t) is B-measurable and

∫

B′
IB(t) dP T (t)=P T (B′ ∩ B)=P X(T−1B′ ∩ T−1B)

for all B′ ∈ B.

Thus by (2.20)

IB(t) = P X|t (
T−1B

)
a.e. P T .

Let Bn, n = 1, 2, . . . , be the intervals of T with rational end points. Then there
exists a P -null set N = ∪Nn such that for t /∈ N

IBn(t) = P X|t (
T−1Bn

)
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for all n. For fixed t /∈ N , the two set functions P X|t (
T−1B

)
and IB(t) are

probability distributions over B, the latter assigning probability 1 or 0 to a set as
it does or does not contain the point t. Since these distributions agree over the
rational intervals Bn, they agree for all B ∈ B. In particular, for t /∈ N , the set
consisting of the single point t is in B, and if

A(t) = {x : T (x) = t},

it follows that for all t /∈ N

P X|t
(
A(t)

)
= 1. (2.26)

Thus
∫

h[T (x)]f(x) dP X|t(x) =

∫

A(t)
h[T (x)]f(x) dP X|t(x)

= h(t)

∫
f(x) dP X|t(x)

for t /∈ N , as was to be proved.
It is a consequence of Theorem 2.5.3 that for all t /∈ N , E[h(T ) | t] = h(t) and

hence in particular P (T ∈ B | t) = 1 or 0 as t ∈ B or t /∈ B.
The conditional distributions P X|t still differ from those of the elementary case

considered in Section 1.9, in being defined over (X ,A) rather than over the set
A(t) and the σ-field A(t) of its Borel subsets. However, (2.26) implies that for
t /∈ N

P X|t(A) = P X|t(A ∩ A(t)).

The calculations of conditional probabilities and expectations are therefore un-
changed if for t /∈ N , P X|t is replaced by the distribution P̄ X|t, which is defined
over (A(t),A(t)) and which assigns to any subset of A(t) the same probability as
P X|t.

Theorem 2.5.3 establishes for all t /∈ N the existence of conditional probability
distributions P̄ X|t, which are defined over (A(t),A(t)) and which by Lemma 2.4.2
satisfy

E[f(X)] =

∫

T −N

[∫

A(t)
f(x) dP (X|t)(x)

]
dP T (t) (2.27)

for all integrable functions f . Conversely, consider any family of distributions
satisfying (2.27), and the experiment of observing first T , and then, if T = t, a
random quantity with distribution P̄ X|t. The result of this two-stage procedure
is a point distributed over (X ,A) with the same distribution as the original X.
Thus P̄ X|t satisfies this “functional” definition of conditional probability.

If (X ,A) is a product space (T ×Y,B×C), then A(t) is the product of Y with the
set consisting of the single point t. For t /∈ N , the conditional distribution P̄ X|t

then induces a distribution over (Y, C), which in analogy with the elementary
case will be denoted by P Y |t. In this case the definition can be extended to all
of T by letting P Y |t assign probability 1 to a common specified point y0 for all
t ∈ N . With this definition, (2.27) becomes

Ef(T, Y ) =

∫

T

[∫

Y
f(t, y) dP Y |t(y)

]
dP T (t). (2.28)



44 2. The Probability Background

As an application, we shall prove the following lemma, which will be used in
Section 2.7.

Lemma 2.5.1 Let (T ,B) and (Y, C) be Euclidean spaces, and let P T,Y
0 be a

distribution over the product space (X ,A) = (T ×Y,B×C). Suppose that another
distribution P1 over (X ,A) is such that

dP1(t, y) = a(y)b(t) dP0(t, y),

with a(y) > 0 for all y. Then under P1 the marginal distribution of T and a
version of the conditional distribution of Y given t are given by

dP T
1 (t) = b(t)

[∫
a(y) dP Y |t

0 (y)

]
dP T

0 (t)

and

dP Y |t
1 (y) =

a(y) dP Y |t
0 (y)

∫
Y a(y′) dP Y |t

0 (y′)
.

Proof. The first statement of the lemma follows from the equation

P1{T ∈ B} = E1 [IB(T )] = E0 [IB(T )a(Y )b(T )]

=

∫

B

b(T )

[∫

Y
a(y) dP Y |t

0 (y)

]
dP T

0 (t).

To check the second statement, one need only show that for any integrable f the
expectation E1f(Y, T ) satisfies (2.28), which is immediate. The denominator of

dP Y |t
1 is positive, since a(y) > 0 for all y.

2.6 Characterization of Sufficiency

We can now generalize the definition of sufficiency given in Section 1.9. If P =
{Pθ, θ ∈ Ω} is any family of distributions defined over a common sample space
(X ,A), a statistic T is sufficient for P (or for θ) if for each A in A there exists a de-
termination of the conditional probability function Pθ(A | t) that is independent
of θ. As an example suppose that X1, . . . , Xn are identically and independently
distributed with continuous distribution function Fθ, θ ∈ Ω. Then it follows from
Example 2.4.1 that the set of order statistics T (X) = (X(1), . . . , X(n)) is sufficient
for θ.

Theorem 2.6.1 If X is Euclidean, and if the statistic T is sufficient for P, then
there exist determinations of the conditional probability distributions Pθ(A | t)
which are independent of θ and such that for each fixed t, Pθ(A | t) is a probability
measure over A.

Proof. This is seen from the proof of Theorem 2.5.1. By the definition of suf-
ficiency one can, for each rational number r, take the functions F (r, t) to be
independent of θ, and the resulting conditional distributions will then also not
depend on θ.



2.6. Characterization of Sufficiency 45

In Chapter 1 the definition of sufficiency was justified by showing that in a
certain sense a sufficient statistic contains all the available information. In view
of Theorem 2.6.1 the same justification applies quite generally when the sample
space is Euclidean. With the help of a random mechanism one can then construct
from a sufficient statistic T a random vector X ′ having the same distribution as
the original sample vector X. Another generalization of the earlier result, not
involving the restriction to a Euclidean sample space, is given in Problem 2.13.

The factorization criterion of sufficiency, derived in Chapter 1, can be extended
to any dominated family of distributions, that is, any family P = {Pθ, θ ∈ Ω}
possessing probability densities pθ with respect to some σ-finite measure µ over
(X ,A). The proof of this statement is based on the existence of a probability
distribution λ =

∑
ciPθi (Theorem 2.2.3 of the Appendix), which is equivalent

to P in the sense that for any A ∈ A

λ(A) = 0 if and only if Pθ = 0 for all θ ∈ Ω. (2.29)

Theorem 2.6.2 Let P = {Pθ, θ ∈ Ω} be a dominated family of probability dis-
tributions over (X ,A), and let λ =

∑
ciPθi satisfy (2.29). Then a statistic T

with range space (T ,B) is sufficient for P if and only if there exist nonnegative
B-measurable functions gθ(t) such that

dPθ(x) = gθ[T (x)] dλ(x) (2.30)

for all θ ∈ Ω.

Proof. Let A0 be the subfield induced by T , and suppose that T is sufficient for
θ. Then for all θ ∈ Ω, A0 ∈ A0, and A ∈ A

∫

A0

P (A | T (x)) dPθ(x) = Pθ(A ∩ A0);

and since λ =
∑

ciPθi ,
∫

A0

P (A | T (x)) dλ(x) = λ(A ∩ A0),

so that P (A | T (x)) serves as conditional probability function also for λ. Let
gθ(T (x)) be the Radon–Nikodym derivative dPθ(x)/dλ(x) for (A0, λ). To prove
(2.30) it is necessary to show that gθ(T (x)) is also the derivative of Pθ for (A, λ).
If A0 is put equal to X in the first displayed equation, this follows from the
relation

Pθ(A) =

∫
P (A | T (x)) dPθ(x) =

∫
Eλ [IA(x) | T (x)] dPθ(x)

=

∫
Eλ [IA(x) | T (x)] gθ(T (x)) dλ(x)

=

∫
Eλ [gθ(T (x))IA(x) | T (x)] dλ(x)

=

∫
gθ(T (x))IA(x) dλ(x) =

∫

A

gθ(T (x)) dλ(x).

Here the second equality uses the fact, established at the beginning of the proof,
that P (A | T (x)) is also the conditional probability for λ; the third equality holds
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because the function being integrated is A0-measurable and because dPθ = gθ dλ
for (A0, λ); the fourth is an application of Lemma 2.4.1(ii); and the fifth employs
the defining property of conditional expectation.

Suppose conversely that (2.30) holds. We shall then prove that the conditional
probability function Pλ(A | t) serves as a conditional probability function for
all P ∈ P. Let gθ(T (x)) = dPθ(x)/ dλ(x) on A and for fixed A and θ define a
measure ν over A by the equation dν = IA dPθ. Then over A0, dν(x)/ dPθ(x) =
Eθ[IA(X) | T (x)], and therefore

dν(x)
dλ(x)

= Pθ[A | T (x)]gθ(T (x)) over A0.

On the other hand, dν(x)/dλ(x) = IA(x)gθ(T (x)) over A, and hence

dν(x)
dλ(x)

= Eλ[IA(X)gθ(T (X)) | T (x)]

= Pλ[A | T (x)]gθ(T (x)) over A0.

It follows that Pλ(A | T (x))gθ(T (x)) = Pθ(A | T (x))gθ(T (x)) (A0, λ) and hence
(A0, Pθ). Since gθ(T (x)) += 0 (A0, Pθ), this shows that Pθ(A | T (x)) = Pλ(A |
T (x)) (A0, Pθ), and hence that Pλ(A | T (x)) is a determination of Pθ(A | T (x)).

Instead of the above formulation, which explicitly involves the distribution
λ, it is sometimes more convenient to state the result with respect to a given
dominating measure µ.

Corollary 2.6.1 (Factorization theorem) If the distributions Pθ of P have
probability densities pθ = dPθ/dµ with respect to a σ-finite measure µ, then T is
sufficient for P if and only if there exist nonnegative B-measurable functions gθ

on T and a nonnegative A-measurable function h on X such that

pθ(x) = gθ[T (x)]h(x) (A, µ). (2.31)

Proof. Let λ =
∑

ciPθi satisfy (2.29). Then if T is sufficient, (2.31) follows from
(2.30) with h = dλ/dµ. Conversely, if (2.31) holds,

dλ(x) =
∑

cigθi [T (x)]h(x) dµ(x) = k[T (x)]h(x) dµ(x)

and therefore dPθ(x) = g∗
θ (T (x)) dλ(x) where g∗

θ (t) = gθ(t)/k(t) when k(t) > 0
and may be defined arbitrarily when k(t) = 0.

For extensions of the factorizations theorem to undominated families, see
Ghosh, Morimoto, and Yamada (1981) and the literature cited there.

2.7 Exponential Families

An important family of distributions which admits a reduction by means of suf-
ficient statistics is the exponential family, defined by probability densities of the
form

pθ(x) = C(θ) exp

[
k∑

j=1

Qj(θ)Tj(x)

]
h(x) (2.32)



2.7. Exponential Families 47

with respect to a σ-finite measure µ over a Euclidean sample space (X ,A). Par-
ticular cases are the distributions of a sample X = (X1, . . . , Xn) from a binomial,
Poisson, or normal distribution. In the binomial case, for example, the density
(with respect to counting measure) is

(
n
x

)
px(1 − p)n−x = (1 − p)n exp

[
x log

(
p

1 − p

)] (
n
x

)
.

Example 2.7.1 If Y1, . . . , Yn are independently distributed, each with density
(with respect to Lebesgue measure)

pσ(y) =
y[(f/2)−1] exp

[
−y/

(
2σ2

)]

(2σ2)f/2 Γ(f/2)
, y > 0, (2.33)

then the joint distribution of the Y ’s constitutes an exponential family. For σ = 1,
(2.33) is the density of the χ2-distribution with f degrees of freedom; in particular
for f an integer this is the density of

∑f
j=1 X2

j , where the X’s are a sample from
the normal distribution N(0, 1).

Example 2.7.2 Consider n independent trials, each of them resulting in one of
the s outcomes E1, . . . , Es with probabilities p1, . . . , ps respectively. If Xij is 1
when the outcome of the ith trial is Ej and 0 otherwise, the joint distribution of
the X’s is

P{X11 = x11, . . . , Xns} = p
∑

xi1
1 p

∑
xi2

2 · · · p
∑

xis
s ,

where all xij = 0 or 1 and
∑

j xij = 1. this forms an exponential family with
Tj(x) =

∑n
i=1 xij (j = 1, . . . , s − 1). The joint distribution of the T ’s is the

multinomial distribution M(n; p1, . . . , ps) given by

P{T1 = t1, . . . , Ts−1 = ts−1} (2.34)

=
n!

t1! . . . ts−1!(n − t1 − · · ·− ts−1)!

×pt1
1 . . . p

ts−1
s−1 (1 − p1 − · · ·− ps−1)

n−t1−···−ts−1 .

If X1, . . . , Xn is a sample from a distribution with density (2.32), the joint
distribution of the X’s constitutes an exponential family with the sufficient
statistics

∑n
i=1 Tj(Xi), j = 1, . . . , k. Thus there exists a k-dimensional sufficient

statistic for (X1, . . . , Xn) regardless of the sample size. Suppose conversely that
X1, . . . , Xn is a sample from a distribution with some density pθ(x) and that the
set over which this density is positive is independent of θ. Then under regularity
assumptions which make the concept of dimensionality meaningful, if there exists
a k-dimensional sufficient statistic with k < n, the densities pθ(x) constitute an
exponential family. For proof of this result, see Darmois (1935), Koopman (1936)
and Pitman (1937). Regularity conditions of the result are discussed in Barankin
and Maitra (1963), Brown (1964), Barndorff–Nielsen and Pedersen (1968), and
Hipp (1974).
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Employing a more natural parametrization and absorbing the factor h(x) into
µ, we shall write an exponential family in the form dPθ(x) = pθ(x) dµ(x) with

pθ(x) = C(θ) exp

[
k∑

j=1

θjTj(x)

]
. (2.35)

For suitable choice of the constant C(θ), the right-hand side of (2.35) is a prob-
ability density provided its integral is finite. The set Ω of parameter points
θ = (θ1, . . . , θk) for which this is the case is the natural parameter space of the
exponential family (2.35).

Optimum tests of certain hypotheses concerning any θj are obtained in Chapter
4. We shall now consider some properties of exponential families required for this
purpose.

Lemma 2.7.1 The natural parameter space of an exponential family is convex.

Proof. Let (θ1, . . . , θk) and (θ′
1, . . . , θ

′
k) be two parameter points for which the

integral of (2.35) is finite. Then by Hölder’s inequality,
∫

exp
[∑ [

αθj + (1 − α)θ′
j

]
Tj(x)

]
dµ(x)

≤
[∫

exp
[∑

θjTj(x)
]

dµ(x)

]α [∫
exp

[∑
θ′

jTj(x)
]

dµ(x)

]1−α

< ∞

for any 0 < α < 1.
If the convex set Ω lies in a linear space of dimension < k, then (2.35) can be

rewritten in a form involving fewer than k components of T . We shall therefore,
without loss of generality, assume Ω to be k-dimensional.

It follows from the factorization theorem that T (x) = (T1(x), . . . , Tk(x)) is
sufficient for P = {Pθ, θ ∈ Ω}.

Lemma 2.7.2 Let X be distributed according to the exponential family

dP T
θ,ϑ(x) = C(θ, ϑ) exp

[
r∑

i=1

θiUi(x) +
s∑

j=1

ϑjTj(x)

]
dµ(x).

Then there exist measures λθ and νt over s- and r-dimensional Euclidean space
respectively such that

(i) the distribution of T = (T1, . . . , Ts) is an exponential family of the form

dP T
θ,ϑ(t) = C(θ, ϑ) exp

(
s∑

j=1

ϑjtj

)
dλθ(t), (2.36)

(ii) the conditional distribution of U = (U1, . . . , Ur) given T = t is an exponential
family of the form

dP U|t
θ· (u) = C(θ) exp

(
r∑

i=1

θiui

)
dνt(u), (2.37)

and hence in particular is independent of ϑ.

Rebecca Ferrell
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Proof. Let (θ0, ϑ0) be a point of the natural parameter space, and let µ∗ =
P X

θ0,ϑ0 . Then

dP X
θ0,ϑ0(x) =

C(θ, ϑ)
C(θ0, ϑ0)

× exp

[
r∑

i=1

(θi − θ0
i )Ui(x) +

s∑

j=1

(ϑj − ϑ0
j )Tj(x)

]
dµ∗(x),

and the result follows from Lemma 2.5.1, with

dλθ(t) = exp
(
−

∑
ϑ0

i ti

) [∫
exp

[
r∑

i=1

(θi − θ0
i )ui

]
dP U|t

θ0,ϑ0(u)

]
dP T

θ0,ϑ0(t)

and

dνt(u) = exp
(
−

∑
θ0

i ui

)
dP U|t

θ0,ϑ0(u).

Theorem 2.7.1 Let φ be any function on (X ,A) for which the integral

∫
φ(x) exp

[
k∑

j=1

θjTj(x)

]
dµ(x) (2.38)

considered as a function of the complex variables θj = ξj + iηj (j = 1, . . . , k)
exists for all (ξ1, . . . , ξk) ∈ Ω and is finite. Then

(i) the integral is an analytic function of each of the θ’s in the region R of
parameter points for which (ξ1, . . . , ξk) is an interior point of the natural
parameter space Ω;

(ii) the derivatives of all orders with respect to the θ’s of the integral (2.38) can
be computed under the integral sign.

Proof. Let (ξ1, . . . , ξk) be any fixed point in the interior of Ω, and consider one
of the variables in question, say θ1. Breaking up the factor

φ(x) exp
[(

ξ0
2 + iη0

2

)
T2(x) + · · · +

(
ξ0

k + iη0
k

)
Tk(x)

]

into its real and complex part and each of these into its positive and negative
part, and absorbing this factor in each of the four terms thus obtained into the
measure µ, one sees that as a function of θ1 the integral (2.38) can be written as

∫
exp [θ1T1(x)] dµ1(x) −

∫
exp [θ1T1(x)] dµ2(x)

+ i

∫
exp [θ1T1(x)] dµ3(x) − i

∫
exp [θ1T1(x)] dµ4(x).

It is therefore sufficient to prove the result for integrals of the form

ψ(θ1) =

∫
exp [θ1T1(x)] dµ(x).

Since (ξ0
1 , . . . , ξ0

k) is in the interior of Ω, there exists δ > 0 such that ψ(θ1) exists
and is finite for all θ1 with |ξ1 − ξ0

1 | ≤ δ. Consider the difference

ψ(θ1) − ψ(θ0
1)

θ1 − θ0
1

=

∫
exp [θ1T1(x)] − exp

[
θ0
1T1(x)

]

θ1 − θ0
1

dµ(x).

Rebecca Ferrell
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The integrand can be written as

exp
[
θ0
1T1(x)

]
[

exp
[
(θ1 − θ0

1)T1(x)
]
− 1

θ1 − θ0
1

]
.

Applying to the second factor the inequality
∣∣∣∣∣∣
exp(az) − 1

z

∣∣∣∣∣∣
≤ exp(δ|a|)

δ
for |z| ≤ δ,

the integrand is seen to be bounded above in absolute value by

1
δ

∣∣∣∣∣ exp
(
θ0
1T1 + δ|T1|

)
∣∣∣∣∣ ≤

1
δ

∣∣∣∣∣ exp
[(

θ0
1 + δ

)
T1

]
+ exp

[(
θ0
1 − δ

)
T1

]
∣∣∣∣∣

for |θ1−θ0
1| ≤ δ. Since the right-hand side integrable, it follows from the Lebesgue

dominated-convergence theorem [Theorem 2.2.2(ii)] that for any sequence of

points θ(n)
1 tending to θ0

1, the difference quotient of ψ tends to
∫

T1(x) exp
[
θ0
1T1(x)

]
dµ(x).

This completes the proof of (i), and proves (ii) for the first derivative. The proof
for the higher derivatives is by induction and is completely analogous.

2.8 Problems

Section 2.1

Problem 2.1 Monotone class. A class F of subsets of a space is a field if it
contains the whole space and is closed under complementation and under finite
unions; a class M is monotone if the union and intersection of every increasing
and decreasing sequence of sets of M is again in M. The smallest monotone class
M0 containing a given field F coincides with the smallest σ-field A containing
F . [One proves first that M0 is a field. To show, for example, that A ∩ B ∈ M0

when A and B are in M0, consider, for a fixed set A ∈ F , the class MA of all
B in M0 for which A ∩ B ∈ M0. Then MA is a monotone class containing F ,
and hence MA = M0. Thus A ∩ B ∈ MA for all B. The argument can now
be repeated with a fixed set B ∈ M0 and the class MB of sets A in M0 for
which A ∩ B ∈ M0. Since M0 is a field and monotone, it is a σ-field containing
F and hence contains A. But any σ-field is a monotone class so that also M0 is
contained in A.]

Section 2.2

Problem 2.2 Prove Corollary 2.2.1 using Theorems 2.2.1 and 2.2.2.

Problem 2.3 Radon–Nikodym derivatives.
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(i) If λ and µ are σ-finite measures over (X ,A) and µ is absolutely continuous
with respect to λ, then

∫
f dµ =

∫
f

dµ
dλ

dλ

for any µ-integrable function f .
(ii) If λ, µ, and ν are σ-finite measures over (X ,A) such that ν is absolutely
continuous with respect to µ and µ with respect to λ, then

dν
dλ

=
dν
dµ

dµ
dλ

a.e. λ.

(iii) If µ and ν are σ-finite measures,, which are equivalent in the sense that each
is absolutely continuous with respect to the other, then

dν
dµ

=

(
dµ
dν

)−1

a.e. µ, ν.

(iv) If µk, k = 1, 2, . . . , and µ are finite measures over (X ,A) such that∑∞
k=1 µk(A) = µ(A) for all A ∈ A, and if the µk are absolutely continuous

with respect to a σ-finite measure λ, then µ is absolutely continuous with respect
to λ, and

d
n∑

k=1
µk

dλ
=

n∑

k=1

dµk

dλ
, lim

n→∞

d
n∑

k=1
µk

dλ
=

dµ
dλ

a.e. λ.

[(i): The equation in question holds when f is the indicator of a set, hence when
f is simple, and therefore for all integrable f .
(ii): Apply (i) with f = dν/dµ.]

Problem 2.4 If f(x) > 0 for all x ∈ S and µ is σ-finite, then
∫

S
f dµ = 0 implies

µ(S) = 0.
[Let Sn be the subset of S on which f(x) ≥ 1/n Then µ(S) ≤

∑
µ(Sn) and

µ(Sn) ≤ n
∫

Sn
f dµ ≤ n

∫
S

f dµ = 0.]

Section 2.3

Problem 2.5 Let (X ,A) be a measurable space, and A0 a σ-field contained in
A. Suppose that for any function T , the σ-field B is taken as the totality of sets B
such that T−1(B) ∈ A. Then it is not necessarily true that there exists a function
T such that T−1(B) ∈ A0. [An example is furnished by any A0 such that for all
x the set consisting of the single point x is in A0.]

Section 2.4

Problem 2.6 (i) Let P be any family of distributions X = (X1, . . . , Xn) such
that

P{(Xi, Xi+1, . . . , Xn, X1, . . . , Xi−1) ∈ A} = P{(X1, . . . , Xn) ∈ A}
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for all Borel sets A and all i = 1, . . . , n. For any sample point (x1, . . . , xn)
define (y1, . . . , yn) = (xi, xi+1, . . . , xn, x1, . . . , xi−1), where xi = x(1) =
min(x1, . . . , xn). Then the conditional expectation of f(X) given Y = y is

f0(y1, . . . , yn) =
1
n

[f(y1, . . . , yn) + f(y2, . . . , yn, y1)

+ · · · + f(yn, y1, . . . , yn−1)].

(ii) Let G = {g1, . . . , gr} be any group of permutations of the coordinates
x1, . . . , xn of a point x in n-space, and denote by gx the point obtained by
applying g to the coordinates of x. Let P be any family of distributions P
of X = (X1, . . . , Xn) such that

P{gX ∈ A} = P{X ∈ A} for all g ∈ G. (2.39)

For any point x let t = T (x) be any rule that selects a unique point from
the r points gkx, k = 1, . . . , r (for example the smallest first coordinate
if this defines it uniquely, otherwise also the smallest second coordinate,
etc.). Then

E[f(X) | t] =
1
r

r∑

k=1

f(gkt).

(iii) Suppose that in (ii) the distributions P do not satisfy the invariance
condition (2.39) but are given by

dP (x) = h(x) dµ(x),

where µ is invariant in the sense that µ{x : gx ∈ A} = µ(A). Then

E[f(X) | t] =

r∑
k=1

f(gkt)h(gkt)

r∑
k=1

h(gkt)
.

Section 2.5

Problem 2.7 Prove Theorem 2.5.1 for the case of an n-dimensional sample
space. [The condition that the cumulative distribution function is nondecreasing
is replaced by P{x1 < X1 ≤ x′

1, . . . , xn < Xn ≤ x′
n} ≥ 0; the condition that it is

continuous on the right can be stated as limm→∞ F (x1 + 1/m, . . . , xn + 1/m) =
F (x1, . . . , xn).]

Problem 2.8 Let X = Y × T , and suppose that P0, P1 are two probability
distributions given by

dP0(y, t) = f(y)g(t) dµ(y) dν(t),

dP1(y, t) = h(y, t) dµ(y) dν(t),

where h(y, t)/f(y)g(t) < ∞. Then under P1 the probability density of Y with
respect to µ is

pY
1 (y) = f(y)E0

[
h(y, T )

f(y)g(T )

∣∣∣∣ Y = y

]
.
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[We have

pY
1 (y) =

∫

T
h(y, t) dν(t) = f(y)

∫

T

h(y, t)
f(y)g(t)

g(t) dν(t).]

Section 2.6

Problem 2.9 Symmetric distributions.

(i) Let P be any family of distributions of X = (X1, . . . , Xn) which are
symmetric in the sense that

P {(Xi1 , . . . , Xin) ∈ A} = P {(X1, . . . , Xn) ∈ A}

for all Borel sets A and all permutations (i1, . . . , in) of (1, . . . , n). Then the
statistic T of Example 2.4.1 is sufficient for P, and the formula given in the
first part of the example for the conditional expectation E[f(X) | T (x)] is
valid.

(ii) The statistic Y of Problem 2.6 is sufficient.

(iii) Let X1, . . . , Xn be identically and independently distributed according to
a continuous distribution P ∈ P, and suppose that the distributions of P
are symmetric with respect to the origin. Let Vi = |Xi| and Wi = V(i).
Then (W1, . . . , Wn) is sufficient for P.

Problem 2.10 Sufficiency of likelihood ratios. Let P0, P1 be two distributions
with densities p0, p1. Then T (x) = p1(x)/p0(x) is sufficient for P = {P0, P1}.
[This follows from the factorization criterion by writing p1 = T · p0, p0 = 1 · p0.]

Problem 2.11 Pairwise sufficiency. A statistic T is pairwise sufficient for P if
it is sufficient for every pair of distributions in P.

(i) If P is countable and T is pairwise sufficient for P, then T is sufficient for
P.

(ii) If P is a dominated family and T is pairwise sufficient for P, then T is
sufficient for P.

[(i): Let P = {P0, P1, . . .}, and let A0 be the sufficient subfield induced by T .
Let λ =

∑
ciPi (ci > 0) be equivalent to P. For each j = 1, 2, . . . the probability

measure λj that is proportional to (c0/n)P0 + cjPj is equivalent to {P0, Pj}.
Thus by pairwise sufficiency, the derivative fj = dP0/[(c0/n) dP0 + cj dPj ] is
A0-measurable. Let Sj = {x : fj(x) = 0} and S =

⋃n
j=1 Sj . Then S ∈ A0,

P0(S) = 0, and on X − S the derivative dP0/d
∑n

j=1 cjPj equals (
∑n

j=1 1/fj)
−1

which is A0-measurable. It then follows from Problem 2.3 that

dP0

dλ
=

dP0

d
n∑

j=0
cjPj

d
n∑

j=0
cjPj

dλ

is also A0-measurable. (ii): Let λ =
∑∞

j=1 cjPθj be equivalent to P. Then pairwise
sufficiency of T implies for any θ0 that dPθ0/(dPθ0 + dλ) and hence dPθ0/dλ is a
measurable function of T .]
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Problem 2.12 If a statistic T is sufficient for P, then for every function f which
is (A, Pθ)-integrable for all θ ∈ Ω there exists a determination of the conditional
expectation function Eθ[f(X) | t] that is independent of θ. [If X is Euclidean, this
follows from Theorems 2.5.2 and 2.6.1. In general, if f is nonnegative there exists
a nondecreasing sequence of simple nonnegative functions fn tending to f . Since
the conditional expectation of a simple function can be taken to be independent
of θ by Lemma 2.4.1(i), the desired result follows from Lemma 2.4.1(iv).]

Problem 2.13 For a decision problem with a finite number of decisions, the class
of procedures depending on a sufficient statistic T only is essentially complete.
[For Euclidean sample spaces this follows from Theorem 2.5.1 without any restric-
tion on the decision space. For the present case, let a decision procedure be given
by δ(x) = (δ(1)(x), . . . , δ(m)(x)) where δ(i)(x) is the probability with which deci-
sion di is taken when x is observed. If T is sufficient and η(i)(t) = E[δ(i)(X) | t],
the procedures δ and η have identical risk functions.] [More general versions of this
result are discussed, for example, by Elfving (1952), Bahadur (1955), Burkholder
(1961), LeCam (1964), and Roy and Ramamoorthi (1979).]

Section 2.7

Problem 2.14 Let Xi (i = 1, . . . , s) be independently distributed with Poisson
distribution P (λi), and let T0 =

∑
Xj , Ti = Xi, λ =

∑
λj . Then T0 has the

Poisson distribution P (λ), and the conditional distribution of T1, . . . , Ts−1 given
T0 = t0 is the multinomial distribution (2.34) with n = t0 and pi = λi/λ.

Problem 2.15 Life testing. Let X1, . . . , Xn be independently distributed with
exponential density (2θ)−1e−x/2θ for x ≥ 0, and let the ordered X’s be denoted
by Y1 ≤ Y2 ≤ · · · ≤ Yn. It is assumed that Y1 becomes available first, then Y2,
and so on, and that observation is continued until Yr has been observed. This
might arise, for example, in life testing where each X measures the length of life
of, say, an electron tube, and n tubes are being tested simultaneously. Another
application is to the disintegration of radioactive material, where n is the number
of atoms, and observation is continued until r α-particles have been emitted.

(i) The joint distribution of Y1, . . . , Yr is an exponential family with density

1
(2θ)r

n!
(n − r)!

exp



−

r∑
i=1

yi + (n − r)yr

2θ



 , 0 ≤ y1 ≤ · · · ≤ yr.

(ii) The distribution of [
∑r

i=1 Yi+(n−r)Yr]/θ is χ2 with 2r degrees of freedom.

(iii) Let Y1, Y2, . . . denote the time required until the first, second, . . . event
occurs in a Poisson process with parameter 1/2θ′ (see Problem 1.1). Then
Z1 = Y1/θ′, Z2 = (Y2 − Y1)/θ′, Z3 = (Y3 − Y2)/θ′, . . . are independently
distributed as χ2 with 2 degrees of freedom, and the joint density Y1, . . . , Yr

is an exponential family with density

1
(2θ′)r

exp
(
− yr

2θ′

)
, 0 ≤ y1 ≤ · · · ≤ yr.
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The distribution of Yr/θ′ is again χ2 with 2r degrees of freedom.

(iv) The same model arises in the application to life testing if the number n of
tubes is held constant by replacing each burned-out tube with a new one,
and if Y1 denotes the time at which the first tube burns out, Y2 the time
at which the second tube burns out, and so on, measured from some fixed
time.

[(ii): The random variables Zi = (n − i + 1)(Yi − Yi−1)/θ (i = 1, 2, . . . , r) are
independently distributed as χ2 with 2 degrees of freedom, and [

∑r
i=1 Yi + (n −

r)Yr/θ =
∑r

i=1 Zi.]

Problem 2.16 For any θ which is an interior point of the natural parameter
space, the expectations and covariances of the statistics Tj in the exponential
family (2.35) are given by

E [Tj(X)] = −∂ log C(θ)
∂θj

(j = 1, . . . , k),

E [Ti(X)Tj(X)] − [ETi(X)ETj(X)] = −∂2 log C(θ)
∂θi∂θj

(i, j = 1, . . . , k).

Problem 2.17 Let Ω be the natural parameter space of the exponential family
(2.35), and for any fixed tr+1, . . . , tk (r < k) let Ω′

θ1...θr
be the natural parameter

space of the family of conditional distributions given Tr+1 = tr+1, . . . , Tk = tk.

(i) Then Ω′
θ1,...,θr

contains the projection Ωθ1,...,θr of Ω onto θ1, . . . , θr.

(ii) An example in which Ωθ1,...,θr is a proper subset of Ω′
θ1,...,θr

is the family
of densities

pθ1θ2(x, y) = C(θ1, θ2) exp(θ1x + θ2y − xy), x, y > 0.

2.9 Notes

The theory of measure and integration in abstract spaces and its application
to probability theory, including in particular conditional probability and expec-
tation, is treated in a number of books, among them Dudley (1989), Williams
(1991) and Billingsley (1995). The material on sufficient statistics and expo-
nential families is complemented by the corresponding sections in TPE2. Much
fuller treatments of exponential families (as well as sufficiency) are provided by
Barndorff–Nielsen (1978) and Brown (1986).

Rebecca Ferrell




3
Uniformly Most Powerful Tests

3.1 Stating The Problem

We now begin the study of the statistical problem that forms the principal subject
of this book, the problem of hypothesis testing. As the term suggests, one wishes
to decide whether or not some hypothesis that has been formulated is correct. The
choice here lies between only two decisions: accepting or rejecting the hypothesis.
A decision procedure for such a problem is called a test of the hypothesis in
question.

The decision is to be based on the value of a certain random variable X, the
distribution Pθ of which is known to belong to a class P = {Pθ, θ ∈ Ω}. We shall
assume that if θ were known, one would also know whether or not the hypothesis
is true. The distributions of P can then be classified into those for which the
hypothesis is true and those for which it is false. The resulting two mutually
exclusive classes are denoted by H and K, and the corresponding subsets of Ω by
ΩH and ΩK respectively, so that H ∪K = P and ΩH ∪ΩK = Ω. Mathematically,
the hypothesis is equivalent to the statement that Pθ is an element of H. It is
therefore convenient to identify the hypothesis with this statement and to use
the letter H also to denote the hypothesis. Analogously we call the distributions
in K the alternatives to H, so that K is the class of alternatives.

Let the decisions of accepting or rejecting H be denoted by d0 and d1 respec-
tively. A nonrandomized test procedure assigns to each possible value x of X one
of these two decisions and thereby divides the sample space into two complemen-
tary regions S0 and S1. If X falls into S0, the hypothesis is accepted; otherwise
it is rejected. The set S0 is called the region of acceptance, and the set S1 the
region of rejection or critical region.
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When performing a test one may arrive at the correct decision, or one may
commit one of two errors: rejecting the hypothesis when it is true (error of the first
kind) or accepting it when it is false (error of the second kind). The consequences
of these are often quite different. For example, if one tests for the presence of
some disease, incorrectly deciding on the necessity of treatment may cause the
patient discomfort and financial loss. On the other hand, failure to diagnose the
presence of the ailment may lead to the patient’s death.

It is desirable to carry out the test in a manner which keeps the probabilities
of the two types of error to a minimum. Unfortunately, when the number of
observations is given, both probabilities cannot be controlled simultaneously. It
is customary therefore to assign a bound to the probability of incorrectly rejecting
H when it is true and to attempt to minimize the other probability subject to
this condition. Thus one selects a number α between 0 and 1, called the level of
significance, and imposes the condition that

Pθ{δ(X) = d1} = Pθ{X ∈ S1} ≤ α for all θ ∈ ΩH . (3.1)

Subject to this condition, it is desired to minimize Pθ{δ(X) = d0} for θ in ΩK

or, equivalently, to maximize

Pθ{δ(X) = d1} = Pθ{X ∈ S1} for all θ ∈ ΩK . (3.2)

Although usually (3.2) implies that

sup
ΩH

Pθ{X ∈ S1} = α, (3.3)

it is convenient to introduce a term for the left-hand side of (3.3): it is called
the size of the test or critical region S1. The condition (3.1) therefore restricts
consideration to test whose size does not exceed the given level of significance.
The probability of rejection (3.2) evaluated for a given θ in ΩK is called the power
of the test against the alternative θ. Considered as a function of θ for all θ ∈ Ω,
the probability (3.2) is called the power function of the test and is denoted by
β(θ).

The choice of a level of significance α is usually somewhat arbitrary, since in
most situations there is no precise limit to the probability of an error of the first
kind that can be tolerated.1 Standard values, such as .01 or .05, were originally
chosen to effect a reduction in the tables needed for carrying out various test. By
habit, and because of the convenience of standardization in providing a common
frame of reference, these values gradually became entrenched as the conventional
levels to use. This is unfortunate, since the choice of significance level should also
take into consideration the power that the test will achieve against the alterna-
tives of interest. There is little point in carrying out an experiment which has
only a small chance of detecting the effect being sought when it exists. Surveys
by Cohen (1962) and Freiman et al. (1978) suggest that this is in fact the case
for many studies. Ideally, the sample size should then be increased to permit ade-
quate values for both significance level and power. If that is not feasible one may
wish to use higher values of α than the customary ones. The opposite possibility,

1The standard way to remove the arbitrary choice of α is to report the p-value of
the test, defined as the smallest level of significance leading to rejection of the null
hypothesis. This approach will discussed toward the end of Section 3.3.
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that one would like to decrease α, arises when the latter is so close to 1 that
α can be lowered appreciably without a significant loss of power (cf. Problem
3.11). Rules for choosing α in relation to the attainable power are discussed by
Lehmann (1958), Arrow (1960), and Sanathanan (1974), and from a Bayesian
point of view by Savage (1962, pp. 64–66). See also Rosenthal and Rubin (1985).

Another consideration that may enter into the specification of a significance
level is the attitude toward the hypothesis before the experiment is performed. If
one firmly believes the hypothesis to be true, extremely convincing evidence will
be required before one is willing to give up this belief, and the significance level
will accordingly be set very low. (A low significance level results in the hypothesis
being rejected only for a set of values of the observations whose total probability
under hypothesis is small, so that such values would be most unlikely to occur if
H were true.)

Let us next consider the structure of a randomized test. For any values x, such
a test chooses between the two decisions, rejection or acceptance, with certain
probabilities that depend on x and will be denoted by φ(x) and 1 − φ(x) re-
spectively. If the value of X is x, a random experiment is performed with two
possible outcomes R and R̄, the probabilities of which are φ(x) and 1−φ(x). If in
this experiment R occurs, the hypothesis is rejected, otherwise it is accepted. A
randomized test is therefore completely characterized by a function φ, the critical
function, with 0 ≤ φ(x) ≤ 1 for all x. If φ takes on only the values 1 and 0, one is
back in the case of a nonrandomized test. The set of points x for which φ(x) = 1
is then just the region of rejection, so that in a nonrandomized test φ is simply
the indicator function of the critical region.

If the distribution of X is Pθ, and the critical function φ is used, the probability
of rejection is

Eθφ(X) =

∫
φ(x) dPθ(x),

the conditional probability φ(x) of rejection given x, integrated with respect to
the probability distribution of X. The problem is to select φ so as to maximize
the power

βφ(θ) = Eθφ(X) for all θ ∈ ΩK (3.4)

subject to the condition

Eθφ(X) ≤ α for all θ ∈ ΩH . (3.5)

The same difficulty now arises that presented itself in the general discussion of
Chapter 1. Typically, the test that maximized the power against a particular
alternative in K depends on this alternative, so that some additional principal
has to be introduced to define what is meant by an optimum test. There is
one important exception: if K contains only one distribution, that is, if one is
concerned with a single alternative, the problem is completely specified by (3.4)
and (3.5). It then reduces to the mathematical problem of maximizing an integral
subject to certain side conditions. The theory of this problem, and its statistical
applications, constitutes the principle subject of the present chapter. In special
cases it may of course turn out that the same test maximizes the power of all
alternatives in K even when there is more than one. Examples of such uniformly
most powerful (UMP) tests will be given in Section 3.4 and 3.7.
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In the above formulation the problem can be considered as special case of the
general decision problem with two types of losses. Corresponding to the two kinds
of error, one can introduce the two component loss functions,

L1(θ, d1) = 1 or 0 as θ ∈ ΩH or θ ∈ ΩK ,
L1(θ, d0) = 0 for all θ

and

L2(θ, d0) = 0 or 1 as θ ∈ ΩH or θ ∈ ΩK ,
L2(θ, d1) = 0 for all θ .

With this definition the minimization of EL2(θ, δ(X)) subject to the restriction
EL1(θ, δ(X)) ≤ α is exactly equivalent to the problem of hypothesis testing as
given above.

The formal loss functions L1 and L2 clearly do not represent in general the
true losses. The loss resulting from an incorrect acceptance of the hypothesis,
for example, will not be the same for all alternatives. The more the alternative
differs from the hypothesis, the more serious are the consequences of such an
error. As was discussed earlier, we have purposely foregone the more detailed
approach implied by this criticism. Rather than working with a loss function
which in practice one does not know, it seems preferable to base the theory on
the simpler and intuitively appealing notion of error. It will be seen later that at
least some of the results can be justified also in the more elaborate formulation.

3.2 The Neyman–Pearson Fundamental Lemma

A class of distributions is called simple if it contains a single distribution, and
otherwise it is said to be composite. The problem of hypothesis testing is com-
pletely specified by (3.4) and (3.5) if K is simple. Its solution is easiest and can
be given explicitly when the same is true of H. Let the distributions under a
simple hypothesis H and alternative K be P0 and P1, and suppose for a moment
that these distributions are discrete with Pi{X = x} = Pi(x) for i = 0, 1. If at
first one restricts attention to nonrandomized tests, the optimum test is defined
as the critical region S satisfying

∑

x∈S

P0(x) ≤ α (3.6)

and
∑

x∈S

P1(x) = maximum .

It is easy to see which points should be included in S. To each point are attached
two values, its probability under P0 and under P1. The selected points are to have
a total value not exceeding α on the one scale, and as large as possible on the
other. This is a situation that occurs in many contexts. A buyer with a limited
budget who wants to get “the most for his money” will rate the items according to
their value per dollar. In order to travel a given distance in the shortest possible
time, one must choose the quickest mode of transportation, that is, the one that
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yields the largest number of miles per hour. Analogously in the present problem
the most valuable points x are those with the highest value of

r(x) =
P1(x)
P0(x)

.

The points are therefore rated according to the value of this ratio and selected
for S in this order, as many as one can afford under restriction (3.6). Formally this
means that S is the set of all points x for which r(x) > c, where c is determined
by the condition

P0{X ∈ S} =
∑

x:r(x)>c

P0(x) = α .

Here a difficulty is seen to arise. It may happen that when a certain point is
included, the value α has not yet been reached but that it would be exceeded if
the point were also included. The exact value α can then either not be achieved
at all, or it can be attained only by breaking the preference order established by
r(x). The resulting optimization problem has no explicit solution. (Algorithms
for obtaining the maximizing set S are given by the theory of linear program-
ming.) The difficulty can be avoided, however, by a modification which does not
require violation of the r-order and which does lead to a simple explicit solution,
namely by permitting randomization.2 This makes it possible to split the next
point, including only a portion of it, and thereby to obtain the exact value α
without breaking the order of preference that has been established for inclusion
of the various sample points. These considerations are formalized in the following
theorem, the fundamental lemma of Neyman and Pearson.

Theorem 3.2.1 Let P0 and P1 be probability distributions possessing densities
p0 and p1 respectively with respect to a measure µ.3

(i) Existence. For testing H : p0 against the alternative K : p1 there exists a
test φ and a constant k such that

E0φ(X) = α (3.7)

and

φ(x) =

{
1 when p1(x) > kp0(x),
0 when p1(x) < kp0(x).

(3.8)

(ii) Sufficient condition for a most powerful test. If a test satisfies (3.7) and
(3.8) for some k, then it is most powerful for testing p0 against p1 at level α.

(iii) Necessary condition for a most powerful test. If φ is most powerful at
level α for testing p0 against p1, then for some k it satisfies (3.8) a.e. µ. It also
satisfies (3.7) unless there exists a test of size < α and with power 1.

Proof. For α = 0 and α = 1 the theorem is easily seen to be true provided the
value k = + ∞ is admitted in (3.8) and 0 ·∞ is interpreted as 0. Throughout the
proof we shall therefore assume 0 < α < 1.

2In practice, typically neither the breaking of the r-order nor randomization is con-
sidered acceptable. The common solution, instead, is to adopt a value of α that can be
attained exactly and therefore does not present this problem.

3There is no loss of generality in this assumption, since one can take µ = P0 + P1.

Rebecca Ferrell




3.2. The Neyman–Pearson Fundamental Lemma 61

(i): Let α(c) = P0{p1(X) > cp0(X)}. Since the probability is computed under
P0, the inequality need be considered only for the set where p0(x) > 0, so that
α(c) is the probability that the random variable p1(X)/p0(X) exceeds c. Thus
1 − α(c) is a cumulative distribution function, and α(c) is nonincreasing and
continuous on the right, α(c − 0) − α(c) = P0{p1(X)/p0(X) = c}, α(−∞) = 1,
and α(∞) = 0. Given any 0 < α < 1, let c0 be such that α(c0) ≤ α ≤ α(c0 − 0),
and consider the test φ defined by

φ(x) =






1 when p1(x) > c0p0(x),
α−α(c0)

α(c0−0)−α(c0) when p1(x) = c0p0(x),

0 when p1(x) < c0p0(x).

Here the middle expression is meaningful unless α(c0) = α(c0 − 0); since then
P0{p1(X) = c0p0(X)} = 0, φ is defined a.e. The size of φ is

E0φ(X) = P0

{
p1(X)
p0(X)

> c0

}
+

α − α(c0)
α(c0 − 0) − α(c0)

P0

{
p1(X)
p0(X)

= c0

}
= α,

so that c0 can be taken as the k of the theorem.
(ii): Suppose that φ is a test satisfying (3.7) and (3.8) and that φ∗ is any

other test with E0φ
∗(X) ≤ α. Denote by S+ and S− the sets in the sample space

where φ(x)−φ∗(x) > 0 and < 0 respectively. If x is in S+, φ(x) must be > 0 and
p1(x) ≥ kp0(x). In the same way p1(x) ≤ kp0(x) for all x in S−, and hence

∫
(φ − φ∗)(p1 − kp0) dµ =

∫

S+∪S−
(φ − φ∗)(p1 − kp0) dµ ≥ 0.

The difference in power between φ and φ∗ therefore satisfies
∫

(φ − φ∗)p1 dµ ≥ k

∫
(φ − φ∗)p0 dµ ≥ 0,

as was to be proved.
(iii): Let φ∗ be most powerful at level α for testing p0 against p1, and let φ

satisfy (3.7) and (3.8). Let S be the intersection of the set S+ ∪ S−, on which
φ and φ∗ differ, with the set {x : p1(x) += kp0(x)}, and suppose that µ(S) > 0.
Since (φ − φ∗)(p1 − kp0) is positive on S, it follows from Problem 2.4 that

∫

S+∪S−
(φ − φ∗)(p1 − kp0) dµ =

∫

S

(φ − φ∗)(p1 − kp0) dµ > 0

and hence that φ is more powerful against p1 than φ∗. This is a contradiction,
and therefore µ(S) = 0, as was to be proved.

If φ∗ were of size < α and power < 1, it would be possible to include in the
rejection region additional points or portions of points and thereby to increase
the power until either the power is 1 or the size is α. Thus either E0φ

∗(X) =
α or E1φ

∗(X) = 1.
The proof of part (iii) shows that the most powerful test is uniquely determined

by (3.7) and (3.8) except on the set on which p1(x) = kp0(x). On this set, φ can
be defined arbitrarily provided the resulting test has size α. Actually, we have
shown that it is always to define φ to be constant over this boundary set. In the
trivial case that there exists a test of power 1, the constant k of (3.8) is 0, and
one will accept H for all points for which p1(x) = kp0(x) even though the test
may then have size < α.
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It follows from these remarks that the most powerful test is determined
uniquely (up to sets of measure zero) by (3.7) and (3.8) whenever the set on
which p1(x) = kp0(x) has µ-measure zero. This unique test is then clearly non-
randomized. More generally, it is seen that randomization is not required except
possibly on the boundary set, where it may be necessary to randomize in order
to get the size equal to α. When there exists a test of power 1, (3.7) and (3.8)
will determine a most powerful test, but it may not be unique in that there may
exist a test also most powerful and satisfying (3.7) and (3.8) for some α′ < α.

Corollary 3.2.1 Let β denote the power of the most powerful level-α test (0 <
α < 1) for testing P0 against P1. Then α < β unless P0 = P1.

Proof. Since the level-α test given by φ(x) ≡ α has power α, it is seen that
α ≤ β. If α = β < 1, the test φ(x) ≡ α is most powerful and by Theorem
3.2.1(iii) must satisfy (3.8). Then p0(x) = p1(x) a.e. µ and hence P0 = P1.

An alternative method for proving some of the results of this section is based
on the following geometric representation of the problem of testing a simple
hypothesis against a simple alternative. Let N be the set of all points (α, β) for
which there exists a test φ such that

α = E0φ(X), β = E1φ(X).

This set is convex, contains the points (0,0) and (1,1), and is symmetric with
respect to the point ( 1

2 , 1
2 ) in the sense that with any point (α, β) it also contains

the point (1 − α, 1 − β). In addition, the set N is closed. [This follows from the
weak compactness theorem for critical functions, Theorem A.5.1 of the Appendix;
the argument is the same as that in the proof of Theorem 3.6.1(i).]

For each value 0 < α0 < 1, the level-α0 tests are represented by the points
whose abscissa is ≤ αo. The most powerful of these tests (whose existence follows
from the fact that N is closed) corresponds to the point on the upper boundary
of N with abscissa α0. This is the only point corresponding to a most powerful
level-α0 test unless there exists a point (α, 1) in N with α < α0 (Figure 3.1b).
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Figure 3.1.
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As a example of this geometric approach, consider the following alternative
proof of Corollary 3.2.1. Suppose that for some 0 < α0 < 1 the power of the
most powerful level-α0 test is α0. Then it follows from the convexity of N that
(α, β) ∈ N implies β ≤ α, and hence from the symmetry of N that N consists
exactly of the line segment connecting the points (0,0) and (1,1). This means
that

∫
φpo dµ =

∫
φp1 dµ for all φ and hence that p0 = p1 (a.e.µ), as was to be

proved. A proof of Theorem 3.2.1 along these lines is given in a more general
setting in the proof of Theorem 3.6.1.

Example 3.2.1 Suppose X is an observation from N(ξ, σ2), with σ2 known.
The null hypothesis specifies ξ = 0 and the alternative specifies ξ = ξ1 for some
ξ1 > 0. Then, the likelihood ratio is given by

p1(x)
p0(x)

=
exp[− 1

2σ2 (x − ξ1)
2]

exp[− 1
2σ2 x2]

= exp[
ξ1x
σ2

− ξ2
1

2σ2
] . (3.9)

Since the exponential function is strictly increasing and ξ1 > 0, the set of x where
p1(x)/p0(x) > k is equivalent to the set of x where x > k′. In order to determine
k′, the level constraint

P0{X > k′} = α

must be satisfied, and so k′ = σz1−α, where z1−α is the 1 − α quantile of the
standard normal distribution. Therefore, the most powerful level α test rejects if
X > σz1−α.

3.3 p-values

Testing at a fixed level α as described in Sections 3.1 and 3.2 is one of two standard
(non-Bayesian) approaches to the evaluation of hypotheses. To explain the other,
suppose that, under P0, the distribution of p1(X)/p0(X) is continuous. Then,
the most powerful level α test is nonrandomized and rejects if p1(X)/p0(X) > k,
where k = k(α) is determined by (3.7). For varying α, the resulting tests provide
an example of the typical situation in which the rejection regions Sα are nested
in the sense that

Sα ⊂ Sα′ if α < α′ . (3.10)

When this is the case,4 it is good practice to determine not only whether the
hypothesis is accepted or rejected at the given significance level, but also to
determine the smallest significance level, or more formally

p̂ = p̂(X) = inf{α : X ∈ Sα} , (3.11)

at which the hypothesis would be rejected for the given observation. This num-
ber, the so-called p-value gives an idea of how strongly the data contradict the

4See Problems 3.17 and 3.58 for examples where optimal nonrandomized tests need
not be nested.
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hypothesis.5 It also enables others to reach a verdict based on the significance
level of their choice.

Example 3.3.1 (Continuation of Example 3.2.1) Let Φ denote the stan-
dard normal c.d.f. Then, the rejection region can be written as

Sα = {X : X > σz1−α} = {X : Φ(
X
σ

) > 1 − α} = {X : 1 − Φ(
X
σ

) < α} .

For a given observed value of X, the inf over all α where the last inequality holds
is

p̂ = 1 − Φ(
X
σ

) .

Alternatively, the p-value is P0{X ≥ x}, where x is the observed value of X. Note
that, under ξ = 0, the distribution of p̂ is given by

P0{p̂ ≤ u} = P0{1 − Φ(
X
σ

) ≤ u} = P0{Φ(
X
σ

) ≥ 1 − u} = u ,

because Φ(X/σ) is uniformly distributed on (0,1) (see Problem 3.22); therefore,
p̂ is uniformly distributed on (0,1).

A general property of p-values is given in the following lemma, which applies
to both simple and composite null hypotheses.

Lemma 3.3.1 Suppose X has distribution Pθ for some θ ⊂ Ω, and the null
hypothesis H specifies θ ∈ ΩH . Assume the rejection regions satisfy (3.10).
(i) If

sup
θ∈ΩH

Pθ{X ∈ Sα} ≤ α for all 0 < α < 1, (3.12)

then the distribution of p̂ under θ ∈ ΩH satisfies

Pθ{p̂ ≤ u} ≤ u for all 0 ≤ u ≤ 1 . (3.13)

(ii) If, for θ ∈ ΩH ,

Pθ{X ∈ Sα} = α for all 0 < α < 1 , (3.14)

then

Pθ{p̂ ≤ u} = u for all 0 ≤ u ≤ 1 ;

i.e. p̂ is uniformly distributed over (0, 1).

Proof. (i) If θ ∈ ΩH , then the event {p̂ ≤ u} implies {X ∈ Sv} for all u < v.
The result follows by letting v → u.

(ii) Since the event {X ∈ Su} implies {p̂ ≤ u}, it follows that

Pθ{p̂ ≤ u} ≥ Pθ{X ∈ Su} .

Therefore, if (3.14) holds, then Pθ{p̂ ≤ u} ≥ u, and the result follows from (i).

5One could generalize the definition of p-value to include randomized level α tests φα

assuming that they are nested in the sense that φα(x) ≤ φα′ (x) for all x and α < α′.
Simply define p̂ = inf{α : φα(X) = 1}; in words, p̂ is the smallest level of significance
where the hypothesis is rejected with probability one.



3.4. Distributions with Monotone Likelihood Ratio 65

Example 3.3.2 Suppose X takes values 1, 2, . . . , 10. Under H, the distribution
is uniform, i.e., p0(j) = 1

10 for j = 1, . . . , 10. Under K, suppose p1(j) = j/55.
The MP level α = i/10 test rejects if X ≥ 11− i. However, unless α is a multiple
of 1/10, the MP level α test is randomized. If we want to restrict attention to
nonrandomized procedures, consider the conservative approach by defining

Sα = {X ≥ 11 − i} if
i
10

≤ α <
i + 1
10

.

If the observed value of X is x, then the p-value is given by (11 − x)/10. Then,
the distribution of p̂ under H is given by

P{p̂ ≤ u} = P{11 − X
10

≤ u} = P{X ≥ 11 − 10u} ≤ u , (3.15)

and the last inequality is an equality if and only if u is of the form i/10 for some
integer i = 0, 1, . . . , 10, i.e. the levels for which the MP test is nonrandomized
(Problem 3.21).

P -values, with the additional information they provide, are typically more
appropriate than fixed levels in scientific problems, whereas a fixed predetermined
α is unavoidable when acceptance or rejection of H implies an imminent concrete
decision. A review of some of the issues arising in this context, with references to
the literature, is given in Kruskal (1978).

3.4 Distributions with Monotone Likelihood Ratio

The case that both the hypothesis and the class of alternatives are simple is
mainly of theoretical interest, since problems arising in applications typically
involve a parametric family of distributions depending on one or more parameters.
In the simplest situation of this kind the distributions depend on a single real-
valued parameter θ, and the hypothesis is one-sided, say H : θ ≤ θ0. In general,
the most powerful test of H against an alternative θ1 > θ0 depends on θ1 and is
then not UMP. However, a UMP test does exist if an additional assumption is
satisfied. The real-parameter family of densities pθ(x) is said to have monotone
likelihood ratio6 if there exists a real-valued function T (x) such that for any
θ < θ′ the distributions Pθ and Pθ′ are distinct, and the ratio pθ′(x)/pθ(x) is a
nondecreasing function of T (x).

Theorem 3.4.1 Let θ be a real parameter, and let the random variable X have
probability density pθ(x) with monotone likelihood ratio in T (x).

(i) For testing H : θ ≤ θ0 against K : θ > θ0, there exists a UMP test, which
is given by

φ(x) =






1 when T (x) > C,
γ when T (x) = C,
0 when T (x) < C,

(3.16)

6This definition is in terms of specific versions of the densities pθ. If instead the
definition is to be given in terms of the distribution Pθ, various null-set considerations
enter which are discussed in Pfanzagl (1967).

Rebecca Ferrell
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where C and γ are determined by

Eθ0φ(X) = α. (3.17)

(ii) The power function

β(θ) = Eθφ(X)

of this test is strictly increasing for all points θ for which 0 < β(θ) < 1.
(iii) For all θ′, the test determined by (3.16) and (3.17) is UMP for testing

H ′ : θ ≤ θ′ against K′ : θ > θ′ at level α′ = β(θ′).
(iv) For any θ < θ0 the test minimizes β(θ) (the probability of an error of the

first kind) among all tests satisfying (3.17).

Proof. (i) and (ii): Consider first the hypothesis H0 : θ = θ0 and some simple
alternative θ1 > θ0. The most desirable points for rejection are those for which
r(x) = pθ1(x)/pθ0(x) = g[T (x)] is sufficiently large. If T (x) < T (x′), then r(x) ≤
r(x′) and x′ is at least as desirable as x. Thus the test which rejects for large
values of T (x) is most powerful. As in the proof of Theorem 3.2.1(i), it is seen that
there exist C and γ such that (3.16) and (3.17) hold. By Theorem 3.2.1(ii), the
resulting test is also most powerful for testing Pθ′ against Pθ′′ at level α′ = β(θ′)
provided θ′ < θ′′. Part (ii) of the present theorem now follows from Corollary
3.2.1. Since β(θ) is therefore nondecreasing the test satisfies

Eθφ(X) ≤ α for θ ≤ θ0. (3.18)

The class of tests satisfying (3.18) is contained in the class satisfying Eθ0φ(X) ≤
α. Since the given test maximizes β(θ1) within this wider class, it also maximizes
β(θ1) subject to (3.18); since it is independent of the particular alternative θ1 > θ0

chosen, it is UMP against K.
(iii) is proved by an analogous argument.
(iv) follows from the fact that the test which minimizes the power for testing

a simple hypothesis against a simple alternative is obtained by applying the
fundamental lemma (Theorem 3.2.1) with all inequalities reversed.

By interchanging inequalities throughout, one obtains in an obvious manner
the solution of the dual problem, H : θ ≥ θ0, K : θ < θ0.

The proof of (i) and (ii) exhibits the basic property of families with monotone
likelihood ratio: every pair of parameter values θ0 < θ1 establishes essentially
the same preference order of the sample points (in the sense of the preceding
section). A few examples of such families, and hence of UMP one-sided tests,
will be given below. However, the main applications of Theorem 3.4.1 will come
later, when such families appear as the set of conditional distributions given a
sufficient statistic (Chapters 4 and 5) and as distributions of a maximal invariant
(Chapters 6 and 7).

Example 3.4.1 (Hypergeometric) From a lot containing N items of a man-
ufactured product, a sample of size n is selected at random, and each item in the
sample is inspected. If the total number of defective items in the lot is D, the
number X of defectives found in the sample has the hypergeometric distribution

P{X = x} = PD(x) =

(
D
x

)(
N−D
n−x

)
(

N
n

) , max(0, n + D − N) ≤ x ≤ min(n, D).

Rebecca Ferrell
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Interpreting PD(x) as a density with respect to the measure µ that assigns to any
set on the real line as measure the number of integers 0, 1, 2, . . . that it contains,
and nothing that for values of x within its range

PD+1(x)
PD(x)

=

{ D+1
N−D

N−D−n+x
D+1−x if n + D + 1 − N ≤ x ≤ D,

0 or ∞ if x = n + D − N or D + 1,

it is seen that the distributions satisfy the assumption of monotone likelihood
ratios with T (x) = x. Therefore there exists a UMP test for testing the hypothesis
H : D ≤ D0 against K : D > D0, which rejects H when X is too large, and an
analogous test for testing H ′ : D ≥ D0.

An important class of families of distributions that satisfy the assumptions of
Theorem 3.4.1 are the one-parameter exponential families.

Corollary 3.4.1 Let θ be a real parameter, and let X have probability density
(with respect to some measure µ)

pθ(x) = C(θ)eQ(θ)T (x)h(x), (3.19)

where Q is strictly monotone. Then there exists a UMP test φ for testing H : θ ≤
θ0 against K : θ > θ0. If Q is increasing,

φ(x) = 1, γ, 0 as T (x) >, =, < C,

where C and γ are determined by Eθ0φ(X) = α. If Q is decreasing, the inequalities
are reversed.

A converse of Corollary 3.4.1 is given by Pfanzagl (1968), who shows under
weak regularity conditions that the existence of UMP tests against one-sided
alternatives for all sample sizes and one value of α implies an exponential family.

As in Example 3.4.1, we shall denote the right-hand side of (3.19) by Pθ(x)
instead of pθ(x) when it is a probability, that is, when X is discrete and µ is
counting measure.

Example 3.4.2 (Binomial) The binomial distributions b(p, n) with

Pp(x) =

(
n
x

)
px(1 − p)n−x

satisfy (3.19) with T (x) = x, θ = p, Q(p) = log[p/(1− p)]. The problem of testing
H : p ≥ p0 arises, for instance, in the situation of Example 3.4.1 if one supposes
that the production process is in statistical control, so that the various items
constitute independent trials with constant probability p of being defective. The
number of defectives X in a sample of size n is then sufficient statistic for the
distribution of the variables Xi (i = 1, . . . , n), where Xi is 1 or 0 as the ith item
drawn is defective or not, and X is distributed as b(p, n). There exists therefore
a UMP test of H, which rejects H when X is too small.

An alternative sampling plan which is sometimes used in binomial situations
is inverse binomial sampling. Here the experiment is continued until a speci-
fied number m of successes—for example, cures effected by some new medical
treatment—have been obtained. If Yi denotes the number of trials after the
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(i − 1)st success up to but not including the ith success, the probability that
Yi = y is pqy for y = 0, 1, . . . , so that the joint distribution of Y1, . . . , Ym is

Pp(y1, . . . , ym) = pmq
∑

yi , yk = 0, 1, . . . , k = 1, . . . , m.

This is an exponential family with T (y) =
∑

yi and Q(p) = log(1 − p). Since
Q(p) is a decreasing function of p, the UMP test of H : p ≤ p0 rejects H when T
is too small. This is what one would expect, since the realization of m successes
in only a few more than m trials indicates a high value of p. The test statistic T ,
which is the number of trials required in excess of m to get m successes, has the
negative binomial distribution [Problem 1.1(i)]

P (t) =

(
m + t − 1

m − 1

)
pmqt, t = 0, 1, . . . .

Example 3.4.3 (Poisson) If X1, . . . , Xn are independent Poisson variables
with E(Xi) = λ, their joint distribution is

Pλ(x1, . . . , xn) =
λx1+···+xn

x1! · · ·xn!
e−nλ.

This constitutes an exponential family with T (x) =
∑

xi, and Q(λ) = log λ.
One-sided hypotheses concerning λ might arise if λ is a bacterial density and
the X’s are a number of bacterial counts, or if the X’s denote the number of
α-particles produced in equal time intervals by a radioactive substance, etc. The
UMP test of the hypothesis λ ≤ λ0 rejects when

∑
Xi is too large. Here the test

statistic
∑

Xi has itself a Poisson distribution with parameter nλ.
Instead of observing the radioactive material for given time periods or counting

the number of bacteria in given areas of a slide, one can adopt an inverse sampling
method. The experiment is then continued, or the area over which the bacteria
are counted is enlarged, until a count of m has been obtained. The observations
consist of the times T1, . . . , Tm that it takes for the first occurrence, from the
first to the second, and so on. If one is dealing with a Poisson process and the
number of occurrences in a time or space interval τ has the distribution

P (x) =
(λτ)x

x!
e−λτ , x = 0, 1, . . . ,

then the observed times are independently distributed, each with the exponential
density λe−λt for t ≥ 0 [Problem 1.1(ii)]. The joint densities

pλ(t1, . . . , tm) = λm exp

(
−λ

m∑

i=1

ti

)
, t1, . . . , tm ≥ 0,

form an exponential family with T (t1, . . . , tm) =
∑

ti and Q(λ) = −λ. The UMP
test of H : λ ≤ λ0 rejects when T =

∑
Ti is too small. Since 2λTi has density

1
2e−u/2 for u ≥ 0, which is the density of a χ2-distribution with 2 degrees of
freedom, 2λT has a χ2-distribution with 2m degrees of freedom. The boundary
of the rejection region can therefore be determined from a table of χ2.

The formulation of the problem of hypothesis testing given at the beginning
of the chapter takes account of the losses resulting from wrong decisions only
in terms of the two types of error. To obtain a more detailed description of the
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problem of testing H : θ ≤ θ0 against the alternatives θ > θ0, one can consider
it as a decision problem with the decisions d0 and d1 of accepting and rejecting
H and a loss function L(θ, di) = Li(θ). Typically, L0(θ) will be 0 for θ ≤ θ0 and
strictly increasing for θ ≥ θ0, and L1(θ) will be strictly decreasing for θ ≤ θ0 and
equal to 0 for θ ≥ θ0. The difference then satisfies

L1(θ) − L0(θ) >< 0 as θ <> θ0. (3.20)

The following theorem is a special case of complete class results of Karlin and
Rubin (1956) and Brown, Cohen, and Strawderman (1976).

Theorem 3.4.2 (i) Under the assumptions of Theorem 3.4.1, the family of
tests given by (3.16) and (3.17) with 0 ≤ α ≤ 1 is essentially complete provided
the loss function satisfies (3.20).

(ii) This family is also minimal essentially complete if the set of points x for
which pθ(x) > 0 is independent of θ.

Proof. (i): The risk function of any test φ is

R(θ, φ) =

∫
pθ(x){φ(x)L1(θ) + [1 − φ(x)]L0(θ)} dµ(x)

=

∫
pθ(x){L0(θ) + [L1(θ) − L0(θ)]φ(x)} dµ(x),

and hence the difference of two risk functions is

R(θ, φ′) − R(θ, φ) = [L1(θ) − L0(θ)]

∫
(φ′ − φ)pθ dµ.

This is ≤ 0 for all θ if

βφ′(θ) − βφ(θ) =

∫
(φ′ − φ)pθ dµ >=< 0 for θ >=< θ0.

Given any test φ, let Eθ0φ(X) = α. It follows from Theorem 3.4.1(i) that there
exists a UMP level-α test φ′ for testing θ = θ0 against θ > θ0, which satisfies
(3.16) and (3.17). By Theorem 3.4.1(iv), φ′ also minimizes the power for θ < θ0.
Thus the two risk functions satisfy R(θ, φ′) ≤ R(θ, φ) for all θ, as was to be
proved.

(ii): Let φα and φα′ be of sizes α < α′ and UMP for testing θ0 against θ > θ0.
Then βφα(θ) < βφα′ (θ) for all θ > θ0 unless βφα(θ) = 1. By considering the
problem of testing θ = θ0 against θ < θ0 it is seen analogously that this inequality
also holds for all θ < θ0 unless βφα′ (θ) = 0. Since the exceptional possibilities are

excluded by the assumptions, it follows that R(θ, φ′) <> R(θ, φ) as θ >< θ0. Hence
each of the two risk functions is better than the other for some values of θ.

The class of tests previously derived as UMP at the various significance levels
α is now seen to constitute an essentially complete class for a much more general
decision problem, in which the loss function is only required to satisfy certain
broad qualitative conditions. From this point of view, the formulation involving
the specification of a level of significance can be considered a simple way of
selecting a particular procedure from an essentially complete family.

The property of monotone likelihood ratio defines a very strong ordering of a
family of distributions. For later use, we consider also the following somewhat
weaker definition. A family of cumulative distribution functions Fθ on the real line
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is said to be stochastically increasing (and the same term is applied to random
variables possessing these distributions) if the distributions are distinct and if
θ < θ′ implies Fθ(x) ≥ Fθ′(x) for all x. If then X and X ′ have distributions Fθ

and F ′
θ respectively, it follows that P{X > x} ≤ P{X ′ > x} for all x, so that

X ′ tends to have larger values than X. In this case the variable X ′ is said to
be stochastically larger than X. This relationship is made more intuitive by the
following characterization of the stochastic ordering of two distributions.

Lemma 3.4.1 Let F0 and F1 be two cumulative distribution functions on the real
line. Then F1(x) ≤ F0(x) for all x if and only if there exist two nondecreasing
functions f0 and f1, and a random variable V , such that (a) f0(v) ≤ f1(v) for
all v, and (b) the distributions of f0(V ) and f1(V ) are F0 and F1 respectively.

Proof. Suppose first that the required f0, f1 and V exist. Then

F1(x) = P{f1(V ) ≤ x} ≤ P{f0(V ) ≤ x} = F0(x)

for all x. Conversely, suppose that F1(x) ≤ F0(x) for all x, and let fi(y) = inf{x :
Fi(x − 0) ≤ y ≤ F1(x)}, i = 0, 1. These functions are nondecreasing and for
fi = f, Fi = F satisfy

f [F (x)] ≤ x and F [f(y)] ≥ y for all x and y.

It follows that y ≤ F (x0) implies f(y) ≤ f [F (x0)] ≤ x0 and that conversely
f(y) ≤ x0, implies F [f(y)] ≤ F (x0)] and hence y ≤ F (x0), so that the two in-
equalities f(y) ≤ x0 and y ≤ F (x0) are equivalent. Let V be uniformly distributed
on (0,1). Then P{fi(V ) ≤ x} = P{V ≤ Fi(x)} = Fi(x). Since Fi(x) ≤ F0(x) for
all x implies f0(y) ≤ f1(y) for all y, this completes the proof.

One of the simplest examples of a stochastically ordered family is a location
parameter family, that is, a family satisfying

Fθ(x) = F (x − θ).

To see that this is stochastically increasing, let X be a random variable with
distribution F (x). Then θ < θ′ implies

F (x − θ) = P{X ≤ x − θ} ≥ P{X ≤ x − θ′} = F (x − θ′),

as was to be shown.
Another example is furnished by families with monotone likelihood ratio. This

is seen from the following lemma, which establishes some basic properties of these
families.

Lemma 3.4.2 Let pθ(x) be a family of densities on the real line with monotone
likelihood ratio in x.

(i) If ψ is a nondecreasing function of x, then Eθψ(X) is a nondecreasing
function of θ; if X1, . . . , Xn are independently distributed with density pθ and ψ′

is a function of x1, . . . , xn which is nondecreasing in each of its arguments, then
Eθψ′(X1, . . . , Xn) is a nondecreasing function of θ.

(ii) For any θ < θ′, the cumulative distribution functions of X under θ and θ′

satisfy

Fθ′(x) ≤ Fθ(x) for all x.
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(iii) Let ψ be a function with a single change of sign. More specifically, suppose
there exists a value x0 such that ψ(x) ≤ 0 for x < x0 and ψ(x) ≥ 0 for x ≥ x0.
Then there exists θ0 such that Eθψ(X) ≤ 0 for θ < θ0 and Eθψ(X) ≥ 0 for
θ > θ0, unless Eθψ(X) is either positive for all θ or negative for all θ.

(iv) Suppose that pθ(x) is positive for all θ and all x, that pθ′(x)/pθ(x) is
strictly increasing in x for θ < θ′, and that ψ(x) is as in (iii) and is += 0 with
positive probability. If Eθoψ(X) = 0, then Eθψ(X) < 0 for θ < θ0 and > 0 for
θ > θ0.

Proof. (i): Let θ < θ′, and let A and B be the sets for which pθ′(x) < pθ(x) and
pθ′(x) > pθ(x) respectively. If a = supA ψ(x) and b = infB ψ(x), then b − a ≥ 0
and

∫
ψ(pθ′ − pθ) dµ ≥ a

∫

A

(pθ′ − pθ) dµ + b

∫

B

(pθ′ − pθ) dµ

= (b − a)

∫

B

(pθ′ − pθ) dµ ≥ 0,

which proves the first assertion. The result for general n follows by induction.
(ii): This follows from (i) by letting ψ(x) = 1 for x > x0 and ψ(x) = 0

otherwise.
(iii): We shall show first that for any θ′ < θ′′, Eθ′ψ(X) > 0 implies Eθ′′ψ(X) ≥

0. If pθ′′(x0)/pθ′(x0) = ∞, then pθ′(x) = 0 for x ≥ x0 and hence Eθ′ψ(X) ≤ 0.
Suppose therefore that pθ′′(x0)/pθ′(x0) = c < ∞. Then ψ(x) ≥ 0 on the set
S = {x : pθ′(x) = 0 and pθ′′(x) > 0}, and

Eθ′′ψ(X) ≥
∫

S̃

ψ
pθ′′

pθ′
pθ′ dµ

≥
∫ x0−

−∞
cψpθ′ dµ +

∫ ∞

x0

cψpθ′ dµ = cEθ′ψ(X) ≥ 0.

The result now follows by letting θ0 = inf{θ : Eθψ(X) > 0}.
(iv): The proof is analogous to that of (iii).
Part (ii) of the lemma shows that any family of distributions with monotone

likelihood ratio in x is stochastically increasing. That the converse does not hold
is shown for example by the Cauchy densities

1
π

1
1 + (x − θ)2

·

The family is stochastically increasing, since θ is a location parameter; however,
the likelihood ratio is not monotone. Conditions under which a location parameter
family possesses monotone likelihood ratio are given in Example 8.2.1.

Lemma 3.4.2 is a special case of a theorem of Karlin (1957, 1968) relating the
number of sign changes of Eθψ(X) to those of ψ(x) when the densities pθ(x) are
totally positive (defined in Problem 3.50). The application of totally positive–
or equivalently, variation diminishing–distributions to statistics is discussed by
Brown, Johnstone, and MacGibbon (1981); see also Problem 3.53.
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3.5 Confidence Bounds

The theory of UMP one-sided tests can be applied to the problem of obtaining
a lower or upper bound for a real-valued parameter θ. The problem of setting a
lower bound arises, for example, when θ is the breaking strength of a new alloy;
that of setting an upper bound, when θ is the toxicity of drug or the probability
of an undesirable event. The discussion of lower and upper bounds completely
parallel, and it is therefore enough to consider the case of a lower bound, say θ.

Since θ = θ(X) will be a function of the observations, it cannot be required to
fall below θ with certainty, but only with specified high probability. One selects a
number 1−α, the confidence level, and restricts attention to bounds θ satisfying

Pθ{θ(X) ≤ θ} ≥ 1 − α for all θ. (3.21)

The function θ is called a lower confidence bound for θ at confidence level 1 − α;
the infimum of the left-hand side of (3.21), which in practice will be equal to
1 − α, is called the confidence coefficient of θ.

Subject to (3.21), θ should underestimate θ by as little as possible. One can
ask, for example, that the probability of θ falling below any θ′ < θ should be a
minimum. A function θ for which

Pθ{θ(X) ≤ θ′} = minimum (3.22)

for all θ′ < θ subject to (3.21) is a uniformly most accurate lower confidence
bound for θ at confidence level 1 − α.

Let L(θ, θ) be a measure of the loss resulting from underestimating θ, so that
for each fixed θ the function L(θ, θ) is defined and nonnegative for θ < θ, and is
nonincreasing in this second argument. One would then wish to minimize

EθL(θ, θ) (3.23)

subject to (3.21). It can be shown that a uniformly most accurate lower confidence
bound θ minimizes (3.23) subject to (3.21) for every such loss function L. (See
Problem 3.44.)

The derivation of uniformly most accurate confidence bounds is facilitated by
introducing the following more general concept, which will be considered in more
detail in Chapter 5. A family of subsets S(x) of the parameter space Ω is said to
constitute a family of confidence sets at confidence level 1 − α if

Pθ{θ ∈ S(X)} ≥ 1 − α for all θ ∈ Ω, (3.24)

that is, if the random sets S(X) covers the true parameter point with probability
≥ 1 − α. A lower confidence bound corresponds to the special case that S(x) is
a one-sided interval

S(x) = {θ : θ(x) ≤ θ < ∞}.

Theorem 3.5.1 (i) For each θ0 ∈ Ω let A(θ0) be the acceptance region of a
level-α test for testing H(θ0) : θ = θ0, and for each sample point x let S(x)
denote the set of parameter values

S(x) = {θ : x ∈ A(θ), θ ∈ Ω}.

Then S(x) is a family of confidence sets for θ at confidence level 1 − α.
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(ii) If for all θ0, A(θ0) is UMP for testing H(θ0) at level α against the
alternatives K(θ0), then for each θ0 /∈ Ω, S(X) minimizes probability

Pθ{θ0 ∈ S(X)} for all θ ∈ K(θ0)

among all level 1 − α families of confidence sets for θ.

Proof. (i): By definition of S(x),

θ ∈ S(x) if and only if x ∈ A(θ), (3.25)

and hence

Pθ{θ ∈ S(X)} = Pθ{X ∈ A(θ)} ≥ 1 − α.

(ii): If S∗(x) is any other family of confidence sets at level 1−α, and if A∗(θ) =
{x : θ ∈ S∗(x)}, then

Pθ{X ∈ A∗(θ)} = Pθ{θ ∈ S∗(X)} ≥ 1 − α,

so that A∗(θ0) is the acceptance region of a level-α test of H(θ0). It follows from
the assumed property of A(θ0) that for any θ ∈ K(θ0)

Pθ{X ∈ A∗(θ0)} ≥ Pθ{X ∈ A(θ0)}

and hence that

Pθ{θ0 ∈ S∗(X)} ≥ Pθ{θ0 ∈ S(X)},

as was to be proved.
The equivalence (3.25) shows the structure of the confidence sets S(x) as the

totality of parameter values θ for which the hypothesis H(θ) is accepted when x
is observed. A confidence set can therefore be viewed as a combined statement
regarding the tests of the various hypotheses H(θ), which exhibits the values for
which the hypothesis is accepted [θ ∈ S(x)] and those for which it is rejected
[θ ∈ S̄(x)].

Corollary 3.5.1 Let the family of densities pθ(x), θ ∈ Ω, have monotone likeli-
hood ratio in T (x), and suppose that the cumulative distribution function Fθ(t)
of T = T (X) is a continuous function in each of the variables t and θ when the
other is fixed.

(i) There exists a uniformly most accurate confidence bound θ for θ at each
confidence level 1 − α.

(ii) If x denotes the observed values of X and t = T (x), and if the equation

Fθ(t) = 1 − α (3.26)

has a solution θ = θ̂ in Ω then this solution is unique and θ(x) = θ̂.

Proof. (i): There exists for each θ0 a constant C(θ0) such that

Pθ0{T > C(θ0)} = α,

and by Theorem 3.4.1, T > C(θ0) is a UMP level-α rejection region for testing
θ = θ0 against θ > θ0. By Corollary 3.2.1, the power of this test against any
alternative θ1 > θ0 exceeds α, and hence C(θ0) < C(θ1) so that the function C is
strictly increasing; it is also continuous. Let A(θ0) denote the acceptance region
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T ≤ C(θ0), and let S(x) be defined by (3.25). If follows from the monotonicity
of the function C that S(x) consists of those values θ ∈ Ω which satisfy θ ≤ θ,
where

θ = inf{θ : T (x) ≤ C(θ)}.

By Theorem 3.5.1, the sets {θ : θ(x) ≤ θ}, restricted to possible values of the
parameter, constitute a family of confidence sets at level 1 − α, which minimize
Pθ{θ ≤ θ′} for all θ ∈ K(θ′), that is, for all θ > θ′. This shows θ to be a uniformly
most accurate confidence bound for θ.

(ii): It follows from Corollary 3.2.1 that Fθ(t) is a strictly decreasing function
of θ at any point t for which 0 < Fθ(t) < 1, and hence that (3.26) can have at
most one solution. Suppose now that t is the observed value of T and that the
equation Fθ(t) = 1 − α has the solution θ̂ ∈ Ω. Then Fθ̂(t) = 1 − α, and by

definition of the function C, C(θ̂) = t. The inequality t ≤ C(θ) is then equivalent
to C(θ̂) ≤ C(θ) and hence to θ̂ ≤ θ. It follows that θ = θ̂, as was to be proved.

Under the same assumptions, the corresponding upper confidence bound with
confidence coefficient 1 − α is the solution θ̄ of the equation Pθ{T ≥ t} = 1 − α
or equivalently of Fθ(t) = α.

Example 3.5.1 (Exponential waiting times) To determine an upper bound
for the degree of radioactivity λ of a radioactive substance, the substance is
observed until a count of m has been obtained on a Geiger counter. Under the
assumptions of Example 3.4.3, the joint probability density of the times Ti(i =
1, . . . , m) elapsing between the (i − 1)st count and the ith one is

p(t1, . . . , tm) = λme−λ
∑

ti , t1, . . . , tm ≥ 0.

If T =
∑

Ti denotes the total time of observation, then 2λT has a χ2-distribution
with 2m degrees of freedom, and, as was shown in Example 3.4.3, the acceptance
region of the most powerful test of H(λ0) : λ = λ0 against λ < λ0 is 2λ0T ≤ C,
where C is determined by the equation

∫ C

0

χ2
2m = 1 − α .

The set S(t1, . . . , tm) defined by (3.25) is then the set of values λ such that
λ ≤ C/2T , and it follows from Theorem 3.5.1 that λ̄ = C/2T is a uniformly most
accurate upper confidence bound for λ. This result can also be obtained through
Corollary 3.5.1.

If the variables X or T are discrete, Corollary 3.5.1 cannot be applied directly,
since the distribution functions Fθ(t) are not continuous, and for most values θ0

the optimum test of H : θ = θ0 are randomized. However, any randomized test
based on X has the following representation as a nonrandomized test depending
on X and an independent variable U distributed uniformly over (0, 1). Given a
critical function φ, consider the rejection region

R = {(x, u) : u ≤ φ(x)}.

Then

P{(X, U) ∈ R} = P{U ≤ φ(X)} = Eφ(X),
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whatever the distribution of X, so that R has the same power function as φ and
the two tests are equivalent. The pair of variables (X, U) has a particularly simple
representation when X is integer-valued. In this case the statistic

T = X + U

is equivalent to the pair (X, U), since with probability 1

X = [T ], U = T − [T ],

where [T ] denotes the largest integer ≤ T . The distribution of T is continuous,
and confidence bounds can be based on this statistic.

Example 3.5.2 (Binomial) An upper bound is required for a binomial proba-
bility p—for example, the probability that a batch of polio vaccine manufactured
according to a certain procedure contains any live virus. Let X1, . . . , Xn denote
the outcome of n trials, Xi being 1 or 0 with probabilities p and q respectively,
and let X =

∑
Xi. Then T = X + U has probability density

(
n
[t]

)
p[t]qn−[t], 0 ≤ t < n + 1.

This satisfies the conditions of Corollary 3.5.1, and the upper confidence bound
p̄ is therefore the solution, if it exists, of the equation

Pp{T < t} = α,

where t is the observed value of T . A solution does exist for all values α ≤
t ≤ n + α. For n + α < t, the hypothesis H(p0) : p = p0 is accepted against
the alternative p < p0 for all values of p0 and hence p̄ = 1. For t < α, H(p0)
is rejected for all values of p0 and the confidence set S(t) is therefore empty.
Consider instead the sets S∗(t) which are equal to S(t) for t ≥ α and which for
t < α consist of the single point p = 0. They are also confidence sets at level
1 − α, since for all p,

Pp{p ∈ S∗(T )} ≥ Pp{p ∈ S(T )} = 1 − α.

On the other hand, Pp{p′ ∈ S∗(T )} = Pp{p′ ∈ S(T )} for all p′ > 0 and hence

Pp{p′ ∈ S∗(T )} = Pp{p′ ∈ S(T )} for all p′ > p.

Thus the family of sets S∗(t) minimizes the probability of covering p′ for all p′ > p
at confidence level 1−α. The associated confidence bound p̄∗(t) = p̄(t) for t ≥ α
and p̄∗(t) = 0 for t < α is therefore a uniformly most accurate upper confidence
bound for p at level 1 − α.

In practice, so as to avoid randomization and obtain a bound not dependent on
the extraneous variable U , one usually replaces T by X +1 = [T ]+1. Since p̄∗(t)
is a nondecreasing function of t, the resulting upper confidence bound p̄∗([t] +
1) is then somewhat larger than necessary; as a compensation it also gives a
correspondingly higher probability of not falling below the true p.

References to tables for the confidence bounds and a careful discussion of
various approximations can be found in Hall (1982) and Blyth (1984). Large
sample approaches will be discussed in Example 11.2.7.
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Let θ and θ̄ be lower and upper bounds for θ with confidence coefficients 1−α1

and 1 − α2, and suppose that θ(x) < θ̄(x) for all x. This will be the case under
the assumptions of Corollary 3.5.1 if α1 + α2 < 1. The intervals (θ, θ̄) are then
confidence intervals for θ with confidence coefficient 1 − α1 − α2; that is, they
contain the true parameter value with probability 1 − α1 − α2, since

Pθ{θ ≤ θ ≤ θ̄} = 1 − α1 − α2 for all θ.

If θ and θ̄ are uniformly most accurate, they minimize EθL1(θ, θ) and EθL2(θ, θ̄)
at their respective levels for any function L1 that is nonincreasing in θ for θ < θ
and 0 for θ ≥ θ and any L2 that is nondecreasing in θ̄ for θ̄ > θ and 0 for θ̄ ≤ θ.
Letting

L(θ; θ, θ̄) = L1(θ, θ) + L2(θ, θ̄),

the intervals (θ, θ̄) therefore minimize EθL(θ; θ, θ̄) subject to

Pθ{θ > θ} ≤ α1, Pθ{θ̄ < θ} ≤ α2.

An example of such a loss function is

L(θ; θ, θ̄) =






θ̄ − θ if θ ≤ θ ≤ θ̄,
θ̄ − θ if θ < θ,
θ − θ if θ̄ < θ,

which provides a natural measure of the accuracy of the intervals. Other possible
measures are the actual length θ̄− θ of the intervals, or, for example, a(θ− θ)2 +
b(θ̄ − θ)2, which gives an indication of the distance of the two end points form
the true value.7

An important limiting case corresponds to the levels α1 = α2 = 1
2 . Under the

assumptions of Corollary 3.5.1 and if the region of positive density is independent
of θ so that tests of power 1 are impossible when α < 1, the upper and lower
confidence bounds θ̄ and θ coincide in this case. The common bound satisfies

Pθ{θ ≤ θ} = Pθ{θ ≥ θ} =
1
2
,

and the estimate θ of θ is therefore as likely to underestimate as to overestimate
the true value. An estimate with this property is said to be median unbiased. (For
the relation of this to other concepts of unbiasedness, see Problem 1.3.) It follows
from the above result for arbitrary α1 and α2 that among all median unbiased
estimates, θ minimizes EL(θ, θ) for any monotone loss function, that is, any loss
function which for fixed θ has a minimum of 0 at θ = θ and is nondecreasing
as θ moves away from θ in either direction. By taking in particular L(θ, θ) = 0
when |θ − θ| ≤ 0 and = 1 otherwise, it is seen that among all median unbiased
estimates, θ minimizes the probability of differing from θ by more than any given
amount; more generally it maximizes the probability

Pθ{−01 ≤ θ − θ < 02}

for any 01, 02 ≥ 0.
A more detailed assessment of the position of θ than that provided by confi-

dence bounds or intervals corresponding to a fixed level γ = 1−α is obtained by

7Proposed by Wolfowitz (1950).
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stating confidence bounds for a number of levels, for example upper confidence
bounds corresponding to values such as γ = .05, .1, .25, .5, .75, .9, .95. These con-
stitute a set of standard confidence bounds,8 from which different specific intervals
or bounds can be obtained in the obvious manner.

3.6 A Generalization of the Fundamental Lemma

The following is useful extension of Theorem 3.2.1 to the case of more than one
side condition.

Theorem 3.6.1 Let f1, . . . , fm+1 be real-valued functions defined on a Euclidean
space X and integrable µ, and suppose that for given constants c1, . . . , cm there
exists a critical function φ satisfying

∫
φfi dµ = ci, i = 1, . . . , m. (3.27)

Let C be the class of critical functions φ for which (3.27) holds.
(i) Among all members of C there exists one that maximizes

∫
φfm+1 dµ.

(ii) A sufficient condition for a member of C to maximize
∫

φfm+1 dµ

is the existence of constants k1, . . . , km such that

φ(x) = 1 when fm+1(x) >
m∑

i=1

kifi(x),

(3.28)

φ(x) = 0 when fm+1(x) <
m∑

i=1

kifi(x).

(iii) If a member of C satisfies (3.28) with k1, . . . , km ≥ 0, then it maximizes
∫

φfm+1 dµ

among all critical functions satisfying
∫

φfi dµ ≤ ci, i = 1, . . . , m. (3.29)

(iv) The set M of points in m-dimensional space whose coordinates are
(∫

φf1 dµ, . . . ,

∫
φfm dµ

)

8Suggested by Tukey (1949b).
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for some critical function φ is convex and closed. If (c1, . . . , cm) is an inner
point9 of M , then there exist constants k1, . . . , km and a test φ satisfying (3.27)
and (3.28), and a necessary condition for a member of C to maximize

∫
φfm+1 dµ

is that (3.28) holds a.e. µ.

Here the term “inner point of M” in statement (iv) can be interpreted as
meaning a point interior to M relative to m-space or relative to the smallest
linear space (of dimension ≤ m) containing M . The theorem is correct with both
interpretations but is stronger with respect to the latter, for which it will be
proved.

We also note that exactly analogous results hold for the minimization of∫
φfm+1 dµ.

Proof. (i): Let {φn} be a sequence of functions in C such that
∫

φnfm+1 dµ
tends to supφ

∫
φfm+1 dµ. By the weak compactness theorem for critical functions

(Theorem 3.4.2 of the Appendix), there exists a subsequence {φni} and a critical
function φ such that

∫
φnifk dµ →

∫
φfk dµ for k = 1, · · · , m + 1.

It follows that φ is in C and maximizes the integral with respect to fm+1 dµ
within C.

(ii) and (iii) are proved exactly as was part (ii) of Theorem 3.2.1.
(iv): That M is closed follows again from the weak compactness theorem, and

its convexity is a consequence of the fact that if φ1 and φ2 are critical functions,
so is αφ1 + (1 − α)φ2 for any 0 ≤ α ≤ 1. If N (see Figure 3.2) is the totality of
points in (m + 1)-dimensional space with coordinates

(∫
φf1 dµ, . . . ,

∫
φfm+1 dµ

)
,

where φ ranges over the class of all critical functions, then N is convex and closed
by the same argument. Denote the coordinates of a general point in M and N
by (u1, . . . , um) and (u1, . . . , um+1) respectively. The points of N , the first m
coordinates of which are c1, . . . , cm, form a closed interval [c∗, c∗∗].

Assume first that c∗ < c∗∗. Since (c1, . . . , cm, c∗∗) is a boundary point of N ,
there exists a hyperplane

∏
through it such that every point on N lies below or

on
∏

. Let the equation of
∏

be

m+1∑

i=1

kiui =
m∑

i=1

kici + km+1c
∗∗.

Since (c1, . . . , cm) is an inner point of M , the coefficient km+1 += 0. To see this,
let c∗ < c < c∗∗, so that (c1, . . . cm, c) is an inner point of N . Then there exists a
sphere with this point as center lying entirely in N and hence below

∏
. It follows

9A discussion of the problem when this assumption is not satisfied is given by Dantzig
and Wald (1951).
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um + 1

(c1, …, cm, c**)

(c1, c2, … cm, c)

(c1, …, cm, c*)

M

N

!

Figure 3.2.

that the point (c1, . . . cm, c) does not lie on
∏

and hence that km+1 += 0. We may
therefore take km+1 = −1 and see that for any point of N

um+1 −
m∑

i=1

kiui ≤ c
∗∗
m+1 −

m∑

i=1

kici.

That is, all critical functions φ satisfy

∫
φ

(
fm+1 −

m∑

i=1

kifi

)
dµ ≤

∫
φ

∗∗
(

fm+1 −
m∑

i=1

kifi

)
dµ,

where φ
∗∗

is the test giving rise to the point (c1, . . . , cm, c
∗∗

). Thus φ
∗∗

is the
critical function that maximizes the left-hand side of this inequality. Since the
integral in question is maximized by putting φ equal to 1 when the integrand is
positive and equal to 0 when it is negative, φ

∗∗
satisfies (3.28) a.e. µ.

If c∗ = c
∗∗

, let (c′1, . . . , c
′
m) be any point of M other than (c1, . . . , cm). We shall

show now that there exists exactly one real number c′ such that (c′1, . . . , c
′
m, c′) is

in N . Suppose to the contrary that (c′1, . . . , c
′
m, c′)and (c′1, . . . , c

′
m, c̄′) are both in

N , and consider any point (c′′1 , . . . , c′′m, c′′) of N such that (c1, . . . , cm) is an inte-
rior point of the line segment joining (c′1, . . . , c

′
m) and (c′′1 , . . . , c′′m). Such a point

exists since (c1, . . . , cm) is an inner point of M . Then the convex set spanned by
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the three points (c′1, . . . , c
′
m, c′), (c′1, . . . , c

′
m, c̄′), and (c′′1 , . . . , c′′m, c′′) is contained

in N and contains points (c1, . . . , cm, c) and (c1, . . . , cm, c̄) with c < c̄, which is a
contradiction. Since N is convex, contains the origin, and has at most one point
on any vertical line u1 = c′1, . . . , um = c′m, it is contained in a hyperplane,
which passes through the origin and is not parallel to the um+1-axis. It follows
that

∫
φfm+1 dµ =

m∑

i=1

ki

∫
φfi dµ

for all φ. This arises of course only in the trivial case that

fm+1 =
m∑

i=1

kifi a.e. µ,

and (3.28) is satisfied vacuously.

Corollary 3.6.1 Let p1, . . . , pm, pm+1 be probability densities with respect to a
measure µ, and let 0 < α < 1. Then there exists a test φ such that Eiφ(X) = α
(i = 1, . . . , m) and Em+1φ(X) > α, unless pm+1 =

∑m
i=1 kipi, a.e. µ.

Proof. The proof will be by induction over m. For m = 1 the result reduces to
Corollary 3.2.1. Assume now that it has been proved for any set of m distributions,
and consider the case of m + 1 densities p1, . . . , pm+1. If p1, . . . , pm are linearly
dependent, the number of pi can be reduced and the result follows from the
induction hypothesis. Assume therefore that p1, . . . , pm are linearly independent.
Then for each j = 1, . . . , m there exist by the induction hypothesis tests φj and
φ′

j such that Eiφj(X) = Eiφ
′
j(X) = α for all i = 1, . . . , j − 1, j + 1, . . . , m and

Ejφj(X) < α < Ejφ
′
j(X). It follows that the point of m-space for which all m

coordinates are equal to α is an inner point of M , so that Theorem 3.6.1(iv) is
applicable. The test φ(x) ≡ α is such that Eiφ(X) = α for i = 1, . . . , m. If among
all tests satisfying the side conditions this one is most powerful, it has to satisfy
(3.28). Since 0 < α < 1, this implies

pm+1 =
m∑

i=1

kipi a.e.µ,

as was to be proved.
The most useful parts of Theorems 3.2.1 and 3.6.1 are the parts (ii), which

give sufficient conditions for a critical function to maximize an integral subject
to certain side conditions. These results can be derived very easily as follows by
the method of undetermined multipliers.

Lemma 3.6.1 Let F1, . . . , Fm+1 be real-valued functions defined over a space
U , and consider the problem of maximizing Fm+1(u) subject to Fi(u) = ci (i =
1, . . . , m). A sufficient condition for a point u0 satisfying the side conditions to
be a solution of the given problem is that among all points of U it maximizes

Fm+1(u) −
m∑

i=1

kiFi(u)

for some k1, . . . , km.
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When applying the lemma one usually carries out the maximization for
arbitrary k’s, and then determines the constants so as to satisfy the side
conditions.
Proof. If u is any point satisfying the side conditions, then

Fm+1(u) −
m∑

i=1

kiFi(u) ≤ Fm+1(u
0) −

m∑

i=1

kiFi(u
0),

and hence Fm+1(u) ≤ Fm+1(u
0).

As an application consider the problem treated in Theorem 3.6.1. Let U be
the space of critical functions φ, and let Fi(φ) =

∫
φfi dµ. Then a sufficient

condition for φ to maximize Fm+1(φ), subject to Fi(φ) = ci, is that it maximizes
Fm+1(φ)−

∑
kiFi(φ) =

∫
(fm+1−

∑
kifi)φ dµ. This is achieved by setting φ(x) =

1 or 0 as fm+1(x) > or <
∑

kifi(x).

3.7 Two-Sided Hypotheses

UMP tests exist not only for one-sided but also for certain two-sided hypotheses
of the form

H : θ ≤ θ1 or θ ≥ θ2 (θ1 < θ2). (3.30)

This problem arises when trying to demonstrate equivalence (or sometimes called
bioequivalence) of treatments; for example, a new drug may be declared equiva-
lent to the current standard drug if the difference in therapeutic effect is small,
meaning θ is a small interval about 0. Such testing problems also occur when
one wishes to determine whether given specifications have been met concerning
the proportion of an ingredient in a drug or some other compound, or whether a
measuring instrument, for example a scale, is properly balanced. One then sets
up the hypothesis that θ does not lie within the required limits, so that an error
of the first kind consists in declaring θ to be satisfactory when in fact it is not.
In practice, the decision to accept H will typically be accompanied by a state-
ment of whether θ is believed to be ≤ θ1 or ≥ θ2. The implications of H are,
however, frequently sufficiently important so that acceptance will in any case be
followed by a more detailed investigation. If a manufacturer tests each precision
instrument before releasing it and the test indicates an instrument to be out of
balance, further work will be done to get it properly adjusted. If in a scientific
investigation the inequalities θ ≤ θ1 and θ ≥ θ2 contradict some assumptions
that have been formulated, a more complex theory may be needed and further
experimentation will be required. In such situations there may be only two basic
choices, to act as if θ1 < θ < θ2 or to carry out some further investigation, and
the formulation of the problem as that of testing the hypothesis H may be ap-
propriate. In the present section, the existence of a UMP test of H will be proved
for one-parameter exponential families.

Theorem 3.7.1 (i) For testing the hypothesis H : θ ≤ θ1 or θ ≥ θ2 (θ1 < θ2)
against the alternatives K : θ1 < θ < θ2 in the one-parameter exponential family
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(3.19) there exists a UMP test given by

φ(x) =






1 when C1 < T (x) < C2 (C1 < C2),
γi when T (x) = Ci, i = 1, 2,
0 when T (x) < C1 or > C2,

(3.31)

where the C′s and γ′s are determined by

Eθ1φ(X) = Eθ2φ(X) = α. (3.32)

(ii) This test minimizes Eθφ(X) subject to (3.32) for all θ < θ1 and > θ2.
(iii) For 0 < α < 1 the power function of this test has a maximum at a

point θ0 between θ1 and θ2 and decreases strictly as θ tends away from θ0 in
either direction, unless there exist two values t1, t2 such that Pθ{T (X) = t1} +
Pθ{T (X) = t2} = 1 for all θ.

Proof. (i): One can restrict attention to the sufficient statistic T = T (X), the
distribution of which by Lemma 2.7.2 is

dPθ(t) = C(θ)eQ(θ)tdν(t),

where Q(θ) is assumed to be strictly increasing. Let θ1 < θ′ < θ2, and consider
first the problem of maximizing Eθ′ψ(T ) subject to (3.32) with φ(x) = ψ[T (x)].
If M denotes the set of all points Eθ1ψ(T ), Eθ2ψ(T )) as ψ ranges over the totality
of critical functions, then the point (α, α) is an inner point of M . This follows
from the fact that by Corollary 3.2.1 the set M contains points (α, u1) and (α, u2)
with u1 < α < u2 and that it contains all points (u, u) with 0 < u < 1. Hence
by part (iv) of Theorem 3.6.1 there exist constants k1, k2 and test ψ0(t) and that
φ0(x) = ψ0[T (x)] satisfies (3.32) and that ψ0(t) = 1 when

k1C(θ1)e
Q(θ1)t + k2C(θ2)e

Q(θ2)t < C(θ′)eQ(θ′)t

and therefore when

a1e
b1t + a2e

b2t < 1 (b1 < 0 < b2),

and ψ0(t) = 0 when the left-hand side is > 1. Here the a’s cannot both be ≤ 0,
since then the test would always reject. If one of the a’s is ≤ 0 and the other
one is > 0, then the left-hand side is strictly monotone, and the test is of the
one-sided type considered in Corollary 3.4.1, which has a strictly monotone power
function and hence cannot satisfy (3.32). Since therefore both a’s are positive,
the test satisfies (3.31). It follows from Lemma 3.7.1 below that the C’s and γ’s
are uniquely determined by (3.31) and (3.32), and hence from Theorem 3.6.1(iii)
that the test is UMP subject to the weaker restriction Eθiψ(T ) ≤ α (i = 1, 2).
To complete the proof that this test is UMP for testing H, it is necessary to show
that it satisfies Eθψ(T ) ≤ α for θ ≤ θ1 and θ ≥ θ2. This follows from (ii) by
comparison with the test ψ(t) ≡ α.

(ii): Let θ′ < θ1, and apply Theorem 3.6.1(iv) to minimize Eθ′φ(X) subject to
(3.32). Dividing through by eQ(θ1)t, the desired test is seen to have a rejection
region of the form

a1e
b1t + a2e

b2t < 1 (b1 < 0 < b2).

Thus it coincides with the test ψ0(t) obtained in (i). By Theorem 3.6.1(iv) the
first and third conditions of (3.31) are also necessary, and the optimum test is
therefore unique provided P{T = Ci} = 0.
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(iii): Without loss of generality let Q(θ) = θ. It follows from (i) and the conti-
nuity of β(θ) = Eθφ(X) that either β(θ) satisfies (iii) or there exist three points
θ′ < θ′′ < θ′′′ such that β(θ′′) ≤ β(θ′) = β(θ′′′) = c, say. Then 0 < c < 1,
since β(θ′) = 0 (or 1) implies φ(t) = 0 (or 1) a.e. ν and this is excluded by
(3.32). As is seen by the proof of (i), the test minimizes Eθ′′φ(X) subject to
Eθ′φ(X) = Eθ′′′φ(X) = c for all θ′ < θ′′ < θ′′′. However, unless T takes on at
most two values with probability 1 or all θ, pθ′,pθ′′,pθ′′′ are linearly independent,
which by Corollary 3.6.1 implies β(θ′′) > c.

In order to determine the C’s and γ’s, one will in practice start with some trial
values C∗

1 , γ∗
1 , find C∗

2 , γ∗
2 such that β∗(θ1) = α, and compute β∗(θ2), which will

usually be either too large or too small. For the selection of the next trial values
it is then helpful to note that if β∗(θ2) < α, the correct acceptance region is to
the right of the one chosen, that is, it satisfies either C1 > C∗

1 or C1 = C∗
1 and

γ1 < γ∗
1 , and that the converse holds if β∗(θ2) > α. This is a consequence of the

following lemma.

Lemma 3.7.1 Let pθ(x) satisfy the assumptions of Lemma 3.4.2(iv).
(i) If φ and φ∗ are two tests satisfying (3.31) and Eθ1φ(T ) = Eθ1φ∗(T ), and

if φ∗ is to the right of φ, then β(θ) < or > β∗(θ) as θ > θ1 or < θ1.
(ii) If φ and φ∗ satisfy (3.31) and (3.32), then φ = φ∗ with probability one .

Proof. (i): The result follows from Lemma 3.4.2(iv) with ψ = φ∗ −φ. (ii): Since
Eθ1φ(T ) = Eθ1φ∗(T ), φ∗ lies either to the left or the right of φ, and application
of (i) completes the proof.

Although a UMP test exists for testing that θ ≤ θ1 or ≥ θ2 in an exponential
family, the same is not true for the dual hypothesis H : θ1 ≤ θ ≤ θ2 or for testing
θ = θ0 (Problem 3.54). There do, however, exist UMP unbiased tests of these
hypotheses, as will be shown in Chapter 4.

3.8 Least Favorable Distributions

It is a consequence of Theorem 3.2.1 that there always exists a most powerful
test for testing a simple hypothesis against a simple alternative. More generally,
consider the case of a Euclidean sample space; probability densities fθ, θ ∈ ω,
and g with respect to a measure µ; and the problem of testing H : fθ, θ ∈ ω,
against the simple alternative K : g. The existence of a most powerful level α test
then follows from the weak compactness theorem for critical functions (Theorem
A.5.1 of the Appendix) as in Theorem 3.6.1(i).

Theorem 3.2.1 also provides an explicit construction for the most powerful test
in the case of a simple hypothesis. We shall now extend this theorem to composite
hypotheses in the direction of Theorem 3.6.1 by the method of undetermined
multipliers. However, in the process of extension the result becomes much less
explicit. Essentially it leaves open the determination of the multipliers, which
now take the form of an arbitrary distribution. In specific problems this usually
still involves considerable difficulty.

From another point of view the method of attack, as throughout the theory of
hypothesis testing, is to reduce the composite hypothesis to a simple one. This



84 3. Uniformly Most Powerful Tests

is achieved by considering weighted averages of the distributions of H. The com-
posite hypothesis H is replaced by the simple hypothesis HΛ that the probability
density of X is given by

hΛ(x) =

∫

ω

fθ(x) dΛ(θ),

where Λ is a probability distribution over ω. The problem of finding a suitable
Λ is frequently made easier by the following consideration. Since H provides no
information concerning θ and since HΛ is to be equivalent to H for the purpose
of testing against g, knowledge of the distribution Λ should provide as little help
for this task as possible. To make this precise suppose that θ is known to have a
distribution Λ. Then the maximum power βΛ that can be attained against g is
that of the most powerful test φΛ for testing HΛ against g. The distribution Λ is
said to be least favorable (at level α) if for all Λ′ the inequality βΛ ≤ βΛ′ holds.

Theorem 3.8.1 Let a σ-field be defined over ω such that the densities fθ(x)
are jointly measurable in θ and x. Suppose that over this σ-field there exist a
probability distribution Λ such that the most powerful level-α test φΛ for testing
HΛ against g is of size ≤ α also with respect to the original hypothesis H.

(i) The test φΛ is most powerful for testing H against g.
(ii) If φΛ is the unique most powerful level-α for testing HΛ against g, it is

also the unique most powerful test of H against g.
(iii) The distribution Λ is least favorable.

Proof. We note first that hΛ is again a density with respect to µ, since by
Fubini’s theorem (Theorem 2.2.4)

∫
hΛ(x) dµ(x) =

∫

ω

dΛ(θ)

∫
fθ(x) dµ(x) =

∫

ω

dΛ(θ) = 1.

Suppose that φΛ is a level-α test for testing H, and let φ∗ be any other level-α
test. Then since Eθφ∗(X) ≤ α for all θ ∈ ω, we have

∫
φ∗(x)hΛ(x) dµ(x) =

∫

ω

Eθφ∗(X)dΛ(θ) ≤ α.

Therefore φ∗ is a level-α test also for testing HΛ and its power cannot exceed
that of φΛ. This proves (i) and (ii). If Λ′ is any distribution, it follows further
that φΛ is a level-α test also for testing HΛ′ , and hence that its power against g
cannot exceed that of the most powerful test, which by definition is βΛ′ .

The conditions of this theorem can be given a somewhat different form by
noting that φΛ can satisfy

∫
ω

EθφΛ(X) dΛ(θ) = α and EθφΛ(X) ≤ α for all
θ ∈ ω only if the set of θ′s with EθφΛ(X) = α has Λ-measure one.

Corollary 3.8.1 Suppose that Λ is a probability distribution over ω and that ω′

is a subset of ω with Λ(ω′) = 1. Let φΛ be a test such that

φΛ(x) =

{
1 if g(x) > k

∫
fθ(x) dΛ(θ),

0 if g(x) < k
∫

fθ(x) dΛ(θ).
(3.33)

Then φΛ is a most powerful level-α for testing H against g provided

Eθ′φΛ(X) = sup
θ∈ω

EθφΛ(X) = α for θ′ ∈ ω′. (3.34)
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Theorems 3.4.1 and 3.7.1 constitute two simple applications of Theorem 3.8.1.
The set ω′ over which the least favorable distribution Λ is concentrated consists
of the single point θ0 in the first of these examples and of the two points θ1 and
θ2 in the second. This is what one might expect, since in both cases these are
the distributions of H that appear to be “closest” to K. Another example in
which the least favorable distribution is concentrated is at a single point is the
following.

Example 3.8.1 (Sign test) The quality of items produced by a manufacturing
process is measured by a characteristic X such as the tensile strength of a piece
of material, or the length of life or brightness of a light bulb. For an item to
be satisfactory X must exceed a given constant u, and one wishes to test the
hypothesis H : p ≥ p0, where

p = P{X ≤ u}

is the probability of an item being defective. Let X1, . . . , Xn be the measurements
of n sample items, so that the X’s are independently distributed with common
distribution about which no knowledge is assumed. Any distribution on the real
line can be characterized by the probability p together with the conditional prob-
ability distributions P− and P+ of X given X ≤ u and X > u respectively. If the
distributions P− and P+ have probability densities p− and p+, for example with
respect to µ = P− + P+, then the joint density of X1, . . . , Xn at a sample point
x1, . . . , xn satisfying

xi1 , . . . , xim ≤ u < xj1 , . . . , xjn−m

is

pm(1 − p)n−mp−(xi1) · · · p−(xim)p+(xj1) · · · p+(xjn−m).

Consider now a fixed alternative to H, say (p1, P−, P+), with p1 < p0. One would
then expect the least favorable distribution Λ over H to assign probability 1
to the distribution (p0, P−, P+) since this appears to be closest to the selected
alternative. With this choice of Λ, the test (3.33) becomes

φΛ(x) = 1 or 0 as

(
p1

p0

)m (
q1

q0

)n−m

> or < C,

and hence as m < or > C. The test therefore rejects when the number M of de-
fectives is sufficiently small, or more precisely, when M < C and with probability
γ when M = C, where

P{M < C} + γP{M = C} = α for p = p0. (3.35)

The distribution of M is the binomial distribution b(p, n), and does not depend
on P+ and P−. As a consequence, the power function of the test depends only on
p and is a decreasing function of p, so that under H it takes on its maximum for
p = p0. This proves Λ to be least favorable and φΛ to be most powerful. Since
the test is independent of the particular alternative chosen, it is UMP.

Expressed in terms of the variables Zi = Xi − u, the test statistic M is the
number of variables ≤ 0, and the test is the so-called sign test (cf. Section 4.9).
It is an example of a nonparametric test, since it is derived without assuming a
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given functional form for the distribution of the X’s such as the normal, uniform,
or Poisson, in which only certain parameters are unknown .

The above argument applies, with only the obvious modifications, to the case
that an item satisfactory if X lies within certain limits: u < X < v. This occurs,
for example, if X is the length of a metal part or the proportion of an ingredient
in a chemical compound, for which certain tolerances have been specified. More
generally the argument applies also to the situation in which X is vector-valued.
Suppose that an item is satisfactory only when X lies in a certain set S, for exam-
ple, if all the dimensions of a metal part or the proportions of several ingredients
lie within specified limits. The probability of a defective is then

p = P{X ∈ Sc},

and P− and P+ denote the conditional distributions of X given X ∈ S and
X ∈ Sc respectively. As before, there exists a UMP test of H : p ≥ p0, and
it rejects H when the number M of defectives is sufficiently small, with the
boundary of the test being determined by (3.35).

A distribution Λ satisfying the conditions of Theorem 3.8.1 exists in most of
the usual statistical problems, and in particular under the following assumptions.
Let the sample space be Euclidean, let ω be a closed Borel set in s-dimensional
Euclidean space, and suppose that fθ(x) is a continuous function of θ for almost
all x. Then given any g there exists a distribution Λ satisfying the conditions of
Theorem 3.8.1 provided

lim
n→∞

∫

S

fθn(x) dµ(x) = 0

for every bounded set S in the sample space and for every sequence of vectors θn

whose distance from the origin tends to infinity.
From this it follows as did Corollaries 1 and 4 from Theorems 3.2.1 and 3.6.1,

that if the above conditions hold and if 0 < α < 1, there exists a test of power
β > α for testing H : fθ, θ ∈ ω, against g unless g =

∫
fθ dΛ(θ) for some Λ. An

example of the latter possibility is obtained by letting fθ and g be the normal
densities N(θ, σ2

0) and N(0, σ2
1) respectively with σ2

0 < σ2
1 . (See the following

section.)
The above and related results concerning the existence and structure of least

favorable distributions are given in Lehmann (1952b) (with the requirement that
ω be closed mistakenly omitted), in Reinhardt (1961), and in Krafft and Witting
(1967), where the relation to linear programming is explored.

3.9 Applications to Normal Distributions

3.9.1 Univariate Normal Models

Because of their wide applicability, the problems of testing the mean ξ and vari-
ance σ2 of a normal distribution are of particular importance. Here and in similar
problems later, the parameter not being tested is assumed to be unknown, but
will not be shown explicitly in a statement of the hypothesis. We shall write, for
example, σ ≤ σ0 instead of the more complete statement σ ≤ σ0,−∞ < ξ < ∞.
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The standard (likelihood-ratio) tests of the two hypotheses σ ≤ σ0 and ξ ≤ ξ0

are given by the rejection regions
∑

(xi − x̄)2 ≥ C (3.36)

and
√

n(x̄ − ξ0)√
1

n−1

∑
(xi − x̄)2

≥ C. (3.37)

The corresponding tests for the hypotheses σ ≥ σ0 and ξ ≥ ξo are obtained
from the rejection regions (3.36) and (3.37) by reversing the inequalities. As will
be shown in later chapters, these four tests are UMP both within the class of
unbiased and within the class of invariant test (but see Section 11.3 for problems
arising when the assumption of normality does not hold exactly). However, at
the usual significance levels only the first of them is actually UMP.

Example 3.9.1 (One-sided tests of variance.) Let X1, . . . , Xn be a sample
from N(ξ, σ2), and consider first the hypotheses H1 : σ ≥ σ0 and H2 : σ ≤ σ0,
and a simple alternative K : ξ = ξ1, σ = σ1. It seems reasonable to suppose that
the least favorable distribution Λ in the (ξ, σ)-plane is concentrated on the line
σ = σ0. Since Y =

∑
Xi/n = X̄ and U =

∑
(Xi − X̄)2 are sufficient statistics for

the parameters (ξ, σ), attention can be restricted to these variables. Their joint
density under HΛ is

Cou
(n−3)/2 exp

(
− u

2σ2
0

) ∫
exp

[
− n

2σ2
o
(y − ξ)2

]
dΛ(ξ),

while under K it is

C1u
(n−3)/2 exp

(
− u

2σ2
1

)
exp

[
− n

2σ2
1

(y − ξ1)
2

]
.

The choice of Λ is seen to affect only the distribution of Y . A least favorable Λ
should therefore have the property that the density of Y under HΛ,

∫ √
n√

2πσ2
0

exp

[
− n

2σ2
0

(y − ξ)2
]

dΛ(ξ),

comes as close as possible to the alternative density,
√

n√
2πσ2

1

exp

[
− n

2σ2
1

(y − ξ1)
2

]
.

At this point one must distinguish between H1 and H2. In the first case σ1 < σ0.
By suitable choice of Λ the mean of Y can be made equal to ξ1, but the variance
will if anything be increased over its initial value σ2

0 . This suggests that the least
favorable distribution assigns probability 1 to the point ξ = ξ1, since in this way
the distribution of Y is normal both under H and K with the same mean in both
cases and the smallest possible difference between the variances. The situation is
somewhat different for H2, for which σ0 < σ1. If the least favorable distribution
Λ has a density, say Λ′, the density of Y under HΛ becomes

∫ ∞

−∞

√
n√

2πσ0
exp

[
− n

2σ2
0

(y − ξ)2
]

Λ′(ξ) dξ.
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This is the probability density of the sum of two independent random variables,
one distributed as N(0, σ2

0/n) and the other with density Λ′(ξ). If Λ is taken to
be N(ξ1, (σ

2
1 −σ2

0)/n), the distribution of Y under HΛ becomes N(ξ1, σ
2
1/n), the

same as under K.
We now apply Corollary 3.8.1 with the distributions Λ suggested above. For

H1 it is more convenient to work with the original variables than with Y and U .
Substitution in (3.33) gives φ(x) = 1 when

(2πσ2
1)−n/2 exp

[
− 1

2σ2
1

∑
(xi − ξ1)

2
]

(2πσ2
0)−n/2 exp

[
− 1

2σ2
0

∑
(xi − ξ1)2

] > C,

that is, when
∑

(xi − ξ1)
2 ≤ C. (3.38)

To justify the choice of Λ, one must show that

P
{∑

(Xi − ξ1)
2 ≤ C|ξ, σ

}

takes on its maximum over the half plane σ ≥ σ0 at the point ξ = ξ1, σ = σ0.
For any fixed σ, the above is the probability of the sample point falling in a
sphere radius, computed under the assumption that the X’s are independently
distributed as N(ξ, σ2). This probability is maximized when the center of the
sphere coincides with that of the distribution that is, when ξ = ξ1. (This follows
for example from Problem 7.15.) The probability then becomes

P

{
∑ (

xi − ξ1

σ

)2

≤ C
σ2

∣∣∣∣ ξ1, σ

}
= P

{∑
V 2

i ≤ C
σ2

}
,

where V1, . . . , Vn are independently distributed as N(0, 1). This is a decreasing
function of σ and therefore takes on its maximum when σ = σ0.

In the case of H2, application of Corollary 3.8.1 to the sufficient statistics
(Y, U) gives φ(y, u) = 1 when

C1u
(n−3)/2 exp

(
− u

2σ2
1

)
exp

[
− n

2σ2
1
(y − ξ1)

2
]

C0u(n−3)/2 exp
(
− u

2σ2
0

) ∫
exp

[
− n

2σ2
0
(y − ξ)2

]
Λ′(ξ) dξ

= C′ exp

[
−u

2

(
1
σ2

1

− 1
σ2

0

)]
≥ C,

that is, when

u =
∑

(xi − x̄)2 ≥ C. (3.39)

Since the distribution of
∑

(Xi − X̄)2/σ2 does not depend on ξ or σ, the proba-
bility P{

∑
(Xi−X̄)2 ≥ C | ξ, σ} is independent of ξ and increases with σ, so that

the conditions of Corollary 3.8.1 are satisfied. The test (3.39), being independent
of ξ1 and σ1, is UMP for testing σ ≤ σ0 against σ > σ0. It is also seen to coincide
with the likelihood-ratio test (3.36). On the other hand, the most powerful test
(3.38) for testing σ ≥ σ0 against σ < σ0 does depend on the value ξ1 of ξ under
the alternative.
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It has been tacitly assumed so far that n > 1. If n = 1, the argument applies
without change with respect to H1, leading to (3.38) with n = 1. However, in
the discussion of H2 the statistic U now drops out, and Y coincides with the
single observation X. Using the same Λ as before, one sees that X has the same
distribution under HΛ as under K, and the test φΛ therefore becomes φΛ(x) ≡ α.
This satisfies the conditions of Corollary 3.8.1 and is therefore the most powerful
test for the given problem. It follows that a single observation is of no value for
testing the hypothesis H2, as seems intuitively obvious, but that it could be used
to test H1 if the class of alternatives were sufficiently restricted.

The corresponding derivation for the hypothesis ξ ≤ ξ0 is less straightforward.
It turns out10 that Student’s test given by (3.37) is most powerful if the level
of significance α is ≥ 1

2 , regardless of the alternative ξ1 > ξ0, σ1. This test is
therefore UMP for α ≥ 1

2 . On the other hand, when α < 1
2 the most powerful

test of H rejects when
∑

(xi − a)2 ≤ b, where the constants a and b depend
on the alternative (ξ1, σ1) and on α. Thus for the significance levels that are of
interest, a UMP test of H does not exist. No new problem arises for the hypothesis
ξ ≥ ξ0, since this reduces to the case just considered through the transformation
Yi = ξ0 − (Xi − ξ0).

3.9.2 Multivariate Normal Models

Let X denote a k × 1 random vector whose ith component, Xi, is a real-valued
random variable. The mean of X, denoted E(X), is a vector with ith component
E(Xi) (assuming it exists). The covariance matrix of X, denoted Σ, is the k × k
matrix with (i, j) entry Cov(Xi, Xj). Σ is well-defined iff E(|X|2) < ∞, where
| · | denotes the Euclidean norm. Note that, if A is an m × k matrix, then the
m × 1 vector Y = AX has mean (vector) AE(X) and covariance matrix AΣAT ,
where AT is the transpose of A (Problem 3.63).

The multivariate generalization of a real-valued normally distributed random
variable is a random vector X = (X1, . . . , Xk)T with the multivariate normal
probability density

√
|A|

(2π)
1
2 k

exp
[
− 1

2

∑ ∑
aij(xi − ξi)(xj − ξj)

]
, (3.40)

where the matrix A = (aij) is positive definite, and |A| denotes its determinant.
The means and covariance matrix of the X’s are given by

E(Xi) = ξi, E(Xi − ξi)(Xj − ξj) = σij , (σij) = A−1. (3.41)

The column vector ξ = (ξ1, . . . , ξk)T is the mean vector and Σ = A−1 is the
covariance matrix of X.

Such a definition only applies when A is nonsingular, in which case we say
that X has a nonsingular multivariate normal distribution. More generally, we
say that Y has a multivariate normal distribution if Y = BX +µ for some m×k
matrix of constants B and m×1 constant vector µ, where X has some nonsingular
multivariate normal distribution. Then, Y is multivariate normal if and only if

10See Lehmann and Stein (1948)
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∑m
i=1 ciYi is univariate normal, if we interpret N(ξ, σ2) with σ = 0 to be the

distribution that is point mass at ξ. Basic properties of the multivariate normal
distribution are given in Anderson (2003).

Example 3.9.2 (One-sided tests of a combination of means.) Assume X
is multivariate normal with unknown mean ξ = (ξ1, . . . , ξk)T and known covari-
ance matrix Σ. Assume a = (a1, . . . , ak)T is a fixed vector with aT Σa > 0. The
problem is to test

H :
k∑

i=1

aiξi ≤ δ vs. K :
k∑

i=1

akξi > δ .

We will show that a UMP level α test exists, which rejects when
∑

i aiXi >
σz1−α, where σ2 = aT Σa. To see why,11 we will consider four cases of increasing
generality.

Case 1. If k = 1 and the problem is to test the mean of X1, the result follows by
Problem 3.1.

Case 2. Consider now general k, so that (X1, . . . , Xk) has mean (ξ1, . . . , ξk)
and covariance matrix Σ. However, consider the special case (a1, . . . , ak) =
(1, 0, . . . , 0). Also, assume X1 and (X2, . . . , Xk) are independent. Then, for
any fixed alternative (ξ′1, . . . , ξ

′
k) with ξ′1 > δ, the least favorable distribution

concentrates on the single point (δ, ξ′2, . . . , ξ
′
k) (Problem 3.65).

Case 3. As in case 2, consider a1 = 1 and ai = 0 if i > 1, but now allow Σ to
be an arbitrary covariance matrix. We can reduce the problem to case 2 by an
appropriate linear transformation. Simply let Y1 = X1 and, for i > 1, let

Yi = Xi −
Cov(X1, Xi)

V ar(X1)
X1 .

Then, it is easily checked that Cov(Y1, Yi) = 0 if i > 1. Moreover, Y is just a
1:1 transformation of X. But, the problem of testing E(Y1) = E(X1) based on
Y = (Y1, . . . , Yk) is in the form already studied in case 2, and the UMP test
rejects for large values of Y1 = X1.

Case 4. Now, consider arbitrary (a1, . . . , ak) satisfying aT Σa > 0. Let Z = OX,
where O is any orthogonal matrix with first row (a1, . . . , ak). Then, E(Z1) =∑k

i=1 aiξi, and the problem of testing E(Z1) ≤ δ versus E(Z1) > δ reduces to

case 3. Hence, the UMP test rejects for large values of Z1 =
∑k

i=1 aiXi.

Example 3.9.3 (Equivalence tests of a combination of means.) As in Ex-
ample 3.9.2, assume X is multivariate normal N(ξ, Σ) with unknown mean vector
ξ and known covariance matrix Σ. Fix δ > 0 and any vector a = (a1, . . . , ak)T

satisfying aT Σa > 0. Consider testing

H : |
k∑

i=1

aiξi| ≥ δ vs K : |
k∑

i=1

aiξi| < δ .

11Proposition 15.2 of van der Vaart (1998) provides an alternative proof in the case
Σ is invertible.
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Then, a UMP level α test also exists and it rejects H if

|
k∑

i=1

aiXi| < C ,

where C = C(α, δ, σ) satisfies

Φ

(
C − δ

σ

)
− Φ

(
−C − δ

σ

)
= α (3.42)

and σ2 = aT Σa. Hence, the power of this test against an alternative (ξ1, . . . , ξk)
with |

∑
i aiξi| = δ′ < δ is

Φ

(
C − δ′

σ

)
− Φ

(
−C − δ′

σ

)
.

To see why, we again consider four cases of increasing generality.

Case 1. Suppose k = 1, so that X1 = X is N(ξ, σ2) and we are testing |ξ| ≥ δ
versus |ξ| < δ. (This case follows by Theorem 3.7.1, but we argue independently
so that the argument applies to the other cases as well.) Fix an alternative ξ = m
with |m| < δ. Reduce the composite null hypothesis to a simple one via a least
favorable distribution that places mass p on N(δ, σ2) and mass 1−p on N(−δ, σ2).
The value of p will be chosen shortly so that such a distribution is least favorable
(and will be seen to depend on m, α, σ and δ). By the Neyman Pearson Lemma,
the MP test of

pN(δ, σ2) + (1 − p)N(−δ, σ2) vs N(m, σ2)

rejects for small values of

p exp
[
− 1

2σ2 (X − δ)2
]
+ (1 − p) exp

[
− 1

2σ2 (X + δ)2
]

exp
[
− 1

2σ2 (X − m)2
] , (3.43)

or equivalently for small values of f(X), where

f(x) = p exp[(δ − m)X/σ2] + (1 − p) exp[−(δ + m)X/σ2] .

We can now choose p so that f(C) = f(−C), so that p must satisfy

p
1 − p

=
exp[(δ + m)C/σ2] − exp[−(δ + m)C/σ2]
exp[(δ − m)C/σ2] − exp[−(δ − m)C/σ2]

. (3.44)

Since δ−m > 0 and δ+m > 0, both the numerator and denominator of the right
side of (3.44) are positive, so the right side is a positive number; but, p/(1− p) is
a nondecreasing function of p with range [0,∞) as p varies from 0 to 1. Thus, p
is well-defined. Also, observe f ′′(x) ≥ 0 for all x. It follows that (for this special
choice of C)

{X : f(X) ≤ f(C)} = {X : |X| ≤ C}

is the rejection region of the MP test. Such a test is easily seen to be level α for
the original composite null hypothesis because its power function is symmetric
and decreases away from zero. Thus, the result follows by Theorem 3.8.1.

Case 2. Consider now general k, so that (X1, . . . , Xk) has mean (ξ1, . . . , ξk)
and covariance matrix Σ. However, consider the special case (a1, . . . , ak) =
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(1, 0, . . . , 0), so we are testing |ξ1| ≥ δ versus |ξ1| < δ. Also, assume X1 and
(X2, . . . , Xk) are independent, so that the first row and first column of Σ are zero
except the first entry, which is σ2 (assumed positive). Using the same reasoning
as case 1, fix an alternative m = (m1, . . . , mk) with |m1| < δ and consider testing

pN ((δ, m2, . . . , mk), Σ) + (1 − p)N ((−δ, m2, . . . , mk), Σ)

versus N ((m1, . . . , mk), Σ). The likelihood ratio is in fact the same as (3.43)
because each term is now multiplied by the density of (X2, . . . , Xk) (by indepen-
dence), and these densities cancel. The UMP test from case 1, which rejects when
|X1| ≤ C, is UMP in this situation as well.

Case 3. As in case 2, consider a1 = 1 and ai = 0 if i > 1, but now allow Σ to be
an arbitrary covariance matrix. By transforming X to Y as in Case 3 of Example
3.9.2, the result follows (Problem 3.66).

Case 4. Now, consider arbitrary (a1, . . . , ak) satisfying aT Σa > 0. As in case 4 of
Example 3.9.2, transform X to Z and the result follows (Problem 3.66).

3.10 Problems

Section 3.2

Problem 3.1 Let X1, . . . , Xn be a sample from the normal distribution
N(ξ, σ2).

(i) If σ = σ0 (known), there exists a UMP test for testing H : ξ ≤ ξ0 against
ξ > ξ0, which rejects when

∑
(Xi − ξ0) is too large.

(ii) If ξ = ξ0 (known), there exists a UMP test for testing H : σ ≤ σ0 against
K : σ > σ0, which rejects when

∑
(Xi − ξ0)

2 is too large.

Problem 3.2 UMP test for U(0, θ). Let X = (X1, . . . , Xn) be a sample from
the uniform distribution on (0, θ).

(i) For testing H : θ ≤ θ0 against K : θ > θ0 any test is UMP at level α
for which Eθ0φ(X) = α, Eθφ(X) ≤ α for θ ≤ θ0, and φ(x) = 1 when
max(x1, . . . , xn) > θ0.

(ii) For testing H : θ = θ0 against K : θ += θ0 a unique UMP test exists, and is
given by φ(x) = 1 when max(x1, . . . , xn) > θ0 or max(x1, . . . , xn) ≤ θ0

n
√

α,
and φ(x) = 0 otherwise.

[(i): For each θ > θ0 determine the ordering established by r(x) = pθ(x)/pθ0(x)
and use the fact that many points are equivalent under this ordering.

(ii): Determine the UMP tests for testing θ = θ0 against θ < θ0 and combine
this result with that of part (i).]

Problem 3.3 Suppose N i.i.d. random variables are generated from the same
known strictly increasing absolutely continuous cdf F (·). We are told only X, the
maximum of these random variables. Is there a UMP size α test of

H0 : N ≤ 5 versus H1 : N > 5?
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If so, find it.

Problem 3.4 UMP test for exponential densities. Let X1, . . . , Xn be a sam-
ple from the exponential distribution E(a, b) of Problem 1.18, and let X(1) =
min(X1, . . . , Xn).

(i) Determine the UMP test for testing H : a = a0 against K : a += a0 when b
is assumed known.

(ii) The power of any MP level-α test of H : a = a0 against K : a = a1 < a0 is
given by

β∗(a1) = 1 − (1 − α)e−n(a0−a1)/b.

(iii) For the problem of part (i), when b is unknown, the power of any level α
test which rejects when

X(1) − a0∑
[Xi − X(1)]

≤ C1 or ≥ C2

against any alternative (a1, b) with a1 < a0 is equal to β∗(a1) of part (ii)
(independent of the particular choice of C1 and C2).

(iv) The test of part (iii) is a UMP level-α test of H : a = a0 against K : a += a0

(b unknown).

(v) Determine the UMP test for testing H : a = a0, b = b0 against the
alternatives a < a0, b < b0.

(vi) Explain the (very unusual) existence in this case of a UMP test in the
presence of a nuisance parameter [part(iv)] and for a hypothesis specifying
two parameters [part(v)].

[(i) The variables Yi = e−Xi/b are a sample from the uniform distribution on
(0, e−a/b).]

Note. For more general versions of parts (ii)–(iv) see Takeuchi (1969) and Kabe
and Laurent (1981).

Problem 3.5 In the proof of Theorem 3.2.1(i), consider the set of c satisfying
α(c) ≤ α ≤ α(c − 0). If there is only one such c, c is unique; otherwise, there is
an interval of such values [c1, c2]. Argue that, in this case, if α(c) is continuous
at c2, then Pi(C) = 0 for i = 0, 1, where

C =

{
x : p0(x) > 0 and c1 <

p1(x)
p0(x)

≤ c2

}
.

If α(c) is not continuous at c2, then the result is false.

Problem 3.6 Let P0, P1, P2 be the probability distributions assigning to the
integers 1, . . . , 6 the following probabilities:

1 2 3 4 5 6

P0 .03 .02 .02 .01 0 .92

P1 .06 .05 .08 .02 .01 .78

P2 .09 .05 .12 0 .02 .72
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Determine whether there exists a level-α test of H : P = P0 which is UMP
against the alternatives P1 and P2 when (i) α = .01; (ii) α = .05; (iii) α = .07.

Problem 3.7 Let the distribution of X be given by

x 0 1 2 3

Pθ(X = x) θ 2θ .9 − 2θ .1 − θ

where 0 < θ < .1. For testing H : θ = .05 against θ > .05 at level α = .05,
determine which of the following tests (if any) is UMP:

(i) φ(0) = 1, φ(1) = φ(2) = φ(3) = 0;

(ii) φ(1) = .5, φ(0) = φ(2) = φ(3) = 0;

(iii) φ(3) = 1, φ(0) = φ(1) = φ(2) = 0.

Problem 3.8 A random variable X has the Pareto distribution P (c, τ) if its
density is cτ c/xc+1, 0 < τ < x, 0 < C.

(i) Show that this defines a probability density.

(ii) If X has distribution P (c, τ), then Y = log X has exponential distribution
E(ξ, b) with ξ = log τ , b = 1/c.

(iii) If X1, . . . , Xn is a sample from P (c, τ), use (ii) and Problem 3.4 to obtain
UMP tests of (a) H : τ = τ0 against τ += τ0 when b is known; (b) H : c = c0,
τ = τ against c > c0, τ < τ0.

Problem 3.9 Let X be distributed according to Pθ, θ ∈ Ω, and let T be sufficient
for θ. If ϕ(X) is any test of a hypothesis concerning θ, then ψ(T ) given by
ψ(t) = E[ϕ(X) | t] is a test depending on T only, an its power function is
identical with that of ϕ(X).

Problem 3.10 In the notation of Section 3.2, consider the problem of testing
H0 : P = P0 against H1 : P = P1, and suppose that known probabilities π0 = π
and π1 = 1 − π can be assigned to H0 and H1 prior to the experiment.

(i) The overall probability of an error resulting from the use of a test ϕ is

πE0ϕ(X) + (1 − π)E1[1 − ϕ(X)].

(ii) The Bayes test minimizing this probability is given by (3.8) with k =
π0/π1.

(iii) The conditional probability of Hi given X = x, the posterior probability of
Hi is

πipi(x)
π0p0(x) + π1p1(x)

,

and the Bayes test therefore decides in favor of the hypothesis with the
larger posterior probability
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Problem 3.11 (i) For testing H0 : θ = 0 against H1 : θ = θ1 when X is
N(θ, 1), given any 0 < α < 1 and any 0 < π < 1 (in the notation of the
preceding problem), there exists θ1 and x such that (a) H0 is rejected when
X = x but (b) P (H0 | x) is arbitrarily close to 1.

(ii) The paradox of part (i) is due to the fact that α is held constant while the
power against θ1 is permitted to get arbitrarily close to 1. The paradox
disappears if α is determined so that the probabilities of type I and type
II error are equal [but see Berger and Sellke (1987)].

[For a discussion of such paradoxes, see Lindley (1957), Bartlett (1957), Schafer
(1982, 1988) and Robert (1993).]

Problem 3.12 Let X1, . . . , Xn be independently distributed, each uniformly
over the integers 1, 2, . . . , θ. Determine whether there exists a UMP test for test-
ing H : θ = θ0, at level 1/θn

0 against the alternatives (i) θ > θ0; (ii) θ < θ0; (iii)
θ += θ0.

Problem 3.13 The following example shows that the power of a test can some-
times be increased by selecting a random rather than a fixed sample size even
when the randomization does not depend on the observations. Let X1, . . . , Xn

be independently distributed as N(θ, 1), and consider the problem of testing
H : θ = 0 against K : θ = θ1 > 0.

(i) The power of the most powerful test as a function of the sample size n is
not necessarily concave.

(ii) In particular for α = .005, θ1 = 1
2 , better power is obtained by taking 2 or

16 observations with probability 1
2 each than by taking a fixed sample of

9 observations.

(iii) The power can be increased further if the test is permitted to have different
significance levels α1 and α2 for the two sample sizes and it is required only
that the expected significance level be equal to α = .005. Examples are:
(a) with probability 1

2 take n1 = 2 observations and perform the test of
significance at level α1 = .001, or take n2 = 16 observations and perform
the test at level α2 = .009; (b) with probability 1

2 take n1 = 0 or n2 = 18
observations and let the respective significance levels be α1 = 0, α2 = .01.

Note. This and related examples were discussed by Kruskal in a seminar held
at Columbia University in 1954. A more detailed investigation of the phenomenon
has been undertaken by Cohen (1958).

Problem 3.14 If the sample space X is Euclidean and P0, P1 have densities with
respect to Lebesgue measure, there exists a nonrandomized most powerful test
for testing P0 against P1 at every significance level α.12 [This is a consequence of
Theorem 3.2.1 and the following lemma.13 Let f ≥ 0 and

∫
A

f(x) dx = a. Given
any 0 ≤ b ≤ a, there exists a subset B of A such that

∫
B

f(x) dx = b.]

12For more general results concerning the possibility of dispensing with randomized
procedures, see Dvoretzky, Wald, and Wolfowitz (1951).

13For a proof of this lemma see Halmos (1974, p. 174.) The lemma is a special case of
a theorem of Lyapounov (1940); see Blackwell(1951).
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Problem 3.15 Fully informative statistics. A statistic T is fully informative if
for every decision problem the decision procedures based only on T form an
essentially complete class. If P is dominated and T is fully informative, then T
is sufficient. [Consider any pair of distributions P0, P1 ∈ P with densities p0, p1,
and let gi = pi/(p0 + p1). Suppose that T is fully informative, and let A′ be the
subfield induced by T . Then A′ contains the subfield induced by (g0, g1) since
it contains every rejection which is unique most powerful for testing P0 against
P1 (or P1 against P0) at some level α. Therefore, T is sufficient for every pair of
distributions (P0, P1), and hence by Problem 2.11 it is sufficient for P.]

Problem 3.16 Based on X with distribution indexed by θ ∈ Ω, the problem is
to test θ ∈ ω versus θ ∈ ω′. Suppose there exists a test φ such that Eθ[φ(X)] ≤ β
for all θ in ω, where β < α. Show there exists a level α test φ∗(X) such that

Eθ[φ(X)] ≤ Eθ[φ
∗(X)] ,

for all θ in ω′ and this inequality is strict if Eθ[φ(X)] < 1.

Problem 3.17 A counterexample. Typically, as α varies the most powerful level
α tests for testing a hypothesis H against a simple alternative are nested in the
sense that the associated rejection regions, say Rα, satisfy Rα ⊂ Rα′ , for any
α < α′. Even if the most powerful tests are nonrandomized, this may be false.
Suppose X takes values 1, 2, and 3 with probabilities 0.85, 0.1, and 0.05 under
H and probabilities 0.7, 0.2, and 0.1 under K.
(i) At any level < .15, the MP test is not unique.
(ii) At α = .05 and α′ = .1, there exist unique nonrandomized MP tests and they
are not nested.
(iii) At these levels there exist MP tests φ and φ′ that are nested in the sense
that φ(x) ≤ φ′(x) for all x. [This example appears as Example 10.16 in Romano
and Siegel (1986).]

Problem 3.18 Under the setup of Theorem 3.2.1, show there always exists MP
tests that are nested in the sense of Problem 3.17(iii).

Problem 3.19 Suppose X1, . . . , Xn are i.i.d. N(ξ, σ2) with σ known. For testing
ξ = 0 versus ξ += 0, the average power of a test φ = φ(X1, . . . , Xn) is given by

∫ ∞

−∞
Eξ(φ)dΛ(ξ) ,

where Λ is a probability distribution on the real line. Suppose that Λ is symmetric
about 0; that is, Λ{E} = Λ{−E} for all Borel sets E. Show that, among α level
tests, the one maximizing average power rejects for large values of |

∑
i Xi|. Show

that this test need not maximize average power if Λ is not symmetric.

Problem 3.20 Let fθ, θ ∈ Ω, denote a family of densities with respect to a
measure µ. (We assume Ω is endowed with a σ-field so that the densities fθ(x)
are jointly measurable in θ and x.) Consider the problem of testing a simple null
hypothesis θ = θ0 against the composite alternatives ΩK = {θ : θ += θ0}. Let Λ
be a probability distribution on ΩK .
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(i) As explicitly as possibly, find a test φ that maximizes
∫
ΩK

Eθ(φ)dΛ(θ), subject
to it being level α.
(ii) Let h(x) =

∫
fθ(x)dΛ(θ). Consider the nonrandomized φ test that rejects if

and only if h(x)/fθ0(x) > k, and suppose µ{x : h(x) = kfθ(x)} = 0. Then, φ is
admissible at level α = Eθ0(φ) in the sense that it is impossible that there exists
another level α test φ′ such that Eθ(φ

′) ≥ Eθ(φ) for all θ.
(iii) Show that the test of Problem 3.19 is admissible.

Section 3.3

Problem 3.21 In Example 3.21, show that p-value is indeed given by p̂ =
p̂(X) = (11 − X)/10. Also, graph the c.d.f. of p̂ under H and show that the
last inequality in (3.15) is an equality if and only u is of the form 0, . . . , 10.

Problem 3.22 Suppose X has a continuous distribution function F . Show that
F (X) is uniformly distributed on (0, 1). [The transformation from X to F (X) is
known as the probability integral transformation.]

Problem 3.23 Under the setup of Lemma 3.3.1, suppose the rejection regions
are defined by

Sα = {X : T (X) ≥ k(α)} (3.45)

for some real-valued statistic T (X) and k(α) satisfying

sup
θ∈ΩH

Pθ{T (X) ≥ k(α)} ≤ α .

Then, show

p̂ = sup
θ∈ΩH

P{T (X) ≥ t} ,

where t is the observed value of T (X).

Problem 3.24 Under the setup of Lemma 3.3.1, show that there exists a real-
valued statistic T (X) so that the rejection region is necessarily of the form (3.45).
[Hint: Let T (X) = −p̂.]

Problem 3.25 (i) If p̂ is uniform on (0, 1), show that −2 log(p̂) has the Chi-
squared distribution with 2 degrees of freedom.
(ii) Suppose p̂1, . . . , p̂s are i.i.d. uniform on (0, 1). Let F = −2 log(p̂1 · · · p̂s). Argue
that F has the Chi-squared distribution with 2s degrees of freedom. What can
you say about F if the p̂i are independent and satisfy P{p̂i ≤ u} ≤ u for all
0 ≤ u ≤ 1? [Fisher (1934a) proposed F as a means of combining p-values from
independent experiments.]

Section 3.4

Problem 3.26 Let X be the number of successes in a n independent trials with
probability p of success, and let φ(x) be the UMP test (3.16) for testing p ≤ p0

against p > p0 at level of significance α.
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(i) For n = 6, p0 = .25 and the levels α = .05, .1, .2 determine C and γ, and
the power of the test against p1 = .3, .4, .5, .6, .7.

(ii) If p0 = .2 and α = .05, and it is desired to have power β ≥ .9 against
p1 = .4, determine the necessary sample size (a) by using tables of the
binomial distribution, (b) by using the normal approximation.14

(iii) Use the normal approximation to determine the sample size required when
α = .05, β = .9, p0 = .01, p1 = .02.

Problem 3.27 (i) A necessary and sufficient condition for densities pθ(x)
to have monotone likelihood ratio in x, if the mixed second derivative
∂2 log pθ(x)/∂θ ∂x exists, is that this derivative is ≥ 0 for all θ and x.

(ii) An equivalent condition is that

pθ(x)
∂2pθ(x)
∂θ ∂x

≥ ∂pθ(x)
∂θ

∂pθ(x)
∂x

for all θ and x.

Problem 3.28 Let the probability density pθ of X have monotone likelihood
ratio in T (x), and consider the problem of testing H : θ ≤ θ0 against θ > θ0.
If the distribution of T is continuous, the p-value p̂ of the UMP test is given by
p̂ = Pθ0{T ≥ t}, where t is the observed value of T . This holds also without
the assumption of continuity if for randomized tests p̂ is defined as the smallest
significance level at which the hypothesis is rejected with probability 1. Show
that, for any θ ≤ θ0, Pθ{p̂ ≤ u} ≤ u for any 0 ≤ u ≤ 1.

Problem 3.29 Let X1, . . . , Xn be independently distributed with density
(2θ)−1e−x/2θ, x ≥ 0, and let Y1 ≤ · · · ≤ Yn be the ordered X’s. Assume that
Y1 becomes available first, then Y2, and so on, and that observation is contin-
ued until Yr has been observed. On the basis of Y1, . . . , Yr it is desired to test
H : θ ≥ θ0 = 1000 at level α = .05 against θ < θ0.

(i) Determine the rejection region when r = 4, and find the power of the test
against θ1 = 500.

(ii) Find the value of r required to get power β ≥ .95 against the alternative.

[In Problem 2.15, the distribution of [
∑r

i=1 Yi + (n − r)Yr]/θ was found to be
χ2 with 2r degrees of freedom.]

Problem 3.30 When a Poisson process with rate λ is observed for a time inter-
val of length τ , the number X of events occurring has the Poisson distribution
P (λτ). Under an alternative scheme, the process is observed until r events have
occurred, and the time T of observation is then a random variable such that 2λT
has a χ2-distribution with 2r degrees of freedom. For testing H : λ ≤ λ0 at level
α one can, under either design, obtain a specified power β against an alternative
λ1 by choosing τ and r sufficiently large.

14Tables and approximations are discussed, for example, in Chapter 3 of Johnson and
Kotz (1969).
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(i) The ratio of the time of observation required for this purpose under the
first design to the expected time required under the second is λτ/r.

(ii) Determine for which values of λ each of the two designs is preferable when
λ0 = 1, λ1 = 2, α = .05, β = 9.

Problem 3.31 Let X = (X1, . . . , Xn) be a sample from the uniform distribution
U(θ, θ + 1).

(i) For testing H : θ ≤ θ0 against K : θ > θ0 at level α there exists a UMP
test which rejects when min(X1, . . . , Xn) > θ0+C(α) or max(X1, . . . , Xn >
θ0 + 1 for suitable C(α).

(ii) The family U(θ, θ+1) does not have monotone likelihood ratio. [Additional
results for this family are given in Birnbaum (1954b) and Pratt (1958).]

[(ii) By Theorem 3.4.1, monotone likelihood ratio implies that the family of
UMP test of H : θ ≤ θ0 against K : θ > θ0 generated as α varies from 0 to 1 is
independent of θ0].

Problem 3.32 Let X be a single observation from the Cauchy density given at
the end of Section 3.4.

(i) Show that no UMP test exists for testing θ = 0 against θ > 0.

(ii) Determine the totality of different shapes the MP level-α rejection region
for testing θ = θ0 against θ = θ1 can take on for varying α and θ1 − θ0.

Problem 3.33 Let Xi be independently distributed as N(i∆, 1), i = 1, . . . , n.
Show that there exists a UMP test of H : ∆ ≤ 0 against K : ∆ > 0, and
determine it as explicitly as possible.

Note. The following problems (and some in later chapters) refer to the gamma,
Pareto, Weibull, and inverse Gaussian distributions. For more information about
these distributions, see Chapters 17, 19, 20, and 25 respectively of Johnson and
Kotz (1970).

Problem 3.34 Let X1, . . . , Xn be a sample from the gamma distribution Γ(g, b)
with density

1
Γ(g)bg

xg−1e−x/b, 0 < x, 0 < b, g.

Show that there exist a UMP test for testing

(i) H : b ≤ b0 against b > b0 when g is known;

(ii) H : g ≤ g0 against g > g0 when b is known.

In each case give the form of the rejection region.

Problem 3.35 A random variable X has the Weibull distribution W (b, c) if its
density is

c
b

(x
b

)c−1
e−(x/b)c

, x > 0, b, c > 0.



100 3. Uniformly Most Powerful Tests

Show that this defines a probability density. If X1, . . . , Xn is a sample from
W (b, c), with the shape parameter c known, show that there exists a UMP test
of H : b ≤ b0 against b > b0 and give its form.

Problem 3.36 Consider a single observation X from W (1, c).

(i) The family of distributions does not have monotone likelihood ratio in x.

(ii) The most powerful test of H : c = 1 against c = 2 rejects when X < k1

and when X > k2. Show how to determine k1 and k2.

(iii) Generalize (ii) to arbitrary alternatives c1 > 1, and show that a UMP test
of H : c = 1 against c > 1 does not exist.

(iv) For any c1 > 1, the power function of the MP test of H : c = 1 against
c = c1 is an increasing function of c.

Problem 3.37 Let X1, . . . , Xn be a sample from the inverse Gaussian distribu-
tion I(µ, τ) with density

√
τ

2πx3
exp

(
− τ

2xµ2
(x − µ)2

)
, x > 0, τ, µ > 0.

Show that there exists a UMP test for testing

(i) H : µ ≤ µ0 against µ > µ0 when τ is known;

(ii) H : τ ≤ τ0 against τ > τ0 when µ is known.
In each case give the form of the rejection region.

(iii) The distribution of V = r(Xi−µ)2/Xiµ
2 is χ2

1 and hence that of τ
∑

[(Xi−
µ)2/Xiµ

2] is χ2
n.

[Let Y = min(Xi, µ
2/Xi), Z = τ(Y − µ)2/µ2Y . Then Z = V and Z is χ2

1

[Shuster (1968)].] Note. The UMP test for (ii) is discussed in Chhikara and Folks
(1976).

Problem 3.38 Let X1, · · · , Xn be a sample from a location family with common
density f(x−θ), where the location parameter θ ∈ R and f(·) is known. Consider
testing the null hypothesis that θ = θ0 versus an alternative θ = θ1 for some θ1 >
θ0. Suppose there exists a most powerful level α test of the form: reject the null
hypothesis iff T = T (X1, · · · , Xn) > C, where C is a constant and T (X1, . . . , Xn)
is location equivariant, i.e. T (X1 + c, . . . , Xn + c) = T (X1, . . . , Xn) + c for all
constants c. Is the test also most powerful level α for testing the null hypothesis
θ ≤ θ0 against the alternative θ = θ1. Prove or give a counterexample.

Problem 3.39 Extension of Lemma 3.4.2. Let P0 and P1 be two distributions
with densities p0, p1 such that p1(x)/p0(x) is a nondecreasing function of a real-
valued statistic T (x).

(i) If T = T (X) has probability density p′
i when the original distribution of X

is Pi, then p′
1(t)/p′

0(t) is nondecreasing in t.

(ii) E0ψ(T ) ≤ E1ψ(T ) for any nondecreasing function ψ.
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(iii) If p1(x)/p0(x) is a strictly increasing function of t = T (x), so is
p′
1(t)/p′

0(t), and E0ψ(T ) < E1ψ(T ) unless ψ[T (x)] is constant a.e. (P0 +
P1) or E0ψ(T ) = E1ψ(T ) = ± ∞.

(iv) For any distinct distributions with densities p0, p1,

−∞ ≤ E0 log

[
p1(X)
p0(X)

]
< E1 log

[
p1(X)
p0(X)

]
≤ ∞.

[(i): Without loss of generality suppose that p1(x)/p0(x) = T (x). Then for
any integrable φ,

∫
φ(t)p′

1(t) dv(t) =

∫
φ[T (x)]T (x)p0(x) dµ(x) =

∫
φ(t)tp′

0(t) dv(t),

and hence p′
1(t)/p′

0(t) = t a.e.
(iv): The possibility E0 log[p1(X)/p0(X)] = ∞ is excluded, since by the
convexity of the function log,

E0 log

[
p1(X)
p0(X)

]
< log E0

[
p1(X)
p0(X)

]
= 0.

Similarly for E1. The strict inequality now follows from (iii) with T (x) =
p1(x)/p0(x).]

Problem 3.40 F0, F1 are two cumulative distribution functions on the real
line, then Fi(x) ≤ F0(x) for all x if and only if E0ψ(X) ≤ E1ψ(X) for any
nondecreasing function ψ.

Problem 3.41 Let F and G be two continuous, strictly increasing c.d.f.s, and
let k(u) = G[F−1(u)], 0 < u < 1.
(i) Show F and G are stochastically ordered, say F (x) ≤ G(x) for all x, if and
only if k(u) ≤ u for all 0 < u < 1.
(ii) If F and G have densities f and g, then show they are monotone likelihood
ratio ordered, say g/f nondecreasing, if and only if k is convex.
(iii) Use (i) and (ii) to give an alternative proof of the fact that MLR implies
stochastic ordering.

Problem 3.42 Let f(x)/[1 − F (x)] be the “mortality” of a subject at time x
given that it has survived to this time. A c.d.f. F is said to be smaller than G in
the hazard ordering if

g(x)
1 − G(x)

≤ f(x)
1 − F (x)

for all x . (3.46)

(i) Show that (3.46) is equivalent to

1 − F (x)
1 − G(x)

is nonincreasing. (3.47)

(ii) Show that (3.46) holds if and only if k is starshaped. [A function k defined
on an interval I ⊂ [0,∞) is starshaped on I if k(λx) ≤ λk(x) whenever x ∈ I,
λx ∈ I, 0 ≤ λ ≤ 1. Problems 3.41 and 3.42 are based on Lehmann and Rojo
(1992).]
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Section 3.5

Problem 3.43 (i) For n = 5, 10 and 1−α = .95, graph the upper confidence
limits p̄ and p̄∗ of Example 3.5.2 as functions of t = x + u.

(ii) For the same values of n and α1 = α2 = .05, graph the lower and upper
confidence limits p and p̄.

Problem 3.44 Confidence bounds with minimum risk. Let L(θ, θ) be nonnega-
tive and nonincreasing in its second argument for θ < θ, and equal to 0 for θ ≥ θ.
If θ and θ∗ are two lower confidence bounds for θ such that

P0{θ ≤ θ′} ≤ Pθ{θ∗ ≤ θ′} for all θ′ ≤ θ,

then

EθL(θ, θ) ≤ EθL(θ, θ∗).

[Define two cumulative distribution functions F and F ∗ by F (u) = Pθ{θ ≤
u}/Pθ{θ∗ ≤ θ}, F ∗(u) = Pθ{θ∗ ≤ u}/Pθ{θ∗ ≤ θ} for u < θ, F (u) = F ∗(u) = 1
for u ≥ θ. Then F (u) ≤ F ∗(u) for all u, and it follows from Problem 3.40 that

Eθ[L(θ, θ)] = Pθ{θ∗ ≤ θ}
∫

L(θ, u)dF (u)

≤ Pθ{θ∗ ≤ θ}
∫

L(θ, u)dF ∗(u) = Eθ[L(θ, θ∗)].]

Section 3.6

Problem 3.45 If β(θ) denotes the power function of the UMP test of Corollary
3.4.1, and if the function Q of (3.19) is differentiable, then β′(θ) > 0 for all θ for
which Q′(θ) > 0.

[To show that β′(θ0) > 0, consider the problem of maximizing, subject to
Eθ0φ(X) = α, the derivative β′(θ0) or equivalently the quantity Eθ0 [T (X) φ(X)].]

Problem 3.46 Optimum selection procedures. On each member of a population
n measurements (X1, . . . , Xn) = X are taken, for example the scores of n aptitude
tests which are administered to judge the qualifications of candidates for a certain
training program. A future measurement Y such as the score in a final test at
the end of the program is of interest but unavailable. The joint distribution of X
and Y is assumed known.

(i) One wishes to select a given proportion α of the candidates in such a way
as to maximize the expectation of Y for the selected group. This is achieved
by selecting the candidates for which E(Y |x) ≥ C, where C is determined
by the condition that the probability of a member being selected is α.
When E(Y |x) = C, it may be necessary to randomized in order to get the
exact value α.

(ii) If instead the problem is to maximize the probability with which in the
selected population Y is greater than or equal to some preassigned score
y0, one selects the candidates for which the conditional probability P{Y ≥
y0|x} is sufficiently large.
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[(i): Let φ(x) denote the probability with which a candidate with measurements
x is to be selected. Then the problem is that of maximizing

∫ [∫
ypY |x(y) φ(x)dy

]
px(x)dx

subject to
∫

φ(x)px(x)dx = α.]

Problem 3.47 The following example shows that Corollary 3.6.1 does not ex-
tend to a countably infinite family of distributions. Let pn be the uniform
probability density on [0, 1 + 1/n], and p0 the uniform density on (0, 1).

(i) Then p0 is linearly independent of (p1, p2, . . .), that is, there do not exist
constants c1, c2, . . . such that p0 =

∑
cnpn.

(ii) There does not exist a test φ such that
∫

φpn = α for n = 1, 2, . . . but∫
φp0 > α.

Problem 3.48 Let F1, . . . , Fm+1 be real-valued functions defined over a space
U . A sufficient condition for u0 to maximize Fm+1 subject to Fi(u) ≤ ci(i =
1, . . . , m) is that it satisfies these side conditions, that it maximizes Fm+1(u) −∑

kiFi(u) for some constants ki ≥ 0, and that Fi(uo) = ci for those values i for
which ki > 0.

Section 3.7

Problem 3.49 For a random variable X with binomial distribution b(p, n), de-
termine the constants Ci, γ(i = 1, 2) in the UMP test (3.31) for testing H : p ≤ .2
or ≤ .7 when α = .1 and n = 15. Find the power of the test against the alternative
p = .4.

Problem 3.50 Totally positive families. A family of distributions with proba-
bility densities pθ(x), θ and x real-valued and varying over Ω and X respectively,
is said to be totally positive of order r(TPr) if for all x1 < · · · < xn and
θ1 < · · · < θn

0n =

∣∣∣∣
pθ1(x1) · · · pθ1(xn)
pθn(x1) · · · pθn(xn)

∣∣∣∣ ≥ 0 for all n = 1, 2, . . . , r. (3.48)

It is said to be strictly totally positive of order r (STPr) if strict inequality
holds in (3.48). The family is said to be (strictly) totally positive of infinity if
(3.48) holds for all n = 1, 2, . . . . These definitions apply not only to probability
densities but to any real-valued functions pθ(x) of two real variables.

(i) For r = 1, (3.48) states that pθ(x) ≥ 0; for r = 2, that pθ(x) has monotone
likelihood ratio in x.

(ii) If a(θ) > 0, b(x) > 0, and pθ(x) is STPr then so is a(θ)b(x)pθ(x).

(iii) If a and b are real-valued functions mapping Ω and X onto Ω′ and X ′ and
are strictly monotone in the same direction, and if pθ(x) is (STPr, then
pθ′(x′) with θ′ = a−1(θ) and x′ = b−1(x) is (STP )r over (Ω′,X ′).
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Problem 3.51 Exponential families. The exponential family (3.19) with T (x) =
x and Q(θ) = θ is STP∞, with Ω the natural parameter space and X = (−∞,∞).

[That the determinant |eθixj |, i, j = 1, . . . , n, is positive can be proved by
induction. Divide the ith column by eθ1xi , i = 1, . . . , n; subtract in the resulting
determinant the (n− 1)st column from the nth, the (n− 2)nd from the (n− 1)st,
. . . , the 1st from the 2nd; and expand the determinant obtained in this way by
the first row. Then 0n is seen to have the same sign as

0′
n = |eηixj − eηixj−1|, i, j = 2, . . . , n,

where ηi = θi−θ1. If this determinant is expanded by the first column one obtains
a sum of the form

a2(e
η2x2 − eη2x1) + · · · + an(eηnx2 − eηnx1) = h(x2) − h(x1)

= (x2 − x1)h
′(y2),

where x1 < y2 < x2. Rewriting h′(y2) as a determinant of which all columns but
the first coincide with those of 0′

n and proceeding in the same manner with the
columns, one reduces the determinant to |eηiyj |, i, j = 2, . . . , n, which is positive
by the induction hypothesis.]

Problem 3.52 STP3. Let θ and x be real-valued, and suppose that the prob-
ability densities pθ(x) are such that pθ′(x)/pθ(x) is strictly increasing in x for
θ < θ′. Then the following two conditions are equivalent: (a) For θ1 < θ2 < θ3

and k1, k2, k3 > 0, let

g(x) = k1pθ1(x) − k2pθ2(x) + k3pθ3(x).

If g(x1) − g(x3) = 0, then the function g is positive outside the interval (x1, x3)
and negative inside. (b) The determinant 03 given by (3.48) is positive for all
θ1 < θ2 < θ3, x1 < x2 < x3. [It follows from (a) that the equation g(x) = 0 has
at most two solutions.]

[That (b) implies (a) can be seen for x1, < x2 < x3 by considering the
determinant

∣∣∣∣∣∣

g(x1) g(x2) g(x3)
pθ2(x1) pθ2(x2) pθ2(x3)
pθ3(x1) pθ3(x2) pθ3(x3)

∣∣∣∣∣∣

Suppose conversely that (a) holds. Monotonicity of the likelihood ratios implies
that the rank of 03 is at least two, so that there exist constants k1, k2, k3 such that
g(x1) = g(x3) = 0. That the k′s are positive follows again from the monotonicity
of the likelihood ratios.]

Problem 3.53 Extension of Theorem 3.7.1. The conclusions of Theorem 3.7.1
remain valid if the density of a sufficient statistic T (which without loss of gen-
erality will be taken to be X), say pθ(x), is STP3 and is continuous in x for each
θ.

[The two properties of exponential families that are used in the proof of
Theorem 3.7.1 are continuity in x and (a) of the preceding problem.]

Problem 3.54 For testing the hypothesis H ′ : θ1 ≤ θ ≤ θ2(θ1 ≤ θ2) against the
alternatives θ < θ1 or θ > θ2, or the hypothesis θ = θ0 against the alternatives
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θ += θ0, in an exponential family or more generally in a family of distributions
satisfying the assumptions of Problem 3.53, a UMP test does not exist.

[This follows from a consideration of the UMP tests for the one-sided
hypotheses H1 : θ ≥ θ1 and H2 : θ ≤ θ2.]

Problem 3.55 Let f , g be two probability densities with respect to µ. For test-
ing the hypothesis H : θ ≤ θ0 or θ ≥ θ1(0 < θ0 < θ1 < 1) against the alternatives
θ0 < θ < θ1, in the family P = {θf(x)+(1−θ)g(x), 0 ≤ θ ≤ 1}, the test ϕ(x) ≡ α
is UMP at level α.

Section 3.8

Problem 3.56 Let the variables Xi(i = 1, . . . , s) be independently distributed
with Poisson distribution P (λi). For testing the hypothesis H :

∑
λj ≤ a (for

example, that the combined radioactivity of a number of pieces of radioactive
material does not exceed a), there exists a UMP test, which rejects when

∑
Xj >

C.
[If the joint distribution of the X’s is factored into the marginal distribution of∑
Xj (Poisson with mean

∑
λj) times the conditional distribution of the vari-

ables Yi = Xj/
∑

Xj given
∑

Xj (multinomial with probabilities pi = λi/
∑

λj),
the argument is analogous to that given in Example 3.8.1.]

Problem 3.57 Confidence bounds for a median. Let X1, . . . , Xn be a sample
from a continuous cumulative distribution functions F . Let ξ be the unique
median of F if it exists, or more generally let ξ = inf{ξ′ : F (ξ′) = 1

2}.

(i) If the ordered X’s are X(1) < · · · < X(n), a uniformly most accurate lower
confidence bound for ξ is ξ = X(k) with probability ρ, ξ = X(k+1) with
probability 1 − ρ, where k and ρ are determined by

ρ
n∑

j=k

(
n
j

)
1
2n

+ (1 − ρ)
n∑

j=k+1

(
n
j

)
1
2n

= 1 − α.

(ii) This bound has confidence coefficient 1 − α for any median of F .

(iii) Determine most accurate lower confidence bounds for the 100p-percentile
ξ of F defined by ξ = inf{ξ′ : F (ξ′) = p}.

[For fixed to the problem of testing H : ξ = ξ0 to against K : ξ > ξ0 is equivalent
to testing H ′ : p = 1

2 against K′ : p < 1
2 .]

Problem 3.58 A counterexample. Typically, as α varies the most powerful level
α tests for testing a hypothesis H against a simple alternative are nested in the
sense that the associated rejection regions, say Rα, satisfy Rα ⊂ Rα′ , for any α <
α′. The following example shows that this need not be satisfied for composite H.
Let X take on the values 1, 2, 3, 4 with probabilities under distributions P0, P1, Q:

1 2 3 4

P0
2
13

4
13

3
13

4
13

P1
4
13

2
13

1
13

6
13

Q 4
13

3
13

2
13

4
13
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Then the most powerful test for testing the hypothesis that the distribution of
X is P0 or P1 against the alternative that it is Q rejects at level α = 5

13 when
X = 1 or 3, and at level α = 6

13 when X = 1 or 2.

Problem 3.59 Let X and Y be the number of successes in two sets of n binomial
trials with probabilities p1 and p2 of success.

(i) The most powerful test of the hypothesis H : p2 ≤ p1 against an alternative
(p′

1, p
′
2) with p′

1 < p′
2 and p′

1+p′
2 = 1 at level α < 1

2 rejects when Y −X > C
and with probability γ when Y − X = C.

(ii) This test is not UMP against the alternatives p1 < p2.

[(i): Take the distribution Λ assigning probability 1 to the point p1 = p2 = 1
2

as an a priori distribution over H. The most powerful test against (p′
1, p

′
2) is then

the one proposed above. To see that Λ is least favorable, consider the probability
of rejection β(p1, p2) for p1 = p2 = p. By symmetry this is given by

2β(p, p) = P{|Y − X| > C} + γP{|Y − X| = C}.

Let Xi be 1 or 0 as the ith trial in the first series is a success or failure, and
let Y1, be defined analogously with respect to the second series. Then Y − X =∑n

i−1(Yi −Xi), and the fact that 2β(p, p) attains its maximum for p = 1
2 can be

proved by induction over n.
(ii): Since β(p, p) < α for p += 1, the power β(p1, p2) is < α for alternatives

p1 < p2 sufficiently close to the line p1 = p2. That the test is not UMP now
follows from a comparison with φ(x, y) ≡ α.]

Problem 3.60 Sufficient statistics with nuisance parameters.

(i) A statistic T is said to be partially sufficient for θ in the presence of a
nuisance parameter η if the parameter space is the direct product of the
set of possible θ- and η-values, and if the following two conditions hold: (a)
the conditional distribution given T = t depends only on η; (b) the marginal
distribution of T depends only on θ. If these conditions are satisfied, there
exists a UMP test for testing the composite hypothesis H : θ = θ0 against
the composite class of alternatives θ = θ1, which depends only on T .

(ii) Part (i) provides an alternative proof that the test of Example 3.8.1 is
UMP.

[Let ψ0(t) be the most powerful level α test for testing θ0 against θ1 that
depends only on t, let φ(x) be any level-α test, and let ψ(t) = Eη1 [φ(X) | t].
Since Eθiψ(T ) = Eθi,η1φ(X), it follows that ψ is a level-α test of H and its
power, and therefore the power of φ, does not exceed the power of ψ0.]

Note. For further discussion of this and related concepts of partial sufficiency
see Fraser (1956), Dawid (1975), Sprott (1975), Basu (1978), and Barndorff-
Nielsen (1978).
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Section 3.9

Problem 3.61 Let X1, . . . , X and Y1, . . . , Yn be independent samples from
N(ξ, 1) and N(η, 1), and consider the hypothesis H : η ≤ ξ against K : η > ξ.
There exists a UMP test, and it rejects the hypothesis when Ȳ − X̄ is too large.

[If ξ1 < η1, is a particular alternative, the distribution assigning probability 1
to the point η = ξ = (mξ1 + nη1)/(m + n) is least favorable.]

Problem 3.62 Let X1, . . . , Xm; Y1, . . . , Yn be independently, normally dis-
tributed with means ξ and η, and variances a σ2 and τ2 respectively, and consider
the hypothesis H : τ ≤ σ a against K : σ < τ .

(i) If ξ and η are known, there exists a UMP test given by the rejection region∑
(Yj − η)2/

∑
(Xi − ξ)2 ≥ C.

(ii) No UMP test exists when ξ and η are unknown.

Problem 3.63 Suppose X is a k × 1 random vector with E(|X|2) < ∞ and
covariance matrix Σ. Let A be an m × k (nonrandom) matrix and let Y = AX.
Show Y has mean vector AE(X) and covariance matrix AΣAT .

Problem 3.64 Suppose (X1, . . . , Xk) has the multivariate normal distribution
with unknown mean vector ξ = (ξ1, . . . , ξk) and known covariance matrix Σ.
Suppose X1 is independent of (X2, . . . , Xk). Show that X1 is partially sufficient
for ξ1 in the sense of Problem 3.60. Provide an alternative argument for Case 2
of Example 3.9.2.

Problem 3.65 In Example 3.9.2, Case 2, verify the claim for the least favorable
distribution.

Problem 3.66 In Example 3.9.3, provide the details for Cases 3 and 4.

3.11 Notes

Hypothesis testing developed gradually, with early instances frequently being
rather vague statements of the significance or nonsignificance of a set of obser-
vations. Isolated applications are found in the 18th century [Arbuthnot (1710),
Daniel Bernoulli (1734), and Laplace (1773), for example] and centuries earlier
in the Royal Mint’s Trial of the Pyx [discussed by Stigler (1977)]. They became
more frequent in the 19th century in the writings of such authors as Gavarret
(1840), Lexis (1875, 1877), and Edgeworth (1885). A new stage began with the
work of Karl Pearson, particularly his χ2 paper of 1900, followed in the decade
1915–1925 by Fisher’s normal theory and χ2 tests. Fisher presented this work sys-
tematically in his enormously influential book Statistical Methods for Research
Workers (1925b).

The first authors to recognize that the rational choice of a test must involve
consideration not only of the hypothesis but also of the alternatives against which
it is being tested were Neyman and F. S. Pearson (1928). They introduced the dis-
tinction between errors of the first and second kind, and thereby motivated their
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proposal of the likelihood-ratio criterion as a general method of test construc-
tion. These considerations were carried to their logical conclusion by Neyman
and Pearson in their paper of 1933. in which they developed the theory of UMP
tests. Accounts of their collaboration can be found in Pearson’s recollections
(1966), and in the biography of Neyman by Reid (1982).

The Neyman–Pearson lemma has been generalized in many directions, includ-
ing the results in Sections 3.6, 3.8 and 3.9. Dantzig and Wald (1951) give necessary
conditions including those of Theorem 3.6.1, for a critical function which max-
imizes an integral subject to a number of integral side conditions, to satisfy
(3.28). The role of the Neyman–Pearson lemma in hypothesis testing is surveyed
in Lehmann (1985a).

An extension to a selection problem, proposed by Birnbaum and Chapman
(1950), is sketched in Problem 3.46. Further developments in this area are re-
viewed in Gibbons (1986, 1988). Grenander (1981) applies the fundamental
lemma to problems in stochastic processes.

Lemmas 3.4.1, 3.4.2, and 3.7.1 are due to Lehmann (1961).
Complete class results for simple null hypothesis testing problems are obtained

in Brown and Marden (1989).
The earliest example of confidence intervals appears to occur in the work of

Laplace (1812). who points out how an (approximate) probability statement con-
cerning the difference between an observed frequency and a binomial probability
p can be inverted to obtain an associated interval for p. Other examples can be
found in the work of Gauss (1816), Fourier (1826), and Lexis (1875). However, in
all these cases, although the statements made are formally correct, the authors
appear to consider the parameter as the variable which with the stated proba-
bility falls in the fixed confidence interval. The proper interpretation seems to
have been pointed out for the first time by E. B. Wilson (1927). About the same
time two examples of exact confidence statements were given by Working and
Hotelling (1929) and Hotelling (1931).

A general method for obtaining exact confidence bounds for a real-valued pa-
rameter in a continuous distribution was proposed by Fisher (1930), who however
later disavowed this interpretation of his work. For a discussion of Fisher’s contro-
versial concept of fiducial probability, see Section 5.7. At about the same time,15

a completely general theory of confidence statements was developed by Neyman
and shown by him to be intimately related to the theory of hypothesis testing.
A detailed account of this work, which underlies the treatment given here, was
published by Neyman in his papers of 1937 and 1938.

The calculation of p-values was the standard approach to hypothesis testing
throughout the 19th century and continues to be widely used today. For vari-
ous questions of interpretation, extensions, and critiques, see Cox (1977), Berger
and Sellke (1987), Marden (1991), Hwang, Casella, Robert, Wells and Farrell
(1992), Lehmann (1993), Robert (1994), Berger, Brown and Wolpert (1994),
Meng (1994), Blyth and Staudte (1995, 1997), Liu and Singh (1997), Sackrowitz
and Samuel-Cahn (1999), Marden (2000), Sellke et al. (2001), and Berger (2003).

Extensions of p-values to hypotheses with nuisance parameters is discussed by
Berger and Boos (1994) and Bayarri and Berger (2000), and the large-sample

15Cf. Neyman (1941b).
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behavior of p-values in Lambert and Hall (1982) and Robins et al. (2000). An
optimality theory in terms of p-values is sketched by Schweder (1988), and p-
values for the simultaneous testing of several hypotheses is treated by Schweder
and Spjøtvoll (1982), Westfall and Young (1993), and by Dudoit et al. (2003).

An important use of p-values occurs in meta-analysis when one is dealing with
the combination of results from independent experiments. The early literature
on this topic is reviewed in Hedges and Olkin (1985, Chapter 3). Additional
references are Marden (1982b, 1985), Scholz (1982) and a review article by Becker
(1997). Associated confidence intervals are proposed by Littell and Louv (1981).



4
Unbiasedness: Theory and First
Applications

4.1 Unbiasedness For Hypothesis Testing

A simple condition that one may wish to impose on tests of the hypothesis H :
θ ∈ ΩH against the composite class of alternatives K : θ ∈ ΩK is that for no
alternative in K should the probability of rejection be less than the size of the
test. Unless this condition is satisfied, there will exist alternatives under which
acceptance of the hypothesis is more likely than in some cases in which the
hypothesis is true. A test φ for which the above condition holds, that is, for
which the power function βφ(θ) = Eθφ(X) satisfies

βφ(θ) ≤ α if θ ∈ ΩH ,
βφ(θ) ≥ α if θ ∈ ΩK ,

(4.1)

is said to be unbiased. For an appropriate loss function this was seen in Chapter
1 to be a particular case of the general definition of unbiasedness given there.
Whenever a UMP test exists, it is unbiased, since its power cannot fall below
that of the test φ(x) ≡ α.

For a large class of problems for which a UMP test does not exist, there does
exist a UMP unbiased test. This is the case in particular for certain hypotheses
of the form θ ≤ θ0 or θ = θ0, where the distribution of the random observables
depends on other parameters besides θ.

When βφ(θ) is a continuous function of θ, unbiasedness implies

βφ(θ) = α for all θ in ω, (4.2)

where ω is the common boundary of ΩH and ΩK that is, the set of points θ that
are points or limit points of both ΩH and ΩK . Tests satisfying this condition are
said to be similar on the boundary (of H and K). Since it is more convenient to
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work with (4.2) than with (4.1), the following lemma plays an important role in
the determination of UMP unbiased tests.

Lemma 4.1.1 If the distributions Pθ are such that the power function of every
test is continuous, and if φ0 is UMP among all tests satisfying (4.2) and is a
level-α test of H then φ0 is UMP unbiased.

Proof. The class of tests satisfying (4.2) contains the class of unbiased tests,
and hence φ0 is uniformly at least as powerful as any unbiased test. On the other
hand, φ0 is unbiased, since it is uniformly at least as powerful as φ(x) ≡ α.

4.2 One-Parameter Exponential Families

Let θ be a real parameter, and X = (X1, . . . , Xn) a random vector with
probability density (with respect to some measure µ)

pθ(x) = C(θ)eθT (x)h(x).

It was seen in Chapter 3 that a UMP test exists when the hypothesis H and the
class K of alternatives are given by (i) H : θ ≤ θ0, K : θ > θ0 (Corollary 3.4.1)
and (ii) H : θ ≤ θ1 or θ ≥ θ2 (θ1 < θ2), K : θ1 < θ < θ2 (Theorem 3.7.1), but not
for (iii) H : θ1 ≤ θ ≤ θ2, K : θ < θ1 or θ > θ2. We shall now show that in case
(iii) there does exist a UMP unbiased test given by

φ(x) =






1 when T (x) < C1 or > C2,
γi when T (x) = Ci, i = 1, 2,
0 when C1 < T (x) < C2,

(4.3)

where the C’s and γ’s are determined by

Eθ1φ(X) = Eθ2φ(X) = α. (4.4)

The power function Eθφ(X) is continuous by Theorem 2.7.1, so that Lemma
4.1.1 is applicable. The set ω consists of the two points θ1 and θ2, and we therefore
consider first the problem of maximizing Eθ′φ(X) for some θ′ outside the interval
[θ1, θ2], subject to (4.4). If this problem is restated in terms of 1−φ(x), it follows
from part (ii) of Theorem 3.7.1 that its solution is given by (4.3) and (4.4). This
test is therefore UMP among those satisfying (4.4), and hence UMP unbiased
by Lemma 4.1.1. It further follows from part (iii) of the theorem that the power
function of the test has a minimum at a point between θ1 and θ2, and is strictly
increasing as θ tends away from this minimum in either direction.

A closely related problem is that of testing (iv) H : θ = θ0 against the alterna-
tives θ += θ0. For this there also exists a UMP unbiased test given by (4.3), but
the constants are now determined by

Eθ0 [φ(X)] = α (4.5)

and

Eθ0 [T (X)φ(X)] = Eθ0 [T (X)]α. (4.6)
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To see this, let θ′ be any particular alternative, and restrict attention to the
sufficient statistic T , the distribution of which by Lemma 2.7.2, is of the form

dPθ(t) = C(θ)eθt dν(t).

Unbiasedness of a test ψ(t) implies (4.5) with φ(x) = ψ[T (x)]; also that the
power function β(θ) = Eθ[ψ(T )] must have a minimum at θ = θ0. By Theorem
2.7.1, the function β(θ) is differentiable, and the derivative can be computed by
differentiating Eθψ(T ) under the expectation sign, so that for all tests ψ(t)

β′(θ) = Eθ[Tψ(T )] +
C′(θ)
C(θ)

Eθ[ψ(T )].

For ψ(t) ≡ α, this equation becomes

0 = Eθ(T ) +
C′(θ)
C(θ)

.

Substituting this in the expression for β′(θ) gives

β′(θ) = Eθ[Tψ(T )] − Eθ(T )Eθ[ψ(T )],

and hence unbiasedness implies (4.6) in addition to (4.5).
Let M be the set of points (Eθ0 [ψ(T )], Eθ0 [Tψ(T )]) as ψ ranges over the total-

ity of critical functions. Then M is convex and contains all points (u, uEθ0(T ))
with 0 < u < 1. It also contains points (α, u2) with u2 > αEθ0(T ). This follows
from the fact that there exist tests with Eθ0 [ψ(T )] = α and β′(θ0) > 0 (see Prob-
lem 3.45). Since similarly M contains points (α, u1) with u1 < αEθ0(T ), the point
(α, αEθ0(T )) is an inner point of M . Therefore, by Theorem 3.6.1(iv), there exist
constants k1, k2 and a test ψ(t) satisfying (4.5) and (4.6) with φ(x) = ψ[T (x)],
such that ψ(t) = 1 when

C(θ0)(k1 + k2t)e
θ0t < C(θ′)eθ′t

and therefore when

a1 + a2t < ebt.

This region is either one-sided or the outside of an interval. By Theorem 3.4.1,
a one-sided test has a strictly monotone power function and therefore cannot
satisfy (4.6). Thus ψ(t) is 1 when t < C1 or > C2, and the most powerful test
subject to (4.5) and (4.6) is given by (4.3). This test is unbiased, as is seen by
comparing it with φ(x) ≡ α. It is then also UMP unbiased, since the class of tests
satisfying (4.5) and (4.6) includes the class of unbiased tests.

A simplification of this test is possible if for θ = θ0 the distribution of T is
symmetric about some point a, that is, if Pθ0{T < a − u} = Pθ0{T > a + u}
for all real u. Any test which is symmetric about a and satisfies (4.5) must also
satisfy (4.6), since Eθ0 [Tψ(T )] = Eθ0 [(T −a)ψ(T )]+aEθ0ψ(T ) = aα = Eθ0(T )α.
The C’s and γ’s are therefore determined by

Pθ0{T < C1} + γ1Pθ0{T = C1} = α
2 ,

C2 = 2a − C1, γ2 = γ1.

The above tests of the hypotheses θ1 ≤ θ ≤ θ2 and θ = θ0 are strictly unbiased
in the sense that the power is > α for all alternatives θ. For the first of these
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tests, given by (4.3) and (4.4), strict unbiasedness is an immediate consequence of
Theorem 3.7.1(iii). This states in fact that the power of the test has a minimum
at a point θ0 between θ1 and θ2 and increases strictly as θ tends away from θ0

in either direction. The second of the tests, determined by (4.3), (4.5), and (4.6),
has a continuous power function with a minimum of α at θ = θ0. Thus there exist
θ1 < θ0 < θ2 such that β(θ1) = β(θ2) = c where α ≤ c < 1. The test therefore
coincides with the UMP unbiased level-c test of the hypothesis θ1 ≤ θ ≤ θ2, and
the power increases strictly as θ moves away from θ0 in either direction. This
proves the desired result.

Example 4.2.1 (Binomial) Let X be the number of successes in n binomial
trials with probability p of success. A theory to be tested assigns to p the value
p0, so that one wishes to test the hypothesis H : p = p0. When rejecting H one
will usually wish to state also whether p appears to be less or greater than p0.
If, however, the conclusion that p += p0 in any case requires further investigation,
the preliminary decision is essentially between the two possibilities that the data
do or do not contradict the hypothesis p = p0. The formulation of the problem
as one of hypothesis testing may then be appropriate.

The UMP unbiased test of H is given by (4.3) with T (X) = X. The condition
(4.5) becomes

C2−1∑

x=C1+1

(
n
x

)
px
0qn−x

0 +
2∑

i=1

(1 − γi)

(
n
Ci

)
pCi
0 qn−Ci

0 = 1 − α,

and the left-hand side of this can be obtained from tables of the individual prob-
abilities and cumulative distribution function of X. The condition (4.6), with the
help of the identity

x

(
n
x

)
px
0qn−x

0 = np0

(
n − 1
x − 1

)
px−1
0 q(n−1)−(x−1)

0

reduces to

C2−1∑

x=C1+1

(
n − 1
x − 1

)
px−1
0 q(n−1)−(x−1)

0

+
2∑

i=1

(1 − γi)

(
n − 1
Ci − 1

)
pCi−1
0 q(n−1)−(Ci−1)

0 = 1 − α

the left-hand side of which can be computed from the binomial tables.
For sample sizes which are not too small, and values of p0 which are not too

close to 0 or 1, the distribution of X is therefore approximately symmetric. In
this case, the much simpler “equal tails” test, for which the C’s and γ’s are
determined by

C1−1∑

x=0

(
n
x

)
px
0q(n−x)

0 + γ1

(
n
C1

)
pC1
0 qn−C1

0

= γ2

(
n
C2

)
pC2
0 qn−C2

0 +
n∑

x=C2+1

(
n
x

)
px
0qn−x

0 =
α
2

,
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is approximately unbiased, and constitutes a reasonable approximation to the
unbiased test. Note, however, that this approximation requires large sample sizes
when p0 is close to 0 or 1; in this connection, see Example 5.7.2 which discusses
the corresponding problem of confidence intervals for p. The literature on this
and other approximations to the binomial distribution is reviewed in Johnson,
Kotz and Kemp (1992). See also the related discussion in Example 5.7.2.

Example 4.2.2 (Normal variance) Let X = (X1, . . . , Xn) be a sample from
a normal distribution with mean 0 and variance σ2, so that the density of the
X’s is

(
1√
2πσ

)
exp

(
− 1

2πσ2

∑
x2

i

)
.

Then T (X) =
∑

X2
i is sufficient for σ2, and has probability density (1/σ2)fn(y/σ2),

where

fn(y) =
1

2n/2Γ(n/2)
y(n/2)−1e(y/2), y > 0,

is the density of a χ2-distribution with n degrees of freedom. For varying σ, these
distributions form an exponential family, which arises also in problems of life
testing (see Problem 2.15), and concerning normally distributed variables with
unknown mean and variance (Section 5.3). The acceptance region of the UMP
unbiased test of the hypothesis H : σ = σ0 is

C1 ≤
∑ x2

i

σ2
0

≤ C2

with
∫ C2

C1

fn(y) dy = 1 − α

and
∫ C2

C1

yfn(y) dy =
(1 − α)Eσ0(

∑
X2

i )
σ2

0

= n(1 − α).

For the determination of the constants from tables of the χ2-distribution, it is
convenient to use the identity

yfn(y) = nfn+2(y),

to rewrite the second condition as
∫ C2

C1

fn+2(y) dy = 1 − α.

Alternatively, one can integrate
∫ C2

C1
fn(y) dy by parts to reduce the second

condition to

Cn/2
1 e−C1/2 = Cn/2

2 e−C2/2.

[For tables giving C1 and C2 see Pachares (1961).] Actually, unless n is very small
or σ0 very close to 0 or ∞, the equal-tails test given by

∫ C1

0

fn(y) dy =

∫ ∞

C2

fn(y) dy =
α
2
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is a good approximation to the unbiased test. This follows from the fact that T ,
suitably normalized, tends to be normally and hence symmetrically distributed
for large n.

UMP unbiased tests of the hypotheses (iii) H : θ1 ≤ θ ≤ θ2 and (iv) H : θ = θ0

against two-sided alternatives exist not only when the family pθ(x) is exponential
but also more generally when it is strictly totally positive (STP∞). A proof of
(iv) in this case is given in Brown, Johnstone, and MacGibbon (1981); the proof
of (iii) follows from Problem 3.53.

4.3 Similarity and Completeness

In many important testing problems, the hypothesis concerns a single real-valued
parameter, but the distribution of the observable random variables depends in
addition on certain nuisance parameters. For a large class of such problems a
UMP unbiased test exists and can be found through the method indicated by
Lemma 4.1.1. This requires the characterization of the tests φ, which satisfy

Eθφ(X) = α

for all distributions of X belonging to a given family PX = {Pθ, θ ∈ ω}. Such
tests are called similar with respect to PX or ω, since if φ is nonrandomized with
critical region S, the latter is “similar to the sample space” X in that both the
probability Pθ{X ∈ S} and Pθ{X ∈ X} are independent of θ ∈ ω.

Let T be a sufficient statistic for PX , and let PT denote the family {P T
θ , θ ∈ ω}

of distributions of T as θ ranges over ω. Then any test satisfying1

E[φ(X)|t] = α a.e. PT (4.7)

is similar with respect to PX , since then

Eθ[φ(X)] = Eθ{E[φ(X)|T ]} = α for all θ ∈ ω.

A test satisfying (4.7) is said to have Neyman structure with respect to T . It is
characterized by the fact that the conditional probability of rejection is α on each
of the surfaces T = t. Since the distribution on each such surface is independent of
θ for θ ∈ ω, the condition (4.7) essentially reduces the problem to that of testing
a simple hypothesis for each value of t. It is frequently easy to obtain a most
powerful test among those having Neyman structure, by solving the optimum
problem on each surface separately. The resulting test is then most powerful
among all similar tests provided every similar test has Neyman structure. A
condition for this to be the case can be given in terms of the following definition.

A family P of probability distributions P is complete if

EP [f(X)] = 0 for all P ∈ P (4.8)

implies

f(x) = 0 a.e. P. (4.9)

1A statement is said to hold a.e. P if it holds except on a set N with P (N) = 0 for
all P ∈ P.
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In applications, P will be the family of distributions of a sufficient statistic.

Example 4.3.1 Consider n independent trials with probability p of success, and
let Xi be 1 or 0 as the ith trial is a success or failure. Then T = X1 + · · · + Xn

is a sufficient statistic for p, and the family of its possible distributions is P =
{b(p, n), 0 < p ≤ 1}. For this family (4.8) implies that

n∑

t=0

f(t)

(
n
t

)
ρt = 0 for all 0 < ρ < ∞,

where ρ = p/(1 − p). The left-hand side is a polynomial in ρ, all the coefficients
of which must be zero. Hence f(t) = 0 for t = 0, . . . , n and the binomial family
of distributions of T is complete.

Example 4.3.2 Let X1, . . . , Xn be a sample from the uniform distribution
U(0, θ), 0 < θ < ∞. Then T = max(X1, . . . , Xn) is a sufficient statistic for
θ, and (4.8) becomes

∫
f(t) dP T

θ (t) = nθ−n
∫ θ

0

f(t) · tn−1 dt = 0 for all θ.

Let f(t) = f+(t)−f−(t) where f+ and f− denote the positive and negative parts
of f respectively. Then

v+(A) =

∫

A

f+(t)tn−1 dt and v−(A) =

∫

A

f−(t)tn−1 dt

are two measures over the Borel sets on (0,∞), which agree for all intervals and
hence for all A. This implies f+(t) = f−(t) except possibly on a set of Lebesgue
measure zero, and hence f(t) = 0 a.e. PT .

Example 4.3.3 Let X1, . . . , Xm; Y1, . . . , Yn be independently normally dis-
tributed as N(ξ, σ2) and N(ξ, τ2) respectively. Then the joint density of the
variables is

C(ξ, σ, τ) exp

(
− 1

2σ2

∑
x2

i +
ξ
σ2

∑
xi −

1
2τ2

∑
y2

j +
ξ
τ2

∑
yj

)
.

The statistic

T =
(∑

Xi,
∑

X2
i ,

∑
Yj ,

∑
Y 2

j

)

is sufficient; it is, however, not complete, since E(
∑

Yj/n −
∑

Xi/m) is identi-
cally zero. If the Y ’s are instead distributed with a mean E(Y ) = η which varies
independently of ξ, the set of possible values of the parameters θ1 = −1/2σ2, θ2 =
ξ/σ2, θ3 = −1/2τ2, θ4 = η/τ2 contains a four-dimensional rectangle, and it
follows from Theorem 4.3.1 below that PT is complete.

Completeness of a large class of families of distributions including that of
Example 4.3.1 is covered by the following theorem.

Theorem 4.3.1 Let X be a random vector with probability distribution

dPθ(x) = C(θ) exp

[
k∑

j=1

θjTj(x)

]
dµ(x),
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and let PT be the family of distributions of T = (T1(X), . . . , Tk(X)) as θ
ranges over the set ω. Then PT is complete provided ω contains a k-dimensional
rectangle.

Proof. By making a translation of the parameter space one can assume without
loss of generality that ω contains the rectangle

I = {(θ1, . . . , θk) : −a ≤ θj ≤ a, j = 1, . . . , k}

Let f(t) = f+(t) − f−(t) be such that

Eθf(T ) = 0 for all θ ∈ ω.

Then for all θ ∈ I, if ν denotes the measure induced in T -space by the measure
µ,

∫
e

∑
θjtj f+(t) dν(t) =

∫
e

∑
θjtj f−(t) dν(t)

and hence in particular
∫

f+(t) dν(t) =

∫
f−(t) dν(t).

Dividing f by a constant, one can take the common value of these two integrals
to be 1, so that

dP+(t) = f+(t) dν(t) and dP−(t) = f−(t) dν(t)

are probability measures, and
∫

e
∑

θjtj dP+(t) =

∫
e

∑
θjtj dP−(t)

for all θ in I. Changing the point of view, consider these integrals now as
functions of the complex variables θj = ξj + iηj , j = 1, . . . , k. For any fixed
θ1, . . . , θj−1, θj+1, . . . , θk with real parts strictly between −a and +a, they are
by Theorem 2.7.1 analytic functions of θj in the strip Rj : −a < ξj < a,−∞ <
ηj < ∞ of the complex plane. For θ2, . . . , θk fixed, real, and between −a and a,
equality of the integrals holds on the line segment {(ξ1, η1) : −a < ξ1 < a, η1 = 0}
and can therefore be extended to the strip R1, in which the integrals are
analytic. By induction the equality can be extended to the complex region
{(θ1, . . . , θk) : (ξj , ηj) ∈ Rj for j = 1, . . . , k}. It follows in particular that for
all real (η1, . . . , ηk)

∫
ei

∑
ηjtj dP+(t) =

∫
ei

∑
ηjtj dP−(t).

These integrals are the characteristic functions of the distributions P+ and P−

respectively, and by the uniqueness theorem for characteristic functions,2 the two
distributions P+ and P− coincide. From the definition of these distributions it
then follows that f+(t) = f−(t) a.e. ν, and hence that f(t) = 0 a.e. PT , as was
to be proved.

2See for example Section 26 of Billingsley (1995).
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Example 4.3.4 (Nonparametric completeness.) Let X1, . . . , XN be inde-
pendently and identically distributed with cumulative distribution function F ∈
F , where F is the family of all absolutely continuous distributions. Then the
set of order statistics T (X) = (X(1), . . . , X(N)) was shown to be sufficient for F
in Section 2.6. We shall now prove it to be complete. Since, by Example 2.4.1,
T ′(X) = (

∑
Xi,

∑
X2

i , . . . ,
∑

XN
i ) is equivalent to T (X) in the sense that both

induce the same subfield of the sample space, T ′(X) is also sufficient and is com-
plete if and only if T (X) is complete. To prove the completeness of T ′(X) and
thereby that of T (X), consider the family of densities

f(X) = C(θ1, . . . , θN ) exp(−x2N + θ1x + · · · + θNxN ),

where C is a normalizing constant. These densities are defined for all values of the
θ’s since the integral of the exponential is finite, and their distributions belong
to F . The density of a sample of size N is

CN exp
(
−

∑
x2N

j + θ1

∑
xj + . . . + θN

∑
xN

j

)

and these densities constitute an exponential family F0. By Theorem 4.3.1, T ′(X)
is complete for F0 and hence also for F , as was to be proved.

The same method of proof establishes also the following more general result.
Let Xij , j = 1, . . . , Ni, i = 1, . . . , c, be independently distributed with abso-

lutely continuous distributions Fi, and let X(1)
i < · · · < X(Ni)

i denote the Ni

observations Xi1, . . . , XiNi arranged in increasing order. Then the set of order
statistics

(X(1)
1 , . . . , X(N1)

1 , . . . , X(1)
c , . . . , X(Nc)

c )

is sufficient and complete for the family of distributions obtained by letting
F1, . . . , Fc range over all distributions of F . Here completeness is proved by con-
sidering the subfamily F0 of F in which the distributions Fi have densities of the
form

fi(x) = Ci (θi1, . . . , θiNi) exp
(
−x2Ni + θi1x + . . . + θiNix

Ni

)
.

The result remains true if F is replaced by the family F1 of continuous distri-
butions. For a proof see Problem 4.13 or Bell, Blackwell, and Breiman (1960). For
related results, see Mandelbaum and Rüschendorf (1987) and Mattner (1996).

For the present purpose the slightly weaker property of bounded completeness
is appropriate, a family P of probability distributions being boundedly complete
if for all bounded functions f , (4.8) implies (4.9). If P is complete it is a fortiori
boundedly complete. An example if which P is boundedly complete but not
complete is given in Problem 4.12. For additional examples, see Hoeffding (1977),
Bar-Lev and Plachky (1989) and Mattner (1993).

Theorem 4.3.2 Let X be a random variable with distribution P ∈ P, and let T
be a sufficient statistic for P. Then a necessary and sufficient condition for all
similar tests to have Neyman structure with respect to T is that the family PT of
distributions of T is boundedly complete.
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Proof. Suppose first that PT is boundedly complete, and let φ(X) be similar
with respect to P. Then

E[φ(X) − α] = 0 for all P ∈ P

and hence, if ψ(t) denotes the conditional expectation of φ(X) − α given t,

Eψ(T ) = 0 for all P T ∈ PT .

Since ψ(t) can be taken to be bounded by Lemma 2.4.1, it follows from the
bounded completeness of PT that ψ(t) = 0 and hence E[φ(X)|t] = α a.e. PT , as
was to be proved.

Conversely suppose that PT is not boundedly complete. Then there exists a
function f such that |f(t)| ≤ M for some M , that Ef(T ) = 0 for all P T ∈ PT

and f(T ) += 0 with positive probability for some P T ∈ PT . Let φ(t) = cf(t) + α,
where c = min(α, 1 − α)/M . Then φ is a critical function, since 0 ≤ φ(t) ≤ 1,
and it is a similar test, since Eφ(T ) = α for all P T ∈ PT . But φ does not have
Neyman structure, since φ(T ) += α with positive probability for at least some
distribution in PT .

4.4 UMP Unbiased Tests for Multiparameter
Exponential Families

An important class of hypotheses concerns a real-valued parameter in an expo-
nential family, with the remaining parameters occurring as unspecified nuisance
parameters. In many of these cases, UMP unbiased tests exist and can be
constructed by means of the theory of the preceding section.

Let X be distributed according to

dP X
θ,ϑ(x) = C(θ, ϑ) exp

[
θU(X) +

k∑

i=1

ϑiTi(x)

]
dµ(x), (θ, ϑ) ∈ Ω, (4.10)

and let ϑ = (ϑ1, . . . , ϑk) and T = (T1, . . . , Tk). We shall consider the problems3

of testing the following hypotheses Hj against the alternatives Kj , j = 1, . . . , 4:

H1 : θ ≤ θ0 K1 : θ > θ0

H2 : θ ≤ θ1 or θ ≥ θ2 K2 : θ1 < θ < θ2

H3 : θ1 ≤ θ ≤ θ2 K3 : θ < θ1 or θ > θ2

H4 : θ = θ0 K4 : θ += θ0.

We shall assume that the parameter space Ω is convex, and that it is not
contained in a linear space of dimension < k + 1. This is the case in particular
when Ω is the natural parameter space of the exponential family. We shall also
assume that there are points in Ω with θ both < and > θ0, θ1, and θ2 respectively.

3Such problems are also treated in Johansen (1979), which in addition discusses large
sample tests of hypotheses specifying more than one parameter.
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Attention can be restricted to the sufficient statistics (U, T ) which have the
joint distribution

dP U,T
θ,ϑ (u, t) = C(θ, ϑ) exp

(
θU +

k∑

i=1

ϑiti

)
dν(u, t), (θ, ϑ) ∈ Ω. (4.11)

When T = t is given, U is the only remaining variable and, by Lemma 2.7.2, the
conditional distribution of U given t constitutes an exponential family

dP U|t
θ (u) = Ct(θ)e

θu dνt(u).

In this conditional situation there exists by Corollary 3.4.1 a UMP test for testing
H1, with critical function φ1, satisfying

φ(u, t) =






1 when u > C0(t),
γ0(t) when u = C0(t),
0 when u < C0(t),

(4.12)

where the functions C0 and γ0 are determined by

Eθ0 [φ1(U, T )|t] = α for all t. (4.13)

For testing H2 in the conditional family there exists by Theorem 3.7.1 a UMP
test with critical function

φ(u, t) =






1 when C1(t) < u < C2(t),
γi(t) when u = Ci(t), i = 1, 2,
0 when u < C1(t) or > C2(t),

(4.14)

where the C’s and γ’s are determined by

Eθ1 [φ2(U, T )|t] = Eθ2 [φ2(U, T )|t] = α. (4.15)

Consider next the test φ3 satisfying

φ(u, t) =






1 when u < C1(t) or > C2(t),
γi(t) when u = Ci(t), i = 1, 2,
0 when C1(t) < u < C2(t),

(4.16)

with the C’s and γ’s determined by

Eθ1 [φ3(U, T )|t] = Eθ2 [φ3(U, T )|t] = α. (4.17)

When T = t is given, this is (by Section 4.2 of the present chapter) UMP unbiased
for testing H3 and UMP among all tests satisfying (4.17).

Finally, let φ4 be a critical function satisfying (4.16) with the C’s and γ’s
determined by

Eθ0 [φ4(U, T )|t] = α (4.18)

and

Eθ0 [Uφ4(U, T )|t] = αEθ0 [U |t]. (4.19)

Then given T = t, it follows again from the results of Section 4.2 that φ4 is UMP
unbiased for testing H4 and UMP among all tests satisfying (4.18) and (4.19).

Rebecca Ferrell
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So far, the critical functions φj have been considered as conditional tests given
T = t. Reinterpreting them now as tests depending on U and T for the hypothe-
ses concerning the distribution of X (or the joint distribution of U and T ) as
originally stated, we have the following main theorem.4

Theorem 4.4.1 Define the critical functions φ1 by (4.12) and (4.13); φ2 by
(4.14) and (4.15); φ3 by (4.16) and (4.17); φ4 by (4.16), (4.18), and (4.19).
These constitute UMP unbiased level-α tests for testing the hypotheses H1, . . . , H4

respectively when the joint distribution of U and T is given by (4.11).

Proof. The statistic T is sufficient for ϑ if θ has any fixed value, and hence T is
sufficient for each

ωj = {(θ, ϑ) : (θ, ϑ) ∈ Ω, θ = θj}, j = 0, 1, 2.

By Lemma 2.7.2, the associated family of distributions of T is given by

dP T
θj ,ϑ(t) = C(θj , ϑ) exp

(
k∑

i=1

ϑiti

)
dνθj (t), (θj , ϑ) ∈ ωj j = 0, 1, 2.

Since by assumption Ω is convex and of dimension k + 1 and contains points on
both sides of θ = θj , it follows that ωj is convex and of dimension k. Thus ωj

contains a k-dimensional rectangle; by Theorem 4.3.1 the family

PT
j =

{
P T

θj ,ϑ : (θ, ϑ) ∈ ωj

}

is complete; and similarity of a test φ on ωj implies

Eθj [φ(U, T )|t] = α.

(1) Consider first H1. By Theorem 2.7.1, the power function of all tests is
continuous for an exponential family. It is therefore enough to prove φ1 to be
UMP among all tests that are similar on ω0 (Lemma 4.1.1), and hence among
those satisfying (4.13). On the other hand, the overall power of a test φ against
an alternative (θ, ϑ) is

Eθ,ϑ[φ(U, T )] =

∫ [∫
φ(u, t) dP U|t

θ (u)

]
dP T

θ,ϑ(t). (4.20)

One therefore maximizes the overall power by maximizing the power of the con-
ditional test, given by the expression in brackets, separately for each t. Since φ1

has the property of maximizing the conditional power against any θ > θ0 subject
to (4.13), this establishes the desired result.
(2) The proof for H2 and H3 is completely analogous. By Lemma 4.1.1, it is
enough to prove φ2 and φ3 to be UMP among all tests that are similar on both
ω1 and ω2, and hence among all tests satisfying (4.15). For each t, φ2 and φ3

maximize the conditional power for their respective problems subject to this
condition and therefore also the unconditional power.

4A somewhat different asymptotic optimality property of these tests is established
by Michel (1979).

Rebecca Ferrell




122 4. Unbiasedness: Theory and First Applications

(3) Unbiasedness of a test of H4 implies similarity on ω0 and

∂
∂θ

[Eθ,ϑφ(U, T )] = 0 on ω0.

The differentiation on the left-hand side of this equation can be carried out under
the expectation sign, and by the computation which earlier led to (4.6), the
equation is seen to be equivalent to

Eθ,ϑ[Uφ(U, T ) − αU ] = 0 on ω0.

Therefore, since PT
0 is complete, unbiasedness implies (4.18) and (4.19). As in

the preceding cases, the test, which in addition satisfies (4.16), is UMP among
all tests satisfying these two conditions. That it is UMP unbiased now follows,
as in the proof of Lemma 4.1.1, by comparison with the test φ(u, t) ≡ α.
(4) The functions φ1, . . . , φ4 were obtained above for each fixed t as a function of
u. To complete the proof it is necessary to show that they are jointly measurable
in u and t, so that the expectation (4.20) exists. We shall prove this here for the
case of φ1; the proof for the other cases is sketched in Problems 4.21 and 4.22.
To establish the measurability of φ1, one needs to show that the functions C0(t)
and γ0(t) defined by (4.12) and (4.13) are t-measurable. Omitting the subscript
0, and denoting the conditional distribution function of U given T = t and for
θ = θ0 by

Ft(u) = Pθ0{U ≤ u|t},

one can rewrite (4.13) as

Ft(C) − γ[Ft(C) − Ft(C − 0)] = 1 − α.

Here C = C(t) is such that Ft(C − 0) ≤ 1 − α ≤ Ft(C), and hence

C(t) = F−1
t (1 − α)

where F−1
t (y) = inf{u : Ft(u) ≥ y}. It follows that C(t) and γ(t) will both be

measurable provided Ft(u) and Ft(u − 0) are jointly measurable in u and t and
F−1

t (1 − α) is measurable in t.
For each fixed u the function Ft(u) is a measurable function of t, and for

each fixed t it is a cumulative distribution function and therefore in particular
nondecreasing and continuous on the right. From the second property it follows
that Ft(u) ≥ c if and only if for each n there exists a rational number r such
that u ≤ r < u + 1/n and Ft(r) ≥ c. Therefore, if the rationals are denoted by
r1, r2, . . . ,

{(u, t) : Ft(u) ≥ c} =
⋂

n

⋃

i

{
(u, t) : 0 ≤ ri − u <

1
n

, Ft(ri) ≥ c

}

This shows that Ft(u) is jointly measurable in u and t. The proof for Ft(u − 0)
is completely analogous. Since F−1

t (y) ≤ u if and only if Ft(u) ≥ y, F−1
t (y) is

t-measurable for any fixed y and this completes the proof.
The test φ1 of the above theorem is also UMP unbiased if Ω is replaced by the

set Ω′ = Ω ∩ {(θ, ϑ) : θ ≥ θ0}, and hence for testing H ′ : θ = θ0 against θ > θ0.
The assumption that Ω should contain points with θ < θ0 was in fact used only
to prove that the boundary set ω0 contains a k-dimensional rectangle, and this
remains valid if Ω is replaced by Ω′.
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The remainder of this chapter as well as the next chapter will be concerned
mainly with applications of the preceding theorem to various statistical problems.
While this provides the most expeditious proof that the tests in all these cases
are UMP unbiased, there is available also a variation of the approach, which
is more elementary. The proof of Theorem 4.4.1 is quite elementary except for
the following points: (i) the fact that the conditional distributions of U given
T = t constitute an exponential family, (ii) that the family of distributions of T
is complete, (iii) that the derivative of Eθ,ϑφ(U, T ) exists and can be computed
by differentiating under the expectation sign, (iv) that the functions φ1, . . . , φ4

are measurable. Instead of verifying (i) through (iv) in general, as was done in the
above proof, it is possible in applications of the theorem to check these conditions
directly for each specific problem, which in some cases is quite easy.

Through a transformation of parameters, Theorem 4.4.1 can be extended to
cover hypotheses concerning parameters of the form

θ∗ = a0θ +
k∑

i=1

aiϑi, a0 += 0.

This transformation is formally given by the following lemma, the proof of which
is immediate.

Lemma 4.4.1 The exponential family of distributions (4.10) can also be written
as

dP X
θ,ϑ = K(θ∗, ϑ) exp

[
θ∗U∗(x) +

∑
ϑiT

∗
i (x)

]
dµ(x)

where

U∗ =
U
a0

, T ∗
i = Ti −

ai

a0
U.

Application of Theorem 4.4.1 to the form of the distributions given in the
lemma leads to UMP unbiased tests of the hypothesis H∗

1 : θ∗ ≤ θ0 and the
analogously defined hypotheses H∗

2 , H∗
3 , H∗

4 .
When testing one of the hypotheses Hj one is frequently interested in the

power β(θ′, ϑ) of φj against some alternative θ′. As is indicated by the notation
and is seen from (4.20), this power will usually depend on the unknown nuisance
parameters ϑ. On the other hand, the power of the conditional test given T = t,

β(θ′|t) = Eθ′ [φ(U, T )|t],

is independent of ϑ and therefore has a known value.
The quantity β(θ′|t) can be interpreted in two ways: (i) It is the probability of

rejecting H when T = t. Once T has been observed to have the value t, it may
be felt, at least in certain problems, that this is a more appropriate expression
of the power in the given situation than β(θ′, ϑ), which is obtained by averaging
β(θ′|t) with respect to other values of t not relevant to the situation at hand.
This argument leads to difficulties, since in many cases the conditioning could
be carried even further and it is not clear where the process should stop. (ii) A
more clear-cut interpretation is obtained by considering β(θ′|t) as an estimate of
β(θ′, ϑ). Since

Eθ′,ϑ[β(θ′|T )] = β(θ′, ϑ),
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this estimate is unbiased in the sense of equation (1.11). It follows further from
the theory of unbiased estimation and the completeness of the exponential family
that among all unbiased estimates of β(θ′, ϑ) the present one has the smallest
variance. (See TPE2, Chapter 2.)

Regardless of the interpretation, β(θ′|t) has the disadvantage compared with
an unconditional power that it becomes available only after the observations have
been taken. It therefore cannot be used to plan the experiment and in particular
to determine the sample size, if this must be done prior to the experiment. On
the other hand, a simple sequential procedure guaranteeing a specified power β
against the alternatives θ = θ′ is obtained by continuing taking observations until
the conditional power β(θ′|t) is ≥ β.

4.5 Comparing Two Poisson or Binomial
Populations

A problem arising in many different contexts is the comparison of two treatments
or of one treatment with a control situation in which no treatment is applied.
If the observations consist of the number of successes in a sequence of trials for
each treatment, for example the number of cures of a certain disease, the problem
becomes that of testing the equality of two binomial probabilities. If the basic
distributions are Poisson, for example in a comparison of the radioactivity of two
substances, one will be testing the equality of two Poisson distributions.

When testing whether a treatment has a beneficial effect by comparing it with
the control situation of no treatment, the problem is of the one-sided type. If ξ2

and ξ1 denote the parameter values when the treatment is or is not applied, the
class of alternatives is K : ξ2 > ξ1. The hypothesis is ξ2 = ξ1 if it is known a priori
that there is either no effect or a beneficial one; it is ξ2 ≤ ξ1 if the possibility
is admitted that the treatment may actually be harmful. Since the test is the
same for the two hypotheses, the second somewhat safer hypothesis would seem
preferable in most cases.

A one-sided formulation is sometimes appropriate also when a new treatment
or process is being compared with a standard one, where the new treatment is
of interest only if it presents an improvement. On the other hand, if the two
treatments are on an equal footing, the hypothesis ξ2 = ξ1 of equality of two
treatments is tested against the two-sided alternatives ξ2 += ξ1. The formulation
of this problem as one of hypothesis testing is usually quite artificial, since in
case of rejection of the hypothesis one will obviously wish to know which of the
treatments is better.5 Such two-sided tests do, however, have important appli-
cations to the problem of obtaining confidence limits for the extent by which
one treatment is better than the other. They also arise when the parameter ξ
does not measure a treatment effect but refers to an auxiliary variable which
one hopes can be ignored. For example, ξ1 and ξ2 may refer to the effect of two

5The comparison of two treatments as a three-decision problem or as the simultaneous
testing of two one-sided hypotheses is discussed and the literature reviewed in Shaffer
(2002).
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different hospitals in a medical investigation in which one would like to combine
the patients into a single study group. (In this connection, see also Section 7.3.)

To apply Theorem 4.4.1 to this comparison problem it is necessary to express
the distributions in an exponential form with θ = f(ξ1, ξ2), for example θ = ξ2−ξ1

or ξ2/ξ1, such that the hypotheses of interest become equivalent to those of
Theorem 4.4.1. In the present section the problem will be considered for Poisson
and binomial distributions; the case of normal distributions will be taken up in
Chapter 5.

We consider first the Poisson problem in which X and Y are independently
distributed according to P (λ) and P (µ), so that their joint distribution can be
written as

P{X = x, Y = y} =
e−(λ+µ)

x!y!
exp

[
y log

µ
λ

+ (x + y) log λ
]
.

By Theorem 4.4.1 there exist UMP unbiased tests of the four hypotheses
H1, . . . , H4 concerning the parameter θ = log(µ/λ) or equivalently concerning
the ratio ρ = µ/λ. This includes in particular the hypotheses µ ≤ λ (or µ = λ)
against the alternatives µ > λ, and µ = λ against µ += λ. Comparing the distri-
bution of (X, Y ) with (4.10), one has U = Y and T = X + Y , and by Theorem
4.4.1 the tests are performed conditionally on the integer points of the line seg-
ment X + Y = t in the positive quadrant of the (x, y) plane. The conditional
distribution of Y given X + Y = t is (Problem 2.14)

P{Y = y|X + Y = t} =

(
t
y

) (
µ

λ + µ

)y (
λ

λ + µ

)t−y

, y = 0, 1, . . . , t,

the binomial distribution corresponding to t trials and probability p = µ/(λ + µ)
of success. The original hypotheses therefore reduce to the corresponding ones
about the parameter p of a binomial distribution. The hypothesis H : µ ≤ aλ, for
example, becomes H : p ≤ a/(a + 1), which is rejected when Y is too large. The
cutoff point depends of course, in addition to a, also on t. It can be determined
from tables of the binomial, and for large t approximately from tables of the
normal distribution.

In many applications the ratio ρ = µ/λ is a reasonable measure of the extent to
which the two Poisson populations differ, since the parameters λ and µ measure
the rates (in time or space) at which two Poisson processes produce the events
in question. One might therefore hope that the power of the above tests depends
only on this ratio, but this is not the case. On the contrary, for each fixed value
of ρ corresponding to an alternative to the hypothesis being tested, the power
β(λ, µ) = β(λ, ρλ) is an increasing function of λ, which tends to 1 as λ → ∞ and
to α as λ → 0. To see this consider the power β(ρ|t) of the conditional test given
t. This is an increasing function of t, since it is the power of the optimum test
based on t binomial trials. The conditioning variable T has a Poisson distribution
with parameter λ(1 + ρ), and its distribution for varying λ forms an exponential
family. It follows Lemma 3.4.2 that the overall power E[β(ρ|T )] is an increasing
function of λ. As λ → 0 or ∞, T tends in probability to 0 or ∞, and the power
against a fixed alternative ρ tends to α or 1.

The above test is also applicable to samples X1, . . . , Xm and Y1, . . . , Yn from
two Poisson distributions. The statistics X =

∑m
i=1 Xi and Y =

∑n
j=1 Yj are

then sufficient for λ and µ, and have Poisson distributions with parameters mλ
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and nµ respectively. In planning an experiment one might wish to determine
m = n so large that the test of, say, H : ρ ≤ ρ0 has power against a specified
alternative ρ1 greater than or equal to some preassigned β. However, it follows
from the discussion of the power function for n = 1, which applies equally to
any other n, that this cannot be achieved for any fixed n, no matter how large.
This is seen more directly by noting that as λ → 0, for both ρ = ρ0 and ρ = ρ1,
the probability of the event X = Y = 0 tends to 1. Therefore, the power of
any level-α test against ρ = ρ1 and for varying λ cannot be bounded away from
α. This difficulty can be overcome only by permitting observations to be taken
sequentially. One can for example determine t0 so large that the test of the
hypothesis p1 ≤ ρ0/(1 + ρ0) on the basis of t0 binomial trials has power ≥ β
against the alternative p1 = ρ1/(1 + ρ1). By observing (X1, Y1), (X2, Y2), . . . and
continuing until

∑
(Xi + Yi) ≥ t0, one obtains a test with power ≥ β against all

alternatives with ρ ≥ ρ1.
6

The corresponding comparison of two binomial probabilities is quite similar.
Let X and Y be independent binomial variables with joint distribution

P{X = x, Y = y} =

(
m
x

)
px
1qm−x

1

(
n
y

)
py
2qn−y

2

=

(
m
x

)(
n
y

)
qm
1 qn

2 exp

[
y

(
log

p2

q2
− log

p1

q1

)

+(x + y) log
p1

q1

]
.

The four hypotheses H1, . . . , H4, can then be tested concerning the parameter

θ = log



 p2

q2

/
p1

q1



 ,

or equivalently concerning the odds ratio (also called cross-product ratio)

ρ =
p2

q2

/
p1

q1

This includes in particular the problems of testing H ′
1 : p2 ≤ p1 against p2 > p1

and H ′
4 : p2 = p1 against p2 += p1. As in the Poisson case, U = Y and T = X +Y ,

and the test is carried out in terms of the conditional distribution of Y on the
line segment X + Y = t. This distribution is given by

P{Y = y|X + Y = t} = Ct(ρ)

(
m

t − y

)(
n
y

)
ρy, y = 0, 1, . . . , t, (4.21)

where

Ct(ρ) =
1∑t

y′=0

(
m

t−y′
)(

n
y′

)
ρy′ .

6A discussion of this and alternative procedures for achieving the same aim is given
by Birnbaum (1954a).
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In the particular case of the hypotheses H ′
1 and H ′

4, the boundary value θ0 of
(4.13), (4.18), and (4.19) is 0, and the corresponding value of ρ is ρ0 = 1. The
conditional distribution then reduces to

P{Y = y|X + Y = t} =

(
m

t−y

)(
n
y

)
(

m+n
t

) ,

which is the hypergeometric distribution.
Tables of critical values by Finney (1948) are reprinted in Biometrika Tables

for Statisticians, Vol. 1, Table 38 and are extended in Finney, Latscha, Bennett,
Hsu, and Horst (1963, 1966). Somewhat different ranges are covered in Armsen
(1955), and related charts are provided by Bross and Kasten (1957). Extensive
tables of the hypergeometric distributions have been computed by Lieberman and
Owen (1961). Various approximations are discussed in Johnson, Kotz and Kemp
(1992, Section 6.5). Critical values can also be easily computed with built-in
functions of statistical packages such as R.7

The UMP unbiased test of ρ1 = ρ2, which is based on the (conditional) hy-
pergeometric distribution, requires randomization to obtain an exact conditional
level α for each t of the sufficient statistic T . Since in practice randomization is
usually unacceptable, the one-sided test is frequently performed by rejecting when
Y ≥ C(T ), where C(t) is the smallest integer for which P{Y ≥ C(T )|T = t} ≤ α.
This conservative test is called Fisher’s exact test [after the treatment given in
Fisher (1934a)], since the probabilities are calculated from the exact hypergeo-
metric rather than an approximate normal distribution. The resulting conditional
levels (and hence the unconditional level) are often considerably smaller than α,
and this results in a substantial loss of power. An approximate test whose overall
level tends to be closer to α is obtained by using the normal approximation to
the hypergeometric distribution without continuity correction. [For a compari-
son of this test with some competitors, see e.g. Garside and Mack (1976).] A
nonrandomized test that provides a conservative overall level, but that is less
conservative than the “exact” test, is described by Boschloo (1970) and by Mc-
Donald, Davis, and Milliken (1977). For surveys of the extensive literature on
these and related aspects of 2 × 2 and more generally r × c tables, see Agresti
(1992, 2002), Sahai and Khurshid (1995) and Mart́ın and Tapia (1998).

4.6 Testing for Independence in a 2 × 2 Table

Two characteristics A and B, which each member of a population may or may
not possess, are to be tested for independence. The probabilities or proportion of
individuals possessing properties A and B are denoted P (A) and P (B).

If P (A) and P (B) are unknown, a sample from one of the categories such as
A does not provide a basis for distinguishing between the hypothesis and the
alternatives. This follows from the fact that the number in the sample possessing
characteristic B then constitutes a binomial variable with probability p(B|A),
which is completely unknown both when the hypothesis is true and when it is

7This package can be downloaded for free from http://cran.r-project.org/.
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false. The hypothesis can, however, be tested if samples are taken both from
categories A and Ac, the complement of A, or both from B and Bc. In the
latter case, for example, if the sample sizes are m and n, the numbers of cases
possessing characteristic A in the two samples constitute independent variables
with binomial distributions b(p1, m) and b(p2, n) respectively, where p1 = P (A|B)
and p2 = P (A|Bc). The hypothesis of independence of the two characteristics,
P (A|B) = p(A), is then equivalent to the hypothesis p1 = p2 and the problem
reduces to that treated in the preceding section.

Instead of selecting samples from two of the categories, it is frequently more
convenient to take the sample at random from the population as a whole. The
results of such a sample can be summarized in the following 2 × 2 contingency
table, the entries of which give the numbers in the various categories:

A Ac

B X X ′ M

Bc Y Y ′ N

T T ′ s

The joint distribution of the variables X, X ′, Y , and Y ′ is multinomial, and is
given by

P{X = x, X ′ = x′, Y = y, Y ′ = y′}

=
s!

x!x′!y!y′!
px

ABpx′
AcBpy

ABcpy′

ABc

=
s!

x!x′!y!y′!
ps

AcBc exp

(
x log

pAB

pAcBc
+ x′ log

pAcB

pAcBc
+ y log

pABc

pAcBc

)
.

Lemma 4.4.1 and Theorem 4.4.1 are therefore applicable to any parameter of the
form

θ∗ = a0 log
pAB

pAcBc
+ a1 log

pAcB

pAcBc
+ a2 log

pABc

pAcBc
.

Putting a1 = a2 = 1, a0 = −1, ∆ = eθ∗
= (pAcBpABc)/(pABpAcBc), and de-

noting the probabilities of A and B in the population by pA = pAB + pABc ,
pB = pAB + pAcB , one finds

pAB = pApB +
1 − ∆

∆
pAcBpABc ,

pAcB = pAcpB +
1 − ∆

∆
pAcBpABc ,

pABc = pApBc +
1 − ∆

∆
pAcBpABc ,

pAcBc = pAcpBc +
1 − ∆

∆
pAcBpABc .
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Independence of A and B is therefore equivalent to ∆ = 1, and ∆ < 1 and ∆ > 1
correspond to positive and negative dependence respectively.8

The test of the hypothesis of independence, or any of the four hypotheses
concerning ∆, is carried out in terms of the conditional distribution of X given
X +X ′ = m, X +Y = t. Instead of computing this distribution directly, consider
first the conditional distribution subject only to the condition X + X ′ = m, and
hence Y + Y ′ = s − m = n. This is seen to be

P{X = x, Y = y|X + X ′ = m}

=

(
m
x

)(
n
y

) (
pAB

pB

)x (
pAcB

pB

)m−x (
pABc

pBc

)y (
pAcBc

pBc

)n−y

,

which is the distribution of two independent binomial variables, the number of
successes in m and n trials with probability p1 = pAB/pB and p2 = pABc/pBc .
Actually, this is clear without computation, since we are now dealing with samples
of fixed size m and n from the subpopulations B and Bc and the probability of
A in these subpopulations is p1 and p2. If now the additional restriction X +Y =
t is imposed, the conditional distribution of X subject to the two conditions
X +X ′ = m and X +Y = t is the same as that of X given X +Y = t in the case
of two independent binomials considered in the previous section. It is therefore
given by

P{X = x|X + X ′ = m, X + Y = t} = Ct(ρ)

(
m
x

)(
n

t − x

)
ρt−x,

x = 0, . . . , t,

that is, by (4.21) expressed in terms of x instead of y. (Here the choice of X as
testing variable is quite arbitrary; we could equally well again have chosen Y .)
For the parameter ρ one finds

ρ =
p2

q2

/
p1

q1
=

pAcBpABc

pABpAcBc
= ∆.

From these considerations it follows that the conditional test given X + X ′ = m,
X + Y = t, for testing any of the hypotheses concerning ∆ is identical with the
conditional test given X + Y = t of the same hypothesis concerning ρ = ∆ in
the preceding section, in which X + X ′ = m was given a priori. In particular,
the conditional test for testing the hypothesis of independence ∆ = 1, Fisher’s
exact test, is the same as that of testing the equality of two binomial p’s and is
therefore given in terms of the hypergeometric distribution.

At the beginning of the section it was pointed out that the hypothesis of
independence can be tested on the basis of samples obtained in a number of
different ways. Either samples of fixed size can be taken from A and Ac or from
B and Bc, or the sample can be selected at random from the population at large.
Which of these designs is most efficient depends on the cost of sampling from

8∆ is equivalent to Yule’s measure of association. which is Q = (1 − ∆)/(1 + ∆).
For a discussion of this and related measures see Goodman and Kruskal (1954, 1959),
Edwards (1963), Haberman (1982) and Agresti (2002).
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the various categories and from the population at large, and also on the cost
of performing the necessary classification of a selected individual with respect
to the characteristics in question. Suppose, however, for a moment that these
considerations are neglected and that the designs are compared solely in terms
of the power that the resulting tests achieve against a common alternative. Then
the following results9 can be shown to hold asymptotically as the total sample
size s tends to infinity:

(i) If samples of size m and n (m + n = s) are taken from B and Bc or from A
and Ac, the best choice of m and n is m = n = s/2.

(ii) It is better to select samples of equal size s/2 from B and Bc than from A
and Ac provided |pB − 1

2 | > |pA − 1
2 |.

(iii) Selecting the sample at random from the population at large is worse than
taking equal samples either from A and Ac or from B and Bc.

These statements, which we shall not prove here, can be established by using
the normal approximation for the distribution of the binomial variables X and
Y when m and n are fixed, and by noting that under random sampling from the
population at large, M/s and N/s tend in probability to pB and pBc respectively.

4.7 Alternative Models for 2 × 2 Tables

Conditioning of the multinomial model for the 2×2 table on the row (or column)
totals was seen in the last section to lead to the two-binomial model of Section
4.5. Similarly, the multinomial model itself can be obtained as a conditional
model in some situations in which not only the marginal totals M , N , T , and
T ′ are random but the total sample size s is also a random variable. Suppose
that the occurrence of events (e.g. patients presenting themselves for treatment)
is observed over a given period of time, and that the events belonging to each
of the categories AB, AcB, ABc, AcBc are governed by independent Poisson
processes, so that by (1.2) the numbers X, X ′, Y , Y ′ are independent Poisson
variables with expectations λAB , λAcB , λABc , λAcBc , and hence s is a Poisson
variable with expectation λ = λAB + λAcB + λABc + λAcBc .

It may then be of interest to compare the ratio λAB/λAcB with λABc/λAcBc

and in particular to test the hypothesis H : λAB/λAcB ≤ λABc/λAcBc . The joint
distribution of X,X ′,Y ,Y ′ constitutes a four-parameter exponential family, which
can be written as

P (X = x, X ′ = x′, Y = y, Y ′ = y′)

=
1

x!x′!y!y′!
exp

{
x log

(
λABλAcBc

λABcλAcB

)
+ (x′ + x) log λAcB

+(y + x) log λABc + (y′ − x) log λAcBc
}

.

9These results were conjectured by Berkson and proved by Neyman in a course on
χ2.
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Thus, UMP unbiased tests exist of the usual one- and two-sided hypotheses con-
cerning the parameter θ = λABλAcBc/λAcBλABc . These are carried out in terms
of the conditional distribution of X given

X ′ + X = m, Y + X = t, X + X ′ + Y + Y ′ = s,

where the last condition follows from the fact that given the first two it is equiv-
alent to Y ′ − X = s − t − m. By Problem 2.14, the conditional distribution of
X, X ′, Y given X + X ′ + Y + Y ′ = s is the multinomial distribution of Section
4.6 with

pAB =
λAB

λ
, pAcB =

λAcB

λ
, pABc =

λABc

λ
, pAcBc =

λAcBc

λ
.

The tests therefore reduce to those derived in Section 4.6.
The three models discussed so far involve different sampling schemes. However,

frequently the subjects for study are not obtained by any sampling but are the
only ones readily available to the experimenter. To create a probabilistic basis
for a test in such situations, suppose that B and Bc are two treatments, either
of which can be assigned to each subject, and that A and Ac denote success or
failure (e.g. survival, relief of pain, etc.). The hypothesis of no difference in the
effectiveness of the two treatments (i.e. independence of A and B) can then be
tested by assigning the subjects to the treatments, say m to B and n to Bc, at
random, i.e. in such a way that all possible

(
s
m

)
assignments are equally likely. It

is now this random assignment which takes the place of the sampling process in
creating a probability model, thus making it possible to calculate significance.

Under the hypothesis H of no treatment difference, the success or failure of a
subject is independent of the treatment to which it is assigned. If the numbers of
subjects in categories A and Ac are t and t′ respectively (t + t′ = s), the values
of t and t′ are therefore fixed, so that we are now dealing with a 2 × 2 table in
which all four margins t, t′, m, n are fixed.

Then any one of the four cell counts X, X ′, Y , Y ′ determines the other three.
Under H, the distribution of Y is the hypergeometric distribution derived as the
conditional null distribution of Y given X + Y = t at the end of Section 4.5.
The hypothesis is rejected in favor of the alternative that treatment Bc enhances
success if Y is sufficiently large. Although this is the natural test under the
given circumstances, no optimum property can be claimed for it, since no clear
alternative model to H has been formulated.10

Consider finally the situation in which the subjects are again given rather than
sampled, but B and Bc are attributes (for example, male or female, smoker or
nonsmoker) which cannot be assigned to the subjects at will. Then there exists
no stochastic basis for answering the question whether observed differences in the
rates X/M and Y/N correspond to differences between B and Bc, or whether they
are accidental. An approach to the testing of such hypotheses in a nonstochastic
setting has been proposed by Freedman and Lane (1982).

10The one-sided test is of course UMP against the class of alternatives defined by the
right side of (4.21), but no reasonable assumptions have been proposed that would lead
to this class. For suggestions of a different kind of alternative see Gokhale and Johnson
(1978).
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The various models for the 2 × 2 table discussed in Sections 4.6 and 4.7 may
be characterized by indicating which elements are random and which fixed:

(i) All margins and s random (Poisson).

(ii) All margins are random, s fixed (multinomial sampling).

(iii) One set of margins random, the other (and then a fortiori s) fixed (binomial
sampling).

(iv) All margins fixed. Sampling replaced by random assignment of subjects to
treatments.

(v) All aspects fixed; no element of randomness.

In the first three cases there exist UMP unbiased one- and two-sided tests of the
hypothesis of independence of A and B. These tests are carried out by condi-
tioning on the values of all elements in (i)–(iii) that are random, so that in the
conditional model all margins are fixed. The remaining randomness in the table
can be described by any one of the four cell entries; once it is known, the others
are determined by the margins. The distribution of such an entry under H has
the hypergeometric distribution given at the end of Section 4.5.

The models (i)–(iii) have a common feature. The subjects under observation
have been obtained by sampling from a population, and the inference correspond-
ing to acceptance or rejection of H refers to that population. This is not true in
cases (iv) and (v).

In (iv) the subjects are given, and a probabilistic basis is created by assigning
them at random, m to B and n to B̃. Under the hypothesis H of no treatment
difference, the four margins are fixed without any conditioning, and the four
cell entries are again determined by any one of them, which under H has the
same hypergeometric distribution as before. The present situation differs from
the earlier three in that the inference cannot be extended beyond the subjects at
hand.11

The situation (v) is outside the scope of this book, since it contains no basis
for the type of probability calculations considered here. Problems of this kind are
however of great importance, since they arise in many observational (as opposed
to experimental) studies. For a related discussion, see Finch (1979).

4.8 Some Three-Factor Contingency Tables

When an association between A and B exists in a 2 × 2 table, it does not follow
that one of the factors has a causal influence on the other. Instead, the explanation
may, for example, be in the fact that both factors are causally affected by a third
factor C. If C has K possible outcomes C1, . . . , CK , one may then be faced with
the apparently paradoxical situation (known as Simpson’s paradox) that A and
B are independent under each of the conditions Ck (k = 1, . . . , K) but exhibit
positive (or negative) association when the tables are aggregated over C that

11For a more detailed treatment of the distinction between population models [such
as (i)–(iii)] and randomization models [such as (iv)], see Lehmann (1998).
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is, when the K separate 2 × 2 tables are combined into a single one showing
the total counts of the four categories. [An interesting example is discussed in
Agresti (2002).] In order to determine whether the association of A and B in
the aggregated table is indeed “spurious”, one would test the hypothesis, (which
arises also in other contexts) that A and B are conditionally independent given
Ck for all k = 1, . . . , K, against the alternative that there is an association for at
least some k.

Let Xk, X ′
k, Yk, Y ′

k denote the counts in the 4K cells of the 2 × 2 × K table
which extends the 2 × 2 table of Section 4.6 to the present case.

Again, several sampling schemes are possible. Consider first a random sample
of size s from the population at large. The joint distribution of the 4K cell
counts then is multinomial with probabilities pABCk , pÃBCk

, pAB̃Ck
, pÃB̃Ck

for
the outcomes indicated by the subscripts. If ∆k denotes the AB odds ratio for
Ck defined by

∆k =
pAB̃Ck

pÃBCk

pABCkpÃB̃Ck

=
pAB̃|Ck

pÃB|Ck

pAB|Ck
pÃB̃|Ck

,

where pAB|Ck
. . . denotes the conditional probability of the indicated event given

Ck, then the hypothesis to be tested is ∆k = 1 for all k.
A second scheme takes samples of size sk from Ck and classifies the subjects

as AB, ÃB, AB̃ or ÃB̃. This is the case of K independent 2× 2 tables, in which
one is dealing with K quadrinomial distributions of the kind considered in the
preceding sections. Since the kth of these distributions is also that of the same
four outcomes in the first model conditionally given Ck, we shall denote the
probabilities of these outcomes in the present model again by pAB|Ck

, . . ..

To motivate the next sampling scheme, suppose that A and Ã represent success
or failure of a medical treatment, B̃ and B that the treatment is applied or the
subject is used as a control, and Ck the kth hospital taking part in this study. If
samples of size nk and mk are obtained and are assigned to treatment and control
respectively, we are dealing with K pairs of binomial distributions. Letting Yk

and Xk denote the number of successes obtained by the treatment subjects and
controls in the kth hospital, the joint distribution of these variables by Section
4.5 is

[
∏

(
mk

xk

)(
nk

yk

)
qmk
1k qnk

2k

]
exp

(∑
yk log ∆k +

∑
(xk + yk) log

p1k

q1k

)
,

where p1k and q1k, (p2k and q2k) denote the probabilities of success and failure
under B (under B̃).

The above three sampling schemes lead to 2×2×K tables in which respectively
none, one, or two of the margins are fixed. Alternatively, in some situations
a model may be appropriate in which the 4K variables Xk, X ′

k, Yk, Y ′
k are

independent Poisson with expectations λABCk , . . .. In this case, the total sample
size s is also random.

For a test of the hypothesis of conditional independence of A and B given Ck

for all k (i.e. that ∆1 = · · · = ∆k = 1), see Problem 12.65. Here we shall consider
the problem under the simplifying assumption that the ∆k have a common value
∆, so that the hypothesis reduces to H : ∆ = 1. Applying Theorem 4.4.1 to the
third model (K pairs of binomials) and assuming the alternatives to be ∆ > 1,
we see that a UMP unbiased test exists and rejects H when

∑
Yk > C(X1 +
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Y1, . . . , XK + YK), where C is determined so that the conditional probability of
rejection, given that Xk + Yk = tk, is α for all k = 1, . . . , K. It follows from
Section 4.5 that the conditional joint distribution of the Yk under H is

PH [Y1 = y1, . . . , YK = yK |Xk + Yk = tk, k = 1, . . . , K]

=
∏

(
mk

tk−yk

)(
nk
yk

)
(

mk+nk
tk

)

The conditional distribution of
∑

Yk can now be obtained by adding the proba-
bilities over all (y1, . . . , yK) whose sum has a given value. Unless the numbers are
very small, this is impractical and approximations must be used [see Cox (1966)
and Gart (1970)].

The assumption H ′ : ∆1 = · · · = ∆K = ∆ has a simple interpretation when
the successes and failures of the binomial trials are obtained by dichotomizing
underlying unobservable continuous response variables. In a single such trial,
suppose the underlying variable is Z and that success occurs when Z > 0 and
failure when Z ≤ 0. If Z is distributed as F (Z − ζ) with location parameter ζ,
we have p = 1 − F (−ζ) and q = F (−ζ). Of particular interest is the logistic
distribution, for which F (x) = 1/(1 + e−x). In this case p = eζ/(1 + eζ), q =
1/(1+eζ), and hence log(p/q) = ζ. Applying this fact to the success probabilities

p1k = 1 − F (−ζ1k), p2k = 1 − F (−ζ2k),

we find that

θk = log ∆k = log



 p2k

q2k

/
p1k

q1k



 = ζ2k − ζ1k,

so that ζ2k = ζ1k + θk. In this model, H ′ thus reduces to the assumption that
ζ2k = ζ1k + θ, that is, that the treatment shifts the distribution of the underlying
response by a constant amount θ.

If it is assumed that F is normal rather than logistic, F (x) = Φ(x) say, then
ζ = Φ−1(p), and constancy of ζ2k − ζ1k requires the much more cumbersome
condition Φ−1(p2k) − Φ−1(p1k) = constant. However, the functions log(p/q) and
Φ−1(p) agree quite well in the range .1 ≤ p ≤ .9 [see Cox (1970, p. 28)], and
the assumption of constant ∆k in the logistic response model is therefore close
to the corresponding assumption for an underlying normal response.12 [The so-
called loglinear models, which for contingency tables correspond to the linear
models to be considered in Chapter 7 but with a logistic rather than a normal
response variable, provide the most widely used approach to contingency tables.
See, for example, the books by Cox (1970), Haberman (1974), Bishop, Fienberg,
and Holland (1975), Fienberg (1980), Plackett (1981), and Agresti (2002).]

The UMP unbiased test, derived above for the case that the B- and C-margins
are fixed, applies equally when any two margins, any one margin, or no mar-
gins are fixed, with the understanding that in all cases the test is carried out
conditionally, given the values of all random margins.

12The problem of discriminating between a logistic and normal response model is
discussed by Chambers and Cox (1967).
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The test is also used (but no longer UMP unbiased) for testing H : ∆1 = · · · =
∆K = 1 when the ∆’s are not assumed to be equal but when the ∆k − 1 can be
assumed to have the same sign, so that the departure from independence is in the
same direction for all the 2× 2 tables. A one- or two-sided version is appropriate
as the alternatives do or do not specify the direction. For a discussion of this test,
the Cochran–Mantel–Haenszel test, and some of its extensions see Agresti (2002,
Section 7.4).

Consider now the case K = 2, with mk and nk fixed, and the problem of
testing H ′ : ∆2 = ∆1 rather than assuming it. The joint distribution of the X’s
and Y ’s given earlier can then be written as

[
2∏

k=1

(
mk

xk

)(
nk

yk

)
qmk
1k qnk

2k

]

× exp

(
y2 log

∆2

∆1
+ (y1 + y2) log ∆1 +

∑
(xi + yi) log

p1i

q1i

)
,

and H ′ is rejected in favor of ∆2 > ∆1 if Y2 > C, where C depends on Y1 + Y2,
X1 + Y1 and X2 + Y2, and is determined so that the conditional probability of
rejection given Y1 + Y2 = w, X1 + Y1 = t1, X2 + Y2 = t2 is α. The conditional
null distribution of Y1 and Y2, given Xk + Yk = tk (k = 1, 2), by (4.21) with ∆
in place of ρ is

Ct1(∆)Ct2(∆)

(
m1

t1 − y1

)(
n1

y1

)(
m2

t2 − y2

)(
n2

y2

)
∆y1+y2 ,

and hence the conditional distribution of Y2, given in addition that Y1 + Y2 = w,
is of the form

k(t1, t2, w)

(
m1

y + t1 − w

)(
n1

w − y

)(
m2

t2 − y

)(
n2

y

)
.

Some approximations to the critical value of this test are discussed by Birch
(1964); see also Venable and Bhapkar (1978). [Optimum large-sample tests of
some other hypotheses in 2 × 2 × 2 tables are obtained by Cohen, Gatsonis, and
Marden (1983).]

4.9 The Sign Test

To test consumer preferences between two products, a sample of n subjects are
asked to state their preferences. Each subject is recorded as plus or minus as
it favors product B or A. The total number Y of plus signs is then a binomial
variable with distribution b(p, n). Consider the problem of testing the hypothesis
p = 1

2 of no difference against the alternatives p += 1
2 (As in previous such

problems, we disregard here that in case of rejection it will be necessary to decide
which of the two products is preferred.) The appropriate test is the two-sided sign
test, which rejects when |Y − 1

2n| is too large. This is UMP unbiased (Section 4.2).
Sometimes the subjects are also given the possibility of declaring themselves

as undecided. If p−, p+, and p0 denote the probabilities of preference for product
A, product B, and of no preference respectively, the numbers X, Y , and Z of
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decisions in favor of these three possibilities are distributed according to the
multinomial distribution

n!
x!y!z!

px
−py

+pz
0 (x + y + z = n), (4.22)

and the hypothesis to be tested is H : p+ = p−. The distribution (4.22) can also
be written as

n!
x!y!z!

(
p+

1 − p0 − p+

)y (
p0

1 − p0 − p+

)z

(1 − p0 − p+)n, (4.23)

and is then seen to constitute an exponential family with U = Y , T = Z, θ =
log[p+/(1 − p0 − p+)], ϑ = log[p0/(1 − p0 − p+)]. Rewriting the hypothesis H
as p+ = 1 − p0 − p+ it is seen to be equivalent to θ = 0. There exists therefore
a UMP unbiased test of H, which is obtained by considering z as fixed and
determining the best unbiased conditional test of H given Z = z. Since the
conditional distribution of Y given z is a binomial distribution b(p, n − z) with
p = p+/(p+ + p−), the problem reduces to that of testing the hypothesis p =
1
2 in a binomial distribution with n − z trials, for which the rejection region
is |Y − 1

2 (n − z)| > C(z). The UMP unbiased test is therefore obtained by
disregarding the number of cases in which no preference is expressed (the number
of ties), and applying the sign test to the remaining data.

The power of the test depends strongly on p0, which governs the distribution of
Z. For large p0, the number n−z of trials in the conditional binomial distribution
can be expected to be small, and the test will thus have little power. This may be
an advantage in the present case, since a sufficiently high value of p0, regardless
of the value of p+/p−, implies that the population as a whole is largely indifferent
with respect to the products.

The above conditional sign test applies to any situation in which the obser-
vations are the result of n independent trials, each of which is either a success
(+), a failure (−), or a tie. As an alternative treatment of ties, it is sometimes
proposed to assign each tie at random (with probability 1

2 each) to either plus or
minus. The total number Y ′ of plus signs after the ties have been broken is then a
binomial variable with distribution b(π, n), where π = p+ + 1

2p0. The hypothesis
H becomes π = 1

2 , and is rejected when |Y ′ − 1
2n| > C, where the probability

of rejection is α when π = 1
2 . This test can be viewed also as a randomized test

based on X, Y , and Z, and it is unbiased for testing H in its original form, since
p+ is = or += p− as π is = or += 1. Since the test involves randomization other
than on the boundaries of the rejection region, it is less powerful than the UMP
unbiased test for this situation, so that the random breaking of ties results in a
loss of power.

This remark might be thought to throw some light on the question of whether
in the determination of consumer preferences it is better to permit the subject
to remain undecided or to force an expression of preference. However, here the
assumption of a completely random assignment in case of a tie does not apply.
Even when the subject is not conscious of a definite preference, there will usually
be a slight inclination toward one of the two possibilities, which in a majority
of the cases will be brought out by a forced decision. This will be balanced in
part by the fact that such forced decisions are more variable than those reached
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voluntarily. Which of these two factors dominates depends on the strength of the
preference.

Frequently, the question of preference arises between a standard product and
a possible modification or a new product. If each subject is required to express a
definite preference, the hypothesis of interest is usually the one sided hypothesis
p+ ≤ p−, where + denotes a preference for the modification. However, if an
expression of indifference is permitted the hypothesis to be tested is not p+ ≤
p−but rather p+ ≤ p0 + p−, since typically the modification is of interest only if
it is actually preferred. As was shown in Example 3.8.1, the one-sided sign test
which rejects when the number of plus signs is too large is UMP for this problem.

In some investigations, the subject is asked not only to express a preference
but to give a more detailed evaluation, such as a score on some numerical scale.
Depending on the situation, the hypothesis can then take on one of two forms. One
may be interested in the hypothesis that there is no difference in the consumer’s
reaction to the two products. Formally, this states that the distribution of the
scores X1, . . . , Xn expressing the degree of preference of the n subjects for the
modified product is symmetric about the origin. This problem, for which a UMP
unbiased test does not exist without further assumptions, will be considered in
Section 6.10.

Alternatively, the hypothesis of interest may continue to be H : p+ = p−. Since
p− = P{X < 0} and p+ = P{X > 0}, this now becomes

H : P{X > 0} = P{X < 0}.

Here symmetry of X is no longer assumed even when P{X < 0} = P{X > 0}. If
no assumptions are made concerning the distribution of X beyond the fact that
the set of its possible values is given, the sign test based on the number of X’s
that are positive and negative continues to be UMP unbiased.

To see this, note that any distribution of X can be specified by the probabilities

p− = P{X < 0}, p+ = P{X > 0}, p0 = P{X = 0},

and the conditional distributions F− and F+ of X given X < 0 and X > 0
respectively. Consider any fixed distributions F ′

−, F ′
+, and denote by F0 the

family of all distributions with F− = F ′
−, F+ = F ′

+ and arbitrary p−, p+, p0.
Any test that is unbiased for testing H in the original family of distributions F
in which F− and F+ are unknown is also unbiased for testing H in the smaller
family F0. We shall show below that there exists a UMP unbiased test φ0 of H
in F0. It turns out that φ0 is also unbiased for testing H in F and is independent
of F ′

−, F ′
+. Let φ be any other unbiased test of H in F , and consider any fixed

alternative, which without loss of generality can be assumed to be in F0. Since
φ is unbiased for F , it is unbiased for testing p+ = p− in F0; the power of φ0

against the particular alternative is therefore at least as good as that of φ. Hence
φ0 is UMP unbiased.

To determine the UMP unbiased test of H in F0, let the densities of F ′
− and

F ′
+ with respect to some measure µ be f ′

− and f ′
+. The joint density of the X’s

at a point (x1, . . . , xn) with

xi1 , . . . , xir < 0 = xj1 = · · · = xjs < xk1 , . . . , xkm

is

pr
−ps

0p
m
+ f ′

−(xi1) . . . f ′
−(xir )f ′

+(xk1) . . . f ′
+(xkm).



138 4. Unbiasedness: Theory and First Applications

The set of statistics (r, s, m) is sufficient for (p−, p0, p+), and its distribution is
given by (4.22) with x = r, y = m, z = s. The sign test is therefore seen to be
UMP unbiased as before.

A different application of the sign test arises in the context of a 2 × 2 table
for matched pairs. In Section 4.5, success probabilities for two treatments were
compared on the basis of two independent random samples. Unless the population
of subjects from which these samples are drawn is fairly homogeneous, a more
powerful test can often be obtained by using a sample of matched pairs (for
example, twins or the same subject given the treatments at different times). For
each pair there are then four possible outcomes: (0, 0), (0, 1), (1, 0), and (1, 1),
where 1 and 0 stand for success and failure, and the first and second number in
each pair of responses refer to the subject receiving treatment 1 or 2 respectively.

The results of such a study are sometimes displayed in a 2 × 2 table,

1st
0 1

0 X X ′
2nd

1 Y Y ′

which despite the formal similarity differs from that considered in Section 4.6.
If a sample of s pairs is drawn, the joint distribution of X, Y , X ′, Y ′ as before
is multinomial, with probabilities p00, p01, p10,p11. The success probabilities of
the two treatments are π1 = p10 + p11 for the first and π2 = p01 + p11 for the
second treatment, and the hypothesis to be tested is H : π1 = π2 or equivalently
p10 = p01 rather than p10p01 = p00p11 as it was earlier.

In exponential form, the joint distribution can be written as

s!ps
11

x!x′!y!y′!
exp

(
y log

p01

p10
+ (x′ + y) log

p10

p11
+ x log

p00

p11

)
. (4.24)

There exists a UMP unbiased test, McNemar’s test, which rejects H in favor
of the alternatives p10 < p01 when Y > C(X ′ + Y, X), where the conditional
probability of rejection given X ′ + Y = d and X = x is α for all d and x. Under
this condition, the numbers of pairs (0, 0) and (1, 1) are fixed, and the only
remaining variables are Y and X ′ = d − Y which specify the division of the d
cases with mixed response between the outcomes (0, 1) and (1, 0). Conditionally,
one is dealing with d binomial trials with success probability p = p01/(p01 +p10),
H becomes p = 1

2 , and the UMP unbiased test reduces to the sign test. [The
issue of conditional versus unconditional power for this test is discussed by Frisén
(1980).]

The situation is completely analogous to that of the sign test in the presence
of undecided opinions, with the only difference that there are now two types of
ties, (0, 0) and (1, 1), both of which are disregarded in performing the test.
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4.10 Problems

Section 4.1

Problem 4.1 Admissibility. Any UMP unbiased test φ0, is admissible in the
sense that there cannot exist another test φ1 which is at least as powerful as φ0

against all alternatives and more powerful against some.
[If φ is unbiased and φ′ is uniformly at least as powerful as φ, then φ′ is also
unbiased.]

Problem 4.2 p-values. Consider a family of tests of H : θ = θ0 (or θ ≤ θ0), with
level-α rejection regions Sα, such that (a) Pθ0{X ∈ Sα} ≤ α for all 0 < α < 1,
and (b) Sα ⊂ Sα′ for α < α′. If the tests Sα are unbiased, the distribution of p̂
under any alternative θ satisfies

Pθ{p̂ ≤ α} ≥ Pθ0{p̂ ≤ α} = α

so that it is shifted toward the origin.

Section 4.2

Problem 4.3 Let X have the binomial distribution b(p, n), and consider the
hypothesis H : p = p0 at level of significance α. Determine the boundary values
of the UMP unbiased test for n = 10 with α = .1, p0 = .2 and with α = .05,
p0 = .4, and in each case graph the power functions of both the unbiased and the
equal-tails test.

Problem 4.4 Let X have the Poisson distribution P (τ), and consider the
hypothesis H : τ = τ0. Then condition (4.6) reduces to

C2−1∑

x=C1+1

τx−1
0

(x − 1)!
e−τ0 +

2∑

i=1

(1 − γi)
τCi−1
0

(Ci − 1)!
e−τ0 = 1 − α,

provided C1 > 1.

Problem 4.5 Let Tn/θ have a χ2-distribution with n degrees of freedom. For
testing H : θ = 1 at level of significance α = .05, find n so large that the power
of the UMP unbiased test is ≥ .9 against both θ ≥ 2 and θ ≤ 1

2 . How large does
n have to be if the test is not required to be unbiased?

Problem 4.6 Suppose X has density (with respect to some measure µ)

pθ(x) = C(θ) exp[θT (x)]h(x) ,

for some real-valued θ. Assume the distribution of T (X) is continuous under θ
(for any θ). Consider the problem of testing θ = θ0 versus θ += θ0. If the null
hypothesis is rejected, then a decision is to be made as to whether θ > θ0 or
θ < θ0. We say that a Type 3 (or directional) error is made when it is declared
that θ > θ0 when in fact θ < θ0 (or vice-versa). Consider a level α test that
rejects the null hypothesis if T < C1 or T > C2 for constants C1 < C2. Further
suppose that it is declared that θ < θ0 if T < C1 and θ > θ0 if T > C2.
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(i) If the constants are chosen so that the test is UMPU, show that the Type 3
error is controlled in the sense that

sup
θ '=θ0

Pθ{Type 3 error is made} ≤ α . (4.25)

(ii) If the constants are chosen so that the test is equi-tailed in the sense

Pθ0{T (X) < C1} = Pθ0{T (X) > C2} = α/2 ,

then show (4.25) holds with α replaced by α/2.
(iii) Give an example where the UMPU level α test has the left side of (4.25)
strictly > α/2. [Confidence intervals for θ after rejection of a two-sided test are
discussed in Finner (1994).]

Problem 4.7 Let X and Y be independently distributed according to one-
parameter exponential families, so that their joint distribution is given by

dPθ1,θ2(x, y) = C(θ1)e
θ1T (x) dµ(x)K(θ2)e

θ2U(y) dν(y).

Suppose that with probability 1 the statistics T and U each take on at least three
values and that (a, b) is an interior point of the natural parameter space. Then
a UMP unbiased test does not exist for testing H : θ1 = a, θ2 = b against the
alternatives θ1 += a or θ2 += b.13

[The most powerful unbiased tests against the alternatives θ1 += a, θ2 += b have
acceptance regions C1 < T (x) < C2 and K1 < U(y) < K2 respectively. These
tests are also unbiased against the wider class of alternatives K : θ1 += a or θ2 += b
or both.]

Problem 4.8 Let (X, Y ) be distributed according to the exponential family

dPθ1,θ2(x, y) = C(θ1, θ2)e
θ1x+θ2y dµ(x, y) .

The only unbiased test for testing H : θ1 ≤ a, θ2 ≤ b against K : θ1 > a or θ2 > b
or both is φ(x, y) ≡ α.
[Take a = b = 0, and let β(θ1, θ2) be the power function of any level-α test.
Unbiasedness implies β(0, θ2) = α for θ2 < 0 and hence for all θ2, since β(0, θ2) is
an analytic function of θ2. For fixed θ2 > 0, β(θ1, θ2) considered as a function of
θ1 therefore has a minimum at θ1 = 0, so that ∂β(θ1, θ2)/∂θ1 vanishes at θ1 = 0
for all positive θ2, and hence for all θ2. By considering alternatively positive and
negative values of θ2 and using the fact that the partial derivatives of all orders
of β(θ1, θ2) with respect to θ1 are analytic, one finds that for each fixed θ2 these
derivatives all vanish at θ1 = 0 and hence that the function β must be a constant.
Because of the completeness of (X, Y ), β(θ1, θ2) ≡ α implies φ(x, y) ≡ α.]

Problem 4.9 For testing the hypothesis H : θ = θ0, (θ0 an interior point of Ω)
in the one-parameter exponential family of Section 4.2, let C be the totality of
tests satisfying (4.3) and (4.5) for some −∞ ≤ C1 ≤ C2 ≤ ∞ and 0 ≤ γ1, γ2 ≤ 1.

13For counterexamples when the conditions of the problem are not satisfied, see
Kallenberg et al. (1984).
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(i) C is complete in the sense that given any level-α test φ0 of H there exists
φ ∈ C such that φ is uniformly at least as powerful as φ0.

(ii) If φ1, φ2 ∈ C, then neither of the two tests is uniformly more powerful than
the other.

(iii) Let the problem be considered as a two-decision problem, with decisions
d0 and d1 corresponding to acceptance and rejection of H and with loss
function L(θ, di) = Li(θ), i = 0, 1. Then C is minimal essentially complete
provided L1(θ) < L0(θ) for all θ += θ0.

(iv) Extend the result of part (iii) to the hypothesis H ′ : θ1 ≤ θ ≤ θ2. (For
more general complete class results for exponential families and beyond,
see Brown and Marden (1989).)

[(i): Let the derivative of the power function of φ0 at θ0 be β′
φ0(θ0) = ρ. Then

there exists φ ∈ C such that β′
φ(θ0) = ρ and φ is UMP among all tests satisfying

this condition.
(ii): See the end of Section 3.7.
(iii): See the proof of Theorem 3.4.2.]

Section 4.3

Problem 4.10 Let X1, . . . , Xn be a sample from (i) the normal distribution
N(aσ, σ2), with a fixed and 0 < σ < ∞; (ii) the uniform distribution U(θ− 1

2 , θ+
1
2 ),−∞ < θ < ∞; (iii) the uniform distribution U(θ1, θ2),∞ < θ1 < θ2 < ∞.
For these three families of distributions the following statistics are sufficient: (i),
T = (

∑
Xi,

∑
X2

i ); (ii) and (iii), T = (min(X1, . . . , Xn), max(X1, . . . , Xn)). The
family of distributions of T is complete for case (iii), but for (i) and (ii) it is not
complete or even boundedly complete.
[(i): The distribution of

∑
Xi/

√∑
X2

i does not depend on σ.]

Problem 4.11 Let X1, . . . , Xm and Y1, . . . , Yn. be samples from N(ξ, σ2) and
N(ξ, τ2). Then T = (

∑
Xi,

∑
Yj ,

∑
X2

i ,
∑

Y 2
j ), which in Example 4.3.3 was seen

not to be complete, is also not boundedly complete.
[Let f(t) be 1 or −1 as ȳ − x̄ is positive or not.]

Problem 4.12 Counterexample. Let X be a random variable taking on the
values −1, 0, 1, 2, . . . with probabilities

Pθ{X = −1} = θ; Pθ{X = x} = (1 − θ)2θx, x = 0, 1, . . . .

Then P = {Pθ, 0 < θ < 1} is boundedly complete but not complete. [Girschick
et al. (1946)]

Problem 4.13 The completeness of the order statistics in Example 4.3.4 re-
mains true if the family F is replaced by the family F1 of all continuous
distributions.
[Due to Fraser (1956). To show that for any integrable symmetric function φ,∫

φ(x1, . . . , xn) dF (x1) . . .
dF (xn) = 0 for all continuous F implies φ = 0 a.e., replace F by α1F1+· · ·+αnFn,
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where 0 < αi < 1,
∑

αi = 1. By considering the left side of the resulting identity
as a polynomial in the α’s one sees that

∫
φ(x1, . . . , xn) dF1(x1) . . . dFn(xn) = 0

for all continuous Fi. This last equation remains valid if the Fi are replaced by
Iai(x)F (x), where Iai(x) = 1 if x ≤ ai and = 0 otherwise. This implies that
φ = 0 except on a set which has measure 0 under F × . . . × F for all continuous
F .]

Problem 4.14 Determine whether T is complete for each of the following
situations:

(i) X1, . . . , Xn are independently distributed according to the uniform
distribution over the integers 1, 2, . . . , θ and T = max(X1, . . . , Xn).

(ii) X takes on the values 1,2,3,4 with probabilities pq, p2q, pq2, 1 − 2pq
respectively, and T = X.

Problem 4.15 Let X, Y be independent binomial b(p, m) and b(p2, n) respec-
tively. Determine whether (X, Y ) is complete when

(i) m = n = 1,

(ii) m = 2, n = 1.

Problem 4.16 Let X1, . . . , Xn be a sample from the uniform distribution over
the integers 1, . . . , θ and let a be a positive integer.

(i) The sufficient statistic X(n) is complete when the parameter space is Ω =
{θ : θ ≤ a}.

(ii) Show that X(n) is not complete when Ω = {θ : θ ≥ a}, a ≥ 2, and find a
complete sufficient statistic in this case.

Section 4.4

Problem 4.17 Let Xi(i = 1, 2) be independently distributed according to dis-
tributions from the exponential families (3.19) with C, Q, T , and h replaced by
Ci, Qi, Ti, and hi. Then there exists a UMP unbiased test of

(i) H : Q2(θ2) − Q1(θ1) ≤ c and hence in particular of Q2(θ2) ≤ Q1(θ1);

(ii) H : Q2(θ2) + Q1(θ1) ≤ c.

Problem 4.18 Let X, Y , Z be independent Poisson variables with means λ, µ,
v. Then there exists a UMP unbiased test of H : λµ ≤ v2.

Problem 4.19 Random sample size. Let N be a random variable with a power-
series distribution

P (N = n) =
a(n)λn

C(λ)
, n = 0, 1, . . . (λ > 0, unknown).

When N = n, a sample X1, . . . , Xn from the exponential family (3.19) is observed.
On the basis of (N, X1, . . . , XN ) there exists a UMP unbiased test of H : Q(θ) ≤
c.
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Problem 4.20 Suppose P{I = 1} = p = 1 − P{I = 2}. Given I = i, X ∼
N(θ, σ2

i ), where σ2
1 < σ2

2 are known. If p = 1/2, show that, based on the data
(X, I), there does not exist a UMP test of θ = 0 vs θ > 0. However, if p is
also unknown, show a UMPU test exists. [See Examples 10.20-21 in Romano and
Siegel (1986).]

Problem 4.21 Measurability of tests of Theorem 4.4.1. The function φ3 defined
by (4.16) and (4.17) is jointly measurable in u and t.
[With C1 = v and C2 = w, the determining equations for v, w, γ1, γ2 are

Ft(v−) + [1 − Ft(w)] + γ1[Ft(v) − Ft(v−)] (4.26)

+γ2[Ft(w) − Ft(w−)] = α

and

Gt(v−) + [1 − Gt(w)] + γ1[Gt(v) − Gt(v−)] (4.27)

+γ2[Gt(w) − Gt(w−)] = α

where

Ft(u) =

∫ u

−∞
Ct(θ1)e

θ1y dvt(y), Gt(u) =

∫ u

−∞
Ct(θ2)e

θ2y dvt(y), (4.28)

denote the conditional cumulative distribution function of U given t when θ = θ1

and θ = θ2 respectively.
(1) For each 0 ≤ y ≤ α let v(y, t) = F−1

t (y) and w(y, t) = F−1
t (1−α+ y), where

the inverse function is defined as in the proof of Theorem 4.4.1. Define γ1(y, t)
and γ2(y, t) so that for v = v(y, t) and w = w(y, t),

Ft(v−) + γ1[Ft(v) − Ft(v−)] = y,

1 − Ft(w) + γ2[Ft(w) − Ft(w−)] = α − y.

(2) Let H(y, t) denote the left-hand side of (4.27), with v = v(y, t), etc. Then
H(0, t) > α and H(α, t) < α. This follows by Theorem 3.4.1 from the fact that
v(0, t) = −∞ and w(α, t) = ∞ (which shows the conditional tests corresponding
to y = 0 and y = α to be one-sided), and that the left-hand side of (4.27) for any
y is the power of this conditional test.
(3) For fixed t, the functions

H1(y, t) = Gt(v−) + γ1[Gt(v) − Gt(v−)]

and

H2(y, t) = 1 − Gt(w) + γ2[Gt(w) − Gt(w−)]

are continuous functions of y. This is a consequence of the fact, which follows from
(4.28), that a.e. PT the discontinuities and flat stretches of Ft and Gt coincide.
(4) The function H(y, t) is jointly measurable in y and t. This follows from the
continuity of H by an argument similar to the proof of measurability of Ft(u) in
the text. Define

y(t) = inf{y : H(y, t) < α},

and let v(t) = v[y(t), t], etc. Then (4.26) and (4.27) are satisfied for all t. The
measurability of v(t), w(t), γ1(t), and γ2(t) defined in this manner will follow from
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measurability in t of y(t) and F−1
t [y(t)]. This is a consequence of the relations,

which hold for all real c,

{t : y(t) < c} =
⋃

r<c

{t : H(r, t) < α},

where r indicates a rational, and

{t : F−1
t [y(t)] ≤ c} = {t : y(t) − Ft(c) ≤ 0}.]

Problem 4.22 Continuation. The function φ4 defined by (4.16), (4.18), and
(4.19) is jointly measurable in u and t.
[The proof, which otherwise is essentially like that outlined in the preceding
problem, requires the measurability in z and t of the integral

g(z, t) =

∫ z−

−∞
u dFt(u).

This integral is absolutely convergent for all t, since Ft is a distribution belonging
to an exponential family. For any z < ∞, g(z, t) = lim gn(z, t), where

gn(z, t) =
∞∑

j=1

(
z − j

2n

) [
Ft

(
z − j − 1

2n
− 0

)
− Ft

(
z − j

2n
− 0

)]
,

and the measurability of g follows from that of the functions gn. The inequalities
corresponding to those obtained in step (2) of the preceding problem result from
the property of the conditional one-sided tests established in Problem 3.45.]

Problem 4.23 The UMP unbiased tests of the hypotheses H1, . . . , H4 of The-
orem 4.4.1 are unique if attention is restricted to tests depending on U and the
T ’s.

Problem 4.24 The singly truncated normal (STN) distribution, indexed by
parameters ν and λ has support the positive real line with density

p(x; ν, λ) = C(ν, λ) exp(−νx − λx2) ,

where C(ν, λ) is a normalizing constant. Based on an i.i.d. sample, show there
exists a UMPU test of the null hypothesis that the observations are exponential
against the STN alternative, and describe the form of rejection region as explicitly
as possible. [See Castillo and Puig (1999).]

Section 4.5

Problem 4.25 Negative binomial. Let X, Y be independently distributed ac-
cording to negative binomial distributions Nb(p1, m) and Nb(p2, n) respectively,
and let qi = 1 − pi.

(i) There exists a UMP unbiased test for testing H : θ = q2/q1 ≤ θ0 and hence
in particular H ′ : p1 ≤ p2.

(ii) Determine the conditional distribution required for testing H ′ when m =
n = 1.
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Problem 4.26 Let X and Y be independently distributed with Poisson distri-
butions P (λ) and P (µ). Find the power of the UMP unbiased test of H : µ ≤ λ,
against the alternatives λ = .1, µ = .2; λ = 1, µ = 2; λ = 10, µ = 20; λ = .1,
µ = .4; at level of significance α = .1.
[Since T = X + Y has the Poisson distribution P (λ + µ), the power is

β =
∞∑

t=0

β(t)
(λ + µ)t

t!
e−(λ+µ),

where β(t) is the power of the conditional test given t against the alternative in
question.]

Problem 4.27 Sequential comparison of two binomials. Consider two sequences
of binomial trials with probabilities of success p1 and p2 respectively, and let
ρ = (p2/q2) ÷ (p1/q1).

(i) If α < β, no test with fixed numbers of trials m and n for testing H : ρ = ρ0

can have power ≥ β against all alternatives with ρ = ρ1.

(ii) The following is a simple sequential sampling scheme leading to the desired
result. Let the trials be performed in pairs of one of each kind, and restrict
attention to those pairs in which one of the trials is a success and the other
a failure. If experimentation is continued until N such pairs have been
observed, the number of pairs in which the successful trial belonged to the
first series has the binomial distribution b(π, N) with π = p1q2/(p1q2 +
P2q1) = 1/(1 + ρ). A test of arbitrarily high power against ρ1 is therefore
obtained by taking N large enough.

(iii) If p1/p2 = λ, use inverse binomial sampling to devise a test of H : λ = λ0

against K : λ > λ0.

Problem 4.28 Positive dependence. Two random variables (X, Y ) with c.d.f.
F (x, y) are said to be positively quadrant dependent if F (x, y) ≥ F (x,∞)F (∞, y)
for all x, y.14 For the case that (X, Y ) takes on the four pairs of values (0, 0), (0, 1),
(1, 0), (1, 1) with probabilities p00, p01, p10, p11, (X, Y ) are positively quadrant
dependent if and only if the odds ratio ∆ = p01p10/p00p11 ≤ 1.

Problem 4.29 Runs. Consider a sequence of N dependent trials, and let Xi be
1 or 0 as the i th trial is a success or failure. Suppose that the sequence has the
Markov property15

P{Xi = 1|xi, . . . , xi−1} = P{Xi = 1|xi−1}

and the property of stationarity according to which P{Xi = 1} and P{Xi =
1|xi−1} are independent of i. The distribution of the X’s is then specified by the

14For a systematic discussion of this and other concepts of dependence, see Tong (1980,
Chapter 5), Kotz, Wang and Hung (1990) and Yanagimoto (1990).

15Statistical inference in these and more general Markov chains is discussed, for
example, in Bhat and Miller (2002); they provide references at the end of Chapter
5.
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probabilities

p1 = P{Xi = 1|xi−1 = 1} and p0 = P{Xi = 1|xi−1 = 0}

and by the initial probabilities

π1 = P{X1 = 1} and π0 = 1 − π1 = P{X1 = 0}

(i) Stationarity implies that

π1 =
p0

p0 + q1
, π0 =

q1

p0 + q1
.

(ii) A set of successive outcomes xi, xi+1, . . . , xi+j is said to form a run of zeros
if xi = xi+1 = · · · = xi+j = 0, and xi−1 = 1 or i = 1, and xi+j+1 = 1
or i + j = N . A run of ones is defined analogously. The probability of any
particular sequence of outcomes (x1, . . . , xN ) is

1
p0 + q1

pv
0pn−v

1 qu
1 qm−u

0 ,

where m and n denote the numbers of zeros and ones, and u and v the
numbers of runs of zeros and ones in the sequence.

Problem 4.30 Continuation. For testing the hypothesis of independence of the
X’s, H : p0 = p1, against the alternatives K : p0 < p1, consider the run test,
which rejects H when the total number of runs R = U +V is less than a constant
C(m) depending on the number m of zeros in the sequence. When R = C(m),
the hypothesis is rejected with probability γ(m), where C and γ are determined
by

PH{R < C(m)|m} + γ(m)PH{R = C(m)|m} = α.

(i) Against any alternative of K the most powerful similar test (which is at
least as powerful as the most powerful unbiased test) coincides with the
run test in that it rejects H when R < C(m). Only the supplementary
rule for bringing the conditional probability of rejection (given m) up to α
depends on the specific alternative under consideration.

(ii) The run test is unbiased against the alternatives K.

(iii) The conditional distribution of R given m, when H is true, is16

P{R = 2r} =
2
(

m−1
r−1

)(
n−1
r−1

)
(

m+n
m

) ,

P{R = 2r + 1} =

(
m−1
r−1

)(
n−1

r

)
+

(
m−1

r

)(
n−1
r−1

)
(

m+n
m

) ,

[(i): Unbiasedness implies that the conditional probability of rejection given m is
α for all m. The most powerful conditional level-α test rejects H for those sample

16This distribution is tabled by Swed and Eisenhart (1943) and Gibbons and
Chakraborti (1992); it can be obtained from the hypergeometric distribution [Guenther
(1978)]. For further discussion of the run test, see Lou (1996).
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sequences for which ∆(u, v) = (p0/p1)
v(q1/q0)

u is too large. Since p0 < p1 and
q1 < q0 and since |v − u| can only take on the values 0 and 1, it follows that

∆(1, 1) > ∆(1, 2), ∆(2, 1) > ∆(2, 2) > ∆(2, 3), ∆(3, 2) > · · · .

Thus only the relation between ∆(i, i+1) and ∆(i+1, i) depends on the specific
alternative, and this establishes the desired result.
(ii): That the above conditional test is unbiased for each m is seen by writing its
power as

β(p0, p1|m) = (1 − γ)P{R < C(m)|m} + γP{R ≤ C(m)|m},

since by (i) the rejection regions R < C(m) and R < C(m) + 1 are both UMP at
their respective conditional levels.
(iii): When H is true, the conditional probability given m of any set of m zeros
and n ones is 1/

(
m+n

m

)
. The number of ways of dividing n ones into r groups is(

n−1
r−1

)
, and that of dividing m zeros into r + 1 groups is

(
m−1

r

)
. The conditional

probability of getting r + 1 runs of zeros and r runs of ones is therefore
(

m−1
r

)(
n−1
r−1

)
(

m+n
m

) .

To complete the proof, note that the total number of runs is 2r + 1 if and only
if there are either r + 1 runs of zeros and r runs of ones or r runs of zeros and
r + 1 runs of ones.]

Problem 4.31 (i) Based on the conditional distribution of X2, . . . , Xn given
X1 = x1 in the model of Problem 4.29, there exists a UMP unbiased test
of H : p0 = p1 against p0 > p1 for every α.

(ii) For the same testing problem, without conditioning on X1 there exists a
UMP unbiased test if the initial probability π1 is assumed to be completely
unknown instead of being given by the value stated in (i) of Problem 4.29.

[The conditional distribution of X2, . . . , Xn given x1 is of the form

C(x1; p0, p1, q0, q1)p
y1
1 py0

0 qz1
1 qz0

0 (y1, y2, z1, z2),

where y1 is the number of times a 1 follows a 1, y0 the number of times a 1 follows
a 0, and so on, in the sequence x1, X2, . . . , Xn. [See Billingsley (1961, p. 14).]

Problem 4.32 Rank-sum test. Let Y1, . . . , YN be independently distributed
according to the binomial distributions b(pi, ni), i = 1, . . . , N where

pi =
1

1 + e−(α+βxi)
.

This is the model frequently assumed in bioassay, where xi denotes the dose, or
some function of the dose such as its logarithm, of a drug given to ni experimental
subjects, and where Yi is the number among these subjects which respond to the
drug at level xi. Here the xi are known, and α and β are unknown parameters.

(i) The joint distribution of the Y ’s constitutes an exponential family, and
UMP unbiased tests exist for the four hypotheses of Theorem 4.4.1, concern
both α and β.
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(ii) Suppose in particular that xi = ∆i, where ∆ is known, and that ni = 1
for all i. Let n be the number of successes in the N trials, and let these
successes occur in the s1st, s2nd,. . . , snth trial, where s1 < s2 < · · · < sn.
Then the UMP unbiased test for testing H : β = 0 against the alternatives
β > 0 is carried out conditionally, given n, and rejects when the rank sum∑n

i−1 si is too large.

(iii) Let Y1, . . . , YM and Z1, . . . , ZN . be two independent sets of experiments
of the type described at the beginning of the problem, corresponding, say,
to two different drugs. If Yi is distributed as b(pi, mi) and Zj as b(πj , nj),
with

pi =
1

1 + e−(α+βui)
, πj =

1

a + e−(γ+βvj)
,

then UMP unbiased tests exist for the four hypotheses concerning γ − α
and δ − β.

Section 4.8

Problem 4.33 In a 2 × 2 × 2 table with m1 = 3, n1 = 4; m2 = 4, n2 = 4;
and t1 = 3, t′1 = 4, t2 = t′2 = 4, determine the probabilities that P (Y1 + Y2 ≤
K|Xi + Yi = ti, i = 1, 2) for k = 0, 1, 2, 3.

Problem 4.34 In a 2 × 2 × K table with ∆k = ∆, the test derived in the text
as UMP unbiased for the case that the B and C margins are fixed has the same
property when any two, one, or no margins are fixed.

Problem 4.35 The UMP unbiased test of H : ∆ = 1 derived in Section 4.8
for the case that the B- and C-margins are fixed (where the conditioning now
extends to all random margins) is also UMP unbiased when

(i) only one of the margins is fixed;

(ii) the entries in the 4K cells are independent Poisson variables with means
λABC , . . ., and ∆ is replaced by the corresponding cross-ratio of the λ’s.

Problem 4.36 Let Xijkl (i, j, k = 0, 1, l = 1, . . . , L) denote the entries in a
2 × 2 × 2 × L table with factors A, B, C, and D, and let

Γl =
PABcCDlPÃBCDl

PAB̃C̃Dl
PÃBC̃Dl

PABCDlPÃB̃CDl
PABC̃Dl

PÃB̃C̃Dl

.

Then

(i) under the assumption Γl = Γ there exists a UMP unbiased test of the
hypothesis Γ ≤ Γ0 to for any fixed Γ0;

(ii) When l = 2, there exists a UMP unbiased test of the hypothesis Γ1 = Γ2

—in both cases regardless of whether 0, 1, 2 or 3 of the sets of margins are
fixed.
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Section 4.9

Problem 4.37 In the 2×2 table for matched pairs, show by formal computation
that the conditional distribution of Y given X ′ + Y = d and X = x is binomial
with the indicated p.

Problem 4.38 Consider the comparison of two success probabilities in (a) the
two-binomial situation of Section 4.5 with m = n, and (b) the matched-pairs
situation of Section 4.9. Suppose the matching is completely at random, that is,
a random sample of 2n subjects, obtained from a population of size N(2n ≤ N),
is divided at random into n pairs, and the two treatments B and Bc are assigned
at random within each pair.

(i) The UMP unbiased test for design (a) (Fisher’s exact test) is always more
powerful than the UMP unbiased test for design (b) (McNemar’s test).

(ii) Let Xi (respectively Yi) be 1 or 0 as the 1st (respectively 2nd) member of
the i th pair is a success or failure. Then the correlation coefficient of Xi

and Yi can be positive or negative and tends to zero as N → ∞.

[(ii): Assume that the kth member of the population has probability of success

P (k)
A under treatment A and P (k)

Ã
under Ã.]

Problem 4.39 In the 2 × 2 table for matched pairs, in the notation of Section
4.9, the correlation between the responses of the two members of a pair is

ρ =
p11 − π1π2√

π1(1 − π1)π2(1 − π2)
.

For any given values of π1 < π2, the power of the one-sided McNemar test of
H : π1 = π2 is an increasing function of ρ.
[The conditional power of the test given X + Y = d, X = x is an increasing
function p = p0l/(p01 + p10).]
Note. The correlation ρ increases with the effectiveness of the matching, and
McNemar’s test under (b) of Problem 4.38 soon becomes more powerful than
Fisher’s test under (a). For detailed numerical comparisons see Wacholder and
Weinberg (1982) and the references given there.

4.11 Notes

The closely related properties of similarity (on the boundary) and unbiasedness
are due to Neyman and Pearson (1933, 1936), who applied them to a variety of
examples. It was pointed out by Neyman (1937) that similar tests could be ob-
tained through the construction method now called Neyman structure. Theorem
4.3.1 is due to Ghosh (1948) and Hoel (1948). The concepts of completeness and
bounded completeness, and the application of the latter to Theorem 4.4.1, were
developed by Lehmann and Scheffé (1950).

The sign test, proposed by Arbuthnot (1710) to test that the probability of a
male birth is 1/2, may be the first significance test in the literature. The exact
test for independence in 2 by 2 table is due to Fisher (1934).



5
Unbiasedness: Applications to Normal
Distributions; Confidence Intervals

5.1 Statistics Independent of a Sufficient Statistic

A general expression for the UMP unbiased tests of the hypotheses H1 : θ ≤ θ0

and H4 : θ = θ0 in the exponential family

dPθ,ϑ(x) = C(θ, ϑ) exp
[
θU(x) +

∑
ϑiTi(x)

]
dµ(x) (5.1)

was given in Theorem 4.4.1 of the preceding chapter. However, this turns out
to be inconvenient in the applications to normal and certain other families of
continuous distributions, with which we shall be concerned in the present chapter.
In these applications, the tests can be given a more convenient form, in which
they no longer appear as conditional tests in terms of U given t, but are expressed
unconditionally in terms of a single test statistic. The following are three general
methods of achieving this.

(i) In many of the problems to be considered below, the UMP unbiased test
φ0, is also UMP invariant, as will be shown in Chapter 6. From Theorem 6.5.3,
it is then possible to conclude that φ0 is UMP unbiased. This approach, in which
the latter property must be taken on faith during the discussion of the test in
the present chapter, is the most economical of the three, and has the additional
advantage that it derives the test instead of verifying a guessed solution as is the
case with methods (ii) and (iii).

(ii) The conditional descriptions (4.12), (4.14), and (4.16) can be replaced
by equivalent unconditional ones, and it is then enough to find an unbiased test
which has the indicated structure. This approach is discussed in Pratt (1962).

(iii) Finally, it is often possible to show the equivalence of the test given by
Theorem 4.4.1 to a test suspected to be optimal, by means of Theorem 5.1.2
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below. This is the course we shall follow here; the alternative derivation (i) will
be discussed in Chapter 6.

The reduction by method (iii) depends on the existence of a statistic V =
h(U, T ), which is independent of T when θ = θ0, and which for each fixed t is
monotone in U for H1 and linear in U for H4. The critical function φ1, for testing
H1 then satisfies

φ(v) =






1 when v > C0,

γ0 when v = C0,

0 when v < C0,

(5.2)

where C0 and γ0 are no longer dependent on t, and are determined by

Eθ0φ1(V ) = α. (5.3)

Similarly the test φ4 of H4 reduces to

φ(v) =






1 when v < C1 or v > C2,

γi when v = Ci, i = 1, 2,

0 when C1 < v < C2,

(5.4)

where the C’s and γ’s are determined by

Eθ0 [φ4(V )] = α (5.5)

and

Eθ0 [V φ4(V )] = αEθ0(V ). (5.6)

The corresponding reduction for the hypotheses H2 : θ ≤ θ1, or θ ≥ θ2 and
H3 : θ1 ≤ θ ≤ θ2 requires that V be monotone in U for each fixed t, and be
independent of T when θ = θ1 and θ = θ2. The test φ3 is then given by (5.4)
with the C’s and γ’s determined by

Eθ1φ3(V ) = Eθ2φ3(V ) = α. (5.7)

The test for H2 as before has the critical function

φ2(v; α) = 1 − φ3(v; 1 − α).

This is summarized in the following theorem.

Theorem 5.1.1 Suppose that the distribution of X is given by (5.1) and that
V = h(U, T ) is independent of T when θ = θ0. Then φ1 is UMP unbiased for
testing H1 provided the function h is increasing in u for each t, and φ4 is UMP
unbiased for H4 provided

h(u, t) = a(t)u + b(t) with a(t) > 0.

The tests φ2 and φ3, are UMP unbiased for H2 and H3 if V is independent of T
when θ = θ1 and θ2, and if h is increasing in u for each t.

Proof. The test of H1 defined by (4.12) and (4.13) is equivalent to that given
by (5.2), with the constants determined by

Pθ0{V > C0(t) | t} + γ0(t)Pθ0{V = C0(t) | t} = α.
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By assumption, V is independent of T when θ = θ0, and C0 and γ0 therefore do
not depend on t. This completes the proof for H1, and that for H2 and H3 is
quite analogous.

The test of H4 given in Section 4.4 is equivalent to that defined by (5.4) with
the constants Ci and γi determined by Eθ0 [φ4(V, t) | t] = α and

Eθ0

[
φ4(V, t)

V − b(t)
a(t)

∣∣∣∣ t

]
= αEθ0

[
V − b(t)

a(t)

∣∣∣∣ t

]
,

which reduces to

Eθ0 [V φ4(V, t) | t] = αEθ0 [V | t].

Since V is independent of T for θ = θ0, so are the C’s and γ’s as was to be
proved.

To prove the required independence of V and T in applications of Theorem
5.1.1 to special cases, the standard methods of distribution theory are available:
transformation of variables, characteristic functions, and the geometric method.
Alternatively, for a given model {Pϑ, ϑ ∈ ω}, suppose V is any statistic whose dis-
tribution does not depend on ϑ; such a statistic is said to be ancillary. Then, the
following theorem gives sufficient conditions to show V and T are independent.

Theorem 5.1.2 (Basu) Let the family of possible distributions of X be P =
{Pϑ, ϑ ∈ ω}, let T be sufficient for P, and suppose that the family PT of distri-
butions of T is boundedly complete. If V is any ancillary statistic for P, then V
is independent of T .

Proof. For any critical function φ, the expectation Eϑφ(V ) is by assumption
independent of ϑ. It therefore follows from Theorem 4.3.2 that E[φ(V ) | t] is
constant (a.e. PT ) for every critical function φ, and hence that V is independent
of T .

Corollary 5.1.1 Let P be the exponential family obtained from (5.1) by letting
θ have some fixed value. Then a statistic V is independent of T for all ϑ provided
the distribution of V does not depend on ϑ.

Proof. It follows from Theorem 4.3.1 that PT is complete and hence boundedly
complete, and the preceding theorem is therefore applicable.

Example 5.1.1 Let X1, . . . , Xn, be independently, normally distributed with
mean ξ and variance σ2. Suppose first that σ2 is fixed at σ2

0 . Then the assumptions
of Corollary 5.1.1 hold with T = X̄ =

∑
Xi/n and ϑ proportional to ξ. Let f be

any function satisfying

f(x1 + c, . . . , xn + c) = f(x1, . . . , xn) for all real c.

If

V = f(X1, . . . , Xn),

then also V = f(X1−ξ, . . . , Xn −ξ). Since the variables Xi −ξ are distributed as
N(0, σ2

0), which does not involve ξ, the distribution of V does not depend on ξ. It
follows from Corollary 5.1.1 that any such statistic V , and therefore in particular
V =

∑
(Xi − X̄)2, is independent of X̄. This is true for all σ.

Rebecca Ferrell
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Suppose, on the other hand, that ξ is fixed at ξ0. Then Corollary 5.1.1 applies
with T =

∑
(Xi − ξ0)

2 and ϑ = −1/2σ2. Let f be any function such that

f(cx1, . . . , cxn) = f(x1, . . . , xn) for all c > 0,

and let

V = f(X1 − ξ0, . . . , Xn − ξ0).

Then V is unchanged if each Xi − ξ0 is replaced by (Xi − ξ0)/σ, and since
these variables are normally distributed with zero mean and unit variance, the
distribution of V does not depend on σ. It follows that all such statistics V , and
hence for example

X̄ − ξ0√∑
(Xi − X̄)2

and
X̄ − ξ0√∑
(Xi − ξ0)2

,

are independent of
∑

(Xi − ξ0)
2. This, however, does not hold for all ξ, but only

when ξ = ξ0.

Example 5.1.2 Let U1/σ2
1 and U2/σ2

2 be independently distributed according
to χ2-distributions with f1 and f2 degrees of freedom respectively, and suppose
that σ2

2/σ2
1 = a. The joint density of the U ’s is then

Cu(f1/2)−1
1 u(f2/2)−1

2 exp

[
− 1

2σ2
2

(au1 + u2)

]

so that Corollary 5.1.1 is applicable with T = aU1 + U2 and ϑ = −1/2σ2
2 . Since

the distribution of

V =
U2

U1
= a

U2/σ2
2

U1/σ2
1

does not depend on σ2, V is independent of aU1 + U2. For the particular case
that σ2 = σ1, this proves the independence of U2/U1 and U1 + U2.

Example 5.1.3 Let (X1, . . . , Xn) and (Y1, . . . , Yn) be samples from normal dis-
tributions N(ξ, σ2) and N(η, τ2) respectively. Then T = (X̄,

∑
X2

i , Ȳ ,
∑

Y 2
i ) is

sufficient for (ξ, σ2, η, τ2) and the family of distributions of T is complete. Since

V =

∑
(Xi − X̄)(Yi − Ȳ )√∑
(Xi − X̄)2(Yi − Ȳ )2

is unchanged when Xi and Yi are replaced by (Xi − ξ)/σ and (Yi − η)/τ , the
distribution of V does not depend on any of the parameters, and Theorem 5.1.2
shows V to be independent of T .

5.2 Testing the Parameters of a Normal
Distribution

The four hypotheses σ ≤ σ0, σ ≥ σ0, ξ ≤ ξ0, ξ ≥ ξ0 concerning the variance σ2

and mean ξ of a normal distribution were discussed in Section 3.9, and it was
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pointed out there that at the usual significance levels there exists a UMP test
only for the first one. We shall now show that the standard (likelihood-ratio)
tests are UMP unbiased for the above four hypotheses as well as for some of the
corresponding two-sided problems.

For varying ξ and σ, the densities

(2πσ2)−n/2 exp

(
−nξ2

2σ2

)
exp

(
− 1

2σ2

∑
x2

i +
ξ
σ2

∑
xi

)
(5.8)

of a sample X1, . . . , Xn from N(ξ, σ2) constitute a two-parameter exponential
family, which coincides with (5.1) for

θ = − 1
2σ2

, ϑ =
nξ
σ2

, U(X) =
∑

x2
i , T (x) = x̄ =

∑
xi

n
.

By Theorem 4.4.1, there exists therefore a UMP unbiased test of the hypothesis
θ ≥ θ0, which for θ0 = −1/2σ2

0 is equivalent to H : σ ≥ σ0. The rejection region
of this test can be obtained from (4.12), with the inequalities reversed because
the hypothesis is now θ ≥ θ0. In the present case this becomes

∑
x2

i ≤ C0(x̄)

where

pσ0

{∑
X2

i ≤ C0(x̄) | x̄
}

= α.

If this is written as
∑

x2
i − nx̄2 < C′

0(x̄)

it follows from the independence of
∑

X2
1 −nX̄2 =

∑
(Xi−X̄)2 and X̄ (Example

5.1.1) that C′
0(x) does not depend on x̄. The test therefore rejects when

∑
(xi −

x̄)2 ≤ C′
0, or equivalently when

∑
(xi − x̄)2

σ2
0

≤ C0, (5.9)

with C0 determined by Pσ0{
∑

(Xi − X̄)2/σ2
0 ≤ C0} = α. Since

∑
(Xi − X̄)2/σ2

0

has a χ2-distribution with n − 1 degrees of freedom, the determining condition
for C0 is

∫ C0

0

χ2
n−1(y) dy = α , (5.10)

where χ2
n−1 denotes the density of a χ2 variable with n − 1 degrees of freedom.

The same result can be obtained through Theorem 5.1.1. A statistic V =
h(U, T ) of the kind required by the theorem – that is, independent of X̄ for
σ = σ0, and all ξ – is

V =
∑

(Xi − X̄)2 = U − nT 2.

This is in fact independent of X̄ for all ξ and σ2. Since h(u, t) is an increasing
function of u for each t, it follows that the UMP unbiased test has a rejection
region of the form V ≤ C′

0.
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This derivation also shows that the UMP unbiased rejection region for H : σ ≤
σ1 or σ ≥ σ2 is

C1 <
∑

(xi − x̄)2 < C2 (5.11)

where the C’s are given by

∫ C2/σ2
1

C1/σ2
1

χ2
n−1(y) dy =

∫ C2/σ2
2

C1/σ2
2

χ2
n−1(y) dy = α. (5.12)

Since h(u, t) is linear in u, it is further seen that the UMP unbiased test of
H : σ = σ0, has the acceptance region

C′
1 <

∑
(xi − x̄)2

σ2
0

< C′
2 (5.13)

with the constants determined by

∫ C′
2

C′
1

χ2
n−1(y) dy =

1
n − 1

∫ C′
1

C′
2

yχ2
n−1(y) dy = 1 − α. (5.14)

This is just the test obtained in Example 4.2.2 with
∑

(xi − x̄)2 in place of∑
x2

i and n − 1 degrees of freedom instead of n, as could have been foreseen.
Theorem 5.1.1 shows for this and the other hypotheses considered that the UMP
unbiased test depends only on V . Since the distributions of V do not depend on
ξ, and constitute an exponential family in σ, the problems are thereby reduced
to the corresponding ones for a one-parameter exponential family, which were
solved previously.

The power of the above tests can be obtained explicitly in terms of the χ2-
distribution. In the case of the one-sided test (5.9) for example, it is given by

β(σ) = Pσ

{∑
(Xi − X̄)2

σ2
≤ C0σ

2
0

σ2

}
=

∫ C0σ2
0/σ2

0

χ2
n−1(y) dy.

The same method can be applied to the problems of testing the hypotheses
ξ ≤ ξ0 against ξ > ξ0 and ξ = ξ0 against ξ += ξ0. As is seen by transforming
to the variables Xi − ξ0, there is no loss of generality in assuming that ξ0 = 0.
It is convenient here to make the identification of (5.8) with (5.1) through the
correspondence

θ =
nξ
σ2

, ϑ = − 1
2σ2

, U(x) = x̄, T (x) =
∑

x2
i .

Theorem 4.4.1 then shows that UMP unbiased tests exist for the hypotheses θ ≤ 0
and θ = 0, which are equivalent to ξ ≤ 0 and ξ = 0. Since

V =
X̄√∑

(Xi − X̄)2
=

U√
T − nU2

is independent of T =
∑

X2
i when ξ = 0 (Example 5.1.1), it follows from Theorem

5.1.1 that the UMP unbiased rejection region for H : ξ ≤ 0 is V ≥ C′
0 or

equivalently

t(x) ≥ C0, (5.15)
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where

t(x) =

√
nx̄√

1
n−1

∑
(xi − x̄)2

. (5.16)

In order to apply the theorem to H ′ : ξ = 0, let W = X̄/
√∑

X2
i . This is

also independent of
∑

X2
i when ξ = 0, and in addition is linear in U = X̄. The

distribution of W is symmetric about 0 when ξ = 0, and conditions (5.4), (5.5),
(5.6) with W in place of V are therefore satisfied for the rejection region |w| ≥ C′

with Pξ=0{|W | ≥ C′} = α. Since

t(x) =

√
(n − 1)nW (x)√
1 − nW 2(x)

,

the absolute value of t(x) is an increasing function of |W (x)|, and the rejection
region is equivalent to

|t(x)| ≥ C. (5.17)

From (5.16) it is seen that t(X) is the ratio of the two independent random√
nX̄/σ and

√∑
(Xi − X̄)2/(n − 1)σ2. The denominator is distributed as the

square root of a χ2-variable with n− 1 degrees of freedom, divided by n− 1; the
distribution of the numerator, when ξ = 0, is the normal distribution N(0, 1).
The distribution of such a ratio is Student’s t-distribution with n − 1 degrees of
freedom, which has probability density (Problem 5.3)

tn−1(y) =
1√

π(n − 1)

Γ( 1
2n)

Γ
[

1
2 (n − 1)

] 1
(
1 + y2

n−1

) 1
2 n

. (5.18)

The distribution is symmetric about 0, and the constants C0 and C of the one-
and two-sided tests are determined by

∫ ∞

C0

tn−1(y) dy = α and

∫ ∞

C

tn−1(y) dy =
α
2

. (5.19)

For ξ += 0, the distribution of t(X) is the so-called noncentral t-distribution,
which is derived in Problem 5.3. Some properties of the power function of the one-
and two-sided t-test are given in Problems 5.1, 5.2, and 5.4. We note here that the
distribution of t(X), and therefore the power of the above tests, depends only on
the noncentrality parameter δ =

√
nξ/σ. This is seen from the expression of the

probability density given in Problem 5.3, but can also be shown by the following
direct argument. Suppose that ξ′/σ′ = ξ/σ += 0, and denote the common value
of ξ′/ξ and σ′/σ by c, which is then also different from zero. If X ′

i = cXi and the
Xi are distributed as N(ξ, σ2), the variables X ′

i have distribution N(ξ′, σ′2). Also
t(X) = t(X ′), and hence t(X ′) has the same distribution as t(X), as was to be
proved. [Tables of the power of the t-test are discussed, for example, in Chapter
31, Section 7 of Johnson, Kotz and Balakrishnan (1995, Vol. 2).]

If ξ1 denotes any alternative value to ξ = 0, the power β(ξ, σ) = f(δ) depends
on σ. As σ → ∞, δ → 0, and

β(ξ1, σ) → f(0) = β(0, σ) = α,

since f is continuous by Theorem 2.7.1. Therefore, regardless of the sample size,
the probability of detecting the hypothesis to be false when ξ ≥ ξ1 > 0 cannot be
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made ≥ β > α for all σ. This is not surprising, since the distributions N(0, σ2)
and N(ξ1, σ

2) become practically indistinguishable when σ is sufficiently large.
To obtain a procedure with guaranteed power for ξ ≥ ξ1, the sample size must be
made to depend on σ. This can be achieved by a sequential procedure, with the
stopping rule depending on an estimate of σ, but not with a procedure of fixed
sample size. (See Problems 5.23 and 5.25.)

The tests of the more general hypotheses ξ ≤ ξ0 and ξ = ξ0 are reduced to
those above by transforming to the variables Xi − ξ0. The rejection regions for
these hypotheses are given as before by (5.15), (5.17), and (5.19), but now with

t(x) =

√
n(x̄ − ξ0)√

1
n−1

∑
(xi − x̄)2

.

It is seen from the representation of (5.8) as an exponential family with θ =
nξ/σ2 that there exists a UMP unbiased test of the hypothesis a ≤ ξ/σ2 ≤ b,
but the method does not apply to the more interesting hypothesis a ≤ ξ ≤ b;1

nor is it applicable to the corresponding hypothesis for the mean expressed in
σ-units: a ≤ ξ/σ ≤ b, which will be discussed in Chapter 6. The dual equivalence
problem of testing ξ/σ /∈ [a, b] is treated in Brown, Casella and Hwang (1995),
Brown, Hwang, and Munk (1997) and Perlman and Wu (1999).

When testing the mean ξ of a normal distribution, one may from extensive past
experience believe σ to be essentially known. If in fact σ is known to be equal to
σ0, it follows from Problem 3.1 that there exists a UMP test φ0 of H : ξ ≤ ξ0,
against K : ξ > ξ0, which rejects when (X̄ − ξ0)/σ0 is sufficiently large, and this
test is then uniformly more powerful than the t-test (5.15). On the other hand,
if the assumption σ = σ0 is in error the size of φ0 will differ from α and may
greatly exceed it. Whether to take such a risk depends on one’s confidence in
the assumption and the gain resulting from the use of φ0 when σ is equal to σ0.
A measure of this gain is the deficiency d of the t-test with respect to φ0, the
number of additional observations required by the t-test to match the power of φ0

when σ = σ0. Except for very small n, d is essentially independent of sample size
and for typical values of α is of the order of 1 to 3 additional observations. [For
details see Hodges and Lehmann (1970). Other approaches to such comparisons
are reviewed, for example, in Rothenberg (1984).]

5.3 Comparing the Means and Variances of Two
Normal Distributions

The problem of comparing the parameters of two normal distributions arises in
the comparison of two treatments, products, etc., under conditions similar to
those discussed at the beginning of Section 4.5. We consider first the comparison
of two variances σ2 and τ2, which occurs for example when one is concerned with
the variability of analyses made by two different laboratories or by two different
methods, and specifically the hypotheses H : τ2/σ2 ≤ ∆0 and H ′ : τ2/σ2 = ∆0.

1This problem is discussed in Section 3 of Hodges and Lehmann (1954).
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Let X = (X1, . . . , Xm) and Y = (Y1, . . . , Yn) be samples from the normal
distributions N(ξ, σ2) and N(η, τ2) with joint density

C(ξ, η, σ, τ) exp

(
− 1

2σ2

∑
x2

i − 1
2τ2

∑
y2

j +
mξ
σ2

x̄ +
nη
τ2

ȳ

)
.

This is an exponential family with the four parameters

θ = − 1
2τ2

, ϑ1 = − 1
2σ2

, ϑ2 =
nη
τ2

, ϑ3 =
mξ
σ2

and the sufficient statistics

U =
∑

Y 2
j , T1 =

∑
X2

i , T2 = Ȳ , T3 = X̄.

It can be expressed equivalently (see Lemma 4.4.1) in terms of the parameters

θ∗ = − 1
2τ2

+
1

2∆0σ2
, ϑ∗

i = ϑi (i = 1, 2, 3)

and the statistics

U∗ =
∑

Y 2
j , T ∗

1 =
∑

X2
i +

1
∆0

∑
Y 2

j , T ∗
2 = Ȳ , T ∗

3 = X̄.

The hypotheses θ∗ ≤ 0 and θ∗ = 0, which are equivalent to H and H ′ respectively,
therefore possess UMP unbiased tests by Theorem 4.4.1.

When τ2 = ∆0σ
2, the distribution of the statistic

V =

∑
(Yj − Ȳ )2/∆0∑

(Xi − X̄)2
=

∑
(Yj − Ȳ )2/τ2

∑
(Xi − X̄)2/σ2

does not depend on σ, ξ, or η, and it follows from Corollary 5.1.1 that V is
independent of (T ∗

1 , T ∗
2 , T ∗

3 ). The UMP unbiased test of H is therefore given by
(5.2) and (5.3), so that the rejection region can be written as

∑
(Yj − Ȳ )2/∆0(n − 1)∑
(Xi − X̄)2/(m − 1)

≥ C0. (5.20)

When τ2 = ∆0σ
2, the statistic on the left-hand side of (5.20) is the ratio of the

two independent χ2 variables
∑

(Yj − Ȳ )2/τ2 and
∑

(Xi − X̄)2/σ2, each divided
by the number of its degrees of freedom. The distribution of such a ratio is the
F-distribution with n − 1 and m − 1 degrees of freedom, which has the density

Fn−1,m−1(y) =
Γ
[

1
2 (m + n − 2)

]

Γ
[

1
2 (m − 1)

]
Γ
[

1
2 (n − 1)

]
(

n − 1
m − 1

) 1
2 (n−1)

(5.21)

× y
1
2 (n−1)−1

(
1 + n−1

m−1y
) 1

2 (m+n−2)
.

The constant C0 of (5.20) is then determined by
∫ ∞

C0

Fn−1,m−1(y) dy = α. (5.22)

In order to apply Theorem 5.1.1 to H ′ let

W =

∑
(Yj − Ȳ )2/∆0∑

(Xi − X̄)2 + (1/∆0)
∑

(Yj − Ȳ )2
.
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This is also independent of T ∗ = (T ∗
1 , T ∗

2 , T ∗
3 ) when τ2 = ∆0σ

2, and is linear in
U∗. The UMP unbiased acceptance region of H ′ is therefore

C1 ≤ W ≤ C2 (5.23)

with the constants determined by (5.5) and (5.6) where V is replaced by W . On
dividing numerator and denominator of W by σ2 it is seen that for τ2 = ∆0σ

2,
the statistic W is a ratio of the form W1/(W1 + W2), where W1 and W2 are
independent χ2 variables with n − 1 and m − 1 degrees of freedom respectively.
Equivalently, W = Y/(1 + Y ), where Y = W1/W2 and where (m − 1)Y/(n − 1)
has the distribution Fn−1,m−1. The distribution of W is the beta-distribution2

with density

(5.24)

B 1
2 (n−1), 1

2 (m−1)(w) =
Γ
[

1
2 (m + n − 2)

]

Γ
[

1
2 (m − 1)

]
Γ
[

1
2 (n − 1)

]w
1
2 (n−3)(1 − w)

1
2 (m−3),

0 < w < 1.

The conditions (5.5) and (5.6), by means of the relations

E(W ) =
n − 1

m + n − 2

and

wB 1
2 (n−1), 1

2 m−1)(w) =
n − 1

m + n − 2
B 1

2 (n+1), 1
2 (m−1)(w),

become
∫ C2

C1

B 1
2 (n−1), 1

2 (m−1)(w) dw =

∫ C2

C1

B 1
2 (n+1), 1

2 (m−1)(w) dw = 1 − α. (5.25)

The definition of V shows that its distribution depends only on the ratio τ2/σ2,
and so does the distribution of W . The power of the tests (5.20) and (5.23) is
therefore also a function only of the variable ∆ = τ2/σ2; it can be expressed
explicitly in terms of the F -distribution, for example in the first case by

β(∆) = P

{ ∑
(Yj − Ȳ )2/τ2(n − 1)∑
(Xi − X̄)2/σ2(m − 1)

≥ C0∆0

∆

}

=

∫ ∞

C0∆0/∆

Fn−1,m−1(y) dy.

The hypothesis of equality of the means ξ, η of two normal distributions with
unknown variances σ2 and τ2, the so-called Behrens-Fisher problem, is not acces-
sible by the present method. (See Example 4.3.3; for a discussion of this problem,
Section 6.6, Section 11.3.1 and Example 13.5.4.) We shall therefore consider only

2The relationship W = Y/(1 + Y ) shows the F - and beta-distributions to be equiva-
lent. Tables of these distributions are discussed in Chapters 24 and 26 of Johnson, Kotz
and Balakrishnan (1995. Vol. 2). Critical values of F are tabled by Mardia and Zemroch
(1978), who also provide algorithms for the associated computations.
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the simpler case in which the two variances are assumed to be equal. The joint
density of the X’s and Y ’s is then

C(ξ, η, σ) exp

[
− 1

2σ2

(∑
x2

i +
∑

y2
j

)
+

ξ
σ2

∑
xi +

η
σ2

∑
yj

]
, (5.26)

which is an exponential family with parameters

θ =
η
σ2

, ϑ1 =
ξ
σ2

, ϑ2 = − 1
2σ2

and the sufficient statistics

U =
∑

Yj , T1 =
∑

Xi T2 =
∑

X2
i +

∑
Y 2

j .

For testing the hypotheses

H : η − ξ ≤ 0 and H ′ : η − ξ = 0

it is more convenient to represent the densities as an exponential family with the
parameters

θ∗ =
η − ξ(

1
m + 1

n

)
σ2

, ϑ∗
1 =

mξ + nη
(m + n)σ2

, ϑ∗
2 = ϑ2

and the sufficient statistics

U∗ = Ȳ − X̄, T ∗
1 = mX̄ + nȲ , T ∗

2 =
∑

X2
i +

∑
Y 2

j .

That this is possible is seen from the identity

mξx̄ + nηȳ =
(ȳ − x̄)(η − ξ)

1
m + 1

n

+
(mx̄ + nȳ)(mξ + nη)

m + n
.

It follows from Theorem 4.4.1 that UMP unbiased tests exist for the hypotheses
θ∗ ≤ 0 and θ∗ = 0, and hence for H and H ′.

When η = ξ, the distribution of

V =
Ȳ − X̄√∑

(Xi − X̄)2 +
∑

(Yj − Ȳ )2

=
U∗

√
T ∗

2 − 1
m+nT ∗2

1 − mn
m+nU∗2

does not depend on the common mean ξ or on σ, as is seen by replacing Xi with
(Xi − ξ)/σ and Yj with (Yj − ξ)/σ in the expression for V , and V is independent
of (T ∗

1 , T ∗
2 ). The rejection region of the UMP unbiased test of H can therefore be

written as V ≥ C′
0 or

t(X, Y ) ≥ C0, (5.27)

where

t(X, Y ) =

(Ȳ − X̄)

/√
1
m + 1

n

√[∑
(Xi − X̄)2 +

∑
(Yj − Ȳ )2

]
/(m + n − 2)

. (5.28)



5.4. Confidence Intervals and Families of Tests 161

The statistic t(X, Y ) is the ratio of the two independent variables

Ȳ − X̄√(
1
m + 1

n

)
σ2

and

√∑
(Xi − X̄)2 +

∑
(Yj − Ȳ )2

(m + n − 2)σ2
.

The numerator is normally distributed with mean (η−ξ)/
√

m−1 + n−1σ and unit
variance; the square of the denominator as a χ2 variable with m + n − 2 degrees
of freedom, divided by m + n − 2. Hence t(X, Y ) has a noncentral t-distribution
with m + n − 2 degrees of freedom and noncentrality parameter

δ =
η − ξ√
1
m + 1

nσ
.

When in particular η − ξ = 0, the distribution of t(X, Y ) is Student’s
t-distribution, and the constant C0 is determined by

∫ ∞

C0

tm+n−2(y) dy = α. (5.29)

As before, the assumptions required by Theorem 5.1.1 for H ′ are not satisfied by
V itself but by a function of V ,

W =
Ȳ − X̄√

∑
X2

i +
∑

Y 2
j − (

∑
Xi+

∑
Yj)

2

m+n

which is related to V through

V =
W√

1 − mn
m+nW 2

.

Since W is a function of V , it is also independent of (T ∗
1 , T ∗

2 ) when η = ξ; in
addition it is a linear function of U∗ with coefficients dependent only on T ∗.
The distribution of W being symmetric about 0 when η = ξ, it follows, as in
the derivation of the corresponding rejection region (5.17) for the one-sample
problem, that the UMP unbiased test of H ′ rejects when |W | is too large, or
equivalently when

|t(X, Y )| > C. (5.30)

The constant C is determined by
∫ ∞

C

tm+n−2(y) dy =
α
2

.

The power of the tests (5.27) and (5.30) depends only on (η−ξ)/σ and is given
in terms of the noncentral t-distribution. Its properties are analogous to those of
the one-sample t-test (Problems 5.1, 5.2, and 5.4).

5.4 Confidence Intervals and Families of Tests

Confidence bounds for a parameter θ corresponding to a confidence level 1 − α
were defined in Section 3.5, for the case that the distribution of the random
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variable X depends only on θ. When nuisance parameters ϑ are present the
defining condition for a lower confidence bound θ becomes

Pθ,ϑ{θ(X) ≤ θ} ≥ 1 − α for all θ, ϑ. (5.31)

Similarly, confidence intervals for θ at confidence level 1 − α are defined as a set
of random intervals with end points θ(X), θ̄(X) such that

Pθ,ϑ{θ(X) ≤ θ ≤ θ̄(X)} ≥ 1 − α for all θ, ϑ. (5.32)

The infimum over (θ, ϑ) of the left-hand side of (5.31) and (5.32) is the confidence
coefficient associated with these statements.

As was already indicated in Chapter 3, confidence statements permit a dual
interpretation. Directly, they provide bounds for the unknown parameter θ and
thereby a solution to the problem of estimating θ. The statement θ ≤ θ ≤ θ̄ is not
as precise as a point estimate, but it has the advantage that the probability of it
being correct can be guaranteed to be at least 1−α. Similarly, a lower confidence
bound can be thought of as an estimate θ which overestimates the true parameter
value with probability ≤ α. In particular for α = 1

2 , if θ satisfies

Pθ,ϑ{θ ≤ θ} = Pθ,ϑ{θ ≥ θ} =
1
2
,

the estimate is as likely to underestimate as to overestimate and is then said to
be median unbiased. (See Problem 1.3, for the relation of this property to a more
general concept of unbiasedness.) For an exponential family given by (4.10) there
exists an estimator of θ which among all median unbiased estimators uniformly
minimizes the risk for any loss function L(θ, d) that is monotone in the sense of
the last paragraph of Section 3.5. A full treatment of this result including some
probabilistic and measure-theoretic complications, is given by Pfanzagl (1979).

Alternatively, as was shown in Chapter 3, confidence statements can be viewed
as equivalent to a family of tests. The following is essentially a review of the dis-
cussion of this relationship in Chapter 3, made slightly more specific by restricting
attention to the two-sided case. For each θ0, let A(θ0) denote the acceptance re-
gion of a level-α test (assumed for the moment to be nonrandomized) of the
hypothesis H(θ0) : θ = θ0. If

S(x) = {θ : x ∈ A(θ)}

then

θ ∈ S(x) if and only if x ∈ A(θ), (5.33)

and hence

Pθ,ϑ{θ ∈ S(X)} ≥ 1 − α for all θ, ϑ. (5.34)

Thus any family of level-α acceptance regions, through the correspondence (5.33),
leads to a family of confidence sets at confidence level 1 − α.

Conversely, given any class of confidence sets S(x) satisfying (5.34), let

A(θ) = {x : θ ∈ S(x)}. (5.35)

Then the sets A(θ0) are level-α acceptance regions for testing the hypotheses
H(θ0) : θ = θ0, and the confidence sets S(x) show for each θ0 whether for the
particular x observed the hypothesis θ = θ0 is accepted or rejected at level α.
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Exactly the same arguments apply if the sets A(θ0) are acceptance regions
for the hypotheses θ ≤ θ0. As will be seen below, one- and two-sided tests typi-
cally, although not always, lead to one-sided confidence bounds and to confidence
intervals respectively.

Example 5.4.1 (Normal mean) Confidence intervals for the mean ξ of a nor-
mal distribution with unknown variance can be obtained from the acceptance
regions A(ξ0) of the hypothesis H : ξ = ξ0. These are given by

|
√

n(x̄ − ξ0)|√∑
(xi − x̄)2/(n − 1)

≤ C,

where C is determined from the t-distribution so that the probability of this
inequality is 1 − α when ξ = ξ0. [See (5.17) and (5.19) of Section 5.2.] The set
S(x) is then the set of ξ’s satisfying this inequality with ξ = ξ0, that is, the
interval

x̄ − C√
n

√
1

n − 1

∑
(xi − x̄)2 ≤ ξ ≤ x̄ +

C√
n

√
1

n − 1

∑
(xi − x̄)2. (5.36)

The class of these intervals therefore constitutes confidence intervals for ξ with
confidence coefficient 1 − α.

The length of the intervals (5.36) is proportional to
√∑

(xi − x̄)2 and their
expected length to σ. For large σ, the intervals will therefore provide little in-
formation concerning the unknown ξ. This is a consequence of the fact, which
led to similar difficulties for the corresponding testing problem, that two normal
distributions N(ξ0, σ

2) and N(ξ1, σ
2) with fixed difference of means become in-

distinguishable as a tends to infinity. In order to obtain confidence intervals for
ξ whose length does not tend to infinity with σ, it is necessary to determine the
number of observations sequentially so that it can be adjusted to σ. A sequential
procedure leading to confidence intervals of prescribed length is given in Problems
5.23 and 5.24.

However, even such a sequential procedure does not really dispose of the dif-
ficulty, but only shifts the lack of control from the length of the interval to the
number of observations, As σ → ∞, the number of observations required to ob-
tain confidence intervals of bounded length also tends to infinity. Actually, in
practice one will frequently have an idea of the order of magnitude of σ. With
a sample either of fixed size or obtained sequentially, it is then necessary to es-
tablish a balance between the desired confidence 1 − α, the accuracy given by
the length l of the interval, and the number of observations n one is willing to
expend. In such an arrangement two of the three quantities 1 − α, l, and n will
be fixed, while the third is a random variable whose distribution depends on σ,
so that it will be less well controlled than the others. If 1 − α is taken as fixed,
the choice between a sequential scheme and one of fixed sample size thus depends
essentially on whether it is more important to control l or n.

To obtain lower confidence limits for ξ, consider the acceptance regions

√
n(x̄ − ξ0)√∑

(xi − x̄)2/(n − 1)
≤ C0



164 5. Unbiasedness: Applications to Normal Distributions

for testing ξ ≤ ξ0 to against ξ > ξ0. The sets S(x) arc then the one-sided intervals

x̄ − C0√
n

√
1

n − 1

∑
(xi − x̄)2 ≤ ξ,

the left-hand sides of which therefore constitute the desired lower bounds ξ. If
α = 1

2 , the constant C0 is 0; the resulting confidence bound ξ = X̄ is a median
unbiased estimate of ξ, and among all such estimates it uniformly maximizes

P{−∆1 ≤ ξ − ξ ≤ ∆2} for all ∆1, ∆2 ≥ 0.

(For a proof see Section 3.5.)

5.5 Unbiased Confidence Sets

Confidence sets can be viewed as a family of tests of the hypotheses θ ∈ H(θ′)
against alternatives θ ∈ K(θ′) for varying θ′. A confidence level of 1 − α then
simply expresses the fact that all the tests are to be at level α, and the condition
therefore becomes

Pθ,ϑ{θ′ ∈ S(X)} ≥ 1 − α for all θ ∈ H(θ′) and all ϑ. (5.37)

In the case that H(θ′) is the hypothesis θ = θ′ and S(X) is the interval
[θ(X), θ̄(X)], this agrees with (5.32). In the one-sided case in which H(θ′) is
the hypothesis θ ≤ θ′ and S(X) = {θ : θ(X) ≤ θ}, the condition reduces to
Pθ,ϑ{θ(X) ≤ θ′} ≥ 1−α for all θ′ ≥ θ, and this is seen to be equivalent to (5.31).
With this interpretation of confidence sets, the probabilities

Pθ,ϑ{θ′ ∈ S(X)}, θ ∈ K(θ′), (5.38)

are the probabilities of false acceptance of H(θ′) (error of the second kind). The
smaller these probabilities are, the more desirable are the tests.

From the point of view of estimation, on the other hand, (5.38) is the prob-
ability of covering the wrong value θ′. With a controlled probability of covering
the true value, the confidence sets will be more informative the less likely they
are to cover false values of the parameter. In this sense the probabilities (5.38)
provide a measure of the accuracy of the confidence sets. A justification of (5.38)
in terms of loss functions was given for the one-sided case in Section 3.5.

In the presence of nuisance parameters, UMP tests usually do not exist, and
this implies the nonexistence of confidence sets that are uniformly most accurate
in the sense of minimizing (5.38) for all θ′ such that θ ∈ K(θ′) and for all ϑ.
This suggests restricting attention to confidence sets which in a suitable sense
are unbiased. In analogy with the corresponding definition for tests, a family of
confidence sets at confidence level 1 − α is said to be unbiased if

Pθ,ϑ{θ′ ∈ S(X)} ≤ 1 − α (5.39)

for all θ′ such that θ ∈ K(θ′) and for all ϑ and θ,

so that the probability of covering these false values does not exceed the
confidence level.
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In the two- and one-sided cases mentioned above, the condition (5.39) reduces
to

Pθ,ϑ{θ ≤ θ′ ≤ θ̄} ≤ 1 − α for all θ′ += θ and all ϑ

and

Pθ,ϑ{θ ≤ θ′} ≤ 1 − α for all θ′ < θ and all ϑ.

With this definition of unbiasedness, unbiased families of tests lead to unbiased
confidence sets and conversely. A family of confidence sets is uniformly most
accurate unbiased at confidence level 1 − α if it minimizes the probabilities

Pθ,ϑ{θ′ ∈ S(X)} for all θ′ such that θ ∈ K(θ′) and for all ϑ and θ,

subject to (5.37) and (5.39). The confidence sets obtained on the basis of the
UMP unbiased tests of the present and preceding chapter are therefore uniformly
most accurate unbiased. This applies in particular to the confidence intervals
obtained in the preceding sections. Some further examples are the following.

Example 5.5.1 (Normal variance) If X1, . . . , Xn is a sample from N(ξ, σ2),
the UMP unbiased test of the hypothesis σ = σ0 is given by the acceptance region
(5.13)

C′
1 ≤

∑
(xi − x̄)2

σ2
0

≤ C′
2,

where C′
1 and C′

2 are determined by (5.14). The most accurate unbiased
confidence intervals for σ2 are therefore

1
C′

2

∑
(xi − x̄)2 ≤ σ2 ≤ 1

C′
1

∑
(xi − x̄)2.

[Tables of C′
1 and C′

2 are provided by Tate and Klett (1959).] Similarly, from
(5.9) and (5.10) the most accurate unbiased upper confidence limits for σ2 are

σ2 ≤ 1
C0

∑
(xi − x̄)2,

where ∫ ∞

C0

χ2
n−1(y) dy = 1 − α.

The corresponding lower confidence limits are uniformly most accurate (without
the restriction of unbiasedness) by Section 3.9.

Example 5.5.2 (Difference of means) Confidence intervals for the difference
∆ = η − ξ of the means of two normal distributions with common variance are
obtained from tests of the hypothesis η−ξ = ∆0. If X1, . . . , Xm and Y1, . . . , Yn are
distributed as N(ξ, σ2) and N(η, σ2) respectively, and if Y ′

j = Yj−∆0, η′ = η−∆0,
the hypothesis can be expressed in terms of the variables Xi and Y ′

j as η′−ξ = 0.
From (5.28) and (5.30) the UMP unbiased acceptance region is then seen to be

|(ȳ − x̄ − ∆0)|
/√

1
m + 1

n

√

[
∑

(xi − x̄)2 +
∑

(yj − ȳ)2]

/
(m + n − 2)

≤ C,
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where C is determined by the equation following (5.30). The most accurate
unbiased confidence intervals for η − ξ are therefore

(ȳ − x̄) − CS ≤ η − ξ ≤ (ȳ − x̄) + CS (5.40)

where

S2 =

(
1
m

+
1
n

) ∑
(xi − x̄)2 +

∑
(yj − ȳ)2

m + n − 2

The one-sided intervals are obtained analogously.

Example 5.5.3 (Ratio of variances) If X1, . . . , Xm and Y1, . . . , Yn are sam-
ples from N(ξ, σ2) and N(η, τ2), most accurate unbiased confidence intervals for
∆ = τ2/σ2 are derived from the acceptance region (5.23) as

1 − C2

C2

∑
(yj − ȳ)2∑
(xi − x̄)2

≤ τ2

σ2
≤ 1 − C1

C1

∑
(yj − ȳ)2∑
(xi − x̄)2

, (5.41)

where C1 and C2 are determined from (5.25).3 In the particular case that m = n,
the intervals take on the simpler form

1
k

∑
(yj − ȳ)2∑
(xi − x̄)2

≤ τ2

σ2
≤ k

∑
(yj − ȳ)2∑
(xi − x̄)2

, (5.42)

where k is determined from the F -distribution. Most accurate unbiased lower
confidence limits for the variance ratio are

∆ =
1

C0

∑
(yj − ȳ)2/(n − 1)∑
(xi − x̄)2/(m − 1)

≤ τ2

σ2
(5.43)

with C0 given by (5.22). If in (5.22) α is taken to be 1
2 , this lower confidence

limit ∆ becomes a median unbiased estimate of τ2/σ2. Among all such estimates
it uniformly minimizes

P

{
−∆1 ≤ τ2

σ2
− ∆ ≤ ∆2

}
for all ∆1, ∆2 ≥ 0.

(For a proof see Section 3.5).

So far it has been assumed that the tests from which the confidence sets are
obtained are nonrandomized. The modifications that are necessary when this
assumption is not satisfied were discussed in Chapter 3. The randomized tests can
then be interpreted as being nonrandomized in the space of X and an auxiliary
variable V which is uniformly distributed on the unit interval. If in particular X
is integer-valued as in the binomial or Poisson case, the tests can be represented
in terms of the continuous variable X + V . In this way, most accurate unbiased
confidence intervals can be obtained, for example, for a binomial probability p
from the UMP unbiased tests of H : p = p0 (Example 4.2.1). It is not clear a
priori that the resulting confidence sets for p will necessarily by intervals. This
is, however, a consequence of the following Lemma.

3A comparison of these limits with those obtained from the equal-tails test is given
by Scheffé (1942); some values of C1 and C2 are provided by Ramachandran (1958).
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Lemma 5.5.1 Let X be a real-valued random variable with probability density
pθ(x) which has monotone likelihood ratio in x. Suppose that UMP unbiased tests
of the hypotheses H(θ0) : θ = θ0 exist and are given by the acceptance regions

C1(θ0) ≤ x ≤ C2(θ0)

and that they are strictly unbiased. Then the functions Ci(θ) are strictly increasing
in θ, and the most accurate unbiased confidence intervals for θ are

C−1
2 (x) ≤ θ ≤ C−1

1 (x).

Proof. Let θ0 < θ1, and let β0(θ) and β1(θ) denote the power functions of the
above tests φ0 and φ1, for testing θ = θ0 and θ = θ1. It follows from the strict
unbiasedness of the tests that

Eθ0 [φ1(X) − φ0(X)] = β1(θ0) − α > 0 > α − β0(θ1)

= Eθ1 [φ1(X) − φ0(X)] .

Thus neither of the two intervals [C1(θi), C2(θi)] (i = 0, 1) contains the other, and
it is seen from Lemma 3.4.2(iii) that Ci(θ0) < Ci(θ1) for i = 1, 2. The functions
Ci therefore have inverses, and the inequalities defining the acceptance region for
H(θ) are equivalent to C−1

2 (x) ≤ θ ≤ C−1
1 (x), as was to be proved.

The situation is indicated in Figure 5.1. For fixed θ0, the acceptance region
A(θ0) corresponds to a horizontal line segment, whose endpoints trace out two
curves as θ0 varies. The top curve corresponds to θ = C−1(x).

A(!0)

!

!

x

!0

!
S(x)

x

Figure 5.1.

By Section 4.2, the conditions of the lemma are satisfied in particular for a
one-parameter exponential family, provided the tests are nonrandomized. In cases
such as that of binomial or Poisson distributions, where the family is exponential
but X is integer-valued so that randomization is required, the intervals can be
obtained by applying the lemma to the variable X + V instead of X, where V is
independent of X and uniformly distributed over (0, 1).

Example 5.5.4 In the binomial case, a table of the (randomized) uniformly
most accurate unbiased confidence intervals is given by Blyth and Hutchinson
(1960). The best choice of nonrandomized intervals and some approximations
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are discussed (and tables provided) by Blyth and Still (1983) and Blyth (1984).
Recent approximations and comparisons are provided by Agresti and Coull (1998)
and Brown, Cai and DasGupta (2001, 2002). A large sample approach will be
considered in Example 11.2.7.

In Lemma 5.5.1, the distribution of X was assumed to depend only on θ.
Consider now the exponential family (5.1) in which nuisance parameters are
present in addition to θ. The UMP unbiased tests of θ = θ0, are then performed
as conditional tests given T = t, and the confidence intervals for θ will as a
consequence also be obtained conditionally. If the conditional distributions are
continuous, the acceptance regions will be of the form

C1(θ; t) ≤ u ≤ C2(θ; t),

where for each t the functions Ci are increasing by Lemma 5.5.1. The confidence
intervals are then

C−1
2 (u; t) ≤ θ ≤ C−1

1 (u; 1).

If the conditional distributions are discrete, continuity can be obtained as before
through addition of a uniform variable.

Example 5.5.5 (Poisson ratio) Let X and Y be independent Poisson vari-
ables with means λ and µ, and let ρ = µ/λ. The conditional distribution of Y
given X + Y = t is the binomial distribution b(p, t) with

p =
ρ

1 + ρ
.

The UMP unbiased test φ(y, t) of the hypothesis ρ = ρ0 is defined for each t as
the UMP unbiased conditional test of the hypothesis ρ = ρ0/(1 + ρ0). If

p(t) ≤ p ≤ p̄(t)

are the associated most accurate unbiased confidence intervals for p given t, it
follows that the most accurate unbiased confidence intervals for µ/λ are

p(t)

1 − p(t)
≤ µ

λ
≤ p̄(t)

1 − p̄(t)
.

The binomial tests which determine the functions p(t) and p̄(t) are discussed in
Example 4.2.1.

5.6 Regression

The relation between two variables X and Y can be studied by drawing an
unrestricted sample and observing the two variables for each subject, obtaining
n pairs of measurements (X1, Y1), . . . , (Xn, Yn) (see Section 5.13 and Problem
5.13). Alternatively, it is frequently possible to control one of the variables such
as the age of a subject, the temperature at which an experiment is performed,
or the strength of the treatment that is being applied. Observations Y1, . . . , Yn

of Y can then be obtained at a number of predetermined levels x1, . . . , xn of x.
Suppose that for fixed x the distribution of Y is normal with constant variance
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σ2 and a mean which is a function of x, the regression of Y on x, and which is
assumed to be linear,4

E[Y |x] = α + βx.

If we put vi = (xi − x̄)/
√∑

(xj − x̄)2 and γ + δvi = α + βxi, so that
∑

vi = 0,∑
v2

i = 1, and

α = γ − δ
x̄√∑

(xj − x̄)2
, β =

δ√∑
(xj − x̄)2

,

the joint density of Y1, . . . , Yn is

1

(
√

2πσ)n
exp

[
− 1

2σ2

∑
(yi − γ − δvi)

2

]
.

These densities constitute an exponential family (5.1) with

U =
∑

viYi, T1 =
∑

Y 2
i , T2 =

∑
Yi

θ = δ
σ2 , ϑ1 = − 1

2σ2 , ϑ2 = γ
σ2 .

This representation implies the existence of UMP unbiased tests of the hypotheses
aγ + bδ = c where a, b, and c are given constants, and therefore of most accurate
unbiased confidence intervals for the parameter

ρ = aγ + bδ.

To obtain these confidence intervals explicitly, one requires the UMP unbiased
test of H : ρ = ρ0, which is given by the acceptance region

|b
∑

viYi + aȲ − ρ0|
/√

(a2/n) + b2

√
[∑

(Yi − Ȳ )2 − (
∑

viYi)
2]

/
(n − 2)

≤ C (5.44)

where
∫ C

−C

tn−2(y) dy = 1 − α ;

see Problem 5.33. The resulting confidence intervals for ρ are centered at
b
∑

viYi + aȲ , and their length is

L = 2C

√[
a2

n
+ b2

] ∑
(Yi − Ȳ )2 − (

∑
viYi)

2

n − 2
.

It follows from the transformations given in Problem 5.33 that
[∑

(Yi − Ȳ )2 −

(
∑

viYi)
2
]
/σ2 has a χ2-distribution with n−2 degrees of freedom and hence that

4The literature on regression is enormous and we treat the simplest model. Some texts
on the subject include Weisberg (1985), Atkinson and Riani (2000) and Chatterjee, Hadi
and Price (2000).
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the expected length of the intervals is

E(L) = 2Cnσ

√
a2

n
+ b2.

In particular applications, a and b typically are functions of the x’s. If these are
at the disposal of the experimenter and there is therefore some choice with respect
to a and b, the expected length of L is minimized by minimizing (a2/n) + b2.
Actually, it is not clear that the expected length is a good criterion for the
accuracy of confidence intervals, since short intervals are desirable when they
cover the true parameter value but not necessarily otherwise. However, the same
result holds for other criteria such as the expected value of (ρ̄− ρ)2 + (ρ− ρ)2 or
more generally of f1(|ρ̄−ρ|)+f2(|ρ−ρ|), where f1 and f2 are increasing functions
of their arguments. (See Problem 5.33.) Furthermore, the same choice of a and
b also minimizes the probability of the intervals covering any false value of the
parameter. We shall therefore consider (a2/n) + b2 as an inverse measure of the
accuracy of the intervals.

Example 5.6.1 (Slope of regression line) Confidence levels for the slope
β = δ/

√∑
(xj − x̄)2 are obtained from the above intervals by letting a = 0

and b = 1/
√∑

(xj − x̄)2. Here the accuracy increases with
∑

(xj − x̄)2, and if
the xj must be chosen from an interval [C0, C1], it is maximized by putting half
of the values at each end point. However, from a practical point of view, this
is frequently not a good design, since it permits no check of the linearity of the
regression.

Example 5.6.2 (Ordinate of regression line) Another parameter of inter-
est is the value α + βx0 to be expected from an observation Y at x = x0.
Since

α + βx0 = γ +
δ(x0 − x̄)√∑

(xj − x̄)2
,

the constants a and b are a = 1, b = (x0 − x̄)/
√∑

(xj − x̄)2. The maximum
accuracy is obtained by minimizing |x̄ − x0| and, if x̄ = x0 cannot be achieved
exactly, also maximizing

∑
(xj − x̄)2.

Example 5.6.3 (Intercept of regression line) Frequently it is of interest to
estimate the point x at which α+βx has a preassigned value. One may for example
wish to find the dosage x = −α/β at which E(Y | x) = 0, or equivalently the
value v = (x − x̄)/

√∑
(xj − x̄)2 at which γ + δv = 0. Most accurate unbiased

confidence sets for the solution −γ/δ of this equation can be obtained from the
UMP unbiased tests of the hypotheses −γ/δ = v0. The acceptance regions of
these tests are given by (5.44) with a = 1, b = v0, and ρ0 = 0, and the resulting
confidence sets for v are the sets of values v satisfying

v2

[
C2S2 −

(∑
viYi

)2
]
− 2vȲ

(∑
viYi

)
+

1
n

(C2S2 − nȲ 2) ≥ 0.
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where S2 = [
∑

(Yi − Ȳ )2(
∑

viYi)
2]/(n− 2). If the associated quadratic equation

in v has roots v, v̄, the confidence statement becomes

v ≤ v ≤ v̄ when

∣∣∣
∑

viYi

∣∣∣
S

> C

and

v ≤ v or v ≥ v̄ when

∣∣∣
∑

viYi

∣∣∣
S

< C.

The somewhat surprising possibility that the confidence sets may be the outside
of an interval actually is quite appropriate here. When the line y = γ+δv is nearly
parallel to the v-axis, the intercept with the v-axis will be large in absolute value,
but its sign can be changed by a very small change in angle. There is the further
possibility that the discriminant of the quadratic polynomial is negative,

nȲ 2 +
(∑

viYi

)2
< C2S2,

in which case the associated quadratic equation has no solutions. This condition
implies that the leading coefficient of the quadratic polynomial is positive, so
that the confidence set in this case becomes the whole real axis. The fact that
the confidence sets are not necessarily finite intervals has led to the suggestion
that their use be restricted to the cases in which they do have this form. Such
usage will however affect the probability with which the sets cover the true value
and hence the validity of the reported confidence coefficient.5

5.7 Bayesian Confidence Sets

The left side of the confidence statement (5.34) denotes the probability that
the random set S(X) will contain the constant point θ. The interpretation of
this probability statement, before X is observed, is clear: it refers to the fre-
quency with which this random event will occur. Suppose for example that X is
distributed as N(θ, 1), and consider the confidence interval

X − 1.96 < θ < X + 1.96

corresponding to confidence coefficient γ = .95. Then the random interval (X −
1.96, X+1.96) will contain θ with probability .95. Suppose now that X is observed
to be 2.14. At this point, the earlier statement reduces to the inequality 0.18 <
θ < 4.10, which no longer involves any random element. Since the only unknown
quantity is θ, it is tempting (but not justified) to say that θ lies between 0.18
and 4.10 with probability .95.

To attach a meaningful probability to the event θ ∈ S(x) when x is fixed
requires that θ be random. Inferences made under the assumption that the
parameter θ is itself a random (though unobservable) quantity with a known

5A method for obtaining the size of this effect was developed by Neyman, and tables
have been computed on its basis by Fix. This work is reported by Bennett (1957).
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distribution are called Bayesian, and the distribution Λ of θ before any observa-
tions are taken its prior distribution. After X = x has been observed, inferences
concerning θ can be based on its conditional distribution given x, the posterior
distribution. In particular, any set S(x) with the property

P [θ ∈ S(x) | X = x] ≥ γ for all x

is a 100γ% Bayesian confidence set or credible region for θ. In the rest of this
section, the random variable with prior distribution Λ will be denoted by Θ, with
θ being the value taken on by Θ in the experiment at hand.

Example 5.7.1 (Normal mean) Suppose that Θ has a normal prior distribu-
tion N(µ, b2) and that given Θ = θ, the variables X1, . . . , Xn. are independent
N(θ, σ2), σ known. Then the posterior distribution of Θ given x1, . . . , xn is normal
with mean (Problem 5.34)

ηx = E[Θ | x] =
nx̄/σ2 + µ/b2

n/σ2 + 1/b2

and variance

τ2
x = V ar[Θ | x] =

1
n/σ2 + 1/b2

Since [Θ−ηx]/τx then has a standard normal distribution, the interval I(x) with
endpoints

nx̄/σ2 + µ/b2

n/σ2 + 1/b2
± 1.96√

n/σ2 + 1/b2

satisfies P [Θ ∈ I(x) | X = x] = .95 and is thus a 95% credible region.
For n = 1, µ = 0, σ = 1, the interval reduces to

x

1 + 1
b2

± 1.96√
1 + 1

b2

which for large b is very close to the confidence interval for θ stated at the
beginning of the section. But now the statement that θ lies between these limits
with probability .95 is justified, since it is a probability statement concerning the
random variable Θ.

The distribution N(µ, b2) assigns higher probability to θ-values near µ than
to those further away. Suppose instead that no information whatever about θ is
available, so that one wishes to model a state of complete ignorance. This could
be done by assigning a constant density to all values of θ, that is, by assigning
to Θ the density π(θ) ≡ c, −∞ < θ < ∞. Unfortunately, the resulting π is not a
probability density, since

∫ ∞
−∞ π(θ) dθ = ∞. However, if this fact is ignored and

the posterior distribution of Θ given x is calculated in the usual way, it turns out
(Problem 5.35) that π(θ | x) is the density of a genuine probability distribution,
namely N(µ, σ2/n), the limit of the earlier posterior distribution as b → ∞. The
improper (since it integrates to infinity), noninformative prior density π(θ) ≡ c
thus leads approximately to the same results as the normal prior N(µ, b2) for
large b, and can be viewed as an approximation to the latter.
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Unlike confidence sets, Bayesian credible regions provide exactly the desired
kind of probability statement even after the observations are known. They do
so, however, at the cost of an additional assumption: that θ is random and
has a known prior distribution. Detailed accounts of the Bayesian approach, its
application to credible regions, and comparison of the two approaches can be
found in Berger (1985a) and Robert (1994). The following examples provide a
few illustrations and additional comments.

Example 5.7.2 Let X be binomial b(p, n), and suppose that the prior distribu-
tion for p is the beta distribution6 B(a, b) with density Cpa−1(1−p)b−1, 0 < p < 1,
0 < a, b. Then the posterior distribution of p given X = x is the beta distribution
B(a+x, b+n−x) (Problem 5.36). There are of course many sets S(x) whose prob-
ability under this distribution is equal to the prescribed coefficient γ. A choice
that is frequently recommended is the HPD (highest probability density) region,
defined by the requirement that the posterior density of p given x be ≥ k.

With a beta prior, only the following possibilities can occur: for fixed x,

(a) π(p | x) is decreasing,

(b) π(p | x) is increasing,

(c) π(p | x) is increasing in (0, p0) and decreasing in (p0, 1) for some p0,

(d) π(p | x) is U-shaped, i.e. decreasing in (0, p0) and increasing in (p0, 1) for
some p0.

The HPD region then is of the form

(a) p < K(−x),

(b) p > K(x),

(c) K1(x) < p < K2(x),

(d) p < K1(x) or p > K2(x),

where the K’s are determined by the requirement that the posterior probability of
the region, given x, be γ; in cases (c) and (d) this condition must be supplemented
by

π[K1(x) | x] = π[K2(x) | x].

In general, if π(θ | x) denotes the posterior density of θ, the HPD region is defined
by

π(θ | x) ≥ k

with C determined by the size condition

P [π(θ) | x) ≥ k] = γ.

6This is the so-called conjugate of the binomial distribution; for a more general dis-
cussion of conjugate distributions, see Chapter 4 of TPE2 and Robert (1994), Section
3.2.
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Example 5.7.3 (Two-parameter normal mean) Let X1, . . . , Xn be inde-
pendent N(ξ, σ2), and for the sake of simplicity suppose that (ξ, σ) has the joint
improper prior density given by

π(ξ, σ) dξ dσ = dξ
1
σ

dσ for all −∞ < ξ < ∞, 0 < σ,

which is frequently used to model absence of information concerning the param-
eters. Then the joint posterior density of (ξ, σ) given x = (x1, . . . , xn) is of the
form

π(ξ, σ | x) dξ dσ = C(x)
1

σn+1
exp

(
− 1

2σ2

n∑

i=1

(ξ − xi)
2

)
dξ dσ.

Determination of a credible region for ξ requires the marginal posterior density
of given x, which is obtained by integrating the joint posterior density with
respect to σ. These densities depend only on the sufficient statistics x̄ and S2 =∑

(xi − x̄)2, and the posterior density of ξ is of the form (Problem 5.37)

A(x)

[
1

1 + n(ξ−x̄)2

S2

]n/2

Here x̄ and S enter only as location and scale parameters, and the linear function

t =

√
n(ξ − x̄)

S/
√

n − 1

of ξ has the t-distribution with n−1 degrees of freedom. Since this agrees with the
distribution of t for fixed ξ and σ given in Section 5.2, the credible 100(1 − α)%
region

∣∣∣∣

√
n(ξ − x̄)

S/
√

n − 1

∣∣∣∣ ≤ C

is formally identical with the confidence intervals (5.36). However, they are de-
rived under different assumptions, and their interpretation differs accordingly.
The relationship between Bayesian intervals and classical intervals is further
explored in Nicolaou (1993) and Severini (1993).

Example 5.7.4 (Two-parameter normal: estimating σ) Under the assump-
tions of the preceding example, credible regions for σ are based on the posterior
distribution of σ given x, obtained by integrating the joint posterior density of
(ξ, σ) with respect to ξ. Using the fact that

∑
(ξ−xi)

2 = n(ξ− x̄)2 +
∑

(xi − x̄)2,
it is seen (Problem 5.38) that given x, the conditional (posterior) distribution
of

∑
(xi − x̄)2/σ2 is χ2 with n − 1 degrees of freedom. As in the case of the

mean, this agrees with the sampling distribution of the same quantity when a
is a (constant) parameter, given in Section 5.2. (The agreement in both cases of
two distributions derived under such different assumptions is a consequence of
the particular choice of the prior distribution and the fact that it is invariant in
the sense of TPE2, Section 4.4.) A change of variables now gives the posterior
density of σ and shows that π(σ | x) is of the form (c) of Example 5.7.2, so that
the HPD region is of the form K1(x) < σ < K2(x) with 0 < K1(x) < K2(x) < ∞.

Suppose that a credible region is required, not for σ, but for σr for some r > 0.
For consistency, this should then be given by [K1(x)]r < σr < [K2(x)]r, but this
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is not the case, since the relative height of the density of a random variable at two
points is not invariant under monotone transformations of the variable. In fact,
in the present case, the HPD region for σr will become one-sided for sufficiently
large r although it is two-sided for r = 1 (Problem 5.38).

Such inconsistencies do not occur if the HPD region is replaced by the equal-
tails interval (C1(x), C2(x)) for which P [Θ < C1(x) | X = x] = P [Θ > C2(x) |
X = x] = (1 − γ)/2.7 More generally inconsistencies under transformations of
Θ are avoided when the posterior distribution of Θ is summarized by a number
of its percentiles corresponding to the standard confidence points mentioned in
Section 3.5. Such a set is a compromise between providing the complete posterior
distribution and providing a single interval corresponding to only two percentiles.

Both the confidence and the Bayes approach present difficulties: the first, the
problem of postdata interpretation; the second, the choice of a prior distribution
and the interpretation of the posterior coverage probabilities if there is no clear
basis for this choice. It is therefore not surprising that efforts have been made to
find an approach without these drawbacks. The first such attempt, from which
most later ones derive, is due to Fisher [1930; for his final account see Fisher
(1973)].

To discuss Fisher’s concept of fiducial probability, consider once more the ex-
ample at the beginning of the section, in which X is distributed as N(θ, 1). Since
then X − θ is distributed as N(0, 1), so is θ − X, and hence

P (θ − X ≤ y) = Φ(y) for all y.

For fixed X = x, this is the formal statement that a random variable θ has dis-
tribution N(x, 1). Without assuming θ to be random, Fisher calls N(x, 1) the
fiducial distribution of θ. Since this distribution is to embody the information
about θ provided by the data, it should be unique, and Fisher imposes conditions
which he hopes will ensure uniqueness. This leads to some technical difficulties,
but more basic is the question of how to interpret fiducial probability. In a series
of independent repetitions of the experiment with arbitrarily varying θi, the quan-
tities θ1 − X1, θ2 − X2, . . . will constitute a sequence of independent standard
normal variables. From this fact, Fisher attempts to derive the fiducial distri-
bution N(x, 1) of θ as a frequency distribution with respect to an appropriate
reference set. However, this argument is difficult to follow and unconvincing. For
summaries of the fiducial literature and of later related developments by Demp-
ster, Fraser, and others, see Buehler (1983), Edwards (1983), Seidenfeld (1992),
Zabell (1992), Barnard (1995, 1996) and Fraser (1996).

Fisher’s effort to define a suitable frame of reference led him to the important
concept of relevant subsets, which will be discussed in Chapter 10.

To appreciate the differences between the frequentist, Bayesian and Fisherian
points of view, see Lehmann (1993), Robert (1994), Berger, Boukai and Wang
(1997), Berger (2003) and Bayarri and Berger (2004).

7They also do not occur when the posterior distribution of Θ is discrete.
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5.8 Permutation Tests

For the comparison of a treatment with a control situation in which no treatment
is given, it was shown in Section 5.3 that the one-sided t-test is UMP unbiased
for testing H : η = ξ against η − ξ = ∆ > 0 when the measurements X1, . . . , Xm

and Y1, . . . , Yn are samples from normal populations N(ξ, σ2) and N(η, σ2). It
will be shown in Section 11.3 that the level of this test is (asymptotically) robust
against nonnormality – that is, that except for small m or n the level of the test
is approximately equal to the nominal level α when the X’s and Y ’s are samples
from any distributions with densities f(x) and f(y − ∆) with finite variance. If
such an approximate level is not satisfactory, one may prefer to try to obtain
an exact level-α unbiased test (valid for all f) by replacing the original normal
model with the nonparametric model for which the joint density of the variables
is

f(x1) . . . f(xm)f(y1 − ∆) . . . f(yn − ∆), f ∈ F , (5.45)

where we shall take F to be the family of all probability densities that are
continuous a.e.

If there is much variation in the population being sampled, the sensitivity of
the experiment can frequently be increased by dividing the population into more
homogeneous subgroups, defined for example by some characteristic such as age
or sex. A sample of size Ni(i = 1, . . . , c) is then taken from the ith subpopulation:
mi to serve as controls, and the other ni = Ni − mi, to receive the treatment. If
the observations in the ith subgroup of such a stratified sample are denoted by

(Xi1, . . . , Ximi ; Yi1, . . . , Yini) = (Zi1, . . . , ZiNi),

the density of Z = (Z11, . . . , ZcNc) is

p∆(z) =
c∏

i=1

[fi(xi1) . . . fi(ximi)fi(yi1 − ∆) . . . fi(yini − ∆)] . (5.46)

Unbiasedness of a test φ for testing ∆ = 0 against ∆ > 0 implies that for all
f1, . . . , fc,

∫
φ(z)p0(z) dz = α (dz = dz11 . . . dzcNc). (5.47)

Theorem 5.8.1 If F is the family of all probability densities f that are
continuous a.e., then (5.47) holds for all f1, . . . , fc ∈ F if and only if

1
N1! . . . Nc!

∑

z′∈S(z)

φ(z′) = α a.e., (5.48)

where S(z) is the set of points obtained from z by permuting for each i = 1, . . . , c
the coordinates zij(j = 1, . . . , Ni) within the ith subgroup in all N1! . . . Nc! possible
ways.

Proof. To prove the result for the case c = 1, note that the set of order statistics
T (Z) = (Z(1), . . . , Z(N)) is a complete sufficient statistic for F (Example 4.3.4).
A necessary and sufficient condition for (5.47) is therefore

E[φ(Z) | T (z)] = α a.e. (5.49)
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The set S(z) in the present case (c = 1) consists of the N points obtained from
z through permutation of coordinates, so that S(z) = {z′ : T (z′) = T (z)}. It
follows from Section 2.4 that the conditional distribution of Z given T (z) assigns
probability 1/N ! to each of the N ! points of S(z). Thus (5.49) is equivalent to

1
N !

∑

z′∈S(z)

φ(z′) = α a.e., (5.50)

as was to be proved. The proof for general c is completely analogous and is left
as an exercise (Problem 5.44.)

The tests satisfying (5.48) are called permutation tests. An extension of this
definition is given in Problem 5.54.

5.9 Most Powerful Permutation Tests

For the problem of testing the hypothesis H : ∆ = 0 of no treatment effect on
the basis of a stratified sample with density (5.46) it was shown in the preceding
section that unbiasedness implies (5.48). We shall now determine the test which,
subject to (5.48), maximizes the power against a fixed alternative (5.46) or more
generally against an alternative with arbitrary fixed density h(z).

The power of a test φ against an alternative h is
∫

φ(z)h(z) dz =

∫
E[φ(Z) | t] dpT (t).

Let t = T (z) = (z(1), . . . , z(N)), so that S(z) = S(t). As was seen in Example
2.4.1 and Problem 2.6, the conditional expectation of φ(Z) given T (Z) = t is

ψ(t) =

∑
z∈S(t)

φ(z)h(z)

∑
z∈S(t)

h(z)
.

To maximize the power of φ subject to (5.48) it is therefore necessary to maxi-
mize ψ(t) for each t subject to this condition. The problem thus reduces to the
determination of a function φ which subject to

∑

z∈S(t)

φ(z)
1

N1! . . . Nc!
= α,

maximizes

∑

z∈S(t)

φ(z)
h(z)∑

z′∈X(t)

h(z′)
.

By the Neyman–Pearson fundamental lemma, this is achieved by rejecting H for
those points z of S(t) for which the ratio

h(z)N1! . . . Nc!∑
z′∈S(t)

h(z′)
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is too large. Thus the most powerful test is given by the critical function

φ(z) =






1 when h(z) > C[T (z)],
γ when h(z) = C[T (z)],
0 when h(z) < C[T (z)].

(5.51)

To carry out the test, the N1! . . . Nc! points of each set S(z) are ordered according
to the values of the density h. The hypothesis is rejected for the k largest values
and with probability γ for the (k + 1)st value, where k and γ are defined by

k + γ = αN1! . . . Nc!.

Consider now in particular the alternatives (5.46). The most powerful per-
mutation test is seen to depend on ∆ and the fi, and is therefore not
UMP.

Of special interest is the class of normal alternatives with common variance:

fi = N(ξi, σ
2).

The most powerful test against these alternatives, which turns out to be indepen-
dent of the ξi, σ

2, and ∆, is appropriate when approximate normality is suspected
but the assumption is not felt to be reliable. It may then be desirable to control
the size of the test at level α regardless of the form of the densities fi and to
have the test unbiased against all alternatives (5.46). However, among the class
of tests satisfying these broad restrictions it is natural to make the selection so as
to maximize the power against the type of alternative one expects to encounter,
that is, against the normal alternatives.

With the above choice of fi, (5.46) becomes

h(z) =
(√

2πσ
)−N

×

exp

[
− 1

2σ2

c∑

i=1

(
mi∑

j=1

(zij − ξi)
2 +

Ni∑

j=mi+1

(zij − ξi − ∆)2
)]

. (5.52)

Since the factor exp[−
∑

i

∑Ni
j=1(zij − ξi)

2/2σ2] is constant over S(t), the test

(5.51) therefore rejects H when exp(∆
∑

i

∑Ni
j=mi+1 zij) > C[T (z)] and hence

when
c∑

i=1

nj∑

j=1

yij =
c∑

i=1

Ni∑

j=mi+1

zij > C[T (z)]. (5.53)

Of the N1! . . . Nc! values that the test statistic takes on over S(t), only
(

N1

n1

)
. . .

(
Nc

nc

)

are distinct, since the value of the statistic is the same for any two points z′ and
z′′ for which (z′

i1, . . . , z
′
imi

) and (z′′
i1, . . . , z

′′
imi

) are permutations of each other for
each i. It is therefore enough to compare these distinct values, and to reject H
for the k′ largest ones and with probability γ′ for the (k′ + 1)st, where

k′ + γ′ = α

(
N1

n1

)
. . .

(
Nc

nc

)
.
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The test (5.53) is most powerful against the normal alternatives under consid-
eration among all tests which are unbiased and of level α for testing H : ∆ = 0
in the original family (5.46) with f1, . . . , fc ∈ F .8 To complete the proof of this
statement it is still necessary to prove the test unbiased against the alternatives
(5.46). We shall show more generally that it is unbiased against all alternatives for
which Xij(j = 1, . . . , mi), Yik(k = 1, . . . , ni) are independently distributed with
cumulative distribution functions Fi, Gi respectively such that Yik is stochas-
tically larger than Xij , that is, such that Gi(z) ≤ Fi(z) for all z. This is a
consequence of the following lemma.

Lemma 5.9.1 X1, . . . , Xm, Y1, . . . , Yn be samples from continuous distributions
F , G, and let φ(x1, . . . , xm; y1, . . . , yn) be a critical function such that (a) its
expectation is α whenever G = F , and (b) yi ≤ y′

i for i = 1, . . . , n implies

φ(x1, . . . , xm; y1, . . . , yn) ≤ φ(x1, . . . , xm; y′
1, . . . , y

′
n).

Then the expectation β = β(F, G) of φ is ≥ α for all pairs of distributions for
which Y is stochastically larger than X; it is ≤ α if X is stochastically larger
than Y .

Proof. By Lemma 3.4.1, there exist functions f , g and independent random
variables V1, . . . , Vm+n such that the distributions of f(Vi) and g(Vi) are F and
G respectively and that f(z) ≤ g(z) for all z. Then

Eφ[f(V1), . . . , f(Vm); f(Vm+1), . . . , f(Vm+n)] = α

and

Eφ[f(V1), . . . , f(Vm); g(Vm+1), . . . , g(Vm+n)] = β.

Since for all (v1, . . . , vm+n),

φ[f(v1), . . . , f(vm); f(vm+1), . . . , f(vm+n)]

≤ φ[f(v1), . . . , f(vm); g(vm+1), . . . , g(vm+n)],

the same inequality holds for the expectations of both sides, and hence α ≤ β.
The proof for the case that X is stochastically larger than Y is completely

analogous.
The lemma also generalizes to the case of c vectors (Xi1, . . . , Ximi ; Yi1, . . . , Yini)

with distributions (Fi, Gi). If the expectation of a function φ is α when Fi = Gi

and φ is nondecreasing in each yij when all other variables are held fixed, then
it follows as before that the expectation of φ is ≥ α when the random variables
with distribution Gi are stochastically larger than those with distribution Fi.

In applying the lemma to the permutation test (5.53) it is enough to consider
the case c = 1, the argument in the more general case being completely analogous.
Since the rejection probability of the test (5.53) is α whenever F = G, it is only
necessary to show that the critical function φ of the test satisfies (b). Now φ = 1
if

∑m+n
i=m+1 zi exceeds sufficiently many of the sums

∑m+n
i=m+1 zji , and hence if

8For a closely related result. see Odén and Wedel (1975).
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sufficiently many of the differences

m+n∑

i=m+1

zi −
m+n∑

i=m+1

zji

are positive. For a particular permutation (j1, . . . , jm+n)

m+n∑

i=m+1

zi −
m+n∑

i=m+1

zji =
p∑

i=1

zsi −
p∑

i=1

zri ,

where r1 < · · · < rp denote those of the integers jm+1, . . . , jm+n that are ≤ m,
and s1 < · · · < sp those of the integers m + 1, . . . , m + n not included in the set
(jm+1, . . . , jm+n). If

∑
zsi −

∑
zri is positive and yi ≤ y′

i, that is, zi ≤ z′
i for

i = m+1, . . . , m+n, then the difference
∑

z′
si
−

∑
zri is also positive and hence

φ satisfies (b).
The same argument also shows that the rejection probability of the test is

≤ α when the density of the variables is given by (5.46) with ∆ ≤ 0. The test is
therefore equally appropriate if the hypothesis ∆ = 0 is replaced by ∆ ≤ 0.

Except for small values of the sample sizes Ni, the amount of computation
required to carry out the permutation test (5.53) is large. Computational methods
are discussed by Green (1977), John and Robinson (1983b), Diaconis and Holmes
(1994) and Chapter 13 of Good (1994), who has an extensive bibliography.

One can relate the permutation test to the corresponding normal theory t-test
as follows. On multiplying both sides of the inequality

∑
yj > C[T (z)]

by (1/m) + (1/n) and subtracting (
∑

x1, +
∑

yj)/m, the rejection region for
c = 1 becomes ȳ− x̄ > C[T (z)] or W = (ȳ− x̄)/

√∑n
i=1(zi − z̄)2 > C[T (z)], since

the denominator of W is constant over S(z) and hence depends only on T (z). As
was seen at the end of Section 5.3, this is equivalent to

(ȳ − x̄)
/√

1
m + 1

n
√[∑

(xi − x̄)2 +
∑

(yj − ȳ)2
]
/(m + n − 2)

> C[T (z)]. (5.54)

The rejection region therefore has the form of a t-test in which the constant cutoff
point C0 of (5.27) has been replaced by a random one. It turns out that when the
hypothesis is true, so that the Z′s are identically and independently distributed,
and m/n is bounded away from zero and infinity as m and n tend to infinity,
the difference between the random cutoff point C[T (Z)] and C0 is small in an
appropriate asymptotic sense, and so the permutation test and the t-test given by
(5.27) − (5.29) behave similarly in large samples. Such results will be developed
in Section 15.2. the permutation test can be approximated for large samples by
the standard t-test. Exactly analogous results hold for c > 1; the appropriate
generalization of the two-sample t-test is provided in Problem 7.9.
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5.10 Randomization As A Basis For Inference

The problem of testing for the effect of a treatment was considered in Section 5.3
under the assumption that the treatment and control measurements X1, . . . , Xm,
and Y1, . . . , Yn constitute samples from normal distributions, and in Sections 5.8
and 5.9 without relying on the assumption of normality. We shall now consider
in somewhat more detail the structure of the experiment from which the data
are obtained, resuming for the moment the assumption that the distributions
involved are normal.

Suppose that the experimental material consists of m + n patients, plants,
pieces of material, or the like, drawn at random from the population to which the
treatment could be applied. The treatment is given to n of these while the other
m serve as controls. The characteristic that is to be influenced by the treatment
is then measured in each case, leading to observations X1, . . . , Xm; Y1, . . . , Yn.

To be specific, suppose that the treatment is carried out by injecting a drug and
that m+n ampules are assigned to the m+n patients. The ith measurement can
be considered as the sum of two components. One, say Ui, is associated with the
ith patient; the other, Vi, with the ith ampule and the circumstances under which
it is administered and under which the measurements are taken. The variables
Ui and Vi are assumed to be independently distributed, the V ’s with normal
distribution N(η, σ2) or N(ξ, σ2) as the ampule contains the drug or is one of
those used for control. If in addition the U ’s are assumed to constitute a random
sample from N(µ, σ2

1), it follows that the X’s and Y ’s are independently normally
distributed with common variance σ2 + σ2

1 and means

E(X) = µ + ξ, E(Y ) = µ + η.

Except for a change of notation their joint distribution is then given by (5.26),
and the hypothesis η = ξ can be tested by the standard t-test

Unfortunately, under actual experimental conditions, it is frequently not pos-
sible to ensure that the patients or other experimental units constitute a random
sample from the population of such units. They may be patients in a certain
hospital at a given time, or volunteers for an experiment, and may constitute
a haphazard rather than a random sample. In this case the U ’s would have to
be considered as unknown constants, since they are not obtained by any definite
sampling procedure. This assumption is appropriate also in a different context.
Suppose that the experimental units are all the machines in a shop or fields on a
farm. If the experiment is performed only to determine the best method for this
particular shop or farm, these experimental units are the only relevant ones; that
is, a replication of the experiment would consist in comparing the two treatments
again for the same machines or fields rather than for a new batch drawn at ran-
dom from a large population. In this case the units themselves, and therefore the
u’s, are constant. Under the above assumptions the joint density of the m + n
measurements is

1

(
√

2πσ)m+n
exp

[
− 1

2σ2

(
m∑

i=1

(xi − ui − ξ)2 +
n∑

j=1

(yj − um+j − η)2
)]

.

Since the u’s are completely arbitrary, it is clearly impossible to distinguish be-
tween H : η = ξ and the alternatives K : η > ξ. In fact, every distribution of K
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also belongs to H and vice versa, and the most powerful level-α test for testing
H against any simple alternative specifying ξ, η, σ, and the u’s rejects H with
probability α regardless of the observations.

Data which could serve as a basis for testing whether or not the treatment
has an effect can be obtained through the fundamental device of randomization.
Suppose that the N = m + n patients are assigned to the N ampules at random,
that is, in such a way that each of the N ! possible assignments has probability
1/N ! of being chosen. Then for a given assignment the N measurements are inde-
pendently normally distributed with variance σ2 and means ξ +uji(i = 1, . . . , m)
and η + uji(i = m + 1, . . . , m + n). The overall joint density of the variables

(Z1, . . . , ZN ) = (X1, . . . , Xm; Y1, . . . , Yn)

is therefore

1
N !

∑

(j1,...,jN )

1

(
√

2πσ)N
(5.55)

× exp

[
− 1

2σ2

(
m∑

i=1

(xi − uji − ξ)2 +
n∑

i=1

(yi − ujm+i − η)2
)]

where the outer summation extends over all N ! permutations (j1, . . . , jN ) of
(1, . . . , N). Under the hypothesis η = ξ this density can be written as

1
N !

∑

(j1,...,jN )

1

(
√

2πσ)N
exp

[
− 1

2σ2

N∑

i=1

(zi − ζji)
2

]
, (5.56)

where ζji = uji + ξ = uji + η.
Without randomization a set of y’s which is large relative to the x-values could

be explained entirely in terms of the unit effects ui. However, if these are assigned
to the y’s at random, they will on the average balance those assigned to the x’s. As
a consequence, a marked superiority of the second sample becomes very unlikely
under the hypothesis, and must therefore be attributed to the effectiveness of the
treatment.

The method of assigning the treatments to the experimental units completely
at random permits the construction of a level-α test of the hypothesis η = ξ,
whose power exceeds α against all alternatives η − ξ > 0. The actual power of
such a test will however depend not only on the alternative value of η − ξ, which
measures the effect of the treatment, but also on the unit effects ui. In particular,
if there is excessive variation among the u’s this will swamp the treatment effect
(much in the same way as an increase in the variance σ2 would), and the test
will accordingly have little power to detect any given alternative η − ξ.

In such cases the sensitivity of the experiment can be increased by an approach
exactly analogous to the method of stratified sampling discussed in Section 5.8.
In the present case this means replacing the process of complete randomization
described above by a more restricted randomization procedure. The experimental
material is divided into subgroups, which are more homogeneous than the mate-
rial as a whole, so that within each group the differences among the u’s are small.
In animal experiments, for example, this can frequently be achieved by a division
into litters. Randomization is then applied only within each group. If the ith group
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contains Ni units, ni of these are selected at random to receive the treatment, and
the remaining mi = Ni −ni serve as controls (

∑
Ni = N,

∑
mi = m,

∑
ni = n).

An example of this approach is the method of matched pairs. Here the ex-
perimental units are divided into pairs, which are as like each other as possible
with respect to all relevant properties, so that within each pair the difference of
the u’s will be as small as possible. Suppose that the material consists of n such
pairs, and denote the associated unit effects (the U ’s of the previous discussion)
by U1, U

′
1; . . . ; Un, U ′

n. Let the first and second member of each pair receive the
treatment or serve as control respectively, and let the observations for the ith
pair be Xi and Yi. If the matching is completely successful, as may be the case,
for example, when the same patient is used twice in the investigation of a sleeping
drug, or when identical twins are used, then U ′

i = Ui for all i, and the density of
the X’s and Y ’s is

1

(
√

2πσ)2
exp

[
− 1

2σ2

[∑
(xi − ξ − ui)

2 +
∑

(yi − η − ui)
2
]]

. (5.57)

The UMP unbiased test for testing H : η = ξ against η > ξ is then given in terms
of the differences Wi = Yi − Xi by the rejection region

√
nw̄

/√
1

n − 1

∑
(wi − w̄)2 > C. (5.58)

(See Problem 5.48.)
However, usually one is not willing to trust the assumption u′

i = ui even after
matching, and it again becomes necessary to randomize. Since as a result of the
matching the variability of the u’s within each pair is presumably considerably
smaller than the overall variation, randomization is carried out only within each
pair. For each pair, one of the units is selected with probability 1

2 to receive the
treatment, while the other serves as control. The density of the X’s and Y ’s is
then

1
2n

1

(
√

2πσ)2n

n∏

i=1

{
exp

[
− 1

2σ2

[
(xi − ξ − ui)

2 + (yi − η − u′
i)

2]
]

(5.59)

+ exp

[
− 1

2σ2

[
(xi − ξ − u′

i)
2 + (yi − η − ui)

2]
]}

.

Under the hypothesis η = ξ, and writing

zi1 = xi, zi2 = yi, ζi1 = ξ + ui, ζi2 = η + u′
i (i = 1, . . . , n),

this becomes

1
2n

∑ 1

(
√

2πσ)2n
exp

[
− 1

2σ2

n∑

i=1

2∑

j=1

(zij − ζ′
ij)

2

]
. (5.60)

Here the outer summation extends over the 2n points ζ′ = (ζ′
11, . . . , ζ

′
n2) for which

(ζ′
i1, ζ

′
i2) is either (ζi1, ζi2) or (ζi2, ζi1)
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5.11 Permutation Tests and Randomization

It was shown in the preceding section that randomization provides a basis for
testing the hypothesis η = ξ of no treatment effect, without any assumptions
concerning the experimental units. In the present section, a specific test will be
derived for this problem. When the experimental units are treated as constants,
the probability density of the observations is given by (5.55) in the case of com-
plete randomization and by (5.59) in the case of matched pairs. More generally,
let the experimental material be divided into c subgroups, let the randomization
be applied within each subgroup, and let the observations in the ith subgroup be

(Zi1, . . . , ZiNi) = (Xi1, . . . , Ximi ; Yi1, . . . , Yini).

For any point u = (u11, . . . , ucNc), let S(u) denote as before the set of
N1! . . . Nc! points obtained from u by permuting the coordinates within each
subgroup in all N1! . . . Nc! possible ways. Then the joint density of the Z’s given
u is

1
N1! . . . Nc!

∑

u′∈S(u)

1

(
√

2πσ)N
(5.61)

× exp

[
− 1

2σ2

c∑

i=1

(
mi∑

j=1

(zij − ξ − u′
ij)

2 +
Ni∑

j=mi+1

(zij − η − u′
ij)

2

)]
,

and under the hypothesis of no treatment effect

pσ,ζ(z) =
1

N1! . . . Nc!

∑

ζ′∈S(ζ)

1

(
√

2πσ)N
exp

[
− 1

2σ2

c∑

i=1

Ni∑

j=1

(zij − ζ′
ij)

2

]
. (5.62)

It may happen that the coordinates of u or ζ are not distinct. If then some
of the points of S(u) or S(ζ) also coincide, each should be counted with its
proper multiplicity. More precisely, if the N1! . . . Nc! relevant permutations of
N1 + . . .+Nc coordinates are denoted by gk, k = 1, . . . , N1! . . . Nc!, then S(ζ) can
be taken to be the ordered set of points gkζ, k = 1, . . . , N1! . . . Nc!, and (5.62),
for example, becomes

Pσ,ζ(z) =
1

N1! . . . Nc!

N1!...Nc!∑

k=1

1

(
√

2πσ)N
exp

(
− 1

2σ2
|z − gkζ|2

)

where |u|2 stands for
∑c

i=1

∑N
j=1 u2

ij .

Theorem 5.11.1 A necessary and sufficient condition for a critical function φ
to satisfy

∫
φ(z)pσ,ζ(z) dz ≤ α (dz = dz11 . . . dzcNc) (5.63)

for all σ > 0 and all vectors ζ is that

1
N1! . . . Nc!

∑

z′∈S(z)

φ(z′) ≤ α a.e. (5.64)

The proof will be based on the following lemma.
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Lemma 5.11.1 Let A be a set in N-space with positive Lebesgue measure µ(A).
Then for any ε > 0 there exist real numbers σ > 0 and ξ1, . . . , ξN , such that

P{(X1, . . . , XN ) ∈ A} ≥ 1 − ε,

where the X’s are independently normally distributed with means E(Xi) = ξi and
variance σ2

Xi
= σ2.

Proof. Suppose without loss of generality that µ(A) < ∞. Given any η > 0,
there exists a square Q such that

µ(Q ∩ Ac) ≤ ηµ(Q).

This follows from the fact that almost every point of A is a density point,9 or
from the more elementary fact that a measurable set can be approximated in
measure by unions of disjoint squares. Let a be such that

1√
2π

∫ a

−a

(
− t2

2

)
dt =

(
1 − ε

2

)1/N
,

and let

η =
ε
2

(√
2π

2a

)N

.

If (ξ1, . . . , ξN ) is the center of Q, and if σ = b/a = (1/2a)[µ(Q)]1/N , where 2b is
the length of the side of Q, then

1

(
√

2πσ)N

∫

Ac∩Qc
exp

[
− 1

2σ2

∑
(xi − ξi)

2

]
dx1 . . . dxN

≤ 1

(
√

2πσ)N

∫

Qc
exp

[
− 1

2σ2

∑
(xi − ξi)

2

]
dx1 . . . dxN

= 1 −
[

1√
2π

∫ a

−a

exp

(
− t2

2

)
dt

]N

=
ε
2
.

On the other hand,

1

(
√

2πσ)N

∫

Ac∩Q

exp

[
− 1

2σ2

∑
(xi − ξi)

2

]
dx1 . . . dxN

≤ 1

(
√

2πσ)N
µ(Ac ∩ Q) <

ε
2
,

and by adding the two inequalities one obtains the desired result.
Proof.[Proof of the theorem] Let φ be any critical function, and let

ψ(z) =
1

N1! . . . Nc!

∑

z′∈S(z)

φ(z′).

If (5.64) does not hold, there exists η > 0 such that φ(z) > α + η on a set A
of positive measure. By the Lemma there exists σ > 0 and ζ = (ζ11, . . . , ζcNc)

9See, for example, Billingsley (1995), p.417.
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such that P{Z ∈ A} > 1 − η when Z11, . . . , ZcNc are independently normally
distributed with common variance σ2 and means E(Zij) = ζij . It follows that

∫
φ(z)pσ,ζ(z) dz =

∫
ψ(z)pσ,ζ(z) dz (5.65)

≥
∫

A

ψ(z)
1

(
√

2πσ)N
exp

[
− 1

2σ2

∑ ∑
(zij − ζij)

2

]
dz

> (α + η)(1 − η),

which is > α, since α+η < 1. This proves that (5.63) implies (5.64). The converse
follows from the first equality in (5.65).

Corollary 5.11.1 Let H be the class of densities

{pσ,ζ(z) : σ > 0,−∞ < ζij < ∞}.

A complete family of tests for H at level of significance α is the class of tests C
satisfying

1
N1! . . . Nc!

∑

z′∈S(z)

φ(z′) = α a.e. (5.66)

Proof. The corollary states that for any given level-α test φ0 there exists an
element φ of C which is uniformly at least as powerful as φ0. By the preceding
theorem the average value of φ0 over each set S(z) is ≤ α. On the sets for which
this inequality is strict, one can increase φ0 to obtain a critical function φ satis-
fying (5.66), and such that φ0(z) ≤ φ(z) for all z. Since against all alternatives
the power of φ is at least that of φ0, this establishes the result. An explicit con-
struction of φ, which shows that it can be chosen to be measurable, is given in
Problem 5.51.

This corollary shows that the normal randomization model (5.61) leads ex-
actly to the class of tests that was previously found to be relevant when the
U ’s constituted a sample but the assumption of normality was not imposed. It
therefore follows from Section 5.9 that the most powerful level-α test for testing
(5.62) against a simple alternative (5.61) is given by (5.51) with h(z) equal to the
probability density (5.61). If η − ξ = ∆, the rejection region of this test reduces
to

∑

u′∈S(u)

exp

[
1
σ2

c∑

i=1

(
Ni∑

j=1

ziju
′
ij + ∆

Ni∑

j=mi+1

(zij − u′
ij)

)]
> C[T (z)], (5.67)

since both
∑ ∑

zij and
∑ ∑

z2
ij are constant on S(z) and therefore functions

only of T (z). It is seen that this test depends on ∆ and the unit effects uij , so
that a UMP test does not exist.

Among the alternatives (5.61) a subclass occupies a central position and is
of particular interest. This is the class of alternatives specified by the assump-
tion that the unit effects ui constitute a sample from a normal distribution.
Although this assumption cannot be expected to hold exactly – in fact, it was
just as a safeguard against the possibility of its breakdown that randomization
was introduced – it is in many cases reasonable to suppose that it holds at least
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approximately. The resulting subclass of alternatives is given by the probability
densities

1

(
√

2πσ)N
(5.68)

× exp

[
− 1

2σ2

c∑

i=1

(
mi∑

j=1

(zij − ui − ξ)2 +
Ni∑

j=mi+1

(zij − ui − η)2
)]

.

These alternatives are suggestive also from a slightly different point of view.
The procedure of assigning the experimental units to the treatments at random
within each subgroup was seen to be appropriate when the variation of the u’s is
small within these groups and is employed when this is believed to be the case.
This suggests, at least as an approximation, the assumption of constant uij = ui,
which is the limiting case of a normal distribution as the variance tends to zero,
and for which the density is also given by (5.68).

Since the alternatives (5.68) are the same as the alternatives (5.52) of Section
5.9 with ui − ξ = ξi, ui − η = ξi − ∆, the permutation test (5.53) is seen to
be most powerful for testing the hypothesis η = ξ in the normal randomization
model (5.61) against the alternatives (5.68) with η − ξ > 0. The test retains
this property in the still more general setting in which neither normality nor
the sample property of the U ’s is assumed to hold. Let the joint density of the
variables be

∑

u′∈S(u)

c∏

i=1

[
mi∏

j=1

fi(zij − u′
ij − ξ)

Ni∏

j=mi+1

fi(zij − u′
ij − η)

)
, (5.69)

with fi continuous a.e. but otherwise unspecified.10 Under the hypothesis
H : η = ξ, this density is symmetric in the variables (zi1, . . . , ziNi) of the ith
subgroup for each i, so that any permutation test (5.48) has rejection probability
α for all distributions of H. By Corollary 5.11.1, these permutation tests therefore
constitute a complete class, and the result follows.

5.12 Randomization Model and Confidence
Intervals

In the preceding section, the unit responses ui were unknown constants (parame-
ters) which were observed with error, the latter represented by the random terms
Vi. A limiting case assumes that the variation of the V ’s is so small compared
with that of the u’s that these error variables can be taken to be constant, i.e.
that Vi = v. The constant v can then be absorbed into the u’s, and can therefore
be assumed to be zero. This leads to the following two-sample randomization
model :

N subjects would give “true” responses u1, . . . , uN if used as controls. The
subjects are assigned at random, n to treatment and m to control. If the responses

10Actually, all that is needed is that f1, . . . , fc ∈ F , where F is any family containing
all normal distributions.
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are denoted by X1, . . . , Xm and Y1, . . . , Yn as before, then under the hypothesis
H of no treatment effect, the X’s and Y ’s are a random permutation of the u’s.
Under this model, in which the random assignment of the subjects to treatment
and control constitutes the only random element, the probability of the rejection
region (5.54) is the same as under the more elaborate models of the preceding
sections.

The corresponding limiting model under the alternatives assumes that the
treatment has the effect of adding a constant amount ∆ to the unit response, so
that the X’s and Y ’s are given by (ui1 , . . . ; uim ; uim+1 + ∆, . . . , uim+n + ∆) for
some permutation (i1, . . . , iN ) of (1, . . . , N).

These models generalize in the obvious way to stratified samples. In particular,
for paired comparisons it is assumed under H that the unit effects (ui, u

′
i) are

constants, of which one is assigned at random to treatment and the other to
control. Thus the pair (Xi, Yi) is equal to (ui, u

′
i) or (u′

i, ui) with probability
1
2 each, and the assignments in the n pairs are independent; the sample space
consists of 2n points each of which has probability ( 1

2 )n. Under the alternative,
it is assumed as before that ∆ is added to each treated subject, so that P (Xi =
ui, Yi = u′

i + ∆) = P (Xi = u′
i, Yi = ui + ∆) = 1

2 . The distribution generated
for the observations by such a randomization model is exactly the conditional
distribution given T (z) of the preceding sections. In the two-sample case, for
example, this common distribution is specified by the fact that all permutations
of (X1, . . . , Xm; Y1 − ∆, . . . , Yn − ∆) are equally likely. As a consequence, the
power of the test (5.54) in the randomization model is also the conditional power
in the two-sample model (5.45). As was pointed out in Section 4.4, the conditional
power β(∆ | T (z)) can be interpreted as an unbiased estimate of the unconditional
power βF (∆) in the two-sample model. The advantage of β(∆ | T (z)) is that it
depends only on ∆, not on the unknown F . Approximations to β(∆ | T (z))
are discussed by J. Robinson (1973), G. Robinson (1982), John and Robinson
(1983a), and Gabriel and Hsu (1983).

The tests (5.53), which apply to all three models – the sampling model (5.46),
the randomization model, and the intermediate model (5.69) – can be inverted in
the usual way to produce confidence sets for ∆. We shall now determine these sets
explicitly for the paired comparisons and the two-sample case. The derivations
will be carried out in the randomization model. However, they apply equally in
the other two models, since the tests, and therefore the associated confidence
sets, are identical for the three models.

Consider first the case of paired observations (xi, yi), i = 1, . . . , n. The one-
sided test rejects H : ∆ = 0 in favor of ∆ > 0 when

∑n
i=1 yi is among the K

largest of the 2n sums obtained by replacing yi by xi for all, some, or none of the
values i = 1, . . . , n. (It is assumed here for the sake of simplicity that α = K/2n,
so that the test requires no randomization to achieve the exact level α.) Let
di = yi − xi = 2yi − ti, where ti = xi + yi is fixed. Then the test is equivalent
to rejecting when

∑
di is one of the K largest of the 2n values

∑
±di, since

an interchange of yi with xi is equivalent to replacing di by −di. Consider now
testing H : ∆ = ∆0 against ∆ > ∆0. The test then accepts when

∑
(di − ∆0)

is one of the l = 2n − K smallest of the 2n sums
∑

±(di − ∆0), since it is now
yi − ∆0 that is being interchanged with xi. We shall next invert this statement,
replacing ∆0 by ∆, and see that it is equivalent to a lower confidence bound for
∆.
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In the inequality
∑

(di − ∆) <
∑

[±(di − ∆)] , (5.70)

suppose that on the right side the minus sign attaches to the (di − ∆) with
i = i1, . . . , ir and the plus sign to the remaining terms. Then (5.70) is equivalent
to

di1 + · · · + dir − r∆ < 0, or
di1 + · · · + dir

r
< ∆.

Thus,
∑

(di − ∆) is among the l smallest of the
∑

±(di − ∆) if and only if at
least 2n − l of the M = 2n − 1 averages (di1 + · · · + dir )/r are < ∆, i.e. if
and only if δ(K) < ∆, where δ(1) < · · · < δ(M) is the ordered set of averages
(di1 + · · · + dir )/r, r = 1, . . . , M . This establishes δ(K) as a lower confidence
bound for ∆ at confidence level γ = K/2n. [Among all confidence sets that are
unbiased in the model (5.46) with mi = ni = 1 and c = n, these bounds minimize
the probability of falling below any value ∆′ < ∆ for the normal model (5.52).]

By putting successively K = 1, 2, . . . , 2n, it is seen that the M + 1 intervals

(−∞, δ(1)), (δ(1), δ(2)), . . . , (δ(M−1), δ(M)), (δM ,∞) (5.71)

each have probability 1/(M + 1) = 1/2n of containing the unknown ∆. The two-
sided confidence intervals (δ(K), δ(2n−K)) with γ = (2n−1 − K)/2n−1 correspond
to the two-sided version of the test (5.53) with error probability (1−γ)/2 in each
tail. A suitable subset of the points δ(1), . . . , δ(M) constitutes a set of confidence
points in the sense of Section 3.5.

The inversion procedure for the two-group case is quite analogous. Let
(x1, . . . , xm, y1, . . . , yn) denote the m control and n treatment observations, and
suppose without loss of generality that m ≤ n. Then the hypothesis ∆ = ∆0 is
accepted against ∆ > ∆0 if

∑n
j=1(yj −∆0) is among the l smallest of the

(
m+n

n

)

sums obtained by replacing a subset of the (yj − ∆0)’s with x’s. The inequality
∑

(yj − ∆0) < (xi1 + · · · + xir ) + [yj1 + · · · + yjn−r − (n − r)∆],

with (i1, . . . , ir, j1, . . . , jn−r) a permutation of (1, . . . , n), is equivalent to yi1 +
· · · + yir − r∆0 < xi1 + · · · + xir , or

ȳi1,...,ir − x̄i1,...,ir < ∆0. (5.72)

Note that the number of such averages with r ≥ 1 (i.e. omitting the empty set of
subscripts) is equal to

m∑

K=1

(
m
K

)(
n
K

)
=

(
m + n

n

)
− 1 = M

(Problem 5.57). Thus, H : ∆ = ∆0 is accepted against ∆ > ∆0 at level
α = 1 − l/(M + 1) if and only if at least K of the M differences (5.72) are less
than ∆0, and hence if and only if δ(K) < ∆0, where δ(1) < · · · < δ(M) denote
the ordered set of differences (5.72). This establishes δ(K) as a lower confidence
bound for ∆ with confidence coefficient γ = 1 − α.

As in the paired comparisons case, it is seen that the intervals (5.71) each have
probability 1/(M + 1) of containing ∆. Thus, two-sided confidence intervals and
standard confidence points can be derived as before. For the generalization to
stratified samples, see Problem 5.58.
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Algorithms for computing the order statistics δ(1), . . . , δ(M) in the paired-
comparison and two-sample cases are discussed by Tritchler (1984); also see
Garthwaite (1996). If M is too large for the computations to be practicable,
reduced analyses based on either a fixed or random subset of the set of all M +1
permutations are discussed, for example, by Gabriel and Hall (1983) and Vadi-
veloo (1983). [See also Problem 5.60(i).] Different such methods are compared by
Forsythe and Hartigan (1970). For some generalizations, and relations to other
subsampling plans, see Efron (1982, Chapter 9).

5.13 Testing for Independence in a Bivariate
Normal Distribution

So far, the methods of the present chapter have been illustrated mainly by the
two-sample problem. As a further example, we shall now apply two of the for-
mulations that have been discussed, the normal model of Section 5.3 and the
nonparametric one of Section 5.8, to the hypothesis of independence in a bivariate
distribution.

The probability density of a sample (X1, Y1), . . . , (Xn, Yn) from a bivariate
normal distribution is

1

(2πστ
√

1 − ρ2)n
exp

[
− 1

2(1 − ρ2)

(
1
σ2

∑
(xi − ξ)2 (5.73)

− 2ρ
στ

∑
(xi − ξ)(yi − η) +

1
τ2

∑
(yi − η)2

)]
.

Here (ξ, σ2) and (η, τ2) are the mean and variance of X and Y respectively, and
ρ is the correlation coefficient between X and Y . The hypotheses ρ ≤ ρ0 and
ρ = ρ0 for arbitrary ρ0 cannot be treated by the methods of the present chapter,
and will be taken up in Chapter 6. For the present, we shall consider only the
hypothesis ρ = 0 that X and Y are independent, and the corresponding one-sided
hypothesis ρ ≤ 0.

The family of densities (5.73) is of the exponential form (1) with

U =
∑

XiYi, T1 =
∑

X2
i , T2 =

∑
Y 2

i , T3 =
∑

Xi, T4 =
∑

Yi

and

θ = ρ
στ(1−ρ2)

, ϑ1 = −1
2σ2(1−ρ2)

, ϑ2 = −1
2τ2(1−ρ2)

,

ϑ3 = 1
1−ρ2

(
ξ

σ2 − ηρ
στ

)
, ϑ4 = 1

1−ρ2

(
η

τ2 − ξρ
στ

)
,

The hypothesis H : ρ ≤ 0 is equivalent to θ < 0. Since the sample correlation
coefficient

R =

∑
(Xi − X̄)(Yi − Ȳ )√∑

(Xi − X̄)2
∑

(Yi − Ȳ )2

is unchanged when the Xi and Yi are replaced by (Xi − ξ)/σ and (Yi − η)/τ ,
the distribution of R does not depend on ξ, η, σ, or τ , but only on ρ. For θ = 0
it therefore does not depend on ϑ1, . . . , ϑ4, and hence by Theorem 5.1.2, R is
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independent of (T1, . . . , T4) when θ = 0. It follows from Theorem 5.1.1 that the
UMP unbiased test of H rejects when

R ≥ C0, (5.74)

or equivalently when

R√
(1 − R2)/(n − 2)

> K0. (5.75)

The statistic R is linear in U , and its distribution for ρ = 0 is symmetric about
0. The UMP unbiased test of the hypothesis ρ = 0 against the alternative ρ += 0
therefore rejects when

|R|√
(1 − R2)/(n − 2)

> K1. (5.76)

Since
√

n − 2R/
√

1 − R2 has the t-distribution with n − 2 degrees of freedom
when ρ = 0 (Problem 5.64), the constants K0 and K1 in the above tests are
given by

∫ ∞

K0

tn−2(y) dy = α and

∫ ∞

K1

tn−2(y) dy =
α
2

(5.77)

Since the distribution of R depends only on the correlation coefficient ρ, the same
is true of the power of these tests.

Some large sample properties of the above test will be examined in Problem
(11.64). In particular, if (Xi, Yi) is not bivariate normal, the level of the above test
is approximately α in large samples under the hypothesis H1 that Xi and Yi are
independent, but not necessarily under the hypothesis H2 that the correlation
between Xi and Yi is 0. For the nonparametric model H1, one can obtain an
exact level-α unbiased test of independence in analogy to the permutation test
of Section 5.8. For any bivariate distribution of (X, Y ), let Yx denote a random
variable whose distribution is the conditional distribution of Y given x. We shall
say that there is positive regression dependence between X and Y if for any
x < x′ the variable Yx′ is stochastically larger than Yx. Generally speaking,
larger values of Y will then correspond to larger values of X; this is the intuitive
meaning of positive dependence. An example is furnished by any normal bivariate
distribution with ρ > 0. (See Problem 5.68.) Regression dependence is a stronger
requirement than positive quadrant dependence, which was defined in Problem
4.28. However, both reflect the intuitive meaning that large (small) values of Y
will tend to correspond to large (small) values of X.

As alternatives to H1 consider positive regression dependence in a general
bivariate distribution possessing a density. To see that unbiasedness implies sim-
ilarity, let F1, F2 be any two univariate distributions with densities f1, f2 and
consider the one-parameter family of distribution functions

F1(x)F2(y){1 + ∆[1 − F1(x)][1 − F2(y)]}, 0 ≤ ∆ ≤ 1. (5.78)

This is positively regression dependent (Problem 5.69), and by letting ∆ → 0 one
sees that unbiasedness of φ against these distributions implies that the rejection
probability is α when X and Y are independent, and hence that

∫
φ(x1, . . . , xn; y1, . . . , yn)f1(x1) · · · f1(xn)f2(y1) · · · f2(yn) dx dy = α
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for all probability densities f1 and f2. By Theorem 5.8.1 this in turn implies

1
(n!)2

∑
φ(xi1 , . . . , xin ; yj1 , . . . , yjn) = α.

Here the summation extends over the (n!)2 points of the set S(x, y), which is
obtained from a fixed point (x, y) with x = (x1, . . . , xn), y = (y1, . . . , yn) by
permuting the x-coordinates and the y-coordinates, each among themselves in
all possible ways.

Among all tests satisfying this condition, the most powerful one against the
normal alternatives (5.73) with ρ > 0 rejects for the k′ largest values of (5.73)
in each set S(x, y), where k′/(n!)2 = α. Since

∑
x2

i ,
∑

y2
i ,

∑
xi,

∑
yi, are all

constant on S(x, y), the test equivalently rejects for the k′ largest values of
∑

xiyi

in each S(x, y).
Of the (n!)2 values that the statistic

∑
XiYi takes on over S(x, y), only n! are

distinct, since the statistic remains unchanged if the X’s and Y ’s are subjected
to the same permutation. A simpler form of the test is therefore obtained, for
example by rejecting H1 for the k largest values of

∑
x(i)yji , of each set S(x, y),

where x(i) < · · · < x(n) and k/n! = α. The test can be shown to be unbiased
against all alternatives with positive regression dependence. (See Problem 6.62.)

In order to obtain a comparison of the permutation test with the standard
normal test based on the sample correlation coefficient R, let T (X, Y ) denote the
set of ordered X’s and Y ’s

T (X, Y ) = (X(1), . . . , X(n); Y(1), . . . , Y(n)).

The rejection region of the permutation test can then be written as
∑

XiYi > C[T (X, Y )].

or equivalently as R > K[T (X, Y )]. It again turns out that the difference between
K[T (X, Y )] and the cutoff point C0 of the corresponding normal test (5.74) tends
to zero in an appropriate sense. Such results are developed in Section 15.2; also
see Problem 15.13. For large n, the standard normal test (5.74) therefore serves
as an approximation for the permutation test.

5.14 Problems

Section 5.2

Problem 5.1 Let X1, . . . , Xn be a sample from N(ξ, σ2). The power of Student’s
t-test is an increasing function of ξ/σ in the one-sided case H : ξ ≤ 0, K : ξ > 0,
and of |ξ|/σ in the two-sided case H : ξ = 0, K : ξ += 0.

[If

S =

√
1

n − 1

∑
(Xi − X̄)2,

the power in the two-sided case is given by

1 − P

{
−CS

σ
−

√
nξ
σ

≤
√

n(X̄ − ξ)
σ

≤ CS
σ

−
√

nξ
σ

}
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and the result follows from the fact that it holds conditionally for each fixed value
of S/σ.]

Problem 5.2 In the situation of the previous problem there exists no test for
testing H : ξ = 0 at level α, which for all σ has power ≥ β > α against the
alternatives (ξ, σ) with ξ = ξ1 > 0.

[Let β(ξ1, σ) be the power of any level α test of H, and let β(σ) denote the
power of the most powerful test for testing ξ = 0 against ξ = ξ1 when σ is known.
Then infσ β(ξ1, σ) ≤ infσ β(σ) = α.]

Problem 5.3 (i) Let Z and V be independently distributed as N(δ, 1) and
χ2 with f degrees of freedom respectively. Then the ratio Z ÷

√
V/f has

the noncentral t-distribution with f degrees of freedom and noncentrality
parameter δ, the probability density of which is 11

pδ(t) =
1

2
1
2 (f−1)Γ( 1

2f)
√

πf

∫ ∞

0

y
1
2 (f−1) (5.79)

× exp

(
−1

2
y

)
exp

[
−1

2

(
t

√
y
f
− δ

)2

dy

]
dy

or equivalently

pδ(t) =
1

2
1
2 (f−1)Γ( 1

2f)
√

πf
exp

(
−1

2
fδ2

f + t2

)

×
(

f
f + t2

) 1
2 (f+1) ∫ ∞

0

υf exp

[
−1

2

(
υ − δt√

f + t2

)2]
dv.

Another form is obtained by making the substitution w = t
√

y/
√

f in
(5.79).

(ii) If X1, . . . , Xn are independently distributed as N(ξ, σ2), then
√

nX̄

÷
√∑

(X1 − X̄)2/(n − 1) has the noncentral t-distribution with n− 1 de-
grees of freedom and noncentrality parameter δ =

√
nξ/σ. In the case

δ = 0, show that t-distribution with n − 1 degrees of freedom is given by
(5.18).
[(i): The first expression is obtained from the joint density of Z and V by
transforming to t = z ÷

√
υ/f and υ.]

Problem 5.4 Let X1, . . . , Xn be a sample from N(ξ, σ2). Denote the power of
the one-sided t-test of H : ξ ≤ 0 against the alternative ξ/σ by β(ξ/σ), and by
β∗(ξ/σ) the power of the test appropriate when σ is known. Determine β(ξ/σ)
for n = 5, 10, 15, α = .05, ξ/σ = .07, 0.8, 0.9, 1.0, 1.1, 1.2, and in each case
compare it with β∗(ξ/σ). Do the same for the two-sided case.

Problem 5.5 Let Z1, . . . , Zn be independently normally distributed with com-
mon variance σ2 and means E(Zi) = ζi(i = 1, . . . , s), E(Zi) = 0 (i = s+1, . . . , n).

11A systematic account of this distribution can be found in in Owen (1985) and
Johnson, Kotz and Balakrishnan (1995).
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There exist UMP unbiased tests for testing ζ1 ≤ ζ0
1 and ζ1 = ζ0

1 given by the
rejection regions

Z1 − ζ0
1√

n∑
i=s+1

Z2
i /(n − s)

> C0 and
|Z1 − ζ0

1 |√
n∑

i=s+1
Z2

i /(n − s)

> C.

When ζ1 = ζ0
1 , the test statistic has the t-distribution with n − s degrees of

freedom.

Problem 5.6 Let X1, . . . , Xn be independently normally distributed with com-
mon variance σ2 and means ζ1, . . . , ζn, and let Zi =

∑n
j=1 aijXj , be an orthogonal

transformation (that is,
∑n

i=1 aijaik = 1 or 0 as j = k or j += k). The Z’s are
normally distributed with common variance σ2 and means ζi =

∑
aijξj .

[The density of the Z’s is obtained from that of the X’s by substituting xi =∑
bijzj , where (bij) is the inverse of the matrix (aij), and multiplying by the

Jacobian, which is 1.]

Problem 5.7 If X1, . . . , Xn is a sample from N(ξ, σ2), the UMP unbiased tests
of ξ ≤ 0 and ξ = 0 can be obtained from Problems 5.5 and 5.6 by making an
orthogonal transformation to variables Z1, . . . , Zn such that Z1 =

√
nX̄.

[Then
n∑

i=2

Z2
i =

n∑

i=1

Z2
i − Z2

1 =
n∑

i=1

X2
i − nX̄2 =

n∑

i=1

(Xi − X̄)2.]

Problem 5.8 Let X1, X2, . . . be a sequence of independent variables distributed
as N(ξ, σ2), and let Yn = [nXn+1 − (X1 + · · · + Xn)]/

√
n(n + 1) . Then the

variables Y1, Y2, . . . are independently distributed as N(0, σ2).

Problem 5.9 Let N have the binomial distribution based on 10 trials with suc-
cess probability p. Given N = n, let X1, · · · , Xn be i.i.d. normal with mean θ and
variance one. The data consists of (N, X1, · · · , XN ).
(i). If p has a known value p0, show there does not exist a UMP test of θ = 0
versus θ > 0. [In fact, a UMPU test does not exist either.]
(ii). If p is unknown (taking values in (0,1)), find a UMPU test of θ = 0 versus
θ > 0.

Problem 5.10 As in Example 3.9.2, suppose X is multivariate normal with
unknown mean ξ = (ξ1, . . . , ξk)T and known positive definite covariance matrix
Σ. Assume a = (a1, . . . , ak)T is a fixed vector. The problem is to test

H :
k∑

i=1

aiξi = δ vs. K :
k∑

i=1

akξi += δ .

Find a UMPU level α test. Hint: First consider Σ = Ik, the identity matrix.

Problem 5.11 Let Xi = ξ +Ui, and suppose that the joint density f of the U ’s
is spherically symmetric, that is, a function of

∑
U2

i only,

f(u1, . . . , un) = q(
∑

u2
i ) .
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Show that the null distribution of the one-sample t-statistic is independent of
q and hence is the same as in the normal case, namely Student’s t with n − 1
degrees of freedom. Hint: Write tn as

n1/2X̄n/
√∑

X2
j

√∑
(Xi − X̄n)2/(n − 1)

∑
X2

j

,

and use the fact that when ξ = 0, the density of X1, . . . , Xn is constant over
the spheres

∑
x2

j = c and hence the conditional distribution of the variables

Xi/
√∑

X2
j given

∑
X2

j = c is uniform over the conditioning sphere and hence

independent of q. Note. This model represents one departure from the normal-
theory assumption, which does not affect the level of the test. The effect of a
much weaker symmetry condition more likely to arise in practice is investigated
by Efron (1969).

Section 5.3

Problem 5.12 Let X1, . . . , Xn and Y1, . . . , Yn be independent samples from
N(ξ, σ2) and N(η, τ2) respectively. Determine the sample size necessary to obtain
power ≥ β against the alternatives τ/σ > ∆ when α = .05, β = .9, ∆ = 1.5, 2, 3,
and the hypothesis being tested is H : τ/σ ≤ 1.

Problem 5.13 If m = n, the acceptance region (5.23) can be written as

max

(
S2

Y

∆0S2
X

,
∆0S

2
X

S2
Y

)
≤ 1 − C

C
,

where S2
X =

∑
(Xi − X̄)2, S2

Y =
∑

(Yi − Ȳ )2 and where C is determined by
∫ C

0

Bn−1,n−1(w) dw =
α
2

.

Problem 5.14 Let X1, . . . , Xm and Y1, . . . , Yn be samples from N(ξ, σ2)
and N(η, σ2). The UMP unbiased test for testing η − ξ = 0 can be
obtained through Problems 5.5 and 5.6 by making an orthogonal transfor-
mation from (X1, . . . Xm, Y1, . . . Yn) to (Z1, . . . , Zm+n) such that Z1 = (Ȳ −
X̄)/

√
1/m + (1/n), Z2 = (

∑
Xi +

∑
Yi)/

√
m + n.

Problem 5.15 Exponential densities. Let X1, . . . , Xn, be a sample from a
distribution with exponential density a−1e−(x−b)/a for x ≥ b.

(i) For testing a = 1 there exists a UMP unbiased test given by the acceptance
region

C1 ≤ 2
∑

[xi − min(x1, . . . , xn)] ≤ C2,

where the test statistic has a χ2 -distribution with 2n−2 degrees of freedom
when α = 1, and C1, C2 are determined by

∫ C2

C1

χ2
2n−2(y) dy =

∫ C2

C1

χ2
2n(y) dy = 1 − α.
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(ii) For testing b = 0 there exists a UMP unbiased test given by the acceptance
region

0 ≤ n min(x1, . . . , xn)∑
[xi − min(xi, . . . , xn)]

≤ C.

When b = 0, the test statistic has probability density

p(u) =
n − 1

(1 + u)n
, u ≥ 0.

[These distributions for varying b do not constitute an exponential family, and
Theorem 4.4.1 is therefore not directly applicable. For (i), one can restrict atten-
tion to the ordered variables X(1) < · · · < X(n), since these are sufficient for a and
b, and transform to new variables Z1 = nX(1), Zi = (n− i + 1)[X(i) −X(i−1)] for
i = 2, . . . , n, as in Problem 2.15. When a = 1, Z1 is a complete sufficient statistic
for b, and the test is therefore obtained by considering the conditional problem
given z1. Since

∑n
i=2 Zi, is independent of Z1, the conditional UMP unbiased test

has the acceptance region C1 ≤
∑n

i=2 Zi ≤ C2 for each z1, and the result follows.
For (ii), when b = 0,

∑n
i=1 Zi, is a complete sufficient statistic for a, and the

test is therefore obtained by considering the conditional problem given
∑n

i=1 zi.
The remainder of the argument uses the fact that Z1/

∑n
i=1 Zi is indepen-

dent of
∑n

i=1 Zi, when b = 0, and otherwise is similar to that used to prove
Theorem 5.1.1.]

Problem 5.16 Let X1, . . . , Xn be a sample from the Pareto distribution P (c, τ),
both parameters unknown. Obtain UMP unbiased tests for the parameters c
and τ . [Problems 5.15 and 3.8.]

Problem 5.17 Extend the results of the preceding problem to the case, consid-
ered in Problem 3.29, that observation is continued only until X(1), . . . , X(r) have
been observed.

Problem 5.18 Gamma two-sample problem. Let X1, . . . Xm; Y1, . . . , Yn be
independent samples from gamma distributions Γ(g1, b1), Γ(g2, b2) respectively.

(i) If g1, g2 are known, there exists a UMP unbiased test of H : b2 = b1 against
one- and two-sided alternatives, which can be based on a beta distribution.
[Some applications and generalizations are discussed in Lentner and
Buehler (1963).]

(ii) If g1, g2 are unknown, show that a UMP unbiased test of H continues to
exist, and describe its general form.

(iii) If b2 = b1 = b (unknown), there exists a UMP unbiased test of g2 = g1

against one- and two-sided alternatives; describe its general form.

[(i): If Yi(i = 1, 2) are independent Γ(gi, b), then Y1 + Y2 is Γ(g1 + g2, b) and
Y1/(Y1 + Y2) has a beta distribution.]
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Problem 5.19 Inverse Gaussian distribution.12 Let X1, . . . , Xn be a sample
from the inverse Gaussian distribution I(µ, τ), both parameters unknown.

(i) There exists a UMP unbiased test of µ ≤ µ0 against µ > µ0, which rejects
when X̄ > C[

∑
(Xi + 1/Xi)], and a corresponding UMP unbiased test of

µ = µ0 against µ0 += µ0.
[The conditional distribution needed to carry out this test is given by
Chhikara and Folks (1976).]

(ii) There exist UMP unbiased tests of H : τ = τ0 against both one- and
two-sided hypotheses based on the statistic V =

∑
(1/Xi − 1/X̄).

(iii) When τ = τ0, the distribution of τ0V is χ2
n−1.

[Tweedie (1957).]

Problem 5.20 Let X1, . . . , Xm and Y1, . . . , Yn be independent samples from
I(µ, σ) and I(ν, τ) respectively.

(i) There exist UMP unbiased tests of τ2/τ1 against one- and two-sided
alternatives.

(ii) If τ = σ, there exist UMP unbiased tests of ν/µ against one- and two-sided
alternatives.

[Chhikara (1975).]

Problem 5.21 Suppose X and Y are independent, normally distributed with
variance 1, and means ξ and η, respectively. Consider testing the simple null
hypothesis ξ = η = 0 against the composite alternative hypothesis ξ > 0, η > 0.
Show that a UMPU test does not exist.

Section 5.4

Problem 5.22 On the basis of a sample X = (X1, . . . , Xn) of fixed size from
N(ξ, σ2) there do not exist confidence intervals for ξ with positive confidence
coefficient and of bounded length.13

[Consider any family of confidence intervals δ(X) ± L/2 of constant length L.
Let ξ1, . . . ξ2n be such that |ξi − ξj | > L whenever i += j. Then the sets Si{x :
|δ(x) − ξi| ≤ L/2} (i = 1, . . . , 2N) are mutually exclusive. Also, there exists
σ0 > 0 such that

|Pξi,σ{X ∈ Si}− Pξ1,σ{X ∈ Si}| ≤
1

2N
for σ > σ0,

12For additional information concerning inference in inverse Gaussian distributions,
see Folks and Chhikara (1978) and Johnson, Kotz and Balakrishnan (1994, volume 1).

13A similar conclusion holds in the problem of constructing a confidence interval for the
ratio of normal means (Fieller’s problem), as discussed in Koschat (1987). For problems
where it is impossible to construct confidence intervals with finite expected length, see
Gleser and Hwang (1987).
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as is seen by transforming to new variables Yj = (Xj − ξ1)/σ and applying
Lemmas 5.5.1 and 5.11.1 of the Appendix. Since mini Pξ1,σ{X ∈ Si} ≤ 1/(2N),
it follows for σ > σ0 that mini Pξ1,σ{X ∈ Si} ≤ 1/N , and hence that

inf
ξ,σ

Pξ,σ

{
|δ(X) − ξ| ≤ L

2

}
≤ 1

N

The confidence coefficient associated with the intervals δ(X) ± L/2 is therefore
zero, and the same must be true a fortiori of any set of confidence intervals of
length ≤ L.]

Problem 5.23 Stein’s two-stage procedure.

(i) If mS2/σ2 has a χ2 = distribution with m degrees of freedom, and if
the conditional distribution of Y given S = s is N(0, σ2/S2), then Y has
Student’s t-distribution with m degrees of freedom.

(ii) Let X1, X2, . . . be independently distributed as N(ξ, σ2). Let X̄0 =∑n0
i=1 Xi/n0, S2 =

∑n0
i=1(Xi − X̄0)

2/(n0 − 1), and let a1 = · · · = an0 = a,
an0+1 = · · · = an = b and n ≥ n0 be measurable functions of S. Then

Y =

n∑
i=1

ai(Xi − ξ)

√
S2

∑n
i=1 a2

i

has Student’s distribution with n0 − 1 degrees of freedom.

(iii) Consider a two-stage sampling scheme
∏

1, in which S2 is computed from
an initial sample of size n0, and then n − n0 additional observations are
taken. The size of the second sample is such that

n = max

{
n0 + 1,

[
S2

c

]
+ 1

}

where c is any given constant and where [y] denotes the largest integer
≥ y. There then exist numbers a1, . . . , an such that a1 = · · · = an0 , an0+1 =
· · · an,

∑n
i=1 ai = 1,

∑n
i=1 a2

i = c/S2. It follows from (ii) that
∑n

i=1 ai(Xi−
ξ)/

√
c has Student’s t-distribution with n0 − 1 degrees of freedom.

(iv) The following sampling scheme
∏

2, which does not require that the second
sample contain at least one observation, is slightly more efficient than

∏
1,

for the applications to be made in Problems 5.24 and 5.25. Let n0, S2, and
c be defined as before; let

n = max

{
n0,

[
S2

c

]
+ 1

}

ai = 1/n (i = 1, . . . , n), and X̄ =
∑n

i=1 aiXi. Then
√

n(X̄−ξ)/S has again
the t-distribution with n0 − 1 degrees of freedom.

[(ii): Given S = s, the quantities a, b, and n are constants,
∑n

i=1 ai(Xi − ξ) =
n0a(X̄0 − ξ) is distributed as N(0, n0a

2σ2), and the numerator of Y is therefore
normally distributed with zero mean and variance σ2 ∑n

i=1 a2
i . The result now

follows from (i).]

Problem 5.24 Confidence intervals of fixed length for a normal mean.
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(i) In the two-stage procedure
∏

1, defined in part (iii) of the preceding prob-
lem, let the number c be determined for any given L > 0 and 0 < γ < 1
by

∫ L/2
√

c

−L/2
√

c

tn0−1(y) dy = γ,

where tn0−1 denotes the density of the t-distribution with n0−1 degrees of
freedom. Then the intervals

∑n
i=1 aiXi ± L/2 are confidence intervals for

ξ of length L and with confidence coefficient γ.

(ii) Let c be defined as in (i), and let the sampling procedure be
∏

2 as defined
in part (iv) of Problem 5.23. The intervals X̄ ±L/2 are then confidence in-
tervals of length L for ξ with confidence coefficient ≥ γ, while the expected
number of observations required is slightly lower than under

∏
1.

[(i): The probability that the intervals cover ξ equals

Pξ,σ





− L

2
√

c
≤

n∑
i=1

ai(Xi − ξ)

√
c

≤ L

2
√

c





= γ

(ii): The probability that the intervals cover ξ equals

Pξ,σ

{√
n|X̄ − ξ|

S
≤

√
nL

2S

}
≥

{√
n|X̄ − ξ|

S
≤ L

2
√

c

}
= γ.]

Problem 5.25 Two-stage t-tests with power independent of σ.

(i) For the procedure
∏

1 with any given c, let C be defined by
∫ ∞

C

tn0−1(y) dy = α.

Then the rejection region (
∑n

i=1 aiXi − ξ0)/
√

c > C defines a level-α test
of H : ξ ≤ ξ0 with strictly increasing power function βc(ξ) depending only
on ξ.

(ii) Given any alternative ξ1 and any α < β < 1, the number c can be chosen
so that βc(ξ1) = β.

(iii) The test with rejection region
√

n(X̄ − ξ0)/S > C based on
∏

2 and the
same c as in (i) is a level-α test of H which is uniformly more powerful
than the test given in (i).

(iv) Extend parts (i)–(iii) to the problem of testing ξ = ξ0 against ξ += ξ0.

[(i) and (ii): The power of the test is

βc(ξ) =

∫

C−(ξ−ξ0)/
√

c

tn0−1(y) dy.

(iii): This follows from the inequality
√

n|ξ − ξ0|/S ≥ |ξ − ξ0|/
√

c.]

Problem 5.26 Let S(x) be a family of confidence sets for a real-valued pa-
rameter θ, and let µ[S(x)] denote its Lebesgue measure. Then for every fixed
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distribution Q of X (and hence in particular for Q = Pθ0 where θ0 is the true
value of θ)

EQ{µ[S(X)]} =

∫

θ '=θ0

Q{θ ∈ S(X)} dθ

provided the necessary measurability conditions hold.
[The identity is known as the Ghosh-Pratt identity; see Ghosh (1961) and Pratt
(1961a). To prove it, write the expectation on the left side as a double integral,
apply Fubini’s theorem, and note that the integral on the right side is unchanged
if the point θ = θ0 is added to the region of integration.]

Problem 5.27 Use the preceding problem to show that uniformly most accurate
confidence sets also uniformly minimize the expected Lebesgue measure (length
in the case of intervals) of the confidence sets.14

Section 5.5

Problem 5.28 Let X1, . . . , Xn be distributed as in Problem 5.15. Then the most
accurate unbiased confidence intervals for the scale parameter a are

2
C2

∑
[xi − min(x1, . . . , xn)] ≤ a ≤ 2

C1

∑
[xi − min(x1, . . . , xn)].

Problem 5.29 Most accurate unbiased confidence intervals exist in the follow-
ing situations:

(i) If X, Y are independent with binomial distributions b(p1, m) and b(p2, m),
for the parameter p1q2/p2q1.

(ii) In a 2 × 2 table, for the parameter ∆ of Section 4.6.

Problem 5.30 Shape parameter of a gamma distribution. Let X1, . . . , Xn be a
sample from the gamma distribution Γ(g, b) defined in Problem 3.34.

(i) There exist UMP unbiased tests of H : g ≤ g0 against g > g0 and of
H ′ : g = g0 against g += g0, and their rejection regions are based on
W =

∏
(Xi/X̄).

(ii) There exist uniformly most accurate confidence intervals for g based on W .

[Shorack (1972).]
Notes.

(1) The null distribution of W is discussed in Bain and Engelhardt (1975),
Glaser (1976), and Engelhardt and Bain (1978).

(2) For g = 1, Γ(g, b) reduces to an exponential distribution, and (i) becomes
the UMP unbiased test for testing that a distribution is exponential against
the alternative that it is gamma with g > 1 or with g += 1.

14For the corresponding result concerning one-sided confidence bounds, see Madansky
(1962).
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(3) An alternative treatment of this and some of the following problems is
given by Bar-Lev and Reiser (1982).

Problem 5.31 Scale parameter of a gamma distribution. Under the assumptions
of the preceding problem, there exists

(i) A UMP unbiased test of H : b ≤ b0 against b > b0 which rejects when∑
Xi > C(

∏
, Xi).

(ii) Most accurate unbiased confidence intervals for b.

[The conditional distribution of
∑

Xi given
∏

Xi, which is required for carrying
out this test, is discussed by Engelhardt and Bain (1977).]

Problem 5.32 In Example 5.5.1, consider a confidence interval for σ2 of the
form I = [d−1

n S2
n, c−1

n S2
n], where S2

n =
∑

i(Xi − X̄)2 and cn < dn are constants.
Subject to the level constraint, choose cn and dn to minimize the length of I.
Argue that the solution has shorter length that the uniformly most accurate
one; however, it is biased and so does not uniformly improve the probability
of covering false values. [The solution, given in Tate and Klett (1959), satisfies

χ2
n+3(cn) = χ2

n+3(dn) and
∫ dn

cn
χ2

n−1(y)dy = 1−α, where χ2
n(y) denotes the Chi-

squared density with n degrees of freedom. Improvements of this interval which
incorporate X̄ into their construction are discussed in Cohen (1972) and Shorrock
(1990); also see Goutis and Casella (1991).]

Section 5.6

Problem 5.33 (i) Under the assumptions made at the beginning of Section
5.6, the UMP unbiased test of H : ρ = ρ0 is given by (5.44).

(ii) Let (ρ, ρ̄) be the associated most accurate unbiased confidence intervals for
ρ = aγ + bδ, where ρ = ρ(a, b), ρ̄ = ρ̄(a, b). Then if f1 and f2 are increasing
functions, the expected value of f1(|ρ̄ − ρ|) + f2(|ρ − ρ|) is an increasing

function of a2/n + b2.
[(i): Make any orthogonal transformation from y1, . . . , yn to new variables
z1, . . . , zn, such that z1 =

∑
i[bvi + (a/n)]yi/

√
(a2/n) + b2, z2 =

∑
i(avi −

b)yi/
√

a2 + nb2, and apply Problems 5.5 and 5.6.
(ii): If a2

1/n + b2
1 < a2

2/n + b2
2, the random variable |ρ̄(a2, b2)− ρ| is stochastically

larger than |ρ̄(a1, b1) − ρ|, and analogously for ρ.]

Section 5.7

Problem 5.34 Verify the posterior distribution of Θ given x in Example 5.7.1.

Problem 5.35 If X1, . . . , Xn, are independent N(θ, 1) and θ has the improper
prior π(θ) ≡ 1, determine the posterior distribution of θ given the X’s.

Problem 5.36 Verify the posterior distribution of p given x in Example 5.7.2.
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Problem 5.37 In Example 5.7.3, verify the marginal posterior distribution of ξ
given x.

Problem 5.38 In Example 5.7.4, show that

(i) the posterior density π(σ | x) is of type (c) of Example 5.7.2;

(ii) for sufficiently large r, the posterior density of σr given x is no longer of
type (c).

Problem 5.39 If X is normal N(θ, 1) and θ has a Cauchy density b/{π[b2 +(θ−
µ)2]}, determine the possible shapes of the HPD regions for varying µ and b.

Problem 5.40 Let θ = (θ1, . . . , θs) with θi real-valued, X have density pθ(x),
and Θ a prior density π(θ). Then the 100γ% HPD region is the 100γ% credible
region R that has minimum volume.
[Apply the Neyman–Pearson fundamental lemma to the problem of minimizing
the volume of R.]

Problem 5.41 Let X1, . . . , Xm and Y1, . . . , Yn be independently distributed as
N(ξ, σ2) and N(η, σ2) respectively, and let (ξ, η, σ) have the joint improper prior
density given by

π(ξ, η, σ) dξ dη dσ = dξ dη · 1
σ

dσ for all −∞ < ξ, η < ∞, 0 < σ.

Under these assumptions, extend the results of Examples 5.7.3 and 5.7.4 to
inferences concerning (i) η − ξ and (ii) σ.

Problem 5.42 Let X1, . . . , Xm and Y1, . . . , Yn be independently distributed as
N(ξ, σ2) and N(η, τ2), respectively and let (ξ, η, σ, τ) have the joint improper
prior density π(ξ, η, σ, τ) dξ dη dσ dτ = dξ dη(1/σ) dσ(1/τ) dτ . Extend the result
of Example 5.7.4 to inferences concerning τ2/σ2.
Note. The posterior distribution of η − ξ in this case is the so-called Behrens–
Fisher distribution. The credible regions for η− ξ obtained from this distribution
do not correspond to confidence intervals with fixed coverage probability, and the
associated tests of H : η = ξ thus do not have fixed size (which instead depends
on τ/σ). From numerical evidence [see Robinson (1976) for a summary of his and
earlier results] it appears that the confidence intervals are conservative, that is,
the actual coverage probability always exceeds the nominal one.

Problem 5.43 Let T1, . . . , Ts−1 have the multinomial distribution (2.34), and
suppose that (p1, . . . , ps−1) has the Dirichlet prior density D(a1, . . . , as) with
density proportional to pa1−1

1 . . . pas−1
s , where ps = 1−(p1+· · ·+ps−1). Determine

the posterior distribution of (p1, . . . , ps−1) given the T ’s.

Section 5.8

Problem 5.44 Prove Theorem 5.8.1 for arbitrary values of c.
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Section 5.9

Problem 5.45 If c = 1, m = n = 4, α = .1 and the ordered coordinates
z(1), . . . , z(N) of a point z are 1.97, 2.19, 2.61, 2.79, 2.88, 3.02, 3.28, 3.41, determine
the points of S(z) belonging to the rejection region (5.53).

Problem 5.46 Confidence intervals for a shift. [Maritz (1979)]

(i) Let X1, . . . , Xm; Y1, . . . , Yn be independently distributed according to con-
tinuous distributions F (x) and G(y) = F (y − ∆) respectively. Without
any further assumptions concerning F , confidence intervals for ∆ can
be obtained from permutation tests of the hypotheses H(∆0) : ∆ =
∆0. Specifically, consider the point (z1, . . . , zm+n) = (x1, . . . , xm, y1 −
∆, . . . , yn − ∆) and the

(
m+n

m

)
permutations i1 < · · · < im; im+1 < · · · <

im+n of the integers 1, . . . , m + n. Suppose that the hypothesis H(∆) is
accepted for the k of these permutations which lead to the smallest values
of

∣∣∣∣∣

m+n∑

j=m+1

zij /n −
m∑

j=1

zij /m

∣∣∣∣∣

where

k = (1 − α)

(
m + n

m

)
.

Then the totality of values ∆ for which H(∆) is accepted constitute an
interval, and these intervals are confidence intervals for ∆ at confidence
level 1 − α.

(ii) Let Z1, . . . , ZN be independently distributed, symmetric about θ, with
distribution F (z − θ), where F (z) is continuous and symmetric about 0.
Without any further assumptions about F , confidence intervals for θ can be
obtained by considering the 2N points Z′

1, . . . , Z
′
N where Z′

i = ±(Zi − θ0),
and accepting H(θ0) : θ = θ0 for the k of these points which lead to the
smallest values of |

∑
Z′

i|, where k = (1 − α)2N .

[(i): A point is in the acceptance region for H(∆) if
∣∣∣∣

∑
(yj − ∆)

n
−

∑
xi

m

∣∣∣∣ = |ȳ − x̄ − ∆|

is exceeded by at least
(

m+n
n

)
− k of the quantities |ȳ′ − x̄′ − γ∆|, where

(x′
1, . . . , x

′
m, y′

1, . . . , y
′
n) is a permutation of (x1, . . . , xm, y1, . . . , yn), the quantity

γ is determined by this permutation, and |γ| ≤ 1. The desired result now follows
from the following facts (for an alternative proof, see Section 14): (a) The set
of ∆’s for which (ȳ − x̄ − ∆)2 ≤ (ȳ′ − x̄′ − γ∆)2 is, with probability one, an
interval containing ȳ − x̄. (b) The set of ∆’s for which (ȳ − x̄ − ∆)2 is exceeded
by a particular set of at least

(
m+n

m

)
− k of the quantities (ȳ′ − x̄′ − γ∆)2 is the

intersection of the corresponding intervals (a) and hence is an interval containing
ȳ − x̄. (c) The set of ∆’s of interest is the union of the intervals (b) and, since
they have a nonempty intersection, also an interval.]
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Section 5.10

Problem 5.47 In the matched-pairs experiment for testing the effect of a treat-
ment, suppose that only the differences Zi = Yi −Xi are observable. The Z’s are
assumed to be a sample from an unknown continuous distribution, which under
the hypothesis of no treatment effect is symmetric with respect to the origin. Un-
der the alternatives it is symmetric with respect to a point ζ > 0. Determine the
test which among all unbiased tests maximizes the power against the alternatives
that the Z’s are a sample from N(ζ, σ2) with ζ > 0.

[Under the hypothesis, the set of statistics (
∑n

i=1 Z2
i , . . . ,

∑n
i=1 Z2n

i ) is suffi-
cient; that it is complete is shown as the corresponding result in Theorem 5.8.1.
The remainder of the argument follows the lines of Section 11.]

Problem 5.48 (i) If X1, . . . , Xn; Y1, . . . , Yn are independent normal vari-
ables with common variance σ2 and means E(Xi) = ξi, E(Yi) = ξi + ∆,
the UMP unbiased test of ∆ = 0 against ∆ > 0 is given by (5.58).

(ii) Determine the most accurate unbiased confidence intervals for ∆.
[(i): The structure of the problem becomes clear if one makes the orthogonal

transformation X ′
i = (Yi − Xi)/

√
2, Y ′

i = (Xi + Yi)/
√

2.]

Problem 5.49 Comparison of two designs. Under the assumptions made at the
beginning of Section 12, one has the following comparison of the methods of
complete randomization and matched pairs. The unit effects and experimental
effects Ui and Vi are independently normally distributed with variances σ2

1 , σ2

and means E(Ui) = µ and E(Vi) = ξ or η as Vi corresponds to a control or
treatment. With complete randomization, the observations are Xi = Ui + Vi

(i = 1, . . . , n) for the controls and Yi = Un+i +Vn+i (i = 1, . . . , n) for the treated
cases, with E(Xi) = µ+ξ, E(Yi) = µ+η. For the matched pairs, if the matching is
assumed to be perfect, the X’s are as before, but Yi = Ui +Vm+i. UMP unbiased
tests are given by (5.27) for complete randomization and by (5.58) for matched
pairs. The distribution of the test statistic under an alternative ∆ = η − ξ is the
noncentral t-distribution with noncentrality parameter

√
n∆/

√
2(σ2 + σ2

1) and
2n − 2 degrees of freedom in the first case, and with noncentrality parameter√

n∆/
√

2σ and n − 1 degrees of freedom in the second. Thus the method of
matched pairs has the disadvantage of a smaller number of degrees of freedom
and the advantage of a larger noncentrality parameter. For α = .05 and ∆ = 4,
compare the power of the two methods as a function of n when σ1, σ = 2 and
when σ1 = 2, σ = 1.

Problem 5.50 Continuation. An alternative comparison of the two designs is
obtained by considering the expected length of the most accurate unbiased con-
fidence intervals for ∆ = η − ξ in each case. Carry this out for varying n and
confidence coefficient 1 − α = .95 when σ1 = 1, σ = 2 and when σ1 = 2, σ = 1.

Section 5.11

Problem 5.51 Suppose that a critical function φ0 satisfies (5.64) but not (5.66),
and let α < 1

2 . Then the following construction provides a measurable critical



5.14. Problems 205

function φ satisfying (5.66) and such that φ0(z) ≤ φ(z) for all z Inductively,
sequences of functions φ1, φ2, . . . and ψ0, ψ1, . . . are defined through the relations

ψm(z) =
∑

z′∈S(z)

φm(z′)
N1! . . . Nc!

, m = 0, 1, . . . ,

and

φm(z) =






φm−1(z) + [α − ψm−1(z)]
if both φm−1(z) and ψm−1(z) are < α,

φm−1(z) otherwise.

The function φ(z) = lim φm(z) then satisfies the required conditions.
[The functions φm are nondecreasing and between 0 and 1. It is further seen by

induction that 0 ≤ α−ψm(z) ≤ (1− γ)m[α−ψ0(z)], where γ = 1/(N1! . . . Nc!).]

Problem 5.52 Consider the problem of testing H : η = ξ in the family of
densities (5.61) when it is given that σ > c > 0 and that the point (ζ11, . . . , ζcNc

of (5.62) lies in a bounded region R containing a rectangle, where c and R are
known. Then Theorem 5.11.1 is no longer applicable. However, unbiasedness of
a test φ of H implies (5.66), and therefore reduces the problem to the class of
permutation tests.
[Unbiasedness implies

∫
(φ(z)pσ,ζ(z) dz = α and hence

α =

∫
ψ(z)pσ,ζ(z) dz =

∫
ψ(z)

1

(
√

2πσ)N
exp

[
− 1

2σ2

∑ ∑
(zij − ζij)

2

]
dz

for all σ > c and ζ in R. The result follows from completeness of this last family.]

Problem 5.53 To generalize Theorem 5.11.1 to other designs, let Z =
(Z1, . . . , ZN ) and let G = {g1, . . . , gr} be a group of permutations of N co-
ordinates or more generally a group of orthogonal transformations of N -space
If

Pσ,ζ(z) =
1
r

r∑

k=1

1

(
√

2πσ)N
exp

(
− 1

2σ2
|z − gkζ|2

)
, (5.80)

where |z|2 =
∑

z2
i , then

∫
φ(z)pσ,ζ(z) dz ≤ α for all σ > 0 and all ζ implies

1
r

∑

z′∈S(z)

φ(z′) ≤ α a.e., (5.81)

where S(z) is the set of points in N -space obtained from z by applying to it all
the transformations gk, k = 1, . . . , r.

Problem 5.54 Generalization of Corollary 5.11.1. Let H be the class of densi-
ties (5.80) with σ > 0 and −∞ < ζi < ∞ (i = 1, . . . , N). A complete family of
tests of H at level of significance α is the class of permutation tests satisfying

1
r

∑

z′∈S(z)

φ(z′) = α a.e. (5.82)
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Section 5.12

Problem 5.55 If c = 1, m = n = 3, and if the ordered x’s and y’s are respec-
tively 1.97, 2.19, 2.61 and 3.02, 3.28, 3.41, determine the points δ(1), . . . , δ(19)

defined as the ordered values of (5.72).

Problem 5.56 If c = 4, mi = ni = 1, and the pairs (xi, yi) are (1.56,2.01),
(1.87,2.22), (2.17,2.73), and (2.31,2.60), determine the points δ(1), . . . , δ(15) which
define the intervals (5.71).

Problem 5.57 If m, n are positive integers with m ≤ n, then

m∑

K=1

(
m
K

)(
n
K

)
=

(
m + n

m

)
− 1

Problem 5.58 (i) Generalize the randomization models of Section 14 for
paired comparisons (n1 = · · · = nc = 2) and the case of two groups (c = 1)
to an arbitrary number c of groups of sizes n1, . . . , nc.

(ii) Generalize the confidence intervals (5.71) and (5.72) to the randomization
model of part (i).

Problem 5.59 Let Z1, . . . , Zn be i.i.d. according to a continuous distribution
symmetric about θ, and let T(1) < · · · < T(M) be the ordered set of M = 2n − 1
subsamples; (Zi1 + · · · + Zir )/r, r ≥ 1. If T(0) = −∞, T(M+1) = ∞, then

Pθ[T(i) < θ < T(i+1)] =
1

M + 1
for all i = 0, 1, . . . , M.

[Hartigan (1969).]

Problem 5.60 (i) Given n pairs (x1, y1), . . . , (xn, yn), let G be the group of
2n permutations of the 2n variables which interchange xi and yi in all,
some, or none of the n pairs. Let G0 be any subgroup of G, and let e be
the number of elements in G0. Any element g ∈ G0 (except the identity)
is characterized by the numbers i1, . . . , ir (r ≥ 1) of the pairs in which xi

and yi have been switched. Let di = yi − xi, and let δ(1) < · · · < δ(e−1),
denote the ordered values (di1 + · · · + dir )/r corresponding to G0. Then
(5.71) continues to hold with e − 1 in place of M .

(ii) State the generalization of Problem 5.59 to the situation of part (i).
[Hartigan (1969).]

Problem 5.61 The preceding problem establishes a 1 : 1 correspondence be-
tween e− 1 permutations T of G0 which are not the identity and e− 1 nonempty
subsets {i1, . . . , ir} of the set {1, . . . , n}. If the permutations T and T ′ correspond
respectively to the subsets R = {i1, . . . , ir} and R′ = {j1, . . . , js}, then the group
product T ′T corresponds to the subset (R ∩ S̃) ∪ (R̃ ∩ S) = (R ∪ S) − (R ∩ S).
[Hartigan (1969).]



5.14. Problems 207

Problem 5.62 Determine for each of the following classes of subsets of
{1, . . . , n} whether (together with the empty subset) it forms a group under
the group operation of the preceding problem: All subsets {i1, . . . , ir} with

(i) r = 2;

(ii) r = even;

(iii) r divisible by 3.

(iv) Give two other examples of subgroups G0 of G.
Note. A class of such subgroups is discussed by Forsythe and Hartigan
(1970).

Problem 5.63 Generalize Problems 5.60(i) and 5.61 to the case of two groups
of sizes m and n (c = 1).

Section 5.13

Problem 5.64 (i) If the joint distribution of X and Y is the bivariate normal
distribution (5.69), then the conditional distribution of Y given x is the
normal distribution with variance τ2(1 − ρ2) and mean η + (ρτ/σ)(x − ξ).

(ii) Let (X1, Y1), . . . , (Xn, Yn) be a sample from a bivariate normal distribution,
let R be the sample correlation coefficient, and suppose that ρ = 0. Then
the conditional distribution of

√
n − 2R/

√
1 − R2 given x1, . . . , xn, is Stu-

dent’s t-distribution with n−2 degrees of freedom provided
∑

(xi−x̄)2 > 0.
This is therefore also the unconditional distribution of this statistic.

(iii) The probability density of R itself is then

p(r) =
1√
n

Γ[ 12 (n − 1)]

Γ[ 12 (n − 2)]
(1 − r2)

1
2 n−2. (5.83)

[(ii): If vi = (x1 − x̄)/
√∑

(xj − x̄)2 so that
∑

vi = 0,
∑

v2
1 = 1, the statistic can

be written as
∑

viYi√[∑
Y 2

i − nȲ 2 − (
∑

viYi)
2] /(n − 2)

.

Since its distribution depends only on ρ one can assume η = 0, τ = 1. The desired
result follows from Problem 5.6 by making an orthogonal transformation from
(Y1, , . . . , Yn) to (Z1, . . . , Zn) such that Z1 =

√
nȲ , Z2 =

∑
viYi.]

Problem 5.65 (i) Let (X1, Y1), . . . , (Xn, Yn) be a sample from the bivariate
normal distribution (5.69), and let S2

1 =
∑

(Xi − X̄)2, S2
2 =

∑
(Yi − Ȳ )2,

S12 =
∑

(Xi − X̄)(Yi − Ȳ ). There exists a UMP unbiased test for testing
the hypothesis τ/σ = ∆. Its acceptance region is

|∆2S2
1 − S2

2 |√
(∆2S2

1 + S2
2)2 − 4∆2S2

12

≤ C,

and the probability density of the test statistic is given by (5.83) when the
hypothesis is true.
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(ii) Under the assumption τ = σ, there exists a UMP unbiased test for testing
η = ξ, with acceptance region |Ȳ −X̄|/

√
S2

1 + S2
2 − 2S12 ≤ C. On multipli-

cation by a suitable constant the test statistic has Student’s t-distribution
with n − 1 degrees of freedom when η = ξ.

[Due to Morgan (1939) and Hsu (1940). (i): The transformation U = ∆X + Y ,
V = X − (1/∆)Y reduces the problem to that of testing that the correlation
coefficient in a bivariate normal distribution is zero.
(ii): Transform to new variables Vi = Yi − Xi, Ui = Yi + Xi.]

Problem 5.66 (i) Let (X1, Y1), . . . , (Xn, Yn) be a sample from the bivariate
normal distribution (5.73), and let S2

1 =
∑

(Xi − X̄)2, S12 =
∑

(Xi −
X̄)(Yi − Ȳ ), S2

2 =
∑

(Yi − Ȳ )2.
Then (S2

1 , S12, S
2
2) are independently distributed of (X̄, Ȳ ), and their joint

distribution is the same as that of (
∑n−1

i=1 X ′
i
2,

∑n−1
i=1 X ′

iY
′

i ,
∑n−1

i=1 Y ′
i
2),

where (X ′
i, Y

′
i ), i = 1, . . . , n − 1, are a sample from the distribution (5.73)

with ξ = η = 0.

(ii) Let X1, . . . , Xm and Y1, . . . , Ym be two samples from N(0, 1). Then the
joint density of S2

1 =
∑

X2
i , S12 =

∑
XiYi, S2

2 =
∑

Y 2
i is

1
4πΓ(m − 1)

(s2
1s

2
2 − s2

12)
1
2 (m−3) exp

[
−1

2
(s2

1 + s2
2)

]

for s2
12 ≤ s2

1s
2
2, and zero elsewhere.

(iii) The joint density of the statistics (S2
1 , S12, S

2
2) of part (i) is

(s2
1s

2
2 − s2

12)
1
2 (n−4)

4πΓ(n − 2)
(
στ

√
1 − ρ2

)n−1 exp

[
− 1

2(1 − ρ2)

(
s2
1

σ2
− 2ρs12

στ
+

s2
2

τ2

)]

(5.84)
for s2

12 ≤ s2
1s

2
2 and zero elsewhere.

[(i): Make an orthogonal transformation from X1, . . . , Xn to X ′
1, . . . , X

′
n such that

X ′
n =

√
nX̄, and apply the same orthogonal transformation also to Y1, . . . , Yn.

Then

Y ′
n =

√
nȲ ,

n−1∑

i=1

X ′
iY

′
i =

n∑

i=1

(Xi − X̄)(Yi − Ȳ ),

n−1∑

i=1

X ′
i
2 =

n∑

i=1

(Xi − X̄)2,
n−1∑

i=1

Y ′
i
2 =

n∑

i=1

(Yi − Ȳ )2.

The pairs of variables (X ′
1, Y

′
1 ), . . . , (X ′

n, Y ′
n) are independent, each with a bi-

variate normal distribution with the same variances and correlation as those of
(X, Y ) and with means E(X ′

i) − E(Y ′
i ) = 0 for i = 1, . . . , n − 1.

(ii): Consider first the joint distribution of S12 =
∑

xiYi and S2
2 =

∑
Y 2

i given
x1 . . . , xm. Letting Z1 = S12/

√∑
x2

i and making an orthogonal transformation
from Y1, . . . , Ym to Z1, . . . , Zm so that S2

2 =
∑m

i=1 Z2
i , the variables Z1 and∑m

i=2 Z2
i = S2

2 − Z2
1 are independently distributed as N(0, 1) and χ2

m−1 respec-
tively. From this the joint conditional density of S12 = s1Z1 and S2

2 is obtained by
a simple transformation of variables. Since the conditional distribution depends
on the x’s only through s2

1, the joint density of S2
1 , S12, S2

2 is found by multiplying
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the above conditional density by the marginal one of S2
1 , which is χ2

m. The proof
is completed through use of the identity

Γ
[

1
2 (m − 1)

]
Γ
(

1
2m

)
=

√
πΓ(m − 1)

2m−2
.

(iii): If (X ′, Y ′) = (X ′
1, Y

′
1 ; . . . ; X ′

m, Y ′
m) is a sample from a bivariate normal

distribution with ξ = η = 0, then T = (
∑

X ′
i
2,

∑
X ′

iY
′

i ,
∑

Y ′
i
2) is sufficient

for θ(σ, ρ, τ), and the density of T is obtained from that given in part (ii) for
θ0 = (1, 0, 1) through the identity [Problem 3.39 (i)]

pT
θ (t) = pT

θ0(t)
pX′,Y ′

θ (x′, y′)

pX′,Y ′
θ0

(x′, y′)
.

The result now follows from part (i) with m = n − 1.]

Problem 5.67 If (X1, Y1), . . . , (Xn, Yn) is a sample from a bivariate normal
distribution, the probability density of the sample correlation coefficient R is15

pρ(r) =
2n−3

π(n − 3)!
(1 − ρ2)

1
2 (n−1)(1 − r2)

1
2 (n−4) (5.85)

×
∞∑

k=0

Γ2
[

1
2 (n + k − 1)

] (2ρr)k

k!

or alternatively

pρ(r) =
n − 2

π
(1 − ρ2)

1
2 (n−1)(1 − r2)

1
2 (n−4) (5.86)

×
∫ 1

0

tn−2

(1 − ρrt)n−1

1√
1 − t2

dt.

Another form is obtained by making the transformation t = (1− v)/(1− ρrv) in
the integral on the right-hand side of (5.86). The integral then becomes

1

(1 − ρr)
1
2 (2n−3)

∫ 1

0

(1 − v)n−2

√
2v

[
1 − 1

2v(1 + ρr)
]−1/2

dv. (5.87)

Expanding the last factor in powers of v, the density becomes

n − 2√
2π

Γ(n − 1)

Γ(n − 1
2 )

(1 − ρ2)
1
2 (n−1)(1 − r2)

1
2 (n−4)(1 − ρr)−n+ 3

2 (5.88)

×F

(
1
2 ; 1

2 ; n − 1
2 ;

1 + ρr
2

)
,

where

F (a, b, c, x) =
∞∑

j=0

Γ(a + j)
Γ(a)

Γ(b + j)
Γ(b)

Γ(c)
Γ(c + j)

xj

j!
(5.89)

is a hypergeometric function.

15The distribution of R is reviewed by Johnson and Kotz (1970, Vol. 2, Section 32)
and Patel and Read (1982).
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[To obtain the first expression make a transformation from (S2
1 , S2

2 , S12) with
density (5.84) to (S2

1 , S2
2 , R) and expand the factor exp{ρs12/(1 − ρ2)στ} =

exp{ρrs1s2/(1 − ρ2)στ} into a power series. The resulting series can be inte-
grated term by term with respect to s2

1 and s2
2. The equivalence with the second

expression is seen by expanding the factor (1 − ρrt)−(n−1) under the integral in
(5.86) and integrating term by term.]

Problem 5.68 If X and Y have a bivariate normal distribution with correlation
coefficient ρ > 0, they are positively regression-dependent.
[The conditional distribution of Y given x is normal with mean η + ρτσ−1(x− ξ)
and variance τ2(l − ρ2). Through addition to such a variable of the positive
quantity ρτσ−1(x′−x) it is transformed into one with the conditional distribution
of Y given x′ > x.]

Problem 5.69 (i) The functions (5.78) are bivariate cumulative distributions
functions.

(ii) A pair of random variables with distribution (5.78) is positively regression-
dependent. [The distributions (5.78) were introduced by Morgenstem
(1956).]

Problem 5.70 If X, Y are positively regression dependent, they are positively
quadrant dependent.
[Positive regression dependence implies that

P [Y ≤ y | X ≤ x] ≥ P [Y ≤ y | X ≤ x′] for all x < x′ and y, (5.90)

and (5.90) implies positive quadrant dependence.]

5.15 Notes

The optimal properties of the one- and two-sample normal-theory tests were ob-
tained by Neyman and Pearson (1933) as some of the principal applications of
their general theory. Theorem 5.1.2 is due to Basu (1955), and its uses are re-
viewed in Boos and Hughes-Oliver (1998). For converse aspects of this theorem see
Basu (1958), Koehn and Thomas (1975), Bahadur (1979), Lehmann (1980) and
Basu (1982). An interesting application is discussed in Boos and Hughes-Oliver
(1998). In some exponential family regression models where UMPU tests do not
exist, classes of admissible, unbiased tests are obtained in Cohen, Kemperman
and Sackrowitz (1994).

The roots of the randomization model of Section 5.10 can be traced to Neyman
(1923); see Speed (1990) and Fienberg and Tanur (1996). Permutation tests, as
alternatives to the standard tests having fixed critical levels, were initiated by
Fisher (1935a) and further developed, among others, by Pitman (1937, 1938a),
Lehmann and Stein (1949), Hoeffding (1952), and Box and Andersen (1955).
Some aspects of these tests are reviewed in Bell and Sen (1984) and Good (1994).
Applications to various experimental designs are given in Welch (1990). Optimal-
ity of permutation tests in a multivariate nonparametric two-sample setting are
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studied in Runger and Eaton (1992). Explicit confidence intervals based on sub-
sampling were given by Hartigan (1969). The theory of unbiased confidence sets
and its relation to that of unbiased tests is due to Neyman (1937a).



6
Invariance

6.1 Symmetry and Invariance

Many statistical problems exhibit symmetries, which provide natural restrictions
to impose on the statistical procedures that are to be employed. Suppose, for
example, that X1, . . . , Xn are independently distributed with probability densi-
ties pθ1(x1), . . . , pθn(xn). For testing the hypothesis H : θ1 = · · · = θn against
the alternative that the θ’s are not all equal, the test should be symmetric in
x1, . . . , xn, since otherwise the acceptance or rejection of the hypothesis would
depend on the (presumably quite irrelevant) numbering of these variables.

As another example consider a circular target with center O, on which are
marked the impacts of a number of shots. Suppose that the points of impact
are independent observations on a bivariate normal distribution centered on O.
In testing this distribution for circular symmetry with respect to O, it seems
reasonable to require that the test itself exhibit such symmetry. For if it lacks
this feature, a two-dimensional (for example, Cartesian) coordinate system is
required to describe the test, and acceptance or rejection will depend on the
choice of this system, which under the assumptions made is quite arbitrary and
has no bearing on the problem.

The mathematical expression of symmetry is invariance under a suitable group
of transformations. In the first of the two examples above the group is that of
all permutations of the variables x1, . . . , xn since a function of n variables is
symmetric if and only if it remains invariant under all permutations of these
variables. In the second example, circular symmetry with respect to the center
O is equivalent to invariance under all rotations about O.

In general, let X be distributed according to a probability distribution Pθ, θ ∈
Ω, and let g be a transformation of the sample space X . All such transformations
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considered in connection with invariance will be assumed to be 1 : 1 transfor-
mations of X onto itself. Denote by gX the random variable that takes on the
value gx when X = x, and suppose that when the distribution of X is Pθ, θ ∈ Ω,
the distribution of gX is Pθ′ with θ′ also in Ω. The element θ′ of Ω which is
associated with θ in this manner will be denoted by ḡθ, so that

Pθ{gX ∈ A} = Pḡθ{X ∈ A}. (6.1)

Here the subscript θ on the left member indicates the distribution of X, not that
of gX. Equation (6.1) can also be written as Pθ(g

−1A) = Pḡθ(A) and hence as

Pḡθ(gA) = Pθ(A). (6.2)

The parameter set Ω remains invariant under g (or is preserved by g) if ḡθ ∈ Ω
for all θ ∈ Ω, and if in addition for any θ′ ∈ Ω there exists θ ∈ Ω such that
ḡθ = θ′. These two conditions can be expressed by the equation

ḡΩ = Ω. (6.3)

The transformation ḡ of Ω onto itself defined in this way is 1 : 1 provided the
distributions Pθ corresponding to different values of θ are distinct. To see this let
ḡθ1 = ḡθ2. Then Pḡθ1(gA) = Pḡθ2(gA) and therefore Pθ1(A) = Pθ2(A) for all A,
so that θ1 = θ2.

Lemma 6.1.1 Let g, g′ be two transformations preserving Ω. Then the trans-
formations g′g and g−1 defined by

(g′g)x = g′(gx) and g(g−1x) = x for all x ∈ X

also preserve Ω and satisfy

g′g = g′ · ḡ and (g−1) = (ḡ)−1. (6.4)

Proof. If the distribution of X is Pθ then that of gX is Pḡθ and that of g′gX =
g′(gX) is therefore Pḡ′ḡθ. This establishes the first equation of (6.4); the proof of
the second one is analogous.

We shall say that the problem of testing H : θ ∈ ΩH against K : θ ∈ ΩK

remains invariant under a transformation g if ḡ preserves both ΩH and ΩK , so
that the equation

ḡΩH = ΩH (6.5)

holds in addition to (6.3). Let C be a class of transformations satisfying these
two conditions, and let G be the smallest class of transformations containing C
such that g, g′ ∈ G implies that g′g and g−1 belong to G. Then G is a group of
transformations, all of which by Lemma 6.1.1 preserve both Ω and ΩH . Any class
C of transformations leaving the problem invariant can therefore be extended
to a group G. It follows further from Lemma 6.1.1 that the class of induced
transformations ḡ form a group Ḡ. The two equations (6.4) express the fact that
Ḡ is a homomorphism of G.

In the presence of symmetries in both sample and parameter space represented
by the groups G and Ḡ, it is natural to restrict attention to tests φ which are
also symmetric, that is, which satisfy

φ(gx) = φ(x) for all x ∈ X and g ∈ G. (6.6)
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A test φ satisfying (6.6) is said to be invariant under G. The restriction to
invariant tests is a particular case of the principle of invariance formulated in
Section 1.5. As was indicated there and in the examples above, a transformation
g can be interpreted as a change of coordinates. From this point of view, a test
is invariant if it is independent of the particular coordinate system in which the
data are expressed.1

A transformation g, in order to leave a problem invariant, must in particu-
lar preserve the class A of measurable sets over which the distributions Pθ are
defined. This means that any set A ∈ A is transformed into a set of A and is
the image of such a set, so that gA and g−1A both belong to A. Any transfor-
mation satisfying this condition is said to be bimeasurable. Since a group with
each element g also contains g−1 its elements are automatically bimeasurable if
all of them are measurable. If g′ and g are bimeasurable, so are g′g and g−1. The
transformations of the group G above generated by a class C are therefore all
bimeasurable provided this is the case for the transformations of C.

6.2 Maximal Invariants

If a problem is invariant under a group of transformations, the principle of in-
variance restricts attention to invariant tests. In order to obtain the best of these,
it is convenient first to characterize the totality of invariant tests.

Let two points x1, x2 be considered equivalent under G,

x1 ∼ x2( mod G),

if there exists a transformation g ∈ G for which x2 = gx1. This is a true equiva-
lence relation, since G is a group and the sets of equivalent points, the orbits of G,
therefore constitute a partition of the sample space. (Cf. Appendix, Section A.1.)
A point x traces out an orbit as all transformations g of G are applied to it; this
means that the orbit containing x consists of the totality of points gx with g ∈ G.
It follows from the definition of invariance that a function is invariant if and only
if it is constant on each orbit.

A function M is said to be maximal invariant if it is invariant and if

M(x1) = M(x2) implies x2 = gx1 for some g ∈ G, (6.7)

that is, if it is constant on the orbits but for each orbit takes on a different value.
All maximal invariants are equivalent in the sense that their sets of constancy
coincide.

Theorem 6.2.1 Let M(x) be a maximal invariant with respect to G. Then, a
necessary and sufficient condition for φ to be invariant is that it depends on x only
through M(x); that is, that there exists a function h for which φ(x) = h[M(x)]
for all x.

1The relationship between this concept of invariance under reparametrization and
that considered in differential geometry is discussed in Barndorff-Nielson, Cox and Reid
(1986).
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Proof. If φ(x) = h[M(x)] for all x, then φ(gx) = h[M(gx)] = h[M(x)] = φ(x)
so that φ is invariant. On the other hand, if φ is invariant and if M(x1) = M(x2),
then x2 = gx1 for some g and therefore φ(x2) = φ(x1).

Example 6.2.1 (i) Let x = (x1, . . . , xn), and let G be the group of translations

gx = (x1 + c, . . . , xn + c), −∞ < c < ∞.

Then the set of differences y = (x1 −xn, . . . , xn−1 −xn) is invariant under G. To
see that it is maximal invariant suppose that xi−xn = x′

i−x′
n for i = 1, . . . , n−1.

Putting x′
n−xn = c, one has x′

i = xi+c for all i, as was to be shown. The function
y is of course only one representation of the maximal invariant. Others are for
example (x1−x2, x2−x3, . . . , xn−1−xn) or the redundant (x1− x̄, . . . , xn− x̄). In
the particular case that n = 1, there are no invariants. The whole space is a single
orbit, so that for any two points there exists a transformation of G taking one
into the other. In such a case the transformation group G is said to be transitive.
The only invariant functions are then the constant functions φ(x) ≡ c.

(ii) if G is the group of transformations

gx = (cx1, . . . , cxn), c += 0,

a special role is played by any zero coordinates. However, in statistical applica-
tions the set of points for which none of the coordinates is zero typically has
probability 1; attention can then be restricted to this part of the sample space,
and the set of ratios x1/xn, . . . , xn−1/xn is a maximal invariant. Without this
restriction, two points x, x′ are equivalent with respect to the maximal invariant
partition if among their coordinates there are the same number of zeros (if any),
if these occur at the same places, and if for any two nonzero coordinates xi, xj

the ratios xj/xi and x′
j/x′

i are equal.
(iii) Let x = (x1, . . . , xn), and let G be the group of all orthogonal transfor-

mations x′ = Γx of n-space. Then
∑

x2
i is maximal invariant, that is, two points

x and x∗ can be transformed into each other by an orthogonal transformation
if and only if they have the same distance from the origin. The proof of this is
immediate if one restricts attention to the plane containing the points x, x∗ and
the origin.

Example 6.2.2 (i) Let x = (x1, . . . , xn), and let G be the set of n! permutations
of the coordinates of x. Then the set of ordered coordinates (order statistics)
x(1) ≤ · · · ≤ x(n) is maximal invariant. A permutation of the xi obviously does
not change the set of values of the coordinates and therefore not the x(i). On the
other hand, two points with the same set of ordered coordinates can be obtained
from each other through a permutation of coordinates.

(ii) Let G be the totality of transformations x′
i = f(xi), i = 1, . . . , n, such that f

is continuous and strictly increasing, and suppose that attention can be restricted
to the points that have n distinct coordinates. If the xi are considered as n points
on the real line, any such transformation preserves their order. Conversely, if
x1, . . . , xn and x′

1, . . . , x
′
n are two sets of points in the same order, say xi1 < · · · <

xin and x′
i1 < · · · < x′

in
, there exists a transformation f satisfying the required

conditions and such that x′
i = f(xi) for all i. It can be defined for example as

f(x) = x + (x′
i1 − xi1) for x ≤ xi1 , f(x) = x + (x′

in
− xin) for x ≥ xin , and

to be linear between xik and xik+1 for k = 1, . . . , n − 1. A formal expression for
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the maximal invariant in this case is the set of ranks (r1, . . . , rn) of (x1, . . . , xn).
Here the rank ri of xi is defined through

Xi = X(ri)

so that ri is the number of x’s ≤ xi. In particular, ri = 1 if xi is the smallest
x, ri = 2 if it is the second smallest, and so on.

Example 6.2.3 Let x be an n × s matrix (s ≤ n) of rank s, and let G be the
group of linear transformations gx = xB, where B is any nonsingular s×s matrix.
Then a maximal invariant under G is the matrix t(x) = x(xT x)−1xT , where xT

denotes the transpose of x. Here (xT x)−1 is meaningful because the s× s matrix
xT x is nonsingular; see Problem 6.3. That t(x) is invariant is clear, since

t(gx) = xB(BT xT xB)−1BT xT = x(xT x)−1xT = t(x).

To see that t(x) is maximal invariant, suppose that

x1(x
T
1 x1)

−1xT
1 = x2(x

T
2 x2)

−1x2.

Since (xT
i xi)

−1 is positive definite, there exist nonsingular matrices Ci such that
(xT

i xi)
−1 = CiC

T
i and hence

(x1C1)(x1C1)
T = (x2C2)(x2C2)

T .

This implies the existence of an orthogonal matrix Q such that x2C2 = x1C1Q
and thus x2 = x1B with B = C1QC−1

2 , as was to be shown.
In the special case s = n, we have t(x) = I, so that there are no nontrivial

invariants. This corresponds to the fact that in this case G is transitive, since any
two nonsingular n×n matrices x1 and x2 satisfy x2 = x1B with B = x−1

1 x2. This
result can be made more intuitive through a geometric interpretation. Consider
the s-dimensional subspace S of Rn spanned by the s columns of x. Then P =
x(xT x)−1xT has the property that for any y in Rn, the vector Py is the projection
of y onto S. (This will be proved in Section 7.2.) The invariance of P expresses
the fact that the projection of y onto S is independent of the choice of vectors
spanning S. To see that it is maximal invariant, suppose that the projection of
every y onto the spaces S1 and S2 spanned by two different sets of s vectors is
the same. Then S1 = S2, so that the two sets of vectors span the same space.
There then exists a nonsingular transformation taking one of these sets into the
other.

A somewhat more systematic way of determining maximal invariants is ob-
tained by selecting, by means of a specified rule, a unique point M(x) on
each orbit. Then clearly M(X) is maximal invariant. To illustrate this method,
consider once more two of the earlier examples.

Example 6.2.1(i) (continued). The orbit containing the point (a1, . . . , an) un-
der the group of translations is the set (a1 + c, . . . , an + c),−∞ < c < ∞}, which
is a line in En.

(a) As representative point M(x) on this line, take its intersection with the
hyperplane xn = 0. Since then an + c = 0, this point corresponds to the
value c = −an and thus has coordinates (a1 − an, . . . , an−1 − an, 0). This
leads to the maximal invariant (x1 − xn, . . . , xn−1 − xn).
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(b) An alternative point on the line is its intersection with the hyperplane∑
xi = 0. Then c = −ā, and M(a) = (a1 − ā, . . . , an − ā).

(c) The point need not be specified by an intersection property. It can for in-
stance be taken as the point on the line that is closest to the origin. Since
the value of c minimizing

∑
(ai + c)2 is c = −ā, this leads to the same point

as (b).

Example 6.2.1(iii) (continued). The orbit containing the point (a1, . . . , an)
under the group of orthogonal transformations is the hypersphere containing
(a1, . . . , an) and with center at the origin. As representative point on this sphere,
take its north pole, i.e. the point with a1 = · · · = an−1 = 0. The coordinates of
this point are (0, . . . , 0,

√∑
a2

i ) and hence lead to the maximal invariant
∑

x2
i .

(Note that in this example, the determination of the orbit is essentially equivalent
to the determination of the maximal invariant.)

Frequently, it is convenient to obtain a maximal invariant in a number of
steps, each corresponding to a subgroup of G. To illustrate the process and a
difficulty that may arise in its application, let x = (x1, . . . , xn), suppose that the
coordinates are distinct, and consider the group of transformations

gx = (ax1 + b, . . . , axn + b), a += 0, −∞ < b < ∞.

Applying first the subgroup of translations x′
i = xi + b, a maximal invariant is

y = (y1, . . . , yn−1) with yi = xi − xn. Another subgroup consists of the scale
changes x′′

i = axi. This induces a corresponding change of scale in the y’s: y′′
i =

ayi, and a maximal invariant with respect to this group acting on the y-space is
z = (z1, . . . , zn−2) with zi = yi/yn−1. Expressing this in terms of the x’s, we get
zi = (xi − xn)/(xn−1 − xn), which is maximal invariant with respect to G.

Suppose now the process is carried out in the reverse order. Application first
of the subgroup x′′

i = axi yields as maximal invariant u = (u1, . . . , un−1) with
ui = xi/xn. However, the translations x′

i = xi + b do not induce transformations
in u-space, since (xi + b)/(xn + b) is not a function of xi/xn.

Quite generally, let a transformation group G be generated by two subgroups
D and E in the sense that it is the smallest group containing D and E. Then G
consists of the totality of products emdm . . . e1d1 for m = 1, 2, . . . , with di ∈ D,
ei ∈ E (i = 1, . . . , m).2 The following theorem shows that whenever the process
of determining a maximal invariant in steps can be carried out at all, it leads to
a maximal invariant with respect to G.

Theorem 6.2.2 Let G be a group of transformations, and let D and E be two
subgroups generating G. Suppose that y = s(x) is maximal invariant with respect
to D, and that for any e ∈ E

s(xi) = s(x2) implies s(ex1) = s(ex2). (6.8)

If z = t(y) is maximal invariant under the group E∗ of transformations e∗ defined
by

e∗y = s(ex) when y = s(x),

2See Section A.1 of the Appendix.
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then z = t[s(x)] is maximal invariant with respect to G.

Proof. To show that t[s(x)] is invariant, let x′ = gx, g = emdm · · · e1d1. Then

t[s(x′)] = t[s(emdm · · · e1d1x)] = t[e∗ms(dm · · · e1d1x)]

= t[s(em−1dm−1 · · · e1d1x)],

and the last expression can be reduced by induction to t[s(x)]. To see that t[s(x)]
is in fact maximal invariant, suppose that t[s(x′)] = t[s(x)]. Setting y′ = s(x′),
y = s(x), one has t(y′) = t(y), and since t(y) is maximal invariant with respect
to E∗, there exists e∗ such that y′ = e∗y. Then s(x′) = e∗s(x) = s(ex), and by
the maximal invariance of s(x) with respect to D there exists d ∈ D such that
x′ = dex. Since de is an element of G this completes the proof.

Techniques for obtaining the distribution of maximal invariants are discussed
by Andersson (1982), Eaton (1983, 1989), Farrell (1985), Wijsman (1990) and
Anderson (2003).

6.3 Most Powerful Invariant Tests

In the presence of symmetries, one may wish to restrict attention to invariant
tests, and it then becomes of interest to determine the most powerful invariant
test. The following is a simple example.

Example 6.3.1 Let X1, . . . , Xn be i.i.d. on (0, 1) and consider testing the hy-
pothesis H0 that the the common distribution of the X’s is uniform on (0, 1)
against the two alternatives H1:

p1(x1, . . . , xn) = f(x1) · · · f(xn)

and

p2(x1, . . . , xn) = f(1 − x1) · · · f(1 − xn) ,

where f is a fixed (known) density.
(i) This problem remains invariant under the 2 element group G consisting of the
transformations

g : x′
i = 1 − xi , i = 1, . . . , n

and the identity transformation x′
i = xi for i = 1, . . . , n.

(ii) The induced transformation ḡ is the space of alternatives takes p1 into p2 and
p2 into p1.
(iii) A test φ(x1, . . . , xn) remains invariant under G if and only if

φ(x1, . . . , xn) = φ(1 − x1, . . . , 1 − xn) .

(iv) There exists a UMP invariant test (i.e. an invariant test which is simul-
taneously most powerful against both p1 and p2), and it rejects H0 when the
average

p̄(x1, . . . , xn) =
1
2

[p1(x1, . . . , xn) + p2(x1, . . . , xn)]

is sufficiently large.
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We leave the proof of (i)-(iii) to Problem 6.5. To prove (iv), note that any
invariant test satisfies

Ep1 [φ(X1, . . . , Xn)] = Ep2 [φ(X1, . . . , Xn)] = Ep̄[φ(X1, . . . , Xn)] .

Therefore, maximizing the power against p1 or p2 is equivalent to maximizing
the power under p̄, and the result follows from the Neyman-Pearson Lemma.

This example is a special case of the following result.

Theorem 6.3.1 Suppose the problem of testing Ω0 against Ω1 remains invariant
under a finite group G = {g1, . . . , gN} and that Ḡ is transitive over Ω0 and over
Ω1. Then there exists a UMP invariant test of Ω0 against Ω1, and it rejects Ω0

when
∑N

i=1 pḡiθ1(x)/N
∑N

i=1 pḡiθ0(x)/N
(6.9)

is sufficiently large, where θ0 and θ1 are any elements of Ω0 and Ω1, respectively.

The proof is exactly analogous to that of the preceding example; see Problem
6.6.

The results of the previous section provide an alternative approach to the
determination of most powerful invariant tests. By Theorem 6.2.1, the class of
all invariant functions can be obtained as the totality of functions of a maximal
invariant M(x). Therefore, in particular the class of all invariant tests is the
totality of tests depending only on the maximal invariant statistic M . The latter
statement, while correct for all the usual situations, actually requires certain
qualifications regarding the class of measurable sets in M -space. These conditions
will be discussed at the end of the section; they are satisfied in the examples below.

Example 6.3.2 Let X = (X1, . . . , Xn), and suppose that the density of X
is fi(x1 − θ, . . . , xn − θ) under Hi (i = 0, 1), where θ ranges from −∞ to
∞. The problem of testing H0 against H1 is invariant under the group G of
transformations

gx = (x1 + c, . . . , xn + c), −∞ < c < ∞.

which in the parameter space induces the transformations

ḡθ = θ + c.

By Example 6.2.1, a maximal invariant under G is Y = (X1−Xn, . . . , Xn−1−Xn).
The distribution of Y is independent of θ and under Hi has the density

∫ ∞

−∞
fi(y1 + z, . . . , yn−1 + z, z) dz.

When referred to Y , the problem of testing H0 against H1 therefore becomes one
of testing a simple hypothesis against a simple alternative. The most powerful
test is then independent of θ, and therefore UMP among all invariant tests. Its
rejection region by the Neyman–Pearson lemma is

∫ ∞
−∞ f1(y1 + z, . . . , yn−1 + z, z) dz

∫ ∞
−∞ f0(y1 + z, . . . , yn−1 + z, z) dz

=

∫ ∞
−∞ f1(x1 + u, . . . , xn + u) du

∫ ∞
−∞ f0(x1 + u, . . . , xn + u) du

> C.

(6.10)
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A general theory of separate families of hypotheses (in which the family K of
alternatives does not adjoin the hypothesis H but, as above, is separated from
it) was initiated by Cox (1961, 1962). A bibliography of the subject is given in
Pereira (1977); see also Loh (1985), Pace and Salvan (1990) and Rukhin (1993).

Example 6.3.2 illustrates the fact, also utilized in Theorem 6.3.1, that if the
group Ḡ is transitive over both Ω0 and Ω1, then the problem reduces to one of
testing a simple hypothesis against a simple alternative, and a UMP invariant test
is then obtained by the Neyman-Pearson Lemma. Note also the close similarity
between Theorem 6.3.1 and Example 6.3.2 shown by a comparison of (6.9) and
the right side of (6.10), where the summation in (6.9) is replaced by integration
with respect to Lebesgue measure.

Before applying invariance, it is frequently convenient first to reduce the data to
a sufficient statistic T . If there exists a test φ0(T ) that is UMP among all invariant
tests depending only on T , one would like to be able to conclude that φ0(T ) is
also UMP among all invariant tests based on the original X. Unfortunately, this
does not follow, since it is not clear that for any invariant test based on X there
exists an equivalent test based on T , which is also invariant. Sufficient conditions
for φ0(T ) to have this property are provided by Hall, Wijsman, and Ghosh (1965)
and Hooper (1982a), and a simple version of such a result (applicable to Examples
6.3.3 and 6.3.4 below) will be given by Theorem 6.5.3 in Section 6.5. For a review
and clarification of this and later work on invariance and sufficiency see Berk,
Nogales, and Oyola (1996), Nogales and Oyola (1996) and Nogales, Oyola and
Pérez (2000).

Example 6.3.3 If X1, . . . , Xn is a sample from N(ξ, σ2), the hypothesis H :
σ ≥ σ0 remains invariant under the transformations X ′

i = Xi + c,−∞ < c < ∞.
In terms of the sufficient statistics Y = X̄, S2 = Σ(Xi − X̄)2 these transfor-
mations become Y ′ = Y + c, (S2)′ = S2, and a maximal invariant is S2. The
class of invariant tests is therefore the class of tests depending on S2. It follows
from Theorem 3.4.1 that there exists a UMP invariant test, with rejection region
Σ(Xi − X̄)2 ≤ C. This coincides with the UMP unbiased test (6.11).

Example 6.3.4 If X1, . . . , Xm and Y1, . . . , Yn are samples from N(ξ, σ2) and

N(η, τ2), a set of sufficient statistics is T1 = X̄, T2 = Ȳ , T3 =
√

Σ(Xi − X̄)2, and

T4 =
√

Σ(Yj − Ȳ )2. The problem of testing H : τ2/σ2 ≤ ∆0 remains invariant
under the transformations T ′

1 = T1 + c1, T ′
2 = T2 + c2, T ′

3 = T3, T ′
4 = T4,

−∞ < c1, c2 < ∞, and also under a common change of scale of all four variables.
A maximal invariant with respect to the first group is (T3, T4). In the space of
this maximal invariant, the group of scale changes induces the transformations
T ′′

3 = cT3, T ′′
4 = cT4, 0 < c, which has as maximal invariant the ratio T4/T3.

The statistic Z = [T 2
4 /(n − 1)] ÷ [T 2

3 /(m − 1)] on division by ∆ = τ2/σ2 has an
F -distribution with density given by (5.21), so that the density of Z is

c(∆)z
1
2 (n−3)

(
∆ +

n − 1
m − 1

z

) 1
2 (m+n−2)

, z > 0.

For varying ∆, these densities constitute a family with monotone likelihood ratio,
so that among all tests of H based on Z, and therefore among all invariant tests,
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there exists a UMP one given by the rejection region Z > C. This coincides with
the UMP unbiased test (5.20).

Example 6.3.5 In the method of paired comparisons for testing whether a treat-
ment has a beneficial effect, the experimental material consists of n pairs of
subjects. From each pair, a subject is selected at random for treatment while the
other serves as control. Let Xi be 1 or 0 as for the ith pair the experiment turns
out in favor of the treated subject or the control, and let pi = P{Xi = 1}. The
hypothesis of no effect, H : pi = 1

2 for i = 1, . . . , n, is to be tested against the
alternatives that pi > 1

2 for all i.
The problem remains invariant under all permutations of the n variables

X1, . . . , Xn, and a maximal invariant under this group is the total number of
successes X = X1 + · · · + Xn. The distribution of X is

P{X = k} = q1 · · · qn

∑ pi1

qi1

· · · pik

qik

,

where qi = 1 − pi and where the summation extends over all
(

n
k

)
choices of

subscripts i1 < · · · < ik. The most powerful invariant test against an alternative
(p′

1, . . . , p
′
n) rejects H when

f(k) =
1(
n
k

)
∑ p′

i1

q′i1
· · ·

p′
ik

q′ik

> C.

To see that f is an increasing function of k, note that ai = p′
i/q′i > 1, and that

∑

j

∑
ajai1 · · · aik = (k + 1)

∑
ai1 · · · aik+1

and
∑

j

∑
ai1 · · · aik = (n − k)

∑
ai1 · · · aik1

.

Here, in both equations, the second summation on the left-hand side extends over
all subscripts i1 < · · · < ik of which none is equal to j, and the summation on
the right-hand side extends over all subscripts i1 < · · · < ik+1 and i1 < · · · < ik
respectively without restriction. Then

f(k + 1) =
1(
n

k+1

)
∑

ai1 · · · aik+1 =
1

(n − k)
(

n
k

)
∑

j

∑
ajai1 · · · aik

>
1(
n
k

)
∑

ai1 · · · aik = f(k),

as was to be shown. Regardless of the alternative chosen, the test therefore rejects
when k > C, and hence is UMP invariant. If the ith comparison is considered
plus or minus as Xi is 1 or 0, this is seen to be another example of the sign test.
(Cf. Example 3.8.1 and Section 4.9.)

Sufficient statistics provide a simplification of a problem by reducing the sam-
ple space; this process involves no change in the parameter space. Invariance,
on the other hand, by reducing the data to a maximal invariant statistic M ,
whose distribution may depend only on a function of the parameter, typically
also shrinks the parameter space. The details are given in the following theorem.
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Theorem 6.3.2 If M(x) is invariant under G, and if υ(θ) maximal invariant
under the induced group Ḡ, then the distribution of M(X) depends only on v(θ).

Proof. Let υ(θ1) = υ(θ2). Then θ2 = ḡθ1, and hence

Pθ2{M(X) ∈ B} = Pḡθ1{M(X) ∈ B} = Pθ1{M(gX) ∈ B}
= Pθ1{M(X) ∈ B}.

This result can be paraphrased by saying that the principle of invariance identifies
all parameter points that are equivalent with respect to Ḡ.

In application, for instance in Examples 6.3.3 and 6.3.4, the maximal invariants
M(x) and δ = v(θ) under G and Ḡ are frequently real-valued, and the family of
probability densities pδ(m) of M has monotone likelihood ratio. For testing the
hypothesis H : δ ≤ δ0 there exists then a UMP test among those depending only
on M , and hence a UMP invariant test. Its rejection region is M ≥ C, where

∫ ∞

C

Pδ0(m) dm = α. (6.11)

Consider this problem now as a two-decision problem with decisions d0 and d1

of accepting or rejecting H, and a loss function L(θ, di) = Li(θ). Suppose that
Li(θ) depends only on the parameter δ, Li(θ) = L′

i(δ) say, and satisfies

L′
1(δ) − L′

0(δ) >< 0 as δ <> δ0. (6.12)

It then follows from Theorem 3.4.2 that the family of rejection regions M ≥ C(α),
as α varies from 0 to 1, forms a complete family of decision procedures among
those depending only on M , and hence a complete family of invariant procedures.
As before, the choice of a particular significance level α can be considered as a
convenient way of specifying a test from this family.

At the beginning of the section it was stated that the class of invariant tests
coincides with the class of tests based on a maximal invariant statistic M =
M(X). However, a statistic is not completely specified by a function, but requires
also specification of a class B of measurable sets. If in the present case B is the
class of all sets B for which M−1(B) ∈ A, the desired statement is correct. For
let φ(x) = ψ[M(x)] and φ by A-measurable, and let C be a Borel set on the
line. Then φ−1(C) = M−1[ψ−1(C)] ∈ A and hence ψ−1(C) ∈ B, so that ψ is
B-measurable and φ(x) = ψ[M(x)] is a test based on the statistic M .

In most applications, M(x) is a measurable function taking on values in a
Euclidean space and it is convenient to take B as the class of Borel sets. If φ(x) =
ψ[M(x)] is then an arbitrary measurable function depending only on M(x), it
is not clear that ψ(m) is necessarily B-measurable. This measurability can be
concluded if X is also Euclidean with A the class of Borel sets, and if the range
of M is a Borel set. We shall prove it here only under the additional assumption
(which in applications is usually obvious, and which will not be verified explicitly
in each case) that there exists a vector-valued Borel-measurable function Y (x)
such that [M(x), Y (x)] maps X onto a Borel subset of the product space M×Y,
that this mapping is 1 : 1, and that the inverse mapping is also Borel-measurable.
Given any measurable function φ of x, there exists then a measurable function
φ′ of (m, y) such that φ(x) ≡ φ′[M(x), Y (x)]. If φ depends only on M(x), then
φ′ depends only on m, so that φ′(m, y) = ψ(m) say, and ψ is a measurable
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function of m.3 In Example 6.2.1(i) for instance, where x = (x1, . . . xn) and
M(x) = (x1 − xn, . . . , xn−1 − xn), the function Y (x) can be taken as Y (x) = xn.

6.4 Sample Inspection by Variables

A sample is drawn from a lot of some manufactured product in order to decide
whether the lot is of acceptable quality. In the simplest case, each sample item is
classified directly as satisfactory or defective (inspection by attributes), and the
decision is based on the total number of defectives. More generally, the quality
of an item is characterized by a variable Y (inspection by variables), and an item
is considered satisfactory if Y exceeds a given constant u. The probability of a
defective is then

p = P{Y ≤ u}

and the problem becomes that of testing the hypothesis H : p ≥ p0.
As was seen in Example 3.8.1, no use can be made of the actual value of Y

unless something is known concerning the distribution of Y . In the absence of
such information, the decision will be based, as before, simply on the number of
defectives in the sample. We shall consider the problem now under the assumption
that the measurements Y1, . . . , Yn constitute a sample from N(η, σ2). Then

p =

∫ u

−∞

1√
2πσ

exp

[
− 1

2σ2
(y − η)2

]
dy = Φ

(u − η
σ

)
,

where

Φ(y) =

∫ y

−∞

1√
2π

exp
(
− 1

2 t2
)

dt

denotes the cumulative distribution function of a standard normal distribution,
and the hypothesis H becomes (u − η)/σ ≥ Φ−1(p0). In terms of the variables
X1 = Yi − u, which have mean ξ = η − u and variance σ2, this reduces to

H :
ξ
σ

≤ θ0

with θ0 = −Φ−1(p0). This hypothesis, which was considered in Section 5.2, for
θ0 = 0, occurs also in other contexts. It is appropriate when one is interested in
the mean ξ of a normal distribution, expressed in σ units rather than on a fixed
scale.

For testing H, attention can be restricted to the pair of variables X̄ and
S =

√∑
(Xi − X̄)2, since they form a set of sufficient statistics for (ξ, σ), which

satisfy the conditions of Theorem 6.5.3 of the next section. These variables are
independent, the distribution of X̄ being N(ξ, σ2/n) and that of S/σ being χn−1.
Multiplication of X̄ and S by a common constant c > 0 transforms the parame-
ters into ξ′ = cξ, σ′ = cσ, so that ξ/σ and hence the problem of testing H remain

3The last statement follows, for example, from Theorem 18.1 of Billingsley (1995).
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invariant. A maximal invariant under these transformations is x̄/s or

t =

√
nx̄

s/
√

n − 1
,

the distribution of which depends only on the maximal invariant in the parameter
space θ = ξ/σ (cf. Section 5.2). Thus, the invariant tests are those depending only
on t, and it remains to find the most powerful test of H : θ ≤ θ0 within this class.

The probability density of t is (Problem 5.3)

pδ(t) = C

∫ ∞

0

exp

[
−1

2

(
t

√
w

n − 1
− δ

)2
]

w
1
2 (n−2) exp

(
− 1

2w
)

dw,

where δ =
√

nθ is the noncentrality parameter, and this will now be shown to
constitute a family with monotone likelihood ratio. To see that the ratio

r(t) =

∫ ∞
0

exp

[
− 1

2

(
t
√

w
n−1 − δ1

)2
]

w
1
2 (n−2) exp(− 1

2w) dw

∫ ∞
0

exp

[
− 1

2

(
t
√

w
n−1 − δ0

)2
]

w
1
2 (n−2) exp(− 1

2w) dw

is an increasing function of t for δ0 < δ1, suppose first that t < 0 and let υ =
−t

√
w/(n − 1) . The ratio then becomes proportional to

∫ ∞
0 f(υ) exp

[
−(δ1−δ0)υ− (n−1)υ2

2t2

]
dv

∫ ∞
0 f(υ) exp

[
− (n−1)υ2

2t2

]
dv

=
∫

exp[−(δ1 − δ0)υ]gt2(υ) dv

where

f(υ) = exp(−δ0υ)υn−1 exp(−υ2/2)

and

gt2(υ) =
f(υ) exp

[
− (n−1)υ2

2t2

]

∫ ∞
0

f(z) exp
[
− (n−1)z2

2t2

]
dz

.

Since the family of probability densities gt2(υ) is a family with monotone like-
lihood ratio, the integral of exp[−(δ1 − δ0)υ] with respect to this density is a
decreasing function of t2 (Problem 3.39), and hence an increasing function of t
for t < 0. Similarly one finds that r(t) is an increasing function of t for t > 0
by making the transformation v = t

√
w/(n − 1). By continuity it is then an

increasing function of t for all t.
There exists therefore a UMP invariant test of H : ξ/σ ≤ θ0, which rejects

when t > C, where C is determined by (6.11). In terms of the original variables
Yi the rejection region of the UMP invariant test of H : p ≥ p0 becomes

√
n(ȳ − u)√∑

(yi − ȳ)2/(n − 1)
> C. (6.13)

If the problem is considered as a two-decision problem with losses L0(p) and
L1(p) for accepting or rejecting p ≥ p0, which depend only on p and satisfy the
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condition corresponding to (6.12), the class of tests (6.13) constitutes a complete
family of invariant procedures as C varies from −∞ to ∞.

Consider next the comparison of two products on the basis of samples
X1, . . . , Xm; Y1, . . . , Yn from N(ξ, σ2) and N(η, σ2). If

p = Φ

(
u − ξ

σ

)
, π = Φ

(u − η
σ

)
,

one wishes to test the hypothesis p ≤ π, which is equivalent to

H : η ≤ ξ.

The statistics X̄, Ȳ , and S =
√∑

(Xi − X̄)2 +
∑

(Yj − Ȳ )2 are a set of sufficient
statistics for ξ, η, σ. The problem remains invariant under the addition of an
arbitrary common constant to X̄ and Ȳ , which leaves Ȳ − X̄ and S as maximal
invariants. It is also invariant under multiplication of X̄, Ȳ , and S, and hence of
Ȳ − X̄ and S, by a common positive constant, which reduces the data to the
maximal invariant (Ȳ − X̄)/S. Since

t =
(ȳ − x̄)/

√
1
m + 1

n

s/
√

m + n − 2

has a noncentral t-distribution with noncentrality parameter δ =
√

mn(η − ξ)/√
m + nσ, the UMP invariant test of H : η − ξ ≤ 0 rejects when t > C. This

coincides with the UMP unbiased test (5.27). Analogously, the corresponding
two-sided test (5.30), with rejection region |t| ≥ C, is UMP invariant for testing
the hypothesis p = π against the alternatives p += π (Problem 6.18).

6.5 Almost Invariance

Let G be a group of transformations leaving a family P = {Pθ, θ ∈ ⊗} of distri-
butions of X invariant. A test φ is said to be equivalent to an invariant test if
there exists an invariant test φ such that φ(x) = ψ(x) for all x except possibly
on a P-null set N ; φ is said to be almost invariant with respect to G if

φ(gx) = φ(x) for all x ∈ X − Ng, g ∈ G (6.14)

where the exceptional null set Ng is permitted to depend on g. This concept
is required for investigating the relationship of invariance to unbiasedness and
to certain other desirable properties. In this connection it is important to know
whether a UMP invariant test is also UMP among almost invariant tests. This
turns out to be the case under assumptions which are made precise in Theorem
6.5.1 below and which are satisfied in all the usual applications.

If φ is equivalent to an invariant test, then φ(gx) = φ(x) for all x /∈ N ∪ g−1N .
Since Pθ(g

−1N) = Pḡθ(N) = 0, it follows that φ is then almost invariant. The
following theorem gives conditions under which conversely any almost invariant
test is equivalent to an invariant one.

Theorem 6.5.1 Let G be a group of transformations of X , and let A and B be
σ-fields of subsets of X and G such that for any set A ∈ A the set of pairs (x, g)
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for which gx ∈ A is measurable A×B. Suppose further that there exists a σ-finite
measure ν over G such that ν(B) = 0 implies ν(Bg) = 0 for all g ∈ G. Then any
measurable function that is almost invariant under G (where “almost” refers to
some σ-finite measure µ) is equivalent to an invariant function.

Proof. Because of the measurability assumptions, the function φ(gx) considered
as a function of the two variables x and g is measurable A × B. It follows that
φ(gx) − φ(x) is measurable A × B, and so therefore is the set S of points (x, g)
with φ(gx) += φ(x). If φ is almost invariant, any section of S with fixed g is a
µ-null set. By Fubini’s theorem (Theorem 2.2.4), there exists therefore a µ-null
set N such that for all x ∈ X − N

φ(gx) = φ(x) a.e. ν.

Without loss of generality suppose that ν(G) = 1, and let A be the set of points
x for which ∫

φ(g′x) dν(g′) = φ(gx) a.e. ν.

If

f(x, g) =

∣∣∣∣
∫

φ(g′x) dν(g′) − φ(gx)

∣∣∣∣

then A is the set of points x for which
∫

f(x, g) dν(g) = 0.

Since this integral is a measurable function of x, it follows that A is measurable.
Let

ψ(x) =

{ ∫
φ(gx)dν(g) if x ∈ A,

0 if x /∈ A.

Then ψ is measurable and ψ(x) = φ(x) for x /∈ N , since φ(gx) = φ(x) a.e. ν
implies that

∫
φ(g′x) dν(g′) = φ(x) and that x ∈ A. To show that ψ is invariant

it is enough to prove that the set A is invariant. For any point x ∈ A, the function
φ(gx) is constant except on a null subset Nx of G. Then φ(ghx) has the same
constant value for all g /∈ Nxh−1, which by assumption is again a ν-null set; and
hence hx ∈ A, which completes the proof.

Additional results concerning the relation of invariance and almost invariance
are given by Berk and Bickel (1968) and Berk (1970). In particular, the basic
idea of the following example is due to Berk (1970).

Example 6.5.1 (Counterexample) Let Z, Y1, . . . , Yn be independently dis-
tributed as N(θ, 1), and consider the 1 : 1 transformations y′

i = yi(i = 1, . . . , n)
and

z′ = z except for a finite number of points a1, . . . , ak for which
a′

i = aji , for some permutation (j1, . . . , jk) of (1, . . . , k).

If the group G is generated by taking for (a1, . . . , ak), k = 1, 2, . . . , all finite sets
and for (j1, . . . , jk) all permutations of (1, . . . , k), then (z, y1, . . . , yn) is almost
invariant It is however not equivalent to an invariant function, since (y1, . . . , yn)
is maximal invariant.
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Corollary 6.5.1 Suppose that the problem of testing H : θ ∈ ω against K : θ ∈
Ω − ω remains invariant under G and that the assumptions of Theorem 6.5.1
hold. Then if φ0 is UMP invariant, it is also UMP within the class of almost
invariant tests.

Proof. If φ is almost invariant, it is equivalent to an invariant test ψ by Theorem
6.5.1. The tests φ and ψ have the same power function, and hence φ0 is uniformly
at least as powerful as φ.

In applications, P is usually a dominated family, and µ any σ-finite measure
equivalent to P (which exists by Theorem A.4.2 of the Appendix). If φ is almost
invariant with respect to P, it is then almost invariant with respect to µ and
hence equivalent to an invariant test. Typically, the sample space X is an n-
dimensional Euclidean space, A is the class of Borel sets, and the elements of G
are transformations of the form y = f(x, τ), where τ ranges over a set of positive
measure in an m-dimensional space and f is a Borel-measurable vector-valued
function of m+n variables. If B is taken as the class of Hotel sets in m-space the
measurability conditions of the theorem are satisfied.

The requirement that for all g ∈ G and B ∈ B

ν(B) = 0 implies ν(Bg) = 0 (6.15)

is satisfied in particular when

ν(Bg) = ν(B) for all g ∈ G, B ∈ B. (6.16)

The existence of such a right invariant measure is guaranteed for a large class
of groups by the theory of Haar measure. (See, for example, Eaton (1989).)
Alternatively, it is usually not difficult to check the condition (6.15) directly.

Example 6.5.2 Let G be the group of all nonsingular linear transformations of
n-space. Relative to a fixed coordinate system the elements of G can be repre-
sented by nonsingular n × n matrices A = (aij), A

′ = (a′
ij), . . . with the matrix

product serving as the group product of two such elements. The σ-field B can be
taken to be the class of Borel sets in the space of the n2 elements of the matrices,
and the measure ν can be taken as Lebesgue measure over B. Consider now a set
S of matrices with ν(S) = 0, and the set S∗ of matrices A′A with A′ ∈ S and A
fixed. If a = max |aij |, C′ = A′A, and C′′ = A′′A, the inequalities |a′′

ij − a′
ij | ≤ ε

for all i, j imply |c′′ij − c′ij | ≤ naε. Since a set has ν-measure zero if and only if
it can be covered by a union of rectangles whose total measure does not exceed
any given ε > 0, it follows that ν(S∗) = 0, as was to be proved.

In the preceding chapters, tests were compared purely in terms of their power
functions (possibly weighted according to the seriousness of the losses involved).
Since the restriction to invariant tests is a departure from this point of view,
it is of interest to consider the implications of applying invariance to the power
functions rather than to the tests themselves. Any test that is invariant or almost
invariant under a group G has a power function which is invariant under the group
Ḡ induced by G in the parameter space.

To see that the converse is in general not true, let X1, X2, X3 be independently,
normally distributed with mean ξ and variance σ2, and consider the hypothesis
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σ ≥ σ0. The test with rejection region

|X2 − X1| > k when X̄ < 0,

|X3 − X2| > k when X̄ ≥ 0

is not invariant under the group G of transformations X ′
i = Xi + c, but its power

function is invariant under the associated group Ḡ.
The two properties, almost invariance of a test φ and invariance of its power

function, become equivalent if before the application of invariance considerations
the problem is reduced to a sufficient statistic whose distributions constitute a
boundedly complete family.

Lemma 6.5.1 Let the family PT = {P T
θ , θ ∈ Ω} of distributions of T be bound-

edly complete, and let the problem of testing H : θ ∈ ΩH remain invariant under
a group G of transformations of T . Then a necessary and sufficient condition for
the power function of a test ψ(t) to be invariant under the induced group Ḡ over
Ω is that ψ(t) is almost invariant under G.

Proof. For all θ ∈ Ω we have Eḡθψ(T ) = Eθψ(gT ). If ψ is almost invariant,
Eθψ(T ) = Eθψ(gT ) and hence Eḡθψ(T ) = Eθψ(T ), so that the power function
of ψ is invariant. Conversely, if Eθψ(T ) = Eḡθψ(T ), then Eθψ(T ) = Eθψ(gT ),
and by the bounded completeness of PT , we have ψ(gt) = ψ(t) a.e. PT .

As a consequence, it is seen that UMP almost invariant tests also possess the
following optimum property.

Theorem 6.5.2 Under the assumptions of Lemma 6.5.1, let v(θ) be maximal
invariant with respect to Ḡ, and suppose that among the tests of H based on the
sufficient statistic T there exists a UMP almost invariant one, say ψ0(t). Then
ψ0(t) is UMP in the class of all tests based on the original observations X, whose
power function depends only on v(θ).

Proof. Let φ(x) be any such test, and let ψ(t) = E[φ(X)|t]. The power function
of ψ(t), being identical with that of φ(x), depends then only on v(θ), and hence
is invariant under Ḡ. It follows from Lemma 6.5.1 that ψ(t) is almost invariant
under G, and ψ0(t) is uniformly at least as powerful as ψ(t) and therefore as
φ(x).

Example 6.5.3 For the hypothesis τ2 ≤ σ2 concerning the variances of two
normal distributions, the statistics (X̄, Ȳ , S2

x, S2
Y ) constitute a complete set of

sufficient statistics. It was shown in Example 6.3.4 that there exists a UMP
invariant test with respect to a suitable group G, which has rejection region
S2

Y /S2
X > C0. Since in the present case almost invariance of a test with respect

to G implies that it is equivalent to an invariant one (Problem 6.21), Theorem
6.5.2 is applicable with v(θ) = ∆ = τ2/σ2, and the test is therefore UMP among
all tests whose power function depends only on ∆.

Theorem 6.5.1 makes it possible to establish a simple condition under which
reduction to sufficiency before the application of invariance is legitimate.
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Theorem 6.5.3 Let X be distributed according to Pθ, θ ∈ Ω, and let T be suf-
ficient for θ. Suppose G leaves invariant the problem of testing H : θ ∈ ΩH , and
that T satisfies

T (x1) = T (x2) implies T (gx1) = T (gx2) for all g ∈ G,

so that G induces a group G̃ of transformations of T -space through

g̃T (x) = T (gx).

(i) If ϕ(x) is any invariant test of H, there exists an almost invariant test ψ
based on T , which has the same power function as ϕ.

(ii) If in addition the assumptions of Theorem 6.5.1 are satisfied, the test ψ
of (i) can be taken to be invariant.

(iii) If there exists a test ψ0(T ) which is UMP among all G̃-invariant tests
based on T , then under the assumptions of (ii), ψ0, is also UMP among all
G-invariant tests based on X.

This theorem justifies the derivation of the UMP invariant tests of Examples
6.3.3 and 6.3.4.
Proof. (i): Let ψ(t) = E[ϕ(X)|t]. Then ψ has the same power function as ϕ. To
complete the proof, it suffices to show that ψ(t) is almost invariant, i.e. that

ψ(g̃t) = ψ(t) (a.e. PT ).

It follows from (1) that

Eθ[ϕ(gX)|g̃t] = Eḡθ[ϕ(X)|t] (a.e. Pθ).

Since T is sufficient, both sides of this equation are independent of θ. Furthermore
ϕ(gx) = ϕ(x) for all x and g, and this completes the proof.

Part (ii) follows immediately from (i) and Theorem 6.5.1, and part (iii) from
(ii).

6.6 Unbiasedness and Invariance

The principles of unbiasedness and invariance complement each other in that each
is successful in cases where the other is not. For example, there exist UMP unbi-
ased tests for the comparison of two binomial or Poisson distributions, problems
to which invariance considerations are not applicable. UMP unbiased tests also
exist for testing the hypothesis σ = σ0 against σ += σ0 in a normal distribution,
while invariance does not reduce this problem sufficiently far. Conversely, there
exist UMP invariant tests of hypotheses specifying the values of more than one
parameter (to be considered in Chapter 7) but for which the class of unbiased
tests has no UMP member. There are also hypotheses, for example the one-sided
hypothesis ξ/σ ≤ θ0 in a univariate normal distribution or ρ ≤ ρ0 in a bivariate
one (Problem 6.19) with θ0, ρ0 += 0, where a UMP invariant test exists but the
existence of a UMP unbiased test does not follow by the methods of Chapter 5
and is an open question.

On the other hand, to some problems both principles have been applied success-
fully. These include Student’s hypotheses ξ ≤ ξ0 and ξ = ξ0 concerning the mean
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of a normal distribution, and the corresponding two sample problems η− ξ ≤ ∆0

and η − ξ = ∆0 when the variances of the two samples are assumed equal. Other
examples are the one-sided hypotheses σ2 ≥ σ2

0 and τ2/σ2 ≥ ∆0 concerning the
variances of one or two normal distributions. The hypothesis of independence
ρ = 0 in a bivariate normal distribution is still another case in point (Problem
6.19). In all these examples the two optimum procedures coincide. We shall now
show that this is not accidental but is the case whenever the UMP invariant
test is UMP also among all almost invariant tests and the UMP unbiased test is
unique. In this sense, the principles of unbiasedness and of almost invariance are
consistent.

Theorem 6.6.1 Suppose that for a given testing problem there exists a UMP
unbiased test φ∗ which is unique (up to sets of measure zero), and that there also
exists a UMP almost invariant test with respect to some group G. Then the latter
is also unique (up to sets of measure zero), and the two tests coincide a.e.

Proof. If U(α) is the class of unbiased level-α tests, and if g ∈ G, then φ ∈ U(α)
if and only if φg ∈ U(α).4 Denoting the power function of the test φ by βφ(θ),
we thus have

βφ∗g(θ) = βφ∗(ḡθ) = sup
φ∈U(α)

βφ(ḡθ) = sup
φ∈U(α)

βφg(θ)

= sup
φg∈U(α)

βφg(θ) = βφ∗(θ).

It follows that φ∗ and φ∗g have the same power function, and, because of
the uniqueness assumption, that φ∗ is almost invariant. Therefore, if φ′ is UMP
almost invariant, we have βφ′(θ) ≥ βφ∗(θ) for all θ. On the other hand, φ′ is
unbiased, as is seen by comparing it with the invariant test φ(x) ≡ α, and hence
βφ′(θ) ≤ βφ∗(θ) for all θ. Since φ′ and φ∗ therefore have the same power function,
they are equal a.e. because of the uniqueness of φ∗, as was to be proved.

This theorem provides an alternative derivation for some of the tests of Chapter
5. In Theorem 4.4.1, the existence of UMP unbiased tests was established for one-
and two-sided hypotheses concerning the parameter θ of the exponential family
(4.10). For this family, the statistics (U, T ) are sufficient and complete, and in
terms of these statistics the UMP unbiased test is therefore unique. Convenient
explicit expressions for some of these tests, which were derived in Chapter 5, can
instead be obtained by noting that when a UMP almost invariant test exists, the
same test by Theorem 6.6.1 must also be UMP unbiased. This proves for example
that the tests of Examples 6.3.3 and 6.3.4 are UMP unbiased.

The principles of unbiasedness and invariance can be used to supplement each
other in cases where neither principle alone leads to a solution but where they
do so when applied in conjunction. As an example consider a sample X1, . . . , Xn

from N(ξ, σ2) and the problem of testing H : ξ/σ = θ0 += 0 against the two-sided
alternatives that ξ/σ += θ0. Here sufficiency and invariance reduce the problem
to the consideration of t =

√
nx̄/

√∑
(xi − x̄)2/(n − 1). The distribution of this

statistic is the noncentral t-distribution with noncentrality parameter δ =
√

nξ/σ
and n− 1 degrees of freedom. For varying δ, the family of these distributions can

4φg denotes the critical function which assigns to x the value φ(gx).
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be shown to be STP∞. [Karlin (1968, pp. 118–119; see Problem 3.50] and hence
in particular STP3. It follows by Problem 6.42 that among all tests of H based on
t, there exists a UMP unbiased one with acceptance region C1 ≤ t ≤ C2, where
C1, C2 are determined by the conditions

Pδ0 {C1 ≤ t ≤ C2} = 1 − α and
∂Pδ {C1 ≤ t ≤ C2}

∂δ

∣∣∣∣∣∣
δ=δ0

= 0.

In terms of the original observations, this test then has the property of being
UMP among all tests that are unbiased and invariant. Whether it is also UMP
unbiased without the restriction to invariant tests is an open problem.

An analogous example occurs in the testing of the hypotheses H : ρ = ρ0

and H ′ : ρ1 ≤ ρ ≤ ρ2 against two-sided alternatives on the basis of a sample
from a bivariate normal distribution with correlation coefficient ρ. (The testing
of ρ ≤ ρ0 against ρ > ρ0 is treated in Problem 6.19.) The distribution of the
sample correlation coefficient has not only monotone likelihood ratio as shown in
Problem 6.19, but is in fact STP∞. [Karlin (1968, Section 3.4)]. Hence there exist
tests of both H and H ′ which are UMP among all tests that are both invariant
and unbiased.

Another case in which the combination of invariance and unbiasedness appears
to offer a promising approach is the Behrens–Fisher problem. Let X1, . . . , Xm

and Y1, . . . , Yn be samples from normal distributions N(ξ, σ2) and N(η, τ2)
respectively. The problem is that of testing H : η ≤ ξ (or η = ξ) with-
out assuming equality of the variances σ2 and τ2. A set of sufficient statistics
for (ξ, η, σ, τ) is then (X̄, Ȳ , S2

X , S2
Y ), where S2

X =
∑

(Xi − X̄)2/(m − 1) and
S2

Y =
∑

(Yj − Ȳ )2/(n − 1). Adding the same constant to X̄ and Ȳ reduces the
problem to Ȳ − X̄, S2

X , S2
Y , and multiplication of all variables by a common

positive constant to (Ȳ − X̄)/
√

S2
X + S2

Y and S2
Y /S2

X . One would expect any
reasonable invariant rejection region to be of the form

Ȳ − X̄√
S2

X + S2
Y

≥ g

(
S2

Y

S2
X

)
(6.17)

for some suitable function g. If this test is also to be unbiased, the probability
of (6.17) must equal α when η = ξ for all values of τ/σ. It has been shown
by Linnik and others that only pathological functions g with this property can
exist. [This work is reviewed by Pfanzagl (1974).] However, approximate solutions
are available which provide tests that are satisfactory for all practical purposes.
These are the Welch approximate t-solution described in Section 11.3, and the
Welch–Aspin test. Both are discussed, and evaluated, in Scheffé (1970) and Wang
(1971); see also Chernoff (1949), Wallace (1958), Davenport and Webster (1975)
and Robinson (1982). The Behrens-Fisher problem will be revisited in Examples
13.5.4 and 15.6.3 and Section 15.2.

The property of a test φ1 being UMP invariant is relative to a particular group
G1, and does not exclude the possibility that there might exist another test φ2

which is UMP invariant with respect to a different group G2. Simple instances
can be obtained from Examples 6.5.1 and 6.6.11.

Example 6.6.8 (continued) If G1 is the group G of Example 6.5.1, a UMP
invariant test of H : θ ≤ θ0 against θ > θ0 rejects when Y1 + · · · + Yn > C.
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Let G2 be the group obtained by interchanging the role of Z and Y1. Then a
UMP invariant test with respect to G2 rejects when Z + Y2 + · · · + Yn > C.
Analogous UMP invariant tests are obtained by interchanging the role of Z and
any one of the other Y ’s and further examples by applying the transformations
of G in Example 6.5.1 to more than one variable. In particular, if it is applied
independently to all n+1 variables, only the constants remain invariant, and the
test φ ≡ α is UMP invariant.

Example 6.6.11 For another example (due to Charles Stein), let (X11, X12)
and (X21, X22) be independent and have bivariate normal distributions with zero
means and covariance matrices

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
and

(
∆σ2

1 ∆ρσ1σ2

∆ρσ1σ2 ∆σ2
2

)
.

Suppose that these matrices are nonsingular, or equivalently that |ρ| += 1, but that
all σ1, σ2, ρ, and ∆ are otherwise unknown. The problem of testing ∆ = 1 against
∆ > 1 remains invariant under the group G1 of all nonsingular transformations

X ′
i1 = bXi1

X ′
i2 = a1Xi1 + a2Xi2

, (a2, b > 0).

Since the probability is 0 that X11X22 = X12X21, the 2 × 2 matrix (Xij) is
nonsingular with probability 1, and the sample space can therefore be restricted
to be the set of all nonsingular such matrices. A maximal invariant under the
subgroup corresponding to b = 1 is the pair (X11, X21). The argument of Example
6.3.4 then shows that there exists a UMP invariant test under G1 which rejects
when X2

21X
2
11 > C.

By interchanging 1 and 2 in the second subscript of the X’s one sees that under
the corresponding group G2 the UMP invariant test rejects when X2

22X
2
12 > C.

A third group leaving the problem invariant is the smallest group containing
both G1 and G2, namely the group G of all common nonsingular transformations

X ′
i1 = ai1Xi1 + a12Xi2

X ′
i2 = a21Xi1 + a22Xi2

, (i = 1, 2).

Given any two nonsingular sample points Z = (Xij) and Z′ = (X ′
ij), there exists

a nonsingular linear transformation A such that Z′ = AZ. There are therefore
no invariants under G, and the only invariant size-α test is φ ≡ α. It follows
vacuously that this is UMP invariant under G.

6.7 Admissibility

Any UMP unbiased test has the important property of admissibility (Problem
4.1), in the sense that there cannot exist another test which is uniformly at least
as powerful and against some alternatives actually more powerful than the given
one. The corresponding property does not necessarily hold for UMP invariant
tests, as is shown by the following example.

Example 6.7.11 (continued) Under the assumptions of Example 6.6.11 it was
seen that the UMP invariant test under G is the test ϕ ≡ α which has power
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β(∆) ≡ α. On the other hand, X11 and X21 are independently distributed as
N(0, σ2

1) and N(0, ∆σ2
1). On the basis of these observations there exists a UMP

test for testing ∆ = 1 against ∆ > 1 with rejection region X2
21/X2

11 > C (Problem
3.62). The power function of this test is strictly increasing in ∆ and hence > α
for all ∆ > 1.

Admissibility of optimum invariant tests therefore cannot be taken for granted
but must be established separately for each case.

We shall distinguish two slightly different concepts of admissibility. A test ϕ0

will be called α-admissible for testing H : θ ∈ ΩH against a class of alternatives
θ ∈ Ω′ if for any other level-α test ϕ

Eθϕ(X) ≥ Eθϕ0(X) for all θ ∈ Ω′ (6.18)

implies Eθϕ(X) = Eθϕ0(X) for all θ ∈ Ω′. This definition takes no account of
the relationship of Eθϕ(X) and Eθϕ0(X) for θ ∈ ΩH beyond the requirement
that both tests are of level α. For some unexpected, and possibly undesirable
consequences of α-admissibility, see Perlman and Wu (1999). A concept closer to
the decision-theoretic notion of admissibility discussed in Section 1.8, defines ϕ0

to be d-admissible for testing H against Ω′ if (6.18) and

Eθϕ(X) ≤ Eθϕ0(X) for all θ ∈ ΩH (6.19)

jointly imply Eθϕ(X) = Eθϕ0(X) for all θ ∈ ΩH ∪ Ω′ (see Problem 6.32).
Any level-α test ϕ0 that is α-admissible is also d-admissible provided no other

test ϕ exists with Eθϕ(X) = Eθϕ0(X) for all θ ∈ Ω′ but Eθϕ(X) += Eθϕ0(X)
for some θ ∈ ΩH . That the converse does not hold is shown by the following
example.

Example 6.7.12 Let X be normally distributed with mean ξ and known vari-
ance σ2. For testing H : ξ ≤ −1 or ≥ 1 against Ω′ : ξ = 0, there exists a level-α
test ϕ0, which rejects when C1 ≤ X ≤ C2 and accepts otherwise, such that
(Problem 6.33)

Eξϕ0(X) ≤ Eξ=−1ϕ0(X) = α for ξ ≤ −1

and

Eξϕ0(X) ≤ Eξ=+1ϕ0(X) = α′ < α for ξ ≥ +1.

A slight modification of the proof of Theorem 3.7.1 shows that ϕ0 is the unique
test maximizing the power at ξ = 0 subject to

Eξϕ(X) ≤ α for ξ ≤ −1 and Eξϕ(X) ≤ α′ for ξ ≥ 1,

and hence that ϕ0 is d-admissible.
On the other hand, the test ϕ with rejection region |X| ≤ C, where

Eξ=−1ϕ(X) = Eξ=1ϕ(X) = α, is the unique test maximizing the power at ξ = 0
subject to Eξϕ(X) ≤ α for ξ ≤ −1 or ≥ 1, and hence is more powerful against
Ω′ than ϕ0, so that ϕ0 is not α-admissible.

A test that is admissible under either definition against Ω′ is also admissible
against any Ω′′ containing Ω′ and hence in particular against the class of all
alternatives ΩK = Ω − ΩH . The terms α- and d-admissible without qualification
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will be reserved for admissibility against ΩK . Unless a UMP test exists, any α-
admissible test will be admissible against some Ω′ ⊂ ΩK and inadmissible against
others. Both the strength of an admissibility result and the method of proof will
depend on the set Ω′.

Consider in particular the admissibility of a UMP unbiased test mentioned at
the beginning of the section. This does not rule out the existence of a test with
greater power for all alternatives of practical importance and smaller power only
for alternatives so close to H that the value of the power there is immaterial.
In the present section, we shall discuss two methods for proving admissibility
against various classes of alternatives.

Theorem 6.7.1 Let X be distributed according to an exponential family with
density

pθ(x) = C(θ) exp

(
s∑

j=1

θjTj(x)

)

with respect to a σ-finite measure µ over a Euclidean sample space (X ,A), and
let Ω be the natural parameter space of this family. Let ΩH and Ω′ be disjoint
nonempty subsets of Ω, and suppose that ϕ0 is a test of H : θ ∈ ΩH based on
T = (T1, . . . , Ts) with acceptance region A0 which is a closed convex subset of Rs

possessing the following property: If A0 ∩{
∑

aiti > c} is empty for some c, there
exists a point θ∗ ∈ Ω and a sequence λn → ∞ such that θ∗ + λna ∈ Ω′ [where λn

is a scalar and a = (a1, . . . , as)]. Then if A is any other acceptance region for H
satisfying

Pθ(X ∈ A) ≤ Pθ(X ∈ A0) for all θ ∈ Ω′,

A is contained in A0, except for a subset of measure 0, i.e. µ(A ∩ Ã0) = 0.

Proof. Suppose to the contrary that µ(A ∩ Ã0) > 0. Then it follows from the
closure and convexity of A0, that there exist a ∈ Rs and a real number c such
that

A0 ∩
{

t :
∑

aiti > c
}

is empty (6.20)

and

A ∩
{

t :
∑

aiti > c
}

has positive µ-measure, (6.21)

that is, the set A protrudes in some direction from the convex set A0. We shall
show that this fact and the exponential nature of the densities imply that

Pθ(A) > Pθ(A0) for some θ ∈ Ω′, (6.22)

which provides the required contradiction. Let ϕ0 and ϕ denote the indicators of
Ã0 and Ã respectively, so that (6.22) is equivalent to

∫
[ϕ0(t) − ϕ(t)] dPθ(t) > 0 for some θ ∈ Ω′.

If θ = θ∗ + λna ∈ Ω′, the left side becomes

C(θ∗ + λna)
C(θ∗)

ecλn

∫
[ϕ0(t) − ϕ(t)]eλn(

∑
aiti−c) dPθ∗(t).
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Let this integral be I+
n + I−

n , where I+
n and I−

n denote the contributions over the
regions of integration {t :

∑
aiti > c} and {t :

∑
aiti ≤ c} respectively. Since I−

n

is bounded, it is enough to show that I+
n → ∞ as n → ∞. By (6.20), ϕ0(t) = 1

and hence ϕ0(t) − ϕ(t) ≥ 0 when
∑

aiti > c, and by (6.21)

µ
{

ϕ0(t) − ϕ(t) > 0 and
∑

aiti > c
}

> 0.

This shows that I+
n → ∞ as λn → ∞ and therefore completes the proof.

Corollary 6.7.1 Under the assumptions of Theorem 6.7.1, the test with accep-
tance region A0 is d-admissible. If its size is α and there exists a finite point θ0

in the closure Ω̄H of ΩH for which Eθ0ϕ0(X) = α, then ϕ0 is also α-admissible.

Proof.

(i) Suppose ϕ satisfies (6.18). Then by Theorem 6.7.1, ϕ0(x) ≤ ϕ(x) (a.e. µ). If
ϕ0(x) < ϕ(x) on a set of positive measure, then Eθϕ0(X) < Eθϕ(X) for all
θ and hence (6.19) cannot hold.

(ii) By the argument of part (i), (6.18) implies α = Eθ0ϕ0(X) < Eθ0ϕ(X), and
hence by the continuity of Eθϕ(X) there exists a point θ ∈ ΩH for which
α < Eθϕ(X). Thus ϕ is not a level-α test.

Theorem 6.7.1 and the corollary easily extend to the case where the com-
petitors ϕ of ϕ0 are permitted to be randomized but the assumption that ϕ0

is nonrandomized is essential. Thus, the main applications of these results are
to the case that µ is absolutely continuous with respect to Lebesgue measure.
The boundary of A0 will then typically have measure zero, so that the closure
requirement for A0 can be dropped.

Example 6.7.13 (Normal mean) If X1, . . . , Xn is a sample from the normal
distribution N(ξ, σ2), the family of distributions is exponential with T1 = X̄,
T2 =

∑
X2

i , θ1 = nξ/σ2, θ2 = −1/2σ2. Consider first the one-sided problem
H : θ1 ≤ 0, K : θ1 > 0 with α < 1

2 . Then the acceptance region of the t-test is
A : T1/

√
T2 ≤ C (C > 0), which is convex [Problem 6.34(i)]. The alternatives

θ ∈ Ω′ ⊂ K will satisfy the conditions of Theorem 6.7.1 if for any half plane
a1t1 + a2t2 > c that does not intersect the set t1 ≤ C

√
t2 there exists a ray

(θ∗
1 +λa1, θ

∗
2 +λa2) in the direction of the vector (a1, a2) for which (θ∗

1 +λa1, θ
∗
2 +

λa2) ∈ Ω′ for all sufficiently large λ. In the present case, this condition must hold
for all a1 > 0 > a2. Examples of sets Ω′ satisfying this requirement (and against
which the t-test is therefore admissible) are

Ω′
1 : θ1 > k1 or

ξ
σ2

> k′
1

and

Ω′
2 :

θ1√
−θ2

> k2 or
ξ
σ

> k′
2.

On the other hand, the condition is not satisfied for Ω′ : ξ > k (Problem 6.34).
Analogously, the acceptance region A : T 2

1 ≤ CT2 of the two-sided t-test for
testing H : θ1 = 0 against θ1 += 0 is convex, and the test is admissible against
Ω′

1 : |ξ/σ2| > k1 and Ω′
2 : |ξ/σ| > k2.
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In decision theory, a quite general method for proving admissibility consists
in exhibiting a procedure as a unique Bayes solution. In the present case, this is
justified by the following result, which is closely related to Theorem 3.8.1.

Theorem 6.7.2 Suppose the set {x : fθ(x) > 0} is independent of θ, and let a
σ-field be defined over the parameter space Ω, containing both ΩH and ΩK and
such that the densities fθ(x) (with respect to µ) of X are jointly measurable in θ
and x. Let Λ0 and Λ1 be probability distributions over this σ-field with Λ0(ΩH) =
Λ1(ΩK) = 1, and let

hi(x) =

∫
fθ(x) dΛi(θ).

Suppose ϕ0 is a nonrandomized test of H against K defined by

ϕ0(x) =

{
1
0

if
h1(x)
h0(x)

>< k,

and that µ{x : h1(x)/h0(x) = k} = 0.
(i) Then ϕ0 is d-admissible for testing H against K.
(ii) Let supΩH

Eθϕ0(X) = α and ω = {θ : Eθϕ0(X) = α}. If ω ⊂ ΩH and
Λ0(ω) = 1, then ϕ0 is also α-admissible.

(iii) If Λ1 assigns probability 1 to Ω′ ⊂ ΩK , the conclusions of (i) and (ii)
apply with Ω′ in place of ΩK .

Proof. (i): Suppose ϕ is any other test, satisfying (6.18) and (6.19) with Ω′ =
ΩK . Then also

∫
Eθϕ(X) dΛ0(θ) ≤

∫
Eθϕ0(X) dΛ0(θ)

and
∫

Eθϕ(X) dΛ1(θ) ≥
∫

Eθϕ0(X) dΛ1(θ).

By the argument of Theorem 3.8.1, these inequalities are equivalent to
∫

ϕ(x)h0(x) dµ(x) ≤
∫

ϕ0(x)h0(x) dµ(x)

and
∫

ϕ(x)h1(x) dµ(x) ≥
∫

ϕ0(x)h1(x) dµ(x),

and the hi(x) (i = 0, 1) are probability densities with respect to µ. This con-
tradicts the uniqueness of the most powerful test of h0 against h1 at level∫

ϕ(x)h0(x) dµ(x).
(ii): By assumption,

∫
Eθϕ0(x) dΛ0(θ) = α, so that ϕ0 is a level-α test of h0.

If ϕ is any other level-α test of H satisfying (6.18) with Ω′ = ΩK , it is also a
level-α test of h0 and the argument of part (i) can be applied as before.

(iii): This follows immediately from the proofs of (i) and (ii).

Example 6.7.13 (continued) In the two-sided normal problem of Example
6.7.13 with H : ξ = 0, K : ξ += 0 consider the class Ω′

a,b of alternatives (ξ, σ)
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satisfying

σ2 =
1

a + η2
, ξ =

bη
a + η2

, −∞ < η < ∞ (6.23)

for some fixed a, b > 0, and the subset ω, of ΩH of points (0, σ2) with σ2 < 1/a.
Let Λ0, Λ1 be distributions over ω and Ω′

a,b defined by the densities [Problem
6.35(i)]

λ0(η) =
C0

(a + η2)n/2

and

λ1(η) =
C1e

(n/2)b2η2/(a+η2)

(a + η2)n/2
.

Straightforward calculation then shows [Problem 6.35(ii)] that the densities h0

and h1 of Theorem 6.7.2 become

h0(x) =
C0e

−(a/2)
∑

x2
i

√∑
x2

i

and

h1(x) =
C1 exp

(
−a

2

∑
x2

i + b2(
∑

xi)
2

2
∑

x2
i

)

√∑
x2

i

,

so that the Bayes test ϕ0 of Theorem 6.7.2 rejects when x̄2/
∑

x2
i > k and hence

reduces to the two-sided t-test.
The condition of part (ii) of the theorem is clearly satisfied so that the t-test

is both d- and α-admissible against Ω′
a,b.

When dealing with invariant tests, it is of particular interest to consider admis-
sibility against invariant classes of alternatives. In the case of the two-sided test
ϕ0, this means sets Ω′ depending only on |ξ/σ|. It was seen in Example 6.7.13
that ϕ0 is admissible against Ω′ : |ξ/σ| ≥ B for any B, that is, against distant
alternatives, and it follows from the test being UMP unbiased or from Example
6.7.13 (continued) that ϕ0, is admissible against Ω′ : |ξ/σ| ≤ A for any A > 0,
that is, against alternatives close to H. This leaves open the question whether
ϕ0 is admissible against sets Ω′ : 0 < A < |ξ/σ| < B < ∞, which include nei-
ther nearby nor distant alternatives. It was in fact shown by Lehmann and Stein
(1953) that ϕ0 is admissible for testing H against |ξ|/σ = δ for any δ > 0 and
hence that it is admissible against any invariant Ω′. It was also shown there that
the one-sided t-test of H : ξ = 0 is admissible against ξ/σ = δ′ for any δ′ > 0.
These results will not be proved here. The proof is based on assigning to log σ
the uniform density on (−N, N) and letting N → ∞, thereby approximating the
“improper” prior distribution which assigns to log a the uniform distribution on
(−∞,∞), that is, Lebesgue measure.

That the one-sided t-test ϕ1 of H : ξ < 0 is not admissible against all Ω′ is
shown by Brown and Sackrowitz (1984), who exhibit a test ϕ satisfying

Eξ,σϕ(X) < Eξ,σϕ1(X) for all ξ < 0, 0 < σ < ∞

and

Eξ,σϕ(X) > Eξ,σϕ1(X) for all 0 < ξ1 < ξ < ξ2 < ∞, 0 < σ < ∞.
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Example 6.7.14 (Normal variance) For testing the variance σ2 of a normal
distribution on the basis of a sample X1, . . . , Xn from N(ξ, σ2), the Bayes ap-
proach of Theorem 6.7.2 easily proves α-admissibility of the standard test against
any location invariant set of alternatives Ω′, that is, any set Ω′ depending only
on σ2. Consider first the one-sided hypothesis H : σ ≤ σ0 and the alternatives
Ω′ : σ = σ1 for any σ1 > σ0. Admissibility of the UMP invariant (and unbiased)
rejection region

∑
(Xi − X̄)2 > C follows immediately from Section 3.9, where

it was shown that this test is Bayes for a pair of prior distributions (Λ0, Λ1):
namely, Λ1 assigning probability 1 to any point (ξ1, σ1), and Λ0 putting σ = σ0

and assigning to ξ the normal distribution N(ξ1, (σ
2
1 − σ2

0)/n). Admissibility of∑
(Xi − X̄)2 ≤ C when the hypothesis is H : σ ≥ σ0 and Ω′ = {(ξ, σ) : σ = σ1},

σ1 < σ0, is seen by interchanging Λ0 and Λ1, σ0 and σ1.
A similar approach proves α-admissibility of any size-α rejection region

∑
(Xi − X̄)2 ≤ C1 or ≥ C2 (6.24)

for testing H : σ = σ0 against Ω′ : {σ = σ1} ∪ {σ = σ2} (σ1 < σ0 < σ2). On
ΩH , where the only variable is ξ, the distribution Λ0 for ξ can be taken as the
normal distribution with an arbitrary mean ξ1 and variance (σ2

2 − σ2
0)/n. On Ω′,

let the conditional distribution of ξ given σ = σ2 assign probability 1 to the value
ξ1, and let the conditional distribution of ξ given σ = σ1 be N(ξ1, (σ

2
2 − σ2

1)/n).
Finally, let Λ1 assign probabilities p and 1−p to σ = σ1 and σ = σ2, respectively.
Then the rejection region satisfies (6.24), and any constants C1 and C2 for which
the test has size a can be attained by proper choice of p [Problem 6.36(i)].

The results of Examples 6.7.13 and 6.7.14 can be used as the basis for proving
admissibility results in many other situations involving normal distributions. The
main new difficulty tends to be the presence of additional (nuisance) means. These
can often be eliminated by use of the following lemma.

Lemma 6.7.1 For any given σ2 and M2 > σ2 there exists a distribution Λσ

such that

I(z) =

∫
1√
2πσ

e−(1/2σ2)(z−ζ)2dΛσ(ζ)

is the normal density with mean zero and variance M2.

Proof. Let θ = ζ/σ, and let θ be normally distributed with zero mean and
variance τ2. Then it is seen [Problem 6.36(ii)] that

I(z) =
1√

2πσ
√

1 + τ2
exp

[
− 1

2σ2(1 + τ2)
z2

]
.

The result now follows by letting τ2 = (M2/σ2)− 1, so that σ2(1 + τ2) = M2.

Example 6.7.15 Let X1, . . . , Xm; Y1, . . . , Yn be samples from N(ξ, σ2) and
N(η, τ2) respectively, and consider the problem of testing H : τ/σ = 1 against
τ/σ = ∆ > 1.

(i) Suppose first that ξ = η = 0. If Λ0 and Λ1 assign probability 1 to the
points (σ0, τ0 = σ0) and (σ1, τ1 = ∆σ1) respectively, the ratio h1/h0 of Theorem
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6.7.2 is proportional to

exp

{
−1

2

[(
1

∆2σ2
1

− 1
σ2

0

) ∑
y2

j −
(

1
σ2

0

− 1
σ2

1

) ∑
x2

i

]}
,

and for suitable choice of critical value and σ1 < σ0, the rejection region of the
Bayes test reduces to

∑
y2

j∑
x2

i

>
∆2σ2

1 − σ2
0

σ2
0 − σ2

1

.

The values σ2
0 and σ2

1 can then be chosen to e this test any preassigned size α.
(ii) If ξ and η are unknown, then X̄, Ȳ , S2

X =
∑

(Xi − X̄)2, S2
Y =

∑
(Yj − Ȳ )2

are sufficient statistics, and S2
X and S2

Y can be represented as S2
X =

∑m−1
i=1 U2

i ,
S2

Y =
∑n−1

j=1 V 2
j , with the Ui, Vj independent normal with means 0 and variances

σ2 and τ2 respectively.
To σ and τ assign the distributions Λ0 and Λ1 of part (i) and conditionally,

given σ and τ , let ξ and η be independently distributed according to Λ0σ, Λ0τ , over
ΩH and Λ1σ, Λ1τ over ΩK , with these four conditional distributions determined
from Lemma 6.7.1 in such a way that

∫ √
m√

2πσ0

e−(m/2σ2
0)(x̄−ξ)2 dΛ0σ0(ξ) =

∫ √
m√

2πσ1

e−(m/2σ2
1)(x̄−ξ)2 dΛ0σ1(ξ),

and analogously for η. This is possible by choosing the constant M2 of Lemma
6.7.1 greater than both σ2

0 and σ2
1 . With this choice of priors, the contribution

from x̄ and ȳ to the ratio h1/h0 of Theorem 6.7.2 disappears, so that h1/h0

reduces to the expression for this ratio in part (i), with
∑

x2
i and

∑
y2

j replaced
by

∑
(xi − x̄)2 and

∑
(yj − ȳ)2 respectively.

This approach applies quite generally in normal problems with nuisance means,
provided the prior distribution of the variances σ2, τ2, . . . assigns probability 1
to a bounded set, so that M2 can be chosen to exceed all possible values of these
variances.

Admissibility questions have been considered not only for tests but also for
confidence sets. These will not be treated here (but see Example 8.5.4); convenient
entries to the literature are Cohen and Strawderman (1973) and Joshi (1982). For
additional results, see Hooper (1982b) and Arnold (1984).

6.8 Rank Tests

One of the basic problems of statistics is the two-sample problem of testing the
equality of two distributions. A typical example is the comparison of a treatment
with a control, where the hypothesis of no treatment effect is tested against
the alternatives of a beneficial effect. This was considered in Chapter 5 under
the assumption of normality, and the appropriate test was seen to be based on
Student’s t. It was also shown that when approximate normality is suspected
but the assumption cannot be trusted, one is led to replacing the t-test by its
permutation analogue, which in turn can be approximated by the original t-test.
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We shall consider the same problem below without, at least for the moment,
making any assumptions concerning even the approximate form of the underly-
ing distributions, assuming only that they are continuous. The observations then
consist of samples X1, . . . , Xm and Y1, . . . , Yn from two distributions with contin-
uous cumulative distribution functions F and G, and the problem becomes that
of testing the hypothesis

H1 : G = F.

If the treatment effect is assumed to be additive, the alternatives are G(y) =
F (y−∆). We shall here consider the more general possibility that the size of the
effect may depend on the value of y (so that ∆ becomes a nonnegative function
of y) and therefore test H1 against the one-sided alternatives that the Y ’s are
stochastically larger than the X’s,

K1 : G(z) ≤ F (z) for all z, and G += F.

An alternative experiment that can be performed to test the effect of a treat-
ment consists of the comparison of N pairs of subjects, which have been matched
so as to eliminate as far as possible any differences not due to the treatment.
One member of each pair is chosen at random to receive the treatment while the
other serves as control. If the normality assumption of Section 5.10 is dropped
and the pairs of subjects can be considered to constitute a sample, the observa-
tions (X1, Y1), . . . , (XN , YN ) are a sample from a continuous bivariate distribution
F . The hypothesis of no effect is then equivalent to the assumption that F is
symmetric with respect to the line y = x:

H2 : F (x, y) = F (y, x).

Another basic problem, which occurs in many different contexts, con-
cerns the dependence or independence of two variables. In particular, if
(X1, Y1), . . . , (XN , YN ) is a sample from a bivariate distribution F , one will be
interested in the hypothesis

H3 : F (x, y) = G1(x)G2(y)

that X and Y are independent, which was considered for normal distributions in
Section 5.13. The alternatives of interest may, for example, be that X and Y are
positively dependent. An alternative formulation results when x, instead of being
random, can be selected for the experiment. If the chosen values are x1 < · · · <
xN and Fi denotes the distribution of Y given xi, the Y ’s are independently
distributed with continuous cumulative distribution functions F1, . . . , FN . The
hypothesis of independence of Y from x becomes

H4 : F1 = · · · = FN ,

while under the alternatives of positive regression dependence the variables Yi

are stochastically increasing with i.
In these and other similar problems, invariance reduces the data so completely

that the actual values of the observations are discarded and only certain order
relations between different groups of variables are retained. It is nevertheless
possible on this basis to test the various hypotheses in question, and the resulting
tests frequently are nearly as powerful as the standard normal tests. We shall now
carry out this reduction for the four problems above.
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The two-sample problem of testing H1 against K1 remains invariant under the
group G of all transformations

x′
i = ρ(xi), y′

j = ρ(yj) (i = 1, . . . , m, j = 1, . . . , n)

such that ρ is continuous and strictly increasing. This follows from the fact
that these transformations preserve both the continuity of a distribution and
the property of two variables being either identically distributed or one being
stochastically larger than the other. As was seen (with a different notation) in
Example 6.2.3, a maximal invariant under G is the set of ranks

(R′; S′) = (R′
1, . . . , R

′
m; S′

1, . . . , S
′
n)

of X1, . . . , Xm; Y1, . . . , Yn in the combined sample. Since the distribution of
(R′

1, . . . , R
′
m; S′

1, . . . , S
′
n) is symmetric in the first m and in the last n variables

for all distributions F and G, a set of sufficient statistics for (R′, S′) is the set of
the X-ranks and that of the Y -ranks without regard to the subscripts of the X’s
and Y ’s This can be represented by the ordered X-ranks and Y -ranks

R1 < · · · < Rm and S1 < · · · < Sn,

and therefore by one of these sets alone since each of them determines the other.
Any invariant test is thus a rank test, that is, it depends only on the ranks of the
observations, for example on (S1, . . . , Sn).

That almost invariant tests are equivalent to invariant ones in the present
context was shown first by Bell (1964). A streamlined and generalized version of
his approach is given by Berk and Bickel (1968) and Berk (1970), who also show
that the conclusion of Theorem 6.5.3 remains valid in this case.

To obtain a similar reduction for H2, it is convenient first to make the trans-
formation Zi = Yi − Xi, Wi = Xi + Yi. The pairs of variables (Zi, Wi) are then
again a sample from a continuous bivariate distribution. Under the hypothesis
this distribution is symmetric with respect to the w-axis, while under the al-
ternatives the distribution is shifted in the direction of the positive z-axis The
problem is unchanged if all the w’s are subjected to the same transformation
w′

i = λ(wi), where λ is 1 : 1 and has at most a finite number of discontinuities,
and (Z1, . . . , ZN ) constitutes a maximal invariant under this group. [Cf. Problem
6.2(ii).]

The Z’s are a sample from a continuous univariate distribution D, for which
the hypothesis of symmetry with respect to the origin,

H ′
2 : D(z) + D(−z) = 1 for all z,

is to be tested against the alternatives that the distribution is shifted to-
ward positive z-values This problem is invariant under the group G of all
transformations

z′
i = ρ(zi) (i = 1, . . . , N)

such that ρ is continuous, odd, and strictly increasing. If zi1 , . . . , zim < 0 <
zj1 , . . . , zjn , where i1 < · · · < im and j1 < · · · < jn, let s′1, . . . , s

′
n denote the

ranks of zji , . . . , zjn , among the absolute values |z1|, . . . , |zN |, and r′1, . . . , r
′
m the

ranks of |zi1 |, . . . , |zim | among |z1|, . . . , |zN |. The transformations ρ preserve the
sign of each observation, and hence in particular also the numbers m and n.
Since ρ is a continuous, strictly increasing function of |z|, it leaves the order of
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the absolute values invariant and therefore the ranks r′i and s′j . To see that the
latter are maximal invariant, let (z1, . . . , zN ) and (z′

1, . . . , z
′
N ) be two sets of points

with m′ = m, n′ = n, and the same r′i and s′j . There exists a continuous, strictly
increasing function on the positive real axis such that |z′

i| = ρ(|zi|) and ρ(0) = 0.
If ρ is defined for negative z by ρ(−z) = −ρ(z), it belongs to G and z′

i = ρ(zi)
for all i, as was to be proved. As in the preceding problem, sufficiency permits
the further reduction to the ordered ranks r1 < · · · < rm and s1 < · · · < sn. This
retains the information for the rank of each absolute value whether it belongs
to a positive or negative observation, but not with which positive or negative
observation it is associated.

The situation is very similar for the hypotheses H3 and H4. The problem
of testing for independence in a bivariate distribution against the alternatives
of positive dependence is unchanged if the Xi and Yi are subjected to trans-
formations X ′

i = ρ(Xi), Y
′

i = λ(Yi) such that ρ and λ are continuous and
strictly increasing. This leaves as maximal invariant the ranks (R′

1, . . . , R
′
N ) of

(X1, . . . , XN ) among the X’s and the ranks (S′
1, . . . , S

′
N ) of (Y1, . . . , YN ) among

the Y ’s. The distribution of (R′
1, S

′
1), . . . , (R

′
N , S′

N ) is symmetric in these N pairs
for all distributions of (X, Y ). It follows that a sufficient statistic is (S1, . . . , SN )
where (1, S1), . . . , (N, SN ) is a permutation of (R′

1, S
′
1), . . . , (R

′
N , S′

N ) and where
therefore Si is the rank of the variable Y associated with the ith smallest X.

The hypothesis H4 that Y1, . . . , Yn constitutes a sample is to be tested against
the alternatives K4 that the Yi are stochastically increasing with i. This problem
is invariant under the group of transformations y′

i = ρ(yi) where ρ is continuous
and strictly increasing. A maximal invariant under this group is the set of ranks
S1, . . . , SN of Y1, . . . , YN .

Some invariant tests of the hypotheses H1 and H2 will be considered in the next
two sections. Corresponding results concerning H3 and H4 are given in Problems
6.60–6.62.

6.9 The Two-Sample Problem

The problem of testing the two-sample hypothesis H : G = F against the one-
sided alternatives K that the Y ’s are stochastically larger than the X’s is reduced
by the principle of invariance to the consideration of tests based on the ranks
S1 < · · · < Sn of the Y ’s. The specification of the Si is equivalent to specifying
for each of the N = m + n positions within the combined sample (the smallest,
the next smallest, etc.) whether it is occupied by an x or a y. Since for any set of
observations n of the N positions are occupied by y’s and since the

(
N
n

)
possible

assignments of n positions to the y’s are all equally likely when G = F , the joint
distribution of the Si under H is

P{S1 = s1, . . . , Sn = sn} = 1

/(
N
n

)
(6.25)

for each set 1 ≤ s1 < s2 < · · · < sn ≤ N . Any rank test of H of size

α = k

/(
N
n

)
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therefore has a rejection region consisting of exactly k points (s1, . . . , sn).
For testing H against K there exists no UMP rank test, and hence no UMP in-

variant test. This follows for example from a consideration of two of the standard
tests for this problem, since each is most powerful among all rank tests against
some alternative. The two tests in question have rejection regions of the form

h(s1) + · · · + h(sn) > C. (6.26)

One, the Wilcoxon two-sample test, is obtained from (6.26) by letting h(s) = s,
so that it rejects H when the sum of the y-ranks is too large. We shall show below
that for sufficiently small ∆, this is most powerful against the alternatives that
F is the logistic distribution F (x) = 1/(1+e−x), and that G(y) = F (y−∆). The
other test, the normal-scores test, has the rejection region (6.26) with h(s) =
E(W(s)), where W(1) < · · · < W(N), is an ordered sample of size N from a
standard normal distribution.5 This is most powerful against the alternatives
that F and G are normal distributions with common variance and means ξ and
η = ξ + ∆, when ∆ is sufficiently small.

To prove that these tests have the stated properties it is necessary to know
the distribution of (S1, . . . , Sn) under the alternatives. If F and G have densities
f and g such that f is positive whenever g is, the joint distribution of the Si is
given by

P{S1 = s1, . . . , Sn = sn} = E

[
g(V(s1))

f(V(s1))
· · ·

g(V(sn))

f(V(sn))

]/(
N
n

)
, (6.27)

where V(1) < · · · < V(N) is an ordered sample of size N from the distribution F .
(See Problem 6.42.) Consider in particular the translation (or shift) alternatives

g(y) = f(y − ∆),

and the problem of maximizing the power for small values of ∆. Suppose that f
is differentiable and that the probability (6.27), which is now a function of ∆, can
be differentiated with respect to ∆ under the expectation sign. The derivative of
(6.27) at ∆ = 0 is then

∂
∂∆

P∆{S1 = s1, . . . , Sn = Sn}
∣∣∣∣
∆=0

= −
n∑

i=1

E

[
f ′(V(si))

f(V(si))

]/(
N
n

)
.

Since under the hypothesis the probability of any ranking is given by (6.25), it
follows from the Neyman–Pearson lemma in the extended form of Theorem 3.6.1,
that the derivative of the power function at ∆ = 0 is maximized by the rejection
region

−
n∑

i=1

E

[
f ′(V(si))

f(V(si))

]
> C. (6.28)

The same test maximizes the power itself for sufficiently small ∆. To see this
let s denote a general rank point (s1, . . . , sn), and denote by s(j) the rank point

5Tables of the expected order statistics from a normal distribution are given in
Biometrika Tables for Statisticians, Vol. 2, Cambridge U. P., 1972, Table 9. For
additional references, see David (1981, Appendix, Section 3.2).
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giving the jth largest value to the left-hand side of (6.28). If

α = k

/(
N
n

)
,

the power of the test is then

β(∆) =
k∑

j=1

P∆(s(j)) =
k∑

j=1

[
1(
N
n

) + ∆
∂

∂∆
P∆(s(j))

∣∣∣∣∣
∆=0

+ · · ·
]

.

Since there is only a finite number of points s, there exists for each j a number
∆j > 0 such that the point s(j) also gives the jth largest value to P∆(s) for all
∆ < ∆j . If ∆ is less than the smallest of the numbers

∆j , j = 1, . . . ,

(
N
n

)
,

the test also maximizes β(∆).
If f(x) is the normal density N(ξ, σ2), then

−f ′(x)
f(x)

= − d
dx

log f(x) =
x − ξ
σ2

,

and the left-hand side of (6.28) becomes

∑
E

V(si) − ξ

σ2
=

1
σ

∑
E(W(si))

where W(1) < · · · < W(N) is an ordered sample from N(0, 1). The test that max-
imizes the power against these alternatives (for sufficiently small ∆) is therefore
the normal-scores test.

In the case of the logistic distribution,

F (x) =
1

1 + e−x
, f(x) =

e−x

(1 + e−x)2
,

and hence

−f ′(x)
f(x)

= 2F (x) − 1.

The locally most powerful rank test therefore rejects when
∑

E[F (V(xi))] > C.
If V has the distribution F , then U = F (V ) is uniformly distributed over (0, 1)
(Problem 3.22). The rejection region can therefore be written as

∑
E(U(si)) >

C, where U(1) < · · · < U(N) is an ordered sample of size N from the uniform
distribution U(0, 1). Since E(U(si)) = si/(N + 1), the test is seen to be the
Wilcoxon test.

Both the normal-scores test and the Wilcoxon test are unbiased against the
one-sided alternatives K. In fact, let φ be the critical function of any test deter-
mined by (6.26) with h nondecreasing. Then φ is nondecreasing in the y’s and the
probability of rejection is α for all F = G. By Lemma 5.9.1 the test is therefore
unbiased against all alternatives of K.

It follows from the unbiasedness properties of these tests that the most pow-
erful invariant tests in the two cases considered are also most powerful against
their respective alternatives among all tests that are invariant and unbiased. The
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nonexistence of a UMP test is thus not relieved by restricting the tests to be un-
biased as well as invariant. Nor does the application of the unbiasedness principle
alone lead to a solution, as was seen in the discussion of permutation tests in Sec-
tion 5.9. With the failure of these two principles, both singly and in conjunction,
the problem is left not only without a solution but even without a formulation.
A possible formulation (stringency) will be discussed in Chapter 8. However, the
determination of a most stringent test for the two-sample hypothesis is an open
problem.

For testing H : G = F against the two-sided alternatives that the Y ’s are either
stochastically smaller or larger than the X’s two-sided versions of the rank tests
of this section can be used. In particular, suppose that h is increasing and that
h(s)+h(N +1−s) is independent of s, as is the case for the Wilcoxon and normal-
scores statistics. Then under H, the statistic Σh(sj) is symmetrically distributed
about nΣN

i=1h(i)/N = µ, and (6.26) suggests the rejection region

∣∣∣
∑

h(sj) − µ
∣∣∣ =

1
N

∣∣∣∣∣m
n∑

j=1

h(sj) − n
m∑

i=1

h(ri)

∣∣∣∣∣ > C.

The theory here is still less satisfactory than in the one-sided case. These tests
need not even be unbiased [Sugiura (1965)], and it is not known whether they
are admissible within the class of all rank tests. On the other hand, the relative
asymptotic efficiencies are the same as in the one-sided case.

The two-sample hypothesis G = F can also be tested against the general
alternatives G += F . This problem arises in deciding whether two products, two
sets of data, or the like can be pooled when nothing is known about the underlying
distributions. Since the alternatives are now unrestricted, the problem remains
invariant under all transformations x′

i = f(xi), y′
j = f(yj), i = 1, . . . , m, j =

1, . . . , n, such that f has only a finite number of discontinuities. There are no
invariants under this group, so that the only invariant test is φ(x, y) ≡ α. This is
however not admissible, since there do exist tests of H that are strictly unbiased
against all alternatives G += F (Problem 6.54). One of the tests most commonly
employed for this problem is the Smirnov test. Let the empirical distribution
functions of the two samples be defined by

Sx1,...,xm(z) =
a
m

, Sy1,...,yn(z) =
b
n

,

where a and b are the numbers of x’s and y’s less or equal to z respectively. Then
H is rejected according to this test when

sup
z

|Sx1,...,xm(z) − Sy1,...,yn(z)| > C.

Accounts of the theory of this and related tests are given, for example, in Durbin
(1973), Serfling (1980), Gibbons and Chakraborti (1992) and Hájek, Sidák, and
Sen (1999).

Two-sample rank tests are distribution-free for testing H : G = F but not for
the nonparametric: Behrens-Fisher situation of testing H : η = ξ when the X’s
and Y ’s are samples from F ((x − ξ)/σ) and F ((y − η)/τ) with σ, τ unknown. A
detailed study of the effect of the difference in scales on the levels of the Wilcoxon
and normal-scores tests is provided by Pratt (1964).



246 6. Invariance

6.10 The Hypothesis of Symmetry

When the method of paired comparisons is used to test the hypothesis of no
treatment effect, the problem was seen in Section 6.8 to reduce through invariance
to that of testing the hypothesis

H ′
2 : D(z) + D(−z) = 1 for all z,

which states that the distribution D of the differences Zi = Yi−Xi (i = 1, . . . , N)
is symmetric with respect to the origin. The distribution D can be specified by
the triple (ρ, F, G) where

ρ = P{Z ≤ 0}, F (z) = P{|Z| ≤ z | Z > 0},
G(z) = P{Z ≤ z | Z > 0},

and the hypothesis of symmetry with respect to the origin then becomes

H : p = 1
2 , G = F.

Invariance and sufficiency were shown to reduce the data to the ranks S1 <
· · · < Sn of the positive Z’s among the absolute values |Z1|, . . . , |ZN |. The proba-
bility of S1 = s1, . . . , Sn = sn is the probability of this event given that there are
n positive observations multiplied by the probability that the number of positive
observations is n. Hence

P{S1 = s1, . . . , Sn = sn}

=

(
N
n

)
(1 − ρ)nρN−nPF,G{S1 = s1, . . . , Sn = sn | n}

where the second factor is given by (6.27). Under H, this becomes

P{S1 = s1, . . . , Sn = sn} =
1

2N

for each of the
N∑

n=0

(
N
n

)
= 2N

n-tuples (s1, . . . , sn) satisfying 1 ≤ s1 < · · · < sn ≤ N . Any rank test of
size α = k/2N therefore has a rejection region containing exactly k such points
(s1, . . . , sn).

The alternatives K of a beneficial treatment effect are characterized by the
fact that the variable Z being sampled is stochastically larger than some random
variable which is symmetrically distributed about 0. It is again suggestive to
use rejection regions of the form h(s1) + · · · + h(sn) > C, where however n is
no longer a constant as it was in the two-sample problem, but depends on the
observations. Two particular cases are the Wilcoxon one-sample test, which is
obtained by putting h(s) = s, and the analogue of the normal-scores test with
h(s) = E(W(s)) where W(1) < · · · < W(N) are the ordered values of |V1|, . . . , |VN |,
the V ’s being a sample from N(0, 1). The W ’s are therefore an ordered sample

of size N from a distribution with density
√

2/πe−w2/2 for w ≥ 0.
As in the two-sample problem, it can be shown that each of these tests is most

powerful (among all invariant tests) against certain alternatives, and that they
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are both unbiased against the class K. Their asymptotic efficiencies relative to
the t-test for testing that the mean of Z is zero have the same values 3/π and 1
as the corresponding two-sample tests, when the distribution of Z is normal.

In certain applications, for example when the various comparisons are made
under different experimental conditions or by different methods, it may be un-
realistic to assume that the variables Z1, . . . , ZN have a common distribution.
Suppose instead that the Zi are still independently distributed but with arbi-
trary continuous distributions Di. The hypothesis to be tested is that each of
these distributions is symmetric with respect to the origin.

This problem remains invariant under all transformations z′
i = fi(zi) i =

1, . . . , N , such that each fi is continuous, odd, and strictly increasing. A maxi-
mal invariant is then the number n of positive observations, and it follows from
Example 6.5.1 that there exists a UMP invariant test, the sign test, which rejects
when n is too large. This test reflects the fact that the magnitude of the observa-
tions or of their absolute values can be explained entirely in terms of the spread
of the distributions Di, so that only the signs of the Z’s are relevant.

Frequently, it seems reasonable to assume that the Z’s are identically dis-
tributed, but the assumption cannot be trusted. One would then prefer to use
the information provided by the ranks si but require a test which controls the
probability of false rejection even when the assumption fails. As is shown by the
following lemma, this requirement is in fact satisfied for every (symmetric) rank
test. Actually, the lemma will not require even the independence of the Z’s; it
will show that any symmetric rank test continues to correspond to the stated
level of significance provided only the treatment is assigned at random within
each pair.

Lemma 6.10.1 Let φ(z1, . . . , zN ) be symmetric in its N variables and such that

EDφ(Z1, . . . , ZN ) = α (6.29)

when the Z’s are a sample from any continuous distribution D which is symmetric
with respect to the origin. Then

Eφ(Z1, . . . , ZN ) = α (6.30)

if the joint distribution of the Z’s is unchanged under the 2N transformations
Z′

1 = ±Z1, . . . , Z
′
N = ±ZN .

Proof. The condition (6.29) implies

∑

(j1,...,jN )

∑ φ(±zj1 , . . . ,±zjN )

2N · N !
= α a.e., (6.31)

where the outer summation extends over all N ! permutations (j1, . . . , jN ) and
the inner one over all 2N possible choices of the signs + and −. This is proved
exactly as was Theorem 5.8.1. If in addition φ is symmetric, (6.31) implies

∑ φ(±z1, . . . ,±zN )
2N

= α. (6.32)

Suppose that the distribution of the Z’s is invariant under the 2N transforma-
tions in question. Then the conditional probability of any sign combination of
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Z1, . . . , ZN given |Z1|, . . . , |ZN | is 1/2N . Hence (6.32) is equivalent to

E[φ(Z1, . . . , ZN ) | |Z1|, . . . , |ZN |] = α a.e., (6.33)

and this implies (6.30) which was to be proved.
The tests discussed above can be used to test symmetry about any known

value θ0 by applying them to the variables Zi − θ0. The more difficult problem
of testing for symmetry about an unknown point θ will not be considered here.
Tests of this hypothesis are discussed, among others, by Antille, Kersting, and
Zucchini (1982), Bhattacharya, Gastwirth, and Wright (1982), Boos (1982), and
Koziol (1983).

As will be seen in Section 11.3.1, the one-sample t-test is not robust against
dependence. Unfortunately, this is also true-although to a somewhat lesser
extent—of the sign and one-sample Wilcoxon tests [Gastwirth and Rubin (1971)].

6.11 Equivariant Confidence Sets

Confidence sets for a parameter θ in the presence of nuisance parameters ϑ were
discussed in Chapter 5 (Sections 5.4 and 5.5) under the assumption that θ is real-
valued. The correspondence between acceptance regions A(θ0) of the hypotheses
H(θ0) : θ = θ0 and confidence sets S(x) for θ given by (5.33) and (5.34) is,
however, independent of this assumption; it is valid regardless of whether θ is real-
valued, vector-valued, or possibly a label for a completely unknown distribution
function (in the latter case, confidence intervals become confidence bands for the
distribution function). This correspondence, which can be summarized by the
relationship

θ ∈ S(x) if and only if x ∈ A(θ), (6.34)

was the basis for deriving uniformly most accurate and uniformly most accurate
unbiased confidence sets. In the present section, it will be used to obtain uniformly
most accurate equivariant confidence sets.

We begin by defining equivariance for confidence sets. Let G be a group
of transformations of the variable X preserving the family of distributions
{Pθ,ϑ, (θ, ϑ) ∈ Ω} and let Ḡ be the induced group of transformations of Ω. If
ḡ(θ, ϑ) = (θ′, ϑ′), we shall suppose that θ′ depends only on ḡ and θ and not on
ϑ, so that ḡ induces a transformation in the space of θ. In order to keep the no-
tation from becoming unnecessarily complex, it will then be convenient to write
also θ′ = ḡθ. For each transformation g ∈ G, denote by g∗ the transformation
acting on sets S in θ-space and defined by

g∗S = {ḡθ : θ ∈ S}, (6.35)

so that g∗S is the set obtained by applying the transformation ḡ to each point θ of
S. The invariance argument of Section 1.5, then suggests restricting consideration
to confidence sets satisfying

g∗S(x) = S(gx) for all x ∈ X , g ∈ G. (6.36)

We shall say that such confidence sets are equivariant under G. This terminology
is preferable to the older term invariance which creates the impression that the
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confidence sets remain unchanged under the transformation X ′ = gX. If the
transformation g is interpreted as a change of coordinates, (6.36) means that
the confidence statement does not depend on the coordinate system used to
express the data. The statement that the transformed parameter ḡθ lies in S(gx)
is equivalent to stating that θ ∈ g∗−1S(gx), which is equivalent to the original
statement θ ∈ S(x) provided (6.36) holds.

Example 6.11.1 Let X, Y be independently normally distributed with means
ξ, η and unit variance, and let G be the group of all rigid motions of the plane,
which is generated by all translations and orthogonal transformations. Here ḡ = g
for all g ∈ G. An example of an equivariant class of confidence sets is given by

S(x, y) =
{
(ξ, η) : (x − ξ)2 + (y − η)2 ≤ C

}
,

the class of circles with radius
√

C and center (x, y). The set g∗S(x, y) is the
set of all points g(ξ, η) with (ξ, η) ∈ S(x, y) and hence is obtained by subjecting
S(x, y) to the rigid motion g. The result is the circle with radius

√
C and center

g(x, y), and (6.36) is therefore satisfied.

In accordance with the definitions given in Chapters 3 and 5, a class of con-
fidence sets for θ will be said to be uniformly most accurate equivariant at
confidence level 1−α if among all equivariant classes of sets S(x) at that level it
minimizes the probability

Pθ,ϑ{θ′ ∈ S(X)} for all θ′ += θ.

In order to derive confidence sets with this property from families of UMP in-
variant tests, we shall now investigate the relationship between equivariance of
confidence sets and invariance of the associated tests.

Suppose that for each θ0 there exists a group of transformations Gθ0 which
leaves invariant the problem of testing H(θ0) : θ = θ0, and denote by G the group
of transformations generated by the totality of groups Gθ.

Lemma 6.11.1 (i) Let S(x) be any class of confidence sets that is equivariant
under G, and let A(θ) = {x : θ ∈ S(x)}; then the acceptance region A(θ) is
invariant under Gθ for each θ.

(ii) If in addition, for each θ0 the acceptance region A(θ0) is UMP invariant
for testing H(θ0) at level α, the class of confidence sets S(x) is uniformly most
accurate among all equivariant confidence sets at confidence level 1 − α.

Proof. (i): Consider any fixed θ, and let g ∈ Gθ. Then

gA(θ) = {gx : θ ∈ S(x)} = {x : θ ∈ S(g−1x)} = {x : θ ∈ g∗−1S(x)}
= {x : ḡθ ∈ S(x)} = {x : θ ∈ S(x)} = A(θ).

Here the third equality holds because S(x) is equivariant, and the fifth one
because g ∈ Gθ and therefore ḡθ = θ.

(ii): If S′(x) is any other equivariant class of confidence sets at the prescribed
level, the associated acceptance regions A′(θ) by (i) define invariant tests of the
hypotheses H(θ). It follows that these tests are uniformly at most as powerful as
those with acceptance regions A(θ) and hence that

Pθ,ϑ{θ′ ∈ S(X)} ≤ Pθ,ϑ{θ′ ∈ S′(X)} for all θ′ += θ,
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as was to be proved.
It is an immediate consequence of the lemma that if UMP invariant acceptance

regions A(θ) have been found for each hypothesis H(θ) (invariant with respect
to Gθ), and if the confidence sets S(x) = {θ : x ∈ A(θ)} are equivariant under G,
then they are uniformly most accurate equivariant.

Example 6.11.2 Under the assumptions of Example 6.11.1, the problem of
testing ξ = ξ0, η = η0 is invariant under the group Gξ0,η0 of orthogonal
transformations about the point (ξ0, η0):

X ′ − ξ0 = a11(X − ξ0) + a12(Y − η0),

Y ′ − η0 = a21(X − ξ0) + a22(Y − η0),

where the matrix (aij) is orthogonal. There exists under this group a UMP
invariant test, which has the acceptance region (Problem 7.8)

(X − ξ0)
2 + (Y − η0)

2 ≤ C.

Let G0 be the smallest group containing the groups Gξ,η, for all ξ, η. Since this is a
subgroup of the group G of Example 6.11.1 (the two groups actually coincide, but
this is immaterial for the argument), the confidence sets (X − ξ)2 +(Y −η)2 ≤ C
are equivariant under G0 and hence uniformly most accurate equivariant.

Example 6.11.3 Let X1, . . . , Xn be independently normally distributed with
mean ξ and variance σ2. Confidence intervals for ξ are based on the hypotheses
H(ξ0) : ξ = ξ0, which are invariant under the groups Gξ0 of transformations
X ′

i = a(Xi − ξ0) + ξ0 (a += 0). The UMP invariant test of H(ξ0) has acceptance
region

√
(n − 1)n|X̄ − ξ0|√∑

(Xi − X̄)2
≤ C,

and the associated confidence intervals are

X̄ − C√
n(n − 1)

√∑
(Xi − X̄)2 ≤ ξ ≤ X̄ +

C√
n(n − 1)

√∑
(Xi − X̄)2. (6.37)

The group G in the present case consists of all transformations g : X ′
i = aXi +

b (a += 0), which on ξ induces the transformation ḡ : ξ′ = aξ + b. Application
of the associated transformation g∗ to the interval (6.37) takes it into the set of
points aξ + b for which ξ satisfies (6.37), that is, into the interval with end points

aX̄ + b − |a|C√
n(n − 1)

√∑
(Xi − X̄)2, aX̄ + b +

|a|C√
n(n − 1)

√∑
(Xi − X̄)2

Since this coincides with the interval obtained by replacing Xi in (6.37) with
aXi + b, the confidence intervals (6.37) are equivariant under G0 and hence
uniformly most accurate equivariant.

Example 6.11.4 In the two-sample problem of Section 6.9, assume the shift
model in which the X’s and Y ’s have densities f(x) and g(y) = f(y −∆) respec-
tively, and consider the problem of obtaining confidence intervals for the shift
parameter ∆ which are distribution-free in the sense that the coverage proba-
bility is independent of the true f . The hypothesis H(∆0) : ∆ = ∆0 can be
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tested, for example, by means of the Wilcoxon test applied to the observations
Xi, Yj−∆0, and confidence sets for ∆ can then be obtained by the usual inversion
process. The resulting confidence intervals are of the form D(k) < ∆ < D(mn+1−k)

where D(1) < · · · < D(mn) are the mn ordered differences Yj −Xi. [For details see
Problem 6.52 and for fuller accounts nonparametric books such as Randles and
Wolfe (1979), Gibbons and Chakraborti (1992) and Lehmann (1998).] By their
construction, these intervals have coverage probability 1 − α, which is indepen-
dent of f . However, the invariance considerations of Sections 6.8 and 6.9 do not
apply. The hypothesis H(∆0) is invariant under the transformations X ′

i = ρ(Xi),
Y ′

j = ρ(Yj − ∆0) + ∆0 with ρ continuous and strictly increasing, but the shift
model, and hence the problem under consideration, is not invariant under these
transformations.

6.12 Average Smallest Equivariant Confidence Sets

In the examples considered so far, the invariance and equivariance properties of
the confidence sets corresponded to invariant properties of the associated tests.
In the following examples this is no longer the case.

Example 6.12.1 Let X1, . . . , Xn, be a sample from N(ξ, σ2), and consider the
problem of estimating σ2.

The model is invariant under translations X ′
i = Xi + a, and sufficiency and

invariance reduce the data to S2 =
∑

(Xi − X̄)2. The problem of estimating σ2

by confidence sets also remains invariant under scale changes X ′
i = bXi, S′ = bS,

σ′ = bσ (0 < b), although these do not leave the corresponding problem of
testing the hypothesis σ = σ0 invariant. (Instead, they leave invariant the family
of these testing problems, in the sense that they transform one such hypothesis
into another.) The totality of equivariant confidence sets based on S is given by

σ2

S2
∈ A, (6.38)

where A is any fixed set on the line satisfying

Pσ=1

(
1
S2

∈ A

)
= 1 − α. (6.39)

That any set σ2 ∈ S2 · A is equivariant is obvious. Conversely, suppose that
σ2 ∈ C(S2) is an equivariant family of confidence sets for σ2. Then C(S2) must
satisfy b2C(S2) = C(b2S2) and hence

σ2 ∈ C(S2) if and only if
σ2

S2
∈ 1

S2
C(S2) = C(1),

which establishes (6.38) with A = C(1).
Among the confidence sets (6.38) with A satisfying (6.39) there does not exist

one that uniformly minimizes the probability of covering false values (Problem
6.73). Consider instead the problem of determining the confidence sets that are
physically smallest in the sense of having minimum Lebesgue measure. This re-
quires minimizing

∫
A

dv subject to (6.39). It follows from the Neyman-Pearson
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lemma that the minimizing A∗ is

A∗ = {v : p(v) > C}, (6.40)

where p(v) is the density of V = 1/S2 when σ = 1, and where C is determined
by (6.39). Since p(v) is unimodal (Problem 6.74), these smallest confidence sets
are intervals, aS2 < σ2 < bS2. Values of a and b are tabled by Tate and Klett
(1959), who also table the corresponding (different) values a′, b′ for the uniformly
most accurate unbiased confidence intervals a′S2 < σ2 < b′S2 (given in Example
5.5.1).

Instead of minimizing the Lebesgue measure
∫

A
dv of the confidence sets A,

one may prefer to minimize the scale-invariant measure
∫

A

1
v

dv. (6.41)

To an interval (a, b), (6.41) assigns, in place of its length b − a, its logarithmic
length log b − log a = log(b/a). The optimum solution A∗∗ with respect to this
new measure is again obtained by applying the Neyman Pearson lemma, and is
given by

A∗∗ = {v : vp(v) > C}, (6.42)

which coincides with the uniformly most accurate unbiased confidence sets
[Problem 6.75(i)].

One advantage of minimizing (6.41) instead of Lebesgue measure is that it
then does not matter whether one estimates σ or σ2 (or σr for some other power
of r), since under (6.41), if (a, b) is the best interval for σ, then (ar, br) is the
best interval for σr [Problem 6.75(ii)].

Example 6.12.2 Let Xi (i = 1, . . . , r) be independently normally distributed
as N(ξ, 1). A slight generalization of Example 6.11.2 shows that uniformly most
accurate equivariant confidence sets for (ξ1, . . . , ξr) exist with respect to the group
G of all rigid transformations and are given by

∑
(Xi − ξi)

2 ≤ C. (6.43)

Suppose that the context of the problem does not possess the symmetry which
would justify invoking invariance with respect to G, but does allow the weaker
assumption of invariance under the group G0 of translations X ′

i = Xi + ai. The
totality of equivariant confidence sets with respect to G0 is given by

(X1 − ξ1, . . . , Xr − ξr) ∈ A, (6.44)

where A is any fixed set in r-space satisfying

Pξ1=···=ξr=0((X1, . . . , Xr) ∈ A) = 1 − α. (6.45)

Since uniformly most accurate equivariant confidence sets do not exist (Prob-
lem 6.73), let us consider instead the problem of determining the confidence
sets of smallest Lebesgue measure. (This measure is invariant under G0.) This is
given by (6.40) with v = (v1, . . . , vr) and p(v) the density of (X1, . . . , Xr) when
ξ1 = · · · = ξr = 0, and hence coincides with (6.43).

Quite surprisingly, the confidence sets (6.43) are inadmissible if and only if
r ≥ 3. A further discussion of this fact and references are deferred to Example
8.5.4.
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Example 6.12.3 In the preceding example, suppose that the Xi are distributed
as N(ξi, σ

2) with σ2 unknown, and that a variable S2 is available for estimating
σ2. Of S2 assume that it is independent of the X’s and that S2/σ2 has a χ2

-distribution with f degrees of freedom.
The estimation of (ξ1, . . . , ξr) by confidence sets on the basis of X’s and S2

remains invariant under the group G0 of transformations

X ′
i = bXi + ai, S′ = bS, ξ′i = bξi + ai, σ′ = bσ,

and the most general equivariant confidence set is of the form
(

X1 − ξ1

S
, . . . ,

Xr − ξr

S

)
∈ A, (6.46)

where A is any fixed set in r-space satisfying

Pξ1=···=ξr=0

[(
X1

S
, . . . ,

Xr

S

)
∈ A

]
= 1 − α. (6.47)

The confidence sets (6.46) can be written as

(ξ1, . . . , ξr) ∈ (X1, . . . , Xr) − SA, (6.48)

where −SA is the set obtained by multiplying each point of A by the scalar −S.
To see (6.48), suppose that C(X1, . . . , Xr; S) is an equivariant confidence set

for (ξ1, . . . , ξr). Then the r-dimensional set C must satisfy

C(bX1 + a1, . . . , bXr + ar; bS) = b[C(X1, . . . , Xr; S)] + (a1, . . . , ar)

for all a1, . . . , ar and all b > 0. It follows that (ξ1, . . . , ξr) ∈ C if and only if
(

X1 − ξ1

S
, . . . ,

Xr − ξr

S

)
∈ (X1, . . . , Xr) − C(X1, . . . , Xr; S)

S
= C(0, . . . , 0; 1)

= A.

The equivariant confidence sets of smallest volume are obtained by choosing for
A the set A∗ given by (6.40) with v = (v1, . . . , vr) and p(v) the joint density of
(X1/S, . . . , Xr/S) when ξ1 = · · · = ξr = 0. This density is a decreasing function
of

∑
v2

i (Problem 6.76), and the smallest equivariant confidence sets are therefore
given by

∑
(Xi − ξi)

2 ≤ CS2. (6.49)

[Under the larger group G generated by all rigid transformations of (X1, . . . , Xr)
together with the scale changes X ′

i = bXi, S′ = bS, the same sets have the
stronger property of being uniformly most accurate equivariant; see Problem
6.77.]

Examples 6.12.1–6.12.3 have the common feature that the equivariant confi-
dence sets S(X) for θ = (θ1, . . . , θr) are characterized by an r-valued pivotal
quantity, that is, a function h(X, θ) = (h1(X, θ), . . . , hr(X, θ)) of the observa-
tions X and parameters θ being estimated that has a fixed distribution, and such
that the most general equivariant confidence sets are of the form

h(X, θ) ∈ A (6.50)



254 6. Invariance

for some fixed set A.6 When the functions hi are linear in θ, the confidence sets
C(X) obtained by solving (6.50) for θ are linear transforms of A (with random
coefficients), so that the volume or invariant measure of C(X) is minimized by
minimizing

∫

A

ρ(v1, . . . , vr) dv1 . . . dvr (6.51)

for the appropriate ρ. The problem thus reduces to that of minimizing (6.51)
subject to

Pθ0{h(X, θ0) ∈ A} =

∫

A

p(v1, . . . , vr) dv1 . . . dvr = 1 − α, (6.52)

where p(v1, . . . , vr) is the density of the pivotal quantity h(X, θ). The minimizing
A is given by

A∗ =

{
v :

p(v1, . . . , vr)
ρ(v1, . . . , vr)

> C

}
, (6.53)

with C determined by (6.52).
The following is one more illustration of this approach.

Example 6.12.4 Let X1, . . . , Xm and Y1, . . . , Yn be samples from N(ξ, σ2) and
N(η, τ2) respectively, and consider the problem of estimating ∆ = τ2/σ2. Suffi-
ciency and invariance under translations X ′

i = Xi + a1, Y ′
j = Yj + a2 reduce the

data to S2
X =

∑
(Xi,−X̄)2 and S2

Y =
∑

(Yj − Ȳ )2. The problem of estimating ∆
also remains invariant under the scale changes

X ′
i = b1Xi, Y ′

j = b2Yj , 0 < b1, b2 < ∞,

which induce the transformations

S′
X = b1SX , S′

Y = b2SY , σ′ = b1σ, τ ′ = b2τ. (6.54)

The totality of equivariant confidence sets for ∆ is given by ∆/V ∈ A, where
V = S2

Y /S2
X and A is any fixed set on the line satisfying

P∆=1

(
1
V

∈ A

)
= 1 − α. (6.55)

To see this, suppose that C(SX , SY ) are any equivariant confidence sets for ∆.
Then C must satisfy

C(b1SX , b2SY ) =
b2
2

b2
1

C(SX , SY ), (6.56)

and hence ∆ ∈ C(SX , SY ) if and only if the pivotal quantity V/∆ satisfies

∆
V

=
S2

X∆
S2

Y

∈ S2
X

S2
Y

C(SX , SY ) = C(1, 1) = A.

As in Example 6.12.1, one may now wish to choose A so as to minimize either
its Lebesgue measure

∫
A

dv or the invariant measure
∫

A
(1/v) dv. The resulting

6More general results concerning the relationship of equivariant confidence sets and
pivotal quantities are given in Problems 6.69–6.72.
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confidence sets are of the form

p(v) > C and vp(v) > C (6.57)

respectively. In both cases, they are intervals V/b < ∆ < V/a [Problem 6.78(i)].
The values of a and b minimizing Lebesgue measure are tabled by Levy and
Narula (1974); those for the invariant measure coincide with the uniformly most
accurate unbiased intervals [Problem 6.78(ii)].

6.13 Confidence Bands for a Distribution Function

Suppose that X = (X1, . . . , Xn) is a sample from an unknown continuous cumu-
lative distribution function F , and that lower and upper bounds LX and MX are
to be determined such that with preassigned probability 1 − α the inequalities

LX(u) ≤ F (u) ≤ MX(u) for all u

hold for all continuous cumulative distribution functions F . This problem is
invariant under the group G of transformations

X ′
i = g(Xi), i = 1, . . . , n,

where g is any continuous strictly increasing function. The induced transforma-
tion in the parameter space is ḡF = F (g−1).

If S(x) is the set of continuous cumulative distribution functions

S(x) = {F : Lx(u) ≤ F (u) ≤ Mx(u) for all u},

then

g∗S(x) = {ḡF : Lx(u) ≤ F (u) ≤ Mx(u) for all u}
= {F : Lx[g−1(u)] ≤ F (u) ≤ Mx[g−1(u)] for all u}.

For an equivariant procedure, this must coincide with the set

S(gx) =
{
F : Lg(x1),...,g(xn)(u) ≤ F (u) ≤ Mg(x1),...,g(xn)(u) for all u

}
.

The condition of equivariance is therefore

Lg(x1),...,g(xn)[g(u)] = Lx(u),

Mg(x1),...,g(xn)[g(u)] = Mx(u) for all x and u.

To characterize the totality of equivariant procedures, consider the empirical
distribution function (EDF) Tx given by

Tx(u) =
i
n

for x(i) ≤ u < x(i+1), i = 0, . . . , n,

where x(1) < · · · < x(n) is the ordered sample and where x(0) = −∞, x(n+1) = ∞.
Then a necessary and sufficient condition for L and M to satisfy the above
equivariance condition is the existence of numbers a0, . . . , an; a′

0, . . . , a
′
n such

that

Lx(u) = ai, Mx(u) = a′
i for x(i) < u < x(i+1).
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That this condition is sufficient is immediate. To see that it is also necessary, let
u, u′ be any two points satisfying x(i) < u < u′ < x(i+1). Given any y1, . . . , yn

and v with y(i) < v < y(i+1), there exist g, g′ ∈ G such that

g(y(i)) = g′(y(i)) = x(i), g(v) = u, g′(v) = u′.

If Lx, Mx are equivariant, it then follows that Lx(u′) = Ly(v) and Lx(u) =
Ly(v), and hence that Lx(u′) = Lx(u) and similarly Mx(u′) = Mx(u), as was to
be proved. This characterization shows Lx and Mx to be step functions whose
discontinuity points are restricted to those of Tx.

Since any two continuous strictly increasing cumulative distribution functions
can be transformed into one another through a transformation ḡ, it follows that all
these distributions have the same probability of being covered by an equivariant
confidence band. (See Problem 6.84.) Suppose now that F is continuous but
no longer strictly increasing. If I is any interval of constancy of F , there are
no observations in I, so that I is also an interval of constancy of the sample
cumulative distribution function. It follows that the probability of the confidence
band covering F is not affected by the presence of I and hence is the same for
all continuous cumulative distribution functions F .

For any numbers ai, a′
i let ∆i, ∆′

i be determined by

ai =
i
n
− ∆i, a′

i =
i
n
− ∆′

i

Then it was seen above that any numbers ∆0, . . . , ∆n; ∆′
0, . . . , ∆

′
n define a con-

fidence band for F , which is equivariant and hence has constant probability of
covering the true F . From these confidence bands a test can be obtained of the
hypothesis of goodness of fit F = F0 that the unknown F equals a hypothetical
distribution F0. The hypothesis is accepted if F0 ties entirely within the band,
that is, if

−∆i < F0(u) − Tx(u) < ∆′
i

for all x(i) < u < x(i+1) and all i = 1, . . . , n.

Within this class of tests there exists no UMP member, and the most common
choice of the ∆’s is ∆i = ∆′

i = ∆ for all i. The acceptance region of the resulting
Kolmogorov-Smirnov test can be written as

sup
−∞<u<∞

|F0(u) − Tx(u)| < ∆. (6.58)

Tables of the null distribution of the Kolmogorov-Smirnov statistic are given
by Birnbaum (1952). For large n, approximate critical values can be obtained
from the limit distribution K of

√
n sup |F0(u)− Tx(u)|, due to Kolmogorov and

tabled by Smirnov (1948). Derivations of K can be found, for example, in Feller
(1948), Billingsley (1968), and Hájek, Sidák and Sen (1999). The large sample
properties of this test will be studied in Example 11.2.12 and Section 14.2. The
more general problem of testing goodness-of-fit will be presented in Chapter 14.
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6.14 Problems

Section 6.1

Problem 6.1 Let G be a group of measurable transformations of (X ,A) leaving
P = {Pθ, θ ∈ Ω} invariant, and let T (x) be a measurable transformation to (T ,B).
Suppose that T (x1) = T (x2) implies T (gx1) = T (gx2) for all g ∈ G, so that G
induces a group G∗ on T through g∗T (x) = T (gx), and suppose further that
the induced transformations g∗ are measurable B. Then G∗ leaves the family
PT = {P T

θ , θ ∈ Ω} of distributions of T invariant.

Section 6.2

Problem 6.2 (i) Let X be the totality of points x = (x1, . . . , xn) for which
all coordinates are different from zero, and let G be the group of trans-
formations x′

i = cxi, c > 0. Then a maximal invariant under G is
(sgn xn, x1/xn, . . . , xn−1/xn) where sgn x is 1 or −1 as x is positive or
negative.

(ii) Let X be the space of points x = (x1, . . . , xn) for which all coordinates
are distinct, and let G be the group of all transformations x′

i = f(xi), i =
1, . . . , n, such that f is a 1 : 1 transformation of the real line onto itself
with at most a finite number of discontinuities. Then G is transitive over
X .

[(ii): Let x = (x1, . . . , xn) and x′ = (x′
1, . . . , x

′
n) be any two points of X . Let

I1, . . . , In be a set of mutually exclusive open intervals which (together with
their end points) cover the real line and such that xj ∈ Ij . Let I ′

1, . . . , I
′
n be a

corresponding set of intervals for x′
1, . . . , x

′
n. Then there exists a transformation

f which maps each Ij continuously onto I ′
j , maps xj into x′

j , and maps the set
of n − 1 end points of I1, . . . , In onto the set of end points of I ′

1, . . . , I
′
n.]

Problem 6.3 Suppose M is any m × p matrix. Show that MT M is positive
semidefinite. Also, show the rank of MT M equals the rank of M , so that in
particular MT M is nonsingular if and only if m ≥ p and M is of rank p.

Problem 6.4 (i) A sufficient condition for (6.8) to hold is that D is a normal
subgroup of G.

(ii) If G is the group of transformations x′ = ax + b, a += 0,−∞ < b < ∞, then
the subgroup of translations x′ = x+ b is normal but the subgroup x′ = ax
is not.

[The defining property of a normal subgroup is that given d ∈ D, g ∈ G, there
exists d′ ∈ D such that gd = d′g. The equality s(x1) = s(x2) implies x2 = dx1

for some d ∈ D, and hence ex2 = edx1 = d′ex1. The result (i) now follows, since
s is invariant under D.]

Section 6.3

Problem 6.5 Prove statements (i)-(iii) of Example 6.3.1.
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Problem 6.6 Prove Theorem 6.3.1
(i) by analogy with Example 6.3.1, and
(ii) by the method of Example 6.3.2. [Hint: A maximal invariant under G is the
set {g1x, . . . , gNx}.

Problem 6.7 Consider the situation of Example 6.3.1 with n = 1, and suppose
that f is strictly increasing on (0, 1).
(i) The likelihood ratio test rejects if X < α/2 or X > 1 − α/2.
(ii) The MP invariant test agrees with the likelihood ratio test when f is convex.
(iii) When f is concave, the MP invariant test rejects when

1
2
− α

2
< X <

1
2

+
α
2

,

and the likelihood ratio test is the least powerful invariant test against both
alternatives and has power < α.

Problem 6.8 Let X, Y have the joint probability density f(x, y). Then the in-
tegral h(z) =

∫ ∞
−∞ f(y − z, y)dy is finite for almost all z, and is the probability

density of Z = Y − X.
[Since P{Z ≤ b} =

∫ b

−∞ h(z)dz, it is finite and hence h is finite almost
everywhere.]

Problem 6.9 (i) Let X = (X1, . . . , Xn) have probability density (1/θn)f [(x1−
ξ)/θ, . . . , (xn − ξ)/θ], where −∞ < ξ < ∞, 0 < θ are unknown, and where
f is even. The problem of testing f = f0 against f = f1 remains invariant
under the transformations x′i = axi +b (i = 1, . . . , n), a += 0, −∞ < b < ∞
and the most powerful invariant test is given by the rejection region

∫ ∞

−∞

∫ ∞

0

vn−2f1(vx1 + u, . . . , vxn + u) dv du

> C

∫ ∞

−∞

∫ ∞

0

vn−2f0(vx1 + u, . . . , vxn + u) dv du.

(ii) Let X = (X1, . . . , Xn) have probability density f(x1−
∑k

j=1 w1jβj , . . . , xn−∑k
j=1 wnjβj) where k < n, the w’s are given constants, the matrix

(wij) is of rank k, the β’s are unknown, and we wish to test f = f0

against f = f1. The problem remains invariant under the transforma-
tions x′

i = xi + Σk
j=1wijγj ,−∞ < γ1, . . . , γk < ∞, and the most powerful

invariant test is given by the rejection region
∫
· · ·

∫
f1(x1 −

∑
w1jβj , . . . , xn −

∑
wnjβj)dβ1, . . . , dβk∫

· · ·
∫

f0(x1 −
∑

w1jβj , . . . , xn −
∑

wnjβj)dβ1, . . . , dβk
> C.

[A maximal invariant is given by y =
(

x1 −
n∑

r=n−k+1

a1r xr, x2 −
n∑

r=n−k+1

a2r xr, . . . , xn−k −
n∑

r=n−k+1

an−k,rxr

)

for suitably chosen constants air.]
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Problem 6.10 Let X1, . . . , Xm; Y1, . . . , Yn be samples from exponential dis-
tributions with densities for σ−1e−(x−ξ)/σ, for x ≥ ξ, and τ−1e−(y−n)/τ for
y ≥ η.

(i) For testing τ/σ ≤ ∆ against τ/σ > ∆, there exists a UMP invariant test
with respect to the group G : X ′

i = aXi + b, Y ′
j = aYj + c, a > 0,−∞ <

b, c < ∞, and its rejection region is
∑

[yj − min(y1, . . . , yn)]∑
[xi − min(x1, . . . , xm)]

> C.

(ii) This test is also UMP unbiased.

(iii) Extend these results to the case that only the r smallest X’s and the s
smallest Y ’s are observed.

[(ii): See Problem 5.15.]

Problem 6.11 If X1, . . . , Xn and Y1, . . . , Yn are samples from N(ξ, σ2) and
N(η, τ2) respectively, the problem of testing τ2 = σ2 against the two-sided
alternatives τ2 += σ2 remains invariant under the group G generated by the
transformations X ′

i = aXi + b, Y ′
i = aYi + c, (a += 0), and X ′

i = Yi, Y ′
i = Xi.

There exists a UMP invariant test under G with rejection region

W = max

{∑
(Yi − Ȳ )2∑
(Xi = X̄)

,

∑
(Xi = X̄)2∑
(Yi − Ȳ )2

}
≥ k.

[The ratio of the probability densities of W for τ2/σ2 = ∆ and τ2/σ2 = 1 is
proportional to [(1 + w)/(∆ + w)]n−1 + [(1 + w)/(1 + ∆w)]n−1 for w ≥ 1. The
derivative of this expression is ≥ 0 for all ∆.]

Problem 6.12 Let X1, . . . , Xn be a sample from a distribution with density

1
τn

f
(x1

τ

)
. . . f

(xn

τ

)
,

where f(x) is either zero for x < 0 or symmetric about zero. The most powerful
scale-invariant test for testing H : f = f0 against K : f = f1 rejects when

∫ ∞
0

vn−1f1(vx1) . . . f1(vxn) dv∫ ∞
0

vn−1f0(vx1) . . . f0(vxn) dv
> C.

Problem 6.13 Normal vs. double exponential. For f0(x) = e−x2/2/
√

2π,
f1(x) = e−|x|/2, the test of the preceding problem reduces to rejecting when√∑

x2
i /

∑
|xi| < C.

(Hogg, 1972.)

Note. The corresponding test when both location and scale are unknown
is obtained in Uthoff (1973). Testing normality against Cauchy alternatives is
discussed by Franck (1981).

Problem 6.14 Uniform vs. triangular.
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(i) For f0(x) = 1 (0 < x < 1), f1(x) = 2x (0 < x < 1), the test of Problem
6.12 reduces to rejecting when T = x(n)/x̄ < C.

(ii) Under f0, the statistic 2n log T is distributed as χ2
2n.

(Quesenberry and Starbuck, 1976.)

Problem 6.15 Show that the test of Problem 6.9(i) reduces to

(i) [x(n) − x(1)]/S < c for normal vs. uniform;

(ii) [x̄ − x(1)]/S < c for normal vs. exponential;

(iii) [x̄ − x(1)]/[x(n) − x(1)] < c for uniform vs. exponential.

(Uthoff, 1970.)

Note. When testing for normality, one is typically not interested in distin-
guishing the normal from some other given shape but would like to know more
generally whether the data are or are not consonant with a normal distribution.
This is a special case of the problem of testing for goodness of fit, which is briefly
discussed at the end of Section 6.13 and forms the topic of Chapter 14; also, see
the many references in the notes to Chapter 14.

Problem 6.16 Let X1, . . . , Xn be independent and normally distributed. Sup-
pose Xi has mean µi and variance σ2 (which is the same for all i). Consider
testing the null hypothesis that µi = 0 for all i. Using invariance considerations,
find a UMP invariant test with respect to a suitable group of transformations in
each of the following cases:
(i). σ2 is known and equal to one.
(ii). σ2 is unknown.

Section 6.4

Problem 6.17 (i) When testing H : p ≤ p0 against K : p > p0 by means
of the test corresponding to (6.13), determine the sample size required to
obtain power β against p = p1, α = .05, β = .9 for the cases p0 = .1,
p1 = .15, .20, .25; p0 = .05, p1 = .10, .15, .20, .25; p0 = .01, p1 = .02, .05,
.10, .15, .20.

(ii) Compare this with the sample size required if the inspection is by attributes
and the test is based on the total number of defectives.

Problem 6.18 Two-sided t-test.

(i) Let X1, . . . , Xn be a sample from N(ξ, σ2). For testing ξ = 0 against ξ += 0,
there exists a UMP invariant test with respect to the group X ′

i = cXi,
c += 0, given by the two-sided t-test (5.17).

(ii) Let X1, . . . , Xm, and Y1, . . . , Yn be samples from N(ξ, σ2) and N(η, σ2)
respectively. For testing η = ξ against η += ξ there exists a UMP invariant
test with respect to the group X ′

i = aXi + b, Y ′
j = aYj + b, a += 0, given by

the two-sided t-test (5.30).
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[(i): Sufficiency and invariance reduce the problem to |t|, which in the notation
of Section 4 has the probability density pδ(t) + pδ(−t) for t > 0. The ratio of
this density for δ = δ1 to its value for δ = 0 is proportional to

∫ ∞
0

(eδ1v +

e−δ1v)gt2(v) dv, which is an increasing function of t2 and hence of |t|.]

Problem 6.19 Testing a correlation coefficient. Let (X1, Y1), . . . , (Xn, Yn) be a
sample from a bivariate normal distribution.

(i) For testing ρ ≤ ρ0 against ρ > ρ0 there exists a UMP invariant test with
respect to the group of all transformations X ′

i = aXi + b, Y ′
i = cY1 + d for

which a, c > 0. This test rejects when the sample correlation coefficient R
is too large.

(ii) The problem of testing ρ = 0 against ρ += 0 remains invariant in ad-
dition under the transformation Y ′

i = −Yi, X
′
i = Xi. With respect to the

group generated by this transformation and those of (i) there exists a UMP
invariant test, with rejection region |R| ≥ C.

[(i): To show that the probability density pρ(r) of R has monotone likelihood ratio,
apply the condition of Problem 3.27(i), to the expression given for this density
in Problem 5.67. Putting t = ρr + 1, the second derivative ∂2 log pρ(r)/∂ρ∂r up
to a positive factor is

∞∑
i,j=0

cicjt
i+j−2

[
(j − i)2(t − 1) + (i + j)

]

2

[ ∞∑
i=0

citi

]2 .

To see that the numerator is positive for all t > 0, note that it is greater than

2
∞∑

i=0

cit
i−2

∞∑

j=i+1

cjt
j [

(j − i)2(t − 1) + (i + j)
]
.

Holding i fixed and using the inequality cj+1 < 1
2cj , the coefficient of tj in the

interior sum is ≥ 0.]

Problem 6.20 For testing the hypothesis that the correlation coefficient ρ of a
bivariate normal distribution is ≤ ρ0, determine the power against the alternative
ρ = ρ1, when the level of significance α is .05, ρ0 = .3, ρ1 = .5, and the sample
size n is 50, 100, 200.

Section 6.5

Problem 6.21 Almost invariance of a test φ with respect to the group G of ei-
ther Problem 6.10(i) or Example 6.3.4 implies that φ is equivalent to an invariant
test.

Problem 6.22 The totality of permutations of K distinct numbers a1, . . . , aK ,
for varying a1, . . . , aK can be represented as a subset CK of Euclidean K-space
RK , and the group G of Example 6.5.1 as the union of C2, C3, . . . . Let ν be the
measure over G which assigns to a subset B of G the value

∑∞
k=2 µK(B ∩ CK),
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where µK denotes Lebesgue measure in EK . Give an example of a set B ⊂ G
and an element g ∈ G such that ν(B) > 0 but ν(Bg) = 0.

[If a, b, c, d are distinct numbers, the permutations g, g′ taking (a, b) into (b, a)
and (c, d) into (d, c) respectively are points in C2, but gg′ is a point in C4.]

Section 6.6

Problem 6.23 Show that

(i) G1 of Example 6.6.11 is a group;

(ii) the test which rejects when X2
21/X2

11 > C is UMP invariant under G1;

(iii) the smallest group containing G1 and G2 is the group G of Example 6.6.11.

Problem 6.24 Consider a testing problem which is invariant under a group G
of transformations of the sample space, and let C be a class of tests which is
closed under G, so that φ ∈ C implies φg ∈ C, where φg is the test defined by
φg(x) = φ(gx). If there exists an a.e. unique UMP member φ0 of C, then φ0 is
almost invariant.

Problem 6.25 Envelope power function. Let S(α) be the class of all level-α tests
of a hypothesis H, and let β∗

α(θ) be the envelope power function, defined by

β∗
α(θ) = sup

φ∈S(α)
βφ(θ),

where βφ denotes the power function of φ. If the problem of testing H is invariant
under a group G, then β∗

α(θ) is invariant under the induced group Ḡ.

Problem 6.26 (i) A generalization of equation (6.1) is
∫

A

f(x) dPθ(x) =

∫

gA

f(g−1x) dPḡθ(x).

(ii) If Pθ1 is absolutely continuous with respect to Pθ0 , then Pḡθ1 is absolutely
continuous with respect to Pḡθ0 and

dPθ1

dPθ0

(x) =
dPḡθ1

dPḡθ0

(gx) (a.e. Pθ0) .

(iii) The distribution of dPθ1/dPθ0(X) when X is distributed as Pθ0 is the same
as that of dPḡθ1/dPḡθ0(X

′) when X ′ is distributed as Pḡθ0 .

Problem 6.27 Invariance of likelihood ratio. Let the family of distributions P =
{Pθ, θ ∈ Ω} be dominated by µ, let pθ = dPθ/dµ, let µg−1 be the measure
defined by µg−1(A) = µ[g−1(A)], and suppose that µ is absolutely continuous
with respect to µg−1 for all g ∈ G.

(i) Then

pθ(x) = pḡθ(gx)
dµ

dµg−1
(gx) (a.e. µ).
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(ii) Let Ω and ω be invariant under Ḡ, and countable. Then the likelihood ratio
supΩ pθ(x)/ supω pθ(x) is almost invariant under G.

(iii) Suppose that pθ(x) is continuous in θ for all x, that Ω is a separable pseu-
dometric space, and that Ω and ω are invariant. Then the likelihood ratio
is almost invariant under G.

Problem 6.28 Inadmissible likelihood-ratio test. In many applications in which
a UMP invariant test exists, it coincides with the likelihood-ratio test. That this
is, however, not always the case is seen from the following example. Let P1, . . . , Pn

be n equidistant points on the circle x2 + y2 = 4, and Q1, . . . , Qn on the circle
x2 + y2 = 1. Denote the origin in the (x, y) plane by O, let 0 < α ≤ 1

2 be fixed,
and let (X, Y ) be distributed over the 2n + 1 points P1, . . . , Pn, Q1, . . . , Qn, O
with probabilities given by the following table:

Pi Qi O
H α/n (1 − 2α)/n α
K pi/n 0 (n − 1)/n

where
∑

pi = 1. The problem remains invariant under rotations of the plane by
the angles 2kπ/n (k = 0, 1, . . . , n−1). The rejection region of the likelihood-ratio
test consists of the points P1, . . . , Pn, and its power is 1/n. On the other hand,
the UMP invariant test rejects when X = Y = 0, and has power (n − 1)/n.

Problem 6.29 Let G be a group of transformations of X , and let A be a σ-field
of subsets of X , and µ a measure over (X ,A). Then a set A ∈ A is said to be
almost invariant if its indicator function is almost invariant.

(i) The totality of almost invariant sets forms a σ-field A0, and a critical
function is almost invariant if and only if it is A0-measurable.

(ii) Let P = {Pθ, θ ∈ Ω} be a dominated family of probability distributions
over (X ,A), and suppose that ḡθ = θ for all ḡ ∈ Ḡ, θ ∈ Ω. Then the σ-field
A0 of almost invariant sets is sufficient for P.

[Let λ =
∑

ciPθi , be equivalent to P. Then

dPθ

dλ
(gx) =

dPg−1θ∑
ci dPg−1θi

(x) =
dPθ

dλ
(x) (a.e. λ),

so that dPθ/dλ is almost invariant and hence A0-measurable.]

Problem 6.30 The UMP invariant test of Problem 6.13 is also UMP similar.
[Consider the problem of testing α = 0 vs. α > 0 in the two-parameter

exponential family with density

C(α, τ) exp

(
− α

2τ2

∑
x2

i − 1 − α
τ

∑
|xi|

)
, 0 ≤ α < 1.]

Note. For the analogous result for the tests of Problem 6.14, 6.15, see
Quesenberry and Starbuck (1976).

Problem 6.31 The following UMP unbiased tests of Chapter 5 are also UMP
invariant under change in scale:
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(i) The test of g ≤ g0 in a gamma distribution (Problem 5.30).

(ii) The test of b1 ≤ b2 in Problem 5.18(i).

Section 6.7

Problem 6.32 The definition of d-admissibility of a test coincides with the
admissibility definition given in Section 1.8 when applied to a two-decision
procedure with loss 0 or 1 as the decision taken is correct or false.

Problem 6.33 (i) The following example shows that α-admissibility does not
always imply d-admissibility. Let X be distributed as U(0, θ), and consider
the tests ϕ1 and ϕ2 which reject when respectively X < 1 and X < 3

2 for
testing H : θ = 2 against K : θ = 1. Then for α = 3

4 , ϕ1 and ϕ2 are both
α-admissible but ϕ2 is not d-admissible.

(ii) Verify the existence of the test ϕ0 of Example 6.7.12.

Problem 6.34 (i) The acceptance region T1/
√

T2 ≤ C of Example 6.7.13 is
a convex set in the (T1, T2) plane.

(ii) In Example 6.7.13, the conditions of Theorem 6.7.1 are not satisfied for the
sets A : T1/

√
T2 ≤ C and Ω′ : ξ > k.

Problem 6.35 (i) In Example 6.7.13 (continued) show that there exist CO,
C1 such that λ0(η) and λ1(η) are probability densities (with respect to
Lebesgue measure).

(ii) Verify the densities h0 and h1.

Problem 6.36 Verify

(i) the admissibility of the rejection region (6.24);

(ii) the expression for I(z) given in the proof of Lemma 6.7.1.

Problem 6.37 Let X1, . . . , Xm; Y1, . . . , Yn be independent N(ξ, σ2) and N(η, σ2)
respectively. The one-sided t-test of H : δ = ξ/σ ≤ 0 is admissible against the
alternatives (i) 0 < δ < δ1 for any δ1 > 0; (ii) δ > δ2 for any δ2 > 0.

Problem 6.38 For the model of the preceding problem, generalize Example
6.7.13 (continued) to show that the two-sided t-test is a Bayes solution for an
appropriate prior distribution.

Problem 6.39 Suppose X = (X1, . . . , Xk)T is multivariate normal with un-
known mean vector (θ1, . . . , θk)T and known nonsingular covariance matrix Σ.
Consider testing the null hypothesis θi = 0 for all i against θi += 0 for some i. Let
C be any closed convex subset of k-dimensional Euclidean space, and let φ be the
test that accepts the null hypothesis if X falls in C. Show that φ is admissible.
Hint: First assume Σ is the identity and use Theorem 6.7.1. [An alternative proof
is provided by Strasser (1985, Theorem 30.4).]
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Section 6.9

Problem 6.40 Wilcoxon two-sample test. Let Uij = 1 or 0 as Xi < Yj or Xi >
Yj , and let U =

∑ ∑
Uij be the number of pairs Xi, Yj with Xi < Yj .

(i) Then U =
∑

Si − 1
2n(n +1), where S1 < · · · < Sn are the ranks of the Y ’s

so that the test with rejection region U > C is equivalent to the Wilcoxon
test.

(ii) Any given arrangement of x’s and y’s can be transformed into the ar-
rangement x . . . xy . . . y through a number of interchanges of neighboring
elements. The smallest number of steps in which this can be done for the
observed arrangement is mn − U .

Problem 6.41 Expectation and variance of Wilcoxon statistic. If the X’s and
Y ’s are samples from continuous distributions F and G respectively, the expec-
tation and variance of the Wilcoxon statistic U defined in the preceding problem
are given by

E

(
U

mn

)
= P{X < Y } =

∫
F dG (6.59)

and

mnV ar

(
U

mn

)
=

∫
F dG + (n − 1)

∫
(1 − G)2 dF (6.60)

+(m − 1)

∫
F 2 dG − (m + n − 1)

(∫
F dG

)2

.

Under the hypothesis G = F , these reduce to

E

(
U

mn

)
=

1
2
, V ar

(
U

mn

)
=

m + n + 1
12mn

. (6.61)

Problem 6.42 (i) Let Z1, . . . , ZN be independently distributed with den-
sities f1, . . . , fN , and let the rank of Zi be denoted by Ti. If f is any
probability density which is positive whenever at least one of the fi is
positive, then

P{T1 = t1, . . . , TN = tn} =
1

N !
E

[
f1

(
V(t1)

)

f
(
V(t1)

) · · ·
fN

(
V(tN )

)

f
(
V(tN )

)
]

. (6.62)

where V(1) < · · · < V(N) is an ordered sample from a distribution with
density f .

(ii) If N = m + n, f1 = · · · = fm = f , fm+1 = · · · = fm+n = g, and
S1 < · · · < Sn denote the ordered ranks of Zm+1, . . . , Zm+n among all the
Z’s, the probability distribution of S1, . . . , Sn is given by (6.27).

[(i): The probability in question is
∫

. . .
∫

f1(z1) . . . fN (zN ) dz1 · · · dzN integrated
over the set in which zi is the tith smallest of the z’s for i = 1, . . . , N . Under the
transformation wti = zi the integral becomes

∫
. . .

∫
f1(wt1) . . . fN (wtN ) dw1 · · · dwN

integrated over the set w1 < · · · < wN . The desired result now follows from the
fact that the probability density of the order statistics V(1) < · · · < V(N) is
N !f(w1) · · · f(wN ) for w1 < . . . < wN .]
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Problem 6.43 (i) For any continuous cumulative distribution function F ,
define F−1(0) = −∞, F−1(y) = inf{x : F (x) = y} for 0 < y < 1, F−1(1) =
∞ if F (x) < 1 for all finite x, and otherwise inf{x : F (x) = 1}. Then
F [F−1(y)] = y for all 0 ≤ y ≤ 1, but F−1[F (y)] may be < y.

(ii) Let Z have a cumulative distribution function G(z) = h[F (z)], where F
and h are continuous cumulative distribution functions, the latter defined
over (0,1). If Y = F (Z), then P{Y < y} = h(y) for all 0 ≤ y ≤ 1.

(iii) If Z has the continuous cumulative distribution function F , then F (Z) is
uniformly distributed over (0, 1).

[(ii): P{F (Z) < y} = P{Z < F−1(y)} = F [F−1(y)] = y.]

Problem 6.44 Let Zi have a continuous cumulative distribution function Fi

(i = 1, . . . , N), and let G be the group of all transformations Z′
i = f(Zi) such

that f is continuous and strictly increasing.

(i) The transformation induced by f in the space of distributions is F ′
i =

Fi(f
−1).

(ii) Two N -tuples of distributions (F1, . . . , FN ) and (F ′
1, . . . , F

′
N ) belong to

the same orbit with respect to Ḡ if and only if there exist continuous
distribution functions h1, . . . , hN defined on (0,1) and strictly increasing
continuous distribution functions F and F ’ such that Fi = hi(F ) and
F ′

i = hi(F
′).

[(i): P{f(Zi) ≤ y} = P{Zi ≤ f−1(y)} = Fi[f
−1(y)].

(ii): If Fi = hi(F ) and the F ′
i are on the same orbit, so that F ′

i = Fi(f
−1), then

F ′
i = hi(F

′) with F ′ = F (f−1). Conversely, if Fi = hi(F ), F ′
i = hi(F

′), then
F ′

i = Fi(f
−1) with f = F ′−1(F ).]

Problem 6.45 Under the assumptions of the preceding problem, if Fi = hi(F ),
the distribution of the ranks T1, . . . , TN of Z1, . . . , ZN depends only on the hi,
not on F . If the hi are differentiable, the distribution of the Ti is given by

P{T1 = t1, . . . , TN = tn} =
E

[
h′

1

(
U(t1)

)
. . . h′

N

(
U(tN )

)]

N !
, (6.63)

where U(1) < · · · < U(N) is an ordered sample of size N from the uniform distribu-
tion U(0, 1). [The left-hand side of (6.63) is the probability that of the quantities
F (Z1), . . . , F (ZN ), the ith one is the tith smallest for i = 1, . . . , N . This is given
by

∫
. . .

∫
h′

1(y1) . . . h′
N (yN ) dy integrated over the region in which yi is the tith

smallest of the y’s for i = 1, . . . , N . The proof is completed as in Problem 6.42.]

Problem 6.46 Distribution of order statistics.

(i) If Z1, . . . , ZN is a sample from a cumulative distribution function F with
density f , the joint density of Yi = Z(si), i = 1, . . . , n, is

N !f(y1) . . . f(yn)
(s1 − 1)!(s2 − s1 − 1)! . . . (N − sn)!

(6.64)

×[F (y1)]
s1−1[F (y2) − F (y1)]

s2−s1−1 . . . [1 − F (yn)]N−sn

for y1 < · · · < yn.
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(ii) For the particular case that the Z’s are a sample from the uniform
distribution on (0,1), this reduces to

N !
(s1 − 1)!(s2 − s1 − 1)! . . . (N − sn)!

(6.65)

ys1−1
1 (y2 − y1)

s2−s1−1 . . . (1 − yn)N−sn .

For n = 1, (6.65) is the density of the beta-distribution Bs,N−s+1, which
therefore is the distribution of the single order statistic Z(s) from U(0, 1).

(iii) Let the distribution of Y1, . . . , Yn be given by (6.65), and let Vi be defined
by Yi = ViVi+1 . . . Vn for i = 1, . . . , n. Then the joint distribution of the Vi

is

N !
(s1 − 1)! . . . (N − sn)!

n∏

i=1

vsi−1
i (1 − vi)

si+1−si−1 (sn+1 = N + 1),

so that the Vi are independently distributed according to the beta-
distribution Bsi,si+1−si .

[(i): If Y1 = Z(s1), . . . , Yn = Z(sn) and Yn+1, . . . , YN are the remaining Z’s in
the original order of their subscripts, the joint density of Y1, . . . , Yn is N(N −
1) . . . (N−n+1)

∫
. . .

∫
f(yn+1) . . . f(yN ) dyn+1 . . . dyN integrated over the region

in which s1 − 1 of the y’s are < y1, s2 − s1 − 1 between y1 and y2, . . ., and
N − sn > yn. Consider any set where a particular s1 − 1 of the y’s is < y1,
a particular s2 − s1 − 1 of them is between y1 and y2, and so on, There are
N !/(s1 − 1)! . . . (N − sn)! of these regions, and the integral has the same value
over each of them, namely [F (y1)]

s1−1[F (y2)−F (y1)]
s2−s1−1 . . . [1−F (yn)]N−sn .]

Problem 6.47 (i) If X1, . . . , Xm and Y1, . . . , Yn are samples with continuous
cumulative distribution functions F and G = h(F ) respectively, and if h
is differentiable, the distribution of the ranks S1 < . . . < Sn of the Y ’s is
given by

P{S1 = s1, . . . , Sn = sn} =
E

[
h′ (U(s1)

)
. . . h′ (U(sn)

)]
(

m+n
m

) (6.66)

where U(1) < · · · < U(m+n) is an ordered sample from the uniform
distribution U(0, 1).

(ii) If in particular G = F k, where k is a positive integer, (6.66) reduces to

P{S1 = s1, . . . , Sn = sn} (6.67)

=
kn

(
m+n

m

)
n∏

j=1

Γ (sj + jk − j)
Γ (sj)

· Γ (sj+1)
Γ (sj+1 + jk − j)

.

Problem 6.48 For sufficiently small θ > 0, the Wilcoxon test at level

α = k

/(
N
n

)
, k a positive integer,

maximizes the power (among rank tests) against the alternatives (F, G) with
G = (1 − θ)F + θF 2.
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Problem 6.49 An alternative proof of the optimum property of the Wilcoxon
test for detecting a shift in the logistic distribution is obtained from the preceding
problem by equating F (x − θ) with (1 − θ)F (x) + θF 2(x), neglecting powers
of θ higher than the first. This leads to the differential equation F − θF ′ =
(1 − θ)F + θF 2, the solution of which is the logistic distribution.

Problem 6.50 Let F0 be a family of probability measures over (X ,A), and let
C be a class of transformations of the space X . Define a class F1 of distributions
by F1 ∈ F1 if there exists F0 ∈ F0 and f ∈ C such that the distribution of f(X)
is F1 when that of X is F0. If φ is any test satisfying (a) EF0φ(X) = α for all
F0 ∈ F0, and (b) φ(x) ≤ φ[f(x)] for all x and all f ∈ C, then φ is unbiased for
testing F0 against F1

Problem 6.51 Let X1, . . . , Xm; Y1, . . . , Yn be samples from a common contin-
uous distribution F . Then the Wilcoxon statistic U defined in Problem 6.40 is
distributed symmetrically about 1

2mn even when m += n.

Problem 6.52 (i) If X1, . . . , Xm and Y1, . . . , Yn are samples from F (x) and
G(y) = F (y − ∆) respectively (F continuous), and D(1) < · · · < D(mn)

denote the ordered differences Yj − Xi, then

P
[
D(k) < ∆ < D(mn+1−k)

]
= P0[k ≤ U ≤ mn − k],

where U is the statistic defined in Problem 6.40 and the probability on the
right side is calculated for ∆ = 0.

(ii) Determine the above confidence interval for ∆ when m = n = 6, the
confidence coefficient is 20

21 , and the observations are x : .113, .212, .249,
.522, .709, .788, and y : .221, .433, .724, .913, .917, 1.58.

(iii) For the data of (ii) determine the confidence intervals based on Student’s
t for the case that F is normal.

Hint: D(i) ≤ ∆ < D(i+1) if and only if U∆ = mn− i, where U∆ is the statistic U
of Problem 6.40 calculated for the observations

X1, . . . , Xm; Y1 − ∆, . . . , Yn − ∆.

[An alternative measure of the amount by which G exceeds F (without assuming
a location model) is p = P{X < Y }. The literature on confidence intervals for p
is reviewed in Mee (1990).]

Problem 6.53 (i) Let X, X ′ and Y , Y ’ be independent samples of size 2
from continuous distributions F and G respectively. Then

p = P{max(X, X ′) < min(Y, Y ′)} + P{max(Y, Y ′) < min(X, X ′)}
= 1

3 + 2∆,

where ∆ =
∫

(F − G)2 d[(F + G)/2].

(ii) ∆ = 0 if and only if F = G.
[(i): p =

∫
(1 − F )2 dG2 +

∫
(1 − G)2 dF 2 which after some computation reduces

to the stated form.
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(ii): ∆ = 0 implies F (x) = G(x) except on a set N which has measure zero
both under F and G. Suppose that G(x1) − F (x1) = η > 0. Then there exists
x0 such that G(x0) = F (x0) + 1

2η and F (x) < G(x) for x0 ≤ x ≤ x1. Since
G(x1) − G(x0) > 0, it follows that ∆ > 0.]

Problem 6.54 Continuation.

(i) There exists at every significance level α a test of H : G = F which has
power > α against all continuous alternatives (F, G) with F += G.

(ii) There does not exist a nonrandomized unbiased rank test of H against all
G += F at level

α = 1

/(
m + n

n

)
.

[(i): let Xi, X
′
i; Yi, Y

′
i (i = 1, . . . , n) be independently distributed, the X’s with

distribution F , the Y ’s with distribution G, and let Vi = 1 if max(Xi, X
′
1) <

min(Yi, Y
′

i ) or max(Yi, Y
′

i ) < min(Xi, X
′
i), and Vi = 0 otherwise. Then

∑
Vi has

a binomial distribution with the probability p defined in Problem 6.53, and the
problem reduces to that of testing p = 1

3 against p > 1
3 .

(ii): Consider the particular alternatives for which P{X < Y } is either 1 or 0.]

Problem 6.55 (i) Let X1, . . . , Xm; Y1, . . . , Yn be i.i.d. according to a contin-
uous distribution F , let the ranks of the Y ’s be S1 < · · · < Sn, and let
T = h(S1) + · · · + h(Sn). Then if either m = n or h(s) + h(N + 1 − s) is
independent of s, the distribution of T is symmetric about n

∑N
i=1 h(i)/N .

(ii) Show that the two-sample Wilcoxon and normal-scores statistics are
symmetrically distributed under H, and determine their centers of
symmetry.

[(i): Let S′
i = N + 1 − Si, and use the fact that T ′ =

∑
h(S′

j) has the same
distribution under H as T .]

Section 6.10

Problem 6.56 (i) Let m and n be the numbers of negative and positive
observations among Z1, . . . , ZN , and let S1 < · · · < Sn denote the ranks of
the positive Z’s among |Z1|, . . . |ZN |. Consider the N + 1

2N(N −1) distinct
sums Zi+Zj with i = j as well as i += j. The Wilcoxon signed rank statistic∑

Sj , is equal to the number of these sums that are positive.

(ii) If the common distribution of the Z’s is D, then

E
(∑

Sj

)
= 1

2N(N + 1) − ND(0) − 1
2N(N − 1)

∫
D(−z) dD(z).

[(i) Let K be the required number of positive sums. Since Zi + Zj is positive
if and only if the Z corresponding to the larger of |Zi| and |Zj | is positive,
K =

∑N
i=1

∑N
j=1 Uij where Uij = 1 if Zj > 0 and |Zi| ≤ Zj and Uij = 0

otherwise.]
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Problem 6.57 Let Z1, . . . , ZN be a sample from a distribution with density
f(z − θ), where f(z) is positive for all z and f is symmetric about 0, and let m,
n, and the Sj be defined as in the preceding problem.

(i) The distribution of n and the Sj is given by

P{the number of positive Z’s is n and S1 = s1, . . . , Sn = sn} (6.68)

=
1

2N
E

[
f

(
V(r1) + θ

)
. . . f

(
V(rm) + θ

)
f

(
V(s1) − θ

)
. . . f

(
V(sn) − θ

)

f
(
V(1)

)
. . . f

(
V(N)

)
]

,

where V(1) < · · · < V(N), is an ordered sample from a distribution with
density 2f(v) for v > 0, and 0 otherwise.

(ii) The rank test of the hypothesis of symmetry with respect to the origin,
which maximizes the derivative of the power function at θ = 0 and hence
maximizes the power for sufficiently small θ > 0, rejects, under suitable
regularity conditions, when

−E

[
n∑

j=1

f ′(V(sj)

f(V(sj)

]
> C.

(iii) In the particular case that f(z) is a normal density with zero mean, the
rejection region of (ii) reduces to

∑
E(V (sj) > C, where V(1) < · · · < V(N)

is an ordered sample from a χ-distribution with 1 degree of freedom.

(iv) Determine a density f such that the one-sample Wilcoxon test is most
powerful against the alternatives f(z − θ) for sufficiently small positive θ.

[(i): Apply Problem 6.42(i) to find an expression for P{S1 = s1, . . . , Sn = sn

given that the number of positive Z’s is n}.]

Problem 6.58 An alternative expression for (6.68) is obtained if the distribution
of Z is characterized by (ρ, F, G). If then G = h(F ) and h is differentiable, the
distribution of n and the Sj is given by

ρm(1 − ρ)nE
[
h′(U(s1)) · · ·h′(U(sn))

]
, (6.69)

where U(1), < · · · < U(N) is an ordered sample from U(0, 1).

Problem 6.59 Unbiased tests of symmetry. Let Z1, . . . , ZN , be a sample, and
let φ be any rank test of the hypothesis of symmetry with respect to the origin
such that zi ≤ z′

i for all i implies φ(z1, . . . , zN ) ≤ φ(z′
1, . . . , z

′N). Then φ is
unbiased against the one-sided alternatives that the Z’s are stochastically larger
than some random variable that has a symmetric distribution with respect to the
origin.

Problem 6.60 The hypothesis of randomness.7 Let Z1, . . . , ZN be indepen-
dently distributed with distributions F1, . . . , FN , and let Ti denote the rank of Zi

among the Z’s For testing the hypothesis of randomness F1 = · · · = FN against

7Some tests of randomness are treated in Diaconis (1988).
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the alternatives K of an upward trend, namely that Zi is stochastically increasing
with i, consider the rejection regions

∑
iti > C (6.70)

and
∑

iE(V(ti)) > C, (6.71)

where V(1) < · · · < V(N) is an ordered sample from a standard normal distribution
and where ti is the value taken on by Ti.

(i) The second of these tests is most powerful among rank tests against the
normal alternatives F = N(γ + iδ, σ2) for sufficiently small δ.

(ii) Determine alternatives against which the first test is a most powerful rank
test.

(iii) Both tests are unbiased against the alternatives of an upward trend; so is
any rank test φ satisfying φ(z1, . . . , zN ) ≤ φ(z′

1, . . . , z
′
N ) for any two points

for which i < j, zi < zj implies z′
i < z′

j for all i and j.

[(iii): Apply Problem 6.50 with C the class of transformations z′
1 = z1, z

′
i = fi(zi)

for i > 1, where z < f2(z) < · · · < fN (z) and each fi is nondecreasing. If F0 is
the class of N -tuples (F1, . . . , FN ) with F1 = · · · = FN , then F1 coincides with
the class K of alternatives.]

Problem 6.61 In the preceding problem let Uij = 1 if (j − i)(Zj −Zi) > 0, and
= 0 otherwise.

(i) The test statistic
∑

iTi, can be expressed in terms of the U ’s through the
relation

N∑

i=1

iTi =
∑

i<j

(j − i)Uij +
N(N + 1)(N + 2)

6
,

(ii) The smallest number of steps [in the sense of Problem 6.40(ii)] by which
(Z1, . . . , ZN ) can be transformed into the ordered sample (Z(1), . . . , Z(N))
is [N(N −1)/2]−U , where U =

∑
i<j Uij . This suggests U > C as another

rejection region for the preceding problem.

[(i): Let Vij = 1 or 0 as Zi ≤ Zi or Zi > Zj . Then Tj =
∑N

i=1 Vij , and Vij = Uij or

1−Uij as i < j or i ≥ j. Expressing
∑N

j=1 jTj =
∑N

j=1 j
∑N

i=1 Vij in terms of the
U ’s and using the fact that Uij = Uji, the result follows by a simple calculation.]

Problem 6.62 The hypothesis of independence. Let (X1, Y1), . . . , (XN , YN ) be a
sample from a bivariate distribution, and (X(1), Z1), . . . , (X(N), ZN ) be the same
sample arranged according to increasing values of the X’s so that the Z’s are
a permutation of the Y ’s. Let Ri be the rank of Xi among the X’s, Si the
rank of Yi among the Y ’s, and Ti the rank of Zi among the Z’s, and consider
the hypothesis of independence of X and Y against the alternatives of positive
regression dependence.
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(i) Conditionally, given (X(1), . . . , X(N)), this problem is equivalent to testing
the hypothesis of randomness of the Z’s against the alternatives of an
upward trend.

(ii) The test (6.70) is equivalent to rejecting when the rank correlation
coefficient

∑
(Ri − R̄)(Si − S̄)√∑

(Ri − R̄2)
∑

(Si − S̄)2
=

12
N3 − N

∑ (
Ri −

N + 1
2

) (
Si −

N + 1
2

)

is too large.

(iii) An alternative expression for the rank correlation coefficient8 is

1 − 6
N3 − N

∑
(Si − Ri)

2 = 1 − 6
N3 − N

∑
(Ti − i)2.

(iv) The test U > C of Problem 6.61(ii) is equivalent to rejecting when
Kendall’s t-statistic

∑
i<j Vij/N(N − 1) is too large where Vij is +1 or

−1 as (Yj − Yi)(Xj − Xi) is positive or negative.

(v) The tests (ii) and (iv) are unbiased against the alternatives of positive
regression dependence.

Section 6.11

Problem 6.63 In Example 6.11.1, a family of sets S(x, y) is a class of equivariant
confidence sets if and only if there exists a set R of real numbers such that

S(x, y) =
⋃

r∈R

{(ξ, η) : (x − ξ)2 + (y − η)2 = r2}.

Problem 6.64 Let X1, . . . , Xn; Y1, . . . , Yn be samples from N(ξ, σ2) and
N(η, τ2) respectively. Then the confidence intervals (5.42) for τ2/σ2, which can
be written as

∑
(Yj − Ȳ )2

k
∑

(Xi − X̄)2
≤ τ2

σ2
≤ k

∑
(Yj − Ȳ )2∑

(Xi − X̄)2
,

are uniformly most accurate equivariant with respect to the smallest group G
containing the transformations X ′

i = aX + b, Y ′
i = aY + c for all a += 0, b, c and

the transformation X ′
i = dYi, Y ′

i = Xi/d for all d += 0.
[Cf. Problem 6.11.]

Problem 6.65 (i) One-sided equivariant confidence limits. Let θ be real-
valued, and suppose that, for each θ0, the problem of testing θ ≤ θ0 against
θ > θ0 (in the presence of nuisance parameters ϑ) remains invariant under a
group Gθ0 and that A(θ0) is a UMP invariant acceptance region for this hy-
pothesis at level α. Let the associated confidence sets S(x) = {θ : x ∈ A(θ)}

8For further material on these and other tests of independence, see Kendall (1970),
Aiyar, Guillier, and Albers (1979), Kallenberg and Ledwina (1999).
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be one-sided intervals S(x) = {θ : θ(x) ≤ θ}, and suppose they are equiv-
ariant under all Gθ and hence under the group G generated by these. Then
the lower confidence limits θ(X) are uniformly most accurate equivariant
at confidence level 1−α in the sense of minimizing Pθ,ϑ{θ(X) ≤ θ′} for all
θ′ < θ.

(ii) Let X1, . . . , Xn be independently distributed as N(ξ, σ2). The upper con-
fidence limits σ2 ≤

∑
(Xi − X̄)2/C0 of Example 5.5.1 are uniformly most

accurate equivariant under the group X ′
i = Xi +c, −∞ < c < ∞. They are

also equivariant (and hence uniformly most accurate equivariant) under
the larger group X ′

i = aXi + c, −∞ < a, c < ∞.

Problem 6.66 Counterexample. The following example shows that the equiv-
ariance of S(x) assumed in the paragraph following Lemma 6.11.1 does not follow
from the other assumptions of this lemma. In Example 6.5.1, let n = 1, let G(1)

be the group G of Example 6.5.1, and let G(2) be the corresponding group when
the roles of Z and Y = Y1 are reversed. For testing H(θ0) : θ = θ0 against θ += θ0

let Gθ0 be equal to G(1) augmented by the transformation Y ′ = θ0 − (Y1 − θ0)
when θ ≤ 0, and let Gθ0 be equal to G(2) augmented by the transformation
Z′ = θ0 − (Z − θ0) when θ > 0. Then there exists a UMP invariant test of H(θ0)
under Gθ0 for each θ0, but the associated confidence sets S(x) are not equivariant
under G = {Gθ,−∞ < θ < ∞}.

Problem 6.67 (i) Let X1, . . . , Xn be independently distributed as N(ξ, σ2),
and let θ = ξ/σ. The lower confidence bounds θ for θ, which at confidence
level 1−α are uniformly most accurate invariant under the transformations
X ′

i = aXi, are

θ = C−1

( √
nX̄√∑

(Xi − X̄)2/(n − 1)

)

where the function C(θ) is determined from a table of noncentral t so that

Pθ

{ √
nX̄√∑

(Xi − X̄)2/(n − 1)
≤ C(θ)

}
= 1 − α.

(ii) Determine θ when the x’s are 7.6, 21.2, 15.1, 32.0, 19.7, 25.3, 29.1, 18.4
and the confidence level is 1 − α = .95.

Problem 6.68 (i) Let (X1, Y1), . . . , (Xn, Yn) be a sample from a bivariate
normal distribution, and let

ρ = C−1

( ∑
(Xi − X̄)(Yi − Ȳ )√∑

(Xi − X̄)2
∑

(Yi − Ȳ )2

)
,

where C(ρ) is determined such that

Pθ

{ ∑
(Xi − X̄)(Yi − Ȳ )√∑

(Xi − X̄)2
∑

(Yi − Ȳ )2
≤ C(ρ)

}
= 1 − α.

Then ρ is a lower confidence limit for the population correlation coefficient
ρ at confidence level 1 − α; it is uniformly most accurate invariant with
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respect to the group of transformations X ′
i = aXi + b, Y ′

i = cYi + d, with
ac > 0, −∞ < b, d < ∞.

(ii) Determine ρ at level 1 − α = .95 when the observations are (12.9,.56),
(9.8,.92), (13.1,.42), (12.5,1.01), (8.7,.63), (10.7,.58), (9.3,.72), (11.4,.64).

Note. The following problems explore the relationship between pivotal
quantities and equivariant confidence sets. For more details see Arnold (1984).

Let X be distributed according Pθ,ϑ, and consider confidence sets for θ that
are equivariant under a group G∗, as in Section 6.11. If w is the set of possible
θ-values, define a group G̃ on X × w by g̃(θ, x) = (gx, ḡθ).

Problem 6.69 Let V (X, θ) be any pivotal quantity [i.e. have a fixed probability
distribution independent of (θ, ϑ)], and let B be any set in the range space of V
with probability P (V ∈ B) = 1 − α. Then the sets S(x) defined by

θ ∈ S(x) if and only if V (θ, x) ∈ B (6.72)

are confidence sets for θ with confidence coefficient 1 − α.

Problem 6.70 (i) If G̃ is transitive over X × w and V (X, θ) is maximal
invariant under G̃, then V (X, θ) is pivotal.

(ii) By (i), any quantity W (X, θ) which is invariant under G̃ is pivotal; give an
example showing that the converse need not be true.

Problem 6.71 Under the assumptions of the preceding problem, the confidence
set S(x) is equivariant under G∗.

Problem 6.72 Under the assumptions of Problem 6.70, suppose that a family
of confidence sets S(x) is equivariant under G∗. Then there exists a set B in the
range space of the pivotal V such that (6.72) holds. In this sense, all equivariant
confidence sets can be obtained from pivotals.

[Let A be the subset of X × w given by A = {(x, θ) : θ ∈ S(x)}. Show that
g̃A = A, so that any orbit of G̃ is either in A or in the complement of A. Let the
maximal invariant V (x, θ) be represented as in Section 6.2 by a uniquely defined
point on each orbit, and let B be the set of these points whose orbits are in A.
Then V (x, θ) ∈ B if and only if (x, θ) ∈ A.] Note. Problem 6.72 provides a simple
check of the equivariance of confidence sets. In Example 6.12.2, for instance, the
confidence sets (6.43) are based on the pivotal vector (X1 − ξ1, . . . , Xr − ξr), and
hence are equivariant.

Section 6.12

Problem 6.73 In Examples 6.12.1 and 6.12.2 there do not exist equivariant sets
that uniformly minimize the probability of covering false values.

Problem 6.74 In Example 6.12.1, the density p(v) of V = 1/S2 is unimodal.

Problem 6.75 Show that in Example 6.12.1,
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(i) the confidence sets σ2/S2 ∈ A∗∗ with A∗∗ given by (6.42) coincide with
the uniformly most accurate unbiased confidence sets for σ2;

(ii) if (a, b) is best with respect to (6.41) for σ, then (ar, br) is best for σr

(r > 0).

Problem 6.76 Let X1, . . . , Xr be i.i.d. N(0, 1), and let S2 be independent of
the X’s and distributed as χ2

ν . Then the distribution of (X1/S
√

ν, . . . , Xr/S
√

ν)
is a central multivariate t-distribution, and its density is

p(v1, . . . , vr) =
Γ( 1

2 (ν + r))

(πν)r/2Γ(ν/2)

(
1 +

1
ν

∑
v2

i

)− 1
2 (ν+r)

.

Problem 6.77 The confidence sets (6.49) are uniformly most accurate equivari-
ant under the group G defined at the end of Example 6.12.3.

Problem 6.78 In Example 6.12.4, show that

(i) both sets (6.57) are intervals;

(ii) the sets given by vp(v) > C coincide with the intervals (5.41).

Problem 6.79 Let X1, . . . , Xm; Y1, . . . , Yn be independently normally dis-
tributed as N(ξ, σ2) and N(η, σ2) respectively. Determine the equivariant
confidence sets for η − ξ that have smallest Lebesgue measure when

(i) σ is known;

(ii) σ is unknown.

Problem 6.80 Generalize the confidence sets of Example 6.11.3 to the case that
the Xi are N(ξi, diσ

2) where the d’s are known constants.

Problem 6.81 Solve the problem corresponding to Example 6.12.1 when

(i) X1, . . . , Xn is a sample from the exponential density E(ξ, σ), and the
parameter being estimated is σ;

(ii) X1, . . . , Xn is a sample from the uniform density U(ξ, ξ + τ), and the
parameter being estimated is τ .

Problem 6.82 Let X1, . . . , Xn be a sample from the exponential distribution
E(ξ, σ). With respect to the transformations X ′

i = bXi+a determine the smallest
equivariant confidence sets

(i) for σ, both when size is defined by Lebesgue measure and by the equivariant
measure (6.41);

(ii) for ξ.

Problem 6.83 Let Xij (j = 1, . . . , ni; i = 1, . . . , s) be samples from the expo-
nential distribution E(ξi, σ). Determine the smallest equivariant confidence sets
for (ξ1, . . . , ξr) with respect to the group X ′

ij = bXij + ai.
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Section 6.13

Problem 6.84 If the confidence sets S(x) are equivariant under the group G,
then the probability Pθ{θ ∈ S(X)} of their covering the true value is invariant
under the induced group Ḡ.

Problem 6.85 Consider the problem of obtaining a (two-sided) confidence band
for an unknown continuous cumulative distribution function F .

(i) Show that this problem is invariant both under strictly increasing and
strictly decreasing continuous transformations X ′

i = f(Xi), i = 1, . . . , n,
and determine a maximal invariant with respect to this group.

(ii) Show that the problem is not invariant under the transformation

X ′
i =






Xi if |Xi| ≥ 1,
Xi − 1 if 0 < Xi < 1,
Xi + 1 if − 1 < Xi < 0.

[(ii): For this transformation g, the set g∗S(x) is no longer a band.]

6.15 Notes

Invariance considerations were introduced for particular classes of problems by
Hotelling (1936) and Pitman (1939b). The general theory of invariant and almost
invariant tests, together with its principal parametric applications, was developed
by Hunt and Stein (1946) in an unpublished paper. In their paper, invariance
was not proposed as a desirable property in itself but as a tool for deriving
most stringent tests (cf. Chapter 8). Apart from this difference in point of view,
the present account is based on the ideas of Hunt and Stein, about which E.
L. Lehmann learned through conversations with Charles Stein during the years
1947–1950.

Of the admissibility results of Section 6.7, Theorem 6.7.1 is due to Birnbaum
(1955) and Stein (1956a); Example 6.7.13 (continued) and Lemma 6.7.1, to Kiefer
and Schwartz (1965).

The problem of minimizing the volume or diameter of confidence sets is treated
in DasGupta (1991).

Deuchler (1914) appears to contain the first proposal of the two-sample pro-
cedure known as the Wilcoxon test, which was later discovered independently by
many different authors. A history of this test is given by Kruskal (1957). Hoeffd-
ing (1951) derives a basic rank distribution of which (6.20) is a special case, and
from it obtains locally optimum tests of the type (6.21).



7
Linear Hypotheses

7.1 A Canonical Form

Many testing problems concern the means of normal distributions and are special
cases of the following general univariate linear hypothesis. Let X1, . . . , Xn be
independently normally distributed with means ξ1, . . . , ξn and common variance
σ2. The vector of means1 ξ is known to lie in a given s-dimensional linear subspace∏

Ω (s < n), and the hypothesis H to be tested is that ξ lies in a given (s −
r)-dimensional subspace

∏
ω of

∏
Ω (r ≤ s).

Example 7.1.1 In the two-sample problem of testing equality of two normal
means (considered with a different notation in Section 5.3), it is given that ξi = ξ
for i = 1, . . . , n1 and ξi = η for i = n1 + 1, . . . , n1 + n2, and the hypothesis to be
tested is η = ξ. The space

∏
Ω is then the space of vectors

(ξ, . . . , ξ, η, . . . , η) = ξ(1, . . . , 1, 0, . . . , 0) + η(0, . . . , 0, 1, . . . , 1)

spanned by (1, . . . , 1, 0, . . . , 0) and (0, . . . , 0, 1, . . . , 1), so that s = 2. Similarly,∏
ω is the set of all vectors (ξ, . . . , ξ) = ξ(1, . . . , 1) and hence r = 1.
Another hypothesis that can be tested in this situation is η = ξ = 0. The

space
∏

ω is then the origin, s − r = 0 and hence r = 2. The more general
hypothesis ξ = ξ0, η = η0 is not a linear hypothesis, since

∏
ω does not contain

the origin. However, it reduces to the previous case through the transformation
X ′

i = Xi − ξ0 (i = 1, . . . , n1), X ′
i = Xi − η0 (i = n1 + 1, . . . , n1 + n2).

1Throughout this chapter, a fixed coordinate system is assumed given in n-space. A
vector with components ξ1, . . . , ξn is denoted by ξ, and an n × 1 column matrix with
elements ξ1, . . . , ξn by ξ.
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Example 7.1.2 The regression problem of Section 5.6 is essentially a linear
hypothesis. Changing the notation to make it conform with that of the present
section, let ξi = α + βti, where α, β are unknown, and the ti known and not
all equal. Since

∏
Ω is the space of all vectors α(1, . . . , 1) + β(t1, . . . , tn), it has

dimension s = 2. The hypothesis to be tested may be α = β = 0 (r = 2) or it
may only specify that one of the parameters is zero (r = 1). The more general
hypotheses α = α0, β = β0 can be reduced to the previous case by letting
X ′

i = Xi −α0,−β0ti, since then E(X ′
i) = α′ +β′ti with α′ = α−α0, β

′ = β−β0.
Higher polynomial regression and regression in several variables also fall under

the linear-hypothesis scheme. Thus if ξi = α + βti + γt2i or more generally ξi =
α + βti + γui, where the ti and ui are known, it can be tested whether one or
more of the regression coefficients α, β, γ are zero, and by transforming to the
variables X ′

i = Xi−α0−β0ti−γ0ui also whether these coefficients have specified
values other than zero.

In the general case, the hypothesis can be given a simple form by making an
orthogonal transformation to variables Y1, . . . , Yn

Y = CX, C = (cij) i, j = 1, . . . , n, (7.1)

such that the first s row vectors c1, . . . , cs of the matrix C span
∏

Ω, with
cr+1, . . . , cs, spanning

∏
ω. Then Ys+1 = · · · = Yn = 0 if and only if X is in∏

Ω, and Y1 = · · · = Yr = Ys+1 = · · · = Yn = 0 if and only if X is in
∏

ω.
Let ηi = E(Yi), so that η = Cξ. Then since ξ lies in

∏
Ω a priori and in

∏
ω

under H, it follows that ηi = 0 for i = s + 1, . . . , n in both cases, and ηi = 0
for i = 1, . . . , r when H is true. Finally, since the transformation is orthogonal,
the variables Y1, . . . , Yn are again independent and normally distributed with
common variance σ2, and the problem reduces to the following canonical form.

The variables Y1, . . . , Yn are independently, normally distributed with common
variance σ2 and means E(Yi) = ηi for i = 1, . . . , s and E(Yi) = 0 for i =
s + 1, . . . , n, so that their joint density is

1

(
√

2πσ)n
exp

[
− 1

2σ2

(
s∑

i=1

(yi − ηi)
2 +

n∑

i=s+1

y2
i

)]
. (7.2)

The η’s and σ2 are unknown, and the hypothesis to be tested is

H : η1 = · · · = ηr = 0 (r ≤ s < n). (7.3)

Example 7.1.3 To illustrate the determination of the transformation (7.1), con-
sider once more the regression model ξi = α + βti, of Example 7.1.2. It was
seen there that

∏
Ω is spanned by (1, . . . , 1) and (t1, . . . , tn). If the hypothe-

sis being tested is β = 0,
∏

ω is the one-dimensional space spanned by the
first of these vectors. The row vector c2 is in

∏
ω and of length 1, and hence

c2 = (1/
√

n, . . . , 1/
√

n). Since c1 is in
∏

Ω, of length 1, and orthogonal to c2, its co-
ordinates are of the form a+bti, i = 1, . . . , n, where a and b are determined by the
conditions

∑
(a + bti) = 0 and

∑
(a + bti)

2 = 1. The solutions of these equations
are a = −bt̄, b = 1/

√∑
(tj − t̄)2, and therefore a + bti = (ti − t̄)/

√∑
(tj − t̄)2,

and

Y1 =

∑
Xi(ti − t̄)√∑

(tj − t̄)2
=

∑
(Xi − X̄)(ti − t̄)√∑

(tj − t̄)2
.
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The remaining row vectors of C can be taken to be any set of orthogonal unit
vectors that are orthogonal to

∏
Ω; it turns out not to be necessary to determine

them explicitly.
If the hypothesis to be tested is α = 0,

∏
ω is spanned by (t1, . . . , tn), so that

the ith coordinate of c2 is ti/
√∑

t2j . The coordinates of c1 are again of the form

a + bti with a and b now determined by the equations
∑

(a + bti)ti = 0 and
∑

(a + bti)
2 = 1. The solutions are b = −ant̄/

∑
t2j , a =

√∑
t2j/n

∑
(tj − t̄)2,

and therefore

Y1 =

√
n

∑
t2j∑

(tj − t̄)2

(
X̄ − t̄∑

t2j

∑
tiXi

)
.

In the case of the hypothesis α = β = 0,
∏

ω is the origin, and c1, c2 can be taken
as any two orthogonal unit vectors in

∏
Ω. One possible choice is that appropriate

to the hypothesis β = 0, in which case Y1 is the linear function given there and
Y2 =

√
xX̄.

The general linear-hypothesis problem in terms of the Y ’s remains invariant
under the group G1 of transformations Y ′

i = Yi + ci for i = r + 1, . . . , s; Y ′
i = Yi

for i = 1, . . . , r; s + 1, . . . , n. This leaves Y1, . . . , Yr and Ys+1, . . . , Yn as maximal
invariants. Another group of transformations leaving the problem invariant is the
group G2 of all orthogonal transformations of Y1, . . . , Yr. The middle set of vari-
ables having been eliminated, it follows from Example 6.2.1(iii) that a maximal
invariant under G2 is U =

∑r
i=1 Y 2

i , Ys+1, . . . , Yn. This can be reduced to U and
V =

∑n
i=s+1 Y 2

i by sufficiency. Finally, the problem also remains invariant under
the group G3 of scale changes Y ′

i = cYi, c += 0, for i = 1, . . . , n. In the space
of U and V this induces the transformation U∗ = c2U, V ∗ = c2V , under which
W = U/V is maximal invariant. Thus the principle of invariance reduces the data
to the single statistic 2

W =

r∑
i=1

Y 2
i

n∑
i=s+1

Y 2
i

. (7.4)

Each of the three transformation groups Gi (i = 1, 2, 3) which lead to the above
reduction induces a corresponding group Ḡi in the parameter space. The group
Ḡ1 consists of the translations η′

i = ηi+ci (i = r+1, . . . , s), η′
i = ηi (i = 1, . . . , r),

σ′ = σ, which leaves (η1, . . . , ηr, σ) as maximal invariants. Since any orthogonal
transformation of Y1, . . . , Yr induces the same transformation on η1, . . . , ηr and

leaves σ2 unchanged, a maximal invariant under Ḡ2 is
(∑r

i=1 η2
i , σ2

)
. Finally the

elements of Ḡ3 are the transformations η′
i = cηi, σ′ = |c|σ, and hence a maximal

invariant with respect to the totality of these transformations is

ψ2 =

r∑
i=1

η2
i

σ2
. (7.5)

2A corresponding reduction without assuming normality is discussed by Jagers
(1980).
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It follows from Theorem 6.3.2 that the distribution of W depends only on ψ2,
so that the principle of invariance reduces the problem to that of testing the
simple hypothesis H : ψ = 0. More precisely, the probability density of W is (cf.
Problems 7.2 and 7.3)

pψ(w) = e−
1
2 ψ2

∞∑

k=0

ck
( 1
2ψ2)k

k!
w

1
2 r−1+k

(1 + w)
1
2 (r+n−s)+k

, (7.6)

where

ck =
Γ

[
1
2 (r + n − s) + k

]

Γ
(

1
2r + k

)
Γ[ 12 (n − s)]

.

For any ψ1 the ratio pψ1(w)/po(w) is an increasing function of w, and it follows
from the Neyman-Pearson fundamental lemma that the most powerful invariant
test for testing ψ = 0 against ψ = ψ1 rejects when W is too large, or equivalently
when

W ∗ =

r∑
i=1

Y 2
i /r

n∑
i=s+1

Y 2
i /(n − s)

> C. (7.7)

The cutoff point C is determined so that the probability of rejection is α when
ψ = 0. Since in this case W ∗ is the ratio of two independent χ2 variables, each
divided by the number of its degrees of freedom, the distribution of W ∗ is the
F -distribution with r and n − s degrees of freedom, and hence C is determined
by

∫ ∞

C

Fr,n−s(y)dy = α. (7.8)

The test is independent of ψ1, and hence is UMP among all invariant tests. By
Theorem 6.5.2, it is also UMP among all tests whose power function depends
only on ψ2.

The rejection region (7.7) can also be expressed in the form
r∑

i=1
Y 2

i

r∑
i=1

Y 2
i +

n∑
i=s+1

Y 2
i

> C′. (7.9)

When ψ = 0, the left-hand side is distributed according to the beta-distribution
with r and n − s degrees of freedom [defined through (5.24)], so that C′ is
determined by

∫ 1

C′
B 1

2 r, 1
2 (n−s)(y) dy = α. (7.10)

For an alternative value of ψ, the left-hand side of (7.9) is distributed according
to the noncentral beta-distribution with noncentrality parameter ψ, the density
of which is (Problem 7.3)

gψ(y) = e−
1
2 ψ2

∞∑

k=0

(
1
2ψ2

)k

k!
B 1

2 r+k, 1
2 (n−s)(y). (7.11)
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The power of the test against an alternative ψ is therefore 3

β(ψ) =

∫ 1

C′
gψ(y) dy.

In the particular case r = 1 the rejection region (7.7) reduces to

|Y1|√
n∑

i=s+1
Y 2

i /(n − s)

> C0. (7.12)

This is a two-sided t-test which by the theory of Chapter 5 (see for example
Problem 5.5) is UMP unbiased. On the other hand, no UMP unbiased test exists
for r > 1.

The F -test (7.7) shares the admissibility properties of the two-sided t-test
discussed in Section 6.7. In particular, the test is admissible against distant al-
ternatives ψ2 ≥ ψ2

1 (Problem 7.6) and against nearby alternatives ψ2 ≤ ψ2
2

(Problem 7.7). It was shown by Lehmann and Stein (1953) that the test is in
fact admissible against the alternatives ψ2 ≤ ψ2

1 for any ψ1 and hence against all
invariant alternatives.

7.2 Linear Hypotheses and Least Squares

In applications to specific problems it is usually not convenient to carry out the
reduction to canonical form explicitly. The test statistic W can be expressed in
terms of the original variables by noting that

∑n
i=s+1 Y 2

i is the minimum value
of

s∑

i=1

(Yi − ηi)
2 +

n∑

i=s+1

Y 2
i =

n∑

i=1

[Yi − E(Yi)]
2

under unrestricted variation of the η’s. Also, since the transformation Y = CX
is orthogonal and orthogonal transformations leave distances unchanged,

n∑

i=1

[Yi − E(Yi)]
2 =

n∑

i=1

(Xi − ξi)
2.

Furthermore, there is a 1 : 1 correspondence between the totality of s-tuples
(η1, . . . , ηs) and the totality of vectors ξ in

∏
Ω. Hence

n∑

i=s+1

Y 2
i =

n∑

i=1

(Xi − ξ̂i)
2, (7.13)

where the ξ̂’s are the least-squares estimates of the ξ’s under Ω, that is, the values
that minimize

∑n
i=1(Xi − ξi)

2 subject to ξ in
∏

Ω.

3Tables of the power of the F-test are provided by Tiku (1967, 1972) [reprinted in
Graybill (1976)] and Cohen (1977); charts are given in Pearson and Hartley (1972).
Various approximations are discussed by Johnson, Kotz and Balakrishnan (1995).
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In the same way it is seen that

r∑

i=1

Y 2
i +

n∑

i=s+1

Y 2
i =

n∑

i=1

(Xi − ˆ̂ξi)
2

where the ˆ̂ξ’s are the values that minimize
∑

(Xi − ξi)
2 subject to ξ in

∏
ω. The

test (7.7) therefore becomes

W ∗ =

[
n∑

i=1
(Xi − ˆ̂ξi)

2 −
n∑

i=1
(Xi − ξ̂i)

2

] /
r

n∑
i=1

(Xi − ξ̂i)2/(n − s)
> C, (7.14)

where C is determined by (7.8). Geometrically the vectors ξ̂ and ˆ̂ξ are the pro-

jections of X on
∏

Ω and
∏

ω, so that the triangle formed by X, ξ̂, and ˆ̂ξ has a

right angle at ξ̂ (see Figure 7.1).

X_

^̂%_

%̂_

!&

0

!"

•

•

Figure 7.1.

Thus the denominator and numerator of W ∗, except for the factors 1/(n − s)

and 1/r, are the squares of the distances between X and ξ̂ and between ξ̂ and ˆ̂ξ
respectively. An alternative expression for W ∗ is therefore

W ∗ =

n∑
i=1

(ξ̂i − ˆ̂ξi)
2
/

r

n∑
i=1

(Xi − ξ̂i)2/(n − s)
. (7.15)

It is desirable to express also the noncentrality parameter ψ2 =
∑r

i=1 η2
i /σ2 in

terms of the ξ’s. Now X = C−1Y , ξ = C−1η, and

r∑

i=1

Y 2
i =

n∑

i=1

(Xi − ˆ̂ξi)
2 −

n∑

i=1

(Xi − ξ̂i)
2. (7.16)

If the right-hand side of (7.16) is denoted by f(X), it follows that
∑r

i=1 η2
i = f(ξ).
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A slight generalization of a linear hypothesis is the inhomogeneous hypothesis
which specifies for the vector of means ξ a subhyperplane

∏′
ω of

∏
Ω not passing

through the origin. Let
∏

ω denote the subspace of
∏

Ω which passes through the
origin and is parallel to

∏′
ω. If ξ0 is any point of

∏′
ω, the set

∏′
ω consists of the

totality of points ξ = ξ∗ + ξ0 as ξ∗ ranges over
∏

ω. Applying the transformation

(7.1) with respect to
∏

ω, the vector of means η for ξ ∈
∏′

ω is then given by

η = Cξ = Cξ∗ + Cξ0 in the canonical form (7.2), and the totality of these
vectors is therefore characterized by the the equations η1 = η0

1 , . . . , ηr = η0
r ,

ηs+1 = · · · = ηn = 0, where η0
i is the ith coordinate of Cξ0. In the canonical form,

the inhomogeneous hypothesis ξ ∈
∏′

ω therefore becomes ηi = η0
i (i = 1, . . . , r).

This reduces to the homogeneous case on replacing Yi with Yi −η0
i , and it follows

from (7.7) that the UMP invariant test has the rejection region

r∑
i=1

(Yi − ηo
i )2/r

n∑
i=s+1

Y 2
i /(n − s)

> C , (7.17)

and that the noncentrality parameter is ψ2 =
∑r

i=1(ηi − η0
i )2/σ2.

In applications it is usually most convenient to apply the transformation Xi−ξ0
i

directly to (7.14) or (7.15). It follows from (7.17) that such a transformation
always leaves the denominator unchanged. This can also be seen geometrically,
since the transformation is a translation of n-space parallel to

∏
Ω and therefore

leaves the distance
∑

(Xi − ξ̂i)
2 from X to

∏
Ω unchanged. The noncentrality

parameter can be computed as before by replacing X with ξ in the transformed
numerator (7.16).

Some examples of linear hypotheses, all with r = 1, were already discussed in
Chapter 5. The following treats two of these from the present point of view.

Example 7.2.1 Let X1, . . . , Xn be independently, normally distributed with
common mean µ and variance σ2, and consider the hypothesis H : µ = 0. Here∏

Ω is the line ξi = · · · = ξn,
∏

ω is the origin, and s = r = 1. Let X̄ = n−1 ∑
i Xi.

From the identity
∑

(Xi − µ)2 =
∑

(Xi − X̄)2 + n(X̄ − µ)2 ,

it is seen that ξ̂i = X̄, while ˆ̂ξi = 0. The test statistic and ψ2 are therefore given
by

W =
nX̄2

∑
(Xi − X̄)2

and ψ2 =
nµ2

σ2
.

Under the hypothesis, the distribution of (n − 1)W is that of the square of a
variable having Student’s t-distribution with n − 1 degrees of freedom.

Example 7.2.2 In the two-sample problem considered in Example 7.1.1 with
n = n1 + n2, the sum of squares

n1∑

i=1

(Xi − ξ)2 +
n∑

i=n1+1

(Xi − η)2
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is minimized by

ξ̂ = X(1)
· =

n1∑

i=1

Xi

n1
, η̂ = X(2)

· =
n∑

i=n1+1

Xi

n2
,

while, under the hypothesis η − ξ = 0,

ˆ̂ξ = ˆ̂η = X̄ =
n1X

(1)
· + n2X

(2)
·

n
.

The numerator of the test statistic (7.15) is therefore

n1(X
(1)
· − X̄)2 + n2(X

(2)
· − X̄)2 =

n1n2

n1 + n2

[
X(2)

· − X(1)
·

]2
.

The more general hypothesis η− ξ = θ0 reduces to the previous case on replacing
Xi with Xi − θ0 for i = n1 + 1, . . . , n, and is therefore rejected when

(
X(2)

· − X(1)
· − θ0

)2 / (
1

n1
+ 1

n2

)

[
n1∑
i=1

(
Xi − X(1)

·

)2
+

n∑
i=n1+1

(
Xi − X(2)

·

)2
] /

(n1 + n2 − 2)

> C.

The noncentrality parameter is ψ2 = (η − ξ − θ0)
2/(1/n1 + 1/n2)σ

2. Under
the hypothesis, the square root of the test statistic has the t-distribution with
n1 + n2 − 2 degrees of freedom.

Explicit formulae for the ξ̂i and ˆ̂ξi can be obtained by introducing a coordinate
system into the parameter space. Suppose that, in such a system,

∏
Ω is defined

by the equations

ξi =
s∑

j=1

aijβj , i = 1, . . . , n,

or, in matrix notation,

ξ
n×1

= A
n×s

B
s×1

, (7.18)

where A is known and of rank s, and β1, . . . , βs are unknown parameters. If
β̂1, . . . , β̂s are the least-squares estimators minimizing

∑
i(Xi −

∑
j aijβj)

2, it is

seen by differentiation that the β̂j are the solutions of the equations

AT Aβ = AT X

and hence are given by

β̂ = (AT A)−1AT X.

(That AT A is nonsingular follows by Problem 6.3.) Thus, we obtain

ξ̂ = A(AT A)−1AT X.

Since ξ̂ = ξ̂(X) is the projection of X into the space
∏

Ω spanned by the s

columns of A, the formula ξ̂ = A(AT A)−1AT X shows that P = A(AT A)−1AT

has the property claimed for it in Example 6.2.3, that for any X in Rn, PX is
the projection of X into

∏
Ω.
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7.3 Tests of Homogeneity

The UMP invariant test obtained in the preceding section for testing the equality
of the means of two normal distributions with common variance is also UMP un-
biased (Section 5.3). However, when a number of populations greater than 2 is to
be tested for homogeneity of means, a UMP unbiased test no longer exists, so that
invariance considerations lead to a new result. Let Xij (j = 1, . . . , ni; i = 1, . . . , s)
be independently distributed as N(µi, σ

2), and consider the hypothesis

H : µ1 = · · · = µs.

This arises, for example, in the comparison of a number of different treatments,
processes, varieties, or locations, when one wishes to test whether these differences
have any effect on the outcome X. It may arise more generally in any situation
involving a one-way classification of the outcomes, that is, in which the outcomes
are classified according to a single factor. In such situations, when rejecting H one
will frequently want to know more about the µs than just that they are unequal.
The resulting multiple comparison problem will be discussed in Section 9.3.

The hypothesis H is a linear hypothesis with r = s − 1, with
∏

Ω given by
the equations ξij = ξik for j, k = 1, . . . , n, i = 1, . . . , s and with

∏
ω the line on

which all n =
∑

ni coordinates ξij are equal. We have
∑ ∑

(Xij − µi)
2 =

∑ ∑
(Xij − Xi·)

2 +
∑

ni(Xi· − µi)
2

with Xi· =
∑ni

j=1 Xij/ni, and hence ξ̂ij = Xi·. Also,
∑ ∑

(Xij − µ)2 =
∑ ∑

(Xij − X··)
2 + n(X·· − µ)2

with X·· =
∑ ∑

Xij/n, so that ˆ̂ξij = X··. Using the form (7.15) of W ∗, the test
therefore becomes

W ∗ =

∑
ni(Xi· − X··)

2/(s − 1)∑ ∑
(Xij − Xi·)2/(n − s)

> C. (7.19)

The noncentrality parameter is

ψ2 =

∑
ni(µi − µ·)

2

σ2

with

µ· =

∑
niµi

n
.

The sum of squares in both numerator and denominator of (7.19) admits
three interpretations, which are closely related: (i) as the two components in
the decomposition of the total variation

∑ ∑
(Xij − X··)

2 =
∑ ∑

(Xij − Xi·)
2 +

∑
ni(Xi· − X··)

2,

of which the first represents the variation within, and the second the variation
between populations; (ii) as a basis, through the test (7.19), for comparing these
two sources of variation; (iii) as estimates of their expected values, (n− s)σ2 and
(s−1)σ2 +

∑
ni(µi −µ·)

2 (Problem 7.11). This breakdown of the total variation,
together with the various interpretations of the components, is an example of
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an analysis of variance,4 which will be applied to more complex problems in the
succeeding sections.

When applying the principle of invariance, it is important to make sure that the
underlying symmetry assumptions really are satisfied. In the problem of testing
the equality of a number of normal means µ1, . . . , µs, for example, all parameter
points, which have the same value of ψ2 =

∑
ni(µi−µ·)

2/σ2, are identified under
the principle of invariance. This is appropriate only when these alternatives can
be considered as being equidistant from the hypothesis. In particular, it should
then be immaterial whether the given value of ψ2 is built up by a number of small
contributions or a single large one. Situations where instead the main emphasis
is on the detection of large individual deviations do not possess the required
symmetry, and the test based on (7.19) need no longer be optimum.

The robustness properties against nonnormality of the F -test for testing equal-
ity of means will be discussed using a large sample approach in Section 11.3, as
well as the corresponding test for equality of variances. Alternatively, permutation
tests will be applied in Section 15.2.

Instead of assuming Xij is normally distributed, suppose that Xij has distri-
bution F (x − µi), where F is an arbitrary distribution with finite variance. If F
has heavy tails, the test (7.19) tends to be inefficient. More efficient tests can be
obtained by generalizing the considerations of Sections 6.8 and 6.9. Suppose the
Xij are samples of size ni from continuous distributions Fi (i = 1, . . . , s) and
that we wish to test H : F1 = · · · = Fs. Invariance, by the argument of Section
6.8, then reduces the data to the ranks Rij of the Xij in the combined sample
of n =

∑
ni observations. A natural analogue of the two-sample Wilcoxon test

is the Kruskal–Wallis test, which rejects H when
∑

ni(Ri· − R··)
2 is too large.

For the shift model Fi(y) = F (y − µi), the performance of this test relative to
(7.19) is similar to that of the Wilcoxon to the t-test in the case s = 2; the notion
of asymptotic relative efficiency will be developed in Section 13.2. The theory of
this and related rank tests is developed in books on nonparametric statistics such
as Randles and Wolfe (1979), Hettmansperger (1984), Gibbons and Chakraborti
(1992), Lehmann (1998) and Hájek, Sidák and Sen (1999).

Unfortunately, such rank tests are available only for the simplest linear mod-
els. An alternative approach capable of achieving similar efficiencies for much
wider classes of linear models can be obtained through large-sample theory, which
will be studied in Chapters 11-15. Briefly, the least-squares estimators may be
replaced by estimators with better efficiency properties for nonnormal distri-
butions. Furthermore, asymptotically valid significance levels can be obtained
through “Studentization”,5 that is, by dividing the statistic by a suitable esti-
mator of its standard deviation; see Section 11.3. Different ways of implementing
such a program are reviewed, for example, by Draper (1981, 1983), McKean and

4For conditions under which such a breakdown is possible, see Albert (1976).
5This term (after Student, the pseudonym of W. S. Gosset) is a misnomer. The pro-

cedure of dividing the sample mean X̄ by its estimated standard deviation and referring
the resulting statistic to the standard normal distribution (without regard to the dis-
tribution of the X’s) was used already by Laplace. Student’s contribution consisted of
pointing out that if the X’s are normal, the approximate normal distribution of the
t-statistic can be replaced by its exact distribution—Student’s t.
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Schrader (1982), Ronchetti (1982) and Hettmansperger, McKean and Sheather
(2000). [For a simple alternative of this kind to Student’s t-test, see Prescott
(1975).]

Sometimes, it is of interest to test the hypothesis H : µ1 = · · · = µs considered
at the beginning of the section, against only the ordered alternatives µ1 ≤ · · · ≤
µs rather than against the general alternatives of any inequalities among the
µ’s. Then the F -test (7.19) is no longer reasonable; more powerful alternative
tests for this and other problems involving ordered alternatives are discussed by
Robertson, Wright and Dykstra (1988). The problem of testing H against one-
sided alternatives such as K : ξi ≥ 0 for all i, with at least one inequality strict,
is treated by Perlman (1969) and in Barlow et al. (1972), which gives a survey of
the literature; also see Tang (1994), Liu and Berger (1995) and Perlman and Wu
(1999). Minimal complete classes and admissibility for this and related problems
are discussed by Marden (1982a) and Cohen and Sackrowitz (1992).

7.4 Two-Way Layout: One Observation per Cell

The hypothesis of equality of several means arises when a number of different
treatments, procedures, varieties, or manifestations of some other factors are to
be compared. Frequently one is interested in studying the effects of more than one
factor, or the effects of one factor as certain other conditions of the experiment
vary, which then play the role of additional factors. In the present section we
shall consider the case that the number of factors affecting the outcomes of the
experiment is two.

Suppose that one observation is obtained at each of a number of levels of these
factors, and denote by Xij (i = 1, . . . , a; j = 1, . . . , b) the value observed when
the first factor is at the ith and the second at the jth level. It is assumed that the
Xij are independently normally distributed with constant variance σ2, and for
the moment also that the two factors act independently (they are then said to be
additive), so that ξij is of the form α′

i +β′
j . Putting µ = α′

· +β′
· and αi = α′

i −α′
·,

βj = β′
j − β′

· , this can be written as

ξij = µ + αi + βj ,
∑

αi =
∑

βj = 0, (7.20)

where the α’s and β’s (the main effects of A and B) and µ are uniquely determined
by (7.20) as6

αi = ξi· − ξ··, βj = ξ·j − ξ··, µ = ξ··. (7.21)

Consider the hypothesis

H : α1 = · · · = αa = 0 (7.22)

that the first factor has no effect on the outcome being observed. This arises in two
quite different contexts. The factor of interest, corresponding say to a number
of treatments, may be β, while α corresponds to a classification according to,

6The replacing of a subscript by a dot indicates that the variable has been averaged
with respect to that subscript.
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for example, the site on which the observations are obtained (farm, laboratory,
city, etc.). The hypothesis then represents the possibility that this subsidiary
classification has no effect on the experiment so that it need not be controlled.
Alternatively, α may be the (or a) factor of primary interest. In this case, the
formulation of the problem as one of hypothesis testing would usually be an
oversimplification, since in case of rejection of H, one would require estimates of
the α’s or at least a grouping according to high and low values.

The hypothesis H is a linear hypothesis with r = a−1, s = 1+(a−1)+(b−1) =
a+b−1, and n−s = (a−1)(b−1). The least-squares estimates of the parameters
under Ω can be obtained from the identity

∑ ∑
(Xij − ξij)

2 =
∑ ∑

(Xij − µ − αi − βj)
2

=
∑ ∑

[(Xij − Xi· − X·j + X··) + (Xi· − X·· − αi)

+ (X·j − X·· − βj) + (X·· − µ)]2

=
∑ ∑

(Xij − Xi· − X·j + X··)
2

+b
∑

(Xi· − X·· − αi)
2

+a
∑

(X·j − X·· − βj)
2 + ab (X·· − µ)2 ,

which is valid because in the expansion of the third sum of squares the cross-
product terms vanish. It follows that

α̂i = Xi· − X··, β̂j = X·j − X··, µ̂ = X··, (7.23)

and that
∑ ∑ (

Xij − ξ̂ij

)2
=

∑ ∑
(Xij − Xi· − X·j + X··)

2 .

Under the hypothesis H we still have ˆ̂βj = X·j − X·· and ˆ̂µ = X··, and hence

ξ̂ij − ˆ̂ξij = Xi· − X··. The best invariant test therefore rejects when

W ∗ =
b
∑

(Xi· − X··)
2 /(a − 1)

∑ ∑
(Xij − Xi· − X·j + X··)

2 /(a − 1)(b − 1)
> C. (7.24)

The noncentrality parameter, on which the power of the test depends, is given
by

ψ2 =
b
∑

(ξi· − ξ··)
2

σ2
=

b
∑

α2
i

σ2
. (7.25)

This problem provides another example of an analysis of variance. The total
variation can be broken into three components,

∑ ∑
(Xij − X··)

2 = b
∑

(Xi· − X··)
2 + a

∑
(X·j − X··)

2

+
∑ ∑

(Xij − Xi· − X·j + X··)
2.

Of these, the first contains the variation due to the α’s, the second that due to
the β’s. The last component, in the canonical form of Section 7.1, is equal to∑n

i=s+1 Y 2
i . It is therefore the sum of squares of those variables whose means are

zero even under Ω. Since this residual part of the variation, which on division by
n − s is an estimate of σ2, cannot be attributed to any effects such as the α’s or
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β’s, it is frequently labeled “error,” as an indication that it is due solely to the
randomness of the observations, not to any differences of the means. Actually,
the breakdown is not quite as sharp as is suggested by the above description. Any
component such as that attributed to the α’s always also contains some “error,”
as is seen for example from its expectation, which is

E
∑

(Xi· − X··)
2 = (a − 1)σ2 + b

∑
α2

i .

Instead of testing whether a certain factor has any effect, one may wish to
estimate the size of the effect at the various levels of the factor. Other parameters
that are sometimes interesting to estimate are the average outcomes (for example
yields) ξ1·, . . . , ξa· when the factor is at the various levels. If θi = µ + αi = ξi·,
confidence sets for (θ1, . . . , θa) are obtained by considering the hypotheses H(θ0) :
θi = θ0

i (i = 1, . . . , a). For testing θ1 = · · · = θa = 0, the least-squares estimates

of the ξij are ξ̂ij = Xi· + X·j −X·· and ˆ̂ξij = X·j −X··. The denominator sum of

squares is therefore
∑ ∑

(Xij −Xi· −X·j + X··)
2 as before, while the numerator

sum of squares is

∑ ∑ (
ξ̂ij − ˆ̂ξij

)2

= b
∑

X2
i·.

The general hypothesis reduces to this special case on replacing Xij with the
variable Xij − θ0

i . Since s = a + b− 1 and r = a, the hypothesis H(θ0) is rejected
when

b
∑

(Xi· − θ0
i )2/a∑ ∑

(Xij − Xi· − X·j + X··)2/(a − 1)(b − 1)
> C.

The associated confidence sets for (θ1, . . . , θa) are the spheres

∑
(θi − Xi·)

2 ≤ aC
∑ ∑

(Xij − Xi· − X·j + X··)
2

(a − 1)(b − 1)b
.

When considering confidence sets for the effects α1, . . . , αa, one must take
account of the fact that the α’s are not independent. Since they add up to zero,
it would be enough to restrict attention to α1, . . . , αa−1. However, an easier and
more symmetric solution is found by retaining all the α’s. The rejection region of
H : αi = α0

i for i = 1, . . . , a (with
∑

α0
i = 0) is obtained from (7.24) by letting

X ′
ij = Xij − α0

i , and hence is given by

b
∑

(Xi· − X·· − α0
i )

2 >
C

∑ ∑
(Xij − Xi· − X·j + X··)

2

(b − 1)
.

The associated confidence set consists of the totality of points (α1, . . . , αa)
satisfying

∑
αi = 0 and

∑
[αi − (Xi· − X··)]

2 ≤ C
∑ ∑

(Xij − Xi· − X·j + X··)
2

b(b − 1)
.

In the space of (α1, . . . , αa), this inequality defines a sphere whose center (X1.−
X··, . . . , Xa· − X··) lies on the hyperplane

∑
αi = 0. The confidence sets for the

α’s therefore consist of the interior and surface of the great hyperspheres obtained
by cutting the a-dimensional spheres with the hyperplane

∑
αi = 0.
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In both this and the previous case, the usual method shows the class of confi-
dence sets to be invariant under the appropriate group of linear transformations,
and the sets are therefore uniformly most accurate invariant.

A rank test of (7.22) analogous to the Kruskal–Wallis test for the one-way
layout is Friedman’s test, obtained by ranking the s observations X1j , . . . , Xsj

separately from 1 to s at each level j of the second factor. If these ranks are de-
noted by R1j , . . . , Rsj , Friedman’s test rejects for large values of

∑
(Ri· − R··)

2.
Unless s is large, this test suffers from the fact that comparisons are restricted to
observations at the same level of factor 2. The test can be improved by “align-
ing” the observations from different levels, for example, by subtracting from each
observation at the jth level its mean X.j for that level, and then ranking the
aligned observations from 1 to ab. For a discussion of these tests and their effi-
ciency see Lehmann (1998, Chapter 6), and for an extension to tests of (7.22) in
the model (7.20) when there are several observations per cell, Mack and Skillings
(1980). Further discussion is provided by Hettmansperger (1984) and Gibbons
and Chakraborti (1992).

That in the experiment described at the beginning of the section there is only
one observation per cell, and that as a consequence hypotheses about the α’s
and β’s cannot be tested without some restrictions on the means ξij , does not of
course justify the assumption of additivity. Rather, it is the other way around:
the experiment should not be performed with just one observation per cell unless
the factors can safely be assumed to be additive. Faced with such an experiment
without prior assurance that the assumption holds, one should test the hypothesis
of additivity. A number of tests for this purpose are discussed, for example, in
Hegemann and Johnson (1976) and Marasinghe and Johnson (1981).

7.5 Two-Way Layout: m Observations Per Cell

In the preceding section it was assumed that the effects of the two factors α and
β are independent and hence additive. The factors may, however, interact in the
sense that the effect of one depends on the level of the other. Thus the effectiveness
of a teacher depends for example on the quality or the age of the students, and
the benefit derived by a crop from various amounts of irrigation depends on the
type of soil as well as on the variety being planted. If the additivity assumption
is dropped, the means ξij of Xij are no longer given by (7.20) under Ω but are
completely arbitrary. More than ab observations, one for each combination of
levels, are then required, since otherwise s = n. We shall here consider only the
simple case in which the number of observations is the same at each combination
of levels.

Let Xijk (i = 1, . . . , a; j = 1, . . . , b; k = 1, . . . , m) be independent normal with
common variance σ2 and mean E(Xijk) = ξij . In analogy with the previous
notation we write

ξij = ξ·· + (ξi· − ξ··) + (ξ·j − ξ··) + (ξij − ξi· − ξ·j + ξ··)

= µ + αi + βj + γij

with
∑

i αi =
∑

j βj =
∑

i γij =
∑

j γij = 0. Then αi is the average effect of
factor 1 at level i, averaged over the b levels of factor 2, and a similar interpretation
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holds for the β’s. The γ’s are called interactions, since γij measures the extent
to which the joint effect ξij − ξ·· of factors 1 and 2 at levels i and j exceeds the
sum (ξi·− ξ··)+ (ξ·j − ξ··) of the individual effects. Consider again the hypothesis
that the α’s are zero. Then r = a − 1, s = ab, and n − s = (m − 1)ab. From the
decomposition

∑ ∑ ∑
(Xijk − ξij)

2 =
∑ ∑ ∑

(Xijk − Xij·)
2 + m

∑ ∑
(Xij· − ξij)

2

and
∑ ∑

(Xij· − ξij)
2 =

∑ ∑
(Xij· − Xi·· − X·j· + X··· − γij)

2

+b
∑

(Xi·· − X··· − αi)
2 + a

∑
(X·j· − X··· − βj)

2

+ab(X··· − µ)2

it follows that

µ̂ = ˆ̂µ = ξ̂·· = X···, α̂i = ξ̂i· − ξ̂·· = Xi·· − X···,

β̂j = ˆ̂βj = ξ̂·j − ξ̂·· = X·j· − X···,

γ̂ij = ˆ̂γij = Xij· − Xi·· − X·j· + X···,

and hence that
∑ ∑ ∑

(Xijk − ξ̂ij)
2 =

∑ ∑ ∑
(Xijk − Xij·)

2,

∑ ∑ ∑
(ξ̂ij − ˆ̂ξij)

2 = mb
∑

(Xi·· − X···)
2.

The most powerful invariant test therefore rejects when

W ∗ =
mb

∑
(Xi·· − X···)

2/(a − 1)∑ ∑ ∑
(Xijk − Xij·)2/(m − 1)ab

> C, (7.26)

and the noncentrality parameter in the distribution of W ∗ is

mb
∑

(ξi· − ξ··)
2

σ2
=

mb
∑

α2
i

σ2
. (7.27)

Another hypothesis of interest is the hypothesis H ′ that the two factors are
additive,7

H ′ : γij = 0 for all i, j.

The least-squares estimates of the parameters are easily derived as before, and
the UMP invariant test is seen to have the rejection region (Problem 7.13)

W ∗ =
m

∑ ∑
(Xij· − Xi·· − X·j· + X···)

2/(a − 1)(b − 1)∑ ∑ ∑
(Xijk − Xij·)2/(m − 1)ab

> C. (7.28)

7A test of H′ against certain restricted alternatives has been proposed for the case
of one observation per cell by Tukey (1949a); see Hegemann and Johnson (1976) for
further discussion.
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Under H ′, the statistic W ∗ has the F -distribution with (a−1)(b−1) and (m−1)ab
degrees of freedom; the noncentrality parameter for any alternative set of γ’s is

ψ2 =
m

∑ ∑
γ2

ij

σ2
. (7.29)

The decomposition of the total variation into its various components, in the
present case, is given by

∑ ∑ ∑
(Xijk − X···)

2 = mb
∑

(Xi·· − X···)
2 + ma

∑
(X·j· − X···)

2

+m
∑ ∑

(Xij· − Xi·· − X·j· + X···)
2

+
∑ ∑ ∑

(Xijk − Xij·)
2.

Here the first three terms contain the variation due to the α’s, β’s and γ’s respec-
tively, and the last component corresponds to error. The tests for the hypotheses
that the α’s, β’s, or γ’s are zero, the first and third of which have the rejection
regions (7.26) and (7.28), are then obtained by comparing the α, β, or γ sum of
squares with that for error.

An analogous decomposition is possible when the γ’s are assumed a priori to be
equal to zero. In that case, the third component which previously was associated
with γ represents an additional contribution to error, and the breakdown becomes

∑ ∑ ∑
(Xijk − X···)

2 = mb
∑

(Xi·· − X···)
2 + ma

∑
(X·j· − X···)

2

+
∑ ∑ ∑

(Xijk − Xi·· − X·j· + X···)
2,

with the last term corresponding to error. The hypothesis H : α1 = · · · = αa = 0
is then rejected when

mb
∑

(Xi·· − X···)
2/(a − 1)∑ ∑ ∑

(Xijk − Xi·· − X·j· + X···)2/(abm − a − b + 1)
> C.

Suppose now that the assumption of no interaction, under which this test was
derived, is not justified. The denominator sum of squares then has a noncentral
χ2-distribution instead of a central one; and is therefore stochastically larger than
was assumed (Problem 7.15). It follows that the actual rejection probability is
less than it would be for

∑ ∑
γ2

ij = 0. This shows that the probability of an error
of the first kind will not exceed the nominal level of significance, regardless of the
values of the γ’s. However, the power also decreases with increasing

∑ ∑
γ2

ij/σ2

and tends to zero as this ratio tends to infinity.
The analysis of variance and the associated tests derived in this section for

two factors extend in a straightforward manner to a larger number of factors (see
for example Problem 7.16). On the other hand, if the number of observations is
not the same for each combination of levels (each cell), explicit formulae for the
least-squares estimators may no longer be available, but there is no difficulty in
computing these estimators and the associated UMP invariant tests numerically.
However, in applications it is then not always clear how to define main effects,
interactions, and other parameters of interest, and hence what hypothesis to test.
These issues are discussed, for example, in Hocking and Speed (1975) and Speed,
Hocking, and Hackney (1979). See also TPE2, Chapter 3, Example 4.9, Arnold
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(1981, Section 7.4), Searle (1987), McCulloch and Searle (2001) and Hocking
(2003).

Of great importance are arrangements in which only certain combinations of
levels occur, since they permit reducing the size of the experiment. Thus for
example three independent factors, at m levels each, can be analyzed with only
m2 observations, instead of the m3 required if 1 observation were taken at each
combination of levels, by adopting a Latin-square design (Problem 7.17).

The class of problems considered here contains as a special case the two-sample
problem treated in Chapter 5, which concerns a single factor with only two levels.
The questions discussed in that connection regarding possible inhomogeneities of
the experimental material and the randomization required to offset it are of equal
importance in the present, more complex situations. If inhomogeneous material
is subdivided into more homogeneous groups, this classification can be treated
as constituting one or more additional factors. The choice of these groups is an
important aspect in the determination of a suitable experimental design.8 A very
simple example of this is discussed in Problems 5.49 and 5.50.

Multiple comparison procedures for two-way (and higher) layouts are discussed
by Spjøtvoll (1974); additional references can be obtained from Miller (1977b,
1986) and Westfall and Young (1993). The more general problem of multiple
testing will be treated in Chapter 9.

7.6 Regression

Hypotheses specifying one or both of the regression coefficients α, β when
X1, . . . , Xn are independently normally distributed with common variance σ2

and means

ξi = α + βti (7.30)

are essentially linear hypotheses, as was pointed out in Example 7.1.2. The hy-
potheses H1 : α = α0 and H2 : β = β0 were treated in Section 5.6, where they
were shown to possess UMP unbiased tests. We shall now consider H1 and H2,
as well as the hypothesis H3 : α = α0, β = β0, from the present point of view.
By the general theory of Section 7.1, the resulting tests will be UMP invariant
under suitable groups of linear transformations. For the first two cases, in which
r = 1, this also provides, by the argument of Section 6.6, an alternative proof of
their being UMP unbiased.

The space
∏

Ω is the same for all three hypotheses. It is spanned by the vectors
(1, . . . , 1) and (t1, . . . , tn) and therefore has dimension s = 2 unless the ti are all

8For a discussion of various designs and the conditions under which they are appro-
priate see, for example, Box, Hunter, and Hunter (1978), Montgomery (2001) and Wu
and Hamada (2000). Optimum properties of certain designs, proved by Wald, Ehren-
feld, Kiefer, and others, are discussed by Kiefer (1958), Silvey (1980), Atkinson and
Donev (1992) and Pukelsheim (1993). The role of randomization, treated for the two-
sample problem in Section 5.10, is studied by Kempthorne (1955), Wilk and Kempthorne
(1955), Scheffé (1959), and others; see, for example, Lorenzen (1984) and Giesbrecht and
Gumpertz (2004).
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equal, which we shall assume not to be the case. The least-squares estimates α
and β under Ω are obtained by minimizing

∑
(Xi −α−βti)

2. For any fixed value
of β, this is achieved by the value α = X̄ − βt̄, for which the sum of squares
reduces to

∑
[(Xi − X̄) − β(ti − t̄)]2. By minimizing this with respect to β one

finds

β̂ =

∑
(Xi − X̄)(ti − t̄)∑

(tj − t̄)2
, α̂ = X̄ − β̂t̄; (7.31)

and
∑

(Xi − α̂ − β̂ti)
2 =

∑
(Xi − X̄)2 − β̂2

∑
(ti − t̄)2

is the denominator sum of squares for all three hypotheses. The numerator of the
test statistic (7.7) for testing the two hypotheses α = 0 and to β = 0 is Y 2

1 , and
for testing α = β = 0 is Y 2

1 + Y 2
2 .

For the hypothesis α = 0, the statistic Y1 was shown in Example 7.1.3 to be
equal to

(
X̄ − t̄

∑
tiXi∑
t2j

) √

n

∑
t2j∑

(tj − t̄)2
= α̂

√

n

∑
(tj − t̄)2∑

t2j
.

Since then

E(Y1) = α

√

n

∑
(tj − t̄)2∑

t2j
,

the hypothesis α = α0 is equivalent to the hypothesis

E(Y1) = η0
1 = α0

√
n

∑
(tj − t̄)2/

∑
t2j ,

for which the rejection region (7.17) is

(n − s)(Y1 − η0
1)2/

n∑

i=s+1

Y 2
i > C0

and hence

|α̂ − α0|
√

n
∑

(tj − t̄)2/
∑

t2j
√∑

(Xi − α̂ − β̂ti)2/(n − 2)
> C0. (7.32)

For the hypothesis β = 0, Y1 was shown to be equal to
∑

(Xi − X̄)(ti − t̄)√∑
(tj − t̄)2

= β̂
√∑

(tj − t̄)2.

Since then E(Y1) = β
√∑

(tj − t̄)2, the hypothesis β = β0 is equivalent to

E(Y1) = η0
1 = β0

√∑
(tj − t̄)2 and the rejection region is

|β̂ − β0|
√∑

(tj − t̄)2√∑
(Xi − α̂ − β̂ti)2/(n − 2)

> C0. (7.33)

For testing α = β = 0, it was shown in Example 7.1.3 that

Y1 = β̂
√∑

(tj − t̄)2, Y2 =
√

nX̄ =
√

n(α̂ + β̂t̄);
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the numerator of (7.7) is therefore

Y 2
1 + Y 2

2

2
=

n(α̂ + β̂t̄)2 + β̂2 ∑
(tj − t̄)2

2
.

The more general hypothesis α = α0, β = β0 is equivalent to E(Y1) = η0
1 ,

E(Y2) = η0
2 , where η0

1 = β0

√∑
(tj − t̄)2, η0

2 =
√

n(α0 + β0 t̄); and the rejection
region (7.17) can therefore be written as

[
n(α̂ − α0)

2 + 2nt̄(α̂ − α0)(β̂ − β0) +
∑

t2i (β̂ − β0)
2
]
/2

∑
(Xi − α̂ − β̂ti)2/(n − 2)

> C. (7.34)

The associated confidence sets for (α, β) are obtained by reversing this inequality
and replacing α0 and β0 by α and β. The resulting sets are ellipses centered at
(α̂, β̂).

The simple regression model (7.30) can be generalized in many directions; the
means ξi may for example be polynomials in t1 of higher than the first degree (see
Problem 7.20), or more complex functions such as trigonometric polynomials; or
they may be functions of several variables, ti, ui, vi. Some further extensions will
now be illustrated by a number of examples.

Example 7.6.1 A variety of problems arise when there is more than one
regression-line. Suppose that the variables Xij are independently normally
distributed with common variance and means

ξij = αi + βitij (j = 1, . . . , ni; i = 1, . . . , b). (7.35)

The hypothesis that these regression lines have equal slopes

H : β1 = · · · = βb

may occur for example when the equality of a number of growth rates is to be
tested. The parameter space

∏
Ω has dimension s = 2b provided none of the

sums
∑

j(tij − ti·)
2 is zero; the number of constraints imposed by the hypothesis

is r = b − 1. The minimum value of
∑ ∑

(Xij − ξij)
2 under Ω is obtained by

minimizing
∑

j(Xij − αi − βitij)
2 for each i, so that by (7.31),

β̂i =

∑
j(Xij − Xi·)(tij − ti·)∑

j(tij − ti·)2
, α̂i = Xi· − β̂iti· .

Under H, one must minimize
∑ ∑

(Xij−αi−βtij)
2, which for any fixed β leads

to αi = Xi·−βti· and reduces the sum of squares to
∑ ∑

[(Xij−Xi·)−β(tij−ti·)]
2.

Minimizing this with respect to β, one finds

ˆ̂β =

∑ ∑
(Xij − Xi·)(tij − ti·)∑ ∑

(tij − ti·)2
, ˆ̂αi = Xi· − ˆ̂βi·.

Since

Xij − ξ̂ij = Xij − α̂i − β̂itij = (Xij − Xi·) − β̂i(tij − ti·)

and

ξ̂ij − ˆ̂ξij = (α̂i − ˆ̂αi) + tij(β̂i − ˆ̂β) = (β̂i − ˆ̂β)(tij − ti·),
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the rejection region (7.15) is

∑
i(β̂i − ˆ̂β)2

∑
j(tij − ti·)

2/(b − 1)
∑ ∑[

(Xij − Xi·) − β̂i(tij − ti·)
]2

/(n − 2b)
> C, (7.36)

where the left-hand side under H has the F -distribution with b − 1 and n − 2b
degrees of freedom.

Since

E(β̂i) = βi and E(ˆ̂β) =

∑
i βi

∑
j(tij − ti·)

2

∑ ∑
(tij − ti·)2

,

the noncentrality parameter of the distribution for an alternative set of β’s is

ψ2 =
∑

i(βi − β̃)2
∑

j(tij − ti·)
2/σ2, where β̃ = E(ˆ̂β). In the particular case that

the ni and the tij are independent of i, β̃ reduces to β̄ =
∑

βj/b.

Example 7.6.2 The regression model (7.35) arises in the comparison of a num-
ber of treatments when the experimental units are treated as fixed and the unit
effects uij (defined in Section 5.9) are proportional to known constants tij . Here
tij might for example be a measure of the fertility of the i, jth piece of land or
the weight of the i, jth experimental animal prior to the experiment. It is then
frequently possible to assume that the proportionality factor βi does not depend
on the treatment, in which case (7.35) reduces to

ξij = αi + βtij (7.37)

and the hypothesis of no treatment effect becomes

H : α1 = · · · = αb.

The space
∏

Ω coincides with
∏

ω of the previous example, so that s = b + 1
and

β̂ =

∑ ∑
(Xij − Xi·)(tij − ti·)∑ ∑

(tij − ti·)2
, α̂i = Xi· − β̂ti·.

Minimization of
∑ ∑

(Xij − α − βtij)
2 gives

ˆ̂β =

∑ ∑
(Xij − X··)(tij − t··)∑ ∑

(tij − t··)2
, ˆ̂α = X·· − ˆ̂βt··,

where X·· =
∑ ∑

Xij/n, t·· =
∑ ∑

tij/n, n =
∑

ni. The sum of squares in the
numerator of W ∗ in (7.15) is thus

∑ ∑(
ξ̂ij − ˆ̂ξij

)2
=

∑ ∑[
(Xi· − X··) + β̂(tij − ti·) − ˆ̂β(tij − t··)

]2
.

The hypothesis H is therefore rejected when

∑ ∑[
(Xi· − X··) + β̂(tij − ti·) − ˆ̂β(tij − t··)

]2
/(b − 1)

∑ ∑[
(Xij − Xi·) − β̂(tij − ti·)

]2
/(n − b − 1)

> C , (7.38)

where under H the left-hand side has the F -distribution with b− 1 and n− b− 1
degrees of freedom.
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The hypothesis H can be tested without first ascertaining the values of the
tij ; it is then the hypothesis of no effect in a one-way classification considered in
Section 7.3, and the test is given by (7.19). Actually, since the unit effects uij

are assumed to be constants, which are now completely unknown, the treatments
are assigned to the units either completely at random or at random within sub-
groups. The appropriate test is then a randomization test for which (7.19) is an
approximation.

Example 7.6.2 illustrates the important class of situations in which an analysis
of variance (in the present case concerning a one-way classification) is combined
with a regression problem (in the present case linear regression on the single
“concomitant variable” t). Both parts of the problem may of course be consid-
erably more complex than was assumed here. Quite generally, in such combined
problems one can test (or estimate) the treatment effects as was done above, and
a similar analysis can be given for the regression coefficients. The breakdown of
the variation into its various treatment and regression components is the so-called
analysis of covariance.

7.7 Random-Effects Model: One-way Classification

In the factorial experiments discussed in Sections 7.3, 7.4, and 7.5, the factor
levels were considered fixed, and the associated effects (the µ’s in Section 7.3,
the α’s, β’s and γ’s in Sections 7.4 and 7.5) to be unknown constants. However,
in many applications, these levels and their effects instead are (unobservable)
random variables. If all the effects are constant or all random, one speaks of
fixed-effects model (model I ) or random-effects model (model II ) respectively,
and the term mixed model refers to situations in which both types occur.9 Of
course, only the model I case constitutes a linear hypothesis according to the
definition given at the beginning of the chapter. In the present section we shall
treat as model II the case of a single factor (one-way classification), which was
analyzed under the model I assumption in Section 7.3.

As an illustration of this problem, consider a material such as steel, which is
manufactured or processed in batches. Suppose that a sample of size n is taken
from each of s batches and that the resulting measurements Xij (j = 1, . . . , n;
i = 1, . . . , s) are independently normally distributed with variance σ2 and mean
ξi. If the factor corresponding to i were constant, with the same effect αi in each
replication of the experiment, we would have

ξi = µ + αi

(∑
αi = 0

)

and

Xij = µ + αi + Uij ,

where the Uij are independently distributed as N(0, σ2). The hypothesis of no
effect is ξ1 = · · · = ξs, or equivalently α1 = · · · = αs = 0. However, the effect is

9For a recent exposition of random effects models, see Sahai and Ojeda (2004).
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associated with the batches, of which a new set will be involved in each replication
of the experiment; the effect therefore does not remain constant. Instead, we shall
suppose that the batch effects constitute a sample from a normal distribution,
and to indicate their random nature we shall write Ai for αi, so that

Xij = µ + Ai + Uij . (7.39)

The assumption of additivity (lack of interaction) of batch and unit effect, in the
present model, implies that the A’s and U ’s are independent. If the expectation of
Ai is absorbed into µ, it follows that the A’s and U ’s are independently normally
distributed with zero means and variances σ2

A and σ2 respectively. The X’s of
course are no longer independent.

The hypothesis of no batch effect, that the A’s are zero and hence constant,
takes the form

H : σ2
A = 0

This is not realistic in the present situation, but is the limiting case of the
hypothesis

H(∆0) :
σ2

A

σ2
≤ ∆0

that the batch effect is small relative to the variation of the material within a
batch. These two hypotheses correspond respectively to the model I hypotheses∑

α2
i = 0 and

∑
α2

i /σ2 ≤ ∆0.
To obtain a test of H(∆0) it is convenient to begin with the same transforma-

tion of variables that reduced the corresponding model I problem to canonical
form. Each set (Xi1, . . . , Xin) is subjected to an orthogonal transformation Yij =∑n

k=1 cjkXik such that Yi1 =
√

nXi·. Since c1k = 1/
√

n for k = 1, . . . , n (see Ex-
ample 7.1.3), it follows from the assumption of orthogonality that

∑n
k=1 cjk = 0

for j = 2, . . . , n and hence that Yij =
∑n

k=1 cjkUik for j > 1. The Yij with j > 1
are therefore independently normally distributed with zero mean and variance σ2.
They are also independent of Ui· since (

√
nUi· −Yi2 . . . Yin)′ = C(Ui1Ui2 . . . Uin)′

(a prime indicates the transpose of a matrix). On the other hand, the variables
Yi1 =

√
nXi· =

√
n(µ + Ai + Ui·) are also independently normally distributed

but with mean
√

nµ and variance σ2 +nσ2
A. If an additional orthogonal transfor-

mation is made from (Y11, . . . , Ys1) to (Z11, . . . , Zs1) such that Z11 =
√

sY·1, the
Z’s are independently normally distributed with common variance σ2 +nσ2

A and
means E(Z11) =

√
snµ and E(Zi1) = 0 for i > 1. Putting Zij = Yij for j > 1 for

the sake of conformity, the joint density of the Z’s is then

(2π)−ns/2σ−(n−1)s
(
σ2 + nσ2

A

)−s/2
(7.40)

× exp



− 1

2
(
σ2 + nσ2

A

)
((

z11 −
√

snµ
)2

+
s∑

i=2

z2
i1

)
− 1

2σ2

s∑

i=1

n∑

j=2

z2
ij



 .

The problem of testing H(∆0) is invariant under addition of an arbitrary constant
to Z11, which leaves the remaining Z’s as a maximal set of invariants. These
constitute samples of size s(n− 1) and s− 1 from two normal distributions with
means zero and variances σ2 and τ2 = σ2 + nσ2

A.
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The hypothesis H(∆0) is equivalent to τ2/σ2 ≤ 1 + ∆0n, and the problem
reduces to that of comparing two normal variances, which was considered in
Example 6.3.4 without the restriction to zero means. The UMP invariant test,
under multiplication of all Zij by a common positive constant, has the rejection
region

W ∗ =
1

1 + ∆0n
· S2

A/(s − 1)
S2/(n − 1)s

> C, (7.41)

where

S2
A =

s∑

i=2

Z2
i1 and S2 =

s∑

i=1

n∑

j=2

Z2
ij =

s∑

i=1

n∑

j=2

Y 2
ij .

The constant C is determined by
∫ ∞

C

Fs−1,(n−1)s(y) dy = α.

Since
n∑

j=1

Y 2
ij − Y 2

i1 =
n∑

j=1

U2
ij − nU2

i·

and
s∑

i=1

Z2
i1 − Z2

11 =
s∑

i=1

Y 2
i1 − Y 2

·1,

the numerator and denominator sums of squares of W ∗, expressed in terms of
the X’s, become

S2
A = n

s∑

i=1

(Xi· − X··)
2 and S2 =

s∑

i=1

n∑

j=1

(Xij − Xi·)
2.

In the particular case ∆0 = 0, the test (7.41) is equivalent to the corresponding
model I test (7.19), but they are of course solutions of different problems, and
also have different power functions. Instead of being distributed according to a
noncentral χ2-distribution as in model I, the numerator sum of squares of W ∗ is
proportional to a central χ2-variable even when the hypothesis is false, and the
power of the test (7.41) against an alternative value of ∆ is obtained from the
F -distribution through

β(∆) = P∆{W ∗ > C} =

∫ ∞

1+∆0n
1+∆n C

Fs−1,(n−1)s(y) dy.

The family of tests (7.41) for varying ∆0 is equivalent to the confidence
statements

∆ =
1
n

[
S2

A/(s − 1)
CS2/(n − 1)s

− 1

]
≤ ∆. (7.42)

The corresponding upper confidence bounds for ∆ are obtained from the tests of
the hypotheses ∆ ≥ ∆0. These have the acceptance regions W ∗ ≥ C′, where W ∗

is given by (7.41) and C′ is determined by
∫ ∞

C′
Fs−1,(n−1)s = 1 − α .
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The resulting confidence bounds are

∆ ≤ 1
n

[
S2

A/(s − 1)
C′S2/(n − 1)s

− 1

]
= ∆̄. (7.43)

Both the confidence sets (7.42) and (7.43) are equivariant with respect to the
group of transformations generated by those considered for the testing problems,
and hence are uniformly most accurate equivariant.

When ∆ is negative, the confidence set (∆,∞) contains all possible values of
the parameter ∆. For small ∆, this will happen with high probability (1 − α for
∆ = 0), as must be the case, since ∆ is then required to be a safe lower bound for
a quantity which is equal to or near zero. Even more awkward is the possibility
that ∆̄ is negative, so that the confidence set (−∞, ∆̄) is empty. An interpretation
is suggested by the fact that this occurs if and only if the hypothesis ∆ ≥ ∆0

is rejected for all positive values of ∆0. This may be taken as an indication that
the assumed model is not appropriate, 10 although it must be realized that for
small ∆ the probability of the event ∆̄ < 0 is near α even when the assumptions
are satisfied, so that this outcome will occasionally be observed.

The tests of ∆ ≤ ∆0 and ∆ ≥ ∆0 are not only UMP invariant but also UMP
unbiased, and UMP unbiased tests also exist for testing ∆ = ∆0 against the
two-sided alternatives ∆ += ∆0. This follows from the fact that the joint density
of the Z’s constitutes an exponential family. The confidence sets associated with
these three families of tests are then uniformly most accurate unbiased (Problem
7.21). That optimum unbiased procedures exist in the model II case but not in
the corresponding model I problem is explained by the different structure of the
two hypotheses. The model II hypothesis σ2

A = 0 imposes one constraint, since it
concerns the single parameter σ2

A. On the other hand, the corresponding model I
hypothesis

∑s
i=1 α2

i = 0 specifies the values of the s parameters α1, . . . , αs, and
since s − 1 of these are independent, imposes s − 1 constraints.

A UMP invariant test of ∆ ≤ ∆0 does not exist if the sample sizes ni are un-
equal. An invariant test with a weaker optimum property for this case is obtained
by Spjøtvoll (1967).

Since ∆ is a ratio of variances, it is not surprising that the test statistic W ∗

is quite sensitive to the assumption of normality; such robustness issues are dis-
cussed in Section 11.3.1). More robust alternatives are discussed, for example,
by Arvesen and Layard (1975). Westfall (1989) compares invariant variance ratio
tests in mixed models.

Optimality of standard F tests in balanced ANOVA models with mixed effects
is derived in Mathew and Sinha (1988a) and optimal tests in some unbalanced
designs are derived in Mathew and Sinha (1988b).

7.8 Nested Classifications

The theory of the preceding section does not carry over even to so simple a situ-
ation as the general one-way classification with unequal numbers in the different

10For a discussion of possibly more appropriate alternative models, see Smith and
Murray (1984).
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classes (Problem 7.24). However, the unbiasedness approach does extend to the
important case of a nested (hierarchical) classification with equal numbers in each
class. This extension is sufficiently well indicated by carrying it through for the
case of two factors; it follows for the general case by induction with respect to
the number of factors.

Returning to the illustration of a batch process, suppose that a single batch of
raw material suffices for several batches of the finished product. Let the exper-
imental material consist of ab batches, b coming from each of a batches of raw
material, and let a sample of size n be taken from each. Then (7.39) becomes

Xijk = µ + Ai + Bij + Uijk (7.44)

(i = 1, . . . , a; j = 1, . . . , b; k = 1, . . . , n)

where Ai denotes the effect of the ith batch of raw material, Bij that of the
jth batch of finished product obtained from this material, and Uijk the effect
of the kth unit taken from this batch. All these variables are assumed to be
independently normally distributed with zero means and with variances σ2

A, σ2
B ,

and σ2 respectively. The main part of the induction argument consists of proving
the existence of an orthogonal transformation to variables Zijk, the joint density
of which, except for a constant, is

exp

[
− 1

2 (σ2 + nσ2
B + bnσ2

A)

((
z111 −

√
abnµ

)2
+

a∑

i=2

z2
i11

)

− 1
2 (σ2 + nσ2

B)

a∑

i=1

b∑

j=2

z2
ij1 −

1
2σ2

a∑

i=1

b∑

j=1

n∑

k=2

z2
ijk

]
. (7.45)

As a first step, there exists for each fixed i, j an orthogonal transformation
from (Xij1, . . . , Xijn) to (Yij1, . . . , Yijn) such that

Yij1 =
√

nXij· =
√

nµ +
√

n(Ai + Bij + Uij .).

As in the case of a single classification, the variables Yijk with k > 1 depend
only on the U ’s, are independently normally distributed with zero mean and
variance σ2, and are independent of the Uij·. On the other hand, the variables
Yij1 have exactly the structure of the Yij in the one-way classification,

Yij1 = µ′ + A′
i + U ′

ij ,

where µ′ =
√

nµ, A′
i =

√
nAi, U ′

ij =
√

n(Bij + Uij·), and where the variances of
A′

i and U ′
ij are σ′

A
2 = nσ2

A and σ′2 = σ2 + nσ2
B respectively. These variables can

therefore be transformed to variables Zij1 whose density is given by (7.40) with
Zij1 in place of Zij . Putting Zijk = Yijk for k > 1, the joint density of all Zijk is
then given by (7.45).

Two hypotheses of interest can be tested on the basis of (7.45)—H1 : σ2
A/(σ2+

nσ2
B) ≤ ∆0 and H2 : σ2

B/σ2 ≤ ∆0. Both state that one or the other of the
classifications has little effect on the outcome. Let

S2
A =

a∑

i=2

Z2
i11, S2

B =
a∑

i=1

b∑

j=2

Z2
ij1, S2 =

a∑

i=1

b∑

j=1

n∑

k=2

Z2
ijk.

To obtain a test of H1, one is tempted to eliminate S2 through invariance un-
der multiplication of Zijk for k > 1 by an arbitrary constant. However, these



302 7. Linear Hypotheses

transformations do not leave (7.45) invariant, since they do not always pre-
serve the fact that σ2 is the smallest of the three variances σ2, σ2 + nσ2

B , and
σ2 + nσ2

B + bnσ2
A. We shall instead consider the problem from the point of view

of unbiasedness. For any unbiased test of H1, the probability of rejection is α
whenever σ2

A/(σ2 +nσ2
B) = ∆0, and hence in particular when the three variances

are σ2, τ2
0 , and (1 + bn∆0)τ

2
0 for any fixed τ2

0 and all σ2 < τ2
0 . It follows by

the techniques of Chapter 4 that the conditional probability of rejection given
S2 = s2 must be equal to α for almost all values of s2. With S2 fixed, the joint
distribution of the remaining variables is of the same type as (7.45) after the
elimination of Z111, and a UMP unbiased conditional test given S2 = s2 has the
rejection region

W ∗
1 =

1
1 + bn∆0

·
S2

A

/
(a − 1)

S2
B

/
(b − 1)a

≥ C1. (7.46)

Since S2
A and S2

B are independent of S2, the constant C1 is determined by the fact
that when σ2

A/(σ2 + nσ2
B) = ∆0, the statistic W ∗

1 is distributed as Fa−1,(b−1)a

and hence in particular does not depend on s. The test (7.46) is clearly unbiased
and hence UMP unbiased.

An alternative proof of this optimality property can be obtained using Theorem
6.6.1. The existence of a UMP unbiased test follows from the exponential family
structure of the density (7.45), and the test is the same whether τ2 is equal to
σ2 + nσ2

B and hence ≥ σ2, or whether it is unrestricted. However, in the latter
case, the test (7.46) is UMP invariant and therefore is UMP unbiased even when
τ2 ≥ σ2.

The argument with respect to H2 is completely analogous and shows the UMP
unbiased test to have the rejection region

W ∗
2 =

1
1 + n∆0

·
S2

B

/
(b − 1)a

S2
/

(n − 1)ab
≥ C2, (7.47)

where C2 is determined by the fact that for σ2
B/σ2 = ∆0, the statistic W ∗

2 is
distributed as F(b−1)a,(n−1)ab.

It remains to express the statistics S2
A, S2

B , and S2 in terms of the X’s. From
the corresponding expressions in the one-way classification, it follows that

S2
A =

a∑

i=1

Z2
i11 − Z2

111 = b
∑

(Yi·1 − Y··1)
2,

S2
B =

a∑

i=1

[
b∑

j=1

Z2
ij1 − Z2

i11

]
=

∑ ∑
(Yij1 − Yi·1)

2,

and

S2 =
a∑

i=1

b∑

j=1

[
n∑

k=1

Y 2
ijk − Y 2

ij1

]
=

∑

i

∑

j

[
n∑

k=1

U2
ijk − nU2

ij .

]

=
∑

i

∑

j

∑

k

(Uijk − Uij·)
2.



7.8. Nested Classifications 303

Hence

S2
A = bn

∑
(Xi·· − X···)

2, S2
B = n

∑ ∑
(Xij· − Xi··)

2, (7.48)

S2 =
∑ ∑ ∑

(Xijk − Xij·)
2.

It is seen from the expression of the statistics in terms of the Z’s that their
expectations are E[S2

A/(a− 1)] = σ2 +nσ2
B + bnσ2

A, E[S2
B/(b − 1)a] = σ2 + nσ2

B ,
and E[S2/(n − 1)ab] = σ2. The decomposition

∑ ∑ ∑
(Xijk − X···)

2 = S2
A + S2

B + S2

therefore forms a basis for the analysis of the variance of Xijk,

V ar(Xijk) = σ2
A + σ2

B + σ2

by providing estimates of the components of variance σ2
A, σ2

B , and σ2, and tests
of certain ratios of these components.

Nested two-way classifications also occur as mixed models. Suppose for example
that a firm produces the material of the previous illustrations in different plants.
If αi denotes the effect of the ith plant (which is fixed, since the plants do not
change in the replication of the experiment), Bij the batch effect, and Uijk the
unit effect, the observations have the structure

Xijk = µ + αi + Bij + Uijk. (7.49)

Instead of reducing the X’s to the fully canonical form in terms of the Z’s
as before, it is convenient to carry out only the reduction to the Y ’s (such that
Yij1 =

√
nXij .) and the first of the two transformations which take the Y ’s into

the Z’s. If the resulting variables are denoted by Wijk, they satisfy Wi11 =
√

bYi·1,
Wijk = Yijk for k > 1 and

a∑

i=1

(Wi11 − W·11)
2 = S2

A,
a∑

i=1

b∑

j=2

W 2
ij1 = S2

B ,
a∑

i=1

b∑

j=1

n∑

k=2

W 2
ijk = S2 ,

where S2
A, S2

B , and S2 are given by (7.48). The joint density of the W ’s is, except
for a constant,

exp

[
− 1

2(σ2 + nσ2
B)

(
a∑

i=1

(wi11 − µ − αi)
2 +

a∑

i=1

b∑

j=2

w2
ij1

)
(7.50)

− 1
2σ2

a∑

i=1

b∑

j=1

n∑

k=2

w2
ijk

]
.

This shows clearly the different nature of the problem of testing that the plant
effect is small,

H : α1 = · · · = αa = 0 or H ′ :

∑
α2

i

σ2 + nσ2
B

≤ ∆0 ,

and testing the corresponding hypothesis for the batch effect: σ2
B/σ2 ≤ ∆0. The

first of these is essentially a model I problem (linear hypothesis). As before,
unbiasedness implies that the conditional rejection probability given S2 = s2 is
equal to α a.e. With S2 fixed, the problem of testing H is a linear hypothesis,
and the rejection region of the UMP invariant conditional test given S2 = s2 has
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the rejection region (7.46) with ∆0 = 0. The constant C1 is again independent of
S2, and the test is UMP among all tests that are both unbiased and invariant. A
test with the same property also exists for testing H ′. Its rejection region is

S2
A

/
(a − 1)

S2
B

/
(b − 1)a

≥ C′,

where C′ is determined from the noncentral F -distribution instead of, as before,
the (central) F -distribution.

On the other hand, the hypothesis σ2
B/σ2 ≤ ∆0 is essentially model II. It is

invariant under addition of an arbitrary constant to each of the variables Wi11,
which leaves

∑a
i=1

∑b
j=2 W 2

ij1 and
∑a

i=1

∑b
j=1

∑n
k=2 W 2

ijk as maximal invariants,
and hence reduces the structure to pure model II with one classification. The test
is then given by (7.47) as before. It is both UMP invariant and UMP unbiased.

Very general mixed models (containing general type II models as special cases)
are discussed, for example, by Harville (1978), J. Miller (1977a), and Brown
(1984), but see the note following Problem 7.36.

The different one- and two-factor models are discussed from a Bayesian point of
view, for example, in Box and Tiao (1973) and Broemeling (1985). In distinction
to the approach presented here, the Bayesian treatment also includes inferences
concerning the values of the individual random components such as the batch
means ξi of Section 7.7.

7.9 Multivariate Extensions

The univariate linear models studied so far in this chapter arise in the study of the
effects of various experimental conditions (factors) on a single characteristic such
as yield, weight, length of life, or blood pressure. This characteristic is assumed
to be normally distributed with a mean that depends on the various factors under
investigation, and a variance that is independent of these factors. We shall now
consider the multivariate analogue of this model, which is appropriate when one
is concerned with the effect of one or more factors simultaneously on several
characteristics, for example the effect of a change in the diet of dairy cows on
both fat content and quantity of milk.

A random vector (X1, . . . , Xp) has a multivariate normal density if its density
is of the form

√
|A|

(2π)
1
2 p

exp
[
− 1

2

∑ ∑
aij(xi − ξi)(xj − ξj)

]
, (7.51)

where the matrix A = (aij) is positive definite, and |A| denotes its determinant.
The means and covariance matrix of the X’s are given by

E(Xi) = ξi, E(Xi − ξi)(Xj − ξj) = σij , (σij) = A−1. (7.52)

Such a model was previously introduced in Section 3.9.2.
Consider now n i.i.d. multivariate normal vectors Xk = (Xk,1, . . . , Xk,p),

k = 1, . . . , n, with means E(Xk,i) = ξi and covariance matrix A−1. A natural ex-
tension of the one-sample problem of testing the mean ξ of a normal distribution
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with unknown variance is that of testing the hypothesis

ξ1 = ξ1,0, . . . , ξp = ξp,0 ;

without loss of generality, assume ξk,0 = 0 for all k. The joint density of
X1, . . . , Xn is

|A|n/2

(2π)np/2
exp

[
−1

2

n∑

k=1

p∑

i=1

p∑

j=1

ai,j(xk,i − ξi)(xk,j − ξj)

]
.

Writing the exponent as
p∑

i=1

p∑

j=1

ai,j

n∑

k=1

(xk,i − ξi)(xk,j − ξj) ,

it is seen that the vector of sample means (X̄1, . . . , X̄p) together with

Si,j =
n∑

k=1

(Xk,i − X̄i)(Xk,j − X̄j) , i, j = 1, . . . p (7.53)

are sufficient for the unknown mean vector ξ and unknown covariance matrix Σ =
A−1 (assumed positive definite). For the remainder of this section, assume n > p,
so that the matrix S with (i, j) component Si,j is nonsingular with probability
one (Problem 7.38).

We shall now consider the group of transformations

X ′
k = CXk (C nonsingular) .

This leaves the problem invariant, since it preserves the normality of the variables
and their means. It simply replaces the unknown covariance matrix by another
one. In the space of sufficient statistics, this group induces the transformations

X̄∗ = CX̄ and S∗ = CSCT , where S = (Si,j) . (7.54)

Under this group, the statistic

W = X̄T S−1X̄ (7.55)

is maximal invariant (Problem 7.39).
The distribution of W depends only on the maximal invariant in the parameter

space; this is found to be

ψ2 =
p∑

i=1

p∑

j=1

aijξiξj , (7.56)

and the probability density of W is given by (Problem 7.40)

pψ(w) = e−
1
2 ψ2

∞∑

k=0

( 1
2ψ2)k

k!
ck

w
1
2 p−1+k

(1 + w)
1
2 n+k

. (7.57)

This is the same as the density of the test statistic in the univariate case, given as
(7.6), with r and s there replaced by p. For any ψ0 < ψ1 the ratio pψ1(w)/pψ0(w)
is an increasing function of w, and it follows from the Neyman–Pearson Lemma
that the most powerful invariant test for testing H : ξ1 = · · · = ξp = 0 rejects
when W is too large, or equivalently when

n − p
p

W > C. (7.58)
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The quantity (n − 1)W , which for p = 1 reduces to the square of Student’s t,
is Hotelling’s T 2-statistic. The constant C is determined from the fact that for
ψ = 0 the statistic (n − p)W/p has the F -distribution with p and n − p degrees
of freedom. As in the univariate case, there also exists a UMP invariant test of
the more general hypothesis H ′ : ψ2 ≤ ψ2

0 , with rejection region W > C′.
The T 2-test was shown by Stein (1956) to be admissible against the class of

alternatives ψ2 ≥ c for any c > 0 by the method of Theorem 6.7.1. Against the
class of alternatives ψ2 ≤ c admissibility was proved by Kiefer and Schwartz
(1965) [see Problem 7.44 and Schwartz (1967, 1969)].

Most accurate equivariant confidence sets for the unknown mean vector
(ξ1, . . . , ξp) are obtained from the UMP invariant test of H : ξi = ξi0

(i = 1, . . . , p), which has acceptance region

n
∑ ∑

(X̄i − ξi0)(n − 1)Si,j(X̄j − ξj0) ≤ C ,

where Si,j are the elements of S−1. The associated confidence sets are therefore
ellipsoids

n
∑ ∑

(ξi − X̄i)(n − 1)Sij(ξj − X̄j) ≤ C (7.59)

centered at (X̄1, . . . , X̄p). These confidence sets are equivariant under the group of
transformations considered in this section (Problem 7.41), and by Lemma 6.10.1
are therefore uniformly most accurate among all equivariant confidence sets at
the specified level.

The result extends to the two-sample problem with equal covariances (Problem
7.43), but the situation becomes more complicated for multivariate generaliza-
tions of univariate linear hypotheses with r > 1. Then, the maximal invariant is
no longer univariate and a UMP invariant test no longer exists. For a discussion
of this case, see Anderson (2003), Section 8.10.

7.10 Problems

Section 7.1

Problem 7.1 Expected sums of squares. The expected values of the numerator
and denominator of the statistic W ∗ defined by (7.7) are

E

(
r∑

i=1

Y 2
i

r

)
= σ2 +

1
r

r∑

i=1

η2
i and E

[
n∑

i=s+1

Y 2
i

n − s

]
= σ2.

Problem 7.2 Noncentral χ2-distribution.11

(i) If X is distributed as N(ψ, 1), the probability density of V = X2 is P V
ψ (v) =

∑∞
k−0 Pk(ψ)f2k+1(v), where Pk(ψ) = (ψ2/2)ke−(1/2)ψ2

/k! and where f2k+1

is the probability density of a χ2-variable with 2k + 1 degrees of freedom.

11The literature on noncentral χ2, including tables, is reviewed in Tiku (1985a), Chou,
Arthur, Rosenstein, and Owen (1994), and Johnson, Kotz and Balakrishnan (1995).
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(ii) Let Y1, . . . , Yr be independently normally distributed with unit variance
and means η1, . . . , ηr. Then U =

∑
Y 2

i is distributed according to the
noncentral χ2-distribution with r degrees of freedom and noncentrality
parameter ψ2 =

∑r
i=1 η2

i , which has probability density

pU
ψ (u) =

∞∑

k=0

Pk(ψ)fr+2k(u). (7.60)

Here Pk(ψ) and fr+2k(u) have the same meaning as in (i), so that the
distribution is a mixture of χ2-distributions with Poisson weights.

[(i): This is seen from

pV
ψ (v) =

e−
1
2 (ψ2+v)(eψ

√
v + e−ψ

√
v)

2
√

2πv

by expanding the expression in parentheses into a power series, and using the
fact that Γ(2k) = 22k−1Γ(k)Γ(k + 1

2 )/
√

π.
(ii): Consider an orthogonal transformation to Z1, . . . , Zr such that Z1 =∑

ηiYi/ψ. Then the Z’s are independent normal with unit variance and means
E(Z1) = ψ and E(Zi) = 0 for i > 1.]

Problem 7.3 Noncentral F - and beta-distribution.12 Let Y1, . . . , Yr; Ys+1, . . . , Yn

be independently normally distributed with common variance σ2 and means
E(Yi) = ηi (i = 1, . . . , r); E(Yi) = 0 (i = s + 1, . . . , n).

(i) The probability density of W =
∑r

i=1 Y 2
i /

∑n
i=s+1 Y 2

i is given by (7.6). The
distribution of the constant multiple (n − s)W/r of W is the noncentral
F -distribution.

(ii) The distribution of the statistic B =
∑r

i=1 Y 2
i /(

∑r
i=1 Y 2

i +
∑n

i=s+1 Y 2
i ) is

the noncentral beta-distribution, which has probability density
∞∑

k=0

Pk(ψ)g 1
2 r+k, 1

2 (n−s)(b), (7.61)

where

gp,q(b) =
Γ(p + q)
Γ(p)Γ(q)

bp−1(1 − b)q−1, 0 ≤ b ≤ 1 (7.62)

is the probability density of the (central) beta-distribution.

Problem 7.4 (i) The noncentral χ2 and F distributions have strictly
monotone likelihood ratio.

(ii) Under the assumptions of Section 7.1, the hypothesis H ′ : ψ2 ≤ ψ2
0 (ψ0 > 0

given) remains invariant under the transformations Gi(i = 1, 2, 3) that
were used to reduce H : ψ = 0, and there exists a UMP invariant test
with rejection region W > C′. The constant C′ is determined by Pψ0{W >
C′} = α, with the density of W given by (7.6).

12For literature on noncentral F , see Tiku (1985b) and Johnson, Kotz and
Balakrishnan (1995).
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[(i): Let f(z) =
∑∞

k=0 bkzk/
∑∞

k=0 akzk where the constants ak, bk are > 0 and∑
akzk and

∑
bkzk converge for all z > 0, and suppose that bk/ak < bk+1/ak+1

for all k. Then

f ′(z) =

∑ ∑
k<n

(n − k)(akbn − anbk)zk+n−1

( ∞∑
k=0

akzk

)2

is positive, since (n − k)(akbn − anbk) > 0 for k < n, and hence f is increasing.]
Note. The noncentral χ2 and F -distributions are in fact STP∞ [see for example
Marshall and Olkin (1979) and Brown, Johnstone and MacGibbon (1981)], and
there thus exists a test of H : ψ = ψ0 against ψ = ψ0 which is UMP among all
tests that are both invariant and unbiased.

Problem 7.5 Best average power.

(i) Consider the general linear hypothesis H in the canonical form given by
(7.2) and (7.3) of Section 7.1, and for any ηr+1, . . . , ηs, σ, and ρ let S =
S(ηr+1, . . . , ηs, σ : ρ) denote the sphere {(η1, . . . , ηr) :

∑r
i=1 η2

i /σ2 = ρ2}.
If βφ(η1, . . . , ηr, σ) denotes the power of a test φ of H, then the test (7.9)
maximizes the average power

∫
S

βφ(η1, . . . , ηr, σ) dA∫
S

dA

for every ηr+1, . . . , ηs, σ, and ρ among all unbiased (or similar) tests. Here
dA denotes the differential of area on the surface of the sphere.

(ii) The result (i) provides an alternative proof of the fact that the test (7.9) is
UMP among all tests whose power function depends only on

∑r
i=1 η2

i /σ2.

[(i): if U =
∑r

i=1 Y 2
i , V =

∑n
i=s+1 Y 2

i , unbiasedness (or similarity) implies that
the conditional probability of rejection given Yr+1, . . . , Ys, and U + V equals α
a.e. Hence for any given ηr+1, . . . , ηs, σ, and ρ, the average power is maximized
by rejecting when the ratio of the average density to the density under H is larger
than a suitable constant C(yr+1, . . . , ys, u + v), and hence when

g(y1, . . . , yr; η1, . . . , ηr) =

∫

S

exp

(
r∑

i=1

ηiyi

σ2

)
dA > C(yr+1, . . . , ys, u + v).

As will be indicated below, the function g depends on y1, . . . , yr only through
u and is an increasing function of u. Since under the hypothesis U/(U + V )
is independent of Yr+1, . . . , Ys and U + V , it follows that the test is given by
(7.9). The exponent in the integral defining g can be written as

∑r
i=1 ηiyi/σ2 =

(ρ
√

u cos β)/σ, where β is the angle (0 ≤ β ≤ π) between (η1, . . . , ηr) and
(y1, . . . , yr). Because of the symmetry of the sphere, this is unchanged if β is
replaced by the angle γ between (η1, . . . , ηr) and an arbitrary fixed vector. This
shows that g depends on the y’s only through u: for fixed η1, . . . , ηr, σ denote it
by h(u). Let S′ be the subset of S in which 0 ≤ γ ≤ π/2. Then

h(u) =

∫

S′

[
exp

(
ρ
√

u cos γ
σ

)
+ exp

(
−ρ

√
u cos γ
σ

)]
dA,

which proves the desired result.]
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Problem 7.6 Use Theorem 6.7.1 to show that the F -test (7.7) is α-admissible
against Ω′ : ψ ≥ ψ1 for any ψ1 > 0.

Problem 7.7 Given any ψ2 > 0, apply Theorem 6.7.2 and Lemma 6.7.1 to
obtain the F -test (7.7) as a Bayes test against a set Ω′ of alternatives contained
in the set 0 < ψ ≤ ψ2.

Section 7.2

Problem 7.8 Under the assumptions of Section 7.1 suppose that the means ξi

are given by

ξi =
s∑

j=1

aijβj ,

where the constants aij are known and the matrix A = (aij) has full rank, and
where the βj are unknown parameters. Let θ =

∑s
j=1 ejβj be a given linear

combination of the βj .

(i) If β̂j denotes the values of the βj minimizing
∑

(Xi − ξi)
2 and if θ̂ =∑s

j=1 ej β̂j =
∑n

j=1 diXi, the rejection region of the hypothesis H : θ = θ0

is

|θ̂ − θ0|/
√∑

d2
i√

∑ (
Xi − ξ̂i

)2
/(n − s)

> C0 , (7.63)

where the left-hand side under H has the distribution of the absolute value
of Student’s t with n − s degrees of freedom.

(ii) The associated confidence intervals for θ are

θ̂ − k

√√√√
∑ (

Xi − ξ̂i

)2

n − s
≤ θ ≤ θ̂ + k

√√√√
∑ (

Xi − ξ̂i

)2

n − s
(7.64)

with k = C0

√∑
d2

i . These intervals are uniformly most accurate
equivariant under a suitable group of transformations.

[(i): Consider first the hypothesis θ = 0, and suppose without loss of generality
that θ = β1; the general case can be reduced to this by making a linear trans-
formation in the space of the β’s. If a1, . . . , as denote the column vectors of the

matrix A which by assumption span ΠΩ, then ξ = β1a1+ · · ·+βsas, and since ξ̂ is

in ΠΩ also ξ̂ = β̂1a1 + · · ·+ β̂sas. The space Πω defined by the hypothesis β1 = 0
is spanned by the vectors a2, . . . , as and also by the row vectors c2, . . . , cs of the
matrix C of (7.1), while c1 is orthogonal to Πω. By (7.1), the vector X is given

by X =
∑n

i=1 Yici, and its projection ξ̂ on ΠΩ therefore satisfies ξ̂ =
∑s

i=1 Yici.

Equating the two expressions for ξ̂ and taking the inner product of both sides of

this equation with ci gives Y1 = β̂1
∑n

i=1 ai1ci1, since the c’s are an orthogonal set

of unit vectors. This shows that Y1 is proportional to β̂1 and, since the variance of
Y1 is the same as that of the X’s, that |Y1| = |β̂1|/

√∑
d2

i . The result for testing
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β1 = 0 now follows from (7.12) and (7.13). The test for β1 = β0
1 is obtained by

making the transformation X∗
i = Xi − aiβ

0
1 .

(ii): The invariance properties of the intervals (7.64) can again be discussed with-
out loss of generality by letting θ be the parameter β1. In the canonical form of
Section 7.1, one then has E(Y1) = η1 = λβ1 with |λ| = 1/

√∑
d2
1 while η2, . . . , ηs

do not involve β1. The hypothesis β1 = β0
1 is therefore equivalent to η1 = η0

1 , with
η0
1 = λβ0

1 . This is invariant (a) under addition of arbitrary constants to Y2 . . . , Ys;
(b) under the transformations Y ∗

1 = −(Y1 − η0
1)+ η0

1 ; (c) under the scale changes
Y ∗

i = cYi (i = 2, . . . , n), Y ∗
1 − η0

1
∗ = c(Y1 − η0

1). The confidence intervals for
θ = β1 are then uniformly most accurate equivariant under the group obtained
from (a), (b), and (c) by varying η0

1 .]

Problem 7.9 Let Xij (j = 1, . . . , mi) and Yik (k = 1, . . . , ni) be independently
normally distributed with common variance σ2 and means E(Xij) = ξi and
E(Yij) = ξi + ∆. Then the UMP invariant test of H : ∆ = 0 is given by (7.63)
with θ = ∆, θ0 = 0 and

θ̂ =

∑
i

mini
Ni

(Yi· − Xi·)
∑
i

mini
Ni

, ξ̂i =

mi∑
j=1

Xij +
ni∑

k=1
(Yik − θ̂)

Ni
,

where Ni = mi + ni.

Problem 7.10 Let X1, . . . , Xn be independently normally distributed with
known variance σ2

0 and means E(Xi) = ξi, and consider any linear hypothesis
with s ≤ n (instead of s < n which is required when the variance is unknown).
This remains invariant under a subgroup of that employed when the variance was
unknown, and the UMP invariant test has rejection region

∑ (
Xi − ˆ̂ξi

)2

−
(
Xi − ξ̂i

)2
=

(
ξ̂i − ˆ̂ξi

)2

> Cσ2
0 (7.65)

with C determined by
∫ ∞

C

χ2
r(y) dy = α. (7.66)

Section 7.3

Problem 7.11 If the variables Xij (j = 1, . . . , ni; i = 1, . . . , s) are independently
distributed as N(µi, σ

2), then

E
[∑

ni (Xi· − X··)
2
]

= (s − 1)σ2 +
∑

ni (µi − µ·)
2 ,

E
[∑ ∑

(Xij − Xi·)
2
]

= (n − s)σ2.

Problem 7.12 Let Z1, . . . , Zs be independently distributed as N(ζi, a
2
i ), i =

1, . . . , s, where the ai are known constants.
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(i) With respect to a suitable group of linear transformations there exists a
UMP invariant test of H : ζ1 = · · · = ζs given by the rejection region

∑ 1
a2

i

(
Zi −

∑
Zj/a2

j∑
1/a2

j

)2

=
∑ (

Zi

ai

)2

−
(∑

Zj/a2
j

)2

∑ (
1/a2

j

) > C (7.67)

(ii) The power of this test is the integral from C to ∞ of the noncentral
χ2-density with s − 1 degrees of freedom and noncentrality parameter λ2

obtained by substituting ζi for Zi in the left-hand side of (7.67).

Section 7.5

Problem 7.13 The linear-hypothesis test of the hypothesis of no interaction in
a two-way layout with m observations per cell is given by (7.28).

Problem 7.14 In the two-way layout of Section 7.5 with a = b = 2, denote the
first three terms in the partition of

∑ ∑ ∑
(Xijk − Xij·)

2 by S2
A, S2

B , and S2
AB ,

corresponding to the A, B, and AB effects (i.e. the α’s, β’s, and γ’s), and denote
by HA, HB , and HAB the hypotheses of these effects being zero. Define a new
two-level factor B′ which is at level 1 when A and B are both at level 1 or both
at level 2, and which is at level 2 when A and B are at different levels. Then

HB′ = HAB , SB′ = SAB , HAB′ = HB , SAB′ = SB ,

so that the B-effect has become an interaction, and the AB-interaction the effect
of the factor B′. [Shaffer (1977b).]

Problem 7.15 Let Xλ denote a random variable distributed as noncentral
χ2 with f degrees of freedom and noncentrality parameter λ2. Then Xλ′ is
stochastically larger than Xλ if λ < λ′.
[It is enough to show that if Y is distributed as N(0, 1), then (Y + λ′)2 is
stochastically larger than (Y + λ)2. The equivalent fact that for any z > 0,

P{|Y + λ′| ≤ z} ≤ P{|Y + λ| ≤ z},

is an immediate consequence of the shape of the normal density function. An
alternative proof is obtained by combining Problem 7.4 with Lemma 3.4.2.]

Problem 7.16 Let Xijk (i = 1, . . . , a; j = 1, . . . , b; k = 1, . . . , m) be
independently normally distributed with common variance σ2 and mean

E(Xijk) = µ + αi + βj + γk

(∑
αi =

∑
βj =

∑
γk = 0

)
.

Determine the linear hypothesis test for testing H : αi = . . . αa = 0.

Problem 7.17 In the three-factor situation of the preceding problem, suppose
that a = b = m. The hypothesis H can then be tested on the basis of m2

observations as follows. At each pair of levels (i, j) of the first two factors one
observation is taken, to which we refer as being in the ith row and the jth
column. If the levels of the third factor are chosen in such a way that each
of them occurs once and only once in each row and column, the experimental
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design is a Latin square. The m2 observations are denoted by Xij(k), where the
third subscript indicates the level of the third factor when the first two are at
levels i and j. It is assumed that E(Xij(k)) = ξij(k) = µ + αi + βj + γk, with∑

αi =
∑

βj =
∑

γk = 0.

(i) The parameters are determined from the ξ’s through the equations

ξi·(·) = µ + αi, ξ·j(·) = µ + βj , ξ··(k) = µ + γk, ξ··(·) = µ.

(Summation over j with i held fixed automatically causes summation also
over k.)

(ii) The least-squares estimates of the parameters may be obtained from the
identity

∑

i

∑

j

[
xij(k) − ξij(k)

]2

= m
∑ [

xi·(·) − x··(·) − αi

]2
+ m

∑ [
x·j(·) − x··(·) − βj

]2

+m
∑ [

x··(k) − x··(·) − γk

]2
+ m2 [

x··(·) − µ
]2

+
∑

i

∑

k

[
xij(k) − xi·(·) − x·j(·) − x··(k) + 2x··(·)

]2
.

(iii) For testing the hypothesis H : α1 = · · · = αm = 0, the test statistic W ∗ of
(7.15) is

m
∑ [

Xi·(·) − X··(·)
]2

∑ ∑ [
Xij(k) − Xi·(·) − X·j(·) − X··(k) + 2X··(·)

]2
/(m − 2)

.

The degrees of freedom are m − 1 for the numerator and (m − 1)(m − 2)
for the denominator, and the noncentrality parameter is ψ2 = m

∑
α2

i /σ2.

Section 7.6

Problem 7.18 In a regression situation, suppose that the observed values Xj

and Yj of the independent and dependent variable differ from certain true values
X ′

j and Y ′
j by errors Uj , Vj which are independently normally distributed with

zero means and variances σ2
U and σ2

V . The true values are assumed to satisfy a
linear relation: Y ′

j = α+βX ′
j . However, the variables which are being controlled,

and which are therefore constants, are the Xj rather than the X ′
j . Writing xj for

Xj , we have xj = X ′
j + Uj , Yj = Y ′

j + Vj , and hence Yj = α + βxj + Wj , where
Wj = Vj − βUj . The results of Section 7.6 can now be applied to test that β or
α + βx0 has a specified value.

Problem 7.19 Let X1, . . . , Xm; Y1, . . . , Yn be independently normally dis-
tributed with common variance σ2 and means E(Xi) = α + β(ui − ū), E(Yj) =
γ + δ(vj − v̄), where the u’s and v’s are known numbers. Determine the UMP
invariant tests of the linear hypotheses H : β = δ and H : α = γ, β = δ.

Problem 7.20 Let X1, . . . , Xn be independently normally distributed with com-
mon variance σ2 and means ξi = α + βti + γt2i , where the ti are known. If the



7.10. Problems 313

coefficient vectors (tk
1 , . . . , tk

n), k = 0, 1, 2, are linearly independent, the parame-
ter space ΠΩ has dimension s = 3, and the least-squares estimates α̂, β̂, γ̂ are the
unique solutions of the system of equations

α
∑

tk
i + β

∑
tk+1
i + γ

∑
tk+2
i =

∑
tk
i Xi (k = 0, 1, 2).

The solutions are linear functions of the X’s, and if γ̂ =
∑

ciXi, the hypothesis
γ = 0 is rejected when

|γ̂|/
√∑

c2
i√

∑ (
Xi − α̂ − β̂ti − γ̂t2i

)2
/(n − 3)

> C0.

Section 7.7

Problem 7.21 (i) The test (7.41) of H : ∆ ≤ ∆0 is UMP unbiased.

(ii) Determine the UMP unbiased test of H : ∆ = ∆0 and the associated
uniformly most accurate unbiased confidence sets for ∆.

Problem 7.22 In the model (7.39), the correlation coefficient ρ between two
observations Xij , Xik belonging to the same class, the so-called intraclass
correlation coefficient, is given by ρ = σ2

A/(σ2
A + σ2).

Section 7.8

Problem 7.23 The tests (7.46) and (7.47) are UMP unbiased.

Problem 7.24 If Xij is given by (7.39) but the number ni of observations per
batch is not constant, obtain a canonical form corresponding to (7.40) by letting
Yi1 =

√
niXi·. Note that the set of sufficient statistics has more components than

when ni is constant.

Problem 7.25 The general nested classification with a constant number of
observations per cell, under model II, has the structure

Xijk··· = µ + Ai + Bij + Cijk + · · · + Uijk···,

i = 1, . . . , a; j = 1, . . . , b; k = 1, . . . , c; . . . .

(i) This can be reduced to a canonical form generalizing (7.45).

(ii) There exist UMP unbiased tests of the hypotheses

HA :
σ2

A
cd...σ2

B+d...σ2
C+···+σ2 ≤ ∆0,

HB :
σ2

B
d...σ2

C+···+σ2 ≤ ∆0.

Problem 7.26 Consider the model II analogue of the two-way layout of Section
7.5, according to which

Xijk = µ + Ai + Bj + Cij + Eijk (7.68)

(i = 1, . . . , a; j = 1, . . . , b; k = 1, . . . , n),
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where the Ai, Bj , Cij , and Eijk are independently normally distributed with
mean zero and with variances σ2

A, σ2
B , σ2

C and σ2 respectively. Determine tests
which are UMP among all tests that are invariant (under a suitable group)
and unbiased of the hypotheses that the following ratios do not exceed a given
constant (which may be zero):

(i) σ2
C/σ2;

(ii) σ2
A/(nσ2

C + σ2);

(iii) σ2
B/(nσ2

C + σ2).

Note that the test of (i) requires n > 1, but those of (ii) and (iii) do not.
[Let S2

A = nb
∑

(Xi·· − X···)
2, S2

B = na
∑

(X·j· − X···)
2, S2

C = n
∑ ∑

(Xij· −
Xi·· − X·j· + X···)

2, S2 =
∑ ∑ ∑

(Xijk − Xij·)
2, and make a transformation

to new variables Zijk (independent, normal, and with mean zero except when
i = j = k = 1) such that

S2
A =

a∑

i=2

Z2
i11, S2

B =
b∑

j=2

Z2
1j1, S2

C =
a∑

i=2

b∑

j=2

Z2
ij1,

S2 =
a∑

i=1

b∑

j=1

n∑

k=2

Z2
ijk.]

Problem 7.27 Consider the mixed model obtained from (7.68) by replacing the
random variables Ai by unknown constants αi satisfying

∑
αi = 0. With (ii)

replaced by (ii′)
∑

α2
i /(nσ2

C +σ2), there again exist tests which are UMP among
an tests that are invariant and unbiased, and in cases (i) and (iii) these coincide
with the corresponding tests of Problem 7.26.

Problem 7.28 Consider the following generalization of the univariate linear
model of Section 7.1. The variables Xi (i = 1, . . . , n) are given by Xi = ξi + Ui,
where (U1, . . . , Un) have a joint density which is spherical, that is, a function of∑n

i=1 u2
i , say

f(U1, . . . , Un) = q
(∑

U2
i

)
.

The parameter spaces ΠΩ and Πω and the hypothesis H are as in Section 7.1.

(i) The orthogonal transformation (7.1) reduces (X1, . . . , Xn) to canonical
variables (Y1, . . . , Yn) with Yi = ηi + Vi, where ηi = 0 for i = s + 1, . . . , n,
H reduces to (7.3), and the V ’s have joint density q(v1, . . . , vn).

(ii) In the canonical form of (i), the problem is invariant under the groups G1,
G2, and G3 of Section 7.1, and the statistic W ∗ given by (7.7) is maximal
invariant.

Problem 7.29 Under the assumptions of the preceding problem, the null dis-
tribution of W ∗ is independent of q and hence the same as in the normal case,
namely, F with r and n−s degrees of freedom. [See Problem 5.11]. Note. The anal-
ogous multivariate problem is treated by Kariya (1981); also see Kariya (1985)
and Kariya and Sinha (1985). For a review of work on spherically and elliptically
symmetric distributions, see Chmielewski (1981).
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Problem 7.30 Consider the additive random-effects model

Xijk = µ + Ai + Bj + Uijk (i = 1, . . . , a; j = 1, . . . , b; k = 1, . . . , n),

where the A’s, B’s, and U ’s are independent normal with zero means and
variances σ2

A, σ2
B , and σ2’ respectively. Determine

(i) the joint density of the X’s,

(ii) the UMP unbiased test of H : σ2
B/σ2 ≤ δ.

Problem 7.31 For the mixed model

Xij = µ + αi + Bj + Uij (i = 1, . . . , a; j = 1, . . . , n),

where the B’s and U ’s are as in Problem 7.30 and the α’s are constants adding to
zero, determine (with respect to a suitable group leaving the problem invariant)

(i) a UMP invariant test of H : α1 = · · · = αa;

(ii) a UMP invariant test of H : ξ1 = · · · = ξa = 0 (ξi = µ + αi);

(iii) a test of H : σ2
B/σ2 ≤ δ which is both UMP invariant and UMP unbiased.

Problem 7.32 Let (X1j , . . . , Xpj), j = 1, . . . , n, be a sample from a p-variate
normal distribution with mean (ξ1, . . . , ξp) and covariance matrix Σ = (σij),
where σ2

ij = σ2 when j = i, and σ2
ij = ρσ2 when j += i. Show that the covariance

matrix is positive definite if and only if ρ > −1/(p − 1).
[For fixed σ and ρ < 0, the quadratic form (1/σ2)

∑ ∑
σijyiyj =

∑
y2

i +
ρ

∑ ∑
yiyj takes on its minimum value over

∑
y2

i = 1 when all the y’s are
equal.]

Problem 7.33 Under the assumptions of the preceding problem, determine the
UMP invariant test (with respect to a suitable G) of H : ξi = . . . = ξp.
[Show that this model agrees with that of Problem 7.31 if ρ = σ2

b/(σ2
b +σ2), except

that instead of being positive, ρ now only needs to satisfy ρ > −1/(p − 1).]

Problem 7.34 Permitting interactions in the model of Problem 7.30 leads to
the model

Xijk = µ + Ai + Bj + Cij + Uijk (i = 1, . . . , a; j = 1, . . . , b, k = 1, . . . , n).

where the A’s, B’s, C’s, and U ’s are independent normal with mean zero and
variances σ2

A, σ2
B , σ2

C and σ2.

(i) Give an example of a situation in which such a model might be appropriate.

(ii) Reduce the model to a convenient canonical form along the lines of Section
7.4.

(iii) Determine UMP unbiased tests of (a) H1 : σ2
B = 0; (b) H2 : σ2

C = 0.

Problem 7.35 Formal analogy with the model of Problem 7.34 suggests the
mixed model

Xijk = µ + αi + Bj + Cij + Uijk
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with the B’s, C’s, and U ’s as in Problem 7.34. Reduce this model to a canonical
form involving X··· and the sums of squares

∑
(Xi··−X···−αi)

2

nσ2
C+σ2 ,

∑ ∑
(X·j·−X···)2

anσ2
B+nσ2

C+σ2 ,

∑ ∑
(Xij·−Xi··−X·j·+X···)2

nσ2
C+σ2 ,

∑ ∑ ∑
(Xijk−Xi··−X·j·+X···)2

σ2 .

Problem 7.36 Among all tests that are both unbiased and invariant under
suitable groups under the assumptions of Problem 7.35, there exist UMP tests of

(i) H1 : α1 = · · · = αa = 0;

(ii) H2 : σ2
B/(nσ2

C + σ2) ≤ C;

(iii) H3 : σ2
C/σ2 ≤ C.

Note. The independence assumptions of Problems 7.35 and 7.36 often are not
realistic. For alternative models, derived from more basic assumptions, see Scheffé
(1956, 1959). Relations between the two types of models are discussed in Hocking
(1973), Cohen and Miller (1976), and Stuart and Ord (1991).

Problem 7.37 Let (X1j1, . . . , X1jn; X2j1, . . . , X2jn; . . . ; Xaj1, . . . , Xajn), j =
1, . . . , b, be a sample from an an-variate normal distribution. Let E(Xijk) =
ξi, and denote by

∑
ii′ the matrix of covariances of (Xij1, . . . , Xijn) with

(Xi′j1, . . . , Xi′jn). Suppose that for all i, the diagonal elements of
∑

ii are = τ2

and the off-diagonal elements are = ρ1τ
2, and that for i += i′ all n2 elements of∑

ii′ are = ρ2τ
2.

(i) Find necessary and sufficient conditions on ρ1 and ρ2 for the overall abn×
abn covariance matrix to be positive definite.

(ii) Show that this model agrees with that of Problem 7.35 for suitable values
of ρ1 and ρ2.

Section 7.9

Problem 7.38 If n ≤ p, the matrix S with (i, j) component Si,j defined in
(7.53) is singular. If n > p, it is nonsingular with probability 1. If n ≤ p, the
test φ ≡ α is the only test that is invariant under the group of nonsingular linear
transformations.

Problem 7.39 Show that the statistic W given in (7.55) is maximal invariant.
[Hint: If (X̄, S) and (Ȳ , T ) are such that

X̄T S−1X̄ = Ȳ T T−1Ȳ ,

then a transformation C that transforms one to the other is given by C =
Y (XT S−1X)−1XT S−1.]

Problem 7.40 Verify that the density of W is given by (7.55).

Problem 7.41 The confidence ellipsoids (7.59) for (ξ1, . . . , ξp) are equivariant
under the group of Section 7.9.
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Problem 7.42 For testing a multivariate mean vector ξ is zero in the case where
Σ is known, derive a UMPI test.

Problem 7.43 Extend the one-sample problem to the two-sample problem for
testing whether two multivariate normal distributions with common unknown
covariance matrix have the same mean vectors.

Problem 7.44 Bayes character and admissibility of Hotelling’s T 2.

(i) Let (Xα1, . . . , Xαp), α = 1, . . . , n, be a sample from a p-variate normal
distribution with unknown mean ξ = (ξ1, . . . , ξp) and covariance matrix
Σ = A−1, and with p ≤ n − 1. Then the one-sample T 2-test of H : ξ = 0
against K : ξ += 0 is a Bayes test with respect to prior distributions Λ0 and
Λ1 which generalize those of Example 6.7.13 (continued).

(ii) The test of part (i) is admissible for testing H against the alternatives
ψ2 ≤ c for any c > 0.

[If ω is the subset of points (0, Σ) of ΩH satisfying Σ−1 = A + η′η for some fixed
positive definite p × p matrix A and arbitrary η = (η1, . . . , ηp), and Ω′

A,b is the
subset of points (ξ, Σ) of ΩK satisfying Σ−1 = A + η′η, ξ′ = bΣη′ for the same
A and some fixed b > 0, let Λ0 and Λ1 have densities defined over ω and ΩA,b,
respectively by

λ0(η) = C0|A + η′η|−n/2

and

λ1(η) = C1|A + η′η|−n/2 exp

{
nb2

2

[
η(A + η′η)−1η′]

}
.

(Kiefer and Schwartz, 1965).]

Problem 7.45 Suppose (X1, . . . , Xp) have the multivariate normal density
(7.51), so that E(Xi) = ξi and A−1 is the known positive definite covariance ma-
trix. The vector of means ξ = (ξ1, . . . , ξp) is known to lie in a given s-dimensional
linear space ΠΩ with s ≤ p; the hypothesis to be tested is that ξ lies in a given
(s − r)-dimensional linear subspace Πω of ΠΩ(r ≤ s).
(i) Determine the UMPI test under a suitable group of transformations as
explicitly as possible. Find an expression for the power function.
(ii) Specialize to the case of a simple null hypothesis.

7.11 Notes

The general linear model in the parametric form (7.18) was formulated at the
beginning of the 19th century by Legendre and Gauss, who were concerned with
estimating the unknown parameters. [For an account of its history, see Seal
(1967).] The canonical form (7.2) of the model is due to Kolodziejczyk (1935).
The analysis of variance, including the concept of interaction, was developed by
Fisher in the 1920s and 1930s, and a systematic account is provided by Scheffé
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(1959) in a book that includes a careful treatment of alternative models and of
robustness questions.

Different approaches to analysis of variance than that given here are considered
in Speed (1987) and the discussion following this paper, and in Diaconis (1988,
Section 8C). Rank tests are discussed in Marden and Muyot (1995). Admissibility
results for testing homogeneity of variances in a normal balanced one-way layout
are given in Cohen and Marden (1989). Linear models have been generalized
in many directions. Loglinear models provide extensions to important discrete
data. [Both are reviewed in Christensen (2000).] These two classes of models are
subsumed in generalized linear models discussed for example in McCullagh and
Nelder (1983), Dobson (1990) and Agresti (2002), and they in turn are a subset
of additive linear models which are discussed in Hastie and Tibshirani (1990,
1997). Modern treatments of regression analysis can be found, for example, in
Weisberg (1985), Atkinson and Riani (2000) and Ruppert, Wand and Carroll
(2003). UMPI tests can be constructed for tests of lack of fit in some regression
models; see Christensen (1989) and Miller, Neill and Sherfey (1998).

Hsu (1941) shows that the test (7.7) is UMP among all tests whose power
function depends only on the noncentrality parameter. Hsu (1945) obtains a
result on best average power for the T 2-test analogous to that of Chapter 7,
Problem 7.5.

Tests of multivariate linear hypotheses and the associated confidence sets have
their origin in the work of Hotelling (1931). More details on these procedures
and discussion of other multivariate techniques can be found in the comprehensive
books by Anderson (2003) and Seber (1984). A more geometric approach stressing
invariance is provided by Eaton (1983).

For some recent work on using rank tests in multivariate problems, see Choi
and Marden (1997), Hettmansperger, Möttönen and Oja (1997), and Akritas,
Arnold and Brunner (1997).



8
The Minimax Principle

8.1 Tests with Guaranteed Power

The criteria discussed so far, unbiasedness and invariance, suffer from the dis-
advantage of being applicable, or leading to optimum solutions, only in rather
restricted classes of problems. We shall therefore turn now to an alternative
approach, which potentially is of much wider applicability. Unfortunately, its
application to specific problems is in general not easy, unless there exists a UMP
invariant test.

One of the important considerations in planning an experiment is the number
of observations required to insure that the resulting statistical procedure will
have the desired precision or sensitivity. For problems of hypothesis testing this
means that the probabilities of the two kinds of errors should not exceed certain
preassigned bounds, say α and 1−β, so that the tests must satisfy the conditions

Eθϕ(X) ≤ α for θ ∈ ΩH ,
(8.1)

Eθϕ(X) ≥ β for θ ∈ ΩK .

If the power function Eθϕ(X) is continuous and if α < β, (8.1) cannot hold when
the sets ΩH and ΩK are contiguous. This mathematical difficulty corresponds in
part to the fact that the division of the parameter values θ into the classes ΩH

and ΩK for which the two different decisions are appropriate is frequently not
sharp. Between the values for which one or the other of the decisions is clearly
correct there may lie others for which the relative advantages and disadvantages
of acceptance and rejection are approximately in balance. Accordingly we shall
assume that Ω is partitioned into three sets

Ω = ΩH + ΩI + ΩK ,
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of which ΩI designates the indifference zone, and ΩK the class of parameter values
differing so widely from those postulated by the hypothesis that false acceptance
of H is a serious error, which should occur with probability at most 1 − β.

To see how the sample size is determined in this situation, suppose that
X1, X2, . . . constitute the sequence of available random variables, and for a
moment let n be fixed and let X = (X1, . . . , Xn). In the usual applications (for a
more precise statement, see Problem 8.1), there exists a test ϕn which maximizes

inf
Ωk

Eθϕ(X) (8.2)

among all level-α tests based on X. Let βn = infΩK Eθϕn(X), and suppose that
for sufficiently large n there exists a test satisfying (8.1). [Conditions under which
this is the case are given by Berger (1951a) and Kraft (1955).] The desired sample
size, which is the smallest value of n for which βn ≥ β, is then obtained by trial
and error. This requires the ability of determining for each fixed n the test that
maximizes (8.2) subject to

Eθϕ(X) ≤ α for θ ∈ ΩH . (8.3)

A method for determining a test with this maximin property (of maximizing
the minimum power over ΩK) is obtained by generalizing Theorem 3.8.1. It will be
convenient in this discussion to make a change of notation, and to denote by ω and
ω′ the subsets of Ω previously denoted by ΩH and ΩK . Let P = {Pθ, θ ∈ ω ∪ω′}
be a family of probability distributions over a sample space (X ,A) with densities
pθ = dPθ/dµ with respect to a σ-finite measure µ, and suppose that the densities
pθ(x) considered as functions of the two variables (x, θ) are measurable (A× B)
and (A × B′), where B and B′ are given σ-fields over ω and ω′. Under these
assumptions, the following theorem gives conditions under which a solution of a
suitable Bayes problem provides a test with the required properties.

Theorem 8.1.1 For any distributions Λ and Λ′ over B and B′, let ϕΛ,Λ′ be the
most powerful test for testing

h(x) =

∫

ω

pθ(x) dΛ(θ)

at level α against

h′(x) =

∫

ω′
pθ(x) dΛ′(θ)

and let βΛ,Λ′ , be its power against the alternative h′. If there exist Λ and Λ′ such
that

sup
ω

EθϕΛ,Λ′(X) ≤ α,

(8.4)
inf
ω′

EθϕΛ,Λ′(X) = βΛ,Λ′ ,

then:

(i) ϕΛ,Λ′ maximizes infω′ Eθϕ(X) among all level-α tests of the hypothesis
H : θ ∈ ω and is the unique test with this property if it is the unique most
powerful level-α test for testing h against h′.
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(ii) The pair of distributions Λ, Λ′ is least favorable in the sense that for
any other pair ν, ν′ we have

βΛ,Λ′ ≤ βν,ν′ .

Proof. (i): If ϕ∗ is any other level-α test of H, it is also of level α for testing
the simple hypothesis that the density of X is h, and the power of ϕ∗ against h′

therefore cannot exceed βΛ,Λ′ . It follows that

inf
ω′

Eθϕ∗(X) ≤
∫

ω′
Eθϕ∗(X) dΛ′(θ) ≤ βΛ,Λ′ = inf

ω′
EθϕΛΛ′(X),

and the second inequality is strict if ϕΛΛ′ is unique.
(ii): Let ν, ν′ be any other distributions over (ω,B) and (ω′,B′), and let

g(x) =

∫

ω

pθ(x)dν(θ), g′(x) =

∫

ω′
pθ(x) dν′(θ).

Since both ϕΛ,Λ′ and ϕν,ν′ are level-α tests of the hypothesis that g(x) is the
density of X, it follows that

βν,ν′ ≥
∫

ϕΛ,Λ′(x)g′(x) dµ(x) ≥ inf
ω′

EθϕΛ,Λ′(X) = βΛ,Λ′ .

Corollary 8.1.1 Let Λ, Λ′ be two probability distributions and C a constant such
that

ϕΛ,Λ′(x) =






1 if
∫

ω′ pθ(x) dΛ′(θ) > C
∫

ω
pθ(x) dΛ(θ)

γ if
∫

ω′ pθ(x) dΛ′(θ) = C
∫

ω
pθ(x) dΛ(θ)

0 if
∫

ω′ pθ(x) dΛ′(θ) < C
∫

ω
pθ(x) dΛ(θ)

(8.5)

is a size-α test for testing that the density of X is
∫

ω
pθ(x) dΛ(θ) and such that

Λ(ω0) = Λ′(ω′
0) = 1, (8.6)

where

ω0 =

{
θ : θ ∈ ω and EθϕΛ,Λ′(X) = sup

θ′∈ω
Eθ′ϕΛ,Λ′(X)

}

ω′
0 =

{
θ : θ ∈ ω′ and EθϕΛ,Λ′(X) = inf

θ′∈ω′
Eθ′ϕΛ,Λ′(X)

}
.

Then the conclusions of Theorem 8.1.1 hold.

Proof. If h, h′, and βΛ,Λ′ are defined as in Theorem 8.1.1, the assumptions
imply that ϕΛ,Λ′ is a most powerful level-α test for testing h against h′, that

sup
ω

EθϕΛ,Λ′(X) =

∫

ω

EθϕΛ,Λ′(X) dΛ(θ) = α,

and that

inf
ω′

EθϕΛ,Λ′(X) =

∫

ω′
EθϕΛ,Λ′(X) dΛ′(θ) = βΛ,Λ′ .

The condition (8.4) is thus satisfied and Theorem 8.1.1 applies.
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Suppose that the sets ΩH , ΩI , and ΩK are defined in terms of a nonnegative
function d, which is a measure of the distance of θ from H, by

ΩH = {θ : d(θ) = 0}, ΩI = {θ : 0 < d(θ) < ∆},
ΩK = {0 : d(θ) ≥ ∆}.

Suppose also that the power function of any test is continuous in θ. In the limit
as ∆ = 0, there is no indifference zone. Then ΩK becomes the set {θ : d(θ) > 0},
and the infimum of β(θ) over ΩK is ≤ α for any level-α test. This infimum is
therefore maximized by any test satisfying β(θ) ≥ α for all θ ∈ ΩK , that is,
by any unbiased test, so that unbiasedness is seen to be a limiting form of the
maximin criterion. A more useful limiting form, since it will typically lead to a
unique test, is given by the following definition. A test ϕ0 is said to maximize the
minimum power locally1 if, given any other test ϕ, there exists ∆0 such that

inf
ω∆

βϕ0(θ) ≥ inf
ω∆

βϕ(θ) for all 0 < ∆ < ∆0, (8.7)

where ω∆ is the set of θ’s for which d(θ) ≥ ∆.

8.2 Examples

In Chapter 3 it was shown for a family of probability densities depending on a real
parameter θ that a UMP test exists for testing H : θ ≤ θ0 against θ > θ0 provided
for all θ < θ′ the ratio pθ′(x)/pθ(x) is a monotone function of some real-valued
statistic. This assumption, although satisfied for a one-parameter exponential
family, is quite restrictive, and a UMP test of H will in fact exist only rarely. A
more general approach is furnished by the formulation of the preceding section. If
the indifference zone is the set of θ’s with θ0 < θ < θ1, the problem becomes that
of maximizing the minimum power over the class of alternatives ω′ : θ ≥ θ1. Under
appropriate assumptions, one would expect the least favorable distributions Λ and
Λ′ of Theorem 8.1.1 to assign probability 1 to the points θ0 and θ1, and hence
the maximin test to be given by the rejection region pθ1(x)/pθ0(x) > C. The
following lemma gives sufficient conditions for this to be the case.

Lemma 8.2.1 Let X1, . . . , Xn be identically and independently distributed with
probability density fθ(x), where θ and x are real-valued, and suppose that for any
θ < θ′ the ratio fθ′(x)/fθ(x) is a nondecreasing function of x. Then the level-α
test ϕ of H which maximizes the minimum power over ω′ is given by

ϕ(x1, . . . , x1) =






1 if r(x1, . . . , xn) > C,
γ if r(x1, . . . , xn) = C,
0 if r(x1, . . . , xn) < C,

(8.8)

where r(x1, . . . , xn) = fθ1(x1) . . . fθ1(xn)/fθ0(x1) . . . fθ0(xn) and where C and γ
are determined by

Eθ0ϕ(X1, . . . , Xn) = α. (8.9)

1A different definition of local minimaxity is given by Giri and Kiefer (1964).
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Proof. The function ϕ(x1, . . . , xn) is nondecreasing in each of its arguments, so
that by Lemma 3.4.2,

Eθϕ(X1, . . . , Xn) ≤ Eθ′ϕ(X1, . . . , Xn)

when θ < θ′. Hence the power function of ϕ is monotone and ϕ is a level-α test.
Since ϕ = ϕΛ,Λ′ , where Λ and Λ′ are the distributions assigning probability 1
to the points θ0 and θ1, the condition (8.4) is satisfied, which proves the desired
result as well as the fact that the pair of distributions (Λ, Λ′) is least favorable.

Example 8.2.1 Let θ be a location parameter, so that fθ(x) = g(x − θ), and
suppose for simplicity that g(x) > 0 for all x. We will show that a necessary
and sufficient condition for fθ(x) to have monotone likelihood ratio in x is that
− log g is convex. The condition of monotone likelihood ratio in x,

g(x − θ′)
g(x − θ)

≤ g(x′ − θ′)
g(x′ − θ)

for all x < x′, θ < θ′,

is equivalent to

log g(x′ − θ) + log g(x − θ′) ≤ log g(x − θ) + log g(x′ − θ′).

Since x−θ = t(x−θ′)+(1−t)(x′−θ) and x′−θ′ = (1−t)(x−θ′)+t(x′−θ), where
t = (x′ − x)/(x′ − x + θ′ − θ), a sufficient condition for this to hold is that the
function − log g is convex. To see that this condition is also necessary, let a < b
be any real numbers, and let x − θ′ = a, x′ − θ = b, and x′ − θ′ = x − θ. Then
x − θ = 1

2 (x′ − θ + x − θ′) = 1
2 (a + b), and the condition of monotone likelihood

ratio implies

1
2 [log g(a) + log g(b)] ≤ log g

[
1
2 (a + b)

]
.

Since log g is measurable, this in turn implies that − log g is convex.2

A density g for which − log g is convex is called strongly unimodal. Basic prop-
erties of such densities were obtained by Ibragimov (1956). Strong unimodality
is a special case of total positivity. A density of the form g(x− θ) which is totally
positive of order r is said to be a Polya frequency function of order r. It follows
from Example 8.2.1 that g(x − θ) is a Polya frequency function of order 2 if and
only if it is strongly unimodal. [For further results concerning Polya frequency
functions and strongly unimodal densities, see Karlin (1968), Marshall and Olkin
(1979), Huang and Ghosh (1982), and Loh (1984a, b).]

Two distributions which satisfy the above condition [besides the normal dis-
tribution, for which the resulting densities pθ(x1, . . . , xn) form an exponential
family] are the double exponential distribution with

g(x) = 1
2e−|x|

and the logistic distribution, whose cumulative distribution function is

G(x) =
1

1 + e−x
,

so that the density is g(x) = e−x/(1 + e−x)2.

2See Sierpinski (1920).
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Example 8.2.2 To consider the corresponding problem for a scale parameter,
let fθ(x) = θ−1h(x/θ) where h is an even function. Without loss of generality one
may then restrict x to be nonnegative, since the absolute values |X1|, . . . , |Xn|
form a set of sufficient statistics for θ. If Yi = log Xi and η = log θ, the density
of Yi is

h(ey−η)ey−η.

By Example 8.2.1, if h(x) > 0 for all x ≥ 0, a necessary and sufficient condi-
tion for fθ′(x)/fθ(x) to be a nondecreasing function of x for all θ < θ′ is that
− log[eyh(ey)] or equivalently − log h(ey) is a convex function of y. An example
in which this holds—in addition to the normal and double-exponential distribu-
tions, where the resulting densities form an exponential family—is the Cauchy
distribution with

h(x) =
1
π

1
1 + x2

.

Since the convexity of − log h(y) implies that of − log h(ey), it follows that if
h is an even function and h(x− θ) has monotone likelihood ratio, so does h(x/θ).
When h is the normal or double-exponential distribution, this property of h(x/θ)
also follows from Example 8.2.1. That monotone likelihood ratio for the scale-
parameter family does not conversely imply the same property for the associated
location parameter family is illustrated by the Cauchy distribution. The condition
is therefore more restrictive for a location than for a scale parameter.

The chief difficulty in the application of Theorem 8.1.1 to specific problems
is the necessity of knowing, or at least being able to guess correctly, a pair of
least favorable distributions (Λ, Λ′). Guidance for obtaining these distributions
is sometimes provided by invariance considerations. If there exists a group G
of transformations of X such that the induced group Ḡ leaves both ω and ω′

invariant, the problem is symmetric in the various θ’s that can be transformed
into each other under Ḡ. It then seems plausible that unless Λ and Λ′ exhibit the
same symmetries, they will make the statistician’s task easier, and hence will not
be least favorable.

Example 8.2.3 In the problem of paired comparisons considered in Exam-
ple 6.3.5, the observations Xi (i = 1, . . . , n) are independent variables taking
on the values 1 and 0 with probabilities pi and qi = 1 − pi. The hypothesis H
to be tested specifies the set ω : max pi ≤ 1

2 . Only alternatives with pi ≥ 1
2

for all i are considered, and as ω′ we take the subset of those alternatives for
which max pi ≥ 1

2 + δ. One would expect Λ to assign probability 1 to the point
p1 = · · · pn = 1

2 , and Λ′ to assign positive probability only to the n points
(p1, . . . , pn) which have n − 1 coordinates equal to 1

2 and the remaining coordi-
nate equal to 1

2 + δ. Because of the symmetry with regard to the n variables, it
seems plausible that Λ′ should assign equal probability 1/n to each of these n
points. With these choices, the test ϕΛ,Λ′ rejects when

n∑

i=1

( 1
2 + δ

1
2

)xi

> C.

This is equivalent to
∑n

i=1 xi > C, which had previously been seen to be UMP
invariant for this problem. Since the critical function ϕΛ,Λ′(x1, . . . , xn) is nonde-



8.2. Examples 325

creasing in each of its arguments, it follows from Lemma 3.4.2 that pi ≤ p′
i for

i = 1, . . . , n implies

Ep1,...,pnϕΛ,Λ′(X1, . . . , Xn) ≤ Ep′
1,...,p′

n
ϕΛ,Λ′(X1, . . . , Xn)

and hence the conditions of Theorem 8.1.1 are satisfied.

Example 8.2.4 Let X = (X1, . . . , Xn) be a sample from N(ξ, σ2), and consider
the problem of testing H : σ = σ0 against the set of alternatives ω′ : σ ≤ σ1 or σ ≥
σ2 (σ1 < σ0 < σ2). This problem remains invariant under the transformations
X ′

i = Xi +c, which in the parameter space induce the group Ḡ of transformations
ξ′ = ξ + c, σ′ = σ. One would therefore expect the least favorable distribution Λ
over the line ω : −∞ < ξ < ∞, σ = σ0, to be invariant under Ḡ. Such invariance
implies that Λ assigns to any interval a measure proportional to the length of
the interval. Hence Λ cannot be a probability measure and Theorem 8.1.1 is
not directly applicable. The difficulty can be avoided by approximating Λ by
a sequence of probability distributions, in the present case for example by the
sequence of normal distributions N(0, k), k = 1, 2, . . . .

In the particular problem under consideration, it happens that there also exist
least favorable distributions Λ and Λ′, which are true probability distributions
and therefore not invariant. These distributions can be obtained by an exami-
nation of the corresponding one-sided problem in Section 3.9, as follows. On ω,
where the only variable is ξ, the distribution Λ of ξ is taken as the normal dis-
tribution with an arbitrary mean ξ1 and with variance (σ2

2 − σ2
0)/n. Under Λ′ all

probability should be concentrated on the two lines σ = σ1 and σ = σ2 in the
(ξ, σ) plane, and we put Λ′ = pΛ′

1 + qΛ′
2, where Λ′

1 is the normal distribution
with mean ξ1 and variance (σ2

2 − σ2
1)/n, while Λ′

2 assigns probability 1 to the
point (ξ1, σ2). A computation analogous to that carried out in Section 3.9 then
shows the acceptance region to be given by

p

σn−1
1 σ2

exp

[
−1
2σ2

1

∑
(xi − x̄)2 − n

2σ2
2

(x̄ − ξ1)
2

]

+
q

σn
2

exp

[
−1
2σ2

2

{∑
(xi − x̄)2 + n(x̄ − ξ1)

2
}]

1

σn−1
0 σ2

exp

[
−1
2σ2

0

∑
(xi − x̄)2 − n

2σ2
2

(x̄ − ξ1)
2

] < C ,

which is equivalent to

C1 ≤
∑

(xi − x̄)2 ≤ C2.

The probability of this inequality is independent of ξ, and hence C1 and C2 can
be determined so that the probability of acceptance is 1 − α when σ = σ0, and
is equal for the two values σ = σ1 and σ = σ2.

It follows from Section 3.7 that there exist p and C which lead to these values
of C1 and C2 and that the above test satisfies the conditions of Corollary 8.1.1
with ω0 = ω, and with ω′

0 consisting of the two lines σ = σ1 and σ = σ2.
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8.3 Comparing Two Approximate Hypotheses

As in Section 3.2, let P0 += P1 be two distributions possessing densities p0 and
p1 with respect to a measure µ. Since distributions even at best are known only
approximately, let us assume that the true distributions are approximately P0 or
P1 in the sense that they lie in one of the families

Pi = {Q : Q = (1 − εi)Pi + εiGi}, i = 0, 1, (8.10)

with ε0, ε1 given and the Gi arbitrary unknown distributions. We wish to find
the level-α test of the hypothesis H that the true distribution lies in P0, which
maximizes the minimum power over P1. This is the problem considered in Section
8.1 with θ indicating the true distribution, ΩH = P0, and ΩK = P1.

The following theorem shows the existence of a pair of least favorable dis-
tributions Λ and Λ′ satisfying the conditions of Theorem 8.1.1, each assigning
probability 1 to a single distribution, Λ to Q0 ∈ P0 and Λ′ to Q1 ∈ P1, and
exhibits the Qi explicitly.

Theorem 8.3.1 Let

q0(x) =

{
(1 − ε0)p0(x) if p1(x)

p0(x) < b,
(1−ε0)p1(x)

b if p1(x)
p0(x) ≥ b,

(8.11)

q1(x) =

{
(1 − ε1)p1(x) if p1(x)

p0(x) > a,

a(1 − ε1)p0(x) if p1(x)
p0(x) ≤ a.

(i) For all 0 < εi < 1, there exist unique constants a and b such that q0 and q1

are probability densities with respect to µ; the resulting qi are members of
Pi (i = 0, 1).

(ii) There exist δ0, δ1 such that for all εi ≤ δi the constants a and b satisfy a < b
and that the resulting q0 and q1 are distinct.

(iii) If εi ≤ δi for i = 0, 1, the families P0 and P1 are nonoverlapping and the
pair (q0, q1) is least favorable, so that the maximin test of P0 against P1

rejects when q1(x)/q0(x) is sufficiently large.

Note. Suppose a < b, and let

r(x) =
p1(x)
p0(x)

, r∗(x) =
q1(x)
q0(x)

, and k =
1 − ε1
1 − ε0

.

Then

r∗(x) =






ka when r(x) ≤ a,
kr(x) when a < r(x) < b,
kb when b ≤ r(x).

(8.12)

The maximin test thus replaces the original probability ratio with a censored
version.

Proof. The proof will be given under the simplifying assumption that p0(x) and
p1(x) are positive for all x in the sample space.
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(i): For q1 to be a probability density, a must satisfy the equation

P1[r(X) > a] + aP0[r(X) ≤ a] =
1

1 − ε1
. (8.13)

If (8.13) holds, it is easily checked that q1 ∈ P1 (Problem 8.12). To prove existence
and uniqueness of a solution a of (8.13), let

γ(c) = P1[r(X) > c] + cP0[r(X) ≤ c].

Then

γ(0) = 1 and γ(c) → ∞ as c → ∞. (8.14)

Furthermore (Problem 8.14)

γ(c + ∆) − γ(c) = ∆

∫

r(x)≤c

p0(x) dµ(x) (8.15)

+

∫

c<r(x)≤c+∆

[c + ∆ − r(x)]p0(x) dµ(x).

It follows from (8.15) that 0 ≤ γ(c+∆)−γ(c) ≤ ∆, so that −γ is continuous and
nondecreasing. Together with (8.14) this establishes the existence of a solution.
To prove uniqueness, note that

γ(c + ∆) − γ(c) ≥ ∆

∫

r(x)<c

p0(x) dµ(x) (8.16)

and that γ(c) = 1 for all c for which

Pi[r(x) ≤ c] = 0 (i = 0, 1). (8.17)

If c0 is the supremum of the values for which (8.17) holds, (8.16) shows that γ
is strictly increasing for c > c0 and this proves uniqueness. The proof for b is
exactly analogous (Problem 8.13).

(ii): As ε1 → 0, the solution a of (8.13) tends to c0. Analogously, as ε1 → 0,
b → ∞ (Problem 8.13).

(iii): This will follow from the following facts:

(a) When X is distributed according to a distribution in P0, the statistic r∗(X)
is stochastically largest when the distribution of X is Q0.

(b) When X is distributed according to a distribution in P1, r∗(X) is
stochastically smallest for Q1.

(c) r∗(X) is stochastically larger when the distribution of X is Q1 than when
it is Q0.

These statements are summarized in the inequalities

Q′
0[r

∗(X) < t] ≥ Q0[r
∗(X) < t] ≥ Q1[r

∗(X) < t] ≥ Q′
1[r

∗(X) < t] (8.18)

for all t and all Q′
i ∈ Pi.

From (8.12), it is seen that (8.18) is obvious when t ≤ ka or t > kb. Suppose
therefore that ak < t ≤ bk, and denote the event r∗(X) < t by E. Then Q′

0(E) ≥
(1−ε0)P0(E) by (8.10). But r∗(x) < t < kb implies r(X) < b and hence Q0(E) =
(1 − ε)P0(E). Thus Q′

0(E) ≥ Q0(E), and analogously Q′
1(E) ≤ Q1(E). Finally,

the middle inequality of (8.18) follows from Corollary 3.2.1.



328 8. The Minimax Principle

If the ε’s are sufficiently small so that Q0 += Q1, it follows from (a)–(c) that
P0 and P1 are nonoverlapping.

That (Q0, Q1) is least favorable and the associated test ϕ is maximin now
follows from Theorem 8.1.1, since the most powerful test ϕ for testing Q0 against
Q1 is a nondecreasing function of q1(X)/q0(X). This shows that Eϕ(X) takes on
its sup over P0 at Q0 and its inf over P1 at Q1, and this completes the proof.

Generalizations of this theorem are given by Huber and Strassen (1973, 1974).
See also Rieder (1977) and Bednarski (1984). An optimum permutation test, with
generalizations to the case of unknown location and scale parameters, is discussed
by Lambert (1985).

When the data consist of n identically, independently distributed random vari-
ables X1, . . . , Xn, the neighborhoods (8.10) may not be appropriate, since they
do not preserve the assumption of independence. If Pi has density

pi(x1, . . . , xn) = fi(x1) . . . fi(xn) (i = 0, 1), (8.19)

a more appropriate model approximating (8.19) may then assign to X =
(X1, . . . , Xn) the family P∗

i of distributions according to which the Xj are
independently distributed, each with distribution

(1 − εi)Fi(xj) + εiGi(xj), (8.20)

where Fi has density fi and where as before the Gi are arbitrary.

Corollary 8.3.1 Suppose q0 and q1 defined by (8.11) with x = xj satisfy
(8.18) and hence are a least favorable pair for testing P0 against P1 on the ba-
sis of the single observation Xj. Then the pair of distributions with densities
qi(x1) . . . qi(xn) (i = 0, 1) is least favorable for testing P∗

0 against P∗
1 , so that the

maximin test is given by

ϕ(x1, . . . , xn) =






1
γ
0

if
n∏

j=1

[
q1(xj)
q0(xj)

]
>=< c. (8.21)

Proof. By assumption, the random variables Yj = q1(Xj)/q0(Xj) are stochasti-
cally increasing as one moves successively from Q′

0 ∈ P0 to Q0 to Q1 to Q′
1 ∈ P1.

The same is then true of any function ψ(Y1, . . . , Yn) which is nondecreasing in
each of its arguments by Lemma 3.4.1, and hence of ϕ defined by (8.21). The
proof now follows from Theorem 8.3.1.

Instead of the problem of testing P0 against P1, consider now the situation
of Lemma 8.2.1 where H : θ ≤ θ0 is to be tested against θ ≥ θ1 (θ0 < θ1)
on the basis of n independent observations Xj , each distributed according to a
distribution Fθ(xj) whose density fθ(xj) is assumed to have monotone likelihood
ratio in xj .

A robust version of this problem is obtained by replacing Fθ with

(1 − ε)Fθ(xj) + εG(xj), j = 1, . . . , n, (8.22)

where ε is given and for each θ the distribution G is arbitrary. Let P∗∗
0 and P∗∗

1

be the classes of distributions (8.22) with θ ≤ θ0 and θ ≥ θ1 respectively; and
let P∗

0 and P∗
1 be defined as in Corollary 8.3.1 with fθi in place of fi. Then the
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maximin test (8.21) of P∗
0 against P∗

1 retains this property for testing P∗∗
0 against

P∗∗
1 .
This is proved in the same way as Corollary 8.3.1, using the additional fact

that if Fθ′ is stochastically larger than Fθ, then (1 − ε)Fθ′ + εG is stochastically
larger than (1 − ε)Fθ + εG.

8.4 Maximin Tests and Invariance

When the problem of testing ΩH against ΩK remains invariant under a certain
group of transformations, it seems reasonable to expect the existence of an invari-
ant pair of least favorable distributions (or at least of sequences of distributions
which in some sense are least favorable and invariant in the limit), and hence
also of a maximin test which is invariant. This suggests the possibility of bypass-
ing the somewhat cumbersome approach of the preceding sections. If it could be
proved that for an invariant problem there always exists an invariant test that
maximizes the minimum power over ΩK , attention could be restricted to invari-
ant tests; in particular, a UMP invariant test would then automatically have
the desired maximin property (although it would not necessarily be admissible).
These speculations turn out to be correct for an important class of problems,
although unfortunately not in general. To find out under what conditions they
hold, it is convenient first to separate out the statistical aspects of the problem
from the group-theoretic ones by means of the following lemma.

Lemma 8.4.1 Let P = {Pθ, θ ∈ Ω} be a dominated family of distributions on
(X ,A), and let G be a group of transformations of (X ,A), such that the induced
group Ḡ leaves the two subsets ΩH and ΩK of Ω invariant. Suppose that for any
critical function ϕ there exists an (almost) invariant critical function ψ satisfying

inf
Ḡ

Eḡθϕ(X) ≤ Eθψ(X) ≤ sup
Ḡ

Eḡθϕ(X) (8.23)

for all θ ∈ Ω. Then if there exists a level-α test ϕ0 maximizing infΩk Eθϕ(X),
there also exists an (almost) invariant test with this property.

Proof. Let infΩK Eθϕ0(X) = β, and let ψ0 be an (almost) invariant test such
that (8.23) holds with ϕ = ϕ0, ψ = ψ0. Then

Eθψ0(X) ≤ sup
Ḡ

Eḡθϕ0(X) ≤ α for all θ ∈ ΩH

and

Eθψ0(X) ≥ inf
Ḡ

Eḡθϕ0(X) ≥ β for all θ ∈ ΩK ,

as was to be proved.
To determine conditions under which there exists an invariant or almost in-

variant test ψ satisfying (8.23), consider first the simplest case that G is a finite
group, G = {g1, . . . , gN} say. If ψ is then defined by

ψ(x) =
1
N

N∑

i=1

ϕ(gix), (8.24)
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it is clear that ψ is again a critical function, and that it is invariant under G. It
also satisfies (8.23), since Eθϕ(gX) = Eḡθϕ(X) so that Eθψ(X) is the average of
a number of terms of which the first and last member of (8.23) are the minimum
and maximum respectively.

An illustration of the finite case is furnished by Example 8.2.3. Here the prob-
lem remains invariant under the n! permutations of the variables (X1, . . . , Xn).
Lemma 8.4.1 is applicable and shows that there exists an invariant test max-
imizing infΩK Eθϕ(X). Thus in particular the UMP invariant test obtained in
Example 6.3.5 has this maximin property and therefore constitutes a solution of
the problem.

It also follows that, under the setting of Theorem 6.3.1, the UMPI test given
by (6.9) is maximin.

The definition (8.24) suggests the possibility of obtaining ψ(x) also in other
cases by averaging the values of ϕ(gx) with respect to a suitable probability
distribution over the group G. To see what conditions would be required of this
distribution, let B be a σ-field of subsets of G and ν a probability distribution over
(G,B). Disregarding measurability problems for the moment, let ψ be defined by

ψ(x) =

∫
ϕ(gx) dν(g). (8.25)

Then 0 ≤ ψ ≤ 1, and (8.23) is seen to hold by applying Fubini’s theorem (The-
orem 2.2.4) to the integral of ψ with respect to the distribution Pθ. For any
g0 ∈ G,

ψ(g0x) =

∫
ϕ(gg0x) dν(g) =

∫
ϕ(hx) dν∗(h) ,

where h = gg0 and where ν∗ is the measure defined by

ν∗(B) = ν(Bg−1
0 ) for all B ∈ B,

into which ν is transformed by the transformation h = gg0. Thus ψ will have the
desired invariance property, ψ(g0x) = ψ(x) for all g0 ∈ G, if ν is right invariant,
that is, if it satisfies

ν(Bg) = ν(B) for all B ∈ B, g ∈ G. (8.26)

Such a condition was previously used in (6.16).
The measurability assumptions required for the above argument are: (i) For

any A ∈ A, the set of pairs (x, g) with gx ∈ A is measurable (A×B). This insures
that the function ψ defined by (8.25) is again measurable. (ii) For any B ∈ B,
g ∈ G, the set Bg belongs to B.

Example 8.4.1 If G is a finite group with elements g1, . . . , gN , let B be the class
of all subsets of G and ν the probability measure assigning probability 1/N to
each of the N elements. The condition (8.26) is then satisfied, and the definition
(8.25) of ψ in this case reduces to (8.24).

Example 8.4.2 Consider the group G of orthogonal n×n matrices Γ, with the
group product Γ1Γ2 defined as the corresponding matrix product. Each matrix
can be interpreted as the point in n2-dimensional Euclidean space whose coordi-
nates are the n2 elements of the matrix. The group then defines a subset of this
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space; the Borel subsets of G will be taken as the σ-field B. To prove the existence
of a right invariant probability measure over (G,B), we shall define a random or-
thogonal matrix whose probability distribution satisfies (8.26) and is therefore
the required measure. With any nonsingular matrix x = (xij), associate the or-
thogonal matrix y = f(x) obtained by applying the following Gram–Schmidt
orthogonalization process to the n row vectors xi = (xi1, . . . , xin) of x : y1 is the
unit vector in the direction of x1; y2 the unit vector in the plane spanned by x1

and x2 which is orthogonal to y1 and forms an acute angle with x2; and so on.
Let y = (yij) be the matrix whose ith row is yi.

Suppose now that the variables Xij (i, j = 1, . . . , n) are independently dis-
tributed as N(0, 1), let X denote the random matrix (Xij), and let Y = f(X).
To show that the distribution of the random orthogonal matrix Y satisfies
(8.26), consider any fixed orthogonal matrix Γ and any fixed set B ∈ B. Then
P{Y ∈ BΓ} = P{Y Γ′ ∈ B} and from the definition of f it is seen that
Y Γ′ = f(XΓ′). Since the n2 elements of the matrix XΓ′ have the same joint
distribution as those of the matrix X, the matrices f(XΓ′) and f(X) also have
the same distribution, as was to be proved.

Examples 8.4.1 and 8.4.2 are sufficient for the applications to be made here.
General conditions for the existence of an invariant probability measure, of which
these examples are simple special cases, are given in the theory of Haar measure.
[This is treated, for example, in the books by Halmos (1974), Loomis (1953), and
Nachbin (1965). For a discussion in a statistical setting, see Eaton (1983, 1989),
Farrell (1985a), and Wijsman (1990), and for a more elementary treatment Berger
(1985a).]

8.5 The Hunt–Stein Theorem

Invariant measures exist (and are essentially unique) for a large class of groups,
but unfortunately they are frequently not finite and hence cannot be taken to be
probability measures. The situation is similar and related to that of the nonexis-
tence of a least favorable pair of distributions in Theorem 8.1.1. There it is usually
possible to overcome the difficulty by considering instead a sequence of distribu-
tions which has the desired property in the limit. Analogously we shall now
generalize the construction of ψ as an average with respect to a right-invariant
probability distribution, by considering a sequence of distributions over G which
are approximately right-invariant for n sufficiently large.

Let P = {Pθ, θ ∈ Ω} be a family of distributions over a Euclidean space (X ,A)
dominated by a σ-finite measure µ, and let G be a group of transformations of
(X ,A) such that the induced group Ḡ leaves Ω invariant.

Theorem 8.5.1 (Hunt–Stein.) Let B be a σ-field of subsets of G such that for
any A ∈ A the set of pairs (x, g) with gx ∈ A is in A × B and for any B ∈ B
and g ∈ G the set Bg is in B. Suppose that there exists a sequence of probability
distributions νn over (G,B) which is asymptotically right-invariant in the sense
that for any g ∈ G, B ∈ B,

lim
n→∞

|νn(Bg) − νn(B)| = 0. (8.27)
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Then given any critical function ϕ, there exists a critical function ψ which is
almost invariant and satisfies (8.23).

Proof. Let

ψn(x) =

∫
ϕ(gx) dνn(g),

which as before is measurable and between 0 and 1. By the weak compactness
theorem (Theorem A.5.1 of the Appendix) there exists a subsequence {ψni} and
a measurable function ψ between 0 and 1 satisfying

lim
i→∞

∫
ψnip dµ =

∫
ψp dµ

for all µ-integrable functions p, so that in particular

lim
i→∞

Eθψni(X) = Eθψ(X)

for all θ ∈ Ω. By Fubini’s theorem,

Eθψni(X) =

∫
[Eθϕ(gX)] dνni(g) =

∫
Eḡθϕ(X) dνni(g) ,

so that

inf
Ḡ

Eḡθϕ(X) ≤ Eθψni(X) ≤ sup
Ḡ

Eḡθϕ(X),

and ψ satisfies (8.23).
In order to prove that ψ is almost invariant we shall show below that for all x

and g,

ψni(gx) − ψni(x) → 0. (8.28)

Let IA(x) denote the indicator function of a set A ∈ A. Using the fact that
IgA(gx) = IA(x), we see that (8.28) implies

∫

A

ψ(x) dPθ(x) = lim
i→∞

∫
ψni(x)IA(x) dPθ(x)

= lim
i→∞

∫
ψni(gX)IgA(gx) dPθ(x)

=

∫
ψ(x)IgA(x) dPḡθ(x) =

∫

A

ψ(gx) dPθ(x) ,

and hence ψ(gx) = ψ(x) (a.e. P), as was to be proved.
To prove (8.28), consider any fixed x and any integer m, and let G be

partitioned into the mutually exclusive sets

Bk =

{
h ∈ G : ak < ϕ(hx) ≤ ak +

1
m

}
, k = 0, . . . , m,

where ak = (k−1)/m. In particular, B0 is the set {h ∈ G : ϕ(hx) = 0}. It is seen
from the definition of the sets Bk that

m∑

k=0

akνni(Bk) ≤
m∑

k=0

∫

Bk

ϕ(hx) dνni(h) ≤
m∑

k=0

(
ak +

1
m

)
νni(Bk)

≤
m∑

k=0

akνni(Bk) +
1
m

,
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and analogously that
∣∣∣∣∣

m∑

k=0

∫

Bkg−1
ϕ(hgx) dνni(h) −

m∑

k=0

akνni(Bkg−1)

∣∣∣∣∣ ≤
1
m

,

from which it follows that

ψni(gx) − ψni(x) :≤
∑

|ak| · |νni(Bkg−1) − νni(Bk)| + 2
m

.

By (8.27) the first term of the right-hand side tends to zero as i tends to infinity,
and this completes the proof.

When there exist a right-invariant measure ν over G and a sequence of subsets
Gn of G with Gn ⊆ Gn+1, ∪Gn = G, and ν(Gn) = cn < ∞, it is suggestive
to take for the probability measures νn of Theorem 8.5.1 the measures ν/cn

truncated on Gn. This leads to the desired result in the example below. On the
other hand, there are cases in which there exists such a sequence of subsets of
Gn but no invariant test satisfying (8.23) and hence no sequence νn satisfying
(8.27).

Example 8.5.1 Let x = (x1, . . . , xn), A be the class of Borel sets in n-space,
and G the group of translations (x1 +g, . . . , xn +g), −∞ < g < ∞. The elements
of G can be represented by the real numbers, and the group product gg′ is then
the sum g + g′. If B is the class of Borel sets on the real line, the measurability
assumptions of Theorem 8.5.1 are satisfied. Let ν be Lebesgue measure, which
is clearly invariant under G, and define νn to be the uniform distribution on the
interval I(−n, n) = {g : −n ≤ g ≤ n}. Then for all B ∈ B, g ∈ G,

|νn(B) − νn(Bg)| =
1
2n

|ν[B ∩ I(−n, n)] − ν[B ∩ I(−n − g, n − g)]| ≤ |g|
2n

,

so that (8.27) is satisfied.
This argument also covers the group of scale transformations (ax1, . . . , axn),

0 < a < ∞, which can be transformed into the translation group by taking
logarithms.

When applying the Hunt–Stein theorem to obtain invariant minimax tests,
it is frequently convenient to carry out the calculation in steps, as was done in
Theorem 6.6.1. Suppose that the problem remains invariant under two groups D
and E, and denote by y = s(x) a maximal invariant with respect to D and by
E∗ the group defined in Theorem 6.2.2, which E induces in y-space. If D and
E∗ satisfy the conditions of the Hunt–Stein theorem, it follows first that there
exists a maximin test depending only on y = s(x), and then that there exists a
maximin test depending only on a maximal invariant z = t(y) under E∗.

Example 8.5.2 Consider a univariate linear hypothesis in the canonical form
in which Y1, . . . , Yn are independently distributed as N(ηi, σ

2), where it is given
that ηs+1 = · · · = ηn = 0, and where the hypothesis to be tested is η1 = · · · =
ηr = 0. It was shown in Section 7.1 that this problem remains invariant under
certain groups of transformations and that with respect to these groups there
exists a UMP invariant test. The groups involved are the group of orthogonal
transformations, translation groups of the kind considered in Example 8.5.1, and



334 8. The Minimax Principle

a group of scale changes. Since each of these satisfies the assumptions of the
Hunt–Stein theorem, and since they leave invariant the problem of maximizing
the minimum power over the set of alternatives

r∑

i=1

η2
i

σ2
≥ ψ2

1 (ψ1 > 0), (8.29)

it follows that the UMP invariant test of Chapter 7 is also the solution of this
maximin problem. It is also seen slightly more generally that the test which is
UMP invariant under the same groups for testing

r∑

i=1

η2
i

σ2
≤ ψ2

0

(Problem 7.4) maximizes the minimum power over the alternatives (8.29) for
ψ0 < ψ1.

Example 8.5.3 (Stein) Let G be the group of all nonsingular linear trans-
formations of p-space. That for p > 1 this does not satisfy the conditions of
Theorem 8.5.1 is shown by the following problem, which is invariant under G
but for which the UMP invariant test does not maximize the minimum power.
Generalizing Example 6.2.1, let X = (X1, . . . , Xp), Y = (Y1, . . . , Yp) be indepen-
dently distributed according to p-variate normal distributions with zero means
and nonsingular covariance matrices E(XiXj) = σij and E(YiYj) = ∆σij , and
let H : ∆ ≤ ∆0 be tested against ∆ ≥ ∆1 (∆0 < ∆1), the σij being unknown.

This problem remains invariant if the two vectors are subjected to any common
nonsingular transformation, and since with probability 1 this group is transitive
over the sample space, the UMP invariant test is trivially ϕ(x, y) ≡ α. The
maximin power against the alternatives ∆ ≥ ∆1 that can be achieved by invariant
tests is therefore α. On the other hand, the test with rejection region Y 2

1 /X2
1 > C

has a strictly increasing power function β(∆), whose minimum over the set of
alternatives ∆ ≥ ∆1 is β(∆1) > β(∆0) = α.

It is a remarkable feature of Theorem 8.5.1 that its assumptions concern only
the group G and not the distributions Pθ.

3 When these assumptions hold for a
certain G it follows from (8.23) as in the proof of Lemma 8.4.1 that for any testing
problem which remains invariant under G and possesses a UMP invariant test,
this test maximizes the minimum power over any invariant class of alternatives.
Suppose conversely that a UMP invariant test under G has been shown in a
particular problem not to maximize the minimum power, as was the case for
the group of linear transformations in Example 8.5.3. Then the assumptions of
Theorem 8.5.1 cannot be satisfied. However, this does not rule out the possibility
that for another problem remaining invariant under G, the UMP invariant test
may maximize the minimum power. Whether or not it does is no longer a property
of the group alone but will in general depend also on the particular distributions.

3These assumptions are essentially equivalent to the condition that the group G is
amenable. Amenability and its relationship to the Hunt–Stein theorem are discussed by
Bondar and Milnes (1982) and (with a different terminology) by Stone and von Randow
(1968).
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Consider in particular the problem of testing H : ξ1 = · · · = ξp = 0 on
the basis of a sample (Xα1, . . . , Xαp), α = 1, . . . , n, from a p-variate normal
distribution with mean E(Xαi) = ξi and common covariance matrix (σij) =
(aij)

−1. This problem remains invariant under a number of groups, including
that of all nonsingular linear transformations of p-space, and a UMP invariant
test exists. An invariant class of alternatives under these groups is

∑ ∑ aijξiξj

σ2
≥ ψ2

1 . (8.30)

Here, Theorem 8.5.1 is not applicable, and the question of whether the T 2-test
of H : ψ = 0 maximizes the minimum power over the alternatives

∑ ∑
aijξiξj = ψ2

1 (8.31)

[and hence a fortiori over the alternatives (8.30)] presents formidable difficulties.
The minimax property was proved for the case p = 2, n = 3 by Giri, Kiefer, and
Stein (1963), for the case p = 2, n = 4 by Linnik, Pliss, and Salaevskii (1968),
and for p = 2 and all n ≥ 3 by Salaevskii (1971). The proof is effected by first
reducing the problem through invariance under the group G1 of Example 6.6.11,
to which Theorem 8.5.1 is applicable, and then applying Theorem 8.1.1 to the
reduced problem. It is a consequence of this approach that it also establishes
the admissibility of T 2 as a test of H against the alternatives (8.31). In view of
the inadmissibility results for point estimation when p ≥ 3 (see TPE2, Sections
5.4-5.5, it seems unlikely that T 2 is admissible for p ≥ 3, and hence that the same
method can be used to prove the minimax property in this situation.

The problem becomes much easier when the minimax property is considered
against local or distant alternatives rather than against (8.31). Precise definitions
and proofs of the fact that T 2 possesses these properties for all p and n are
provided by Giri and Kiefer (1964) and in the references given in Section 7.9.

The theory of this and the preceding section can be extended to confidence
sets if the accuracy of a confidence set at level 1 − α is assessed by its volume
or some other appropriate measure of its size. Suppose that the distribution of
X depends on the parameters θ to be estimated and on nuisance parameters ϑ,
and that µ is a σ-finite measure over the parameter set ω = {θ : (θ, ϑ) ∈ Ω},
with ω assumed to be independent of ϑ. Then the confidence sets S(X) for θ are
minimax with respect to µ at level 1 − α if they minimize

sup Eθ,ϑµ[S(X)]

among all confidence sets at the given level.
The problem of minimizing Eµ[S(X)] is related to that of minimizing the

probability of covering false values (the criterion for accuracy used so far) by the
relation (Problem 8.34)

Eθ0,ϑµ[S(X)] =

∫

θ '=θ0

Pθ0,ϑ[θ ∈ S(X)] dµ(θ), (8.32)

which holds provided µ assigns measure zero to the set {θ = θ0}. (For the special
case that θ is real-valued and µ Lebesgue measure, see Problem 5.26.)

Suppose now that the problem of estimating θ is invariant under a group G in
the sense of Section 6.11 and that it satisfies the invariance condition

µ[S(gx)] = µ[S(x)]. (8.33)
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If uniformly most accurate equivariant confidence sets exist, they minimize (8.32)
among all equivariant confidence sets at the given level, and one may hope that
under the assumptions of the Hunt–Stein theorem, they will also be minimax
with respect to µ among the class of all (not necessarily equivariant) confidence
sets at the given level. Such a result does hold and can be used to show for
example that the most accurate equivariant confidence sets of Examples 6.11.2
and 6.11.3 minimize their maximum expected Lebesgue measure. A more general
class of examples is provided by the confidence intervals derived from the UMP
invariant tests of univariate linear hypotheses such as the confidence spheres for
θi = µ + αi or for αi given in Section 7.4.

Minimax confidence sets S(x) are not necessarily admissible; that is, there may
exist sets S′(x) having the same confidence level but such that

Eθ,ϑµ[S′(X)] ≤ Eθ,ϑµ[S(X)] for all θ, ϑ

with strict inequality holding for at least some (θ, ϑ).

Example 8.5.4 Let Xi (i = 1, . . . , s) be independently normally distributed
with mean E(Xi) = θi and variance 1, and let G be the group generated by
translations Xi+ci (i = 1, . . . , s) and orthogonal transformations of (X1, . . . , Xs).
(G is the Euclidean group of rigid motions in s-space.) In Example 6.12.2, it was
argued that the confidence sets

C0 = {(θ1, . . . , θs) :
∑

(θi − Xi)
2 ≤ c} (8.34)

are uniformly most accurate equivariant. The volume µ[S(X)] of any confidence
set S(X) remains invariant under the transformations g ∈ G, and it follows
from the results of Problems 8.26 and 8.4 and Examples 8.5.1 and 8.5.2 that the
confidence sets (8.34) minimize the maximum expected volume.

However, very surprisingly, they are not admissible unless s = 1 or 2. In the
case s ≥ 3, Stein (1962) suggested the region (8.34) can be improved by recentered
regions of the form

C1 = {(θ1, . . . , θs) : (θi − b̂Xi)
2 ≤ c} , (8.35)

where b̂ = max(0, 1 − (s − 2)/
∑

i X2
i ). In fact, Brown (1966) proved that, for

s ≥ 3,

Pθ{θ ∈ C1} > Pθ{θ ∈ C0}

for all θ. This result, which will not be proved here, is closely related to the in-
admissibility of X1, . . . , Xs as a point estimator of (θ1, . . . , θs) for a wide variety
of loss functions. The work on point estimation, which is discussed in TPE2,
Sections 5.4-5.6, for squared error loss, provides easier access to these ideas than
the present setting. Further entries into the literature on admissibility are Stein
(1981), Hwang and Casella (1982), and Tseng and Brown (1997); additional
references are provided in TPE2, p.423.

The inadmissibility of the confidence sets (8.34) is particularly surprising in
that the associated UMP invariant tests of the hypotheses H : θi = θi0 (i =
1, . . . , s) are admissible (Problems 8.24, 8.25).
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8.6 Most Stringent Tests

One of the practical difficulties in the consideration of tests that maximize the
minimum power over a class ΩK of alternatives is the determination of an appro-
priate ΩK . If no information is available on which to base the choice of this set,
and if a natural definition is not imposed by invariance arguments, a frequently
reasonable definition can be given in terms of the power that can be achieved
against the various alternatives. The envelope power function β∗

α was defined in
Problem 6.25 by

β∗
α(θ) = sup βϕ(θ),

where βϕ denotes the power of a test ϕ and where the supremum is taken over
all level-α tests of H. Thus β∗

α(θ) is the maximum power that can be attained
at level α against the alternative θ. (That it can be attained follows under mild
restrictions from Theorem A.5.1 of the Appendix.) If

S∗
∆ = {θ : β∗

α(θ) = ∆},

then of two alternatives θ1 ∈ S∗
∆1 , θ2 ∈ S∗

∆2 , θ1 can be considered closer to H,
equidistant, or further away than θ2 as ∆1 is <, =, or > ∆2.

The idea of measuring the distance of an alternative from H in terms of the
available information has been encountered before. If for example X1, . . . , Xn is a
sample from N(ξ, σ2), the problem of testing H : ξ ≤ 0 was discussed (Section 5.2)
both when the alternatives ξ are measured in absolute units and when they are
measured in σ-units. The latter possibility corresponds to the present proposal,
since it follows from invariance considerations (Problem 6.25) that β∗

α(ξ, σ) is
constant on the lines ξ/σ = constant.

Fixing a value of ∆ and taking as ΩK the class of alternatives θ for which
β∗

α(θ) ≥ ∆, one can determine the test that maximizes the minimum power over
ΩK . Another possibility, which eliminates the need of selecting a value of ∆, is
to consider for any test ϕ the difference β∗

α(θ) − βϕ(θ). This difference measures
the amount by which the actual power βϕ(θ) falls short of the maximum power
attainable. A test that minimizes

sup
Ω−ω

[β∗
α(θ) − βϕ(θ)] (8.36)

is said to be most stringent. Thus a test is most stringent if it minimizes its
maximum shortcoming.

Let ϕ∆ be a test that maximizes the minimum power over S∗
∆, and hence

minimizes the maximum difference between β∗
α(θ) and βϕ(θ) over S∗

∆. If ϕ∆

happens to be independent of ∆, it is most stringent. This remark makes it
possible to apply the results of the preceding sections to the determination of
most stringent tests. Suppose that the problem of testing H : θ ∈ ω against
the alternatives θ ∈ Ω − ω remains invariant under a group G, that there exists
a UMP almost invariant test ϕ0 with respect to G, and that the assumptions
of Theorem 8.5.1 hold. Since β∗

α(θ) and hence the set S∗
∆ is invariant under Ḡ

(Problem 6.25), it follows that ϕ0 maximizes the minimum power over S∗
∆ for

each ∆, and ϕ0 is therefore most stringent.
As an example of this method consider the problem of testing H : p1, . . . , pn ≤

1
2 against the alternative K : pi > 1

2 for all i, where pi is the probability of success
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in the ith trial of a sequence of n independent trials. If Xi is 1 or 0 as the ith trial
is a success or failure, then the problem remains invariant under permutations of
the X’s, and the UMP invariant test rejects (Example 6.3.5) when

∑
Xi > C. It

now follows from the remarks above that this test is also most stringent.
Another illustration is furnished by the general univariate linear hypothesis.

Here it follows from the discussion in Example 8.5.2 that the standard test for
testing H : η1 = · · · = ηr = 0 or H ′ :

∑r
i=1 η2

i /σ2 ≤ ψ2
0 is most stringent.

When the invariance approach is not applicable, the explicit determination of
most stringent tests typically is difficult. The following is a class of problems for
which they are easily obtained by a direct approach. Let the distributions of X
constitute a one-parameter exponential family, the density of which is given by
(3.19), and consider the hypothesis H : θ = θ0. Then according as θ > θ0 or
θ < θ0, the envelope power β∗

α(θ) is the power of the UMP one-sided test for
testing H against θ > θ0 or θ < θ0. Suppose that there exists a two-sided test ϕ0

given by (4.3), such that

sup
θ<θ0

[β∗
α(θ) − βϕ0(θ)] = sup

θ>θ0

[β∗
α(θ) − βϕ0(θ)], (8.37)

and that the supremum is attained on both sides, say at points θ1 < θ0 < θ2.
If βϕ0(θi) = βi, i = 1, 2, an application of the fundamental lemma [Theo-
rem 3.6.1(iii)] to the three points θ1, θ2, θ0 shows that among all tests ϕ with
βϕ(θ1) ≥ β1 and βϕ(θ2) ≥ β2, only ϕ0 satisfies βϕ(θ0) ≤ α. For any other level-α
test, therefore, either βϕ(θ1) < β1 or βϕ(θ2) < β2, and it follows that ϕ0 is the
unique most stringent test. The existence of a test satisfying (8.37) can be proved
by a continuity consideration [with respect to variation of the constants Ci and
γi which define the boundary of the test (4.3)] from the fact that for the UMP
one-sided test against the alternatives θ > θ0 the right-hand side of (8.37) is
zero and the left-hand side positive, while the situation is reversed for the other
one-sided test.

8.7 Problems

Section 8.1

Problem 8.1 Existence of maximin tests.4 Let (X ,A) be a Euclidean sample
space, and let the distributions Pθ, θ ∈ Ω, be dominated by a σ-finite measure
over (X ,A). For any mutually exclusive subsets ΩH , ΩK of Ω there exists a level-α
test maximizing (8.2).
[Let β = sup[infΩk Eθϕ(X)], where the supremum is taken over all level-α tests
of H : θ ∈ ΩH . Let ϕn be a sequence of level-α tests such that infΩK Eθϕn(X)
tends to β. If ϕni is a subsequence and ϕ a test (guaranteed by Theorem 8.5.1
of the Appendix) such that Eθϕni(X) tends to Eθϕ(X) for all θ ∈ Ω, then ϕ is
a level-α test and infΩk Eθϕ(X) = β.]

4The existence of maximin tests is established in considerable generality in Cvitanic
and Karatzas (2001).
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Problem 8.2 Locally most powerful tests. 5 Let d be a measure of the distance
of an alternative θ from a given hypothesis H. A level-α test ϕ0 is said to be
locally most powerful (LMP) if, given any other level-α test ϕ, there exists ∆
such that

βϕ0(θ) ≥ βϕ(θ) for all θ with 0 < d(θ) < ∆. (8.38)

Suppose that θ is real-valued and that the power function of every test is
continuously differentiable at θ0.

(i) If there exists a unique level-α test ϕ0 of H : θ = θ0, maximizing β′
ϕ(θ0),

then ϕ0 is the unique LMP level-α test of H against θ > θ0 for d(θ) = θ−θ0.

(ii) To see that (i) is not correct without the uniqueness assumption, let X take
on the values 0 and 1 with probabilities Pθ(0) = 1

2 − θ3, Pθ(1) = 1
2 + θ3,

− 1
2 < θ3 < 1

2 , and consider testing H : θ = 0 against K : θ > 0. Then
every test ϕ of size α maximizes β′

ϕ(0), but not every such test is LMP.
[Kallenberg et al. (1984).]

(iii) The following6 is another counterexample to (i) without uniqueness, in
which in fact no LMP test exists. Let X take on the values 0, 1, 2 with
probabilities

Pθ(x) = α + ε
[
θ + θ2 sin

(x
θ

)]
for x = 1, 2,

Pθ(0) = 1 − pθ(1) − pθ(2),

where −1 ≤ θ ≤ 1 and ε is a sufficiently small number. Then a test ϕ at
level α maximizes β′(0) provided

ϕ(1) + ϕ(2) = 1 ,

but no LMP test exists.

(iv) A unique LMP test maximizes the minimum power locally provided its
power function is bounded away from α for every set of alternatives which
is bounded away from H.

(v) Let X1, . . . , Xn be a sample from a Cauchy distribution with unknown
location parameter θ, so that the joint density of the X’s is π−n ∏n

i=1[1 +
(xi − θ)2]−1. The LMP test for testing θ = 0 against θ > 0 at level α < 1

2
is not unbiased and hence does not maximize the minimum power locally.
[(iii): The unique most powerful test against θ is

{
ϕ(1)
ϕ(2)

= 1 if sin

(
1
θ

)
>=< sin

(
2
θ

)
,

and each of these inequalities holds at values of θ arbitrarily close to 0.
(v): There exists M so large that any point with xi ≥ M for all i = 1, . . . , n
lies in the acceptance region of the LMP test. Hence the power of the test
tends to zero as θ tends to infinity.]

5Locally optimal tests for multiparameter hypotheses are given in Gupta and
Vermeire (1986).

6Due to John Pratt.
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Problem 8.3 A level-α test ϕ0 is locally unbiased (loc. unb.) if there exists
∆0 > 0 such that βϕ0(θ) ≥ α for all θ with 0 < d(θ) < ∆0; it is LMP loc. unb. if
it is loc. unb. and if, given any other loc. unb. level-α test ϕ, there exists ∆ such
that (8.38) holds. Suppose that θ is real-valued and that d(θ) = |θ−θ0|, and that
the power function of every test is twice continuously differentiable at θ = θ0.

(i) If there exists a unique test ϕ0 of H : θ = θ0 against K : θ += θ0 which
among all loc. unb. tests maximizes β′′(θ0), then ϕ0 is the unique LMP
loc. unb. level-α test of H against K.

(ii) The test of part (i) maximizes the minimum power locally provided its
power function is bounded away from α for every set of alternatives that
is bounded away from H.

[(ii): A necessary condition for a test to be locally minimax is that it is loc. unb.]

Problem 8.4 Locally uniformly most powerful tests. If the sample space is finite
and independent of θ, the test ϕ0 of Problem 8.2(i) is not only LMP but also
locally uniformly most powerful (LUMP) in the sense that there exists a value
∆ > 0 such that ϕ0 maximizes βϕ(θ) for all θ with 0 < θ − θ0 < ∆.
[See the argument following (6.21) of Section 6.9.]

Problem 8.5 The following two examples show that the assumption of a finite
sample space is needed in Problem 8.4.

(i) Let X1, . . . , Xn be i.i.d. according to a normal distribution N(σ, σ2) and
test H : σ = σ0 against K : σ > σ0.

(ii) Let X and Y be independent Poisson variables with E(X) = λ and E(Y ) =
λ + 1, and test H : λ = λ0 against K : λ > λ0. In each case, determine the
LMP test and show that it is not LUMP.

[Compare the LMP test with the most powerful test against a simple alternative.]

Section 8.2

Problem 8.6 Let the distribution of X depend on the parameters (θ, ϑ) =
(θ1, . . . , θr, ϑ1, . . . , ϑs). A test of H : θ = θ0 is locally strictly unbiased if for
each ϕ, (a) βϕ(θ0, ϕ) = α, (b) there exists a θ-neighborhood of θ0 in which
βϕ(θ, ϑ) > α for θ += θ0.

(i) Suppose that the first and second derivatives

βi
ϕ(ϑ) =

∂
∂θi

βϕ(θ, ϑ)

∣∣∣∣
θ0

and βij
ϕ (ϑ) =

∂2

∂θi∂θj
βϕ(θ, ϑ)

∣∣∣∣
θ0

exist for all critical functions ϕ and all ϑ. Then a necessary and sufficient
condition for ϕ to be locally strictly unbiased is that β′

ϕ = 0 for all i and
ϑ, and that the matrix (βij

ϕ (ϑ)) is positive definite for all ϑ.

(ii) A test of H is said to be of type E (type D is s = 0 so that there are no
nuisance parameters) if it is locally strictly unbiased and among all tests
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with this property maximizes the determinant |(βij
ϕ )|.7 (This determinant

under the stated conditions turns out to be equal to the Gaussian curvature
of the power surface at θ0.) Then the test ϕ0 given by (7.7) for testing the
general linear univariate hypothesis (7.3) is of type E.

[(ii): With θ = (η1, . . . , ηr) and ϑ = (ηr+1, . . . , ns, σ), the test ϕ0, by Problem 7.5,
has the property of maximizing the surface integral

∫

S

[βϕ(η, σ2) − α] dA

among all similar (and hence all locally unbiased) tests where S = {(η1, . . . , ηr) :∑r
i=1 η2

i = ρ2σ2}. Letting ρ tend to zero and utilizing the conditions

βi
ϕ(ϑ) = 0,

∫

S

ηiηj dA = 0 for i += j,

∫

S

η2
i dA = k(ρσ),

one finds that ϕ0 maximizes
∑r

i=1 βii
ϕ (η, σ2) among all locally unbiased tests.

Since for any positive definite matrix, |(βij
ϕ )| ≤

∏
βii

ϕ , it follows that for any
locally strictly unbiased test ϕ,

|(βij
ϕ )| ≤

∏
βii

ϕ ≤
[
Σβii

ϕ

r

]r

≤
[
Σβii

ϕ0

r

]r

= [β11
ϕ0 ]

r = |(βij
ϕ0)|.]

Problem 8.7 Let Z1, . . . , Zn be identically independently distributed according
to a continuous distribution D, of which it is assumed only that it is symmetric
about some (unknown) point. For testing the hypothesis H : D(0) = 1

2 , the sign
test maximizes the minimum power against the alternatives K : D(0) ≤ q(q < 1

2 ).
[A pair of least favorable distributions assign probability 1 respectively to the
distributions F ∈ H, G ∈ K with densities

f(x) =
1 − 2q

2(1 − q)

(
q

1 − q

)[|x|]

, g(x) = (1 − 2q)

(
q

1 − q

)|[x]|

where for all x (positive, negative, or zero) [x] denotes the largest integer ≤ x.]

Problem 8.8 Let fθ(x) = θg(x) + (1 − θ)h(x) with 0 ≤ θ ≤ 1. Then fθ(x)
satisfies the assumptions of Lemma 8.2.1 provided g(x)/h(x) is a nondecreasing
function of x.

Problem 8.9 Let x = (x1, . . . , xn), and let gθ(x, ξ) be a family of probability
densities depending on θ = (θ1, . . . , θr) and the real parameter ξ, and jointly
measurable in x and ξ. For each θ, let hθ(ξ) be a probability density with respect
to a σ-finite measure ν such that pθ(x) =

∫
gθ(x, ξ)hθ(ξ) dν(ξ) exists. We shall

say that a function f of two arguments u = (u1, . . . , ur), v = (v1, . . . , vs) is non-
decreasing in (u, v) if f(u′, v)/f(u, v) ≤ f(u′, v′)/f(u, v′) for all (u, v) satisfying
ui ≤ u′

i, vj ≤ v′
j (i = 1, . . . , r; j = 1, . . . , s). Then pθ(x) is nondecreasing in (x, θ)

provided the product gθ(x, ξ)hθ(ξ) is (a) nondecreasing in (x, θ) for each fixed ξ;

7An interesting example of a type-D test is provided by Cohen and Sackrowitz (1975),
who show that the χ2-test of Chapter 14.3 has this property. Type D and E tests were
introduced by Isaacson (1951).
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(b) nondecreasing in (θ, ξ) for each fixed x; (c) nondecreasing in (x, ξ) for each
fixed θ.
[Interpreting gθ(x, ξ) as the conditional density of x given ξ, and hθ(ξ) as the a
priori density of ξ, let ρ(ξ) denote the a posteriori density of ξ given x, and let
ρ′(ξ) be defined analogously with θ′ in place of θ. That pθ(x) is nondecreasing in
its two arguments is equivalent to

∫
gθ(x

′, ξ)
gθ(x, ξ)

ρ(ξ) dν(ξ) ≤
∫

gθ′(x′, ξ)
gθ′(x, ξ)

ρ′(ξ) dν(ξ).

By (a) it is enough to prove that

D =

∫
gθ(x

′, ξ)
gθ(x, ξ)

[ρ′(ξ) − ρ(ξ)] dν(ξ) ≥ 0.

Let S− = {ξ : ρ′(ξ)/ρ(ξ) < 1} and S+ = {ξ : ρ(ξ)/ρ(ξ) ≥ 1}. By (b) the set S−
lies entirely to the left of S+. It follows from (c) that there exists a ≤ b such that

D = a

∫

S−

[ρ′(ξ) − ρ(ξ)] dν(ξ) + b

∫

S+

[ρ′(ξ) − ρ(ξ)] dν(ξ),

and hence that D = (b − a)
∫

S+
[ρ′(ξ) − ρ(ξ)] dν(ξ) ≥ 0.]

Problem 8.10 (i) Let X have binomial distribution b(p, n), and consider
testing H : p = p0 at level α against the alternatives ΩK : p/q ≤ 1

2p0/q0 or
≥ 2p0/q0. For α = .05 determine the smallest sample size for which there
exists a test with power ≥ .8 against ΩK if p0 = .1, .2, .3, .4, .5.

(ii) Let X1, . . . , Xn be independently distributed as N(ξ, σ2). For testing σ = 1
at level α = .05, determine the smallest sample size for which there exists
a test with power ≥ .9 against the alternatives σ2 ≤ 1

2 and σ2 ≥ 2.
[See Problem 4.5.]

Problem 8.11 Double-exponential distribution. Let X1, . . . , Xn be a sample
from the double-exponential distribution with density 1

2e−|x−θ|. The LMP test
for testing θ ≤ 0 against θ > 0 is the sign test, provided the level is of the form

α =
1
2n

m∑

k=0

(
n
k

)
,

so that the level-α sign test is nonrandomized.
[Let Rk (k = 0, . . . , n) be the subset of the sample space in which k of the X’s
are positive and n − k are negative. Let 0 ≤ k < l < n, and let Sk, Sl be subsets
of Rk, Rl such that P0(Sk) = P0(Sl) += 0. Then it follows from a consideration
of Pθ(Sk) and P0(Sl) for small θ that there exists ∆ such that Pθ(Sk) < Pθ(Sl)
for 0 < θ < ∆. Suppose now that the rejection region of a nonrandomized test
of θ = 0 against θ > 0 does not consist of the upper tail of a sign test. Then it
can be converted into a sign test of the same size by a finite number of steps,
each of which consists in replacing an Sk by an Sl with k < l, and each of which
therefore increases the power for θ sufficiently small.]
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Section 8.3

Problem 8.12 If (8.13) holds, show that q1 defined by (8.11) belongs to P1.

Problem 8.13 Show that there exists a unique constant b for which q0 defined
by (8.11) is a probability density with respect to µ, that the resulting q0 belongs
to P0, and that b → ∞ as ε0 → 0.

Problem 8.14 Prove the formula (8.15).

Problem 8.15 Show that if P0 += P1 and ε0, ε1 are sufficiently small, then
Q0 += Q1.

Problem 8.16 Evaluate the test (8.21) explicitly for the case that Pi is the
normal distribution with mean ξi and known variance σ2, and when ε0 = ε1.

Problem 8.17 Determine whether (8.21) remains the maximin test if in the
model (8.20) Gi is replaced by Gij .

Problem 8.18 Write out a formal proof of the maximin property outlined in
the last paragraph of Section 8.3.

Section 8.4

Problem 8.19 Let X1, . . . , Xn be independently normally distributed with
means E(Xi) = µi and variance 1. The test of H : µ1 = · · · = µn = 0 that
maximizes the minimum power over ω′ :

∑
µi ≥ d rejects when

∑
Xi ≥ C.

[If the least favorable distribution assigns probability 1 to a single point, in-
variance under permutations suggests that this point will be µ1 = · · · = µn =
d/n].

Problem 8.20 (i)8 In the preceding problem determine the maximin test if
ω′ is replaced by

∑
aiµi ≥ d, where the a’s are given positive constants.

(ii) Solve part (i) with V ar(Xi) = 1 replaced by V ar(Xi) = σ2
i (known).

[(i): Determine the point (µ∗
1, . . . , µ

∗
n) in ω′ for which the MP test of H against

K : (µ∗
1, . . . , µ

∗
n) has the smallest power, and show that the MP test of H against

K is a maximin solution.]

Problem 8.21 Let X1, . . . , Xn be independent normal variables with variance
1 and means ξ1, . . . , ξn, and consider the problem of testing H : ξ1 = · · · =
ξn = 0 against the alternatives K = {K1, . . . , Kn}, where Ki : ξj = 0 for j += i,
ξi = ξ (known and positive). Show that the problem remains invariant under
permutation of the X’s and that there exists a UMP invariant test φ0 which
rejects when

∑
e−ξxj > C, by the following two methods.

(i) The order statistics X(1) < · · · < X(n) constitute a maximal invariant.

8Due to Fritz Scholz.
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(ii) Let f0 and fi denote the densities under H and Ki respectively. Then the
level-α test φ0 of H vs. K′ : f = (1/n)

∑
fi is UMP invariant for testing

H vs. K.

[(ii): If φ0 is not UMP invariant for H vs. K, there exists an invariant test φ1

whose (constant) power against K exceeds that of φ0. Then φ1 is also more
powerful against K′.]

Problem 8.22 The UMP invariant test φ0 of Problem 8.21

(i) maximizes the minimum power over K;

(ii) is admissible.

(iii) For testing the hypothesis H of Problem 8.21 against the alternatives K′ =
{K1, . . . , Kn, K′

1, . . . , K
′
n}, where under K′

i : ξj = 0 for all j += i, ξi = −ξ,
determine the UMP test under a suitable group G′, and show that it is
both maximin and invariant.

[ii): Suppose φ′ is uniformly at least as powerful as φ0, and more powerful for at
least one Ki, and let

φ∗(x1, . . . , xn) =

∑
φ′(xi1 , . . . , xin)

n!
,

where the summation extends over all permutations. Then φ∗ is invariant, and
its power is independent of i and exceeds that of φ0.]

Problem 8.23 For testing H : f0 against K : {f1, . . . , fs}, suppose there exists
a finite group G = {g1, . . . , gN} which leaves H and K invariant and which is
transitive in the sense that given fj , fj′(1 ≤ j, j′) there exists g ∈ G such that
ḡfj = fj′ . In generalization of Problems 8.21, 8.22, determine a UMP invariant
test, and show that it is both maximin against K and admissible.

Problem 8.24 To generalize the results of the preceding problem to the testing
of H : f vs. K : {fθ, θ ∈ ω}, assume:

(i) There exists a group G that leaves H and K invariant.

(ii) Ḡ is transitive over ω.

(iii) There exists a probability distribution Q over G which is right-invariant in
the sense of Section 8.4.

Determine a UMP invariant test, and show that it is both maximin against K
and admissible.

Problem 8.25 Let X1, . . . , Xn be independent normal with means θ1, . . . , θn

and variance 1.

(i) Apply the results of the preceding problem to the testing of H : θ1 = · · · =
θn = 0 against K :

∑
θ2

i = r2, for any fixed r > 0.

(ii) Show that the results of (i) remain valid if H and K are replaced by
H ′ :

∑
θ2

i ≤ r2
0, K′ :

∑
θ2

i ≥ r2
1 (r0 < r1).
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Problem 8.26 Suppose in Problem 8.25(i) the variance σ2 is unknown and that
the data consist of X1, . . . , Xn together with an independent random variable S2

for which S2/σ2 has a χ2-distribution. If K is replaced by
∑

θ2
i /σ2 = r2, then

(i) the confidence sets
∑

(θi − Xi)
2/S2 ≤ C are uniformly most accurate

equivariant under the group generated by the n-dimensional generalization
of the group G0 of Example 6.11.2, and the scale changes X ′

i = cXi, S′2 =
c2S2.

(ii) The confidence sets of (i) are minimax with respect to the measure µ given
by

µ[C(X, S2)] =
1
σ2

[ volume of C(X, S2)].

[Use polar coordinates with θ2 =
∑

θ2
i .]

Section 8.5

Problem 8.27 Let X = (X1, . . . , Xp) and Y = (Y1, . . . , Yp) be independently
distributed according to p-variate normal distributions with zero means and
covariance matrices E(XiXj) = σij and E(YiYj) = ∆σij .

(i) The problem of testing H : ∆ ≤ ∆0 remains invariant under the group G of
transformations X∗ = XA, Y ∗ = Y A, where A = (aij) is any nonsingular
p × p matrix with aij = 0 for i > j, and there exists a UMP invariant test
under G with rejection region Y 2

1 /X2
1 > C.

(ii) The test with rejection region Y 2
1 /X2

1 > C maximizes the minimum power
for testing ∆ ≤ ∆0 against ∆ ≥ ∆1 (∆0 < ∆1).
[(ii): That the Hunt–Stein theorem is applicable to G can be proved in steps
by considering the group Gq of transformations X ′

q = α1X1 + · · · + αqXq,
X ′

i = Xi for i = 1, . . . , q − 1, q + 1, . . . , p, successively for q = 1,
. . . , p − 1. Here αq += 0, since the matrix A is nonsingular if and only if
aii += 0 for all i. The group product (γ1, . . . , γq) of two such transformations
(α1, . . . , αq) and (β1, . . . , βq) is given by γ1 = αq +β1, γ2 = a2βq +β2, . . . ,
γq−1 = αq−1βq + βq−1, γq = αq, βq, which shows Gq to be isomorphic
to a group of scale changes (multiplication of all components by βq) and
translations [addition of (β1, . . . , βq−1, 0)]. The result now follows from the
Hunt–Stein theorem and Example 8.5.1, since the assumptions of the Hunt–
Stein theorem, except for the easily verifiable measurability conditions,
concern only the abstract structure (G,B), and not the specific realization
of the elements of G as transformations of some space.]

Problem 8.28 Suppose that the problem of testing θ ∈ ΩH against θ ∈ ΩK

remains invariant under G, that there exists a UMP almost invariant test ϕ0

with respect to G, and that the assumptions of Theorem 8.5.1 hold. Then ϕ0

maximizes infΩK [w(θ)Eθϕ(X) + u(θ)] for any weight functions w(θ) ≥ 0, u(θ)
that are invariant under Ḡ.

Problem 8.29 Suppose X has the multivariate normal distribution in Rk with
unknown mean vector h and known positive definite covariance matrix C−1.
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Consider testing h = 0 versus |C1/2h| ≥ b for some b > 0, where | · | denotes the
Euclidean norm.
(i) Show the test that rejects when |C1/2X|2 > ck,1−α is maximin, where ck,1−α

denotes the 1 − α quantile of the Chi-squared distribution with k degrees of
freedom.
(ii) Show that the maximin power of the above test is given P{χ2

k(b2) > ck,1−α},
where χ2

k(b2) denotes a random variable that has the noncentral Chi-squared
distribution with k degrees of freedom and noncentrality parameter b2.

Problem 8.30 Suppose X1, . . . , Xk are independent, with Xi ∼ N(θi, 1). Con-
sider testing the null hypothesis θ1 = · · · = θk = 0 against max |θi| ≥ δ, for some
δ > 0. Find a maximin level α test as explicitly as possible. Compare this test
with the maximin test if the alternative parameter space were

∑
i θ2

i ≥ δ2. Argue
they are quite similar for small δ. Specifically, consider the power of each test
against (δ, 0, . . . , 0) and show that it is equal to α + Cαδ2 + o(δ2) as δ → 0, and
the constant Cα is the same for both tests.

Section 8.6

Problem 8.31 Existence of most stringent tests. Under the assumptions of
Problem 8.1 there exists a most stringent test for testing θ ∈ ΩH against θ ∈
Ω − ΩH .

Problem 8.32 Let {Ω∆} be a class of mutually exclusive sets of alternatives
such that the envelope power function is constant over each Ω∆ and that
∪Ω∆ = Ω − ΩH , and let ϕ∆ maximize the minimum power over Ω∆. If ϕ∆ = ϕ
is independent of ∆, then ϕ is most stringent for testing θ ∈ ΩH .

Problem 8.33 Let (Z1, . . . , ZN ) = (X1, . . . , Xm, Y1, . . . , Yn) be distributed ac-
cording to the joint density (5.55), and consider the problem of testing H : η = ξ
against the alternatives that the X’s and Y ’s are independently normally dis-
tributed with common variance σ2 and means η += ξ. Then the permutation test
with rejection region |Ȳ − X̄| > C[T (Z)], the two-sided version of the test (5.54),
is most stringent.
[Apply Problem 8.32 with each of the sets Ω∆ consisting of two points (ξ1, η1, σ),
(ξ2, η2, σ) such that

ξ1 = ζ − n
m + n

δ, η1 = ζ +
m

m + n
δ;

ξ2 = ζ +
n

m + n
δ, η2 = ζ − m

m + n
δ

for some ζ and δ.]

Problem 8.34 Show that the UMP invariant test of Problem 8.21 is most
stringent.
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8.8 Notes

The concepts and results of Section 8.1 are essentially contained in the minimax
theory developed by Wald for general decision problems. An exposition of this
theory and some of its applications is given in Wald’s book (1950). For more
recent assessments of the important role of the minimax approach, see Brown
(1994, 2000). The ideas of Section 8.3, and in particular Theorem 8.3.1, are
due to Huber (1965) and form the core of his theory of robust tests [Huber
(1981, Chapter 10)]. The material of sections 8.4 and 8.5, including Lemma 8.4.1,
Theorem 8.5.1, and Example 8.5.2, constitutes the main part of an unpublished
paper of Hunt and Stein (1946).



9
Multiple Testing and Simultaneous
Inference

9.1 Introduction and the FWER

When testing more than one parameter, say

H: θ1 = · · · = θs = 0 (9.1)

against the alternatives that one or more of the θ’s are positive, it is typically not
enough simply to accept or reject H. In case of acceptance, nothing more is re-
quired: the finding is that none of the parameter values are significant. However,
when H is rejected, one will in most cases want to know just which of the param-
eters θ are significant. And when H is tested against the two-sided alternatives
that one or more of the θ’s are different from 0, one would in case of rejection
usually want to know the signs of the significant θ’s.1

Example 9.1.1 (Normal one-sample problem) Suppose that X1, . . . , Xn is
a sample from N(ξ, σ2) and consider the hypothesis H: ξ ≤ ξ0, σ ≤ σ0. In case of
rejection one would want to know whether it is the mean or the variance that is
rejected, or perhaps both.

Whentest-
ing several treatments against a control, the overall null hypothesis states that
none of the treatments is an improvement over, or differs from, the control. In case
of rejection one will wish to know just which of the treatments show a significant
difference.

1We shall here disregard this latter issue, but see Comment 2 at the end of Section
9.3.

Example 9.1.2 (Comparing several treatments with a control)
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Example 9.1.3 (Testing equality of several treatments) Instead of com-
paring several treatments with a control, one may wish to compare a number
of possible alternative situations with each other. If the quality of the ith of s
alternatives is measured by a parameter θi, the hypothesis is

H: θ1 = · · · = θs . (9.2)

Since most multiple testing problems, like those in Examples 9.1.2 and 9.1.3,
are concerned with multiple comparisons, the whole subject of multiple testing is
frequently, and somewhat inaccurately, called multiple comparisons.

When comparing several medical, agricultural, or industrial treatments, the
numbers of treatments is typically fairly small, say, in the single digits. Larger
numbers occur in some educational studies, where for example it may be desired
to compare performance in the 50 of the U.S. states. A fairly recent application of
multiple comparison theory occurs in microarrays where thousands or even tens
of thousands of genes are tested simultaneously. Each microarray corresponds to
one unit (plant, animal or person) and in these experiments the sample size (the
number of such units) is typically of a much smaller order of magnitude (in the
tens) than the number of comparisons being tested.

Let us now consider the general problem of simultaneously testing a finite
numbers of hypotheses Hi (i = 1, . . . , s). We shall assume that tests for the
individual hypotheses are available and the problem is how to combine them into
a simultaneous test procedure.

The easiest approach is to disregard the multiplicity and simply test each hy-
pothesis at level α. However, with such a procedure the probability of one or more
false rejections rapidly increases with s. When the number of true hypotheses is
large, we shall be nearly certain to reject some of them. To get a numerical idea
of this phenomenon, the following Table shows (to 2 decimals) the probability
of one or more false rejections when all of the hypotheses H1, . . . , Hs are true,
when the test statistics used for testing H1, . . . , Hs are independent, and when
the level at which each of the s hypotheses is tested is α = .05.

s 1 2 5 10 50
P(at least one false rejection) .05 .10 .23 .40 .92

In this sense the claim that the procedure controls the probability of false
rejections at level .05 is clearly very misleading.

We shall therefore in the present chapter replace the usual condition for testing
a single hypothesis, that the probability of a false rejection not exceed α, by the
requirement, when testing several hypotheses, that the probability of one or more
false rejections, not exceed a given level. This probability is called the family-wise
error rate (FWER). Here the term “family” refers to the collection of hypotheses
H1, . . . , Hs that is being considered for joint testing. In a laboratory testing blood
samples, this might be all the tests performed in a day, or those performed in a
day by a given tester. Alternatively, the tests given in the morning and afternoon
might be considered as separate families, and so on. Which tests are to be treated
jointly as a family depends on the situation.
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Once the family has been defined, we shall require that

FWER ≤ α (9.3)

for all possible constellations of true and false hypotheses. This is sometimes
called strong error control to distinguish it from the much weaker (and typically
not very meaningful) condition of weak control which requires (9.3) to hold only
when all the hypotheses of the family are true.

Methods that control the FWER are often described by the p-values of the
individual tests, which were introduced in Section 3.2. We now present two simple
methods that control the FWER which can be stated easily in terms of p-values.
Each hypothesis Hi can be viewed as a subset, ωi, of Ω. Assume that p̂i is a
p-value for testing Hi; specifically, we assume

P{p̂i ≤ u} ≤ u (9.4)

for any u ∈ (0, 1) and any P ∈ ωi. Note that it is not required that the distribution
of p̂i be uniform on (0, 1) whenever Hi is true. (For example, if Hi corresponds
to testing θi ≤ 0 but the true θi is < 0, exact uniformity is too strong. Also, even
if the null hypothesis is simple, the p-value may have a discrete distribution.)

Theorem 9.1.1 (Bonferroni Procedure) If, for i = 1, . . . , s, hypothesis Hi is re-
jected when p̂i ≤ α/s, then the FWER for the simultaneous testing of H1, . . . , Hs

satisfies (9.3).

Proof. Suppose hypotheses Hi with i ∈ I are true and the remainder false, with
|I| denoting the cardinality of I. From the Bonferroni inequality it follows that

FWER = P{reject any Hi with i ∈ I} ≤
∑

i∈I

P{reject Hi}

=
∑

i∈I

P{p̂i ≤
α
s
} ≤

∑

i∈I

α
s
≤ |I|α/s ≤ α .

While such Bonferroni based procedures satisfactorily control the FWER, their
ability to detect cases in which Hi is false will typically be very low since Hi is
tested at level α/s which - particularly if s is large - is orders smaller than the
conventional α levels.

For this reason procedures are prized for which the levels of the individual
tests are increased over α/s without an increase in the FWER. It turns out that
such a procedure due to Holm (1979) is available under the present minimal
assumptions.

The Holm procedure can conveniently be stated in terms of the p-values
p̂1, . . . , p̂s of the s individual tests. Let the ordered p-values be denoted by
p̂(1) ≤ . . . ≤ p̂(s), and the associated hypotheses by H(1), . . . , H(s). Then the
Holm procedure is defined stepwise as follows:

Step 1. If p̂(1) ≥ α/s, accept H1, . . . , Hs and stop. If p̂(1) < α/s reject H(1) and
test the remaining s − 1 hypotheses at level α/(s − 1).

Step 2. If p̂(1) < α/s but p̂(2) ≥ α/(s − 1), accept H(2), . . . , H(s) and stop. If
p̂(1) < α/s and p̂(2) < α/(s − 1), reject H(2) in addition to H(1) and test the
remaining s − 2 hypotheses at level α/(s − 2).
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And so on.

Theorem 9.1.2 The Holm procedure satisfies (9.3).

Proof. Suppose Hi with i ∈ I is the set of true hypotheses, so P ∈ ωi if and
only if i ∈ I. Let j be the smallest (random) index satisfying

p̂(j) = min
i∈I

p̂i .

Note that j ≤ s − |I| + 1. Now, the Holm procedure commits a false rejection if

p̂(1) ≤ α/s, p̂(2) ≤ α/(s − 1), . . . , p̂(j) ≤ α/(s − j + 1) ,

which certainly implies that

min
i∈I

p̂i = p̂(j) ≤ α/(s − j + 1) ≤ α/|I| .

Therefore, by the Bonferroni inequality, the probability of a false rejection is
bounded above by

P{min
i∈I

p̂i ≤ α/|I|} ≤
∑

i∈I

P{p̂i ≤ α/|I|} ≤ α .

The Bonferroni method is an example of a single-step procedure, meaning any
hypothesis is rejected if its corresponding p-value is less than a common cutoff
value (which in the Bonferroni case is α/s). The Holm procedure is a special
case of a class of stepdown procedures, which we now briefly describe. Roughly
speaking, stepdown procedures begin by determining whether the test that looks
most significant should be rejected. If each individual test is summarized by a
p-value, this can be described as follows. Let

α1 ≤ α2 ≤ · · · ≤ αs (9.5)

be constants. If p̂(1) ≥ α1, accept all hypotheses. Otherwise, for r = 1, . . . , s,
reject hypotheses H(1), . . . , H(r) if

p̂(1) < α1, . . . , p̂(r) < αr . (9.6)

That is, a stepdown procedure starts with the most significant p-value and con-
tinues rejecting hypotheses as long as their corresponding p-values are small. The
Holm procedure uses αi = α/(s − i + 1). (Alternatively, if the rejection region
of each test corresponds to large value of a test statistic, a stepdown procedure
begins by determining whether or not the hypothesis corresponding to the largest
test statistic should be rejected; see Procedure 9.1.1 below.)

On the other hand, stepup procedures begin by looking at the least significant
p-value (or the smallest value of a test statistic when the individual tests reject for
large values). For a given set of constants (9.5), reject all hypotheses if p̂(s) < αs.
Otherwise, for r = s, . . . , 1, reject hypotheses H(1), . . . , H(r) if

p̂(s) ≥ αs, . . . , p̂(r+1) ≥ αr+1 but p̂(r) < αr . (9.7)

Safeguards against false rejections are of course not the only concern of multiple
testing procedures. Corresponding to the power of a single test one must also
consider the ability of a multiple test procedure to detect departures from the
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hypotheses when they do occur. For certain parametric models, optimality results
for some stepwise procedures will be developed in the next section. For now, we
show that it is possible to improve upon the Holm method by incorporating the
dependence structure of the individual tests.

To see how, suppose that a test of the individual hypothesis Hj is based on a
test statistic Tn,j , with large values indicating evidence against Hj . (The use of
the subscript n in the test statistics will be for asymptotic purposes later on.)

If P is the true probability distribution generating the data, let I = I(P ) ⊂
{1, . . . , s} denote the indices of the set of true hypotheses; that is, i ∈ I if and
only P ∈ ωi. For K ⊂ {1, . . . , s}, let HK denote the intersection hypothesis that
all Hi with i ∈ K are true; that is, HK is equivalent to P ∈

⋂
i∈K ωi. In order

to improve upon the Holm method, the basic idea is to use critical values that
more accurately approximate the distribution of maxj∈K Tn,j when testing HK ,
at least when K is in fact true. Let

Tn,r1 ≥ Tn,r2 ≥ · · · ≥ Tn,rs (9.8)

denote the observed ordered test statistics, and let H(1), H(2), . . . , H(s) be the cor-
responding hypotheses. A stepdown procedure begins with the most significant
test statistic. First, test the joint null hypothesis H{1,...,s} that all hypotheses
are true. This hypothesis is rejected if Tn,r1 is large. If it is not large, accept
all hypotheses; otherwise, reject the hypothesis corresponding to the largest test
statistic. Once a hypothesis is rejected, remove it and test the remaining hypothe-
ses by rejecting for large values of the maximum of the remaining test statistics,
and so on. To be specific, consider the following generic procedure, based on crit-
ical values ĉn,K(1−α), where ĉn,K(1−α) is designed for testing the intersection
hypothesis HK at nominal level α. Although we are not specifying the constants
at this point, we note that they could be nonrandom or data-dependent.

Procedure 9.1.1 (Generic Stepdown Method)

1. Let K1 = {1, . . . , s}. If Tn,r1 ≤ ĉn,K1(1 − α), then accept all hypotheses
and stop; otherwise, reject H(1) and continue.

2. Let K2 be the indices of the hypotheses not previously rejected. If Tn,r2 ≤
ĉn,K2(1 − α), then accept all remaining hypotheses and stop; otherwise,
reject H(2) and continue.

...

j. Let Kj be the indices of the hypotheses not previously rejected. If Tn,rj ≤
ĉn,Kj (1 − α), then accept all remaining hypotheses and stop; otherwise,
reject H(j) and continue.

...

s. If Tn,s ≤ ĉn,Ks(1 − α), then accept H(s); otherwise, reject H(s).

The problem now is how to construct the ĉn,K(1 − α) so that the FWER is
controlled. The following result reduces the multiple testing problem of control-
ling the FWER to that of constructing single tests that control the probability
of a Type 1 error.
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Theorem 9.1.3 Let P denote the true distribution generating the data. Consider
Procedure 9.1.1 based on critical values ĉn,K(1−α) which satisfy the monotonicity
requirement: for any K ⊃ I(P ),

ĉn,K(1 − α) ≥ ĉn,I(P )(1 − α) . (9.9)

(i) Then,

FWERP ≤ P{max(Tn,j : j ∈ I(P )) > ĉn,I(P )(1 − α)} . (9.10)

(ii) Also suppose that if ĉn,K(1 − α) is used to test the intersection hypothesis
HK , then it is level α when K = I(P ); that is,

P{max(Tn,j : j ∈ I(P )) > ĉn,I(P )(1 − α)} ≤ α . (9.11)

Then FWERP ≤ α.

Proof. Consider the event that a true hypothesis is rejected, so that for some
i ∈ I(P ), hypothesis Hi is rejected. Let ĵ be the smallest index j in the method
where this occurs, so that

max{Tn,j : j ∈ I(P )} > ĉn,Kĵ
(1 − α) . (9.12)

Since Kĵ ⊃ I(P ), assumption (9.9) implies

ĉn,Kĵ
(1 − α) ≥ ĉn,I(P )(1 − α) (9.13)

and so (i) follows. Part (ii) follows immediately from (i).

Example 9.1.4 (Multivariate Normal Mean) Suppose (X1, . . . , Xs) is mul-
tivariate normal with unknown mean µ = (µ1, . . . , µs) and known covariance
matrix Σ having (i, j) component σi,j . Consider testing Hj : µj ≤ 0 versus
µj > 0. Let Tn,j = Xj/

√
σj,j , since the test that rejects for large Xj/

√
σj,j is

UMP for testing Hj . To apply Theorem 9.1.3, let ĉn,K(1−α) be the 1−α quantile
of the distribution of max(Tn,j : j ∈ K) when µ = 0. Since

max(Tn,j : j ∈ I) ≤ max(Tn,j : j ∈ K)

whenever I ⊂ K, the monotonicity requirement (9.9) is satisfied. Moreover, the
resulting test procedure rejects at least as many hypotheses as the Holm proce-
dure (Problem 9.5) In the special case when σi,i = σ2 is independent of i and σi,j

as the product structure σi,j = λiλj , then Appendix 3 (p.374) of Hochberg and
Tamhane (1987) reduces the problem of determining the distribution of the max-
imum of a multivariate normal vector to a univariate integral. In general, one can
resort to simulation to approximate the critical values; see Example 11.2.13.

Example 9.1.5 (One-way Layout) Suppose for i = 1, . . . , s and j =
1, . . . , ni, Xi,j = µi + εi,j , where the εi,j are i.i.d. N(0, σ2); the vector µ =
(µ1, . . . , µs) and σ2 are unknown. Consider testing Hi : µi = 0 against µi += 0.

Let tn,i = n1/2
i X̄i·/S, where

X̄i· = n−1
i

ni∑

j=1

Xi,j , S2 =
s∑

i=1

ni∑

j=1

(Xi,j − X̄i·)
2/ν ,
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and ν =
∑

i(ni−1). Under Hi, tn,i has a t-distribution with ν degrees of freedom.
Let Tn,i = |tn,i|, and let ĉn,K(1−α) denote the 1−α quantile of the distribution
of max(Tn,i : i ∈ K) when µ = 0 and σ = 1. Since

max(Tn,i : i ∈ I) ≤ max(Tn,i : i ∈ K) ,

the monotonicity requirement (9.9) follows. Note that the joint distribution of
(tn,1, . . . , tn,s) follows an s-variate multivariate t-distribution with ν degrees of
freedom; see Hochberg and Tamhane (1987, p.374-5).

When the number of tests is in the tens or hundreds of thousands, control of
the FWER at conventional levels becomes so stringent that individual departures
from the hypothesis have little chance of being detected, and it is unreasonable
to control the probability of even one false rejection. A radical weakening of the
FWER was proposed by Benjamini and Hochberg (1995), who suggested the
following. For a given multiple testing decision rule, let N be the total number
of rejections and let F be the number of false rejections, i.e., the number of
rejections among the N rejections corresponding to true null hypotheses. Define
Q to be F/N (and defined to be 0 if N = 0). Thus Q is the proportion of
rejected hypotheses that are rejected erroneously. When none of the hypotheses
are rejected, both numerator and denominator of that proportion are 0, and Q
is then defined to be 0. The false discovery rate (FDR) is

FDR = E(Q). (9.14)

When all hypotheses are true, FDR = FWER. In general, FDR ≤ FWER
(Problem 9.9), and typically this inequality is strict, so that the FDR is more
liberal (in the sense of permitting more rejections) than the FWER. The FDR is
a fairly recent idea, and its properties and behavior are the subject of very active
research. We shall here only mention some recent papers on this topic: Finner
and Roters (2001), Benjamini and Yekutielli (2001) and Sarkar (2002).

9.2 Maximin Procedures

In the present section we shall obtain optimal procedures for a class of problems
of the kind illustrated in Examples 9.1.1 and 9.1.2.

Consider the general problem of testing simultaneously s hypotheses Hi: θi ≤ 0
against the alternatives θi > 0, (i = 1, . . . , s) and suppose that we would reject
the individual hypotheses Hi if a test statistic Ti were sufficiently large. The joint
c.d.f. of (T1, . . . , Ts) will be denoted by Fθ, θ = (θ1, . . . , θs), and we shall assume
that the marginal distribution of Ti depends only on θi. The parameter and
sample space will be assumed to be finite or infinite open rectangles θi < θi < θi

and ti < ti < ti respectively. For ease of notation we shall suppose that

θi = ti = −∞ and θi = ti = ∞ for all i .

We shall assume further that, for any B,

Pθi{Ti ≤ B} → 1 as θi → −∞ and Pθi{Ti ≥ B} → 1 as θi → +∞ .

A crucial assumption will be that the distributions Fθ are stochastically in-
creasing in the following sense, which generalizes the univariate definition in
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Section 3.4 to s dimensions. A set ω in RI s is said to be monotone increasing if

t = (t1, . . . , ts) ∈ ω and ti ≤ t′i for all i implies t′ ∈ ω ,

and the distributions Fθ will be called stochastically increasing if θi ≤ θ′
i for all

i implies
∫

ω

dFθ ≤
∫

ω

dFθ′ (9.15)

for every monotone increasing set ω.
The condition will be assumed not only for the distributions of (T1, . . . , Ts)

but also for (±T1, . . . ,±Ts). Thus, for example, for (−T1, . . . ,−Ts) it means that
for any decreasing region the inequality (9.15) will be reversed. A class of models
for which (9.15) holds is given in Problem 9.10.

For the sake of simplicity, we shall suppose that when θ1 = . . . = θs, the
variables (T1, . . . , Ts) are exchangeable, i.e., that the joint distribution is invariant
under permutations of the components. In addition, we assume that the joint
distribution of (T1, . . . , Ts) has a density with respect to Lebesgue measure.2 In
order for the critical constants to be uniquely defined, we further assume that
the joint density is positive on its (assumed rectangular) region of support, but
this can be weakened.

Under these assumptions we shall restrict attention to decision rules satisfying
the following monotonicity condition. A decision procedure E for the simulta-
neous testing of H1, . . . , Hs based on T = (T1, . . . , Ts) states for each possible
observation vector t the subset It of {1, . . . , s} of values i for which the hypothesis
Hi is rejected. A decision rule E is said to be monotone increasing if ti ≤ t′i for
i ∈ It and t′i < ti for i /∈ It implies that It = It′ .

The ordered T -values will be denoted by T(1) ≤ T(2) ≤ · · · ≤ T(s) and the
corresponding hypotheses by H(1), . . . , H(s). Consider the following monotone
decision procedure D, which can be viewed as an application of Procedure 9.1.1.

The Stepdown Procedure D:
Step 1. If T(s) < C1, accept H1, . . . , Hs. If T(s) ≥ C1 but T(s−1) < C2, reject H(s)

and accept H(1), . . . , H(s−1).
Step 2. If T(s) ≥ C1, and T(s−1) ≥ C2, but T(s−2) < C3 reject H(s) and H(s−1)

and accept H(1), . . . , H(s−2).
And so on. The C’s are determined by

P0, . . . , 0︸ ︷︷ ︸
j

{max(T1, . . . , Tj) ≥ Cs−j+1} = α , (9.16)

and therefore the C’s are nonincreasing.

Lemma 9.2.1 Under the above assumptions, the procedure D with critical
constants given by (9.16) controls the FWER in the strong sense.

2This assumption is used only so that the critical constants of the optimal procedures
lead to control at exact level α.
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Proof. Apply Theorem 9.1.3 with ĉn,K(1 − α) = Cs−|K|+1, where |K| is the
cardinality of K. Then, by the monotonicity of the Cs, condition (9.9) holds. We
must verify (9.11) for every Pθ. Suppose θ is such that exactly p hypotheses are
true. By exchangeability, we can assume H1, . . . , Hp are true and Hp+1, . . . , Hs

are false. A false rejection occurs if and only if at least one of H1, . . . , Hp is
rejected. Since D is monotone, the probability of this event is largest when

θ1 = · · · = θp = 0 and θp+1 → ∞, · · · , θs → ∞ ,

and, by (9.16), the sup of this probability is equal to

P0, . . . , 0︸ ︷︷ ︸
p

{Ti ≥ Cs−p+1 for some i = 1, . . . , p} = α .

The procedure D defined above is an example of a stepdown procedure in that
it starts with the most significant (or, in this case, the largest) test statistic and
continues rejecting hypotheses as long as their corresponding test statistics are
large. In contrast, stepup procedures begin with the least significant test statistic.
Consider the following monotone stepup procedure U .

The Stepup Procedure U :
Step 1. If T(1) > C∗

1 reject H1, . . . , Hs. If T(1) ≤ C∗
1 but T(2) > C∗

2 , accept H(1)

and reject H(2), . . . , H(s).
Step 2. If T(1) ≤ C∗

1 , and T(2) ≤ C∗
2 but T(3) > C∗

3 , accept H(1) and H(2) and
reject H(3), . . . , H(s).
And so on. The C∗’s are determined by

P0, . . . , 0︸ ︷︷ ︸
j

{Lj} = 1 − α , (9.17)

where

Lj = {Tπ(1) ≤ C∗
1 , . . . , Tπ(j) ≤ C∗

j for some permutation of {1, . . . , j}} .

The following lemma proves control of the FWER and is left as an exercise
(Problem 9.11).

Lemma 9.2.2 Under the above assumptions, the stepup procedure U with critical
constants given by (9.17) controls the FWER in the strong sense.

Subject to controlling the FWER we want to maximize what corresponds to
the power of a single test, i.e., the probability of rejecting hypotheses that are in
fact false. Let

βi(θ) = Pθ{reject at least i hypotheses}

and, for any ε > 0, let Ai(ε) denote the set in the parameter space for which at
least i of the θ’s are > ε. Then we shall be interested in maximizing

inf
θ∈Ai(ε)

βi(θ) for i = 1, 2, . . . , s. (9.18)

This is in the same spirit as the maximin criterion of Chapter 8. However, it is
the false hypotheses we should like to reject, and so we also consider maximizing

inf
θ∈Ai(ε)

Pθ{reject at least i false hypotheses} . (9.19)
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We note the following obvious fact.

Lemma 9.2.3 Under (9.15), for any monotone increasing procedure E, the
functions βi(θ1, . . . , θs) are nondecreasing in each of the variables θ1, . . . , θs.

For the sake of simplicity we shall now consider the maximin problem first
for the case s = 2. Corresponding to any decision rule E, let e0,0 denote the
part of the sample space where both hypotheses are accepted, e0,1 where H1 is
accepted and H2 is rejected, e1,0 where H1 is rejected and H2 is accepted, and
e1,1 where both H1 and H2 are rejected. The following is an optimality result
for the stepdown procedure D. It will be convenient in the following theorem to
restate the procedure D in the case s = 2.

Theorem 9.2.1 Assume the conditions described at the beginning of this section.
(i) A monotone increasing decision procedure with FWER ≤ α will maximize
(9.18) for i = 1 if and only if it rejects at least one hypothesis when

max(T1, T2) ≥ C1 , (9.20)

in which case Hi is rejected if Ti > C1; in the contrary case, both hypotheses are
accepted. The constant C1 is determined by

P0,0{max(T1, T2) ≥ C1} = α (9.21)

The minimum value of β1(θ) over A1(ε) is Pε{Ti ≥ C1}.
(ii) A monotone increasing decision rule with FWER ≤ α and satisfying (9.20)
will maximize (9.18) for i = 2 if and only if it takes the following decisions:
d0,0: accept H1 and H2 when max(T1, T2) < C1

d1,0: reject H1 and accept H2 when T1 ≥ C1 and T2 < C2

d0,1: accept H1 and reject H2 when T1 < C2 and T2 ≥ C1

d1,1: reject both H1 and H2 when both T1 and T2 are ≥ C2 (and when 9.20 holds).
Here C2 is determined by

P0{Ti ≥ C2} = α, (9.22)

and hence C2 < C1.
The minimum probability over A2(ε) of rejecting both hypotheses is

Pε,ε{at least one Ti is ≥ C1 and both are ≥ C2} .

(iii) The result (i) holds if the criterion (9.18) is replaced by (9.19) with i = 1,
and Pε{Ti ≥ C1} is also the maximum value of criterion (9.19).

Proof. To prove (i), note that the claimed optimal solution has minimum power
when θ = (ε,−∞) and D has Pε{T1 ≥ C1} for the claimed optimal value of
β1(θ). Now, suppose that E is any other monotone decision rule with FWER
≤ α. Assume there exists (t1, t2) /∈ d0,0, i.e., rejecting at least one hypothesis,
but (t1, t2) ∈ e0,0. Then, there exists at least one component of (t1, t2) that is
≥ C1, say t1 ≥ C1. It follows that

Pε,−∞{e0,0} ≥ Pε,−∞{T1 < t1, T2 < t2} = Pε{T1 < t1} > Pε{T1 < C1}

and hence

Pε,−∞{ec
0,0} < Pε,−∞{T1 ≥ C1} = Pε{T1 ≥ C1} .
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Thus, E has a smaller value of criterion (9.18) than does the claimed optimal
D. Therefore, e0,0 cannot have points outside of d0,0, i.e., e0,0 must be a proper
subset of d0,0. But then, since both procedures are monotone, ec

0,0 is bigger than
dc
0,0 on a set of positive Lebesgue measure and so

P0,0{ec
0,0} > P0,0{dc

0,0} = α .

It follows that for the maximin procedure, the region dc
0,0 must be given by (9.20).

To prove (ii), the goal now is to show that, among all monotone nondecreasing
procedures which control the FWER and satisfy (9.20), D maximizes

inf
A2(ε)

β2(θ) = inf
A2(ε)

Pθ{d1,1} .

To prove this, consider any other monotone procedure E which controls the
FWER and satisfying e0,0 = d0,0, and suppose that e1,1 contains a point (t1, t2)
with ti < C2 for some i, say t1 < C2. Then, since E is monotone, it contains the
quadrant {T1 ≥ t1, T2 ≥ t2}, and hence

P0,∞{e1,1} ≥ P0,∞{T1 ≥ t1, T2 ≥ t2} = P0{T1 ≥ t1} > P0{T1 ≥ C2} = α ,

which contradicts strong control. It follows that e1,1 is a proper subset of d1,1,
and

Pθ{e1,1} < Pθ{d1,1} for all θ .

Since the inf over A2(ε) of both sides is attained at (ε, ε),

inf
A2(ε)

Pθ{e1,1} < inf
A2(ε)

Pθ{d1,1} ,

as was to be proved.
To prove (iii), observe that, for any θ,

Pθ{rejecting at least one false Hi} ≤ Pθ{rejecting at least one Hi} ,

and so

inf
θ∈A1(ε)

Pθ{rejecting at least one false Hi} ≤ inf
θ∈A1(ε)

Pθ{rejecting at least one Hi} .

But, the right side is Pε{T1 > C1}, and so it suffices to show that D satisfies

inf
θ∈A1(ε)

Pθ{D rejects at least one false Hi} = Pε{T1 > C1} .

But, this last result is easily checked.
Finally, once d0,0 and d1,1 are determined, so are d0,1 and d1,0 by monotonicity,

and this completes the proof.
Theorem 9.2.1 provides the maximin test which first maximizes inf β1(θ) and

then inf β2(θ). In the next result, the order in which these aspects are maximized
is reversed, which results in the stepup procedure U being optimal.

Theorem 9.2.2 Assume the conditions described at the beginning of this section.
(i) A monotone decision rule with FWER ≤ α will maximize (9.18) for i = 2 if
and only if it rejects both hypotheses, i.e., takes decision u1,1, when

min(T1, T2) ≥ C∗
1 (9.23)



9.2. Maximin Procedures 359

and accepts Hi if Ti < C∗
1 , where C∗

1 = C2 is determined by (9.22). Its minimum
power β2(θ) over A2(ε) is

Pε{min(T1, T2) ≥ C∗
1} . (9.24)

(ii) The monotone procedure with FWER ≤ α and satisfying (9.23) maximizes
(9.18) for i = 1 if and only it takes the following decisions:

u0,1 = {T1 < C∗
1 , T2 ≥ C∗

2}

u1,0 = {T1 ≥ C∗
2 , T2 < C∗

1}

u0,0 = {T1 < C∗
1 , T2 < C∗

2}
⋂

uc
1,1 ,

where C∗
2 is determined by

P0,0{uc
0,0} = α . (9.25)

Its minimum power β1(θ) over A1(ε) is

Pε{Ti ≥ C∗
2} . (9.26)

(iii) The result (ii) holds if criterion (9.18) with i = 1 is replaced by (9.19) with
i = 1.

Note that

C∗
1 = C2 < C1 < C∗

2 . (9.27)

Also, the best minimum power β1(θ) over A1(ε) for the procedure of Theorem
9.2.1 exceeds that for Theorem 9.2.2, while the situation is reversed for the best
minimum power of β2(θ) over A2(ε). This is, of course, as it must be since the
first of these two procedures maximized the minimum value of β1(θ) over A1(ε)
while the second maximized the minimum value of β2(θ) over A2(ε).

Proof. (i) Suppose that E is any other monotone procedure with FWER ≤ α.
Assume there exists (t1, t2) ∈ e1,1 such that ti < C∗

1 for some i, say t1 < C∗
1 .

Then,

P0,∞{e1,1} ≥ P0,∞{T1 ≥ t1, T2 ≥ t2} = P0{T1 ≥ t1} > P0{T1 ≥ C∗
1} = α ,

which would violate the FWER condition. Therefore, e1,1 ⊂ u1,1. But then

inf
A2(ε)

β2(θ)

is smaller for E than for U , as was to be proved.
(ii) Note that the claimed solution infA1(ε) β(θ) is given by

inf
θ∈A1(ε)

Pθ{uc
0,0} = Pε,−∞{uc

0,0} = Pε{T1 ≥ C∗
1} .

We now seek to determine u0,0, as in Theorem 9.2.1, but with the added constraint
that u0,0 ⊂ uc

1,1.
To prove optimality for the claimed solution, suppose that E is another mono-

tone procedure controlling FWER at α, and satisfying e1,1 = u1,1 with u1,1 given
by (9.23). Assume (t1, t2) ∈ e0,0 but /∈ u0,0, so that Ti > C∗

2 for some i, say
i = 1. Then,

Pε,−∞{e0,0} ≥ Pε,−∞{T1 ≤ t1, T2 ≤ t2} = Pε{T1 ≤ t1} > Pε{T1 > C∗
2} .
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Hence,

Pε,−∞{ec
0,0} < Pε{T1 > C∗

2} ,

so that E cannot be optimal. It follows that e0,0 ⊂ u0,0. But if e0,0 is a proper
subset of u0,0, the set ec

0,0 in which E rejects at least one hypothesis contains
uc

0,0 and so

P0,0{ec
0,0} > P0,0{uc

0,0} = α ,

and E does not control the FWER at α.
Finally, the proof of (iii) is analogous to the proof of (iii) in Theorem 9.2.1.
Theorems 9.2.1 and 9.2.2 have natural extensions to the case of s hypotheses

where the aim is to maximize the s quantities (9.18). As in the case s = 2, these
maximizations lead to different procedures, and one must choose their order of
importance. The two most natural choices are the following:

(a) Begin by maximizing inf β1(θ), which will lead to an optimal choice for
d0,0,...,0, the decision to accept all hypotheses. With d0,...,0 fixed, the par-
tition of dc

0,...,0 into the subsets in which the remaining decisions should be
taken is begun by maximizing the minimum of β2(θ) over the part of the
parameter space in which at least 2 hypotheses are false, and so on.

(b) Alternatively, we may start at the other end by maximizing inf βs(θ), and
from there proceed downward.

We shall here only state the result for case (a). For its proof and the statement
and proof for case (b), see Lehmann, Romano, and Shaffer (2003).

Theorem 9.2.3 Under the assumptions made at the beginning of this section,
among all monotone procedures E with FWER ≤ α, the stepdown procedure D
with critical constants given by (9.16), has the following properties:
(i) it maximizes inf β1(θ) over A1(ε)
(ii) it maximizes inf β2(θ) over A2(ε) subject to the additional condition es,2 ⊂
ds,1, where es,i and ds,i denote the events that the procedures E and D reject at
least i of the hypotheses H1, . . . , Hs.
(iii) Quite generally, it maximizes both (9.18) and (9.19) among all monotone
procedures E with FWER ≤ α and satisfying es,i ⊂ ds,i−1.

We shall now provide a canonical form for certain stepdown procedures,
and particularly for the maximin procedure D of Theorem 9.2.3, that provides
additional insights.

Let p̂1, . . . , p̂s be the p-values of the statistics T1, . . . , Ts, and denote the ordered
p-values by p̂(1) ≤ · · · ≤ p̂(s). If F denotes the common marginal distribution of
Ti under θi = 0, we have that

p̂i = 1 − F (Ti) (9.28)

and hence that

p̂(1) = 1 − F (T(s)) . (9.29)

In terms of the p̂’s, the steps of the stepdown procedure

T(s) ≥ C1, T(s−1) ≥ C2, . . . (9.30)
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are equivalent respectively to

p̂(1) ≤ α1, p̂(2) ≤ α2, . . . (9.31)

for suitable α’s. In particular, T(s) ≥ C1 is equivalent to p̂(1) ≤ α1. Thus, by
(9.29), T(s) < C1 is equivalent to F (T(s)) < 1 − α1, so that

C1 = F−1(1 − α1) .

On the other hand, if Gs denotes the distribution of T(s) when all the θi are 0, it
follows from (9.16) that C1 = G−1

s (1 − α) and hence that

1 − α1 = F [G−1
s (1 − α)] , (9.32)

which gives α1 as a function of α.
It is of interest to determine the ranges of the step levels α1, . . . , αs. Since

Gs(t) ≤ F (t) for all t, it follows from (9.32) that 1 − α1 ≥ 1 − α for all F , or

α1 ≤ α for all F , (9.33)

with equality when F = G, i.e., when T1 = · · ·Ts. To find a lower bound for α1,
put u = G−1(1 − α) in (9.32) so that

1 − α1 = F (u) with 1 − α = Gs(u) (9.34)

and note that for all u

1 − Gs(u) = P{at least one Ti ≥ u} ≤
∑

P{Ti ≥ u} = s[1 − F (u)] .

Thus,

F (u) ≤ 1 − 1
s
[1 − G(u)] = 1 − α

s

and hence

α1 ≥ α
s

. (9.35)

We shall now show that the lower bound (9.35) is sharp by giving an example
of a joint distribution of (T1, . . . , Ts) for which it is attained.

Example 9.2.1 (A Least Favorable Distribution) Let U be uniformly dis-
tributed on (0, 1) and suppose that when H1, . . . , Hs are all true,

Y1 = U, Y2 = U +
1
s
(mod 1), . . . , Ys = U +

s − 1
s

(mod 1) .

Since (Y1, . . . , Ys) does not satisfy our assumption of exchangeability, replace
it by the exchangeable set of variables (X1, . . . , Xs) = (Yπ(1), . . . , Yπ(s)), where
(π(1), . . . , π(s)) is a random permutation of (1, . . . , s) (and independent of U).
Let Ti = 1 − Xi and suppose that Hi is rejected when Ti is large. To show that

F [G−1
s (1 − α)] = 1 − α

s
, (9.36)

note that the T ’s are uniformly distributed on (0, 1) so that (9.36) becomes

Gs(1 − α
s

) = 1 − α .

Now

1 − Gs(1 − α
s

) = P{at least one Ti ≥ 1 − α
s
} = P{at least one Xi ≤

α
s
} .
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But the events {Xi ≤ α/s} are mutually exclusive, and therefore

P{at least one Xi ≤
α
s
} =

s∑

i=1

P{Xi ≤
α
s
} = s · α

s
= α ,

which implies (9.36).

We shall now briefly sketch the corresponding development for α2, defined by
the fact that p̂(2) ≤ α2 is equivalent to T(s−1) ≥ C2, where C2 is determined by
(9.16) so that

Gs−1(C2) = 1 − α .

Note that Gs−1 is not the distribution of T(s−1), i.e., of the 2nd largest of s T ’s,
but of the largest of T1, . . . , Ts−1 (i.e., the largest of s− 1 T ’s). In exact analogy
with the derivation of (9.32) it now follows that

1 − α2 = F [G−1
s−1(1 − α)] . (9.37)

The maximum value of α2, as in the case of α1, is equal to α and is attained
when T1 = · · · = Ts−1.

The argument giving the lower bound shows that α2 ≥ α/(s − 1). To show
that this value is attained, we must find an example for which

Gs−1(1 − α
s − 1

) = 1 − α .

Example 9.2.1 will serve this purpose since in that case

1 − Gs−1(1 − α
s − 1

) = P{at least one of T1, . . . , Ts−1 ≥ 1 − α
s − 1

}

=
s−1∑

i=1

P{Xi ≤
α

s − 1
} = (s − 1) · α

s − 1
= α

for any α satisfying α/(s − 1) < 1/s, i.e., α < (s − 1)/s.
Continuing in this way we arrive at the following result.

Theorem 9.2.4 (i) The step levels αi defined by the procedure D with critical
constants given by (9.16) and the equivalence of (9.30) and (9.31) are given by

1 − αi = F [Gs−i+1(1 − α)] , (9.38)

where Gj is the distribution of max(T1, . . . , Tj).
(ii) The range of αi is

α
s − i + 1

≤ αi ≤ α . (9.39)

Furthermore, the upper bound α is attained when T1 = · · · = Ts, i.e., when there
really is no multiplicity. The lower bound α/(s − i + 1) is attained when the
distribution of T1, . . . , Ts−i+1 is that of Example 9.2.1.

Not all points in the s-dimensional rectangle (9.39) are possible for (α1, . . . , αs).
In particular, since for all t

Gi(t) ≥ Gj(t) when i < j ,
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it follows that

α1 ≤ α2 ≤ · · · ≤ αs . (9.40)

The values of αi given by (9.38) can be determined when the joint distribution
of (T1, . . . , Ts) (and hence the distributions Gs) is known. Consider, however,
the situation in which the common marginal distribution F of the statistics Ti

needed to carry out the tests of the individual hypotheses Hi at a given level is
known, but the joint distribution of the T ’s is unknown. Then, we are unable to
determine the step levels (9.38).

It follows, however, from (9.39) that the procedure (9.31) with

αi = α/(s − i + 1) for i = 1, . . . , s (9.41)

will control the FWER for all joint distributions of (T1, . . . , Ts), since these levels
are conservative in all cases. This is just the Holm procedure of Theorem 9.1.2.

Also, none of the levels αi can be larger than α/(s − i + 1) without violating
the FWER condition for some distribution. To see this, note that if levels αi

are used in Example 9.2.1, it follows from the discussion of this example that
when i of the hypotheses are true, the probability of at least one false rejection
is (s − i + 1)αi. Thus, if αi exceeds α/(s − i + 1), the FWER condition will be
violated.

Of course, if the class of joint distributions of the T ’s is restricted, the range of
αi may be smaller than (9.39). For example, suppose that the T ’s are independent.
Then, putting u = G−1

s (1 − α) as before, we see from (9.34) that

1 − α1 = F (u) and 1 − α = F s(u)

so that

α1 = 1 − (1 − α)1/s ,

and more generally that

αi = 1 − (1 − α)1/(s−i+1) .

In this case, the range reduces to a single point.
More interesting is the case of positive quadrant dependence when

Gs(u) ≥ F s(u)

and hence

1 − α ≥ (1 − α1)
1/s

and

1 − (1 − α)s ≤ α1 ≤ α . (9.42)

The bounds are sharp since the upper bound is attained when T1 = · · · = Ts and
the lower bound is attained in the case of independence.

9.3 The Hypothesis of Homogeneity

The previous section dealt with situations in which each of the parameters varies
independently, so that any subset of the hypotheses H1, . . . , Hs can be true with
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the remaining ones being false. This condition is not satisfied, for example, when
the set of hypotheses is

Hi,j : θi = θj , i < j (9.43)

for all
(

s
2

)
pairs i < j. Then, for instance, the set {H1,2, H2,3} can not be the

set of all true hypotheses since the truth of H1,2 and H2,3 implies the truth of
H1,3. It follows from this transitivity that the set of true hypotheses constitutes
a partition of the µ’s, say

µi1 = · · · = µir ; µir+1 = · · · = µir+k ; · · · . (9.44)

All pairs within a set of the partition are equal, and two µs in different sets are
unequal. We shall therefore use the statement µi1 = · · · = µir as shorthand for
the statement that all hypotheses Hk,l with (k, l) any pair of subscripts from the
set {i1, . . . , ir} are true.

Unfortunately, the results of the tests of the hypotheses (9.43) do not share this
simple structure since it is possible to accept H1,2 : µ1 = µ2 and H2,3 : µ2 = µ3

while rejecting H1,3 : µ1 = µ3. We shall return to this point at the end of the
section.

We shall now consider the simultaneous testing of the
(

s
2

)
hypotheses (9.43)

by means of a Holm type stepdown procedure, as in the preceding section. We
assume that statistics Ti,j are available for testing the individual hypotheses Hi,j .
In the case of normal variables with sample means X̄i and common variance σ2,
these would be the statistics Ti,j = |X̄i − X̄j |/σ̂. The procedure begins with
the largest of the T ’s corresponding to the pair (i, j) with the largest difference
|X̄i − X̄j |. This would be tested at level α/

(
s
2

)
, since

(
s
2

)
is the total number of

hypotheses being tested. If this hypothesis is accepted, all the hypotheses (9.43)
are accepted and the procedure is terminated. In the contrary case, we next test
the second largest of the T ’s at level α/(

(
s
2

)
− 1), and so on. By Theorem 9.1.2,

this procedure controls the FWER, regardless of the joint distribution of the Ti,j .
However, the fact that the parameters θi,j = µi−µj do not vary independently

but are subject to certain logical restrictions enables us to do better. To illustrate
the situation, suppose that s = 6. Let

X̄(1) ≤ · · · ≤ X̄(s)

denote the ordered values of the sample means, and let µ(i) be the mean corre-
sponding to X̄(i). At the first stage, we test µ(1) = µ(6). If (X̄(6)−X̄(1))/σ̂ < C, we
accept all the hypotheses Hi,j and terminate the procedure. If (X̄(6) − X̄(1))/σ̂ ≥
C, we reject the hypothesis µ(1) = µ(6) and test the largest of the differences
X̄(6) − X̄(2) and X̄(5) − X̄(1).

Let us now express the rule in terms of the p-values. By (9.28),

p̂i,j = 1 − F (Ti,j) , (9.45)

where F is the distribution of |X̄i − X̄j |/σ̂, and the rejection region |X̄(6) −
X̄(1)|/σ̂ ≥ C becomes mini,j p̂i,j ≤ α/

(
s
2

)
. If the next largest difference is (X̄(5) −

X̄(1))/σ̂, say, we would at the next step compare 1 − F [(X̄(5) − X̄(1))/σ̂] with
α/(

(
s
2

)
− 1), and so on.

However, using the relations between the differences |X̄j − X̄i|, we can in the
present situation do considerably better than that.
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To see this, consider the case where one hypothesis is false, say µ1 += µ4. Then,
µ2 cannot be equal to both µ1 and µ4; thus, one of the hypotheses µ1 = µ2 or
µ2 = µ4 must be false, and similarly for µ3, µ5 and µ6. Therefore, at step 2 when
one hypothesis is false, at least 5 must be false, and the number of possible true
hypotheses is not

(
6
2

)
− 1 = 14 but instead is

(
6
2

)
− 5 = 10.

An argument similar to that of Theorem 9.1.2 shows that at the second step of
the Holm procedure, we can increase α/14 to α/10 without violating the FWER.
Indeed, suppose that at least one hypothesis is false, and so at most 10 are true.
Let I be the set (i, j) of true hypothesis Hi,j , and let

p̂min = min{p̂i,j : (i, j) ∈ I} .

Then, if a false rejection occurs, it occurs at step 1 or step 2, but in either case,
it must be that p̂min ≤ α/10. But, by Bonferroni,

P{p̂min ≤ α
10

} ≤
∑

(i,j)∈I

P{p̂i,j ≤ α
10

} ≤ |I| · α
10

≤ α .

Similar improvements are possible at the succeeding steps.
As pointed out at the beginning of the section, each set of true hypotheses

(9.44) corresponds to a partition of the integers {1, . . . , s} and determines the
corresponding number of possible true hypotheses

(
r
2

)
+

(
k
2

)
+ · · · .

The following table, adapted from Shaffer (1986), where this improvement was
first proposed, shows for s = 3 to 10 the maximum possible number of true
hypotheses.

Table 9.1.

Possible Number of True Hypotheses
s Total # of Hypotheses Hi,j Possible Number of True Hypotheses
3 3 0, 1, 3
4 6 0-3, 6
5 10 0-4, 6, 10
6 15 0-4, 6, 7, 10, 15
7 21 0-7, 9, 10, 11, 15, 21
8 28 0-13, 15, 16, 21, 28
9 36 0-13, 15, 16, 18, 21, 22, 28, 36
10 45 0-18, 20, 21, 22, 24, 28, 29, 36, 45

Here, for example, the entries 0-4, 6, 10 for s = 5 correspond to the numbers
of possible true pairs µi = µj for the given partitions. Thus, the case µ1 = µ2 =
µ3 = µ4 = µ5 corresponds to the partition (µ1, . . . , µ5) and allows

(
5
2

)
= 10

true pairs µi = µj . The case µ1 += µ2 = µ3 = µ4 = µ5 corresponds to the
partition {µ1}, {µ2, µ3, µ4, µ5} and allows

(
4
2

)
= 6 true pairs µi = µj . The case

µ1 = µ2 += µ3 = µ4 = µ5 corresponds to the partition {µ1, µ2}, {µ3, µ4, µ5} and
allows

(
2
2

)
+

(
3
2

)
= 4 true pairs, and so on.
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The reductions are substantial. At the second step, for example,
(

s
2

)
− 1 =

(s−2)(s+1)
2 is decreased to

(
s−1
2

)
= (s−2)(s−1)

2 ; the difference is s − 2 and hence
tends to ∞ as s → ∞.

Shaffer gave a simple algorithm for finding the maximum number of true hy-
potheses given that i hypotheses have been declared false. Use of the procedure
based on these numbers has been called S1 (Donoghue (2004)). A more powerful
procedure, called S2, uses the maximum number of true hypotheses given the
particular hypotheses that have been declared false. A difficulty with the S2 pro-
cedure, particularly when s gets large, is to determine the maximum numbers of
true hypotheses that are possible at any given step. An algorithm to deal with
this problem has been developed by Donoghue (2004).

Like the Holm procedure itself, this modification only utilizes the marginal
distributions of the statistics Ti,j = |X̄i − X̄j |/σ̂, which are proportional to t-
statistics. However, under the assumption of normality, the joint distribution of
these statistics is also known, and so the levels (9.38) could be used - with s−i+1
replaced by the number of true hypotheses possible at this stage - to achieve a
further improvement. Note, however, that this can be difficult because the set
of possible true hypotheses is not unique, so a number of joint distributions
would have to be determined. An alternative approach that incorporates logical
constraints and dependence among the test statistics is described in Westfall
(1997).

Multiple comparison procedures, many of them going back to the 1950’s, em-
ploy not only tests based on ranges, but also the corresponding procedures based
on F -tests. Most of them are special cases of a general class of stagewise step-
down procedures which we shall now consider for testing homogeneity of s normal
populations with common variance based on samples of equal size ni = n.

For this purpose, we require a slight shift of point of view. The hypothesis
H : µi1 = · · · = µir was previously considered as shorthand for the hypothesis
that all pairs within this set are equal, and the problem as that of testing these

(
r
2

)

separate hypotheses. Now we shall also admit the more traditional interpretation
of H as a hypothesis in its own right for which a global test such as an F -test might
be appropriate. It should be emphasized that, logically, the two interpretations
are of course equivalent; they differ only in the way they are analyzed.

The first step in the class of procedures to be considered is to test the
hypothesis

Hs : µ1 = · · · = µs (9.46)

either with a range test or an F -test at a critical value Cs corresponding to some
level αs. In case of acceptance, the means are judged to exhibit no significant
differences, the set {µ1, . . . , µs} is declared homogeneous, and the procedure ter-
minates. If H1 is rejected, a search for the source of the differences is initiated
by proceeding to the second stage, which consists in testing the s hypotheses

Hs−1,i : µ1 = · · · = µi−1 = µi+1 = · · · = µs

each by means of a range or an F test at a common critical value corresponding
to a common level αs−1. For any hypothesis that is accepted, the associated set
of means (and all of its subsets) are judged not to have shown any significant
differences and are not tested further. For any rejected hypothesis, the s − 1
subsets of size s − 2 are tested (except those that are subsets of an (s − 1)-set
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whose homogeneity has been accepted). At stage i, the k = s − i + 1 differences
would be tested for all subsets that are not included in an (s − i + 2)-set whose
homogeneity has been accepted. Moreover, assume that all tests at stage i are
performed at the same level, and denote this level by αk corresponding to a
critical value Ck. The procedure is continued in this way until no hypotheses are
left to be tested.

To see the relation of this stagewise procedure to the fully sequential approach
described at the beginning of the section which is based on the ordered differences
|X̄i−X̄j |/σ̂, let us compare the two procedures when all the tests of the stagewise
procedure are based on standardized ranges. In both cases the first step is based
on |X̄(s) − X̄(1)|/σ̂ and rejects the homogeneity of {µ1, . . . , µs} if this statistic is
≥ some constant Cs. The stagewise procedure next compares the two subranges

|X̄(s) − X̄(2)|/σ̂ and |X̄(s−1) − X̄(1)|/σ̂

with a common critical value Cs−1. Note, however, that if the larger of the two
is < Cs−1, this will a fortiori be true of the smaller one. This second step could
thus equally well be described as comparing the second largest of the ranges
|X̄i − X̄j |/σ̂ with Cs−1, and in case of acceptance terminating the procedure. In
case of rejection, we would next compare the smaller of the two (s − 1)-ranges
with Cs−1. Continuing in this way, Ci would be used to test all eligible i-ranges.

The fully sequential procedure described at the beginning of the section also
would terminate at the second step if the larger of the two (s − 1) ranges is too
small. But if it is large enough for rejection, the next step would differ in two
ways: (i) the critical level would be lowered further; (ii) the next test statistic
would be the 3rd-largest of the differences |X̄i − X̄j |/σ̂, which may but need not
coincide with the smaller of the (s − 1)-ranges. Thus, the two procedures differ
slightly, although they are very much in the same spirit.

To complete the description of a stagewise procedure, once the test statistics
have been chosen, it is necessary to specify the critical values C2, . . . , Cs for
the successive stages or equivalently the levels α2, . . . , αs at which the tests are
performed. Note that there is no α1 of C1 since at the sth stage only singlets are
left, and hence there are no longer any hypotheses to be tested.

Before discussing the best choice of α’s let us consider some specific methods
that have been proposed in the literature. Additional properties and uses of some
of these will be mentioned at the end of the section.

(i) Tukey’s T -method. This procedure employs the Studentized range test at
each stage with a common critical value Ck = C for all k. The method has
an unusual feature which makes it particularly simple to apply. In general, in
order to determine whether a particular subset S0 of means should be called
nonhomogeneous, it is necessary to proceed stagewise since the homogeneity of
S0 itself is not tested unless homogeneity has been rejected for all sets containing
S0. However, with Tukey’s T -method it is only necessary to test S0 itself. If the
Studentized range of S0 exceeds C, so will that of any set containing S0, and S0

is declared nonhomogeneous. In the contrary case, homogeneity of S0 is accepted.
The two facts which jointly eliminate the need for a stagewise procedure in this
case are (a) that the range, and hence the Studentized range, of S0 cannot exceed
that of any set S containing S0, and (b) the constancy of the critical value. The
next method applies this idea to a procedure based on F -tests.
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(ii) Gabriel’s simultaneous test procedure. F -statistics do not have property
(a) above. However, this property is possessed by the statistics νF , where ν is
the number of numerator degrees of freedom (Problem 9.17). Hence a procedure
based on F -statistics with critical values Ck = C/(k − 1) satisfies both (a) and
(b), since k−1 is the number of numerator degrees of freedom when k means are
tested, that is, at the s − k + 1st stage. This procedure, which in this form was
proposed by Gabriel (1964), permits the testing of many additional hypotheses
and when these are included becomes Scheffé’s S-method, which will be discussed
in Sections 9.4 and 9.5.

(iii) Fisher’s least-significant-difference method. This procedure employs an F -
test at the first stage, and Studentized range tests with a common critical value
C2 = · · · = Cs at all succeeding stages. The constants Cs and C2 are related by
the fact that the first stage F -test and the pairwise t-test of the last stage have
the same level.

The usual descriptions of (i) and (iii) consider only the first and last stages
of these procedures, and omit the conclusions which can be drawn from the
intermediate stages.

Several classes of procedures have been defined by prescribing the significance
levels αk, which can then be applied to the chosen test statistics at each stage.
Examples are:

(iv) The Newman–Keuls levels:

αk = α.

(v) The Duncan levels:

αk = 1 − γk−1.

(vi) The Tukey levels:

αk =

{
1 − γk/2, 2 < k < s − 1
1 − γs/2, k = s − 1, s.

In both (v) and (vi), γ = 1 − α2.
Most of the above methods and some others are reviewed in the books by

Hochberg and Tamhane (1987) and Hsu (1996).
Let us now consider the choice of the levels αk more systematically. For this

purpose, denote the probability of at least one false rejection, that is, of re-
jecting homogeneity of at least one set of µ’s which in fact is homogeneous, by
α(µ1, . . . , µs). As before we impose the restriction that the FWER should not
exceed α, so that

α(µ1, . . . , µs) ≤ α for all (µ1, . . . , µs) . (9.47)

In order to study the best choice of α2, . . . αs subject to (9.47), let us begin by
assuming σ2 to be known, say σ2 = 1. Then the F -tests are replaced by χ2-tests
and the Studentized range tests by range tests; the latter reject when the range
of the subgroup being tested is too large.

To evaluate the maximum of the left side of (9.47), suppose that the µ’s fall
into r distinct subgroups of sizes v1, . . . , vr (

∑
vi = s), say

µi1 = · · · = µiv1
; µiv1+1 = · · · = µiv1+v2

; . . . , (9.48)
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where (i1, . . . , is) is a permutation of (1, . . . , s). Then, both χ2 and range statistics
for testing the r hypotheses

H ′
1 : µi1 = · · · = µiv1

; H ′
2 : µiv1+1 = · · · = µiv1+v2

; . . . (9.49)

are independent. The following result then gives conditions on the individual
levels αi so that the FWER is controlled.

Lemma 9.3.1 If the test statistics for testing the r hypotheses (9.49) are inde-
pendent, then the sup of α(µ1, . . . , µs) over all (µ1, . . . , µs) satisfying (9.48) is
given by

sup α(µ1, . . . , µs) = 1 −
r∏

i=1

(1 − αvi) , (9.50)

where α1 = 0.

Proof. Since false rejection can occur only when at least one of the hypotheses
(9.49) is rejected,

α(µ1, . . . , µs) ≤ P (rejecting at least one H ′
i)

= 1 − P (accepting all the H ′
i)

= 1 −
r∏

i=1

(1 − αvi) ,

the last equality following from the assumption of independence.
To see that the upper bound (9.50) is sharp, let the distances between the

different groups of means (9.48) all tend to infinity. Then the probability of
accepting homogeneity of any set containing {µi1 , . . . , µiv1

} as a proper subset,
and therefore not reaching the stage at which H ′

1 is tested, tends to zero. The
same is true for H ′

2, . . . , H
′
r, and hence α(µ1, . . . , µs) tends to the right side of

(9.50).
It is interesting to note that sup α(µ1, . . . , µs) depends only on α2, . . . , αs and

not on whether χ2- or range statistics are used at the various stages. In fact,
Lemma 9.3.1 remains true for many other statistics (Problem 9.18).

It follows from Lemma 9.3.1 that a procedure with levels (α2, . . . , αs) satisfies
(9.47) if and only if

r∏

i=1

(1 − αvi) ≥ 1 − α for all (v1, . . . , vr) with
∑

vi = s. (9.51)

To see how to choose α2, . . . , αs, subject to (9.47) or (9.51), let us say that
(α2, . . . , αs) is inadmissible if there exists another set of levels (α′

2, . . . , α
′
s)

satisfying (9.51) and such that

αi ≤ α′
i for all i, with strict inequality for some i. (9.52)

These inequalities imply that the procedure with the levels α′
i has uniformly

better chance of detecting existing inhomogeneities than the procedure with levels
αi. The definition is thus in the spirit of α-admissibility discussed in Chapter 6,
Section 6.7.
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Lemma 9.3.2 Under the assumptions of Lemma 9.3.1, necessary conditions for
(α2, . . . , αs) to be admissible are

(i) α2 ≤ · · · ≤ αs and
(ii) αs = αs−1 = α.

Proof. (i) Suppose to the contrary that there exists k such that αk+1 < αk, and
consider the procedure in which α′

i = αi for i += k + 1 and α′
k+1 = αk. It suffices

to show that
∏

(1−α′
vi

) ≥ 1−α for all (v1, . . . , vr). If none of the v’s is equal to
k + 1, then α′

vi
= αvi for all i, and the result follows. Otherwise replace each v

that is equal to k +1 by two v’s—one equal to k and one equal to 1—and denote
the resulting set of v’s by w1, . . . , wr′ . Then

r∏

i=1

(1 − α′
vi

) =
r′∏

i=1

(1 − αwi) ≥ 1 − α .

(ii) The left side of (9.51) involves αs if and only if r = 1, v1 = s. Thus the
only restriction on αs is αs ≤ α, and the only admissible choice is αs = α. The
argument for αs−1 is analogous (Problem 9.19).

Part (ii) of this lemma shows that Tukey’s T -method and Gabriel’s simultane-
ous test procedure are inadmissible since in both αs−1 < αs. The same argument
shows Duncan’s set of levels to be inadmissible. [These choices can however be
justified from other points of view; see for example Spjøtvoll (1974) and the com-
ments at the end of the section.] It also follows from the lemma that for s = 3
there is a unique best choice of levels, namely

α2 = α3 = α . (9.53)

Having fixed αs = αs−1 = α, how should we choose the remaining α’s? In
order to have a reasonable chance of detecting existing inhomogeneities for all
patterns, we should like to have none of the α’s too small. In view of part (i) of
Lemma 9.3.2, this aim is perhaps best achieved by maximizing α2, the level at
the last stage when individual pairs are being tested.

Lemma 9.3.3 Under the assumptions of Lemma 9.3.1, the maximum value of
α2 subject to (9.47) is

α2 = 1 − (1 − α)[s/2]−1
(9.54)

where [A] denotes the largest integer ≤ A.

Proof. Instead of fixing α and maximizing α2, it is more convenient to fix α2,
say at α∗, and then to minimize α. The lemma will be proved by showing that
the resulting minimum value of α is

α = 1 − (1 − α∗)[s/2] . (9.55)

Suppose first that s is even. Since α2 is fixed at α∗, it follows from Lemma 9.3.1
that the right side of (9.50) can be made arbitrarily close to α given by (9.55).
This is seen by letting ν1 = · · · = νs/2 = 2. When s is odd, the same argument
applies if we put an additional ν equal to 1.

Lemmas 9.3.2 and 9.3.3 show that any procedure with αs = α2, and hence
Fisher’s least-significant-difference procedure and the Newman–Keuls choice of
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levels, is admissible for s = 3 but inadmissible for s ≥ 4. The second of these

statements is seen from the fact that (9.47) implies α2 ≤ 1 − (1 − α)[s/2]−1
< α

when s ≥ 4. The choice α2 = αs thus violates Lemma 9.3.2(ii).
Once α2 has been fixed at the value given by (9.54), it turns out that subject

to (9.47) there exists a unique optimal choice of the remaining α’s when s is odd,
and a narrow range of choices when s is even.

Theorem 9.3.1 When s is odd, then α3, . . . , αs are maximized, subject to (9.47)
and (9.54), by

α∗
i = 1 − (1 − α2)

[i/2] , (9.56)

and these values can be attained simultaneously.

Proof. If we put γi = 1 − αi and γ = 1 − α2, then by (9.49) and (9.56) any
procedure satisfying the conditions of the theorem must satisfy

∏
γvi ≥ γ[s/2] = γ(s−1)/2

Let i be odd, and consider any configuration in which v1 = i and all the remaining
v’s are equal to 2. Then

γiγ
(s−i)/2 ≥ γ(s−1)/2,

and hence

γi ≥ γ∗
i = 1 − α∗

i . (9.57)

An analogous argument proves (9.56) for even i.
Consider now the procedure defined by (9.56). This clearly satisfies (9.54), and

it only remains to check that it also satisfies (9.47) or equivalently (9.51), and
hence that

∏
γ[vi/2] ≥ γ(s−1)/2

or that
r∑

i=1

[vi

2

]
≤ s − 1

2

Now
∑

[vi/2] = (s − b)/2, where b is the number of odd v’s (including ones).
Since s is odd, b ≥ 1, and this completes the proof.

Note that the levels (9.56) are close to the Tukey levels (vi), which are
admissible but do not satisfy (9.54).

When s is even, a uniformly best choice is not available. In this case, the Tukey
levels (vi) satisfy (9.54), are admissible, and constitute a reasonable choice. [See
Lehmann and Shaffer (1979).]

So far we have assumed σ2 = 1 in order to get independence of the r test
statistics used for testing the hypotheses H ′

i, i = 1, . . . , r. If σ2 is unknown, the
χ2 and range statistics are replaced by F and studentized range statistics. These
are no longer independent but are positively quadrant dependent in the sense
that

P{T ′
1 ≤ t1, . . . , T

′
r ≤ tr} ≥

r∏

i=1

P{T ′
i ≤ ti} , (9.58)
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where T ′
1, . . . , T

′
r are the test statistics used for testing H ′

1, . . . , H
′
r. This follows

from the following lemmas.

Lemma 9.3.4 Let F1(S), . . . , Fr(S) be nondecreasing functions of a random
variable S. Then,

E{
r∏

i=1

Fi(S)} ≥
s∏

i=1

E{Fi(S)} , (9.59)

provided the expectations exist.

Proof. By induction, it suffices to consider r = 2. To show Cov[F1(S), F2(S)] ≥
0, assume without loss of generality that E[F2(S)] = 0. Let x be such that
F2(x) = 0; if no such x exists, let x be any point satisfying F2(y) ≥ 0 if y > x
and F2(y) ≤ 0 if y < x. Now,

Cov[F1(S), F2(S)] = E{[F1(S) − F1(x)] · F2(S)} .

If S ≥ x, F1(S) − F1(x) ≥ 0 and F2(S) ≥ 0, and so the quantity inside the
expectation is ≥ 0. Similarly, if S < x, F1(S) − F1(x) ≤ 0 and F2(S) ≤ 0 and so
the quantity inside the expectation is ≥ 0.

Lemma 9.3.5 Assume Y1, . . . , Yr, S are independent, where S is a nonnegative
random variable. Then, T ′

i = Yi/S satisfy (9.58).

Proof. Let Gi denote the distribution of Yi. Fix t1, . . . , tr. By conditioning on
S,

P{T ′
1 ≤ t1, . . . , T

′
r ≤ tr} = E[

∏

i

Gi(tiS)] .

Apply Lemma 9.3.4 with Fi(s) = Gi(tis) to get the last quantity is an upper
bound for

∏

i

E[Gi(tiS)] =
∏

i

P{T ′
i ≤ ti} .

For this situation, we have the following result.

Theorem 9.3.2 If the test statistics for testing the r hypotheses (9.49) are
positively quadrant dependent in the sense of (9.58), then

sup α(µ1, . . . , µs) ≤ 1 −
r∏

i=1

(1 − αvi) , (9.60)

where, as before, α1 = 0.

Proof. That the right side of (9.60) is an upper bound for α(µ1, . . . , µs) fol-
lows from the proof of Lemma 9.3.1 and the assumption of positive quadrant
dependence.

Note, however, that we can no longer assert that the upper bound is sharp.
For the F and Studentized range tests, the sharp upper bound will depend on
the total sample size n.

Theorem 9.3.2 guarantees that the procedures using the α-levels derived under
the assumption of independence, continue to control the FWER even in the case



9.3. The Hypothesis of Homogeneity 373

of positive dependence. The proof of Lemma 9.3.2 shows that αs = αs−1 = α
continues to be necessary for admissibility even in the positively dependent case.
However, the maximization results for α2, . . . , αs can then no longer be asserted.
They nevertheless have the great advantage that they define procedures that
do not require detailed knowledge of the joint distribution of the various test
statistics.

Even in the simplified version with known variance the multiple testing problem
considered in the present section is clearly much more difficult than the testing of
a single hypothesis; the procedures presented above still ignore many important
aspects of the problem.

1. Choice of test statistic. The most obvious feature that has not been dealt
with is the choice of test statistics. Unfortunately it does not appear that
the invariance considerations which were so helpful in the case of a single
hypothesis play a similar role here.

2. Order relation of significant means. Whenever two means µi and µj are
judged to differ, we should like to state not only that µi += µj , but that
if X̄i < X̄j then also µi < µj . Such additional statements introduce the
possibility of additional errors (stating µi < µj when in fact µi > µj), and
it is not obvious that when these are included, the probability of at least
one error is still bounded by α. [For recent work on directional errors, see
Finner (1999) and Shaffer (1990, 2002).]

3. Nominal versus true levels. The levels α2, . . . , αs, sometimes called nominal
levels, are the levels at which the hypotheses µi = µj , µi = µj = µk, . . . are
tested. They are however not the true probabilities of falsely rejecting the
homogeneity of these sets, but only the upper bounds of these probabilities
with respect to variation of the remaining µ’s. The true probabilities tend
to be much smaller (particularly when s is large), since they take into
account that homogeneity of a set S0 is rejected only if it is also rejected
for all sets S containing S0.

4. Interpretability. As pointed out at the beginning of the section, the totality
of acceptance and rejection statements resulting from a multiple compari-
son procedure typically does not lead to a simple partition of means. This
is illustrated by the possibility that the hypothesis of homogeneity is re-
jected for a set S but for none of its subsets. As another example, consider
the case s = 3, where it may happen that the hypotheses µi = µj and
µj = µk are accepted but µi = µk is rejected. The number of such “incon-
sistencies” and the corresponding difficulty of interpreting the results may
be formidable. Measures of the complexity of the totality of statements as
a third criterion (besides level and power) are discussed by Shaffer (1981).
The inconsistencies and resulting difficulties of interpretation suggest the
consideration of an alternative formulation of the problem which avoids this
difficulty. Instead of testing the

(
s
2

)
hypotheses Hi,j : µi = µj , estimate

the (unknown) partition of the µ’s defined by (9.48). Possible approaches
to such procedures are discussed for example in Hochberg and Tamhane
(1987, Chapter 10, Section 6) and by Dayton (2003).
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5. Procedures (i) and (ii) can be inverted to provide simultaneous confidence
intervals for all differences µj − µi. The T -method (discussed in Problems
9.29–9.32) was designed to give simultaneous intervals for all differences
µj − µi; it can be extended to cover also all contrasts in the µ’s, that
is, all linear functions

∑
ciµi with

∑
ci = 0, but against more complex

contrasts the intervals tend to be longer than those of Scheffés S-method,
which was intended for the simultaneous consideration of all contrasts. [For
a comparison of the two methods, see for example Scheffé (1959, Section
3.7) and Arnold (1981, Chapter 12).] It is a disadvantage of the remaining
(truly stagewise or sequential) procedures of this section that the problem
of corresponding confidence sets is considerably more complicated. For a
discussion of such confidence methods, see Holm (1999) and the references
cited there.

6. To control the rate of false rejections, we have restricted attention to proce-
dures controlling the FWER, the probability of at least one error. Instead,
one might wish to control the false discovery rate as defined at the end
of Section 9.1; see Benjamini and Hochberg (1995). Alternatively, an opti-
mality theory based on the number of false rejections is given in Spjøtvoll
(1972). Another possibility is the control the k-FWER, the probability
of making k or more false rejections, as well as the probability that the
false discovery proportion exceeds some threshold; see Korn et al. (2004),
Romano and Shaikh (2004) and Lehmann and Romano (2005).

7. The optimal choice of the αk discussed in this section can be further im-
proved, at the cost of considerable additional complication, by permitting
the α’s to depend on the outcomes of the other tests. This possibility is dis-
cussed, for example, in Marcus, Peritz, and Gabriel (1976); see also Holm
(1979) and Shaffer (1984).

The procedures discussed in this section were concerned with testing the equal-
ity of means. In more complex situations, further problems arise. Consider, for
example, the two-way layout of 7.5 with

µi,j = µ + αi + βj + γi,j (
∑

αi =
∑

βj =
∑

i

γi,j =
∑

j

γi,j = 0) .

If we are interested in multiple testing of the α’s, β’s, and γ’s, the first question
that arises is whether we want to treat these three cases (α’s, β’s, γ’s) as a single
family, as two families (the main effects forming one family, the interactions the
other), or as three families in which each of the three sets is handled separately.

The most appropriate designation of what constitutes a family depends very
much on context. Consider, for example, the National Assessment of Educational
Progress which makes it possible to compare the progress made by any two states.
For a federal report, the set of all

(
50
2

)
possible hypotheses would constitute an

appropriate family. However, a particular state would be interested primarily in
the comparison of its performance with those of the other 49 states, thus leading
to a family of size 49. A comparison which is not significant in the federal report
might then turn out to be significant in the state report. Some of the issues
concerning the most suitable definition of family are discussed in Tukey (1991)
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and in the books by Hochberg and Tamhane (1987), and Westfall and Young
(1993).

We shall in the next two sections consider simultaneous inferences for various
families of linear functions of means in normal linear models. However, since we
are assuming fully articulated parametric models, we shall consider the slightly
more demanding problem of obtaining simultaneous confidence intervals rather
than restricting attention to hypothesis testing.

As the simplest example, suppose that X1, . . . , Xs are normal variables with
means µ1, . . . , µs and unit variance. We can then apply to the hypotheses
Hi : µi = µi,0 the approach of Section 9.1 and test these hypotheses by means of
a stepdown procedure. The resulting acceptance regions can then be converted in
the usual way into confidence sets. It is shown in Holm (1999) that these sets are
rather complicated and not rectangular, so that they do not consist of intervals
for the individual µi’s. (They can, of course, be enclosed in a larger rectangle,
but the intervals obtained by such a process tend to be unnecessarily large.)

9.4 Scheffé’s S-Method: A Special Case

If X1, . . . , Xr are independent normal with common variance σ2 and expectations
E(Xi) = α+βti, confidence sets for (α, β) were obtained in Section 7.6. A related
problem is that of determining confidence bands for the whole regression line
ξ = α + βt, that is, functions L′(t; X), M ′(t; X) such that

P{L′(t; X) ≤ α + βt ≤ M ′(t; X) for all t} = γ. (9.61)

The problem of obtaining simultaneous confidence intervals for a continuum of
parametric functions arises also in other contexts. In the present section, a general
problem of this kind will be considered for linear models. Confidence bands for
an unknown distribution function were treated in Section 6.13.

Suppose first that X1, . . . , Xr are independent normal with variance σ2 = 1
and with means E(Xi) = ξi, and that simultaneous confidence intervals are
required for all linear functions

∑
uiξi. No generality is lost by dividing

∑
uiξi

and its lower and upper bound by
√∑

u2
i , so that attention can be restricted to

confidence sets

S(x) = {ξ : L(u; x) ≤
∑

uiξi ≤ M(u; x) for all u ∈ U} , (9.62)

where x, u denote both the vectors with coordinates xi, ui and the r × 1 column
matrices with these elements, and where U is the set of all u with

∑
u2

i = 1. The
sets S(x) are to satisfy

Pξ{ξ ∈ S(X)} = γ for all ξ = (ξ1, . . . , ξr). (9.63)

Since u = (u1, . . . , ur) ∈ U if and only if −u = (−u1, . . . ,−ur) ∈ U , the
simultaneous inequalities (9.62) imply L(−u; x) ≤ −

∑
uiξi ≤ M(−u; x), and

hence

−M(−u; x) ≤
∑

uiξi ≤ −L(−u; x)

and

max(L(u; x),−M(−u; x)) ≤
∑

uiξi ≤ min(M(u; x),−L(−u; x)).
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Nothing is therefore lost by assuming that L and M satisfy

L(u; x) = −M(−u; x). (9.64)

The problem of determining suitable confidence bounds L(u; x) and M(u; x)
is invariant under the group G1 of orthogonal transformations

G1 : gx = Qx, ḡξ = Qξ (Q an orthogonal r × r matrix).

Writing
∑

uiξi = u′ξ, we have

g∗S(x) = {Qξ : L(u; x) ≤ u′ξ ≤ M(u; x) for all u ∈ U}
= {ξ : L(u; x) ≤ u′(Q−1ξ) ≤ M(u; x) for all u ∈ U}
= {ξ : L(Q−1u; x) ≤ u′ξ ≤ M(Q−1u; x) for all u ∈ U},

where the last equality uses the fact that U is invariant under orthogonal
transformations of u.

Since

S(gx) = {ξ : L(u; Qx) ≤ u′ξ ≤ M(u; Qx) for all u ∈ U},

the confidence sets S(x) are equivariant under G1 if and only if

L(u; Qx) = L(Q−1u; x), M(u; Qx) = M(Q−1u; x),

or equivalently if

L(Qu; Qx) = L(u; x), M(Qu; Qx) = M(u; x) (9.65)

for all x, Q and u ∈ U,

that is, if L and M are invariant under common orthogonal transformations of u
and x.

A function L of u and x is invariant under these transformations if and only
if it depends on u and x only through u′x, x′x, and u′u [Problem 9.23(i)] and
hence (since u′u = 1) if there exists h such that

L(u; x) = h(u′x, x′x). (9.66)

A second group of transformations leaving the problem invariant is the group
of translations

G2 : gx = x + a, ḡξ = ξ + a

where x + a = (x1 + a1, . . . , xr + ar). An argument paralleling that leading to
(9.65) shows that L(u; x) is equivariant under G2 if and only if [Problem 9.23(ii)]

L(u; x + a) = L(u; x) +
∑

aiui for all x, a, and u. (9.67)

The function h of (9.66) must therefore satisfy

h[u′(x + a), (x + a)′(x + a)] = h(u′x, x′x) + a′u

for all a, x and u ∈ U,

and hence, putting x = 0,

h(u′a, a′a) = a′u + h(0, 0).
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A necessary condition (which clearly is also sufficient) for S(x) to be equivariant
under both G1 and G2 is therefore the existence of constants c and d such that

S(x) =
{

ξ :
∑

uixi − c ≤
∑

uiξi ≤
∑

uixi + d for all u ∈ U
}

From (9.64) it follows that c = d, so that the only equivariant families S(x) are
given by

S(x) =
{

ξ :
∣∣∣
∑

ui(xi − ξi)
∣∣∣ ≤ c for all u ∈ U

}
(9.68)

The constant c is determined by (9.63), which now reduces to

P0

{∣∣∣
∑

uiXi

∣∣∣ ≤ c for all u ∈ U
}

= γ. (9.69)

By the Schwarz inequality (
∑

uiXi)
2 ≤

∑
X2

i , since
∑

u2
i = 1, and hence

∣∣∣
∑

uiXi

∣∣∣ ≤ c for all u ∈ U if and only if
∑

X2
i ≤ c2. (9.70)

The constant c in (9.68) is therefore given by

P (χ2
r ≤ c2) = γ. (9.71)

In (9.68), it is of course possible to drop the restriction u ∈ U by writing (9.68)
in the equivalent form

S(x) =

{
ξ :

∣∣∣
∑

ui(xi − ξi)
∣∣∣ ≤ c

√∑
u2

i for all u

}
. (9.72)

So far attention has been restricted to the confidence bands (9.62). However,
confidence sets do not have to be intervals, and it may be of interest to consider
more general simultaneous confidence sets

S(x) :
∑

uiξi ∈ A(u, x) for all u ∈ U. (9.73)

For these sets, the equivariance conditions (9.65) and (9.67) become respectively
(Problem 9.24)

A(Qu, Qx) = A(u, x) for all x, Q and u ∈ U (9.74)

and

A(u, x + a) = A(u, x) + u′a for all u, x, and a. (9.75)

The first of these is equivalent to the condition that the set A(u, x) depends on
u ∈ U and x only through u′x and x′x. On the other hand putting x = 0 in
(9.75) gives

A(u, a) = A(u, 0) + u′a.

It follows from (9.74) that A(u, 0) is a fixed set A1 independent of u, so that

A(u, x) = A1 + u′x. (9.76)

The most general equivariant sets (under G1 and G2) are therefore of the form
∑

ui(xi − ξi) ∈ A for all u ∈ U, (9.77)

where A = −Ai.
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We shall now suppose that r > 1 and then show that among all A which
define confidence sets (9.77) with confidence coefficient ≥ γ, the sets (9.68) are
smallest3 in the very strong sense that if A0 = [−c0, c0] denotes the set (9.68)
with confidence coefficient γ, then A0 is a subset of A.

To see this, note that if Yi = Xi − ξi, the sets A are those satisfying

P

(∑
uiYi ∈ A for all u ∈ U

)
≥ γ. (9.78)

Now the set of values taken on by
∑

uiyi for a fixed y = (y1, . . . , yr) as u ranges
over U is the interval (Problem 9.24)

I(y) =

[
−

√∑
y2

i , +
√∑

y2
i

]
.

Let c∗ be the largest value of c for which the interval [−c, c] is contained in A.
Then the probability (9.78) is equal to

P{I(Y ) ⊂ A} = P{I(Y ) ⊂ [−c∗, c∗]}.

Since P{I(Y ) ⊂ A} ≥ γ, it follows that c∗ ≥ c0, and this completes the proof.
It is of interest to compare the simultaneous confidence intervals (9.68) for all∑
uiξi, u ∈ U , with the joint confidence spheres for (ξ1, . . . , ξr) given by (6.43).

These two sets of confidence statements are equivalent in the following sense.

Theorem 9.4.1 The parameter vector (ξ1, . . . , ξr) satisfies
∑

(Xi − ξi)
2 ≤ c2 if

and only if it satisfies (9.68).

Proof. The result follows immediately from (9.70) with Xi replaced by Xi−ξi.
Another comparison of interest is that of the simultaneous confidence intervals

(9.72) for all u with the corresponding interval

S′(x) =

{
ξ :

∣∣∣
∑

ui(xi − ξi)
∣∣∣ ≤ c′

√∑
u2

i

}
(9.79)

for a single given u. Since
∑

ui(Xi − ξi)/
√∑

u2
i has a standard normal distri-

bution, the constant c′ is determined by P (χ2
1 ≤ c′2) = γ instead of by (9.71). If

r > 1, the constant c2 = c2
r is clearly larger than c′2 = c2

1. The lengthening of the
confidence intervals by the factor cr/c1 in going from (9.79) to (9.72) is the price
one must pay for asserting confidence γ for all

∑
uiξi instead of a single one.

In (9.79), it is assumed that the vector u defines the linear combination of
interest and is given before any observations are available. However, it often hap-
pens that an interesting linear combination

∑
ûiξi to be estimated is suggested

by the data. The intervals
∣∣∣
∑

ûi(xi − ξi)
∣∣∣ ≤ c

√∑
û2

i (9.80)

with c given by (9.71) then provide confidence limits for
∑

ûiξi at confidence
level γ, since they are included in the set of intervals (9.72). [The notation ûi

3A more general definition of smallness is due to Wijsman (1979). It has been pointed
out by Professor Wijsman that his concept is equivalent to that of tautness defined by
Wynn and Bloomfield (1971).
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in (9.80) indicates that the u’s were suggested by the data rather than fixed in
advance.]

Example 9.4.1 (Two groups) Suppose the data exhibit a natural split into
a lower and upper group, say ξi1 , . . . , ξik , and ξj1 , . . . , ξjr−k , with averages ξ̄−
and ξ̄+, and that confidence limits are required for ξ̄+ − ξ̄−. Letting X̄− =
(Xi1 + · · ·+ Xik )/k and X̄+ = (Xj1 + · · ·+ Xjr−k )/(r− k) denote the associated
averages of the X’s we see that

X̄+ − X̄− − c

√
1
k

+
1

r − k
≤ ξ̄+ − ξ̄− ≤ X̄+ − X̄− + c

√
1
k

+
1

r − k
(9.81)

with c given by (9.71) provide the desired limits. Similarly

X̄− − c√
k
≤ ξ̄− ≤ X̄− +

c√
k

, X̄+ − c√
r − k

≤ ξ̄+ ≤ X̄+ +
c√

r − k
(9.82)

provide simultaneous confidence intervals for the two group means separately,
with c again given by (9.71). For a discussion of related examples and issues see
Peritz (1965).

Instead of estimating a data-based function
∑

ûiξi, one may be interested in
testing it. At level α = 1 − γ, the hypothesis

∑
ûiξi = 0 is rejected when the

confidence intervals (9.80) do not cover the origin, i.e., when
∣∣∣
∑

ûixi

∣∣∣ ≥ c
√∑

û2
i .

Equivariance with respect to the group G1 of orthogonal transformations
assumed at the beginning of this section is appropriate only when all linear combi-
nations

∑
uiξi with u ∈ U are of equal importance. Suppose instead that interest

focuses on the individual means, so that simultaneous confidence intervals are re-
quired for ξ1, . . . , ξr. This problem remains invariant under the translation group
G2. However, it is no longer invariant under G1, but only under the much smaller
subgroup G0 generated by the n! permutations and the 2n changes of sign of the
X’s. The only simultaneous intervals that are equivariant under G0 and G2 are
given by [Problem 9.25(i)]

S(x) = {ξ : xi − ∆ ≤ ξi ≤ xi + ∆ for all i} (9.83)

where ∆ is determined by

P [S(X)] = P (max |Yi| ≤ ∆) = γ (9.84)

with Y1, . . . , Yr being independent N(0, 1).
These maximum-modulus intervals for the ξ’s can be extended to all linear

combinations
∑

uiξi of the ξ’s by noting that the right side of (9.83) is equal to
the set [Problem 9.25(ii)]

{
ξ :

∣∣∣
∑

ui(Xi − ξi)
∣∣∣ ≤ ∆

∑
|ui| for all u

}
, (9.85)

which therefore also has probability γ, but which is not equivariant under G1. A
comparison of the intervals (9.85) with the Scheffé intervals (9.72) shows [Problem
9.25(iii)] that the intervals (9.85) are shorter when

∑
ujξj = ξi (i.e. when uj = 1

for j = i, and uj = 0 otherwise), but that they are longer for example when
u1 = · · · = ur.
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9.5 Scheffé’s S-Method for General Linear Models

The results obtained in the preceding section for the simultaneous estimation of
all linear functions

∑
uiξi when the common variance of the variables Xi is known

easily extend to the general linear model of Section 7.1. In the canonical form
(7.2), the observations are n independent normal random variables with common
unknown variance σ2 and with means E(Yi) = ηi for i = 1, . . . , s and E(Yi) = 0
for i = s + 1, . . . , n. Simultaneous confidence intervals are required for all linear
functions

∑r
i=1 uini with u ∈ U , where U is the set of all u = (u1, . . . , ur)

with
∑r

i=1 u2
i = 1. Invariance under the translation group Y ′

i = Yi + ai,
i = r + 1, . . . , s, leaves Y1, . . . , Yr; Ys+1, . . . , Yn as maximal invariants, and suf-
ficiency justifies restricting attention to Y = (Y1, . . . , Yr) and S2 =

∑n
j=s+1 Y 2

j .
The confidence intervals corresponding to (9.62) are therefore of the form

L(u; y, S) ≤
r∑

i=1

uiηi ≤ M(u; y, S) for all u ∈ U, (9.86)

and in analogy to (9.64) may be assumed to satisfy

L(u; y, S) = −M(−u; y, S). (9.87)

By the argument leading to (9.66), it is seen in the present case that
equivariance of L(u; y, S) under G1 requires that

L(u; y, S) = h(u′y, y′y, S),

and equivariance under G2 requires that L be of the form

L(u; y, S) =
r∑

i=1

uiyi − c(S).

Since σ2 is unknown, the problem is now also invariant under the group of scale
changes

G3 : y′
i = byi (i = 1, . . . , r), S′ = bS (b > 0).

Equivariance of the confidence intervals under G3 leads to the condition [Problem
9.26(i)]

L(u; by, bS) = bL(u; y, S) for all b > 0,

and hence to

b
∑

uiyi − c(bS) = b

[∑
uiyi − c(S)

]
,

or c(bS) = bc(S). Putting S = 1 shows that c(S) is proportional to S. Thus

L(u; y, S) =
∑

uiyi − cS, M(u; y, S) =
∑

uiyi + dS,

and by (9.87), c = d, so that the equivariant simultaneous intervals are given by
∑

uiyi − cS ≤
∑

uiηi ≤
∑

uiyi + cS for all u ∈ U. (9.88)

Since (9.88) is equivalent to
∑

(yi − ηi)
2

S2
≤ c2,
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the constant c is determined from the F -distribution by

P0

{ ∑
Y 2

i /r
S2/(n − s)

≤ n − s
r

c2

}
= P0

{
Fr,n−s ≤ n − s

r
c2

}
= γ. (9.89)

As in (9.72), the restriction u ∈ U can be dropped; this only requires replacing c
in (9.88) and (9.89) by c

√∑
u2

i = c
√

Var
∑

uiYi/σ2.
As in the case of known variance, instead of restricting attention to the confi-

dence bands (9.88), one may wish to permit more general simultaneous confidence
sets

∑
uiηi ∈ A(u; y, S). (9.90)

The most general equivariant confidence sets are then of the form [Problem
9.26(ii)]

∑
ui(yi − ηi)

S
∈ A for all u ∈ U, (9.91)

and for a given confidence coefficient, the set A is minimized by A0 = [−c, c], so
that (9.91) reduces to (9.88).

For applications, it is convenient to express the intervals (9.88) in terms of
the original variables Xi and ξi. Suppose as in Section 7.1 that X1, . . . , Xn are
independently distributed as N(ξi, σ

2), where ξ = (ξ1, . . . , ξn) is assumed to lie
in a given s-dimensional linear subspace

∏
Ω (s < n). Let V be an r-dimensional

subspace of
∏

Ω (r ≤ s), let ξ̂i be the least squares estimates of the ξ’s under∏
Ω, and let S2 =

∑
(Xi − ξ̂i)

2. Then the inequalities

∑
viξ̂i − cS

√√√√Var
(∑

viξ̂i

)

σ2
≤

∑
viξi ≤

∑
viξ̂i + cS

√√√√Var
(∑

viξ̂i

)

σ2

for all v ∈ V, (9.92)

with c given by (9.89), provide simultaneous confidence intervals for
∑

viξi for
all v ∈ V with confidence coefficient γ.

This result is an immediate consequence of (9.88) and (9.89) together with the
following three facts, which will be proved below:

(i) If
∑s

i=1 uiηi =
∑n

j=1 vjξj , then
∑s

i=1 uiYi =
∑n

j=1 vj ξ̂j ;

(ii)
∑n

i=s+1 Y 2
i =

∑n
j=1(Xj − ξ̂j)

2,

To state (iii), note that the η’s are obtained as linear functions of the ξ’s through
the relationship

(η1, . . . , ηr, ηr+1, . . . , ηs, 0, . . . , 0)′ = C(ξ1, . . . , ξn)′ (9.93)

where C is defined by (7.1) and the prime indicates a transpose. This is seen by
taking the expectation of both sides of (7.1). For each vector u = (u1, . . . , ur),

(9.93) expresses
∑

uiηi as a linear function
∑

v(u)
j ξj of the ξ’s.

(iii) As u ranges over r-space, v(u) = (v(u)
1 , . . . , v(u)

n ) ranges over V .
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Proof of (i) Recall from Section 7.2 that

n∑

j=1

(Xj − ξj)
2 =

s∑

i=1

(Yi − ηi)
2 +

n∑

j=s+1

Y 2
j .

Since the right side is minimized by ηi = Yi and the left side by ξj = ξ̂j , this
shows that

(Y1 · · ·Ys0 · · · 0)′ = C(ξ̂1 · · · ξ̂j)
′,

and the result now follows from comparison with (9.93).
Proof of (ii) This is just equation (7.13).

Proof of (iii) Since ηi =
∑n

j=1 cijξj , we have
∑

uiηi =
∑

v(u)
j ξj with v(u)

j =
∑r

i=1 uicij . Thus, the vectors v(u) = (v(u)
1 , . . . , v(u)

n ) are linear combinations, with
weights u1, . . . , ur, of the first r row vectors of C. Since the space spanned by
these row vectors is V , the result follows.

The set of linear functions
∑

viξi, v ∈ V , for which the interval (9.92) does
not cover the origin—that is, for which v satisfies

∣∣∣
∑

viξ̂i

∣∣∣ > cS

√√√√Var
(∑

viξ̂i

)

σ2
(9.94)

—is declared significantly different from 0 by the intervals (9.92). Thus (9.94) is
a rejection region at level α = 1 − γ of the hypothesis H :

∑
viξi = 0 for all

v ∈ V in the sense that H is rejected if and only if at least one v ∈ V satisfies
(9.94). If

∏
ω denotes the (s− r)-dimensional space of vectors v ∈

∏
Ω which are

orthogonal to V , then H states that ξ ∈
∏

ω, and the rejection region (9.94) is
in fact equivalent to the F -test of H : ξ ∈

∏
ω of Section 7.1. In canonical form,

this was seen in the sentence following (9.88).
To implement the intervals (9.92) in specific situations in which the correspond-

ing intervals for a single given function
∑

viξi are known, it is only necessary to
designate the space V and to obtain its dimension r, the constant c then being
determined by (9.89).

Example 9.5.1 (All contrasts) Let Xij (j = 1, . . . , ni; i = 1, . . . , s) be inde-
pendently distributed as N(ξi, σ

2), and is suppose V is the space of all vectors
v = (v1, . . . , vn) satisfying

∑
vi = 0. (9.95)

Any function
∑

viξi with v ∈ V is called a contrast among the ξi. The set of
contrasts includes in particular the differences ξ̄+ − ξ̄− discussed in Example
9.4.1. The space

∏
Ω is the set of all vectors (ξ1, . . . , ξ1; ξ2, . . . , ξ2; ξs, . . . , ξs) and

has dimension s, while V is the subspace of vectors
∏

Ω that are orthogonal to
(1, . . . , 1) and hence has dimension r = s − 1. It was seen in Section 7.3 that
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ξ̂i = Xi·, and if the vectors of V are denoted by
(

w1

n1
, . . . ,

w1

n1
;
w2

n2
, . . . ,

w2

n2
;
ws

ns
, . . . ,

ws

ns

)
,

the simultaneous confidence intervals (9.92) become (Problem 9.28)

∑
wiXi· − cS

√∑
w2

i

ni
≤

∑
wiξi ≤

∑
wiXi· + cS

√∑
w2

i

ni
(9.96)

for all (w1, . . . , ws) satisfying
∑

wi = 0,

with S2 =
∑ ∑

(Xij − Xi·)
2.

In the present case the space
∏

ω is the set of vectors with all coordinates
equal, so that the associated hypothesis is H : ξ1 = · · · = ξs. The rejection region
(9.94) is thus equivalent to that given by (7.19).

Instead of testing the overall homogeneity hypothesis H, we may be interested
in testing one or more subhypotheses suggested by the data. In the situation
corresponding to that of Example 9.4.1 (but with replications), for instance,
interest may focus on the hypotheses H1 : ξi1 = · · · = ξik and H2 : ξj1 = · · · =
ξjs−k . A level α simultaneous test of H1 and H2 is given by the rejection region
∑(1) ni(Xi· − X(1)

·· )2/(k − 1)
S2/(n − s)

> C,

∑(2) ni(Xi· − X(2)
·· )2/(s − k − 1)

S2/(n − s)
> C,

where
∑(1),

∑(2), X(1)
·· , X(2)

·· indicate that the summation or averaging extends
over the sets (i1, . . . , ik) and (j1, . . . , js−k) respectively, S2 =

∑ ∑
(Xij − Xi·)

2,
α = 1 − γ, and the constant C is given by (9.89) with r = s and is therefore the
same as in (7.19), rather than being determined by the Fk−1,n−s and Fs−k−1,n−s

distributions. The reason for this larger critical value is, of course, the fact the
H1 and H2 were suggested by the data. The present procedure is an example of
Gabriel’s simultaneous test procedure mentioned in Section 9.3.

Example 9.5.2 (Two-way layout) As a second example, consider first the ad-
ditive model in the two-way classification of Section 7.4 or 7.5, and then the more
general interaction model of Section 7.5.

Suppose Xij are independent N(ξij , σ
2) (i = 1, . . . , a; j = 1, . . . , b), with ξij

given by (7.20), and let V be the space of all linear functions
∑

wiαi =
∑

wi(ξi·−
ξ··). As was seen in Section 7.4, s = a + b − 1. To determine r, note that V can
also be represented as

∑
i=1 wiξi· with

∑
wi = 0 [Problem 9.27(i)], which shows

that r = a − 1. The least-squares estimators ξ̂i were found in Section 7.4 to be
ξ̂ij = Xi· + X·j − X··, so that ξ̂i· = Xi· and S2 =

∑ ∑
(Xij − Xi· − X·j + X··)

2.
The simultaneous confidence intervals (9.92) therefore can be written as

∑
wiXi· − cS

√∑
w2

i

b
≤

∑
wiξi· ≤

∑
wiXi· + cS

√∑
w2

i

b

for all w with
a∑

i=1

wi = 0.

If there are m observations in each cell, and the model is additive as before, the
only changes required are to replace Xi· by Xi··, S2 by

∑ ∑ ∑
(Xijk − Xi·· −

X·j· + X···)
2, and the expression under the square root by

∑
w2

i /bm.
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Let us now drop the assumption of additivity and consider the general linear
model ξijk = µ + αi + βj + γij , with µ and the α’s, β’s, and γ’s defined as in
Section 7.5. The dimension s of

∏
Ω is then ab, and the least squares estimators

of the parameters were seen in Section 7.5 to be

µ̂ = X···, α̂i = Xi·· − X···, β̂j = X·j· − X···,

γ̂ij = Xij· − Xi·· − X·j· + X···

The simultaneous intervals for all
∑

wiαi, or for all
∑

wiξi·· with
∑

wi = 0, are
therefore unchanged except for the replacement of S2 =

∑
(Xijk − Xi·· − X·j· +

X···)
2 by S2 =

∑
(Xijk −Xij·)

2 and of n− s = n− a− b + 1 by n− s = n− ab =
(m − 1)ab in (9.89).

Analogously, one can obtain simultaneous confidence intervals for the totality
of linear functions

∑
wijγij , or equivalently the set of functions

∑
wijξij· for the

totality of w’s satisfying
∑

i wij =
∑

j wij = 0 [Problem 9.27(ii), (iii)].

Example 9.5.3 (Regression line) As a last example consider the problem of
obtaining confidence bands for a regression line, mentioned at the beginning of
the section. The problem was treated for a single value t0 in Section 5.6 (with a
different notation) and in Section 7.6. The simultaneous confidence intervals in
the present case become

α̂ + β̂t − cS

[
1
n

+
(t − t̄)2∑
(ti − t̄)2

]1/2

≤ α + βt (9.97)

≤ α̂ + β̂t + cS

[
1
n

+
(t − t̄)2∑
(ti − t̄)2

]1/2

,

where α̂ and β̂ are given by (7.23),

S2 =
∑

(Xi − α̂ − β̂ti)
2 =

∑
(Xi − X̄)2 − β̂2

∑
(ti − t̄)2

and c is determined by (9.89) with r = s = 2. This is the Working–Hotelling
confidence band for a regression line.

At the beginning of the section, the Scheffé intervals were derived as the only
confidence bands that are equivariant under the indicated groups. If the require-
ment of equivariance (particular under orthogonal transformations) is dropped,
other bounds exist which are narrower for certain sets of vectors u at the cost
of being wider for others [Problems 9.26(iii) and 9.32]. A general method that
gives special emphasis to a given subset is described by Richmond (1982). Some
optimality results not requiring equivariance but instead permitting bands which
are narrower for some values of t at the expense of being wider for others are pro-
vided, among others, by Bohrer (1973), Cima and Hochberg (1976), Richmond
(1982), Naiman (1984a,b), and Piegorsch (1985a, b). If bounds are required only
for a subset, it may be possible that intervals exist at the prescribed confidence
level, which are uniformly narrower than the Scheffé intervals. This is the case
for example for the intervals (9.97) when t is restricted to a given finite interval.
For a discussion of this and related problems, and references to the literature, see
for example Wynn and Bloomfield (1971) and Wynn (1984).
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9.6 Problems

Section 9.1

Problem 9.1 Show the Bonferroni procedure, while generally conservative, can
have FWER = α by exhibiting a joint distribution for (p̂1, . . . , p̂s) and satisfying
(9.4) such that P{mini p̂i ≤ α/s} = α.

Problem 9.2 (i) Under the assumptions of Theorem 9.1.1, suppose also that
the p-values are mutually independent. Then, the procedure which rejects any
Hi for which p̂i < c(α, s) = 1 − (1 − α)1/s controls the FWER.
(i) Compare α/s with c(α, s) and show

lim
s→∞

c(α, s)
(α/s)

=
− log(1 − α)

α
.

For α = .05, this limiting value to 3 decimals is 1.026, so the increase in cutoff
value is not substantial.

Problem 9.3 Show that, under the assumptions of Theorem 9.1.2, it is not
possible to increase any of the critical values αi = α/(s − i + 1) in the Holm
procedure (9.6) without violating the FWER.

Problem 9.4 Under the assumptions of Theorem 9.1.2 and independence of the
p-values, the critical values α/(s− i+1) can be increased to 1− (1−α)1/(s−i+1).
For any i, calculate the limiting value of the ratio of these critical values, as
s → ∞.

Problem 9.5 In Example 9.1.4, verify that the stepdown procedure based on
the maximum of Xj/

√
σj,j improves upon the Holm procedure. By Theorem

9.1.3, the procedure has FWER ≤ α. Compare the two procedures in the case
σi,i = 1, σi,j = ρ if i += j; consider ρ = 0 and ρ → ±1.

Problem 9.6 Suppose Hi is specifies the unknown probability P belongs to a
subset of the parameter space ωi, for i = 1, . . . , s. For any K ⊂ {1, . . . , k}, let HK

be the intersection hypothesis P ∈
⋂

j∈K ωj . Suppose φK is level α for testing
HK . Consider the multiple testing procedures that rejects Hi if φK rejects HK

whenever i ∈ K. Show, the FWER ≤ α. [This method of constructing tests that
control the FWER is called the closure method of Marcus, Peritz and Gabriel
(1976).]

Problem 9.7 As in Procedure 9.1.1, suppose that a test of the individual hy-
pothesis Hj is based on a test statistic Tn,j , with large values indicating evidence
against the Hj . Assume

⋂s
j=1 ωj is not empty. For any subset K of {1, . . . , s},

let cn,K(α, P ) denote an α-quantile of the distribution of maxj∈K Tn,j under P .
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Concretely,

cn,K(α, P ) = inf{x : P{max
j∈K

Tn,j ≤ x} ≥ α} . (9.98)

For testing the intersection hypothesis HK , it is only required to approximate a
critical value for P ∈

⋂
j∈K ωj . Because there may be many such P , we define

cn,K(1 − α) = sup{cn,K(1 − α, P ) : P ∈
⋂

j∈K

ωj} . (9.99)

(i) In Procedure 9.1.1, show that the choice ĉn,K(1 − α) = cn,K(1 − α) controls
the FWER, as long as (9.9) holds.
(ii) Further assume that for every subset K ⊂ {1, . . . , k}, there exists a
distribution PK which satisfies

cn,K(1 − α, P ) ≤ cn,K(1 − α, PK) (9.100)

for all P such that I(P ) ⊃ K. Such a PK may be referred to being least favorable
among distributions P such that P ∈

⋂
j∈K ωj . (For example, if Hj corresponds

to a parameter θj ≤ 0, then intuition suggests a least favorable configuration
should correspond to θj = 0.) In addition, assume the subset pivotality condition
of Westfall and Young (1993); that is, assume there exists a P0 with I(P0) =
{1, . . . , s} such that the joint distribution of {Tn,j : j ∈ I(PK)} under PK is
the same as the distribution of {Tn,j : j ∈ I(PK)} under P0. This condition
says the (joint) distribution of the test statistics used for testing the hypotheses
Hj , j ∈ I(PK) is unaffected by the truth or falsehood of the remaining hypotheses
(and therefore we assume all hypotheses are true by calculating the distribution
of the maximum under P0). Show we can use ĉn,K(1 − α, P0) for ĉn,K(1 − α).
(iii) Further assume the distribution of (Tn,1, . . . , Tn,s) under P0 is invariant under
permutations (or exchangeable). Then, the critical values ĉn,K(1 − α) can be
chosen to depend only on |K|.

Problem 9.8 Rather than finding multiple tests that control the FWER, con-
sider the k-FWER, the probability of rejecting k or more false hypotheses. For
a given k, if there are s hypotheses, consider the procedure that rejects any hy-
pothesis whose p-value is ≤ kα/s. Show that the resulting procedure controls the
k-FWER. [Additional stepdown procedures that control the number of false re-
jections, as well as the probability that the proportion of false rejections exceeds
a given bound, are obtained in Lehmann and Romano (2005).]

Problem 9.9 In general, show that FDR ≤ FWER, and equality holds when
all hypotheses are true. Therefore, control of the FWER at level α implies control
of the FDR.

Section 9.2

Problem 9.10 . Suppose (X1, . . . , Xk)T has a multivariate c.d.f. F (·). For θ ∈
RI k , let Fθ(x) = F (x− θ) define a multivariate location family. Show that (9.15)
is satisfied for this family. (In particular, it holds if F is any multivariate normal
distribution.)



9.6. Problems 387

Problem 9.11 Prove Lemma 9.2.2.

Problem 9.12 We have suppressed the dependence of the critical constants
C1, . . . , Cs in the definition of the stepdown procedure D, and now more ac-
curately call them Cs,1, . . . , Cs,s. Argue that, for fixed s, Cs,j is nonincreasing in
j and only depends on s − j.

Problem 9.13 Under the assumptions of Theorem 9.2.1, suppose there exists
another monotone rule E that strongly controls the FWER, and such that

Pθ{dc
0,0} ≤ Pθ{ec

0,0} for all θ ∈ ωc
0,0 , (9.101)

with strict inequality for some θ ∈ ωc
0,0. Argue that the ≤ in (9.101) is an equality,

and hence e0,00d0,0 has Lebesgue measure 0, where A0B denotes the symmetric
difference between sets A and B. A similar result for the region d1,1 can be made
as well.

Problem 9.14 In general, the optimality results of Section 9.2 require the pro-
cedures to be monotone. To see why this is required, consider 9.2.2 (i). Show the
procedure E to be inadmissible. Hint: One can always add large negative values
of T1 and T2 to the region u1,1 without violating the FWER.

Problem 9.15 Prove part (i) of Theorem 9.2.3.

Problem 9.16 In general, show Cs = C∗
1 . In the case s = 2, show (9.27).

Section 9.3

Problem 9.17 Show that
r+1∑

i=1

(
Yi −

Y1 + · · · + Yr+1

r + 1

)2

−
r∑

i=1

(
Yi −

Y1 + · · · + Yr

r

)2

≥ 0.

Problem 9.18 (i) For the validity of Lemma 9.3.1 it is only required that the
probability of rejecting homogeneity of any set containing {µi1 , . . . , µiv1

}
as a proper subset tends to 1 as the distance between the different groups
(9.48) all → ∞, with the analogous condition holding for H ′

2, . . . , H
′
r.

(ii) The condition of part (i) is satisfied for example if homogeneity of a set S
is rejected for large values of

∑
|Xi· − X··|, where the sum extends over

the subscripts i for which µi ∈ S.

Problem 9.19 In Lemma 9.3.2, show that αs−1 = α is necessary for
admissibility.

Problem 9.20 Prove Lemma 9.3.3 when s is odd.

Problem 9.21 Show that the Tukey levels (vi) satisfy (9.54) when s is even but
not when s is odd.
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Problem 9.22 The Tukey T -method leads to the simultaneous confidence
intervals

|(Xj· − Xi·) − (µj − µi)| ≤
CS√

sn(n − 1)
for all i, j. (9.102)

[The probability of (9.102) is independent of the µ’s and hence equal to 1 − αs.]

Section 9.4

Problem 9.23 (i) A function L satisfies the first equation of (9.65) for all u,
x, and orthogonal transformations Q if and only if it depends on u and x
only through u′x, x′x, and u′u.

(ii) A function L is equivariant under G2 if and only if it satisfies (9.67).

Problem 9.24 (i) For the confidence sets (9.73), equivariance under G1 and
G2 reduces to (9.74) and (9.75) respectively.

(ii) For fixed (y1, . . . , yr), the statements
∑

uiyi ∈ A hold for all (u1, . . . , ur)
with

∑
u2

i = 1 if and only if A contains the interval I(y) =
[−

√∑
Y 2

i , +
√∑

Y 2
i ].

(iii) Show that the statement following (9.77) ceases to hold when r = 1.

Problem 9.25 Let Xi (i = 1, . . . , r) be independent N(ξi, 1).

(i) The only simultaneous confidence intervals equivariant under G0 are those
given by (9.83).

(ii) The inequalities (9.83) and (9.85) are equivalent.

(iii) Compared with the Scheffé intervals (9.72), the intervals (9.85) for
∑

ujξj

are shorter when
∑

ujξj = ξi and longer when u1 = · · · = ur.

[(ii): For a fixed u = (u1, . . . , ur),
∑

uiyi is maximized subject to |yi| ≤ ∆ for all
i, by yi = ∆ when ui > 0 and yi = −∆ when ui < 0.]

Section 9.5

Problem 9.26 (i) The confidence intervals L(u; y, S) =
∑

uiyi − c(S) are
equivariant under G3 if and only if L(u; by, bS) = bL(u; y, S) for all b > 0.

(ii) The most general confidence sets (9.90) which are equivariant under G1,
G2, and G3 are of the form (9.91).

Problem 9.27 (i) In Example 9.5.2, the set of linear functions
∑

wiαi =∑
wi(ξi· − ξ··) for all w can also be represented as the set of functions∑
wiξi· for all w satisfying

∑
wi = 0.

(ii) The set of linear functions
∑ ∑

wijγij =
∑ ∑

wij(ξij· − ξi·· − ξ·j· + ξ···)
for all w is equivalent to the set

∑ ∑
wijξij· for all w satisfying

∑
i wij =∑

j wij = 0.
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(iii) Determine the simultaneous confidence intervals (9.92) for the set of linear
functions of part (ii).

Problem 9.28 (i) In Example 9.5.1, the simultaneous confidence intervals
(9.92) reduce to (9.96).

(ii) What change is needed in the confidence intervals of Example 9.5.1 if the v’s
are not required to satisfy (9.95), i.e., if simultaneous confidence intervals
are desired for all linear functions

∑
viξi instead of all contrasts? Make a

table showing the effect of this change for s = 2, 3, 4, 5; ni = n = 3, 5, 10.

Problem 9.29 Tukey’s T -Method. Let Xi (i = 1, . . . , r) be independent N(ξi, 1),
and consider simultaneous confidence intervals

L[(i, j); x] ≤ ξj − ξi ≤ M [(i, j); x] for all i += j. (9.103)

The problem of determining such confidence intervals remains invariant under the
group G′

0 of all permutations of the X’s and under the group G2 of translations
gx = x + a.

(i) In analogy with (9.64), attention can be restricted to confidence bounds
satisfying

L[(i, j); x] = −M [(j, i); x]. (9.104)

(ii) The only simultaneous confidence intervals satisfying (9.104) and equivari-
ant under G′

0 and G2 are those of the form

S(x) = {ξ : xj − xi − ∆ < ξj − ξi < xj − xi + ∆ for all i += j}. (9.105)

(iii) The constant ∆ for which (9.105) has probability γ is determined by

P0{max |Xj − Xi| < ∆} = P0{X(n) − X(1) < ∆} = γ, (9.106)

where the probability P0 is calculated under the assumption that ξ1 =
· · · = ξr.

Problem 9.30 In the preceding problem consider arbitrary contrasts
∑

ciξi

with
∑

ci = 0. The event

|(Xj − Xi) − (ξj − ξi)| ≤ ∆ for all i += j (9.107)

is equivalent to the event
∣∣∣
∑

ciXi −
∑

ciξi

∣∣∣ ≤
∆
2

∑
|ci| for all c with

∑
ci = 0, (9.108)

which therefore also has probability γ. This shows how to extend the Tukey
intervals for all pairs to all contrasts.
[That (9.108) implies (9.107) is obvious. To see that (9.107) implies (9.108), let
yi = xi − ξi and maximize |

∑
ciyi| subject to |yj − yi| ≤ ∆ for all i and j. Let

P and N denote the sets {i : ci > 0} and {i : ci < 0}, so that
∑

ciyi =
∑

i∈P

ciyi −
∑

i∈N

|ci| yi.

Then for fixed c, the sum
∑

ciyi is maximized by maximizing the yi’s for i ∈ P
and minimizing those for i ∈ N . Since |yj − yi| ≤ ∆, it is seen that

∑
ciyi is
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maximized by yi = ∆/2 for i ∈ P , yi = −∆/2 for i ∈ N . The minimization of∑
ciyi is handled analogously.]

Problem 9.31 (i) Let Xij (j = 1, . . . n; i = 1, . . . , s) be independent
N(ξi, σ

2), σ2 unknown. Then the problem of obtaining simultaneous con-
fidence intervals for all differences ξj − ξi is invariant under G′

0, G2, and
the scale changes G3.

(ii) The only equivariant confidence bounds based on the sufficient statistics
Xi· and S2 =

∑ ∑
(Xij −Xi·)

2 and satisfying the condition corresponding
to (9.104) are those given by

S(x) =

{
x : xj· − xi· −

∆′
√

n − s
S ≤ ξj − ξi (9.109)

≤ xj· − xi· +
∆′

√
n − s

S for all i += j

}

with ∆′ determined by the null distribution of the Studentized range

P0

{
max |Xj· − Xi·|

S/
√

n − s
< ∆′

}
= γ. (9.110)

(iii) Extend the results of Problem 9.30 to the present situation.

Problem 9.32 Construct an example [i.e., choose values n1 = · · · = ns = n
and α particular contrast (c1, . . . , cs)] for which the Tukey confidence intervals
(9.108) are shorter than the Scheffé intervals (9.96), and an example in which the
situation is reversed.

Problem 9.33 Dunnett’s method. Let X0j (j = 1, . . . , m) and Xik (i =
1, . . . , s; k = 1, . . . , n) represent measurements on a standard and s competing
new treatments, and suppose the X’s are independently distributed as N(ξ0, σ

2)
and N(ξi, σ

2) respectively. Generalize Problems 9.29 and 9.31 to the problem
of obtaining simultaneous confidence intervals for the s differences ξi − ξ0 (i =
1, . . . , s).

Problem 9.34 In generalization of Problem 9.30, show how to extend the
Dunnett intervals of Problem 9.33 to the set of all contrasts.
[Use the fact that the event |yi − y0| ≤ ∆ for i = 1, . . . , s is equivalent to the
event |

∑s
i=0 ciyi| ≤ ∆

∑s
i=1 |ci| for all (c0, . . . , cs) satisfying

∑s
i=0 ci = 0.]

Note. As is pointed out in Problems 9.26(iii) and 9.32, the intervals resulting
from the extension of the Tukey (and Dunnett) methods to all contrasts are
shorter than the Scheffé intervals for the differences for which these methods were
designed and for contrasts close to them, and longer for some other contrasts.
For details and generalizations, see for example Miller (1981), Richmond (1982),
and Shaffer (1977a).

Problem 9.35 In the regression model of Problem 7.8, generalize the confidence
bands of Example 9.5.3 to the regression surfaces

(i) h1(e1, . . . , es) =
∑s

j=1 ejβj ;

(ii) h2(e2, . . . , es) = β1 +
∑s

j=2 ejβj .
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9.7 Notes

Many of the basic ideas for making multiple inferences were pioneered by Tukey
(1953); see Tukey (1991), Braun (1994), and Shaffer (1995). See Duncan (1955)
for an exposition of the ideas of one of the early workers in the area of multiple
comparisons.

Comprehensive accounts on the theory and methodology of multiple testing
can be found in Hochberg and Tamhane (1987), Westfall and Young (1993),
and Hsu (1996) and Dudoit, Shaffer and Boldrick (2003). Some recent work on
stepwise procedures includes Troendle (1995), Finner and Roters (1998, 2002),
and Romano and Wolf (2004). Confidence sets based on multiple tests are studied
in Haytner and Hsu (1994), Miwa and Hayter (1999) and Holm (1999).

The first simultaneous confidence intervals (for a regression line) were obtained
by Working and Hotelling (1929). Scheffé’s approach was generalized in Roy and
Bose (1953). The optimal property of the Scheffé intervals presented in Section
9.4 is a special case of results of Wijsman (1979, 1980). A review of the literature
on the relationship of tests and confidence sets for a parameter vector with the
associated simultaneous confidence intervals for functions of its components can
be found in Kanoh and Kusunoki (1984). Some alternative methods to construct
confidence bands in regression contexts are given in Faraway and Sun (1995) and
Spurrier (1999).



10
Conditional Inference

10.1 Mixtures of Experiments

The present chapter has a somewhat different character from the preceding ones.
It is concerned with problems regarding the proper choice and interpretation of
tests and confidence procedures, problems which—despite a large literature—
have not found a definitive solution. The discussion will thus be more tentative
than in earlier chapters, and will focus on conceptual aspects more than on
technical ones.

Consider the situation in which either the experiment E of observing a random
quantity X with density pθ (with respect to µ) or the experiment F of observing
an X with density qθ (with respect to ν) is performed with probability p and
q = 1 − p respectively. On the basis of X, and knowledge of which of the two
experiments was performed, it is desired to test H0 : θ = θ0 against H1 : θ = θ1.
For the sake of convenience it will be assumed that the two experiments have the
same sample space and the same σ-field of measurable sets. The sample space of
the overall experiment consists of the union of the sets

X0 = {(I, x) : I = 0, x ∈ X} and X1 = {(I, x) : I = 1, x ∈ X}

where I is 0 or 1 as E or F is performed.
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A level-α test of H0 is defined by its critical function

φi(x) = φ(i, x)

and must satisfy

pE0

[
φ0(X) | E

]
+ qE0

[
φ1(X) | F

]
= p

∫
φ0pθ0 dµ + q

∫
φ1qθ0 dν ≤ α. (10.1)

Suppose that p is unknown, so that H0 is composite. Then a level-α test of H0

satisfies (10.1) for all 0 < p < 1, and must therefore satisfy

α0 =

∫
φ0pθ0 dµ ≤ α and α1 =

∫
φ1qθ0 dν ≤ α. (10.2)

As a result, a UMP test against H1 exists and is given by

φ0(x) =






1
γ0

0
if

pθ1(x)
pθ0(x)

>=< c0, φ1(x) =






1
γ1

0
if

qθ1(x)
qθ0(x)

>=< c1, (10.3)

where the ci and γi are determined by

Eθ0

[
φ0(X) | E

]
= Eθ0

[
φ1(X) | F

]
= α. (10.4)

The power of this test against H1 is

β(p) = pβ0 + qβ1 (10.5)

with

β0 = Eθ1

[
φ0(X) | E

]
, β1 = Eθ1

[
φ1(X) | F

]
. (10.6)

The situation is analogous to that of Section 4.4 and, as was discussed there, it
may be more appropriate to consider the conditional power βi when I = i, since
this is the power pertaining to the experiment that has been performed. As in
the earlier case, the conditional power βI can also be interpreted as an estimate
of the unknown β(p), which is unbiased, since

E(βI) = pβ0 + qβ1 = β(p).

So far, the probability p of performing experiment E has been assumed to be
unknown. Suppose instead that the value of p is known, say p = 1

2 . The hypothesis
H can be tested at level α by means of (10.3) as before, but the power of the
test is now known to be 1

2 (β0 +β1). Suppose that β0 = .3, β1 = .9, so that at the
start of the experiment the power is 1

2 (.3 + .9) = .6. Now a fair coin is tossed to
decide whether to perform E (in case of heads) or F (in case of tails). If the coin
shows heads, should the power be reassessed and scaled down to .3?

Let us postpone the answer and first consider another change resulting from
the knowledge of p. A level-α test of H now no longer needs to satisfy (10.2) but
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only the weaker condition

1
2

[∫
φ0pθ0 dµ +

∫
φ1qθ0 dν

]
≤ α. (10.7)

The most powerful test against K is then again given by (10.3), but now with
c0 = c1 = c and γ0 = γ1 = γ determined by (Problem 10.3)

1
2 (α0 + α1) = α, (10.8)

where

α0 = Eθ0

[
φ0(X) | E

]
, α1 = Eθ0

[
φ1(X) | F

]
. (10.9)

As an illustration of the change, suppose that experiment F is reasonably infor-
mative, say that the power β1 given by (10.6), is .8, but that E has little ability
to distinguish between pθ0 and pθ1 . Then it will typically not pay to put much of
the rejection probability into α0; if β0 [given by (10.6)] is sufficiently small, the
best choice of α0 and α1 satisfying (10.8) is approximately α0 ≈ 0, α1 ≈ 2α. The
situation will be reversed if F is so informative that F can attain power close
to 1 with an α1 much smaller than α/2.

When p is known, there are therefore two issues. Should the procedure be
chosen which is best on the average over both experiments, or should the best
conditional procedure be preferred; and, for a given test or confidence procedure,
should probabilities such as level, power, and confidence coefficient be calculated
conditionally, given the experiment that has been selected, or unconditionally?
The underlying question is of course the same: Is a conditional or unconditional
point of view more appropriate?

The answer cannot be found within the model but depends on the context. If
the overall experiment will be performed many times, for example in an industrial
or agricultural setting, the average performance may be the principal feature of
interest, and an unconditional approach suitable. However, if repetitions refer to
different clients, or are potential rather than actual, interest will focus on the par-
ticular event at hand, and conditioning seems more appropriate. Unfortunately,
as will be seen in later sections, it is then often not clear how the conditioning
events should be chosen.

The difference between the conditional and the unconditional approach tends
to be most striking, and a choice between them therefore most pressing, when
the two experiments E and F differ sharply in the amount of information they
contain, if for example the difference |β1 − β0| in (10.6) is large. To illustrate an
extreme situation in which this is not the case, suppose that E and F consist
in observing X with distribution N(θ, 1) and N(−θ, 1) respectively, that one of
them is selected with known probabilities p and q respectively, and that it is
desired to test H : θ = 0 against K : θ > 0. Here E and F contain exactly the
same amount of information about θ. The unconditional most powerful level-α
test of H against θ1 > 0 is seen to reject (Problem 10.5) when X > c if E is
performed, and when X < −c if F is performed, where P0(X > c) = α. The test
is UMP against θ > 0, and happens to coincide with the UMP conditional test.

The issues raised here extend in an obvious way to mixtures of more than
two experiments. As an illustration of a mixture over a continuum, consider
a regression situation. Suppose that X1, . . . , Xn are independent, and that the
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conditional density of Xi given ti is

1
σ

f

(
xi − α − βti

σ

)
.

The ti themselves are obtained with error. They may for example be indepen-
dently normally distributed with mean ci and known variance τ2, where the ci are
the intended values of the ti. Then it will again often be the case that the most
appropriate inference concerning α, β, and σ is conditional on the observed values
of the t’s (which represent the experiment actually being performed). Whether
this is the case will, as before, depend on the context.

The argument for conditioning also applies when the probabilities of perform-
ing the various experiments are unknown, say depend on a parameter ϑ, provided
ϑ is unrelated to θ, so that which experiment is chosen provides no information
concerning θ. A more precise statement of this generalization is given at the end
of the next section.

10.2 Ancillary Statistics

Mixture models can be described in the following general terms. Let {Ez, z ∈ Z}
denote a collection of experiments of which one is selected according to a known
probability distribution over Z. For any given z, the experiment Ez consists in
observing a random quantity X, which has a distribution Pθ(· | z). Although this
structure seems rather special, it is common to many statistical models.

Consider a general statistical model in which the observations X are distributed
according to Pθ, θ ∈ Ω, and suppose there exists an ancillary statistic, that is, a
statistic Z whose distribution F does not depend on θ. Then one can think of X
as being obtained by a two-stage experiment: Observe first a random quantity Z
with distribution F ; given Z = z, observe a quantity X with distribution Pθ(· | z).
The resulting X is distributed according to the original distribution Pθ. Under
these circumstances, the argument of the preceding section suggests that it will
frequently be appropriate to take the conditional point of view.1 (Unless Z is
discrete, these definitions involve technical difficulties concerning sets of measure
zero and the existence of conditional distributions, which we shall disregard.)

An important class of models in which ancillary statistics exist is obtained by
invariance considerations. Suppose the model P = {Pθ, θ ∈ Ω} remains invariant
under the transformations

X → gX, θ → ḡθ; g ∈ G, ḡ ∈ Ḡ,

and that Ḡ is transitive over Ω.2

Theorem 10.2.1 If P remains invariant under G and if Ḡ is transitive over Ω,
then a maximal invariant T (and hence any invariant) is ancillary.

1A distinction between experimental mixtures and the present situation, relying on
aspects outside the model, is discussed by Basu (1964) and Kalbfleisch (1975).

2The family P is then a group family; see TPE2, Section 1.3.
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Proof. It follows from Theorem 6.3.2 that the distribution of a maximal invariant
under G is invariant under Ḡ. Since Ḡ is transitive, only constants are invariant
under Ḡ. The probability Pθ(T ∈ B) is therefore constant, independent of θ, for
all B, as was to be proved.

As an example, suppose that X = (X1, . . . , Xn) is distributed according to a
location family with joint density f(x1 − θ, . . . , xn − θ). The most powerful test
of H : θ = θ0 against K : θ = θ1 > θ0 rejects when

f(x1 − θ1, . . . , xn − θ1)
f(x1 − θ0, . . . , xn − θ0)

≥ c. (10.10)

Here the set of differences Yi = Xi − Xn (i = 1, . . . , n − 1) is ancillary. This
is obvious by inspection and follows from Theorem 10.2.1 in conjunction with
Example 6.2.1(i). It may therefore be more appropriate to consider the test-
ing problem conditionally given Y1 = y1, . . . , Yn−1 = yn−1. To determine the
most powerful conditional test, transform to Y1, . . . , Yn, where Yn = Xn. The
conditional density of Yn given y1, . . . , yn−1 is

pθ(yn | y1, . . . , yn−1) =
f(y1 + yn − θ, . . . , yn−1 + yn − θ, yn − θ)∫

f(y1 + u, . . . , yn−1 + u, u) du
. (10.11)

and the most powerful conditional test rejects when

pθ1(yn | y1, . . . , yn−1)
pθ0(yn | y1, . . . , yn−1)

> c(y1, . . . , yn−1). (10.12)

In terms of the original variables this becomes

f(x1 − θ1, . . . , xn − θ1)
f(x1 − θ0, . . . , xn − θ0)

> c(x1 − xn, . . . , xn−1 − xn). (10.13)

The constant c(x1 −xn, . . . , xn−1 −xn) is determined by the fact that the condi-
tional probability of (10.13), given the differences of the x’s, is equal to α when
θ = θ0.

For describing the conditional test (10.12) and calculating the critical value
c(y1, . . . , yn−1), it is useful to note that the statistic Yn = Xn could be replaced
by any other Yn satisfying the equivariance condition3

Yn(x1 + a, . . . , xn + a) = Yn(x1, . . . , xn) + a for all a. (10.14)

This condition is satisfied for example by the mean of the X’s, the median, or any
of the order statistics. As will be shown in the following Lemma 10.2.1, any two
statistics Yn and Y ′

n satisfying (10.14) differ only by a function of the differences
Yi = Xi−Xn (i = 1, . . . , n−1). Thus conditionally, given the values y1, . . . , yn−1,
Yn and Y ′

n differ only by a constant, and their conditional distributions (and the
critical values c(y1, . . . , yn−1)) differ by the same constant. One can therefore
choose Yn, subject to (10.14), to make the conditional calculations as convenient
as possible.

Lemma 10.2.1 If Yn and Y ′
n both satisfy (10.14), then their difference ∆ = Y ′

n−
Yn depends on (x1, . . . , xn) only through the differences (x1 −xn, . . . , xn−1 −xn).

3For a more detailed discussion of equivariance, see TPE2, Chapter 3.



10.2. Ancillary Statistics 397

Proof. Since Yn and Y ′
n satisfy (10.14),

∆(x1 + a, . . . , xn + a) = ∆(x1, . . . , xn) for all a.

Putting a = −xn, one finds

∆(x1, . . . , xn) = ∆(x1 − xn, . . . , xn−1 − xn, 0),

which is a function of the differences.

The existence of ancillary statistics is not confined to models that remain
invariant under a transitive group Ḡ. The mixture and regression examples of
Section 10.1 provide illustrations of ancillaries without the benefit of invariance.
Further examples are given in Problems 10.8–10.13.

If conditioning on an ancillary statistic is considered appropriate because it
makes the inference more relevant to the situation at hand, it is desirable to carry
the process as far as possible and hence to condition on a maximal ancillary. An
ancillary Z is said to be maximal if there does not exist an ancillary U such that
Z = f(U) without Z and U being equivalent. [For a more detailed treatment,
which takes account of the possibility of modifying statistics on sets of measure
zero without changing their probabilistic properties, see Basu (1959).]

Conditioning, like sufficiency and invariance, leads to a reduction of the data. In
the conditional model, the ancillary is no longer part of the random data but has
become a constant. As a result, conditioning often leads to a great simplification
of the inference. Choosing a maximal ancillary for conditioning thus has the
additional advantage of providing the greatest reduction of the data.

Unfortunately, maximal ancillaries are not always unique, and one must then
decide which maximal ancillary to choose for conditioning. [This problem is dis-
cussed by Cox (1971) and Becker and Gordon (1983).] If attention is restricted
to ancillary statistics that are invariant under a given group G, the maximal
ancillary of course coincides with the maximal invariant.

Another issue concerns the order in which to apply reduction by sufficiency
and ancillarity.

Example 10.2.1 Let (Xi, Yi), i = 1, . . . , n, be independently distributed
according to a bivariate normal distribution with E(Xi) = E(Yi) = 0,
Var(Xi) = Var(Yi) = 1, and unknown correlation coefficient ρ. Then X1, . . . , Xn

are independently distributed as N(0, 1) and are therefore ancillary. The
conditional density of the Y ’s given X1 = xi, . . . , Xn = xn is

C exp

(
− 1

2(1 − ρ2)

∑
(yi − ρxi)

2

)
,

with the sufficient statistics (
∑

Y 2
i ,

∑
xiYi).

Alternatively, one could begin by noticing that (Y1, . . . , Yn) is ancillary. The
conditional distribution of the X’s given Y1 = y1, . . . , Yn = yn then admits the
sufficient statistics (

∑
X2

i ,
∑

Xiyi). A unique maximal ancillary V does not exist
in this case, since both the X’s and Y ’s would have to be functions of V . Thus
V would have to be equivalent to the full sample (X1, Y1), . . . , (Xn, Yn), which is
not ancillary.
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Suppose instead that the data are first reduced to the sufficient statistics T =
(
∑

X2
i +

∑
Y 2

i ,
∑

XiYi). Based on T , no nonconstant ancillaries appear to exist.4

This example and others like it suggest that it is desirable to reduce the data as
far as possible through sufficiency, before attempting further reduction by means
of ancillary statistics.

Note that contrary to this suggestion, in the location example at the beginning
of the section, the problem was not first reduced to the sufficient statistics X(1) <
· · · < X(n). The omission can be justified in hindsight by the fact that the optimal
conditional tests are the same whether or not the observations are first reduced
to the order statistics.

In the structure described at the beginning of the section, the variable Z that
labels the experiment was assumed to have a known distribution. The argument
for conditioning on the observed value of Z does not depend on this assumption.
It applies also when the distribution of Z depends on an unknown parameter ϑ,
which is independent of θ and hence by itself contains no information about θ,
that is, when the distribution of Z depends only on ϑ, the conditional distribution
of X given Z = z depends only on θ, and the parameter space Ω for (θ, ϑ) is a
Cartesian product Ω = Ω1 × Ω2, with

(θ, ϑ) ∈ Ω ⇔ θ ∈ Ω1 and ϑ ∈ Ω2 . (10.15)

(the parameters θ and ϑ are then said to be variation-independent, or unrelated.)
Statistics Z satisfying this more general definition are called partial ancillary or

S-ancillary. (The term ancillary without modification will be reserved here for a
statistic that has a known distribution.) Note that if X = (T, Z) and Z is a partial
ancillary, then T is a partial sufficient statistic in the sense of Problem 3.60. For
a more detailed discussion of this and related concepts of partial ancillarity, see
for example Basu (1978) and Barndorff–Nielsen (1978).

Example 10.2.2 Let X and Y be independent with Poisson distributions P (λ)
and P (µ), and let the parameter of interest be θ = µ/λ. It was seen in Section
10.4 that the conditional distribution of Y given Z = X + Y = z is binomial
b(p, z) with p = µ/(λ + µ) = θ/(θ + 1) and therefore depends only on θ, while
the distribution of Z is Poisson with mean ϑ = λ + µ. Since the parameter space
0 < λ, µ < ∞ is equivalent to the Cartesian product of 0 < θ < ∞, 0 < ϑ < ∞,
it follows that Z is S-ancillary for θ.

The UMP unbiased level-α test of H : µ ≤ λ against µ > λ is UMP also among
all tests whose conditional level given z is α for all z. (The class of conditional
tests coincides exactly with the class of all tests that are similar on the boundary
µ = λ.)

When Z is S-ancillary for θ in the presence of a nuisance parameter ϑ, the
unconditional power β(θ, ϑ) of a test ϕ of H : θ = θ0 may depend on ϑ as well
as on θ. The conditional power β(ϑ | z) = Eθ[ϕ(X) | z] can then be viewed as
an unbiased estimator of the (unknown) β(θ, ϑ), as was discussed at the end of
Section 4.4. On the other hand, if no nuisance parameters ϑ are present and Z

4So far, nonexistence has not been proved. It seems likely that a proof can be obtained
by the methods of Unni (1978).
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is ancillary for θ, the unconditional power β(θ) = Eθϕ(X) and the conditional
power β(θ | z) provide two alternative evaluations of the power of ϕ against θ,
which refer to different sampling frameworks, and of which the latter of course
becomes available only after the data have been obtained.

Surprisingly, the S-ancillarity of X + Y in Example 10.2.2 does not extend to
the corresponding binomial problem.

Example 10.2.3 Let X and Y have independent binomial distributions b(p1, m)
and b(p2, n) respectively. Then it was seen in Section 4.5 that the conditional
distribution of Y given Z = X + Y = z depends only on the crossproduct ratio
∆ = p2q1/p1q2 (qi = 1 − pi). However, Z is not S-ancillary for ∆. To see this,
note that S-ancillarity of Z implies the existence of a parameter ϑ unrelated to ∆
and such that the distribution of Z depends only on ϑ. As ∆ changes, the family
of distributions {Pϑ, ϑ ∈ Ω2} of Z would remain unchanged. This is not the case,
since Z is binomial when ∆ = 1 and not otherwise (Problem 10.15). Thus Z is
not S-ancillary.

In this example, all unbiased tests of H : ∆ = ∆0 have a conditional level
given z that is independent of z, but conditioning on z cannot be justified by
S-ancillarity.

Closely related to this example is the situation of the multinomial 2 × 2 table
discussed from the point of view of unbiasedness in Section 4.6.

Example 10.2.4 In the notation of Section 4.6, let the four cell entries of a
2 × 2 table be X, X ′, Y , Y ′ with row totals X + X ′ = M , Y + Y ′ = N , and
column totals X + Y = T , X ′ + Y ′ = T ′, and with total sample size M +
N = T + T ′ = s. Here it is easy to check that (M, N) is S-ancillary for θ =
(θ1, θ2) = (pAB/pB , pAB̃/pB̃) with ϑ = pB . Since the cross-product ratio ∆ can
be expressed as a function of (θ1, θ2), it may be appropriate to condition a test of
H : ∆ = ∆0 on (M, N). Exactly analogously one finds that (T, T ′) is S-ancillary
for θ′ = (θ′

1, θ
′
2) = (pAB/pA, pÃB/pÃ), and since ∆ is also a function of (θ′

1, θ
′
2), it

may be equally appropriate to condition a test of H on (T, T ′). One might hope
that the set of all four marginals (M, N, T, T ′) = Z would be S-ancillary for ∆.
However, it is seen from the preceding example that this is not the case.

Here, all unbiased tests have a constant conditional level given z. However,
S-ancillarity permits conditioning on only one set of margins (without giving any
guidance as to which of the two to choose), not on both.

Despite such difficulties, the principle of carrying out tests and confidence
estimation conditionally on ancillaries or S-ancillaries frequently provides an
attractive alternative to the corresponding unconditional procedures, primarily
because it is more appropriate for the situation at hand. However, insistence on
such conditioning leads to another difficulty, which is illustrated by the following
example.

Example 10.2.5 Consider N populations
∏

i, and suppose that an observation
Xi from

∏
i has a normal distribution N(ξi, 1). The hypothesis to be tested is

H : ξ1 = · · · = ξN . Unfortunately, N is so large that it is not practicable to take
an observation from each of the populations; the total sample size is restricted to
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be n < N . A sample
∏

J1
, . . . ,

∏
Jn

of n of the N populations is therefore selected

at random, with probability 1/
(

N
n

)
for each set of n, and an observation Xji is

obtained from each of the populations
∏

ji
, in the sample.

Here the variables J1, . . . , Jn are ancillary, and the requirement of conditioning
on ancillaries would restrict any inference to the n populations from which ob-
servations are taken. Systematic adherence to this requirement would therefore
make it impossible to test the original hypothesis H.5 Of course, rejection of the
partial hypothesis Hj1,...,jn : ξj1 = · · · = ξjn would imply rejection of the original
H. However, acceptance of Hj1,...,jn would permit no inference concerning H.

The requirement to condition in this case runs counter to the belief that a
sample may permit inferences concerning the whole set of populations, which
underlies much of statistical practice.

With an unconditional approach such an inference is provided by the test with
rejection region

∑
[
Xji −

(
1
n

n∑

k=1

Xjk

)]2

≥ c,

where c is the upper α-percentage point of χ2 with n − 1 degrees of freedom.
Not only does this test actually have unconditional level α, but its conditional
level given J1 = j1, . . . , Jn = jn also equals α for all (j1, . . . , jn). There is in
fact no difference in the present case between the conditional and the uncondi-
tional test: they will accept or reject for the same sample points. However, as
has been pointed out, there is a crucial difference between the conditional and
unconditional interpretations of the results.

If βj1,...,jn(ξj1 , . . . , ξjn) denotes the conditional power of this test given J1 =
j1, . . . , Jn = jn, its unconditional power is

∑
βj1,...,jn(ξj1 , . . . , ξjn)(

N
n

)

summed over all
(

N
n

)
n-tuples j1 < . . . < jn. As in the case with any test, the

conditional power given an ancillary (in the present case J1, . . . , Jn) can be viewed
as an unbiased estimate of the unconditional power.

10.3 Optimal Conditional Tests

Although conditional tests are often sensible and are beginning to be employed
in practice [see for example Lawless (1972, 1973, 1978) and Kappenman (1975)],
not much theory has been developed for the resulting conditional models. Since
the conditional model tends to be simpler than the original unconditional one,
the conditional point of view will frequently bring about a simplification of the
theory. This possibility will be illustrated in the present section on some simple
examples.

5For other implications of this requirement, called the weak conditionality principle,
see Birnbaum (1962) and Berger and Wolpert (1988).
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Example 10.3.1 Specializing the example discussed at the beginning of Section
10.1, suppose that a random variable is distributed according to N(θ, σ2

1) or
N(θ, σ2

0) as I = 1 or 0, and that P (I = 1) = P (I = 0) = 1
2 . Then the most

powerful test of H : θ = θ0 against θ = θ1(> θ0) based on (I, X) rejects when

x − 1
2 (θ0 + θ1)

2σ2
i

≥ k.

A UMP test against the alternatives θ > θ0 therefore does not exist. On the other
hand, if H is tested conditionally given I = i, a UMP conditional test exists and
rejects when X > ci where P (X > ci | I = i) = α for i = 0, 1.

The nonexistence of UMP unconditional tests found in this example is typical
for mixtures with known probabilities of two or more families with monotone
likelihood ratio, despite the existence of UMP conditional tests in these cases.

Example 10.3.2 Let X1, . . . , Xn be a sample from a normal distribution
N(ξ, a2ξ2), ξ > 0, with known coefficient of variation a > 0, and consider the
problem of testing H : ξ = ξ0 against K : ξ > ξ0. Here T = (T1, T2) with
T1 = X̄, T2 =

√
(1/n)

∑
X2

i is sufficient, and Z = T1/T2 is ancillary. If we let
V =

√
nT2/a, the conditional density of V given Z = z is equal to (Problem 10.18)

pξ(v | z) =
k
ξn

vn−1 exp

{
−1

2

[
v
ξ
− z

√
n

a

]2
}

. (10.16)

The density has monotone likelihood ratio, so that the rejection region V > C(z)
constitutes a UMP conditional test.

Unconditionally, Y = X̄ and S2 =
∑

(Xi − X̄)2 are independent with joint
density

cs(n−3)/2 exp

(
− n

2a2ξ2
(y − ξ)2 − 1

2a2ξ2
s2

)
, (10.17)

and a UMP test does not exist. [For further discussion of this example, see Hinkley
(1977).]

An important class of examples is obtained from situations in which the model
remains invariant under a group of transformations that is transitive over the
parameter space, that is, when the given class of distributions constitutes a group
family. The maximal invariant V then provides a natural ancillary on which to
condition, and an optimal conditional test may exist even when such a test does
not exist unconditionally. Perhaps the simplest class of examples of this kind are
provided by location families under the conditions of the following lemma.

Lemma 10.3.1 Let X1, . . . , Xn be independently distributed according to f(xi −
θ), with f strongly unimodal. Then the family of conditional densities of Yn = Xn

given Yi = Xi − Xn (i = 1, . . . , n − 1) has monotone likelihood ratio.
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Proof. The conditional density (10.11) is proportional to

f(yn + y1 − θ) · · · f(yn + yn−1 − θ)f(yn − θ) (10.18)

By taking logarithms and using the fact that each factor is strongly unimodal,
it is seen that the product is also strongly unimodal, and the result follows from
Example 8.2.1.

Lemma 10.3.1 shows that for strongly unimodal f there exists a UMP
conditional test of H : θ ≤ θ0 against K : θ > θ0 which rejects when

Xn > c(X1 − Xn, . . . , Xn−1 − Xn). (10.19)

Conditioning has reduced the model to a location family with sample size one.
The double-exponential and logistic distributions are both strongly unimodal
(Section 9.2), and thus provide examples of UMP conditional tests. In neither
case does there exist a UMP unconditional test unless n = 1.

As a last class of examples, we shall consider a situation with a nuisance
parameter. Let X1, . . . , Xm and Y1, . . . , Yn be independent samples from location
families with densities f(x1−ξ, . . . , xm−ξ) and g(y1−η, . . . , yn−η) respectively,
and consider the problem of testing H : η ≤ ξ against K : η > ξ. Here the
differences Ui = Xi −Xm and Vj = Yj −Yn are ancillary. The conditional density
of X = Xm and Y = Yn given the u’s and v’s is seen from (10.18) to be of the
form

f∗
u(x − ξ)g∗

v(y − η), (10.20)

where the subscripts u and v indicate that f∗ and g∗ depend on the u’s and
v’s respectively. The problem of testing H in the conditional model remains
invariant under the transformations: x′ = x + c, y′ = y + c, for which Y − X
is maximal invariant. A UMP invariant conditional test will then exist provided
the distribution of Z = Y −X, which depends only on ∆ = η − ξ, has monotone
likelihood ratio. The following lemma shows that a sufficient condition for this
to be the case is that f∗

u and g∗
v have monotone likelihood ratio in x and y

respectively.

Lemma 10.3.2 Let X, Y be independently distributed with densities f∗(x − ξ),
g∗(y − η) respectively. If f∗ and g∗ have monotone likelihood with respect to ξ
and η, then the family of densities of Z = Y − X has monotone likelihood ratio
with respect to ∆ = η − ξ.
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Proof. The density of Z is

h∆(z) =

∫
g∗(y − ∆)f∗(y − z) dy. (10.21)

To see that h∆(z) has monotone likelihood ratio, one must show that for any
∆ < ∆′, h∆′(z)/h∆(z) is an increasing function of z. For this purpose, write

h∆′(z)
h∆(z)

=

∫
g∗(y − ∆′)
g∗(y − ∆)

· g∗(y − ∆)f∗(y − z)∫
g∗(u − ∆)f(u − z) du

dy.

The second factor is a probability density for Y ,

pz(y) = Czg∗(y − ∆)f∗(y − z), (10.22)

which has monotone likelihood ratio in the parameter z by the assumption made
about f∗. The ratio

h∆′(z)
h∆(z)

=

∫
g∗(y − ∆′)
g∗(y − ∆)

pz(y) dy (10.23)

is the expectation of g∗(Y −∆′)/g∗(Y −∆) under the distribution pz(y). By the
assumption about g∗, g∗(y −∆′)/g∗(y −∆) is an increasing function of y, and it
follows from Lemma 3.4.2 that its expectation is an increasing function of z.

It follows from (10.18) that f∗
u(x− ξ) and g∗

v(y − η) have monotone likelihood
ratio provided this condition holds for f(x−ξ) and g(y−η), i.e. provided f and g
are strongly unimodal. Under this assumption, the conditional distribution h∆(z)
then has monotone likelihood ratio by Lemma 10.3.2, and a UMP conditional test
exists and rejects for large values of Z. (This result also follows from Problem
8.9.)

The difference between conditional tests of the kind considered in this section
and the corresponding (e.g., locally most powerful) unconditional tests typically
disappears as the sample size(s) tend(s) to infinity. Some results in this direction
are given by Liang (1984); see also Barndorff–Nielsen (1983).

The following multivariate example provides one more illustration of a UMP
conditional test when unconditionally no UMP test exists. The results will only
be sketched. The details of this and related problems can be found in the original
literature reviewed by Marden and Perlman (1980) and Marden (1983).

Example 10.3.3 Suppose you observe m + 1 independent normal vectors of
dimension p = p1 + p2,

Y = (Y1 Y2) and Z1, . . . , Zm,

with common covariance matrix Σ and expectations

E(Y1) = η1, E(Y2) = E(Z1) = · · · = E(Zm) = 0.

(The normal multivariate two-sample problem with covariates can be reduced to
this canonical form.) The hypothesis being tested is H : η1 = 0. Without the
restriction E(Y2) = 0, the model would remain invariant under the group G of
transformations: Y ∗ = Y B, Z∗ = ZB, where B is any nonsingular p × p matrix.
However, the stated problem remains invariant only under the subgroup G′ in
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which B is of the form [Problem 10.22(i)]

B =

(
B11 0
B21 B22

)
p1

p2
.

p1 p2

If

Z′Z = S =

(
S11 S12

S21 S22

)
and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

the maximal invariants under G′ are the two statistics D = Y2S
−1
22 Y ′

2 and

N =
(Y1 − S12S

−1
22 Y2)(S11 − S12S

−1
22 S21)

−1(Y1 − S12S
−1
22 Y2)

′

1 + D
,

and the joint distribution of (N, D) depends only on the maximal invariant under
G′,

∆ = η1(Σ11 − Σ12Σ
−1
22 Σ21)

−1η′
1.

The statistic D is ancillary [Problem 10.22(ii)], and the conditional distribu-
tion of N given D = d is that of the ratio of two independent χ2-variables: the
numerator noncentral χ2 with p degrees of freedom and noncentrality parameter
∆/(1 + d), and the denominator central χ2 with m + 1 − p degrees of freedom.
It follows from Section 7.1 that the conditional density has monotone likelihood
ratio. A conditionally UMP invariant test therefore exists, and rejects H when
(m + 1 − p)N/p > C, where C is the critical value of the F -distribution with p
and m + 1 − p degrees of freedom. On the other hand, a UMP invariant (uncon-
ditional) test does not exist; comparisons of the optimal conditional test with
various competitors are provided by Marden and Perlman (1980).

10.4 Relevant Subsets

The conditioning variables considered so far have been ancillary statistics, i.e.
random variables whose distribution is fixed, independent of the parameters gov-
erning the distribution of X, or at least of the parameter of interest. We shall
now examine briefly some implications of conditioning without this constraint.
Throughout most of the section we shall be concerned with the simple case in
which the conditioning variable is the indicator of some subset C of the sample
space, so that there are only two conditioning events I = 1 (i.e. X ∈ C) and I = 0
(i.e. X ∈ Cc, the complement of C). The mixture problem at the beginning of
Section 10.1, with X1 = C and X0 = Cc, is of this type.

Suppose X is distributed with density pθ, and R is a level-α rejection region for
testing the simple hypothesis H : θ = θ0 against some class of alternatives. For
any subset C of the sample space, consider the conditional rejection probabilities

αC = Pθ0(X ∈ R | C) and αCc = Pθ0(X ∈ R | Cc), (10.24)

and suppose that αC > α and αCc < α. Then we are in the difficulty described
in Section 10.1. Before X was observed, the probability of falsely rejecting H was
stated to be α. Now that X is known to have fallen into C (or Cc), should the
original statement be adjusted and the higher value αC (or lower value αCc) be
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quoted? An extreme case of this possibility occurs when C is a subset of R or
Rc, since then P (X ∈ R | X ∈ C) = 1 or 0.

It is clearly always possible to choose C so that the conditional level αC exceeds
the stated α. It is not so clear whether the corresponding possibility always exists
for the levels of a family of confidence sets for θ, since the inequality must now
hold for all θ.

Definition 10.4.1 A subset C of the sample space is said to be a negatively
biased relevant subset for a family of confidence sets S(X) with unconditional
confidence level γ = 1 − α if for some ε > 0

γC(θ) = Pθ[θ ∈ S(X) | X ∈ C] ≤ γ − ε for all θ, (10.25)

and a positively biased relevant subset if

P0[θ ∈ S(X) | X ∈ C] ≥ γ + ε for all θ. (10.26)

The set C is semirelevant, negatively or positively biased, if respectively

Pθ[θ ∈ S(X) | X ∈ C] ≤ γ for all θ (10.27)

or

Pθ[θ ∈ S(X) | X ∈ C] ≥ γ for all θ, (10.28)

with strict inequality holding for at least some θ.

Obvious examples of relevant subsets are provided by the subsets X0 and X1

of the two-experiment example of Section 10.1.
Relevant subsets do not always exist. The following four examples illustrate

the various possibilities.

Example 10.4.1 Let X be distributed as N(θ, 1), and consider the standard
confidence intervals for θ:

S(X) = {θ : X − c < θ < X + c},

where Φ(c)−Φ(−c) = γ. In this case, there exists not even a semirelevant subset.
To see this, suppose first that a positively biased semirelevant subset C exists,

so that

A(θ) = Pθ[X − c < θ < X + c and X ∈ C] − γPθ[X ∈ C] ≥ 0

for all θ, with strict inequality for some θ0. Consider a prior normal density λ(θ)
for θ with mean 0 and variance τ2, and let

β(x) = P [x − c < Θ < x + c | x],

where Θ has density λ(θ). The posterior distribution of Θ given x is then normal
with mean τ2x/(1+τ2) and variance τ2/(1+τ2) [Problem 10.24(i)], and it follows
that

β(x) = Φ

[
x

τ
√

1 + τ2
+

c
√

1 + τ2

τ

]
− Φ

[
x

τ
√

1 + τ2
− c

√
1 + τ2

τ

]
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≤ Φ

[
c
√

1 + τ2

τ

]
− Φ

[
−c

√
1 + τ2

τ

]
≤ γ +

c√
2πτ2

.

Next let h(θ) =
√

2πτλ(θ) = e−θ2/2τ2
and

D =

∫
h(θ)A(θ) dθ ≤

√
2πτ

∫
λ(θ){Pθ[X − c < θ < X + c and X ∈ C]

−Eθ[β(X)IC(X)]} dθ +
c
τ

.

The integral on the right side is the difference of two integrals each of which
equals P [X − c < Θ < X + c and X ∈ C], and is therefore 0, so that D ≤ c/τ .

Consider now a sequence of normal priors λm(θ) with variances τ2
m → ∞, and

the corresponding sequences hm(θ) and Dm. Then 0 ≤ Dm ≤ c/τm and hence
Dm → 0. On the other hand, Dm is of the form Dm =

∫ ∞
−∞ A(θ)hm(θ) dθ, where

A(θ) is continuous, nonnegative, and > 0 for some θ0. There exists δ > 0 such
that A(θ) ≤ 1

2A(θ0) for |θ − θ0| < δ and hence

Dm ≥
∫ θ0+δ

θ0−δ

1
2
A(θ0)hm(θ) dθ → δA(θ0) > 0 as m → ∞.

This provides the desired contradiction.

That also no negatively semirelevant subsets exist is a consequence of the
following result.

Theorem 10.4.2 Let S(x) be a family of confidence sets for θ such that Pθ[θ ∈
S(X)] = γ for all θ, and suppose that 0 < Pθ(C) < 1 for all θ.

(i) If C is semirelevant, then its complement Cc is semirelevant with opposite
bias.

(ii) If there exists a constant a such that

1 > Pθ(C) > a > 0 for all θ

and C is relevant, then Cc is relevant with opposite bias.
Proof. The result is an immediate consequence of the identity

Pθ(C)[γC(θ) − γ] = [1 − Pθ(C)][γ − γCc(θ)].

The next example illustrates the situation in which a semirelevant subset exists
but no relevant one.

Example 10.4.2 Let X be N(θ, 1), and consider the uniformly most accurate
lower confidence bounds θ = X − c for θ, where Φ(c) = γ. Here S(X) is the
interval [X − c,∞) and it seems plausible that the conditional probability of
θ ∈ S(X) will be lowered for a set C of the form X ≥ k. In fact

Pθ(X − c ≤ θ | X ≥ k) =

{
Φ(c)−Φ(k−θ)

1−Φ(k−θ) when θ > k − c,

0 when θ < k − c.
(10.29)

The probability (10.29) is always < γ, and tends to γ as θ → ∞. The set X ≥ k
is therefore semirelevant negatively biased for the confidence sets S(X).

We shall now show that no relevant subset C with Pθ(C) > 0 exists in this
case. It is enough to prove the result for negatively biased sets; the proof for
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positive bias is exactly analogous. Let A be the set of x-values −∞ < x < c + θ,
and suppose that C is negatively biased and relevant, so that

Pθ[X ∈ A | C] ≤ γ − ε for all θ.

If

a(θ) = Pθ(X ∈ C), b(θ) = Pθ(X ∈ A ∩ C),

then

b(θ) ≤ (y − ε) a(θ) for all θ. (10.30)

The result is proved by comparing the integrated coverage probabilities

A(R) =

∫ R

−R

a(θ) dθ, B(R) =

∫ R

−R

b(θ) dθ

with the Lebesgue measure of the intersection C ∩ (−R, R),

µ(R) =

∫ R

−R

IC(x) dx,

where IC(x) is the indicator of C, and showing that

A(R)
µ(R)

→ 1,
B(R)
µ(R)

→ γ as R → ∞. (10.31)

This contradicts the fact that by (10.30),

B(R) ≤ (γ − ε)A(R) for all R,

and so proves the desired result.
To prove (10.31), suppose first that µ(∞) < ∞. Then if φ is the standard

normal density

A(∞) =

∫ ∞

−∞
dθ

∫

C

φ(x − θ) dx =

∫

C

dx = µ(∞),

and analogously B(∞) = γµ(∞), which establishes (10.31).
When µ(∞) = ∞, (10.31) will be proved by showing that

A(R) = µ(R) + K1(R), B(R) = γµ(R) + K2(R), (10.32)

where K1(R) and K2(R) are bounded. To see (10.32), note that

µ(R) =

∫ R

−R

IC(x) dx =

∫ R

−R

IC(x)

[∫ ∞

−∞
φ(x − θ) dθ

]
dx

=

∫ ∞

−∞

[∫ R

−R

IC(x)φ(x − θ) dx

]
dθ,

while

A(R) =

∫ R

−R

[∫ ∞

−∞
IC(x)φ(x − θ) dx

]
dθ. (10.33)

A comparison of each of these double integrals with that over the region −R <
x < R, −R < θ < R, shows that the difference A(R) − µ(R) is made up of
four integrals, each of which can be seen to be bounded by using the fact that∫
|t|φ(t) dt < ∞ [Problem 10.24(ii)]. This completes the proof.
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Example 10.4.3 Let X1, . . . , Xn be independently normally distributed as
N(ξ, σ2), and consider the uniformly most accurate equivariant (and unbiased)
confidence intervals for ξ given by (5.36).

It was shown by Buehler and Feddersen (1963) and Brown (1967) that in this
case there exist positively biased relevant subsets of the form

C :
|X̄|
S

≤ k. (10.34)

In particular, for confidence level γ = .5 and n = 2, Brown shows that with
C : |X̄|/|X2 − X1| ≤ 1

2 (1 +
√

2), the conditional level is > 2
3 for all values of ξ

and σ. Goutis and Casella (1992) provide detailed values for general n.
It follows from Theorem 10.4.2 that Cc is negatively biased semirelevant, and

Buehler (1959) shows that any set C∗ : S ≤ k has the same property. These
results are intuitively plausible, since the length of the confidence intervals is
proportional to S, and one would expect short intervals to cover the true value
less often than long ones.

Theorem 10.4.2 does not show that Cc is negatively biased relevant, since the
probability of the set (10.34) tends to zero as ξ/σ → ∞. It was in fact proved by
Robinson (1976) that no negatively biased relevant subset exists in this case.

The calculations for Cc throw some light on the common practice of stating
confidence intervals for ξ only when a preliminary test of H : ξ = 0 rejects the
hypothesis. For a discussion of this practice see Olshen (1973), and Meeks and
D’Agostino (1983).

The only type of example still missing is that of a negatively biased relevant
subset. It was pointed out by Fisher (1956a,b) that the Welch–Aspin solution
of the Behrens–Fisher problem (discussed in Sections 6.6 and 11.3) provides an
illustration of this possibility. The following are much simpler examples of both
negatively and positively biased relevant subsets.

Example 10.4.4 An extreme form of both positively and negatively biased sub-
sets was encountered in Section 7.7, where lower and upper confidence bounds
∆ < ∆ and ∆ < ∆̄ were obtained in (7.42) and (7.43) for the ratio ∆ = σ2

A/σ2

in a model II one-way classification. Since

P (∆ ≤ ∆ | ∆ < 0) = 1 and P (∆ ≤ ∆̄ | ∆̄ < 0) = 0,

the sets C1 : ∆ < 0 and C2 : ∆̄ < 0 are relevant subsets with positive and
negative bias respectively.

The existence of conditioning sets C for which the conditional coverage prob-
ability of level-γ confidence sets is 0 or 1, such as in Example 10.4.4 or Problems
10.27, 10.28 are an embarrassment to confidence theory, but fortunately they are
rare. The significance of more general relevant subsets is less clear,6 particularly
when a number of such subsets are available. Especially awkward in this con-
nection is the possibility [discussed by Buehler (1959)] of the existence of two
relevant subsets C and C′ with nonempty intersection and opposite bias.

6For a discussion of this issue, see Buehler (1959), Robinson (1976, 1979a), and
Bondar (1977).
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If a conditional confidence level is to be cited for some relevant subset C, it
seems appropriate to take account also of the possibility that X may fall into
Cc and to state in advance the three confidence coefficients γ, γC , and γCc .
The (unknown) probabilities Pθ(C) and Pθ(C

c) should also be considered. These
points have been stressed by Kiefer, who has also suggested the extension to a
partition of the sample space into more than two sets. For an account of these
ideas see Kiefer (1977a,b), Brownie and Kiefer (1977), and Brown (1978).

Kiefer’s theory does not consider the choice of conditioning set or statistic. The
same question arose in Section 10.2 with respect to conditioning on ancillaries.
The problem is similar to that of the choice of model. The answer depends on
the context and purpose of the analysis, and must be determined from case to
case.

10.5 Problems

Section 10.1

Problem 10.1 Let the experiments of E and F consist in observing X : N(ξ, σ2
0)

and X : N(ξ, σ2
1) respectively (σ0 < σ1), and let one of the two experiments be

performed, with P (E) = P (F) = 1
2 . For testing H : ξ = 0 against ξ = ξ1,

determine values σ0, σ1, ξ1, and α such that

(i) α0 < α1; (ii) α0 > α1,

where the αi are defined by (10.9).

Problem 10.2 Under the assumptions of Problem 10.1, determine the most
accurate invariant (under the transformation X ′ = −X) confidence sets S(X)
with

P (ξ ∈ S(X) | E) + P (ξ ∈ S(X) | F) = 2γ.

Find examples in which the conditional confidence coefficients γ0 given E and γ1

given F satisfy

(i) γ0 < γ1; (ii) γ0 > γ1.

Problem 10.3 The test given by (10.3), (10.8), and (10.9) is most powerful
under the stated assumptions.

Problem 10.4 Let X1, . . . , Xn be independently distributed, each with proba-
bility p or q as N(ξ, σ2

0) or N(ξ, σ2
1).

(i) If p is unknown, determine the UMP unbiased test of H : ξ = 0 against
K : ξ > 0.

(ii) Determine the most powerful test of H against the alternative ξ1 when it
is known that p = 1

2 , and show that a UMP unbiased test does not exist
in this case.
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(iii) Let αk (k = 0, . . . , n) be the conditional level of the unconditional most
powerful test of part (ii) given that k of the X’s came from N(ξ, σ2

0) and
n − k from N(ξ, σ2

1). Investigate the possible values α0, α1, . . . , αn.

Problem 10.5 With known probabilities p and q perform either E or F , with
X distributed as N(θ, 1) under E or N(−θ, 1) under F . For testing H : θ = 0
against θ > 0 there exist a UMP unconditional and a UMP conditional level-α
test. These coincide and do not depend on the value of p.

Problem 10.6 In the preceding problem, suppose that the densities of X under
E and F are θe−θx and (1/θ)e−x/θ respectively. Compare the UMP conditional
and unconditional tests of H : θ = 1 against K : θ > 1.

Section 10.2

Problem 10.7 Let X, Y be independently normally distributed as N(θ, 1), and
let V = Y − X and

W =

{
Y − X if X + Y > 0,
X − Y if X + Y ≤ 0.

(i) Both V and W are ancillary, but neither is a function of the other.

(ii) (V, W ) is not ancillary. [Basu (1959).]

Problem 10.8 An experiment with n observations X1, . . . , Xn is planned, with
each Xi distributed as N(θ, 1). However, some of the observations do not ma-
terialize (for example, some of the subjects die, move away, or turn out to be
unsuitable). Let Ij = 1 or 0 as Xj is observed or not, and suppose the Ij are
independent of the X’s and of each other and that P (Ij = 1) = p for all j.

(i) If p is known, the effective sample size M =
∑

Ij is ancillary.

(ii) If p is unknown, there exists a UMP unbiased level-α test of H : θ ≤ 0
vs. K : θ > 0. Its conditional level (given M = m) is αm = α for all
m = 0, . . . , n.

Problem 10.9 Consider n tosses with a biased die, for which the probabilities
of 1, . . . , 6 points are given by

1 2 3 4 5 6

1−θ
12

2−θ
12

3−θ
12

1+θ
12

2+θ
12

3+θ
12

and let Xi be the number of tosses showing i points.

(i) Show that the triple Z1 = X1 + X5, Z2 = X2 + X4, Z3 = X3 + X6

is a maximal ancillary; determine its distribution and the distribution of
X1, . . . , X6 given Z1 = z1, Z2 = z2, Z3 = z3.

(ii) Exhibit five other maximal ancillaries. [Basu (1964).]
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Problem 10.10 In the preceding problem, suppose the probabilities are given
by

1 2 3 4 5 6

1−θ
6

1−2θ
6

1−3θ
6

1+θ
6

1+2θ
6

1+3θ
6

Exhibit two different maximal ancillaries.

Problem 10.11 Let X be uniformly distributed on (θ, θ + 1), 0 < θ < ∞, let
[X] denote the largest integer ≤ X, and let V = X − [X].

(i) The statistic V (X) is uniformly distributed on (0, 1) and is therefore
ancillary.

(ii) The marginal distribution of [X] is given by

[X] =

{
[θ] with probability 1 − V (θ),
[θ] + 1 with probability V (θ).

(iii) Conditionally, given that V = v, [X] assigns probability 1 to the value [θ]
if V (θ) ≤ v and to the value [θ] + 1 if V (θ) > v. [Basu (1964).]

Problem 10.12 Let X, Y have joint density

p(x, y) = 2f(x)f(y)F (θxy),

where f is a known probability density symmetric about 0, and F its cumulative
distribution function. Then

(i) p(x, y) is a probability density.

(ii) X and Y each have marginal density f and are therefore ancillary, but
(X, Y ) is not.

(iii) X · Y is a sufficient statistic for θ. [Dawid (1977).]

Problem 10.13 A sample of size n is drawn with replacement from a population
consisting of N distinct unknown values {a1, . . . , aN}. The number of distinct
values in the sample is ancillary.

Problem 10.14 Assuming the distribution (4.22) of Section 4.9, show that Z is
S-ancillary for p = p+/(p+ + p−).

Problem 10.15 In the situation of Example 10.2.3, X + Y is binomial if and
only if ∆ = 1.

Problem 10.16 In the situation of Example 10.2.2, the statistic Z remains S-
ancillary when the parameter space is Ω = {(λ, µ) : µ ≤ λ}.

Problem 10.17 Suppose X = (U, Z), the density of X factors into

pθ,ϑ(x) = c(θ, ϑ)gθ(u; z)hϑ(z)k(u, z),
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and the parameters θ, ϑ are unrelated. To see that these assumptions are not
enough to insure that Z is S-ancillary for θ, consider the joint density

C(θ, ϑ)e−
1
2 (u−θ)2− 1

2 (z−ϑ)2I(u, z),

where I(u, z) is the indicator of the set {(u, z) : u ≤ z}. [Basu (1978).]

Section 10.3

Problem 10.18 Verify the density (10.16) of Example 10.3.2.

Problem 10.19 Let the real-valued function f be defined on an open interval.

(i) If f is logconvex, it is convex.

(ii) If f is strongly unimodal, it is unimodal.

Problem 10.20 Let X1, . . . , Xm and Y1, . . . , Yn be positive, independent ran-
dom variables distributed with densities f(x/σ) and g(y/τ) respectively. If f and
g have monotone likelihood ratios in (x, σ) and (y, τ) respectively, there exists
a UMP conditional test of H : τ/σ ≤ ∆0 against τ/σ > ∆0 given the ancillary
statistics Ui = Xi/Xm and Vj = Yj/Yn (i = 1, . . . , m − 1; j = 1, . . . , n − 1).

Problem 10.21 Let V1, . . . , Vn be independently distributed as N(0, 1), and
given V1 = v1, . . . ,
Vn = vn, let Xi (i = 1, . . . , n) be independently distributed as N(θvi, 1).

(i) There does not exist a UMP test of H : θ = 0 against K : θ > 0.

(ii) There does exist a UMP conditional test of H against K given the ancillary
(V1, . . . , Vn). [Buehler (1982).]

Problem 10.22 In Example 10.3.3,

(i) the problem remains invariant under G′ but not under G;

(ii) the statistic D is ancillary.

Section 10.4

Problem 10.23 In Example 10.4.1, check directly that the set C = {x : x ≤
−k or x ≥ k} is not a negatively biased semirelevant subset for the confidence
intervals (X − c, X + c).

Problem 10.24 (i) Verify the posterior distribution of Θ given x claimed in
Example 10.4.1.

(ii) Complete the proof of (10.32).

Problem 10.25 Let X be a random variable with cumulative distribution func-
tion F . If E|X| < ∞, then

∫ 0

−∞ F (x) dx and
∫ ∞
0

[1 − F (x)] dx are both finite.
[Apply integration by parts to the two integrals.]
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Problem 10.26 Let X have probability density f(x − θ), and suppose that
E|X| < ∞. For the confidence intervals X − c < θ there exist semirelevant but
no relevant subsets. [Buehler (1959).]

Problem 10.27 Let X1, . . . , Xn be independently distributed according to the
uniform distribution U(θ, θ + 1).

(i) Uniformly most accurate lower confidence bounds θ for θ at confidence
level 1 − α exist and are given by

θ = max(X(1) − k, X(n) − 1),

where X(1) = min(X1, . . . , Xn), X(n) = max(X1, . . . , Xn), and (1 − k)n = α.

(ii) The set C : x(n) − x(1) ≥ 1 − k is a relevant subset with Pθ(θ ≤ θ | C) = 1
for all θ.

(iii) Determine the uniformly most accurate conditional lower confidence
bounds θ(v) given the ancillary statistic V = X(n) − X(1) = v, and com-
pare them with θ. [The conditional distribution of Y = X(1) given V = v
is U(θ, θ + 1 − v).]

[Pratt (1961a), Barnard (1976).]

Problem 10.28 (i) Under the assumptions of the preceding problem, the
uniformly most accurate unbiased (or invariant) confidence intervals for θ
at confidence level 1 − α are

θ = max(X(1) + d, X(n)) − 1 < θ < min(X(1), X(n) − d) = θ̄,

where d is the solution of the equation

2dn = α if α < 1/2n−1,
2dn − (2d − 1)n = α if α > 1/2n−1.

(ii) The sets C1 : X(n) − X(1) > d and C2 : X(n) − X(1) < 2d − 1 are relevant
subsets with coverage probability

Pθ[θ < θ < θ̄ | C1] = 1 and Pθ[θ < θ < θ̄ | C2] = 0.

(iii) Determine the uniformly most accurate unbiased (or invariant) conditional
confidence intervals θ(v) < θ < θ̄(v) given V = v at confidence level
1 − α, and compare θ(v), θ̄(v), and θ̄(v) − θ(v) with the corresponding
unconditional quantities.

[Welch (1939), Pratt (1961a), Kiefer (1977a).]

Problem 10.29 Suppose X1 and X2 are i.i.d. with

P{Xi = θ − 1} = P{Xi = θ + 1} =
1
2

.

Let C be the confidence set consisting of the single point (X1 +X2)/2 if X1 += X2

and X1 − 1 if X1 = X2. Show that, for all θ,

Pθ{θ ∈ C} = .75 ,
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but

Pθ{θ ∈ C|X1 = X2} = .5

and

Pθ{θ ∈ C|X1 += X2} = 1 .

[Berger and Wolpert (1988)]

Problem 10.30 Instead of conditioning the confidence sets θ ∈ S(X) on a set
C, consider a randomized procedure which assigns to each point x a probability
ψ(x) and makes the confidence statement θ ∈ S(x) with probability ψ(x) when
x is observed.7

(i) The randomized procedure can be represented by a nonrandomized condi-
tioning set for the observations (X, U), where U is uniformly distributed
on (0, 1) and independent of X, by letting C = {(x, u) : u < ψ(x)}.

(ii) Extend the definition of relevant and semirelevant subsets to randomized
conditioning (without the use of U).

(iii) Let θ ∈ S(X) be equivalent to the statement X ∈ A(θ). Show that ψ is
positively biased semirelevant if and only if the random variables ψ(X) and
IA(θ)(X) are positively correlated, where IA denotes the indicator of the
set A.

Problem 10.31 The nonexistence of (i) semirelevant subsets in Example 10.4.1
and (ii) relevant subsets in Example 10.4.2 extends to randomized conditioning
procedures.

10.6 Notes

Conditioning on ancillary statistics was introduced by Fisher (1934, 1935, 1936).8

The idea was emphasized in Fisher (1956b) and by Cox (1958), who motivated
it in terms of mixtures of experiments providing different amounts of infor-
mation. The consequences of adopting a general principle of conditioning in
mixture situations were explored by Birnbaum (1962) and Durbin (1970). Follow-
ing Fisher’s suggestion (1934), Pitman (1938b) developed a theory of conditional
tests and confidence intervals for location and scale parameters. For recent para-
dox concerning conditioning on an ancillary statistic, see Brown (1990) and Wang
(1999).

The possibility of relevant subsets was pointed out by Fisher (1956a,b) (who
called them recognizable. Its implications (in terms of betting procedures) were de-
veloped by Buehler (1959), who in particular introduced the distinction between
relevant and semirelevant, positively and negatively biased subsets, and proved

7Randomized and nonrandomized conditioning is interpreted in terms of betting
strategies by Buehler (1959) and Pierce (1973).

8Fisher’s contributions to this topic are discussed in Savage (1976, pp. 467–469).
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the nonexistence of relevant subsets in location models. The role of relevant sub-
sets in statistical inference, and their relationship to Bayes and admissibility
properties, was discussed by Pierce (1973), Robinson (1976, 1979a,b), Bondar
(1977), and Casella (1988), among others.

Fisher (1956a, b) introduced the idea of relevant subsets in the context of
the Behrens–Fisher problem. As a criticism of the Welch–Aspin solution, he es-
tablished the existence of negatively biased relevant subsets for that procedure.
It was later shown by Robinson (1976) that no such subsets exist for Fisher’s
preferred solution, the so-called Behrens–Fisher intervals. This fact may be re-
lated to the conjecture [supported by substantial numerical evidence in Robinson
(1976) but so far unproved] that the unconditional coverage probability of the
Behrens–Fisher intervals always exceeds the nominal level. For a review of these
issues, see Wallace (1980) and Robinson (1982).

Maata and Casella (1987) examine the conditional properties of some con-
fidence intervals for the variance in the one-sample normal problem. The
conditional properties of some confidence sets for the multivariate normal mean,
including confidence sets centered at James-Stein or shrinkage estimators, see
Casella (1987) and George and Casella (1994). The conditional properties of the
standard confidence sets in a normal linear model are studied in Hwang and
Brown (1991).

In testing a simple hypothesis against a simple alternative, Berger, Brown and
Wolpert (1994) present a conditional frequentist methodology that agrees with a
Bayesian approach.
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11
Basic Large Sample Theory

11.1 Introduction

Chapters 3-7 were concerned with the derivation of UMP, UMP unbiased, and
UMP invariant tests. Unfortunately, the existence of such tests turned out to be
restricted essentially to one-parameter families with monotone likelihood ratio,
exponential families, and group families, respectively. Tests maximizing the min-
imum or average power over suitable classes of alternatives exist fairly generally,
but are difficult to determine explicitly, and their derivation in Chapter 8 was
confined primarily to situations in which invariance considerations apply.

Despite their limitations, these approaches have proved their value by applica-
tion to large classes of important situations. On the other hand, they are unlikely
to be applicable to complex new problems. What is needed for such cases is a
simpler, less detailed, more generally applicable formulation. The development
and implementation of such an approach will be the subject of the remaining
chapters. It replaces optimality by asymptotic optimality obtained by embed-
ding the actual situation in a sequence of situations of increasing sample size,
and applying optimality to the limit situation. These limits tend to be of the
simple type for which optimality has been established in earlier chapters.

A feature of asymptotic optimality is that it refers not to a single test but to a
sequence of tests, although this distinction will often be suppressed. An important
consequence is that asymptotically optimal procedures - unlike most optimal
procedures in the small sample approach - are not unique since many different
sequences have the same limit. In fact, quite different methods of construction
may lead to procedures which are asymptotically optimal.
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The following are some specific examples to keep in mind where finite sample
considerations fail to provide optimal procedures, but for which a large sample
approach will seen to be more successful.

Example 11.1.1 (One parameter families) Suppose X1, . . . , Xn are i.i.d.
according to some family of distributions Pθ indexed by a real-valued param-
eter θ. Then, it was mentioned after Corollary 3.4.1 that UMP tests for testing
θ = θ0 against θ > θ0 exist for all sample sizes (under weak regularity conditions)
only when the distributions Pθ constitute an exponential family. For example, lo-
cation models typically do not have monotone likelihood ratio, and so UMP tests
rarely exist in this situation, though the normal location model is a happy ex-
ception. On the other hand, we shall see that under weak assumptions, there
generally exist tests for one-parameter families which are asymptotically UMP in
a suitable sense; see Section 13.3. For example, we shall derive an asymptotically
optimal one-sided test in the Cauchy location model, among others.

Example 11.1.2 (Behrens-Fisher Problem) Consider testing the equality
of means for two independent samples, from normal distributions with possibly
different (unknown) variances. As previously mentioned, finite sample optimality
considerations such as unbiasedness or invariance do not lead to an optimal test,
even though the setting is a multiparameter exponential family. An optimal test
sequence will be derived in Example 13.5.4.

Example 11.1.3 (The Chi-squared Test) Consider n multinomial trials with
k + 1 possible outcomes, labelled 1 to k + 1. Suppose pj denotes the probability
of a result in the jth category. Let Yj denote the number of trials result-
ing in category j, so that (Y1, . . . , Yk+1) has the multinomial distribution with
joint density obtained in Example 2.7.2. Suppose the null hypothesis is that
p = π = (π1, . . . , πk+1). The alternative hypothesis is unrestricted and includes
all p += π (with

∑k+1
j=1 pj = 1). The class of alternatives is too large for a UMP

test to exist, nor do unbiasedness or invariance considerations rescue the problem.
The usual Chi-squared test, which is based on the test statistic Qn given by

Qn =
k+1∑

j=1

(Yj − nπj)
2

nπj
, (11.1)

will be seen to posses an asymptotic maximin property; see Section 14.3.

Example 11.1.4 (Nonparametric Mean) Suppose X1, . . . , Xn are i.i.d. from
a distribution F with finite mean µ and finite variance. The problem is to test
µ = 0. Except when F is assumed to belong to a number of simple parametric
families, optimal tests for the mean rarely exist. Moreover, if we assume only a
second moment, it is impossible to construct reasonable tests that are of a given
size (Theorem 11.4.6). But, by making a weak restriction on the family, we will
see that it is possible to construct tests that are approximately level α and that
in addition possess an asymptotic maximin property; see Section 11.4.

In the remaining chapters, we shall consider hypothesis testing and estimation
by confidence sets from a large sample or asymptotic point of view. In this ap-
proach, exact results are replaced by approximate ones that have the advantage
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of both greater simplicity and generality. But, the large sample approach is not
just restricted to situations where no finite sample optimality approach works.
As the following example shows, limit theorems often provide an easy way to
approximate the critical value and power of a test (whether it has any optimality
properties or not).

Example 11.1.5 (Simple vs. Simple) Suppose that X1, . . . , Xn are i.i.d.
with common distribution P . The problem is to test the simple null hypothe-
sis P = P0 versus the simple alternative P = P1. Let pi denote the density of Pi

with respect to a measure µ. By the Neyman-Pearson Lemma, the optimal test
rejects for large values of

∑n
i=1 log[p1(Xi)/p0(Xi)]. The exact null distribution of

this test statistic may be difficult to obtain since, in general, an n-fold integration
is required. On the other hand, since the statistic takes the simple form of a sum
of i.i.d. variables, large sample approximations to the critical value and power
are easily obtained from the Central Limit Theorem (Theorem 11.2.4).

Another application of the large sample approach (discussed in Section 11.3)
is the study of the robustness of tests when the assumptions under which they
are derived do not hold. Here, asymptotic considerations have been found to be
indispensable. The problem is just too complicated for the more detailed small
sample methods to provide an adequate picture. In general, two distinct types
of robustness considerations arise, which may be termed robustness of validity
and robustness of efficiency; this distinction has been pointed out by Tukey and
McLaughin (1963), Box and Tiao (1964), and Mosteller and Tukey (1977). For
robustness of validity, the issue is whether a level α test retains its level and
power if the parameter space is enlarged to include a wider class of distributions.
For example, in testing whether the mean of a normal population is zero, we may
wish to consider the validity of a test without assuming normality. However, even
when a test possesses a robustness of validity, are its optimality properties pre-
served when the parameter space is enlarged? This question is one of robustness
of efficiency (or inference robustness). In the context of the one-sample normal
location model, for example, one would study the behavior of procedures (such as
a one-sample t-test) when the underlying distribution has thicker tails than the
normal, or perhaps when the observations are not assumed independent. Large
sample theory offers valuable insights into these issues, as will be seen in Section
11.3.

When finite and large sample optimal procedures do not exist for a given
problem, it becomes important to determine procedures which have at least rea-
sonable performance characteristics. Large sample considerations often lead to
suitable definitions and methods of construction. An example of this nature that
will be treated later is the problem of testing whether an i.i.d. sample is uniformly
distributed or, more generally, of goodness of fit.

As the starting point of a large sample theory of inference, we now define
asymptotic analogs of the concepts of size, level of significance, confidence coeffi-
cient and confidence level. Suppose that data X(n) comes from a model indexed
by a parameter θ ∈ Ω. Typically, X(n) refers to an i.i.d. sample of n observations,
and an asymptotic approach assumes that n → ∞. Of course, two-sample prob-
lems can be considered in this setup, as well as more complex data structures.
Nothing is assumed about the family Ω, so that the problem may be parametric
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or nonparametric. First, consider testing a null hypothesis H that θ ∈ ΩH versus
the alternative hypothesis K that θ ∈ ΩK , where ΩH and ΩK are two mutually
exclusive subsets of Ω. We will be studying sequences of tests φn(X(n)).

Definition 11.1.1 For a given level α, a sequence of tests {φn} is pointwise
asymptotically level α if, for any θ ∈ ΩH ,

lim sup
n→∞

Eθ[φn(X(n))] ≤ α . (11.2)

Condition (11.2) guarantees that for any θ ∈ ΩH and any ε > 0, the level of
the test will be less than or equal to α + ε when n is sufficiently large. However,
the condition does not guarantee the existence of an n0 (independent of θ) such
that

Eθ[φn(X(n))] ≤ α + ε

for all θ ∈ ΩH and all n ≥ n0. We can therefore not guarantee the behavior of
the size

sup
θ∈ΩH

Eθ[φn(X(n))]

of the test, no matter how large n is.

To illustrate the
above point, consider the function

f(n, θ) = α + (1 − α) exp(−n/θ) ,

defined for positive integers n and θ > 0. Then, for any θ > 0, f(n, θ) → α as
n → ∞; that is, f(n, θ) converges to α pointwise in θ. However, this convergence
is not uniform in θ because

sup
θ>0

f(n, θ) = α + (1 − α) sup
θ>0

exp(−n/θ) = 1 .

To cast this example in the context of hypothesis testing, assume X1, . . . , Xn are
i.i.d. with the exponential distribution function

Fθ(t) = Pθ{Xi ≤ t} = 1 − exp(−t/θ) .

Define

φn(X1, . . . , Xn) = α + (1 − α)I{min(X1, . . . , Xn) > 1} .

Here and throughout, the notation I{E} denotes an indicator random variable
that is 1 if the event E occurs and is 0 otherwise. Then, Eθ[φn(X1, . . . , Xn)] =
f(n, θ). Hence, if ΩH is the positive real line, the test sequence φn satisfies (11.2),
but its size is 1 for every n.

In order to guarantee the behavior of the limiting size of a test sequence, we
require the following stronger condition.

Definition 11.1.2 The sequence {φn} is uniformly asymptotically level α if

lim sup
n→∞

sup
θ∈ΩH

Eθ[φn(X(n))] ≤ α . (11.3)

Example 11.1.6 (Uniform versus Pointwise Convergence)
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If instead of (11.3), the sequence {φn} satisfies

lim
n→∞

sup
θ∈ΩH

Eθ[φn(X(n))] = α , (11.4)

then this value of α is called the limiting size of {φn}.

Of course, we also will study the behavior of tests under the alternative hy-
pothesis. The following is a weak condition that we expect reasonable tests to
satisfy.

Definition 11.1.3 The sequence {φn} is pointwise consistent in power if, for
any θ in ΩK ,

Eθ[φn(X(n))] → 1 (11.5)

as n → ∞.

Example 11.1.7 (One-parameter families, Example 11.1.1, continued)
Let Tn = Tn(X1, . . . , Xn) be a sequence of statistics, with distributions depend-
ing on a real-valued parameter θ. For testing H : θ = θ0 against K : θ > θ0,
consider the tests φn that reject H when Tn ≥ Cn. In many applications, it will
turn out that, when θ = θ0, n1/2(Tn−θ0) has a limiting normal distribution with
mean 0 and variance τ2(θ0) in the sense that, for any real number t,

Pθ0{n
1/2(Tn − θ0) ≤ t} → Φ(t/τ(θ0)) , (11.6)

where Φ(·) is the standard normal c.d.f. Let zα satisfy Φ(zα) = α. Then, the test
with

Cn = θ0 +
τ(θ0)

n1/2
z1−α

has limiting size α, since

Pθ0{Tn ≥ θ0 +
τ(θ0)

n1/2
z1−α} → α .

Consider next the power of φn under the assumption that not only (11.6) holds,
but that it remains valid when θ0 is replaced by any θ > θ0. Then, the power of
φn against θ is

βn(θ) = Pθ{n1/2(Tn − θ) ≥ z1−ατ(θ0) − n1/2(θ − θ0)}

and hence βn(θ) → 1 for any θ > θ0, so that the test sequence is pointwise
consistent in power.

Similar definitions apply to the construction of confidence sets. Let g = g(θ)
be the parameter function of interest, for some mapping g from Ω to some space
Ωg. Let Sn = Sn(X(n)) ∈ Ωg denote a sequence of confidence sets for g(θ).

Definition 11.1.4 A sequence of confidence sets Sn is pointwise asymptotically
level 1 − α if, for any θ ∈ Ω,

lim inf
n→∞

Pθ{g(θ) ∈ Sn(X(n))} ≥ 1 − α . (11.7)
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The sequence {Sn} is uniformly asymptotically level 1 − α if

lim inf
n→∞

inf
θ∈Ω

Pθ{g(θ) ∈ Sn(X(n))} ≥ 1 − α . (11.8)

If the lim inf in the left hand side of (11.8) can be replaced by a lim, then the
left hand side is called the limiting confidence coefficient for {Sn}.

Most of the asymptotic theory we shall consider is local in a sense that we now
briefly describe. In the hypothesis testing context, any reasonable test sequence
φn is pointwise consistent in power. However, any actual situation has finite
sample size n and its power against any fixed alternative is typically less than
one. In order to obtain a meaningful assessment of power, one therefore considers
sequences of alternatives θn tending to ΩH at a suitable rate, so that the limiting
power of φn against θn is less than one. (See Example 11.2.5 for a simple example
of such a local approach.)

An alternative to the local approach is to consider the rate at which the power
tends to one against a fixed alternative. Although there exists a large literature
on this approach based on large-deviation theory, the resulting approximations
tend to be less accurate and we shall not treat this topic here.

It is also important to mention that asymptotic results may provide poor
approximations to the actual finite sample setting. Furthermore, convergence to a
limit as n → ∞ certainly does not guarantee that the approximation will improve
with increasing n; an example is provided by Hodges (1957). Any asymptotic
result should therefore be accompanied by an investigation of its reliability for
finite sample sizes. Such checks can be carried out by simulations studies or higher
order asymptotic analysis.

The concepts and definitions presented in this introduction will be explored
more fully in the remaining chapters. First, we need techniques to be able to
approximate significance levels, power functions, and confidence coefficients. To
this end, the next section is devoted to useful results from the theory of weak
convergence and other convergence concepts.

11.2 Basic Convergence Concepts

11.2.1 Weak Convergence and Central Limit Theorems

In this section, the basic notation, definitions and results from the theory of weak
convergence are introduced. The main theorems will be presented without proof,
but we will provide illustrations of their use. For a more complete background,
the reader is referred to Pollard (1984), Dudley (1989) or Billingsley (1995).

Let X denote a k × 1 random vector (which is just a vector-valued random
variable), so that the ith component Xi of X is a real-valued random variable.
Then, XT = (X1, . . . , Xk). The (multivariate) cumulative distribution function
(c.d.f.) of X is defined to be:

FX(x1, . . . , xk) = P{X1 ≤ x1, . . . , Xk ≤ xk} .

Here, the probability P refers to the probability on whatever space X is defined.
A point xT = (x1, . . . , xk) at which the c.d.f. FX(·) is continuous is called a
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continuity point of FX . Alternatively, x is a continuity point of FX if the boundary
of the set of (y1, . . . , yk) such that yi ≤ xi for all i has probability 0 under the
distribution of X.1 As an example, the multivariate normal distribution was first
studied in Section 3.9.2.

Definition 11.2.1 A sequence of random vectors {Xn} with c.d.f.s {FXn(·)}
is said to converge in distribution (or in law) to a random vector X with c.d.f.
FX(·) if

FXn(x1, . . . , xk) → FX(x1, . . . , xk)

at all continuity points (x1, . . . , xk) of FX(·). This convergence will also be

denoted Xn
d→ X. Because it really only has to do with the laws of the ran-

dom variables (and not with the random variables themselves), we may also

equivalently say FXn converges weakly to FX , written FXn

d→ FX .2

The limiting random vector X plays an auxiliary role, since any random
variable with the same distribution would serve the same purpose. Therefore,
the notation will sometimes be abused so that we also say Xn converges in

distribution to the c.d.f. F , written Xn
d→ F .

There are many equivalent characterizations of weak convergence, some of
which are recorded in the next theorem.

Theorem 11.2.1 (Portmanteau Theorem) Suppose Xn and X are random
vectors in RI k. The following are equivalent:

(i) Xn
d→ X.

(ii) Ef(Xn) → Ef(X) for all bounded, continuous real-valued functions f .

(iii) For any open set O in RI k, lim inf P (Xn ∈ O) ≥ P (X ∈ O).

(iv) For any closed set G in RI k, lim sup P (Xn ∈ G) ≤ P (X ∈ G).

(v) For any set E in RI k for which ∂E, the boundary of E, satisfies P (X ∈
∂E) = 0, P (Xn ∈ E) → P (X ∈ E).

(vi) lim inf Ef(Xn) ≥ Ef(X) for any nonnegative continuous f .

1In general, the boundary of a set E in RI k , denoted ∂E is defined as follows. The
closure of E, denoted Ē, is the set of x ∈ RI k for which there exists a sequence xn ∈ E
with xn → x. The set E is closed if E = Ē. The interior of E, denoted E◦, is the set
of x such that, for some ε > 0, the Euclidean ball with center x and radius ε, defined by
{y ∈ RI k : |y − x| < ε}, is contained in E. Here | · | denotes the usual Euclidean norm.
The set E is open if E = E◦. If Ec denotes the complement of a set E, then evidently,
E◦ is the complement of the closure of Ec, and so E is open if and only if Ec is closed.
The boundary ∂E of a set E is then defined to be Ē − E◦ = Ē ∩ (E◦)c.

2The term weak convergence (also sometimes called weak star convergence) distin-
guishes this type of convergence from stronger convergence concepts to be discussed
later. However, the term is used because it is a special case of convergence in the weak
star topology for elements in a Banach space (such as the space of signed measures on
RI k ), though we will make no direct use of any such topological notions.
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Another equivalent characterization of weak convergence is based on the notion
of the characteristic function of a random vector.

Definition 11.2.2 The characteristic function of a random vector X (taking
values in RI k) is the function ζX(·) from RI k to the complex plane given by

ζX(t) = E(ei〈t,X〉).

In the definition, 〈t, X〉 refers to the usual inner product, so that 〈t, X〉 =∑k
j=1 tjXj . Two important properties of characteristic functions are the follow-

ing. First, the distribution of X is uniquely determined by its characteristic
function. Second, the characteristic function of a sum of independent real-
valued random variables is the product of the individual characteristic functions
(Problem 11.7).

Example 11.2.1 (Multivariate Normal Distribution) Suppose a random
vector XT = (X1, . . . , Xk) is N(µ, Σ), the multivariate normal distribution with
mean vector µT = (µ1, . . . , µk) and covariance matrix Σ. In the case k = 1, if X
is normally distributed with mean µ and variance σ2, its characteristic function
is:

E(eitX) =

∫ ∞

−∞
eitx 1√

2πσ
e[−(x−µ)2/2σ2]dx = exp(itµ − 1

2
σ2t2) , (11.9)

which can be verified by a simple integration (Problem 11.8). To obtain the
characteristic function for k > 1, note that

ζX(t) = E(ei〈t,X〉)

is the characteristic function

ζ〈t,X〉(λ) = E(eλi〈t,X〉)

of 〈t, X〉 evaluated at λ = 1. Now if X is multivariate normal N(µ, Σ), then 〈t, X〉
is univariate normal with mean 〈t, µ〉 and variance 〈Σt, t〉 = tT Σt. Therefore, by
the case k = 1, we find that

E(ei〈t,X〉) = exp(i〈t, µ〉 − 1
2
〈Σt, t〉) . (11.10)

Theorem 11.2.2 (Continuity Theorem) Xn
d→ X in RI k if and only if

ζXn(t) → ζX(t)

for all t in RI k.

Note that it is not enough to assume ζXn(t) → ζ(t) for some limit function

ζ(·) in order to conclude Xn
d→ X; one must know that ζ(·) is the characteristic

function of some random variable (or that ζ(·) is continuous at 0) (Problem 11.9).
Weak convergence of random vectors on RI k can be reduced to studying weak

convergence on the real line by means of the following result, the proof of which
follows immediately from Theorem 11.2.2 (Problem 11.10).

Theorem 11.2.3 (Cramér-Wold Device) A sequence of random vectors Xn

on RI k satisfies Xn
d→ X iff 〈t, Xn〉 d→ 〈t, X〉 for every t ∈ RI k.
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The following result is crucial for this and the following chapters.

Theorem 11.2.4 (Multivariate Central Limit Theorem) Let XT
n =

(Xn,1, . . . , Xn,k) be a sequence of i.i.d. random vectors with mean vector µT =
(µ1, . . . , µk) and covariance matrix Σ. Let Xn,j = 1

n

∑n
i=1 Xi,j. Then

(n1/2(Xn,1 − µ1), . . . , n
1/2(Xn,k − µk))T d→ N(0, Σ) .

To cover situations in which the distribution varies with sample size, we will
deal with a triangular array of variables {Xn,i : 1 ≤ i ≤ rn, n = 1, 2, . . .}, where
it is assumed rn → ∞ as n → ∞. Typically, rn = n, and so the term triangular
array is an appropriate description, but note that the term triangular array is
used even if rn += n. The following limit theorem provides sufficient conditions
for asymptotic normality for a normalized sum of real-valued variables making
up a triangular array. (See Billingsley (1995), p. 369.)

Theorem 11.2.5 (Lindeberg Central Limit Theorem) Suppose, for each n,
Xn,1, . . . , Xn,rn are independent real-valued random variables. Assume E(Xn,i) =
0 and σ2

n,i = E(X2
n,i) < ∞. Let s2

n =
∑rn

i=1 σ2
n,i. Suppose, for each ε > 0,

rn∑

i=1

1
s2

n
E[X2

n,iI{|Xn,i| > εsn}] → 0 as n → ∞. (11.11)

Then,
∑rn

i=1 Xn,i/sn
d→ N(0, 1).

For most applications, Lindeberg’s Condition (11.11) can be verified by Lya-
pounov’s Condition, which says that, for some δ > 0, |Xn,i|2+δ are integrable
and

lim
n→∞

rn∑

i=1

1

s2+δ
n

E[|Xn,i|2+δ] = 0 . (11.12)

Indeed, (11.12) implies (11.11) (Problem 11.11), and the result may be stated as
follows.

Corollary 11.2.1 (Lyapounov Central Limit Theorem). Suppose, for each
n, Xn,1, . . . , Xn,rn are independent. Assume E(Xn,i) = 0 and σ2

n,i = E(X2
n,i) <

∞. Let s2
n =

∑rn
i=1 σ2

n,i. Suppose, for some δ > 0, (11.12) holds. Then,
∑rn

i=1 Xn,i/sn
d→ N(0, 1).

There also exists a partial converse to Lindeberg’s Central Limit Theorem, due
to Feller and Lévy. (See Billingsley (1995), p. 574.)

Theorem 11.2.6 Suppose, for each n, Xn,1, . . . , Xn,rn are independent, mean
0, σ2

n,i = E(X2
n,i) < ∞ and s2

n =
∑rn

i=1 σ2
n,i. Also, assume the array is uniformly

asymptotically negligible; that is,

max
1≤i≤rn

P{|Xn,i/sn| ≥ ε} → 0 (11.13)

for any ε > 0. If
∑rn

i=1 Xn,i/sn
d→ N(0, 1) , then the Lindeberg Condition (11.11)

is satisfied.
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Corollary 11.2.2 Suppose, for each n, Xn,1, . . . , Xn,n are i.i.d. with mean 0

and variance σ2
n. Let s2

n = nσ2
n. Assume

∑n
i=1 Xn,i/sn

d→ N(0, 1). Then, the
Lindeberg Condition (11.11) is satisfied.

Corollary 11.2.2 follows from Theorem 11.2.6 because the assumption that
the nth row of the triangular array is i.i.d. implies the array is uniformly
asymptotically negligible, so that the condition (11.13) holds. Indeed,

P{|Xn,i|/sn ≥ ε} ≤ E(|Xn,i|2)
s2

nε2
=

1
nε2

→ 0 .

The following Berry-Esseen Theorem gives information on the error in the
normal approximation provided by the Central Limit Theorem.

Theorem 11.2.7 Suppose X1, . . . , Xn are i.i.d. real-valued random variables
with c.d.f. F . Let µ(F ) denote the mean of F and let σ2(F ) denote the vari-
ance of F , assumed finite and nonzero. Let Sn =

∑n
i=1 Xi. Then, there exists a

universal constant C (not depending on F , n, or x) such that
∣∣∣∣P

{
Sn − nµ(F )

n1/2σ(F )
≤ x

}
− Φ(x)

∣∣∣∣ ≤
C

n1/2

EF [|X1 − µ(F )|3]
σ(F )3

, (11.14)

where Φ(·) denotes the standard normal c.d.f.

The Berry-Esseen Theorem holds if C = 0.7975. The smallest value of C for
which the result holds is unknown, but it is known that it fails for C < 0.4097
(van Beek (1972)).

If F is a fixed distribution with finite third moment and nonzero variance, the
right side of (11.14) tends to zero and hence the left side of (11.14) tends to zero
uniformly in x. Furthermore, if F is the family of distributions F with

EF [|X − µ(F )|3]
σ3(F )

< B , (11.15)

for some fixed B < ∞, then this convergence is also uniform in F as F varies in
F. Thus, if Sn is the sum of n i.i.d. variables with distribution Fn in F, then

sup
x

∣∣∣∣P
{

Sn − nµ(Fn)

n1/2σ(Fn)
≤ x

}
− Φ(x)

∣∣∣∣ → 0 . (11.16)

Example 11.2.2 Suppose X1, . . . , Xn are i.i.d. Bernoulli trials with probability
of success p. Then, Sn =

∑
i Xi is binomial based on n trials and success prob-

ability p, and the usual Central Limit Theorem asserts that the probability that
(Sn −np)/[np(1− p)]1/2 is less or equal to x converges to Φ(x), if p is not zero or
one. It follows from the Berry-Esseen theorem that this convergence is uniform
in both x and p as long as p ∈ [ε, 1− ε] for some ε > 0. To see why, we show that
condition (11.15) is satisfied. Observe that

E[|X1 − p|3] = p(1 − p)[(1 − p)2 + p2] ≤ p(1 − p) .

Thus,

E[|X1 − p|3]/[p(1 − p)]3/2 ≤ [ε(1 − ε)]−1/2 ,
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so that (11.15) holds with B2 = ε(1 − ε). Thus, (11.16) holds, so that if Sn is
binomial based on n trials and success probability pn → p ∈ (0, 1), then

P{ Sn − npn

[npn(1 − pn)]1/2
≤ xn} → Φ(x) (11.17)

whenever xn → x.

Example 11.2.3 (The Sample Median) As an application of the Berry-
Esseen theorem and the previous example, the following result establishes the
asymptotic normality of the sample median. Given a sample X1, . . . , Xn with
order statistics X(1) ≤ · · · ≤ X(n), the median X̃n is defined to be the middle
order statistic X(k) if n = 2k − 1 is odd and the average of X(k) and X(k+1) if
n = 2k is even.

Theorem 11.2.8 Suppose X1, . . . , Xn are i.i.d. real-valued random variables
with c.d.f. F . Assume F (θ) = 1/2, and that F is differentiable at θ with F ′ = f
and f(θ) > 0. Let X̃n denote the sample median. Then

n1/2(X̃n − θ)
d→ N(0,

1
4f2(θ)

) .

Proof. Assume first that n tends to ∞ through odd values and, without loss of
generality, that θ = 0. Fix any real number a and let Sn be the number of Xi

that exceed a/n1/2. Then the event {X̃n ≤ a/n1/2} is equivalent to the event
{Sn ≤ (n−1)/2}. But, Sn is binomial with parameters n and success probability
pn = 1 − F (a/n1/2). Thus,

P{n1/2X̃n ≤ a} = P{Sn ≤ n − 1
2

} = P{ Sn − npn

[npn(1 − pn)]1/2
≤ xn} ,

where

xn =
1
2 (n − 1) − npn

[npn(1 − pn)]1/2
=

n1/2( 1
2 − pn) − 1/(2n1/2)

[pn(1 − pn)]1/2
.

As n → ∞, pn → 1/2 and

n1/2(
1
2
− pn) = a · F (a/n1/2) − F (0)

a/n1/2
→ af(0) ,

which implies xn → 2af(0). Therefore, by (11.17),

P{n1/2X̃n ≤ a} → Φ[2f(0)a] ,

which completes the proof for odd n. For the case of even n, see Problem 11.15.
Another result concerning uniformity in weak convergence is the following

theorem of Polyá.

Theorem 11.2.9 (Polyá’s Theorem) Suppose Xn
d→ X and X has a continu-

ous c.d.f FX . Let FXn denote the c.d.f. of Xn. Then, FXn(x) converges to FX(x),
uniformly in x.

It is interesting and important to know that weak convergence of Fn to F can be
expressed in terms of ρ(Fn, F ), where ρ is a metric on the space of distributions.



430 11. Basic Large Sample Theory

(Some basic properties of metrics are reviewed in the appendix, Section A.2.) To
be specific, on the real line, define the Lévy distance between distributions F and
G as follows.

Definition 11.2.3 Let F and G be distribution functions on the real line. The
Lévy distance between F and G, denoted ρL(F, G) is defined by

ρL(F, G) = inf{ε > 0 : F (x − ε) − ε ≤ G(x) ≤ F (x + ε) + ε for all x} .

The definition implies that ρL(F, G) = ρL(G, F ) and that ρL is a metric
on the space of distribution functions (Problem 11.20). Moreover, if Fn and F
are distribution functions, then weak convergence of Fn to F is equivalent to
ρL(Fn, F ) → 0 (Problem 11.22). In this sense, ρL metrizes weak convergence.

We shall next consider the implication of weak convergence for the convergence
of quantiles. Ideally, the (1 − α) quantile x1−α of a distribution F is defined by

F (x1−α) = 1 − α . (11.18)

For the solutions of (11.18), it is necessary to distinguish three cases. First, if F
is continuous and strictly increasing, the equation (11.18) has a unique solution.
Second, if F is not strictly increasing, it may happen that F (x) = 1 − α on an
interval [a, b) or [a, b], so that any x in such an interval could serve as a 1 − α
quantile. Then, we shall define the 1 − α quantile as the left hand endpoint of
the interval. Third, if F has discontinuities, then (11.18) may have no solutions.
This happens if F (x) > 1 − α and sup{F (y) : y < x} ≤ 1 − α, but in this case
we would call x the 1 − α quantile of F . A general definition encompassing all
these possibilities is given by

x1−α = inf{x : F (x) ≥ 1 − α} . (11.19)

This is also sometimes written as x1−α = F−1(1 − α) although F may not have
a proper inverse function.

Weak convergence of Fn to F is not enough to guarantee that F−1
n (1−α) con-

verges to F−1(1−α), but the following result shows this is true if F is continuous
and strictly increasing at F−1(1 − α). Part (ii) of the lemma will be used later
(and depends on the notion of convergence in probability introduced below).

Lemma 11.2.1 (i) Let {Fn} be a sequence of distribution functions on the real
line converging weakly to a distribution function F . Assume F is continuous and
strictly increasing at y = F−1(1 − α). Then,

F−1
n (1 − α) → F−1(1 − α) .

(ii). More generally, suppose {F̂n} is a sequence of random distribution functions

satisfying F̂n(x)
P→ F (x) at all x which are continuity points of a fixed distribution

function F . Assume F is continuous and strictly increasing at F−1(1−α). Then,

F̂−1
n (1 − α)

P→ F−1(1 − α) .

Proof. To prove (i), fix δ > 0. Let y − ε and y + ε be continuity points of F for
some 0 < ε ≤ δ. Then,

Fn(y − ε) → F (y − ε) < 1 − α
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and

Fn(y + ε) → F (y + ε) > 1 − α.

Hence, for all sufficiently large n,

y − ε ≤ F−1
n (1 − α) ≤ y + ε ,

and so, |F−1
n (1−α)− y| ≤ δ for all sufficiently large n. Since δ was arbitrary, the

result (i) is proved. The proof of (ii) is similar.

11.2.2 Convergence in Probability and Applications

As pointed out earlier, convergence in law of Xn to X asserts only that the
distribution of Xn tends to that of X, but says nothing about Xn itself becoming
close to X. The following stronger form of convergence provides that Xn and X
themselves are close for large n.

Definition 11.2.4 A sequence of random vectors {Xn} converges in probability

to X, written Xn
P→ X, if, for every ε > 0,

P{|Xn − X| > ε} → 0 as n → ∞.

Convergence in probability implies convergence in distribution (Problem 11.30);
the converse is false in general. However, if Xn converges in distribution to a dis-
tribution assigning probability one to a constant vector c, then Xn converges in
probability to c, and conversely. Note that, unlike weak convergence, Xn and X
must be defined on the same probability space in order for Definition 11.2.4 to
make sense.

Convergence in probability of a sequence of random vectors Xn is equiv-
alent to convergence in probability of their components. That is, if Xn =

(Xn,1, . . . , Xn,k)T and X = (X1, . . . , Xk)T , then Xn
P→ X iff for each i = 1, . . . , k,

Xn,i
P→ Xi. Moreover, Xn

P→ 0 if and only if |Xn| P→ 0 (Problem 11.31).
A sequence of real-valued random variables Xn converges in probability to

infinity, written Xn
P→ ∞ if, for any real number B,

P{Xn < B} → 0

as n → ∞.
The next result and the later Theorem 11.2.16 deal with the convergence of

the average of i.i.d. random variables toward their expectation, and are known
as the weak and strong laws of large numbers. The terminology reflects the fact
that the strong law asserts a stronger conclusion than the weak law.

Theorem 11.2.10 (Weak Law of Large Numbers) Let Xi be i.i.d. real-
valued random variables with mean µ. Then,

X̄n ≡ 1
n

n∑

i=1

Xi
P→ µ .
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Note that it is possible for X̄n to converge in probability to a constant even
if the mean does not exist (Problem 11.28). Also, if the Xi are nonnegative and

the mean is not finite, then X̄n
P→ ∞ (Problem 11.32).

Suppose X1, . . . , Xn are i.i.d. according to a model {Pθ, θ ∈ Ω}. A sequence
of estimators Tn = Tn(X1, . . . , Xn) is said to be a weakly consistent (or just
consistent) estimator sequence of g(θ) if, for each θ ∈ Ω,

Tn
P→ g(θ) .

Thus, the consistency of an estimator sequence merely asserts convergence in
probability for each value of the parameter. For example, the Weak Law of Large
Numbers asserts that the sample mean is a consistent estimator of the population
mean whenever the population mean exists.

Example 11.2.4 Suppose X1, . . . , Xn are i.i.d. according to either P0 or P1. If
pi denotes the density of Pi with respect to a dominating measure, then by the
Neyman-Pearson Lemma, an optimal test rejects for large values of

Tn ≡ 1
n

n∑

i=1

log[p1(Xi)/p0(Xi)] .

By the Weak Law of Large Numbers, under P0,

Tn
P→ −K(P0, P1) , (11.20)

where K(P0, P1) is the so-called Kullback-Leibler Information, defined as

K(P0, P1) = −EP0 [log(p1(X1)/p0(X1))] . (11.21)

The convergence (11.20) assumes K(P0, P1) is well-defined in the sense that the
expectation in (11.21) exists. But, by Jensen’s inequality (since the negative log
is convex),

K(P0, P1) ≥ − log[EP0(p1(X1)/p0(X1))] ≥ 0 .

If P0 and P1 are distinct, then, the first inequality is strict, so that K(P0, P1) ≥ 0
with equality iff P0 = P1. Note, however, that K(P0, P1) may be ∞, but even in
this case, the convergence (11.20) holds; see Problem 11.33. Similarly, under the
alternative hypothesis P1,

Tn
P→ EP1 [log(p1(X1)/p0(X1)] = K(P1, P0) ≥ 0 .

Note that K(P0, P1) need not equal K(P1, P0).
In summary, Tn converges in probability, under P0, to a negative constant

(possibly −∞), while, under P1, Tn converges in probability to a positive constant
(assuming P0 and P1 are distinct). Therefore, for testing P0 versus P1, the test
that rejects when Tn > 0 is asymptotically perfect in the sense that both error
probabilities tend to zero; that is, P0{Tn > 0} → 0 and P1{Tn ≤ 0} → 0. It also
follows that, for fixed α ∈ (0, 1), if φn is a most powerful level α test sequence
for testing P0 versus P1 based on n i.i.d. observations, then the power of φn

against P1 tends to one. Thus, if P0 and P1 are fixed with n → ∞, the problem
is degenerate from an asymptotic point of view.
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For convergence in probability to a constant, it is not necessary for the Xn

to be defined on the same probability space. Suppose Pn is a probability on a
probability space (Ωn,Fn), and let Xn be a random vector from Ωn to RI k .
Then, if c is a fixed constant vector in RI k , we say that Xn converges to c in
Pn-probability if, for every ε > 0,

Pn{|Xn − c| > ε} → 0 as n → ∞ .

Alternatively, we may say Xn converges to c in probability if it is understood
that the law of Xn is determined by Pn.

For a sequence of numbers xn and yn, the notation xn = o(yn) means xn/yn →
0 as n → ∞. For random variables Xn and Yn, the notation Xn = oP (Yn) means

Xn/Yn
P→ 0. Similarly, Xn = oPn(Yn) means Xn/Yn → 0 in Pn-probability.

The following theorem is very useful for proving limit theorems.

Theorem 11.2.11 (Slutsky’s Theorem) Suppose {Xn} is a sequence of real-

valued random variables such that Xn
d→ X. Further, suppose {An} and {Bn}

satisfy An
P→ a, and Bn

P→ b, where a and b are constants. Then, AnXn + Bn
d→

aX + b.

The conclusion in Slutsky’s Theorem may be strengthened to convergence in

probability if it is assumed that Xn
P→ X. The following corollary to Slutsky’s

Theorem is also fundamental.

Corollary 11.2.3 Suppose {Xn} is a sequence of real-valued random variables
such that Xn tends to X in distribution, where X has a continuous cumulative
distribution function F . If Cn → c in probability, where c is a constant, then

P{Xn ≤ Cn} → F (c) .

Corollary 11.2.3 is useful even when Cn are nonrandom constants tending to
c. Also, the corollary holds even if c = ∞ or c = −∞ (Problem 11.36), with the
interpretation F (∞) = 1 and F (−∞) = 0.

Note that Slutsky’s theorem holds more generally if the convergence in
probability assumptions are replaced by convergence in Pn-probability.

Example 11.2.5 (Local Power Calculation) Suppose Sn is binomial based
on n trials and success probability p. Consider testing p = 1/2 versus p > 1/2.
The uniformly most powerful test rejects for large values of Sn. By Example
11.2.2,

Zn ≡ (Sn − n
2

)/(n/4)1/2 d→ N(0, 1) ,

and so the test that rejects the null hypothesis when this quantity exceeds the
normal critical value z1−α is asymptotically level α. Let βn(p) denote the power
of this test against a fixed alternative p > 1/2. Then, (Sn − np)/[np(1− p)]1/2 is
asymptotically standard normal if p is the true value. Hence,

βn(p) = Pp{Zn > z1−α} = Pp{
Sn − np

[np(1 − p)]1/2
> dn(p)} ,
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where

dn(p) =
z1−α

[4p(1 − p)]1/2
+ n1/2

1
2 − p

[p(1 − p)]1/2
→ −∞

if p > 1/2. Thus, βn(p) → 1 as n → ∞ for any p > 1/2, and so the test sequence
is pointwise consistent.

This result does not distinguish between alternative values of p. Better dis-
crimination is obtained by considering alternatives for which the power tends
to a value less than 1. This is achieved by replacing a fixed alternative p by
a sequence pn tending to 1/2, so that the task of distinguishing between 1/2
and pn becomes more difficult as information accumulates with increasing n. It
turns out that the power will tend to a limit less than one but greater than α if
pn = 1/2 + hn−1/2 if h > 0. To see this, note that, by Example 11.2.2, under pn,
(Sn − npn)/[npn(1 − pn)]1/2 is asymptotically standard normal. Then,

βn(pn) = Ppn{Zn > z1−α} = Ppn{
Sn − npn

[npn(1 − pn)]1/2
> dn(pn)} .

But, dn(pn) → z1−α − 2h. Hence, if Z denotes a standard normal variable,

βn(pn) → P{Z > z1−α − 2h} = 1 − Φ(z1−α − 2h) .

Also, note that βn(pn) → 1 if n1/2(pn − 1/2) → ∞ and βn(pn) → α if n1/2(pn −
1/2) → 0 (Problem 11.37).

The following is another useful result concerning convergence in probability.

Theorem 11.2.12 Suppose Xn and X are random vectors in RI k with Xn
P→ X.

Let g be a continuous function from RI k to RI s. Then, g(Xn)
P→ g(X).

Example 11.2.6 (Sample Standard Deviation) Let X1, . . . , Xn be i.i.d. real-
valued random variables with common mean µ and finite variance σ2. The usual
unbiased sample variance estimator is given by

S2
n =

1
n − 1

n∑

i=1

(Xi − X̄n)2 , (11.22)

where X̄n = n−1 ∑n
i=1 Xi is the sample mean. By the weak law of large numbers,

X̄n → µ in probability and n−1 ∑n
i=1 X2

i → E(X2
1 ) = µ2 + σ2 in probability.

Hence,

n − 1
n

S2
n = n−1

n∑

i=1

X2
i − X̄2

n → σ2

in probability, by Slutsky’s Theorem. Thus, S2
n → σ2 in probability, which implies

Sn → σ in probability, by Theorem 11.2.12.

Example 11.2.7 (Confidence Intervals for A Binomial p) Suppose Sn is
binomial based on n trials and unknown success probability p. Let p̂n = Sn/n.
By Example 11.2.2, for any p ∈ (0, 1), n1/2(p̂n − p) converges in distribution to

N(0, p(1 − p)). This implies p̂n
P→ p and so

[p̂n(1 − p̂n)]1/2 P→ [p(1 − p)]1/2
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as well. Therefore, by Slutsky’s Theorem, for any p ∈ (0, 1),

n1/2(p̂n − p)

[p̂n(1 − p̂n)]1/2

d→ N(0, 1) .

This implies that the confidence interval

p̂n ± z1− α
2

[
p̂n(1 − p̂n)

n

]1/2

(11.23)

is pointwise consistent in level, for any fixed p in (0, 1), where zβ is the β quantile
of N(0, 1). Note, however, that this confidence interval is not uniformly consistent
in level; in fact, for any n, the coverage probability can be arbitrarily close to 0
(Problem 11.38).

Unfortunately, an accumulating literature has shown that the coverage of the
interval in (11.23) is quite unreliable even for large values of n or np(1 − p), and
varies quite erratically as the sample size increases. To cite just one example, the
probability of the interval (11.23) covering the true p when p = .2 and 1−α = .95
is .946 when n = 30, and it is .928 when n = 98. This example is taken from
Table 1 of Brown, Cai and DasGupta (2001), who survey the literature and
recommend more reliable alternatives. Because of the great practical importance
of the problem, we summarize some of their principal recommendations.

For small n, the authors recommend two procedures. The first, which goes
back to Wilson (1927), is based on the quadratic inequality

|p̂n − p| ≤ z1− α
2

[
p(1 − p)

n

]1/2

, (11.24)

which has probability under p tending to 1−α. So, if we were testing the simple
null hypothesis that p is true, we can invert the test with acceptance region
(11.24). Solving for p in (11.24), one obtains the Wilson interval (Problem 11.39)

p̃n ± z1− α
2

n1/2

ñ

[
p̂nq̂n +

z2
1− α

2

4n

]1/2

, (11.25)

where p̃n = S̃n/ñ, S̃n = Sn + 1
2z2

1− α
2
, ñ = n + z2

1− α
2
, and q̂n = 1 − p̂n. As an

alternative, the authors recommend an equal-tailed Bayes interval based on the
Beta prior with a = b = 1/2; see Example 5.7.2.

Theoretical and additional numerical support are provided in Brown, Cai and
DasGupta (2002). Other approximations are reviewed in Johnson, Kotz and
Kemp (1992).

Theorem 11.2.13 (Continuous Mapping Theorem) Suppose Xn
d→ X. Let

g be a (measurable) map from RI k to RI s. Let C be the set of points in RI k for which

g is continuous. If P (X ∈ C) = 1, then g(Xn)
d→ g(X).

Example 11.2.8 Suppose Xn is a sequence of real-valued random variables such

that Xn
d→ N(0, σ2). By the Continuous Mapping Theorem, it follows that

X2
n

σ2

d→ χ2
1 ,
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where χ2
k denotes the Chi-squared distribution with k degrees of freedom. More

generally, suppose Xn is a sequence of k× 1 vector-valued random variables such
that

Xn
d→ N(0, Σ) ,

where Σ is assumed positive definite. Then, there exists a unique positive definite
symmetric matrix C such that C · C = Σ and we write C = Σ1/2. (For the con-
struction of the square root of a positive definite symmetric matrix, see Lehmann
(1999), p.306.) By the Continuous Mapping Theorem, it follows that

∣∣C−1Xn

∣∣2 d→ χ2
k .

The following method is often used to prove limit theorems, especially
asymptotic normality.

Theorem 11.2.14 (Delta Method) Suppose X1, X2, . . . and X are random

vectors in RI k. Assume τn(Xn − µ)
d→ X where µ is a constant vector and {τn}

is a sequence of constants τn → ∞.
(i) Suppose g is a function from RI k to RI which is differentiable at µ with gradient
(vector of first partial derivatives) of dimension 1× k at µ equal to ġ(µ).3 Then,

τn[g(Xn) − g(µ)]
d→ ġ(µ)X . (11.26)

In particular, if X is multivariate normal in RI k with mean vector 0 and
covariance matrix Σ, then

τn[g(Xn) − g(µ)]
d→ N(0, ġ(µ)Σġ(µ)T ) . (11.27)

(ii) More generally, suppose g = (g1, . . . , gq)
T is a mapping from RI k to RI q,

where gi is a function from RI k to RI which is differentiable at µ. Let D be the
q × k matrix with (i, j) entry equal to ∂gi(y1, . . . , yk)/∂yj evaluated at µ. Then,

τn[g(Xn) − g(µ)] = τn[g1(Xn) − g1(µ), . . . , gq(Xn) − gq(µ)]T
d→ DX .

In particular, if X is multivariate normal in RI k with mean vector 0 and
covariance matrix Σ, then

τn[g(Xn) − g(µ)]
d→ N(0, DΣDT ) .

Proof. We prove (i) with (ii) left as an exercise (Problem 11.44). Note that
Xn − µ = oP (1). Differentiability of g at µ implies

g(x) = g(µ) + ġ(µ)(x − µ) + R(x − µ) ,

where R(y) = o(|y|) as |y| → 0. Now,

τn[g(Xn) − g(µ)] − ġ(µ)τn(Xn − µ) = τnR(Xn − µ) .

By Slutsky’s Theorem, it suffices to show τnR(Xn − µ) = oP (1). But,

τnR(Xn − µ) = τn|Xn − µ| · h(Xn − µ) ,

3When k = 1, we may also use the notation g′(µ) for the ordinary first derivative of
g with respect to µ, as well as g′′(µ) for the second derivative.
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where h(y) = R(y)/|y| and h(0) is defined to be 0, so that h is continuous at 0.
The weak convergence hypothesis and the Continuous Mapping Theorem imply
τn|Xn − µ| has a limiting distribution. So, by Slutsky’s Theorem, it is enough to
show h(Xn −µ) = oP (1). But, this follows by the Continuous Mapping Theorem
as well.

Note that (11.26) and (11.27) remain true if ġ(µ) = 0 with the interpreta-
tion that the limit distribution places all its mass at zero, in which case we can
conclude

τn[g(Xn) − g(µ)]
P→ 0 .

Example 11.2.9 (Binomial Variance) Suppose Sn is binomal based on n
trials and success probability p. Let p̂n = Sn/n. By the Central Limit Theorem,

n1/2(p̂n − p)
d→ N(0, p(1 − p)) .

Consider estimating g(p) = p(1 − p). By the Delta Method,

n1/2[g(p̂n) − g(p)]
d→ N(0, (1 − 2p)2p(1 − p)) .

If p = 1/2, then ġ(1/2) = 0, so that

n1/2[g(p̂n) − g(p)]
P→ 0 .

In order to obtain a nondegenerate limit distribution in this case, note that

n[g(p̂n) − 1
4
] = −[n1/2(p̂n − 1

2
)]2 .

Therefore, by the Continuous Mapping Theorem,

n[g(p̂n) − 1
4
]

d→ −X2 ,

where X is N(0, 1/4), or

n[g(p̂n) − 1
4
]

d→ −1
4
χ2

1 ,

where χ2
1 is a random variable distributed as Chi-squared with one degree of

freedom.

In the case ġ(µ) = 0, it is not surprising that the limit distribution is a multiple
of a Chi-squared variable with one degree of freedom. Indeed, suppose k = 1 and
g is twice differentiable at µ with second derivative g′′(µ), so that

g(x) = g(µ) +
1
2
g′′(µ)(x − µ)2 + R(x − µ) ,

where R(x − µ) = o[(x − µ)2] as x → µ. Arguing as in the proof of Theorem
11.2.14 yields

τ2
n[g(Xn) − g(µ)] − τ2

n
g′′(µ)

2
(Xn − µ)2 = τ2

nR(Xn − µ) = oP (1) (11.28)

(Problem 11.46). By the Continuous Mapping Theorem,

τn(Xn − µ)
d→ X
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implies

τ2
n

g′′(µ)
2

(Xn − µ)2
d→ g′′(µ)

2
X2 .

By Slutsky’s Theorem, τ2
n[g(Xn) − g(µ)] has this same limiting distribution. Of

course, if X is N(µ, σ2), then this limiting distribution is g′′(µ)σ2

2 χ2
1.

Example 11.2.10 (Sample Correlation) Let (Ui, Vi) be i.i.d. bivariate ran-
dom vectors in the plane, with both Ui and Vi assumed to have finite nonzero
variances. Let σ2

U = V ar(Ui), σ2
V = V ar(Vi), µU = E(Ui), µV = E(Vi) and

let ρ = Cov(Ui, Vi)/(σUσV ) be the population correlation coefficient. The usual
sample correlation coefficient is given by

ρ̂n =

∑n
i=1(Ui − Ūn)(Vi − V̄n)/n

SUSV
, (11.29)

where Ūn =
∑

Ui/n, V̄n =
∑

Vi/n, S2
U =

∑
(Ui − Ūn)2/n and S2

V =
∑

(Vi −
V̄n)2/n. Then, n1/2(ρ̂n −ρ) is asymptotically normal. The important observation
is that ρ̂n is a smooth function of the vector of means X̄n , where Xi is the vector
Xi = (Ui, Vi, U

2
i , V 2

i , UiVi)
T . In fact, ρ̂n = g(X̄n), where

g((y1, y2, y3, y4, y5)
T ) =

y5 − y1y2

(y3 − y2
1)1/2(y4 − y2

2)1/2
.

Note that g is smooth and ġ is readily computed. Let µ = E(Xi) denote the
mean vector. Further assume that Ui and Vi have finite fourth moments. Then,
by the multivariate CLT,

n1/2(X̄n − µ)
d→ N(0, Σ) ,

where Σ is the covariance matrix of X1. For example, the (1, 5) component of Σ
is Cov(U1, U1V1). Hence, by the delta method,

n1/2[g(X̄n) − g(µ)] = n1/2(ρ̂n − ρ)
d→ N(0, ġ(µ)Σġ(µ)T ) . (11.30)

As an example, suppose that (Ui, Vi) is bivariate normal; in this case, (11.30)
reduces to (Problem 11.47)

n1/2(ρ̂n − ρ)
d→ N(0, (1 − ρ2)2) . (11.31)

This implies (1 − ρ̂2
n)

P→ 1 − ρ2. Then, by Slutsky’s theorem,

n1/2(ρ̂n − ρ)/(1 − ρ̂2
n)

d→ N(0, 1) ,

and so the confidence interval

ρ̂n ± n−1/2z1− α
2
(1 − ρ̂2

n)

is a pointwise asymptotically level 1−α confidence interval for ρ. The error in this
asymptotic approximation derives from both the normal approximation to the
distribution of ρ̂n and the fact that one is approximating the limiting variance. To
counter the second of these effects, the following variance stabilization technique
can be used. By the delta method, if h is differentiable, then

n1/2[h(ρ̂n) − h(ρ)]
d→ N(0, [h′(ρ)]2(1 − ρ2)2) .
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The idea is to choose h so that the limiting variance does not depend on ρ
and is a constant; such a transformation is then called a variance stabilizing
transformation. The solution is known as Fisher’s z-transformation and is given
by

h(ρ) =
1
2

log(
1 + ρ
1 − ρ

) = arctanh(ρ) .

Then,

h(ρ̂n) ± n−1/2z1− α
2

is a pointwise asymptotically level 1−α confidence interval for h(ρ). The inverse
function of h is the hyperbolic tangent function

tanh(y) = h−1(y) =
ey − e−y

ey + e−y
,

so that

[tanh(arctanh(ρ̂n) − n−1/2z1− α
2
), tanh(arctanh(ρ̂n) + n−1/2z1− α

2
)] (11.32)

is also a pointwise asymptotically level 1 − α confidence interval for ρ.4

Sometimes, {Xn} may not have a limiting distribution, but the weaker property
of tightness may hold, which only requires that no probability escapes to ±∞.

Definition 11.2.5 A sequence of random vectors {Xn} is tight (or uniformly
tight) if ∀ε > 0, there exists a constant B such that

inf
n

P{|Xn| ≤ B} ≥ 1 − ε .

A bounded sequence of numbers {xn} is sometimes written xn = O(1); more
generally xn = O(yn) if xn/yn = O(1). If {Xn} is tight, we sometimes also say

Xn is bounded in probability, and write |Xn| = OP (1). If Xn is tight and Yn
P→ 0

(sometimes written Yn = oP (1)), then |XnYn| P→ 0 (Problem 11.55). The notation
|Xn| = OP (|Yn|) means |Xn|/|Yn| is tight.

Tightness of a sequence of random vectors in RI k is equivalent to each of the
component variables being tight RI (Problem 11.40). Note that tightness, like
convergence in distribution, really refers to the sequence of laws of Xn, denoted
L(Xn). Thus, we shall interchangeably refer to tightness of a sequence of random
variables or the sequence of their distributions.

In a statistical context, suppose X1, . . . , Xn are i.i.d. according to a model
{Pθ, θ ∈ Ω}. Recall that an estimator sequence Tn is a (weakly) consistent
estimator of g(θ) if, for every θ ∈ Ω,

Tn − g(θ) → 0

4For discussion of this transformation, see Mudholkar (1983), Stuart and Ord, Vol. 1
(1987) and Efron and Tibshirani (1993), p.54. Numerical evidence supports replacing n
by n − 3 in (11.32).
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in probability when Pθ is true. An estimator sequence Tn is said to be
τn-consistent for g(θ) if, for every θ ∈ Ω,

τn[Tn − g(θ)]

is tight when Pθ is true. For example, if the underlying population has a finite
variance, it follows from the Central Limit Theorem that the sample mean is a
n1/2-consistent estimator of the population mean.

Whenever Xn converges in distribution to a limit distribution, then {Xn} is
tight, and the following partial converse is true. Just as any bounded sequence of
real numbers has a subsequence which converges, so does any sequence of random
variables Xn that is OP (1). This important result is stated next.

Theorem 11.2.15 (Prohorov’s Theorem) Suppose {Xn} is tight on RI k.

Then, there exists a subsequence nj and a random vector X such that Xnj

d→ X.

11.2.3 Almost Sure Convergence

On occasion, we shall utilize a form of convergence of Xn to X stronger than
convergence in probability.

Definition 11.2.6 Suppose Xn and X are random vectors in RI k , defined on
a common probability space (X ,F). Then, Xn is said to converge almost surely
(a.s.) to X if Xn(ω) → X(ω) on a set of points ω which has probability one; that
is, if

P{ω ∈ X : lim
n→∞

|Xn(ω) − X(ω)| = 0} = 1 .

This is denoted by Xn → X a.s..

Equivalently, we say that Xn converges to X with probability one, since there
is a set of outcomes ω having probability one such that Xn(ω) → X(ω). If Xn

converges almost surely to X, then Xn converges in probability to X, but the
converse is false (but see Problem 11.61). Indeed, convergence in probability does
not even guarantee Xn(ω) → X(ω) for any outcome ω. The following provides a
classic counterexample.

Example 11.2.11 (Convergence in probability, but not a.s.) Suppose U
is uniformly distributed on [0, 1), so that X is [0,1), F is the class of Borel sets,
U = U(ω) = ω, and P is the uniform probability measure. For m = 1, 2, . . .
and j = 1, . . . , m, let Ym,j be one if U ∈ [(j − 1)/m, j/m) and zero other-
wise. For any m, exactly one of the Ym,j is one and the rest are zero; also,
P{Ym,j = 1} = 1/m → 0 as m → ∞. String together all the variables so that
X1 = Y1, X2 = Y2,1, X3 = Y2,2, X4 = Y3,1, X5 = Y3,2, etc. Then, Xn → 0 in
probability. But Xn does not converge to 0 for any outcome U since Xn oscillates
infinitely often between 0 and 1.
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Theorem 11.2.16 (Strong Law of Large Numbers) Let Xi be i.i.d. real-
valued random variables with mean µ. Then

X̄n ≡ 1
n

n∑

i=1

Xi → µ a.s.

Conversely, if Xn → µ, a.s. with |µ| < ∞, then E|X1| < ∞.

In a statistical context, suppose X1, . . . , Xn are i.i.d. according to a model
{Pθ, θ ∈ Ω}. Suppose, under each θ, Tn = Tn(X1, . . . , Xn) converges almost
surely to g(θ). Then, Tn is said to be strongly consistent estimator of g(θ).

One of the most fundamental examples of almost sure convergence is provided
by the Glivenko-Cantelli theorem. To state the result, first define the Kolmogorov-
Smirnov distance between c.d.f.s F and G as

dK(F, G) = sup
t

|F (t) − G(t)| . (11.33)

Theorem 11.2.17 (Glivenko-Cantelli Theorem) Suppose X1, . . . , Xn are
i.i.d. real-valued random variables with c.d.f. F . Let F̂n be the empirical c.d.f.
defined by

F̂n(t) =
1
n

n∑

i=1

I{Xi ≤ t} . (11.34)

Then,

dK(F̂n, F ) → 0 a.s.

To prove the Glivenko-Cantelli Theorem, note that, for every fixed t, F̂n(t) →
F (t) almost surely, by the Strong Law of Large Numbers. That this convergence
is uniform in t follows from the fact that F is monotone (Problem 11.53).

Example 11.2.12 (Kolmogorov-Smirnov Test) The Glivenko-Cantelli The-
orem 11.2.17 forms the basis for the Kolmogorov-Smirnov goodness of fit test,
previously introduced in Section 6.13. Specifically, consider the problem of testing
the simple null hypothesis that F = F0 versus F += F0. The Glivenko-Cantelli
Theorem implies that, under F ,

dK(F̂n, F0) → dK(F, F0) a.s.

(and hence in probability as well), where the right side is zero if and only if
F = F0. Thus, the statistic dK(F̂n, F0) tends to be small under the null hy-
pothesis and large under the alternative. In order for this statistic to have a
nondegenerate limit distribution under F0, we normalize by multiplication of
n1/2 and the Kolmogorov-Smirnov goodness of fit test statistic is given by

Tn ≡ sup
t∈ RI

n1/2|F̂n(t) − F0(t)| = n1/2dK(F̂n, F0) . (11.35)

The Kolmogorov-Smirnov test rejects the null hypothesis if Tn > sn,1−α, where
sn,1−α is the 1−α quantile of the null distribution of Tn when F0 is the uniform
U(0, 1) distribution. Recall from Section 6.13 that the finite sampling distribution
of Tn under F0 is the same for all continuous F0 (also see Problem 11.57), but its
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exact form is difficult to express. Some approaches to obtaining this distribution
are discussed in Durbin (1973) and Section 4.3 of Gibbons and Chakraborti
(1992). Values for sn,1−α have been tabled in Birnbaum (1952). For exact power
calculations in both the continuous and discrete case, see Niederhausen (1981)
and Gleser (1985).

By the duality of tests and confidence regions, the Kolmogorov-Smirnov test
can be inverted to yield uniform confidence bands for F , given by

Rn,1−α = {F : n1/2 sup
t

|F̂n(t) − F (t)| ≤ sn,1−α} . (11.36)

By construction, PF {F ∈ Rn,1−α} = 1 − α if F is continuous; furthermore, the
confidence band is conservative if F is not continuous (Problem 11.58).

The limiting behavior of Tn will be discussed in Section 14.2. In fact, when
F = F0, Tn has a continuous strictly increasing limiting distribution with 1 − α
quantile s1−α (and so sn,1−α → s1−α). It follows that the width of the band
(11.36) is O(n−1/2). Alternatives to the Kolmogorov-Smirnov bands that are
more narrow in the tails and wider in the middle are discussed in Owen (1995).

The following useful inequality, which holds for finite sample sizes, actually
implies the Glivenko-Cantelli Theorem (Problem 11.59).

Theorem 11.2.18 (Dvoretzky, Kiefer, Wolfowitz Inequality) Suppose
X1, . . . , Xn are i.i.d. real-valued random variables with c.d.f. F . Let F̂n be the
empirical c.d.f. (11.34). Then, for any d > 0 and any positive integer n,

P{dK(F̂n, F ) > d} ≤ C exp(−2nd2) , (11.37)

where C is a universal constant.

Massart (1990) shows that we can take C = 2, which greatly improves the
original value obtained by Dvoretzky, Kiefer, and Wolfowitz (1956).

Example 11.2.13 (Monte Carlo Simulation) Suppose X1, . . . , Xn are i.i.d.
observations with common distribution P . Assume P is known. The prob-
lem is to determine the distribution or quantile of some real-valued statistic
Tn(X1, . . . , Xn) for a fixed finite sample size n. Denote this distribution by Jn(t),
so that

Jn(t) = P{Tn(X1, . . . , Xn) ≤ t} .

This distribution may not have a tractable form or may not be explicitly com-
putable, but the following simulation scheme allows the distribution J(t) to be
estimated to any desired level of accuracy. For j = 1, . . . , B, let Xj,1, . . . , Xj,n be
a sample of size n from P ; then, one simply evaluates Tn(Xj,1, . . . , Xj,n), and the
empirical distribution of these B values serves as an approximation to the true
sampling distribution Jn(t). Specifically, Jn(t) is approximated by

Ĵn,B(t) = B−1
B∑

j=1

I{Tn(Xj,1, . . . , Xj,n) ≤ t} .

For large B, Ĵn,B(t) will be a good approximation to the true sampling distribu-
tion Jn(t, P ). One (though perhaps crude) way of quantifying the closeness of this
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approximation is the following. By the Dvoretsky, Kiefer, Wolfowitz inequality
(11.37) (with B now taking over the role of n), there exists a universal constant
C so that

P{dK(Ĵn,B , Jn) > d} ≤ C exp(−2Bd2).

Hence, if we desire the probability of the supremum distance between Ĵn,B(·) and
Jn(·, P ) to be greater than d with probability less than ε, all we need to do is
ensure that B is large enough so that C exp(−2Bd2) ≤ ε. Since B, the number
of simulations, is determined by the statistician (assuming enough computing
power), the desired accuracy can be obtained. Further results on the choice of B
are given in Jockel (1986).

Here, we are tacitly assuming that one can easily accomplish the sampling of
observations from P . Of course, when P corresponds to a cumulative distribution
function F on the real line, one can usually just obtain observations from F by
F−1(U), where U is a random variable having the uniform distribution on (0, 1).
This construction assumes an ability to calculate an inverse function F−1(·). A
sample Xj,1, . . . , Xj,n of n i.i.d. F variables can then be obtained from n i.i.d.
Uniform (0,1) observations Uj,1, . . . , Uj,n by the prescription Xj,n = F−1(Uj,n). If
F−1 is not tractable, other methods for generating observations with prescribed
distributions are available in statistical software packages, such as S-plus, Excel,
or Maple.

Note, however, that we have ignored any error from the use of a pseudo-
random number generator, which presumably would be needed to generate the
Uniform (0,1) variables. The above idea forms the basis of many approximation
schemes; for some general references on Monte Carlo simulation, see Devroye
(1986) and Ripley (1987).

Almost sure convergence is the strongest type of convergence we have intro-
duced and it has many consequences. For example, suppose Xn → X almost
surely and |Xn| ≤ 1 with probability one. Then, |X| ≤ 1 with probability one,
and so E(|X|) ≤ 1; by the Lebesgue dominated convergence Theorem (Theorem
2.2.2), it follows that E(Xn) → E(X). If the assumption that Xn → X almost
surely is replaced by the weaker condition that Xn converges in distribution to
X, then the argument to show E(Xn) → E(X) breaks down. However, we shall
now show that the result continues to hold since the conclusion pertains only to
distributional properties of Xn and X. The argument is based on the following
theorem.

Theorem 11.2.19 (Almost Sure Representation Theorem) Suppose Xn
d→

X in RI k. Then, there exist random vectors X̃n and X̃ defined on some common
probability space such that X̃n has the same distribution as Xn and X̃n → X̃ a.s.
(and so X̃ has the same distribution as X).

Example 11.2.14 (Convergence of Moments) Suppose Xn and X are real-

valued random variables and Xn
d→ X. If the Xn are uniformly bounded, then

E(Xn) → E(X). To see why, construct X̃n and X̃ by the Almost Sure Represen-
tation Theorem and then apply the Dominated Convergence Theorem (Theorem
2.2.2) to the X̃n to conclude

E(Xn) = E(X̃n) → E(X̃) = E(X) . (11.38)
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If the Xn are not uniformly bounded, but Xn ≥ 0, then by Fatou’s Lemma
(Theorem 2.2.1), we may conclude

E(X) = E(X̃) ≤ lim inf
n

E(X̃n) = lim inf
n

E(Xn) .

As a final result, suppose Xn
d→ X and |X| has distribution F which is

continuous at t. Then, by the Continuous Mapping Theorem,

|Xn|I{|Xn| ≤ t} d→ |X|I{|X| ≤ t} .

By (11.38), we may conclude

E[|Xn|I{|Xn| ≤ t}] → E[|X|I{|X| ≤ t}] . (11.39)

If, in addition, E|Xn| → E|X|, then

E[|Xn|I{|Xn| > t}] → E[|X|I{|X| > t}] . (11.40)

11.3 Robustness of Some Classical Tests

Optimality theory postulates a statistical model and then attempts to determine
a best procedure for that model. Since model assumptions tend to be unreliable,
it is necessary to go a step further and ask how sensitive the procedure and its
optimality are to the assumptions. In the normal models of Chapters 4-7, three
assumptions are made: independence, identity of distribution, and normality. In
the two-sample t-test, there is the additional assumption of equality of variance.
We shall consider the effects of nonnormality and inequality of variance in the
first subsection, and that of dependence in the next subsection.

The natural first question to ask about the robustness of a test concerns the
behavior of the significance level. If an assumption is violated, is the significance
level still approximately valid? Such questions are typically answered by combin-
ing two methods of attack: The actual significance level under some alternative
distribution is either calculated exactly or, more usually, estimated by simulation.
In addition, asymptotic results are obtained which provide approximations to the
true significance level for a wide variety of models. We here restrict ourselves to
a brief sketch of the latter approach.

11.3.1 Effect of Distribution

Consider the one-sample problem where X1, . . . , Xn are independently dis-
tributed as N(ξ, σ2). Tests of H : ξ = ξ0 are based on the test statistic

tn = tn(X1, . . . , Xn) =

√
n(X̄n − ξ0)

Sn
=

√
n(X̄n − ξ0)

σ

/
Sn

σ
, (11.41)

where S2
n =

∑
(Xi − X̄n)2/(n − 1); see Section 5.2. When ξ = ξ0 and the X’s

are normal, tn has the t-distribution with n − 1 degrees of freedom. Suppose,
however, that the normality assumption fails and the X’s instead are distributed
according to some other distribution F with mean ξ0 and finite variance. Then by
the Central Limit Theorem,

√
n(X̄n − ξ0)/σ has the limit distribution N(0, 1);
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furthermore Sn/σ tends to 1 in probability by Example 11.2.6. Therefore, by
Slutsky’s theorem, tn has the limit distribution N(0, 1) regardless of F . This
shows in particular that the t-distribution with n − 1 degrees of freedom tends
to N(0, 1) as n → ∞.

To be specific, consider the one-sided t-test which rejects when tn ≥ tn−1,1−α,
where tn−1,1−α is the 1 − α quantile of the t-distribution with n − 1 degrees of
freedom. It follows from Corollary 11.2.3 and the asymptotic normality of the
t-distribution that (see Problem 11.42 (ii))

tn−1,1−α → z1−α = Φ−1(1 − α) .

In fact, the difference tn−1,1−α−z1−α is O(n−1), as will be seen in Section 11.4.1.
Let αn(F ) be the true probability of the rejection region tn ≥ tn−1,1−α when

the distribution of the X’s is F . Then αn(F ) = PF {tn ≥ tn−1,1−α} has the same
limit as PΦ{tn ≥ z1−α}, which is α. Thus, the t-test is pointwise asymptotically
level α, assuming the underlying distribution has a finite nonzero variance. How-
ever, the t-test is not uniformly asymptotically level α. This issue will be studied
more closely in Section 11.4. For sufficiently large n, the actual rejection prob-
ability αn(F ) will be close to the nominal level α; how close depends on F and
n. For entries to the literature dealing with this dependence, see Cressie (1980),
Tan (1982), Benjamini (1983), and Edelman (1990). Other robust approaches for
testing the mean are discussed in Sutton (1993) and Chen (1995). The use of
resampling will be deferred to Chapter 15.

To study the corresponding test of variance, suppose first that the mean ξ is 0.
When F is normal, the UMP test of H : σ = σ0 against σ > σ0 rejects when∑

X2
i /σ2

0 is too large, where the null distribution of
∑

X2
i /σ2

0 is χ2
n. By the

Central Limit theorem,
√

n(
∑

X2
i −nσ2

0)/n tends in law to N(0, 2σ4
0) as n → ∞,

since Var(X2
i ) = 2σ4

0 . If the rejection region is written as
∑

X2
i − nσ2

0√
2nσ2

0

≥ Cn ,

it follows that Cn → z1−α.
Suppose now instead that the X’s are distributed according to a distribution

F with E(Xi) = 0, E(X2
i ) = V ar(Xi) = σ2, and V ar(X2

i ) = γ2. Then
∑

(X2
i −

nσ2
0)/

√
n tends in law to N(0, γ2) when σ = σ0, and the rejection probability

αn(F ) of the test tends to

lim P

{∑
X2

i − nσ2
0√

2nσ2
0

≥ z1−α

}
= 1 − Φ

(
z1−α

√
2σ2

0

γ

)
.

Depending on γ, which can take on any positive value, the sequence αn(F ) can
thus tend to any limit < 1

2 . Even asymptotically and under rather small depar-
tures from normality (if they lead to big changes in γ), the size of the χ2-test is
thus completely uncontrolled.

For sufficiently large n, the difficulty can be overcome by Studentization5,
where one divides the test statistic by a consistent estimate of the asymptotic
standard deviation. Letting Yi = X2

i and E(Yi) = η = σ2, the test statistic
then reduces to

√
n(Ȳ − η0). To obtain an asymptotically valid test, it is only

5Studentization is defined in a more general context at the end of Section 7.3.
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necessary to divide by a suitable estimator of
√

V arYi such as
√∑

(Yi − Ȳ )2/n.
(However, since Y 2

i = X4
i , small changes in the tail of Xi may have large effects

on Y 2
i , and n may have to be rather large for the asymptotic result to give a

good approximation.)
When ξ is unknown, the normal theory test for σ2 is based on

∑
(Xi − X̄n)2,

and the sequence

1√
n

[∑
(Xi − X̄n)2 − nσ2

0

]
=

1√
n

(∑
X2

i − nσ2
0

)
− 1√

n
nX̄2

again has the limit distribution N(0, γ2). To see this, note that the distribution
of

∑
(Xi − X̄n)2 is independent of ξ and put ξ = 0. Since

√
nX̄ has a (normal)

limit distribution, nX̄2 is bounded in probability and so nX̄2/
√

n tends to zero
in probability. The result now follows from that for ξ = 0 and Slutsky’s theorem.

The above results carry over to the corresponding two-sample problems that
were considered in Section 5.3. Consider the two-sample t-statistic given by
(5.28). An extension of the one-sample argument shows that as m, n → ∞,
(Ȳ n−X̄m)/σ

√
1/m + 1/n tends in law to N(0, 1) while [

∑
(Xi−X̄m)2+

∑
(Yj −

Ȳ n)2]/(m+n−2)σ2 tends in probability to 1 for samples X1, . . . , Xm; Y1, . . . , Yn

from any common distribution F with finite variance. Thus, the rejection prob-
ability αm,n(F ) tends to α for any such F . As will be seen in Section 11.3.3, the
same robustness property for the UMP invariant test of equality of s means also
holds.

On the other hand, the F -test for variances, just like the one-sample χ2-test,
is extremely sensitive to the assumption of normality. To see this, express the
rejection region in terms of log S2

Y − log S2
X , where S2

X =
∑

(Xi − X̄m)2/(m− 1)
and S2

Y =
∑

(Yj − Ȳ n)2/(n− 1), and suppose that as m and n → ∞, m/(m + n)
remains fixed at ρ. By the result for the one-sample problem and the delta method
with g(u) = log u (Theorem 11.2.14), it is seen that

√
m[log S2

X − log σ2] and√
n[log S2

Y − log σ2] both tend in law to N(0, γ2/σ4) when the X’s and Y ’s are
distributed as F , and hence that

√
m + n[log S2

Y − log S2
X ] tends in law to the

normal distribution with mean 0 and variance

γ2

σ4

(
1
ρ

+
1

1 − ρ

)
=

γ2

ρ(1 − ρ)σ4
.

In the particular case that F is normal, γ2 = 2σ4 and the variance of the limit
distribution is 2/ρ(1− ρ). For other distributions γ2/σ4 can take on any positive
value and, as in the one-sample case, αn(F ) can tend to any limit less than 1

2 . [For
an entry into the extensive literature on more robust alternatives, see for example
Conover, Johnson, and Johnson (1981), Tiku and Balakrishnan (1984), Boos and
Brownie (1989), Baker (1995), Hall and Padmanabhan (1997), and Section 2.10
of Hettmansperger and McKean (1998).]

Having found that the rejection probability of the one- and two-sample t-tests
is relatively insensitive to nonnormality (at least for large samples), let us turn
to the corresponding question concerning the power of these tests. By similar
asymptotic calculations, it can be shown that the same conclusion holds: Power
values of the t-tests obtained under normality are asymptotically valid also for
all other distributions with finite variance. This is a useful result if it has been
decided to employ a t-test and one wishes to know what power it will have against
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a given alternative ξ/σ or (η − ξ)/σ, or what sample sizes are required to obtain
a given power.

Recall that there exists a modification of the t-test, the permutation version of
the t-test discussed in Section 5.9, whose size is independent of F not only asymp-
totically but exactly. Moreover, we will see in Section 15.2 that its asymptotic
power is equal to that of the t-test. It may seem that the permutation t-test has
all the properties one could hope for. However, this overlooks the basic question
of whether the t-test itself, which is optimal under normality, will retain a high
standing with respect to its competitors under other distributions. The t-tests
are in fact not robust in this sense. Some tests which are preferable when a broad
spectrum of distributions F is considered possible were discussed in Section 6.9.
A permutation test with this property has been proposed by Lambert (1985).

As a last problem, consider the level of the two-sample t-test when the variances
Var(Xi) = σ2 and Var(Yj) = τ2 may differ (as in the Behrens-Fisher problem),
and the assumption of normality may fail as well. As before, one finds that
(Ȳ m − X̄n)/

√
σ2/m + τ2/n tends in law to N(0, 1) as m, n → ∞, while S2

X =∑
(Xi − X̄m)2/(m − 1) and S2

Y =
∑

(Yi − Ȳ n)2/(n − 1) respectively tend to
σ2 and τ2 in probability. If m and n tend to ∞ through a sequence with fixed
proportion m/(m + n) = ρ, the squared denominator of the t-statistic,

D2 =
m − 1

m + n − 2
S2

X +
n − 1

m + n − 2
S2

Y ,

tends in probability to ρσ2 + (1 − ρ)τ2, and the limit of

t =
1√

1
m + 1

n



 Ȳ n − X̄m√
σ2

m + τ2

n

·

√
σ2

m + τ2

n

D





is normal with mean zero and variance

(1 − ρ)σ2 + ρτ2

ρσ2 + (1 − ρ)τ2
. (11.42)

When m = n, so that ρ = 1
2 , the t-test thus has approximately the right level

even if σ and τ are far apart. The accuracy of this approximation for different
values of m = n and τ/σ is discussed by Ramsey (1980) and Posten, Yeh, and
Owen (1982). However, when ρ += 1

2 , the actual size of the test can differ greatly
from the nominal level α even for large m and n. An approximate test of the
hypothesis H : η = ξ when σ, τ are not assumed equal, which asymptotically is
free of this difficulty, can be obtained through Studentization, i.e., by replacing
D2 with (1/m)S2

X +(1/n)S2
Y and referring the resulting statistic to the standard

normal distribution. This approximation is very crude, and not reliable unless
m and n are fairly large. A refinement, the Welch approximate t-test, refers the
resulting statistic not to the standard normal but to the t-distribution with a
random number of degrees of freedom f given by

1
f

=

(
R

1 + R

)2 1
m − 1

+
1

(1 + R)2
· 1
n − 1

,
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where R = (nS2
X)/(mS2

Y ).6 When the X’s and Y ’s are normal, the actual level
of this test has been shown to be quite close to the nominal level for sample sizes
as small as m = 4, n = 8 and m = n = 6 [see Wang (1971)]. A further refinement
will be mentioned in Section 15.6. A simple but crude approach that controls the
level is to use as degrees of freedom the smaller of n− 1 and m− 1, as remarked
by Scheffé (1970).

The robustness of the level of Welch’s test against nonnormality is studied by
Yuen (1974), who shows that for heavy-tailed distributions the actual level tends
to be considerably smaller than the nominal level (which leads to an undesirable
loss of power), and who proposes an alternative. Some additional results are
discussed in Scheffé (1970) and in Tiku and Singh (1981). The robustness of
some quite different competitors of the t-test is investigated in Pratt (1964).

For testing the equality of s normal means with s > 2, the classical test based
on the F -statistic (7.19) is not robust, even if all the observations are normally
distributed, regardless of the sample sizes (Scheffé (1959), Problem 11.86); again,
the problem is due to the assumption of a common variance. More appropriate
test for this generalized Behrens-Fisher problem have been proposed by Welch
(1951), James (1951), and Brown and Forsythe (1974a), and are further dis-
cussed by Clinch and Kesselman (1982), Hettmansperger and McKean (1998)
and Chapter 10 of Pesarin (2001). The corresponding robustness problem for
more general linear hypotheses is treated by James (1954) and Johansen (1980);
see also Rothenberg (1984).

11.3.2 Effect of Dependence

The one-sample t-test arises when a sequence of measurements X1, . . . , Xn, is
taken of a quantity ξ, and the X’s are assumed to be independently distributed
as N(ξ, σ2). The effect of nonnormality on the level of the test was discussed in the
preceding subsection. Independence may seem like a more innocuous assumption.
However, it has been found that observations occurring close in time or space are
often positively correlated [Student (1927), Hotelling (1961), Cochran (1968)].
The present section will therefore be concerned with the effect of this type of
dependence.

Lemma 11.3.1 Let X1, . . . , Xn be jointly normally distributed with common
marginal distribution N(0, σ2) and with correlation coefficients ρi,j = corr(Xi, Xj).
Assume that

1
n

∑ ∑

i '=j

ρi,j → γ (11.43)

and

1
n2

∑ ∑

i '=j

ρ2
i,j → 0 (11.44)

as n → ∞. Then,

6For a variant see Fenstad (1983).
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(i) the distribution of the t-statistic tn defined in equation (11.41) (with ξ0 = 0)
tends to the normal distribution N(0, 1 + γ);
(ii) if γ += 0, the level of the t-test is not robust even asymptotically as n → ∞.
Specifically, if γ > 0, the asymptotic level of the t-test carried out at nominal
level α is

1 − Φ

(
z1−α√
1 + γ

)
> 1 − Φ(z1−α) = α .

Proof. (i): Since the Xi are jointly normal, the numerator
√

nX̄n of tn is also
normal, with mean zero and variance

V ar
(√

nX̄
)

= σ2



1 +
1
n

∑ ∑

i'=j

ρi,j



 → σ2(1 + γ) , (11.45)

and hence tends in law to N(0, σ2(1 + γ)). The denominator of tn is the square
root of

S2
n =

1
n − 1

∑
X2

i − n
n − 1

X̄2
n .

By (11.45), V ar(X̄n) → 0 and so X̄n
P→ 0. A calculation similar to (11.45)

shows that V ar(n−1 ∑n
i=1 X2

i ) → 0 (Problem 11.65). Thus, n−1 ∑n
i=1 X2

i
P→ σ2

and so Sn
P→ σ. By Slutsky’s theorem, the distribution of tn therefore tends to

N(0, 1 + γ).
The implications (ii) are obvious.

Under the assumptions of Lemma 11.3.1, the joint distribution of the X’s is
determined by σ2 and the correlation coefficients ρi,j , with the asymptotic level
of the t-test depending only on γ. The following examples illustrating different
correlation structures show that even under rather weak dependence of the ob-
servations, the assumptions of Lemma 11.3.1 are satisfied with γ += 0, and hence
that the level of the t-test is quite sensitive to the assumption of independence.

Model A. (Cluster Sampling). Suppose the observations occur in s
groups (or clusters) of size m, and that any two observations within a group
have a common correlation coefficient ρ, while those in different groups are in-
dependent. (This may be the case, for instance, when the observations within a
group are those taken on the same day or by the same observer, or involve some
other common factor.) Then (Problem 11.67),

V ar(X̄) =
σ2

ms
[1 + (m − 1)ρ] ,

which tends to zero as s → ∞. The conditions of the lemma hold with γ =
(m − 1)ρ, and the level of the t-test is not asymptotically robust as s → ∞. In
particular, the test overstates the significance of the results when ρ > 0.

To provide a specific structure leading to this model, denote the observations
in the ith group by Xi,j (j = 1, . . . , m), and suppose that Xi,j = Ai + Ui,j ,
where Ai is a factor common to the observations in the ith group. If the A’s and
U ’s (none of which are observable) are all independent with normal distributions
N(ξ, σ2

A) and N(0, σ2
0) respectively, then the joint distribution of the X’s is that

prescribed by Model A with σ2 = σ2
A + σ2

0 and ρ = σ2
A/σ2.
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Model B. (Moving-Average Process). When the dependence of nearby
observations is not due to grouping as in Model A, it is often reasonable to assume
that ρi,j depends only on |j − i| and is nonincreasing in |j − i|. Let ρi,i+k then
be denoted by ρk, and suppose that the correlation between Xi and Xi+k is
negligible for k > m (m an integer < n), so that one can put ρk = 0 for k > m.
Then the conditions for Lemma 11.3.1 are satisfied with

γ = 2
m∑

k=1

ρk .

In particular, if ρ1, . . . , ρm are all positive, the t-test is again too liberal.
A specific structure leading to Model B is given by the moving-average process

Xi = ξ +
m∑

j=0

βjUi+j ,

where the U ’s are independent N(0, σ2
0). The variance σ2 of the X’s is then

σ2 = σ2
0

∑m
j=0 β2

j and

ρk =






m−k∑

i=0
βiβi+k

m∑

j=0
β2

j

for k ≤ m,

0 for k > m.

Model C. (First-Order Autoregressive Process). A simple model
for dependence in which the |ρk| are decreasing in k but += 0 for all k is the
first-order autoregressive process defined by

Xi+1 = ξ + β(Xi − ξ) + Ui+1, |β| < 1, i = 1, . . . , n ,

with the Ui independent N(0, σ2
0). If X1 is N(ξ, τ2), the marginal distribution of

Xi for i > 1 is normal with mean ξ and variance σ2
i = β2σ2

i−1 + σ2
0 . The variance

of Xi will thus be independent of i provided τ2 = σ2
0/(1 − β2). For the sake of

simplicity we shall assume this to be the case, and take ξ to be zero. From

Xi+k = βkXi + βk−1Ui+1 + βk−2Ui+2 + · · · + βUi+k−1 + Ui+k

it then follows that ρk = βk, so that the correlation between Xi and Xj decreases
exponentially with increasing |j− i|. The assumptions of Lemma 11.3.1 are again
satisfied, and γ = 2β/(1 − β). Thus, in this case too, the level of the t-test is
not asymptotically robust. [Some values of the actual asymptotic level when the
nominal level is .05 or .01 are given by Gastwirth and Rubin (1971).]

It is seen that in general the effect of dependence on the level of the t-test is
more serious than that of nonnormality. In order to robustify the test against gen-
eral dependence through studentization (as was done in the two-sample case with
unequal variances), it is necessary to consistently estimate γ, which implicitly de-
pends on estimation of all the ρi,j . Unfortunately, the number of parameters ρi,j

exceeds the number of observations. However, robustification is possible against
some types of dependence. For example, it may be reasonable to assume a model
such as A–C so that it is only required to estimate a reduced number of corre-
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lations.7 Some specific procedures of this type are discussed by Albers (1978),
[and for an associated sign test by Falk and Kohne (1984)]. Such robust proce-
dures will in fact often also be insensitive to the assumption of normality, as can
be shown by appealing to an appropriate Central Limit Theorem for dependent
variables [see e.g. Billingsley (1995, Section 27)]. The validity of these procedures
is of course limited to the particular model assumed, including the value of a
parameter such as m in Models A and B. In fact, robustification is achievable for
fairly general classes of models with dependence by using an appropriate boot-
strap method; see Problem 15.33 and Lahiri (2003). Alternatively, one can use
subsampling, as in Romano and Thombs (1996); see Section 15.7.

The results of the present section easily extend to the case of the two-sample
t-test, when each of the two series of observations shows dependence of the kind
considered here.

11.3.3 Robustness in Linear Models

In this section, we consider the large sample robustness properties of some of the
linear model tests discussed in Chapter 7. As in Section 11.3.1, we focus on the
effect of distribution.

A large class of these testing situations is covered by the following general
model, which was discussed in Problem 7.8. Let X1, . . . , Xn be independent with
E(Xi) = ξi and V ar(Xi) = σ2 < ∞, where we assume the vector ξ to lie in
an s-dimensional subspace ΠΩ of RI n, defined by the following parametric set of
equations

ξi =
s∑

j=1

ai,jβj , i = 1, . . . , n. (11.46)

Here the ai,j are known coefficients and the βj are unknown parameters. In matrix
form, the n × 1 vector ξ with ith component ξi satisfies ξ = Aβ, where A is an
n× s matrix having (i, j) entry ai,j and β is an s× 1 vector with jth component
βj . It is assumed A is known and of rank s. In the asymptotics below, the ai,j

may depend on n, but s remains fixed. Throughout, the notation will suppress
this dependence on n.

The least squares estimators ξ̂1, . . . , ξ̂n of ξ1, . . . , ξn are defined as the values
of ξi minimizing

n∑

i=1

(Xi − ξi)
2

subject to ξ ∈ ΠΩ, where ΠΩ is the space spanned by the s columns of A. Cor-
respondingly, the least squares estimators β̂1, . . . , β̂s of β1, . . . , βs are the values
of βj minimizing

n∑

i=1

(Xi −
s∑

j=1

ai,jβj)
2 .

7Models of a sequence of dependent observations with various covariance structures
are discussed in books on time series such as Brockwell and Davis (1991), Hamilton
(1994) or Fuller (1996).
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By taking partial derivatives of of this last expression with respect to the βj , it
is seen that that β̂j are solutions of the equations

AT Aβ = AT X

and so

β̂ = (AT A)−1AT X .

(The fact that AT A is nonsingular follows from Problem 6.3.) Thus,

ξ̂ = PX ,

where

P = A(AT A)−1AT . (11.47)

In fact, ξ̂ is the projection of X into the space ΠΩ. (These estimators formed the
basis of optimal invariant tests studied in Chapter 7.) Some basic properties of
P and ξ̂ are recorded in the following lemma.

Lemma 11.3.2 (i) The matrix P defined by (11.47) is symmetric (P = P T )
and idempotent (P 2 = P ).
(ii) X − ξ̂ is orthogonal to ξ̂; that is,

ξ̂T (X − ξ̂) = 0 .

Proof. The proof of (i) follows by matrix algebra (Problem 11.71). To prove (ii),
note that

ξ̂T (X − ξ̂) = (PX)T (X − PX) = XT P T (X − PX)

= XT P T X − XT P T PX = 0 ,

since by (i) P T P = P T .
Note that β̂j is a linear combination of the Xi. Thus, if the Xi are normally

distributed, so are the β̂j . Without the assumption of normality, the asymptotic
normality of β̂j can be established by the following lemma, which can be obtained
as a consequence of the Lindeberg Central Limit Theorem (Problem 11.72).

Lemma 11.3.3 Let Y1, Y2, . . . be independently identically distributed with mean
zero and finite variance σ2. (i) Let c1, c2, . . . be a sequence of constants. Then a
sufficient condition for

∑n
i=1 ciYi/

√∑
c2

i to tend in law to N(0, σ2) is that

max
i=1,...,n

c2
i

n∑
j=1

c2
j

→ 0 as n → ∞ . (11.48)

(ii) More generally, suppose Cn,1, . . . , Cn,n is a sequence of random variables,

independent of Y1, . . . , Yn. Then, a sufficient condition for
∑n

i=1 Cn,iYi/
√∑

C2
n,i

to tend in law to N(0, σ2) is

max
i=1,...,n

C2
n,i

n∑
j=1

C2
n,j

P→ 0 as n → ∞ .
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The condition (11.48) prevents the c’s from increasing so fast that the last
term essentially dominates the sum, in which case there is no reason to expect
asymptotic normality.

Example 11.3.1 Suppose U1, U2, . . . are i.i.d. with mean 0 and finite nonzero
variance σ2. Consider the simple regression model

Xi = α + βti + Ui ,

where the ti are known and not all equal. The least squares estimator β̂ of β
satisfies

β̂ − β =

∑
(Xi − α − βti)(ti − t̄)∑

(ti − t̄)2
.

By Lemma 11.3.3,

(β̂ − β)
√∑

(ti − t̄)2

σ
d→ N(0, 1)

provided

max(ti − t̄)2∑
(tj − t̄)2

→ 0 . (11.49)

Condition (11.49) holds in the case of equal spacing ti = a + i∆, but not when
the t’s grow exponentially, for example, when ti = 2i (Problem 11.73).

Consider the hypothesis

H : θ =
s∑

j=1

bjβj = 0 , (11.50)

where the b’s are known constants with
∑

b2
j = 1. Assume without loss of gener-

ality that AT A = I, the identity matrix, so that the columns of A are mutually
orthogonal and of length one. The least squares estimator of θ is given by

θ̂ =
s∑

j=1

bj β̂j =
n∑

i=1

diXi , (11.51)

where by (11.46)

di =
s∑

j=1

ai,jbj (11.52)

(Problem 11.74). By the orthogonality of A,
∑

d2
i =

∑
b2
j = 1, so that under H,

E(θ̂) =
s∑

j=1

E(bj β̂j) =
s∑

j=1

bjβj = 0

and

V ar(θ̂) = V ar(
n∑

i=1

diXi) = σ2
n∑

i=1

d2
i = σ2 .
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Consider the uniformly most powerful invariant test that rejects H when the
t-statistic

|θ̂|√∑
(Xi − ξ̂i)2/(n − s)

≥ C . (11.53)

Now, the denominator of (11.53) tends in probability to σ. To see why, with s
fixed, it suffices to show

1
n

∑
(Xi − ξ̂i)

2 P→ σ2 .

But, the left side is
∑

(Xi − ξi)
2

n
+

2
∑

(Xi − ξi)(ξi − ξ̂i)
n

+

∑
(ξi − ξ̂i)

2

n
.

The first term tends in probability to σ2, by the Weak Law of Large Numbers. By
the Cauchy-Schwarz Inequality, half the middle term is bounded by the square
root of the product of the first and third terms. Therefore, it suffices to show the
third term tends to 0 in probability. Since this term is nonnegative, it suffices to
show its expectation tends to 0, by Markov’s Inequality (Problem 11.26). But its
expectation is the trace of the covariance matrix of ξ̂ divided by n. Letting In

denote the n × n identity matrix, the covariance matrix of ξ̂ = PX is

σ2PInP T = σ2PP T = σ2P .

But, the trace of P is

tr(P ) = tr(A(AT A)−1AT ) = tr(AT A(AT A)−1) = tr(Is) = s ,

since tr(BC) = tr(CB) for any n × s matrix B and s × n matrix C. Hence,
the denominator of (11.53) converges in probability to σ. By Lemma 11.3.3, the
numerator of (11.53) converges in distribution to N(0, σ2) provided

max d2
i → 0 as n → ∞ . (11.54)

Under this condition, the level of the t-test is therefore robust against
nonnormality.

So far, b = (b1, . . . , bs)
T has been fixed. To determine when the level of (11.53)

is robust for all b with
∑

b2
j = 1, it is only necessary to find the maximum value

of d2
i as b varies. By the Schwarz inequality

d2
i =

(
∑

j

ai,jbj

)2

≤
s∑

j=1

a2
i,j ,

with equality holding when bj = ai,j/
√∑

k a2
i,k. ,The desired maximum of d2

i is

therefore
∑

j a2
i,j , and

max
i

s∑

j=1

a2
i,j → 0 as n → ∞ (11.55)

is a sufficient condition for the asymptotic normality of every θ̂ of the form (11.51).



11.3. Robustness of Some Classical Tests 455

The condition (11.55) depends on the particular parametrization (11.46)
chosen for ΠΩ. Note however that

s∑

j=1

a2
i,j = Πi,i , (11.56)

where Πi,j is the (i, j) element of the projection matrix P .
This shows that the value of Πi,i is coordinate free, i.e. it is unchanged by an

arbitrary change of coordinates β∗ = B−1β, where B is a nonsingular matrix,
since

ξ = Aβ = ABβ∗ = A∗β∗

with A∗ = AB, and

P ∗ = AB(BT AT AB)−1BT AT = ABB−1(AT A)−1(BT )−1BA = P .

Hence, (11.55) is equivalent to the coordinate-free Huber condition

max
i

Πi,i → 0 as n → ∞ . (11.57)

For evaluating Πi,i, it is helpful to note that

ξ̂i =
n∑

j=1

Πi,jXj (i = 1, . . . , n),

so that Πi,i is simply the coefficient of Xi in ξ̂i, which must be calculated in any
case to carry out the test.

If Πi,i ≤ Mn for all i = 1, . . . , n, then also Πi,j ≤ Mn for all i and j. This follows
from the fact that there exists a nonsingular E with P = EET , on applying the
Cauchy-Schwarz inequality to the (i, j) element of EET . Condition (11.57) is
therefore equivalent to

max
i,j

Πi,j → 0 as n → ∞ . (11.58)

Example 11.3.2 (Example 11.3.1, continued) In Example 11.3.1, the coef-
ficient of Xi in ξ̂i = α̂ + β̂ti is

Πi,i =
1
n

+
(ti − t̄)2∑
(tj − t̄)2

and the Huber condition reduces to the condition (11.49) found earlier.

Example 11.3.3 (Two-way Layout) Consider the two-way layout with m
observations per cell and the additive model

ξi,j,k = E(Xi,j,k) = µ + αi + βj

with
∑

i

αi =
∑

j

βj = 0 ,

i = 1, . . . , a; j = 1, . . . b; k = 1, . . . m. It is easily seen (Problem 11.75) that, for
fixed a and b, the Huber condition is satisfied as m → ∞.
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Let us next generalize the hypothesis (11.50) to hypotheses which impose sev-
eral linear constraints such as (11.50). Without loss of generality, choose the
parametrization in (11.46) in such a way that the s columns of A are orthogonal
and of length one and make the transformation

Y = CX

(used in (7.1), where C is orthogonal and the first s rows of C are equal to those
of AT , say

C =

(
AT

D

)
(11.59)

for some (n − s) × n matrix D. If ηi = E(Yi), we then have that

η =

(
AT

D

)
Aβ = (β1, . . . , βs, 0, . . . , 0)T . (11.60)

By the orthogonality of C, the Yi are independent with Yi distributed as
N(ηi, σ

2), where ηi = βi for i = 1, . . . , s and ηi = 0 for i = s + 1, . . . , n. We
want to test

H :
s∑

j=1

αi,jηj = 0 ; i = 1, . . . , r

where we shall assume that the r vectors (αi,1, . . . , αi,s)
T are orthogonal and of

length one. Then the variables

Zi =

{∑n
j=1 αi,jYj i = 1, . . . , r

Yi i = s + 1, . . . , n
(11.61)

are independent N(ζi, σ
2) with

ζi =






∑s
j=1 αi,jηj i = 1, . . . , r

ηi i = r + 1, . . . , s
0 i = s + 1, . . . , n

(11.62)

The standard UMPI test of H : ζ1 = · · · = ζr = 0 rejects when
∑r

i=1 Z2
i /r∑n

j=s+1 Z2
j /(n − s)

> k , (11.63)

where k is determined so that the probability of (11.63) is α when the Zs are
normal and H holds.

We shall now suppose that the model (11.46) is embedded in a sequence of

such models defined by matrices A(n)
i,j , with s fixed and n → ∞. Suppose that

the Xs are not normal but given by

Xi = Ui + ξi ,

where the Us are i.i.d. according to a distribution F with mean 0 and variance
σ2 < ∞. We then have the following robustness result.

Theorem 11.3.1 Let αn(F ) denote the rejection probability of the test (11.63)
when the Us have distribution F and the null hypothesis constraints are satisfied.
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Then, αn(F ) → α provided

max
i

s∑

j=1

(a(n)
i,j )2 → 0 (11.64)

or equivalently

max Π(n)
i,i → 0 ,

where Π(n)
i,i is the ith diagonal element of P = A(AT A)−1AT .

Proof. We must show that the limiting distribution of (11.63) is the same as
when F is normal. First, we shall show that the denominator of (11.63) satisfies

1
n − s

n∑

j=s+1

Z2
j

P→ σ2 . (11.65)

Note that X = CT Y and Y = QZ where CT and Q are both orthogonal.
Therefore,

1
n − s

n∑

j=s+1

Z2
j =

n
n − s

[
1
n

n∑

i=1

Z2
i

]
− 1

n − s

s∑

i=1

Z2
i

=
n

n − s
· 1
n

n∑

i=1

X2
i − 1

n − s

s∑

i=1

Z2
i .

To see that this tends to σ2 in probability, we first show that

1
n

n∑

i=1

X2
i

P→ σ2 .

But,
∑n

i=1 X2
i

n
=

∑n
i=1(Xi − ξi)

2

n
−

2
∑n

i=1 ξiXi

n
+

∑n
i=1 ξ2

i

n
.

The first term on the right tends to σ2 in probability, by the Weak Law of Large
Numbers. By the orthogonality of C, the last term is equal to

∑s
i=1 β2

i /n, which
tends to 0 since s is fixed. It is easily checked that the middle term has a mean
and variance which tend to 0. Hence,

∑
X2

i /n tends in probability to σ2. Next,
we show that

∑s
i=1 Z2

i

n
P→ 0 .

It suffices to show
∑s

i=1 E(Z2
i )

n
=

∑s
i=1 V ar(Zi)

n
+

∑s
i=1[E(Zi)]

2

n
→ 0 .

Since s is fixed and V ar(Zi) = σ2, we only need to show
∑s

i=1[E(Zi)]
2

n
→ 0 .
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For i ≤ r,

E(Zi) =
s∑

j=1

αi,jηj =
s∑

j=1

αi,jβj

and

[E(Zi)]
2 ≤

s∑

j=1

α2
i,j

s∑

j=1

β2
j =

s∑

j=1

β2
j .

For r + 1 ≤ i ≤ s, E(Zi) = βi, in which case the same bound holds. Therefore,

∑s
i=1[E(Zi)]

2

n
≤

s
∑s

j=1 β2
j

n
→ 0 ,

and the result (11.65) follows.
Next, we consider the numerator of (11.63). We show the joint asymptotic

normality of (Z1, . . . , Zr). By the Cramér-Wold device, it suffices to show that,
for any constants γ1, . . . , γr with

∑
i γ2

i = 1,

r∑

i=1

γiZi
d→ N(0, σ2) .

Indeed, since the columns of A are orthogonal, β̂i = Yi for 1 ≤ i ≤ s and so
Zi is a linear combination of β̂1, . . . , β̂s. But then so is

∑
i γiZi and asymptotic

normality follows from the argument for θ̂ of the form (11.51).

Example 11.3.4 (Test of Homogeneity) Let Xi,j (j = 1, . . . ni; i = 1, . . . , s)
be independently distributed as N(µi, σ

2). The problem is to test the null
hypothesis

H : µ1 = · · · = µs .

In this case, the test (11.63) is UMP invariant and reduces to

W ∗ =

∑
ni(Xi· − X··)

2/(s − 1)∑ ∑
(Xi,j − Xi·)2/(n − s)

, (11.66)

where

Xi· =
∑

j

Xi,j/ni , X·· =
∑

i

∑

j

Xi,j/n

and n =
∑

i ni. If instead of Xi,j being N(µi, σ
2), assume that Xi,j has a dis-

tribution F (x − µi), where F is an arbitrary distribution with finite variance.
Then, the theorem implies that, if mini ni → ∞, then the rejection probability
tends to α. In fact, the distributions may even vary within each sample, but it is
important that the different samples have a common variance or the result fails;
see Problems 11.85 and 11.86.
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11.4 Nonparametric Mean

11.4.1 Edgeworth Expansions

Suppose X1, . . . , Xn are i.i.d. with c.d.f. F . Let µ(F ) denote the mean of F , and
consider the problem of testing µ(F ) = 0. As in Section 11.3.1, let αn(F ) denote
the actual rejection probability of the one-sided t-test under F . It was seen that
the t-test is pointwise consistent in level in the sense that αn(F ) → α whenever
F has a finite nonzero variance σ2(F ). We shall now examine the rate at which
the difference αn(F ) − α tends to 0.

In order to study this problem, we will consider expansions of the distribution
function of the sample mean, as well as its studentized version. Such expansions
are known as Edgeworth expansions. Let Φ(·) denote the standard normal c.d.f.
and ϕ(·) the standard normal density. Also let

γ = γ(F ) =
EF [(Xi − µ(F ))3]

σ3(F )

and

κ = κ(F ) =
EF [Xi − µ(F ))4]

σ4(F )
− 3 .

The values γ and κ are known as the skewness and kurtosis of F , respectively.

Theorem 11.4.1 Assume EF (|Xi|k+2) < ∞. Let ψF denote the characteristic
function of F , and assume

lim sup
|s|→∞

|ψF (s)| < 1 . (11.67)

Then,

PF {
n1/2[X̄n − µ(F )]

σ(F )
≤ x} = Φ(x)+

k∑

j=1

n−j/2ϕ(x)pj(x, F )+ rn(x, F ) , (11.68)

where rn(x, F ) = o(n−k/2) and pj(x, F ) is a polynomial in x of degree 3j − 1
which depends on F through its first j + 2 moments. In particular,

p1(x, F ) = −1
6
γ(x2 − 1) , (11.69)

and

p2(x, F ) = −x

[
1
24

κ(x2 − 3) +
1
72

γ2(x4 − 10x2 + 15)

]
. (11.70)

Moreover, the expansion holds uniformly in x in the sense that, for fixed F ,

nk/2 sup
x

|rn(x, F )| → 0 as n → ∞.

The assumption (11.67) is known as Cramér’s condition and can be viewed as a
smoothness assumption on F ; it holds, for example, if F is absolutely continuous
(or more generally is nonsingular) but fails if F is a lattice distribution, i.e. X1 can
only take on values of the form a+jb for some fixed a and b as j varies through the
integers. A proof of Theorem 11.4.1 can be found in Feller (1971, Section XVI.4)
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or Bhattacharya and Rao (1976), who also provide formulae for the pj(x, F ) when
j > 2. The proofs hinge on expansions of characteristic function.

Note that the term of order n−1/2 is zero if and only if the underlying skewness
γ(F ) is zero. This shows that the dominant error in using a standard normal
approximation to the distribution of the standardized sample mean is due to
skewness of the underlying distribution. Expansions such as these hold for many
classes of statistics and provide more information than a weak convergence result,
such as that provided by the Central Limit Theorem. As an example, the following
result provides an Edgeworth expansion for the studentized sample mean. Let
S2

n =
∑

i(Xi − X̄n)2/(n − 1).

Theorem 11.4.2 Assume EF (|Xi|k+2) < ∞ and that F is absolutely continu-
ous.8 Then, uniformly in t,

PF {
n1/2[X̄n − µ(F )]

Sn
≤ t} = Φ(t) +

k∑

j=1

n−j/2ϕ(t)qj(t, F ) + r̄n(t, F ) , (11.71)

where nk/2 supt |r̄n(t, F )| → 0 and qj(t, F ) is a polynomial which depends on F
through its first j + 2 moments. In particular,

q1(t, F ) =
1
6
γ(2t2 + 1) , (11.72)

and

q2(t, F ) = t

[
1
12

κ(t2 − 3) − 1
18

γ2(t4 + 2t2 − 3) − 1
4
(t2 + 1)

]
. (11.73)

Example 11.4.1 (Expansion for the t-distribution) Suppose F is normal
N(µ, σ2). Let tn = n1/2(X̄n − µ)/Sn. Then, γ(F ) = κ(F ) = 0. By Theorem
11.4.2,

PF {tn ≤ t} = Φ(t) − 1
4n

(t + t3)ϕ(t) + o(n−1) . (11.74)

This result implies a corresponding expansion for the quantiles of the t-
distribution, known as a Cornish-Fisher expansion. Specifically, let t = tn−1,1−α

be the 1 − α quantile of the t-distribution with n − 1 degrees of freedom. We
would like to determine c = c1−α such that

tn−1,1−α = z1−α +
c1−α

n
+ o(n−1) .

When t = tn−1,1−α, the left side of (11.74) is 1 − α and the right side is by a
Taylor expansion,

Φ(z) +
c
n

ϕ(z) − 1
4n

(z + z3)ϕ(z) + o(n−1) ,

where z = z1−α. Since Φ(z) = 1 − α, we must have

c
n

ϕ(z) − 1
4n

(z + z3)ϕ(z) = o(n−1)

8Alternatively, one can assume EF (|Xi|2j+2) < ∞ and the distribution of (Xi, X2
i )

satisfies the multivariate analogue of Cramér’s condition; see Hall (1992), Chapter 2.
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so that

c = c1−α =
1
4
z1−α(1 + z2

1−α) .

Therefore,

n(tn−1,1−α − z1−α) → 1
4
z1−α(1 + z2

1−α) . (11.75)

In Section 11.3.1, we showed that the t-test has error in rejection probability
tending to 0 as long as the underlying distribution has a finite nonzero variance.
We will now make use of Edgeworth expansions in order to determine the orders
of error in rejection probability for tests of the mean. All tests considered are
based on the t-statistic tn. In order to study this problem, we consider three
factors: the one-sided case which rejects for large tn versus the two-sided case
which rejects for large |tn|; the use of a normal critical value versus a t critical
value; and the dependence on F , especially whether γ(F ) is 0 or not. For j = 1, 2,
let αz

n,j(F ) denote the error in rejection probability under F of the j-sided test
using the normal quantile, and let αt

n,j(F ) denote the analogous quantity using
the appropriate t-quantile. For example,

αt
n,2(F ) = PF {|tn| ≥ tn−1,1− α

2
} .

We assume EF (X4
i ) < ∞ and that F is absolutely continuous so that we can

apply the Edgeworth expansions in Theorems 11.4.1 and 11.4.2 with k = 2.

The One-sided Case. First, consider the test using the normal quantile. By
(11.71),

αz
n,1(F ) − α = n−1/2ϕ(z1−α)q1(z1−α, F ) + n−1ϕ(z1−α)q2(z1−α, F ) + o(n−1) .

It follows that

αz
n,1(F ) − α = O(n−1/2) .

However, if γ(F ) = 0, then q1(z1−α, F ) = 0 and so

αz
n,1(F ) − α = O(n−1)

in this case. Using the t-quantiles instead of the normal quantiles yields

αt
n,1(F ) − α = Φ(tn−1,α) − α + n−1/2ϕ(tn−1,1−α)q1(tn−1,1−α, F ) + O(n−1) .

Then, applying (11.75), tn−1,1−α − z1−α = O(n−1), so that a Taylor’s expansion
yields

αt
n,1(F ) − α = n−1/2ϕ(z1−α)q1(z1−α, F ) + O(n−1) .

Therefore,

αt
n,1(F ) − α = O(n−1/2) ,

but the error in rejection probability is O(n−1) if γ(F ) = 0.

The Two-sided Case. Let z = z1− α
2
. Then, using the fact that ϕ(z) = ϕ(−z),

αz
n,2(F ) = PF {|tn| ≥ z} = 1 − [PF {tn ≤ z}− PF {tn ≤ −z}]
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= α + n−1/2ϕ(z)[q1(z, F ) − q1(−z, F )] + O(n−1) .

But, q1(·, F ) is an even function, which implies

αz
n,2(F ) − α = O(n−1) ,

even if γ(F ) is not zero. Similarly, it can be shown that (Problem 11.90)

αt
n,2(F ) − α = O(n−1) . (11.76)

11.4.2 The t-test

It was seen in Section 11.3.1 that the classical t-test of the mean is asymptoti-
cally pointwise consistent in level for the class F of all distributions with finite
nonzero variance. In Section 11.4.1, the orders of error in rejection probability
were obtained for a given F . However, these results are not reassuring unless the
convergence is uniform in F . If it is not, then for any n, no matter how large, there
will exist F in F for which the rejection probability under F , αn(F ), is not even
close to α. We shall show below that the convergence is not uniform and that the
situation is even worse than what this negative result suggests. Namely, we shall
show that for any n, there exist distributions F for which αn(F ) is arbitrarily
close to 1; that is, the size of the t-test is 1.

Suppose X1, . . . , Xn are i.i.d. real-valued random variables with unknown c.d.f.
F ∈ F, where F is a large nonparametric class of distributions. Let µ(F ) denote
the mean of F and σ2(F ) the variance of F . The goal is to test the null hypothesis
µ(F ) = 0 versus µ(F ) > 0, or perhaps the two-sided alternative µ(F ) += 0.

Theorem 11.4.3 For every n, the size of the t-test is 1 for the family F0 of all
distributions with finite variance.

Proof. Let c be an arbitrary positive constant less than one and let pn = 1−c1/n

so that (1 − pn)n = c. Let F = Fn,c be the distribution that places mass 1 − pn

at pn and mass pn at pn − 1, so that µ(F ) = 0. With probability c, we have
all observations equal to pn. For such a sample, the numerator n1/2X̄n of the
t-statistic is n1/2pn > 0 while the denominator is 0. Thus, the t-statistic blows
up and the hypothesis will be rejected. The probability of rejection is therefore
≥ c, and by taking c arbitrarily close to 1 the theorem is proved. (Note that one
can modify the distributions Fn,c used in the proof to be continuous rather than
discrete.)

It follows that the t-test is not even uniformly asymptotically level α for the
family F0.

Instead of F0, one may wish to consider the behavior of the t-test against
other nonparametric families. If F2 is the family of all symmetric distributions
with finite variance, it turns out that the t-test is still not uniformly level α, and
this is true even if the symmetric distributions have their support on (−1, 1) or
any other fixed compact set; see Romano (2004). In fact, the size of the t-test
under symmetry is one for moderate values of α; see Basu and DasGupta (1995).
However, it can be shown that the size of the t-test is bounded away from 1 for
small values of α, by a result of Edelman (1990). Basu and DasGupta (1995) also
show that if F3 is the family of all symmetric unimodal distributions (with no
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moment restrictions), then the largest rejection probability under F of the t-test
occurs when F is uniform on [−1, 1], at least in the case of very small α.

On the other hand, we will now show that the t-test is uniformly consistent
over certain large subfamilies of distributions with two finite moments. For this
purpose, consider a family of distributions F̃ on the real line satisfying

lim
λ→∞

sup
F∈F̃

EF

[
|X − µ(F )|2

σ2(F )
I

{
|X − µ(F )|

σ(F )
> λ

}]
= 0 . (11.77)

For example, for any ε > 0 and b > 0, let F2+ε
b be the set of distributions

satisfying

EF

[
|X − µ(F )|2+ε

σ2+ε(F )

]
≤ b .

Then, F̃ = F2+ε
b satisfies (11.77). To see why, take expectations of both sides of

the inequality

λεY 2I{|Y | > λ} ≤ |Y |2+ε .

Lemma 11.4.1 Suppose Xn,1, . . . , Xn,n are i.i.d. Fn with Fn ∈ F̃, where F̃
satisfies (11.77). Let X̄n =

∑n
i=1 Xn,i/n. Then, under Fn,

n1/2[X̄n − µ(Fn)]
σ(Fn)

d→ N(0, 1) .

Proof. Let Yn,i = [Xn,i − µ(Fn)]/σ(Fn). We verify the Lindeberg Condition
(11.11), which in the case of n i.i.d. variables reduces to showing

lim sup
n

E[Y 2
n,iI{|Yn,i| > εn1/2}] = 0

for every ε > 0. But, for every λ > 0,

lim sup
n

E[Y 2
n,iI{|Yn,i| > εn1/2}] ≤ lim sup

n
E[Y 2

n,iI{|Yn,i| > λ}] .

Let λ → ∞ and the right side tends to zero.

Lemma 11.4.2 Let Yn,1, . . . , Yn,n be i.i.d. with c.d.f. Gn and finite mean µ(Gn)
satisfying

lim
β→∞

lim sup
n→∞

EGn [|Yn,i − µ(Gn)|I{|Yn,i − µ(Gn)| ≥ β}] = 0 . (11.78)

Let Ȳn =
∑n

i=1 Yn,i/n. Then, under Gn, Ȳn − µ(Gn) → 0 in probability.

Proof. Without loss of generality, assume µ(Gn) = 0. Define

Zn,i = Yn,iI{|Yn,i| ≤ n} .

Let mn = E(Zn,i) and Z̄n =
∑n

i=1 Zn,i/n. Then, the event {|Ȳn − mn| > ε}
implies either {|Z̄n −mn| > ε} occurs or {Ȳn += Z̄n} occurs. Hence, for any ε > 0,

P{|Ȳn − mn| > ε} ≤ P{|Z̄n − mn| > ε} + P{Ȳn += Z̄n} . (11.79)

The last term is bounded above by

P{
n⋃

i=1

{Yn,i += Zn,i}} ≤
n∑

i=1

P{Yn,i += Zn,i} = nP{|Yn,i| > n} .
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The first term on the right side of (11.79) can be bounded by Chebyshev’s
inequality, so that

P{|Ȳn − mn| > ε} ≤ (nε2)−1E(Z2
n,1) + nP{|Yn,1| > n} . (11.80)

For t > 0, let

τn(t) = t[1 − Gn(t) + Gn(−t)]

and

κn(t) =
1
t

∫ t

−t

x2dGn(t) = −τn(t) +
2
t

∫ t

0

τn(x)dx ; (11.81)

the last equality follows by integration by parts (Problem 11.96) and corrects
(7.7), p.235 of Feller (1971). Hence,

P{|Ȳn − mn| > ε} ≤ ε−2κn(n) + τn(n) . (11.82)

But, for any t > 0,

τn(t) ≤ E[|Yn,1|I{|Yn,1| ≥ t}] ,

so τn(n) → 0 by (11.78). Fix any δ > 0 and let β0 be such that

lim sup
n

E [|Yn,1|I{|Yn,1| > β0}] <
δ
4

.

Then, there is an n0 such that, for all n ≥ n0,

E [|Yn,1|I{|Yn,1| > β0}] <
δ
2

,

and so

E|Yn,1| ≤ β0 +
δ
2

for all n ≥ n0 as well. Then, if n ≥ n0 > β0,

1
n

∫ n

0

τn(x)dx ≤ 1
n

∫ n

0

E [|Yn,1|I{|Yn,1| ≥ x}] dx

≤ 1
n

∫ β0

0

E|Yn,1|dx +
1
n

∫ n

β0

δ
2
dx ≤

β0(β0 + δ
2 )

n
+

δ
2

,

which is less than δ for all sufficiently large n. Thus, κn(n) → 0 as n → ∞ and
so (11.82) tends to 0 as well. Therefore, Ȳn − mn → 0 in probability. Finally,
mn → 0; to see why, observe

0 = E(Yn,i) = mn + E [Yn,1I{|Yn,1| > n}] ,

so that

|mn| ≤ E [|Yn,1|I{|Yn,1| > n}] → 0 ,

by assumption (11.78).

Lemma 11.4.3 Let F̃ be a family of distributions satisfying (11.77). Suppose
Xn,1, . . . , Xn,n are i.i.d. Fn ∈ F̃ and µ(Fn) = 0. Then, under Fn,

1
n

∑n
i=1 X2

n,i

σ2(Fn)
→ 1 in probability.
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Proof. Apply Lemma 11.4.2 to Yn,i = [X2
n,i/σ2(Fn)] − 1. To see that Lemma

11.4.2 applies, note that if β > 1, then the event {|Yn,i| > β} implies
X2

n,i/σ2(Fn) > β + 1 (since X2
n,i/σ2(Fn) > 0) and also |Yn,i| < X2

n,i/σ2(Fn).
Hence, for β > 1,

E [|Yn,i|I{|Yn,i| ≥ β}] ≤ E

[
X2

n,i

σ2(Fn)
I{ |Xn,i|

σ(Fn)
>

√
β + 1}

]
.

The sup over n then tends to 0 as β → ∞ by the assumption Fn ∈ F̃.

We are now in a position to study the behavior of the t-test uniformly across
a fairly large class of distributions.

Theorem 11.4.4 Let Fn ∈ F̃, where F̃ satisfies (11.77). Assume

n1/2µ(Fn)/σ(Fn) → δ as n → ∞

(where |δ| is allowed to be ∞). Let X1, . . . , Xn be i.i.d. with c.d.f Fn, and consider
the t-statistic

tn = n1/2X̄n/Sn ,

where X̄n is the sample mean and S2
n is the sample variance. If |δ| < ∞, then

under Fn,

tn
d→ N(δ, 1) .

If δ → ∞ (respectively, −∞), then tn → ∞ (respectively, −∞) in probability
under Fn.

Proof. Write

tn =
n1/2[X̄n − µ(Fn)]

Sn
+

n1/2µ(Fn)/σ(Fn)
Sn/σ(Fn)

.

The proof will follow if we show Sn/σ(Fn) → 1 in probability under Fn and if

n1/2[X̄n − µ(Fn)]
σ(Fn)

d→ N(0, 1) . (11.83)

But the latter follows by Lemma 11.4.1. To show S2
n/σ2(Fn) → 1 in probability,

use Lemma 11.4.3 (Problem 11.93).

Theorem 11.4.4 now allows us to deduce that the t-test is uniformly consistent
in level, and it also yields a limiting power calculation.

Theorem 11.4.5 Let F̃ satisfy (11.77) and let F̃0 be the set of F in F̃ with
µ(F ) = 0. For testing µ(F ) = 0 versus µ(F ) > 0, the t-test that rejects when
tn > z1−α (or tn−1,1−α) is uniformly asymptotically level α over F̃0; that is,

| sup
F∈F̃0

PF {tn > z1−α}− α| → 0 (11.84)

as n → ∞. Also, the limiting power against Fn ∈ F̃ with n1/2µ(Fn)/σ(Fn) → δ
is given by

lim
n

PFn{tn > z1−α} = 1 − Φ(z1−α − δ) . (11.85)
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Furthermore,

inf
{F∈F̃: n1/2µ(F )/σ(F )≥δ}

PF {tn > z1−α} → 1 − Φ(z1−α − δ) . (11.86)

Proof. To prove (11.84), if the result failed, one could extract a subsequence
{Fn} with Fn ∈ F̃0 such that

PFn{tn > z1−α} → β += α .

But this contradicts Theorem 11.4.4 since tn is asymptotically standard normal
under Fn. The proof of (11.85) follows from Theorem 11.4.4 as well. To prove
(11.86), again argue by contradiction and assume there exists a subsequence {Fn}
with n1/2µ(Fn)/σ(Fn) ≥ δ such that

PFn{tn > z1−α} → γ < 1 − Φ(z1−α − δ) .

The result follows from (11.85) if n1/2µ(Fn)/σ(Fn) has a limit; otherwise, pass
to any convergent subsequence and apply the same argument.

Note that (11.86) does not hold if F̃ is replaced by all distributions with
finite second moments or finite fourth moments, or even the more restricted
family of distributions supported on a compact set. In fact, there exists a se-
quence of distributions {Fn} supported on a fixed compact set and satisfying
n1/2µ(Fn)/σ(Fn) ≥ δ such that the limiting power of the t-test against this se-
quence of alternatives is α; see Problem 11.97 for a construction. Nevertheless,
the t-test behaves well for typical distributions, as demonstrated in Theorem
11.4.5. However, it is important to realize the t-test does not behave uniformly
well across distributions with large skewness, as the limiting normal theory fails.

11.4.3 A Result of Bahadur and Savage

The negative results for the t-test under the families of all distributions with
finite variance, or even the family of symmetric distributions with infinitely many
moments are perhaps unexpected in view of the fact that the t-test is pointwise
consistent in level for any distribution with finite (nonzero) variance, but they
should not really be surprising. After all, the t-test was designed for the family of
normal distributions and not for nonparametric families. This raises the question
whether there do exist more satisfactory tests of the mean for nonparametric
families.

For the family of distributions with finite variance and for some related families,
this question was answered by Bahadur and Savage (1956). The desired results
follows from the following basic lemma.

Lemma 11.4.4 Let F be a family of distributions on RI satisfying:

(i) For every F ∈ F, µ(F ) exists and is finite.

(ii) For every real m, there is an F ∈ F with µ(F ) = m.

(iii) The family F is convex in the sense that, if Fi ∈ F and γ ∈ [0, 1], then
γF1 + (1 − γ)F2 ∈ F.
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Let X1, . . . , Xn be i.i.d. F ∈ F and let φn = φn(X1, . . . , Xn) be any test function.
Let Gm denote the set of distributions F ∈ F with µ(F ) = m. Then,

inf
F∈Gm

EF (φn) and sup
F∈Gm

EF (φn)

are independent of m.

Proof. To show the result for the sup, fix m0 and let Fj ∈ Gm0 be such that

lim
j

EFj (φn) = sup
F∈Gm0

EF (φn) ≡ s .

Fix m1. The goal is to show

sup
F∈Gm1

EF (φn) = s .

Let Hj be a distribution in F with mean hj satisfying

m1 = (1 − 1
j
)m0 +

1
j
hj

and define

Gj = (1 − 1
j
)Fj +

1
j
Hj .

Thus, Gj ∈ Gm1 . An observation from Gj can be obtained through a two-stage
procedure. First, a coin is flipped with probability of heads 1/j. If the outcome is
a head, then the observation has the distribution Hj ; otherwise, the observation
is from Fj . So, with probability [1− (1/j)]n, a sample of size n from Gj is just a
sample from Fj . Then,

sup
G∈Gm1

EG(φn) ≥ EGj (φn) ≥ (1 − 1
j
)nEFj (φn) → s

as j → ∞. Thus,

sup
G∈Gm1

EG(φn) ≥ sup
G∈Gm0

EG(φn) .

Interchanging the roles of m0 and m1 and applying the same argument makes
the last inequality an equality. The result for the inf can be obtained by applying
the argument to 1 − φn.

Theorem 11.4.6 Let F satisfy (i)-(iii) of Lemma 11.4.4.
(i) Any test of H : µ(F ) = 0 which has size α for the family F has power ≤ α
for any alternative F in F.
(ii) Any test of H : µ(F ) = 0 which has power β against some alternative F in
F has size ≥ β.

Among the families satisfying (i)-(iii) of Lemma 11.4.4 is the family F0 of
distributions with finite second moment and that with infinitely many moments.
Part (ii) of the above theorem provides an alternative proof of Theorem 11.4.3
since the power of the t-test against the normal alternatives N(µ, 1) tends to 1 as
µ → ∞. Theorem 11.4.6 now shows that the failure of the t-test for the family of
all distributions with finite variance is not the fault of the t-test; in this setting,
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there exists no reasonable test of the mean. The reason is that slight changes in
the tails of the distribution can result in enormous changes in the mean.

11.4.4 Alternative Tests

Another family satisfying conditions (i)-(iii) of Theorem 11.4.6 is the family of all
distributions with compact support. However, the family of all distributions on a
fixed compact set is excluded because it does not satisfy Condition (ii). In fact,
the following construction due to Anderson (1967), shows that reasonable tests
of the mean do exist if we assume the family of distributions is supported on a
specified compact set. Specifically, let G be the family of distributions supported
on [−1, 1], and let G0 be the set of distributions on [−1, 1] having mean 0. We
will exhibit a test that has size α for any fixed sample size n and all F ∈ G0, and
is pointwise consistent in power. First, recall the Kolmogorov-Smirnov confidence
band Rn,1−α given by (11.36). This leads to a conservative confidence interval
In,1−α for µ(F ) as follows. Include the value µ in In,1−α if and only if there exists
some G in Rn,1−α with µ(G) = µ. Then,

{F ∈ Rn,1−α} ⊂ {µ(F ) ∈ In,1−α}

and so

PF {µ(F ) ∈ In,1−α} ≥ PF {F ∈ Rn,1−α} ≥ 1 − α ,

where the last inequality follows by construction of the Kolmogorov-Smirnov
confidence bands. Finally, for testing µ(F ) = 0 versus µ(F ) += 0, let φn be the
test that accepts the null hypothesis if and only if the value 0 falls in In,1−α. By
construction,

sup
F∈G0

EF (φn) ≤ α .

We claim that

In,1−α ⊂ X̄n ± 2n−1/2sn,1−α , (11.87)

where sn,1−α is the 1 − α quantile of the null distribution of the Kolmogorov-
Smirnov test statistic. The result (11.87) follows from the following lemma.

Lemma 11.4.5 Suppose F and G are distributions on [−1, 1] with

sup
t

|F (t) − G(t)| ≤ ε .

Then, |µ(F ) − µ(G)| ≤ 2ε.

For a proof, see Problem 11.94. The result (11.87) now follows by applying the
lemma to F and the empirical cdf F̂n.

Let F be a distribution with mean µ(F ) += 0. Suppose without loss of generality
that µ(F ) > 0. Also, let Ln,1−α be the lower endpoint of the interval In,1−α. Then,

EF (φn) ≥ PF {Ln,1−α > 0} ≥ PF {X̄n > 2n−1/2sn,1−α} → 1 , (11.88)

by Slutsky’s theorem, since X̄n → µ(F ) > 0 and n−1/2sn,1−α → 0. Thus, the
test is pointwise consistent in power against any distribution in G having nonzero
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mean. In fact, if {Fn} is such that |n1/2µ(Fn)| → ∞, then the limiting power
against such a sequence is one (Problem 11.95).

While Anderson’s method controls the level and is pointwise consistent in
power, it is not efficient; an efficient test construction which is of exact level α
can be based on the confidence interval construction of Romano and Wolf (2000).

Let us next consider the family of symmetric distributions. Here the mean
coincides with the center of symmetry, and reasonable level α tests for this center
exist. They can, for example, be based on the signed ranks. The one-sample
Wilcoxon test is an example. A large family of randomization tests that control
the level is discussed in 15.2.

Finally, we mention a quite different approach to the problem considered in this
section concerning the validity of the t-test in a nonparametric setting. Originally,
the t-test was derived for testing the mean, µ, on the basis of a sample X1, . . . , Xn

from N(µ, σ2). But, µ is not only the mean of the normal distribution but it is
also, for example, its median. Instead of embedding the normal family in the
family of all distributions with finite mean (and perhaps finite variance), we
could obtain a different viewpoint by embedding it in the family of all continuous
distributions F , and then test the hypothesis that the median of F is 0. A suitable
test is then the sign test.

11.5 Problems

Section 11.1

Problem 11.1 For each θ ∈ Ω, let fn(θ) be a real-valued sequence. We say fn(θ)
converges uniformly (in θ) to f(θ) if

sup
θ∈Ω

|fn(θ) − f(θ)| → 0

as n → ∞. If Ω if a finite set, show that the pointwise convergence fn(θ) → f(θ)
for each fixed θ implies uniform convergence. However, show the converse can fail
even if Ω is countable.

Section 11.2

Problem 11.2 For a univariate c.d.f. F , show that the set of points of
discontinuity is countable.

Problem 11.3 Let X be N(0, 1) and Y = X. Determine the set of continuity
points of the bivariate distribution of (X, Y ).

Problem 11.4 Show that x = (x1, . . . , xk)T is a continuity point of the distri-
bution FX of X if the boundary of the set of (y1, . . . , yk) such that yi ≤ xi for all
i has probability 0 under the distribution of X. Show by example that it is not
sufficient for x to have probability 0 under FX in order for x to be a continuity
point.
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Problem 11.5 Prove the equivalence of (i) and (vi) in the Portmanteau
Theorem (Theorem 11.2.1).

Problem 11.6 Suppose Xn
d→ X. Show that Ef(Xn) need not converge to

Ef(X) if f is unbounded and continuous, or if f is bounded but discontinuous.

Problem 11.7 Show that the characteristic function of a sum of independent
real-valued random variables is the product of the individual characteristic func-
tions. (The converse is false; counterexamples are given in Romano and Siegel
(1986), Examples 4.29-4.30.)

Problem 11.8 Verify (11.9).

Problem 11.9 Let Xn have characteristic function ζn. Find a counterexample
to show that it is not enough to assume ζn(t) converges (pointwise in t) to a
function ζ(t) in order to conclude that Xn converges in distribution.

Problem 11.10 Show that Theorem 11.2.3 follows from Theorem 11.2.2.

Problem 11.11 Show that Lyapounov’s Central Limit Theorem (Corollary
11.2.1) follows from the Lindeberg Central Limit Theorem (Theorem 11.2.5).

Problem 11.12 Suppose Xk is a noncentral chi-squared variable with k de-

grees of freedom and noncentrality parameter δ2
k. Show that (Xk − k)/(2k)1/2 d→

N(µ, 1) if δ2
k/(2k)1/2 → µ as k → ∞.

Problem 11.13 Suppose Xn,1, . . . , Xn,n are i.i.d. Bernoulli trials with success
probability pn. If pn → p ∈ (0, 1), show that

n1/2[X̄n − pn]
d→ N(0, p(1 − p)) .

Is the result true even if p is 0 or 1?

Problem 11.14 Let X1, . . . , Xn be i.i.d. with density p0 or p1, and consider
testing the null hypothesis H that p0 is true. The MP level-α test rejects when
Πn

i=1r(Xi) ≥ Cn, where r(Xi) = pi(Xi)/p0(Xi), or equivalently when

1√
n

{∑
log r(Xi) − E0[log r(Xi)]

}
≥ kn. (11.89)

(i) Show that, under H, the left side of (11.89) converges in distribution to
N(0, σ2) with σ2 = Var0[log r(Xi)], provided σ < ∞.

(ii) From (i) it follows that kn → σz1−α, where zα is the α quantile of N(0, 1).

(iii) The power of the test (11.89) against p1 tends to 1 as n → ∞. Hint: Use
Problem 3.39(iv).

Problem 11.15 Complete the proof of Theorem 11.2.8 by considering n even.
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Problem 11.16 Generalize Theorem 11.2.8 to the case of the pth sample
quantile.

Problem 11.17 Let X1, . . . , Xn be i.i.d. normal with mean θ and variance 1.
Let X̄n be the usual sample mean and let X̃n be the sample median. Let pn be
the probability that X̄n is closer to θ than X̃n is. Determine limn→∞ pn.

Problem 11.18 Suppose X1, . . . , Xn are i.i.d. real-valued random variables with
c.d.f. F . Assume ∃θ1 < θ2 such that F (θ1) = 1/4, F (θ2) = 3/4, and F is dif-
ferentiable, with density f taking positive values at θ1 and θ2. Show that the
sample inter-quartile range (defined as the difference between the .75 quantile
and .25 quantile) is a

√
n- consistent estimator of the population inter-quartile

range (θ2 − θ1).

Problem 11.19 Prove Polyá’s Theorem 11.2.9. Hint: First consider the case of
distributions on the real line.

Problem 11.20 Show that ρL(F, G) defined in Definition 11.2.3 is a metric;
that is, show ρL(F, G) = ρL(G, F ), ρL(F, G) = 0 if and only if F = G, and

ρL(F, G) ≤ ρL(F, H) + ρL(H, G) .

Problem 11.21 For cumulative distribution functions F and G on the real line,
define the Kolmogorov-Smirnov distance between F and G to be

dK(F, G) = sup
x

|F (x) − G(x)| .

Show that dK(F, G) defines a metric on the space of distribution functions; that
is, show dK(F, G) = dK(G, F ), dK(F, G) = 0 implies F = G and

dK(F, G) ≤ dK(F, H) + dK(H, G) .

Also, show that ρL(F, G) ≤ dK(F, G), where ρL is the Lévy metric. Construct a
sequence Fn such that ρL(Fn, F ) → 0 but dK(Fn, F ) does not converge to zero.

Problem 11.22 Let Fn and F be c.d.f.s on RI . Show that weak convergence of
Fn to F is equivalent to ρL(Fn, F ) → 0, where ρL is the Lévy metric.

Problem 11.23 Suppose F and G are two probability distributions on RI k. Let
L be the set of (measurable) functions f from RI k to RI satisfying |f(x)−f(y)| ≤
|x − y|, where | · | is the usual Euclidean norm. Define the Bounded-Lipschitz
Metric as

λ(F, G) = sup{|EF f(X) − EGf(X)| : f ∈ L} .

Show that Fn
d→ F is equivalent to λ(Fn, F ) → 0. Thus, weak convergence on

RI k is metrizable. [See examples 21-22 in Pollard (1984).]

Problem 11.24 Construct a sequence of distribution functions {Fn} on the real
line such that Fn converges in distribution to F , but the convergence F−1

n (1 −
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α) → F−1(1−α) fails, even if F is assumed continuous. On the other hand, if F
is assumed continuous (but not necessarily strictly increasing), show that

Fn(F−1
n (1 − α)) → F (F−1(1 − α)) = 1 − α .

[Note the left side need not be 1 − α since Fn is not assumed continuous.]

Problem 11.25 Prove part (ii) of Lemma 11.2.1.

Problem 11.26 (Markov’s Inequality) Let X be a real-valued random variable
with X ≥ 0. Show that, for any t > 0,

P{X ≥ t} ≤ E[XI{X ≥ t}]
t

≤ E(X)
t

;

here I(X ≥ t) is the indicator variable that is 1 if X ≥ t and is 0 otherwise.

Problem 11.27 (Chebyshev’s Inequality). (i) Show that, for any real-valued
random variable X and any constants a > 0 and c,

E(X − c)2 ≥ a2P{|X − c| ≥ a} .

(ii). Hence, if Xn is any sequence of random variables and c is a constant such
that E(Xn − c)2 → 0, then Xn → c in probability. Give a counterexample to
show the converse is false.

Problem 11.28 Give an example of an i.i.d. sequence of real-valued random
variables such that the sample mean converges in probability to a finite constant,
yet the mean of the sequence does not exist.

Problem 11.29 If Xn
P→ 0 and

sup
n

E[|Xn|1+δ] < ∞ for some δ > 0 , (11.90)

then show E[|Xn|] → 0. More generally, if the Xn are uniformly integrable in the
sense supn E[|Xn|I{|Xn| > t}] → 0 as t → ∞, then E[|Xn|] → 0. [A converse is
given in Dudley (1989), p.279.]

Problem 11.30 Suppose Xn and X are real-valued random variables (defined
on a common probability space). Prove that, if Xn converges to X in probability,
then Xn converges in distribution to X. Show by counterexample that the con-
verse is false. However, show that if X is a constant with probability one, then
Xn converging to X in distribution implies Xn converges to X in probability.

Problem 11.31 Suppose Xn is a sequence of random vectors.

(i). Show Xn
P→ 0 if and only if |Xn| P→ 0 (where the first zero refers to the zero

vector and the second to the real number zero).
(ii). Show that convergence in probability of Xn to X is equivalent to convergence
in probability of their components to the respective components of X.
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Problem 11.32 Suppose X1, . . . , Xn are i.i.d. real-valued random variables.
Write Xi = X+

i − X−
i , where X+

i = max(Xi, 0). Suppose X−
i has a finite mean,

but X+
i does not. Let X̄n be the sample mean. Show X̄n

P→ ∞. Hint: For B > 0,
let Yi = Xi if Xi ≤ B and Yi = B otherwise; apply the Weak Law to Ȳn.

Problem 11.33 (i) Let K(P0, P1) be the Kullback-Leibler Information, defined
in (11.21). Show that K(P0, P1) ≥ 0 with equality iff P0 = P1.
(ii) Show the convergence (11.20) holds even when K(P0, P1) = ∞. Hint: Use
Problem 11.32.

Problem 11.34 As in Example 11.2.4, consider the problem of testing P = P0

versus P = P1 based on n i.i.d. observations. The problem is an alternative way
to show that a most powerful level α (0 < α < 1) test sequence has limiting
power one. If P0 and P1 are distinct, there exists E such that P0(E) += P1(E).
Let p̂n denote the proportion of observations in E and construct a level α test
sequence based on p̂n which has power tending to one.

Problem 11.35 If Xn is a sequence of real-valued random variables, prove that
Xn → 0 in Pn-probability if and only if EPn [min(|Xn|, 1)] → 0.

Problem 11.36 (i) Prove Corollary 11.2.3.

(ii) Suppose Xn
d→ X and Cn

P→ ∞. Show P{Xn ≤ Cn} → 1.

Problem 11.37 In Example 11.2.5, show that βn(pn) → 1 if n1/2(pn − 1/2) →
∞ and βn(pn) → α if n1/2(pn − 1/2) → 0.

Problem 11.38 In Example 11.2.7, let In be the interval (11.23). Show that,
for any n,

inf
p

Pp{p ∈ În} = 0 .

Hint: Consider p positive but small enough so that the chance that a sample of
size n results in 0 successes is nearly 1.

Problem 11.39 Show how the interval (11.25) is obtained from (11.24).

Problem 11.40 Show that tightness of a sequence of random vectors in RI k is
equivalent to each of the component variables being tight RI .

Problem 11.41 Suppose Pn is a sequence of probabilities and Xn is a se-
quence of real-valued random variables; the distribution of Xn under Pn is
denoted L(Xn|Pn). Prove that L(Xn|Pn) is tight if and only if Xn/an → 0
in Pn-probability for every sequence an ↑ ∞.

Problem 11.42 Suppose Xn
d→ N(µ, σ2). (i). Show that, for any sequence of

numbers cn, P (Xn = cn) → 0. (ii). If cn is any sequence such that P (Xn > cn) →
α, then cn → µ + σz1−α, where z1−α is the 1 − α-quantile of N(0, 1).
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Problem 11.43 Let X1, · · · , Xn be i.i.d. normal with mean θ and variance 1.
Suppose θ̂n is a location equivariant sequence of estimators such that, for every
fixed θ, n1/2(θ̂n−θ) converges in distribution to the standard normal distribution
(if θ is true). Let X̄n be the usual sample mean. Show that, if θ is fixed at the
true value, then n1/2(θ̂n − X̄n) tends to 0 in probability under θ.

Problem 11.44 Prove part (ii) of Theorem 11.2.14.

Problem 11.45 Suppose R is a real-valued function on RI k with R(y) = o(|y|p)
as |y| → 0, for some p > 0. If Yn is a sequence of random vectors satisfying
|Yn| = oP (1), then show R(Yn) = oP (|Yn|p). Hint: Let g(y) = R(y)/|y|p with
g(0) = 0 so that g is continuous at 0; apply the Continuous Mapping Theorem.

Problem 11.46 Use Problem 11.45 to prove (11.28).

Problem 11.47 Assume (Ui, Vi) is bivariate normal with correlation ρ. Let ρ̂n

denote the sample correlation given by (11.29). Verify the limit result (11.31).

Problem 11.48 (i) If X1, . . . , Xn is a sample from a Poisson distribution with

mean E(Xi) = λ, then
√

n(
√

X̄ −
√

λ) tends in law to N(0, 1
4 ) as n → ∞.

(ii) If X has the binomial distribution b(p, n), then
√

n[arcsin
√

X/n−arcsin
√

p]
tends in law to N(0, 1

4 ) as n → ∞.
Note. Certain refinements of variance stabilizing transformations are discussed by
Anscombe (1948), Freeman and Tukey (1950), and Hotelling (1953). Transforma-
tions of data to achieve approximately a normal linear model are considered by
Box and Cox (1964); for later developments stemming from this work see Bickel
and Doksum (1981), Box and Cox (1982), and Hinkley and Runger (1984).

Problem 11.49 Suppose Xi,j are independently distributed as N(µi, σ
2
i ); i =

1, . . . , s; j = 1, . . . , ni. Let S2
n,i =

∑
j(Xi,j − X̄i)

2, where X̄i = n−1
i

∑
j Xi,j . Let

Zn,i = log[S2
n,i/(ni − 1)]. Show that, as ni → ∞,

√
ni − 1[Zn,i − log(σ2

i )]
d→ N(0, 2) .

Thus, for large ni, the problem of testing equality of all the σi can be approxi-
mately viewed as testing equality of means of normally distributed variables with
known (possibly different) variances. Use Problem 7.12 to suggest a test.

Problem 11.50 Let X1, · · · , Xn be i.i.d. Poisson with mean λ. Consider esti-
mating g(λ) = e−λ by the estimator Tn = e−X̄n . Find an approximation to the
bias of Tn; specifically, find a function b(λ) satisfying

Eλ(Tn) = g(λ) + n−1b(λ) + O(n−2)

as n → ∞. Such an expression suggests a new estimator Tn −n−1b(λ), which has
bias O(n−2). But, b(λ) is unknown. Show that the estimator Tn − n−1b(X̄n) has
bias O(n−2).
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Problem 11.51 Let X1, . . . , Xn be a random sample from the Poisson distribu-
tion with unknown mean λ. The uniformly minimum variance unbiased estimator
(UMVUE) of exp(−λ) is known to be [(n − 1)/n]Tn , where Tn =

∑n
i=1 Xi. Find

the asymptotic distribution of the UMVUE (appropriately normalized). Hint: It
may be easier to first find the asymptotic distribution of exp(−Tn/n).

Problem 11.52 Let Xi,j , 1 ≤ i ≤ I, 1 ≤ j ≤ n be independent with Xi,j

Poisson with mean λi. The problem is to test the null hypothesis that the λi are
all the same versus they are not all the same. Consider the test that rejects the
null hypothesis iff

T ≡
n

∑I
i=1(X̄i − X̄)2

X̄

is large, where X̄i =
∑

j Xi,j/n and X̄ =
∑

i X̄i/I.
(i) How large should the critical values be so that, if the null hypothesis is correct,
the probability of rejecting the null hypothesis tends (as n → ∞ with I fixed) to
the nominal level α.
(ii) Show that the test is pointwise consistent in power against any (λ1, . . . , λI),
as long as the λi are not all equal.

Problem 11.53 Prove the Glivenko-Cantelli Theorem. Hint: Use the Strong
Law of Large Numbers and the monotonicity of F .

Problem 11.54 Let X1, . . . , Xn be i.i.d. P on S. Suppose S is countable and
let E be the collection of all subsets of S. Let P̂n be the empirical measure; that
is, for any subset E of E , P̂n(E) is the proportion of observations Xi that fall in
E. Prove, with probability one,

sup
E∈E

|P̂n(E) − P (E)| → 0 .

Problem 11.55 Suppose Xn is a tight sequence and Yn
P→ 0. Show that

XnYn
P→ 0. If it is assumed Yn → 0 almost surely, can you conclude XnYn → 0

almost surely?

Problem 11.56 For a c.d.f. F , define the quantile transformation Q by

Q(u) = inf{t : F (t) ≥ u} .

(i) Show the event {F (t) ≥ u} is the same as {Q(u) ≤ t}.
(ii) If U is uniformly distributed on (0, 1), show the distribution of Q(U) is F .

Problem 11.57 Let U1, . . . , Un be i.i.d. with c.d.f. G(u) = u and let Ĝn denote
the empirical c.d.f. of U1, . . . , Un. Define

Bn(u) = n1/2[Ĝn(u) − u] .

(Note that Bn(·) is a random function, called the uniform empirical process).
(i) Show that the distribution of the Kolmogorov-Smirnov test statistic
n1/2dK(Ĝn, G) under G is that of supu |Bn(u)|.
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(ii) Suppose X1, . . . , Xn are i.i.d. F (not necessarily continuous), and let
F̂n denote the empirical c.d.f. of X1, . . . , Xn. Show that the distribution
of the Kolmogorov-Smirnov test statistic n1/2dK(F̂n, F ) under F is that of
supt |Bn(F (t))|, where Bn is defined in (i). Deduce that this distribution does
not depend on F when F is continuous.

Problem 11.58 Consider the uniform confidence band Rn,1−α for F given by
(11.36). Let F be the set of all distributions on RI . Show,

inf
F∈F

PF {F ∈ Rn,1−α} ≥ 1 − α .

Problem 11.59 Show how Theorem 11.2.18 implies Theorem 11.2.17. Hint: Use
the Borel-Cantelli Lemma; see Billingsley (1995, Theorem 4.3).

Problem 11.60 (i) If X1, . . . , Xn are i.i.d. with c.d.f. F and empirical distri-
bution F̂n, use Theorem 11.2.18 to show that n1/2 sup |F̂n(t) − F (t)| is a tight
sequence.

(ii) Let Fn be any sequence of distributions, and let F̂n be the empirical dis-
tribution based on a sample of size n from Fn. Show that n1/2 sup |F̂n(t)−Fn(t)|
is a tight sequence.

Problem 11.61 Show that Xn → X in probability is equivalent to the state-
ment that, for any subsequence Xnj , there exists a further subsequence Xnjk

such that Xnjk
→ X with probability one.

Section 11.3

Problem 11.62 (i) Let X1, . . . , Xn be a sample from N(ξ, σ2). For testing ξ = 0
against ξ > 0, show that the power of the one-sided one-sample t-test against a
sequence of alternatives N(ξn, σ2) for which n1/2ξn/σ → δ tends to 1−Φ(z1−α −
δ).
(ii) The result of (i) remains valid if X1, . . . , Xn are a sample from any distribution
with mean ξ and finite variance σ2.

Problem 11.63 Generalize the previous problem to the two-sample t-test.

Problem 11.64 Let (Yi, Zi) be i.i.d. bivariate random vectors in the plane, with
both Yi and Zi assumed to have finite nonzero variances. Let µY = E(Y1) and
µZ = E(Z1), let ρ denote the correlation between Y1 and Z1, and let ρ̂n denote
the sample correlation, as defined in (11.29).
(i). Under the assumption ρ = 0, show directly (without appealing to Example
11.2.10) that n1/2ρ̂n is asymptotically normal with mean 0 and variance

τ2 = V ar[(Y1 − µY )(Z1 − µZ)]/V ar(Y1)V ar(Z1).

(ii). For testing that Y1 and Z1 are independent, consider the test that rejects
when n1/2|ρ̂n| > z1− α

2
. Show that the asymptotic rejection probability is α,

without assuming normality, but under the sole assumption that Y1 and Z1 have
arbitrary distributions with finite nonzero variances.
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(iii). However, for testing ρ = 0, the above test is not asymptotically robust.
Show that there exist bivariate distributions for (Y1, Z1) for which ρ = 0 but the
limiting variance τ2 can take on any given positive value.
(iv). For testing ρ = 0 against ρ > 0, define a denominator Dn and a critical
value cn such that the rejection region n1/2ρ̂n/Dn ≥ cn has probability tending
to α, under any bivariate distribution with ρ = 0 and finite, nonzero marginal
variances.

Problem 11.65 Under the assumptions of Lemma 11.3.1, compute Cov(X2
i , X2

j )
in terms of ρi,j and σ2. Show that V ar(n−1 ∑n

i=1 X2
i ) → 0 and hence

n−1 ∑n
i=1 X2

i
P→ σ2.

Problem 11.66 (i) Given ρ, find the smallest and largest value of (11.42) as
σ2/τ2 varies from 0 to ∞.
(ii) For nominal level α = .05 and ρ = .1, .2, .3, .4, determine the smallest and
the largest asymptotic level of the t-test as σ2/τ2 varies from 0 to ∞.

Problem 11.67 Verify the formula for V ar(X̄) in Model A.

Problem 11.68 In Model A, suppose that the number of observations in group
i is ni. if ni ≤ M and s → ∞, show that the assumptions of Lemma 11.3.1 are
satisfied and determine γ.

Problem 11.69 Show that the conditions of Lemma 11.3.1 are satisfied and γ
has the stated value: (i) in Model B; (ii) in Model C.

Problem 11.70 Determine the maximum asymptotic level of the one-sided t-
test when α = .05 and m = 2, 4, 6: (i) in Model A; (ii) in Model B.

Problem 11.71 Prove (i) of Lemma 11.3.2.

Problem 11.72 Prove Lemma 11.3.3. Hint: For part (ii), use Problem 11.61.

Problem 11.73 Verify the claims made in Example 11.3.1.

Problem 11.74 Verify (11.52).

Problem 11.75 In Example 11.3.3, verify the Huber Condition holds.

Problem 11.76 Let Xijk (k = 1, . . . , nij ; i = 1, , . . . , a; j = 1, . . . , b) be inde-
pendently normally distributed with mean E(Xijk) = ξij and variance σ2. Then
the test of any linear hypothesis concerning the ξij has a robust level provided
nij → ∞ for all i and j.

Problem 11.77 In the two-way layout of the preceding problem give examples
of submodels Π(1)

Ω and Π(2)
Ω of dimensions s1 and s2, both less than ab, such that

in one case the condition (11.57) continues to require nij → ∞ for all i and j but
becomes a weaker requirement in the other case.
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Problem 11.78 Suppose (11.57) holds for some particular sequence Π(n)
Ω with

fixed s. Then it holds for any sequence Π′
Ω

(n) ⊂ Π(n)
Ω of dimension s′ < s.

Hint: If ΠΩ is spanned by the s columns of A, let Π′
Ω be spanned by the first s′

columns of A.

Problem 11.79 Show that (11.48) holds whenever cn tends to a finite nonzero
limit, but the condition need not hold if cn → 0.

Problem 11.80 Let {cn} and {c′n} be two increasing sequences of constants
such that c′n/cn → 1 as n → ∞. Then {cn} satisfies (11.48) if and only if {c′n}
does.

Problem 11.81 Let cn = u0+u1n+ · · ·+uknk, ui ≥ 0 for all i. Then cn satisfies
(11.48). What if cn = 2n? Hint: Apply Problem 11.80 with c′n = nk.

Problem 11.82 If ξi = α + βti + γui, express the condition (11.57) in terms of
the t’s and u’s.

Problem 11.83 If Πi,i are defined as in (11.56), show that
∑n

i=1 Π2
i,i = s.

Hint: Since the Πi,i are independent of A, take A to be orthogonal.

Problem 11.84 The size of each of the following tests is robust against
nonnormality:

(i) the test (7.24) as b → ∞,

(ii) the test (7.26) as mb → ∞,

(iii) the test (7.28) as m → ∞.

Problem 11.85 For i = 1, . . . , s and j = 1, . . . , ni, let Xi,j be independent, with
Xi,j having distribution Fi, where Fi is an arbitrary distribution with mean µi

and finite common variance σ2. Consider testing µ1 = · · · = µs based on the test
statistic (11.66), which is UMPI under normality. Show the test remains robust
with respect to the rejection probability under H0 even if the Fi differ and are
not normal.

Problem 11.86 In the preceding problem, investigate the rejection probability
when the Fi have different variances. Assume min ni → ∞ and ni/n → ρi.

Problem 11.87 Show that the test derived in Problem 11.49 is not robust
against nonnormality.

Problem 11.88 Let X1, . . . , Xn be a sample from N(ξ, σ2), and consider the
UMP invariant level-α test of H : ξ/σ ≤ θ0 (Section 6.4). Let αn(F ) be the actual
significance level of this test when X1, . . . , Xn is a sample from a distribution F
with E(Xi) = ξ, V ar(Xi) = σ2 < ∞. Then the relation αn(F ) → α will not
in general hold unless θ0 = 0. Hint: First find the limiting joint distribution of√

n(X̄ − ξ) and
√

n(S2 − σ2).
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Section 11.4

Problem 11.89 When sampling from a normal distribution, one can derive an
Edgeworth expansion for the t-statistic as follows. Suppose X1, . . . , Xn are i.i.d.
N(µ, σ2) and let tn = n1/2(X̄n −µ)/Sn, where S2

n is the usual unbiased estimate
of σ2. Let Φ be the standard normal c.d.f. and let Φ′ = ϕ. Show

P{tn ≤ t} = Φ(t) − 1
4n

(t + t3)ϕ(t) + O(n−2) (11.91)

as follows. It suffices to let µ = 0 and σ = 1. By conditioning on Sn, we can write

P{tn ≤ t} = E{Φ[t(1 + S2
n − 1)1/2]} .

By Taylor expansion inside the expectation, along with moments of S2
n, one can

deduce (11.91).

Problem 11.90 Assuming F is absolutely continuous with 4 moments, verify
(11.76).

Problem 11.91 Let φn be the classical t-test for testing the mean is zero versus
the mean is positive, based on n i.i.d. observations from F . Consider the power of
this test against the distribution N(µ, 1). Show the power tends to one as µ → ∞.

Problem 11.92 Suppose F satisfies the conditions of Theorem 11.4.6. Assume
there exists φn such that

sup
F∈F: µ(F )=0

EF (φn) → α .

Show that

lim sup
n

EF (φn) ≤ α

for every F ∈ F.

Problem 11.93 In the proof of Theorem 11.4.4, prove Sn/σ(Fn) → 1 in
probability.

Problem 11.94 Prove Lemma 11.4.5.

Problem 11.95 Consider the problem of testing µ(F ) = 0 versus µ(F ) += 0, for
F ∈ F0, the class of distributions supported on [0, 1]. Let φn be Anderson’s test.
(i) If

|n1/2µ(Fn)| ≥ δ > 2sn,1−α ,

then show that

EFn(φn) ≥ 1 − 1
2(2sn,1−α − δ)2

,

where sn,1−α is the 1 − α quantile of the null distribution of the Kolmogorov-
Smirnov statistic. Hint: Use (11.88) and Chebyshev’s inequality.
(ii) Deduce that the minimum power of φn over {F : n1/2µ(F )| ≥ δ} is at least
1 − [2(2sn,1−α − δ)−2] if δ > 2sn,1−α.
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(iii) Use (ii) to show that, if Fn ∈ F0 is any sequence of distributions satisfying
n1/2|µ(Fn)| → ∞, then EFn(φn) → 1.

Problem 11.96 Prove the second equality in (11.81). In the proof of Lemma
11.4.2, show that κn(n) → 0.

Problem 11.97 Let Yn,1, . . . , Yn,n be i.i.d. bernoulli variables with success prob-
ability pn, where npn = λ and λ1/2 = δ. Let Un,1, . . . , Un,n be i.i.d. uniform
variables on (−τn, τn), where τ2

n = 3p2
n. Then, let Xn,i = Yn,i + Ui, so that Fn is

the distribution of Xn,i. (Note that n1/2µ(Fn)/σ(Fn) = δ.)

(i) If tn is the t-statistic, show that, under Fn, tn
d→ V 1/2 , where V is Poisson

with mean δ2, and so if z1−α is not an integer,

PFn{tn > tn−1,1−α} → P{V 1/2 > z1−α} .

(ii) Show, for α < 1/2, the limiting power of the t-test against Fn satisfies

P{V 1/2 > z1−α} ≤ 1 − P{V = 0} = exp(−δ2) .

This is strictly smaller than 1 − Φ(z1−α − δ) if and only if

Φ(z1−α − δ) < exp(−δ2) .

Certainly, for small δ, this inequality holds, since the left hand side tends to 1−α
as δ → 0 while the right hand side tends to 1.

11.6 Notes

The convergence concepts in Section 11.2 are classical and can be found in most
graduate probability texts such as Billingsley (1995) or Dudley (1989). The Cen-
tral Limit Theory for Bernoulli trials dates back to de Moivre (1733) and for
more general distributions to Laplace (1812). Their treatment was probabilistic
and did not involve problems in inference. Normal experiments were first treated
in Gauss (1809). Further history is provided in Stigler (1986) and Hald (1990,
1998).

Concern about the robustness of classical normal theory tests began to be
voiced in the 1920s (Neyman and Pearson (1928), Shewhart and Winters (1928),
Sophister (1928), and Pearson (1929)) and has been an important topic ever
since. Particularly influential were Box (1953), where the term robustness was in-
troduced; also see Scheffé (1959, Chapter 10), Tukey (1960) and Hotelling (1961).
The robustness of regression tests studied in Section 11.3.3 is based on Huber
(1973).

As remarked in Example 11.3.4, the F -test for testing equality of means is not
robust if the underlying variances differ, even if the sample sizes are equal and s >
2; see Scheffé (1959). More appropriate tests for this generalized Behrens–Fisher
problem have been proposed by Welch (1951), James (1951), and Brown and
Forsythe (1974b), and are further discussed by Clinch and Kesselman (1982). The
corresponding robustness problem for more general linear hypotheses is treated
by James (1954) and Johansen (1980); see also Rothenberg (1984).
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The linear model F -test—as was seen to be the case for the t-test—is highly
nonrobust against dependence of the observations. Tests of the hypothesis that
the covariance matrix is proportional to the identity against various specified
forms of dependence are considered in King and Hillier (1985). For recent work
on robust testing in linear models, see Müller (1998) and the references cited
there.

The usual test for equality of variances is Bartlett’s test, which is discussed in
Cyr and Monoukian (1982) and Glaser (1982). Bartlett’s test is highly sensitive
to the assumption of normality, and therefore is rarely appropriate. More robust
tests for this latter hypothesis are reviewed in Conover, Johnson, and Johnson
(1981). For testing homogeneity of covariance matrices, see Beran and Srivastava
(1985) and Zhang and Boos (1992).

Robustness properties of the t-test are studied in Efron (1969), Lehmann and
Loh (1990), Basu and DasGupta (1995), Basu (1999) and Romano (2004). The
nonexistence results of Bahadur and Savage (1956), and also Hoeffding (1956),
have been generalized to other problems; see Donoho (1988) and Romano (2004)
and the references there.

The idea of expanding the distribution of the sample mean in order to study the
error in normal approximation can be traced to Chebyshev (1890) and Edgeworth
(1905). But it was not until Cramér (1928, 1937) provided some rigorous results.
The fundamental theory of Edgeworth expansions is developed in Bhattacharya
and Rao (1976); also see Bickel (1974), Bhattacharya and Ghosh (1978), Hall
(1992) and Hall and Jing (1995).



12
Quadratic Mean Differentiable
Families

12.1 Introduction

As mentioned at the beginning of Chapter 11, the finite sample theory of opti-
mality for hypothesis testing applied only to rather special parametric families,
primarily exponential families and group families. On the other hand, asymptotic
optimality will apply more generally to parametric families satisfying smoothness
conditions. In particular, we shall assume a certain type of differentiability con-
dition, called quadratic mean differentiability. Such families will be considered in
Section 12.2. In Section 12.3, the notion of contiguity will be developed, primarily
as a technique for calculating the limiting distribution or power of a test statistic
under an alternative sequence, especially when the limiting distribution under
the null hypothesis is easy to obtain. In Section 12.4, these techniques will then
be applied to classes of tests based on the likelihood function, namely the Wald,
Rao, and likelihood ratio tests. The asymptotic optimality of these tests will be
established in Chapter 13.

12.2 Quadratic Mean Differentiability (q.m.d.)

Consider a parametric model {Pθ, θ ∈ Ω}, where, throughout this section, Ω is
assumed to be an open subset of RI k. The probability measures Pθ are defined
on some measurable space (X , C). Assume each Pθ is absolutely continuous with
respect to a σ-finite measure µ, and set pθ(x) = dPθ(x)/dµ(x). In this section,
smooth parametric models will be considered. To motivate the smoothness condi-
tion given in Definition 12.2.1 below, consider the case of n i.i.d. random variables
X1, . . . , Xn and the problem of testing a simple null hypothesis θ = θ0 against a



12.2. Quadratic Mean Differentiability (q.m.d.) 483

simple alternative θ1 (possibly depending on n). The most powerful test rejects
when the loglikelihood ratio statistic

log[Ln(θ1)/Ln(θ0)]

is sufficiently large, where

Ln(θ) =
n∏

i=1

pθ(Xi) (12.1)

denotes the likelihood function. We would like to obtain certain expansions of
the loglikelihood ratio, and the smoothness condition we impose will ensure the
existence of such an expansion.

Example 12.2.1 (Normal Location Model) Suppose Pθ is N(θ, σ2), where
σ2 is known. It is easily checked that

log[Ln(θ1)/Ln(θ0)] =
n
σ2

[(θ1 − θ0)X̄n − 1
2
(θ2

1 − θ2
0)] , (12.2)

where X̄n =
∑n

i=1 Xi/n. By the Weak Law of Large Numbers, under θ0,

(θ1 − θ0)X̄n − 1
2
(θ2

1 − θ2
0)

P→ (θ1 − θ0)θ0 −
1
2
(θ2

1 − θ2
0) = −1

2
(θ1 − θ0)

2 ,

and so log[Ln(θ1)/Ln(θ0)]
P→ −∞. Therefore, log[Ln(θ1)/Ln(θ0)] is asymptoti-

cally unbounded in probability under θ0. As in Example 11.2.5, a more useful
result is obtained if θ1 in (12.2) is replaced by θ0 + hn−1/2. We then find

log[Ln(θ0 + hn−1/2)/Ln(θ0)] =
hn1/2(X̄n − θ0)

σ2
− h2

2σ2
= hZn − h2

2σ2
, (12.3)

where Zn = n1/2(X̄n − θ0)/σ2 is N(0, 1/σ2). Notice that the expansion (12.3) is
a linear function of Zn and a simple quadratic function of h, with the coefficient
of h2 nonrandom. Furthermore, log[Ln(θ0 + hn−1/2)/Ln(θ0)] is distributed as
N(−h2/2σ2, h2/σ2) under θ0 for every n. (The relationship that the mean is the
negative of half the variance will play a key role in the next section.)

The following more general family permits an asymptotic version of (12.3).

Example 12.2.2 (One-parameter Exponential Family) Let X1, . . . , Xn be
i.i.d. having density

pθ(x) = exp[θT (x) − A(θ)]

with respect to a σ-finite measure µ. Assume θ0 lies in the interior of the natural
parameter space. Then,

log[Ln(θ0 + hn−1/2)/Ln(θ0)] = hn−1/2
n∑

i=1

T (Xi) − n[A(θ0 + hn−1/2) − A(θ0)] .

Recall (Problem 2.16) that Eθ0 [T (Xi)] = A′(θ0) and V arθ0 [T (Xi)] = A′′(θ0). By
a Taylor expansion,

n[A(θ0 + hn−1/2) − A(θ0)] = hn1/2A′(θ0) +
1
2
h2A′′(θ0) + o(1)
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as n → ∞, so that

log[Ln(θ0 + hn−1/2)/Ln(θ0)] = hZn − 1
2
h2A′′(θ0) + o(1) , (12.4)

where, under θ0,

Zn = n−1/2
n∑

i=1

{T (Xi) − Eθ0 [T (Xi)]} d→ N(0, A′′(θ0)) .

Thus, the loglikelihood ratio (12.4) behaves asymptotically like the loglikelihood
ratio (12.3) from a normal location model. As we will see, such approximations
allow one to deduce asymptotic optimality properties for the exponential model
(or any model whose likelihood ratios satisfy an appropriate generalization of
(12.4)) from optimality properties of the simple normal location model.

We would like to obtain an approximate result like (12.4) for more general
families. Classical smoothness conditions usually assume that, for fixed x, the
function pθ(x) is differentiable in θ at θ0; that is, for some function ṗθ(x),

pθ0+h(x) − pθ0(x) − 〈ṗθ0(x), h〉 = o(|h|)

as |h| → 0. In addition, higher order differentiability is typically assumed with
further assumptions on the remainder terms. In order to avoid such strong as-
sumptions, it turns out to be useful to work with square roots of densities. For
fixed x, differentiability of p1/2

θ (x) at θ = θ0 requires the existence of a function
η(x, θ0) such that

R(x, θ0, h) ≡ p1/2
θ0+h(x) − p1/2

θ0
(x) − 〈η(x, θ0), h〉 = o(|h|) .

To obtain a weaker, more generally applicable condition, we will not require
R2(x, θ0, h) = o(|h|2) for every x, but we will impose the condition that
R2(X, θ0, h) averaged with respect to µ is o(|h|2). Let L2(µ) denote the space
of functions g such that

∫
g2(x) dµ(x) < ∞. The convenience of working with

square roots of densities is due in large part to the fact that p1/2
θ (·) ∈ L2(µ), a

fact first exploited by Le Cam; see Pollard (1997) for an explanation. The desired
smoothness condition is now given by the following definition.

Definition 12.2.1 The family {Pθ, θ ∈ Ω} is quadratic mean differentiable
(abbreviated q.m.d.) at θ0 if there exists a vector of real-valued functions
η(·, θ0) = (η1(·, θ0), . . . , ηk(·, θ0))

T such that
∫

X

[√
pθ0+h(x) −

√
pθ0(x)− < η(x, θ0), h >

]2
dµ(x) = o(|h|2) (12.5)

as |h| → 0.1

The vector-valued function η(·, θ0) will be called the quadratic mean derivative
of Pθ at θ0. Clearly, η(x, θ0) is not unique since it can be changed on a set of x
values having µ-measure zero. If q.m.d. holds at all θ0, then we say the family is
q.m.d.

1The definition of q.m.d. is a special case of Fréchet differentiability of the map

θ → p
1/2
θ (·) from Ω to L2(µ).
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The following are useful facts about q.m.d. families.

Lemma 12.2.1 Assume {Pθ, θ ∈ Ω} is q.m.d. at θ0. Let h ∈ RI k.

(i) Under Pθ0 , 〈
η(X,θ0)

p
1/2
θ0

(X)
, h〉 is a random variable with mean 0; i.e., satisfying

∫
p1/2

θ0
(x)〈η(x, θ0), h〉dµ(x) = 0 .

(ii) The components of η(·, θ0) are in L2(µ); that is, for i = 1, . . . , k,
∫

η2
i (x, θ0) dµ(x) < ∞ .

Proof. In the definition of q.m.d., replace h by hn−1/2 to deduce that
∫ {

n1/2
[
p1/2

θ0+hn−1/2(x) − p1/2
θ0

(x)
]
− 〈η(x, θ0), h〉

}2
dµ(x) → 0

as n → ∞. But, if
∫

(gn − g)2 dµ → 0 and
∫

g2
ndµ < ∞, then

∫
g2dµ < ∞

(Problem 12.3). Hence, for any h ∈ RI k, 〈η(x, θ0), h〉 ∈ L2(µ). Taking h equal
to the vector of zeros except for a 1 in the ith component yields (ii). Also, if∫

(gn − g)2dµ → 0 and
∫

p2dµ < ∞ then
∫

pgndµ →
∫

pg dµ (Problem 12.4).

Taking p = p1/2
θ0

and gn = n1/2
[
p1/2

θ0+hn−1/2(x) − p1/2
θ0

(x)
]

yields

∫
p1/2

θ0
(x)〈η(x, θ0), h〉dµ(x)

= lim
n→∞

n1/2
∫

p1/2
θ0

(x)[p1/2

θ0+hn−1/2(x) − p1/2
θ0

(x)] dµ(x)

= lim
n→∞

n1/2

[∫
p1/2

θ0
(x) p1/2

θ0+hn−1/2(x) dµ(x) − 1

]

= − 1
2 lim n−1/2 n

∫
[p1/2

θ0
(x) − p1/2

θ0+hn−1/2(x)]2dµ(x) .

But,

n

∫ [
p1/2

θ0
(x) − p1/2

θ0+hn−1/2(x)
]2

dµ(x)

→
∫

|〈η(x, θ0), h〉|2dµ(x) < ∞ , (12.6)

and (i) follows.

Note that Lemma 12.2.1 (i) asserts that the finite-dimensional set of vectors

{〈η(·, θ0), h〉, h ∈ RI k} in L2(µ) is orthogonal to p1/2
θ0

(·).

It turns out that, when q.m.d. holds, the integrals of products of the components
of η(·, θ) play a vital role in the theory of asymptotic efficiency. Such values (mul-
tiplied by 4 for convenience) are gathered into a matrix, which we call the Fisher
Information matrix. The use of the term information is justified by Problem 12.5.
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Definition 12.2.2 For a q.m.d. family with derivative η(·, θ), define the Fisher
Information matrix to be the matrix I(θ) with (i, j) entry

Ii,j(θ) = 4

∫
ηi(x, θ)ηj(x, θ) dµ(x) .

The existence of I(θ) follows from Lemma 12.2.1 (ii) and the Cauchy-Schwarz
inequality. Furthermore, I(θ) does not depend on the choice of dominating
measure µ (Problem 12.8).

Lemma 12.2.2 For any h ∈ RI k,
∫

|〈h, η(x, θ0)〉|2 dµ(x) = 1
4 〈h, I(θ0)h〉 .

Proof. Of course

〈h, η(x, θ0)〉 = Σhiηi(x, θ0) .

Square it and integrate.

Next, we would like to determine simple sufficient conditions for q.m.d. to
hold. Assuming that the pointwise derivative of pθ(x) with respect to θ exists,
one would expect that the quadratic mean derivative η(·, θ0) is given by

ηi(·, θ) =
∂

∂θi
p1/2

θ (x) = 1
2

∂
∂θi

pθ(x)

p1/2
θ (x)

. (12.7)

In fact, Hájek (1972) gave sufficient conditions where this is the case, and the
following result for the case k = 1 is based on his argument.

Theorem 12.2.1 Suppose Ω is an open subset of RI and fix θ0 ∈ Ω. Assume
p1/2

θ (x) is an absolutely continuous function of θ in some neighborhood of θ0, for
µ-almost all x.2 Also, assume for µ-almost all x, the derivative p′

θ(x) of pθ(x)
with respect to θ exists at θ = θ0. Define

η(x, θ) =
p′

θ(x)

2p1/2
θ (x)

(12.8)

if pθ(x) > 0 and p′
θ(x) exists and define η(x, θ) = 0 otherwise. Also, assume the

Fisher Information I(θ) is finite and continuous in θ at θ0. Then, {Pθ} is q.m.d.
at θ0 with quadratic mean derivative η(·, θ0).

Proof. If pθ(x) > 0 and p′
θ(x) exists, then from standard calculus it follows that

d
dθ

p1/2
θ (x) = η(x, θ) .

2A real-valued function g defined on an interval [a, b] is absolutely continuous if

g(θ) = g(a) +
∫ θ

a h(x)dx for some integrable function h and all θ ∈ [a, b]; Problem
2 on p.182 of Dudley (1989) clarifies the relationship between this notion of absolute
continuity of a function and the general notion of a measure being absolute continuous
with respect to another measure, as defined in Section 2.2.
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Also, if pθ(x) = 0 and p′
θ(x) exists, then p′

θ(x) = 0 (since pθ(·) is nonnegative).

Now, if x is such that p1/2
θ (x) is absolutely continuous in [θ0, θ0 + δ], then

{
1
δ
[p1/2

θ0+δ(x) − p1/2
θ0

(x)]

}2

=
1
δ2

[∫ δ

0

η(x, θ0 + λ)dλ

]2

≤ 1
δ

∫ δ

0

η2(x, θ0 + λ)dλ .

Integrating over all x with respect to µ yields
∫ {

1
δ
[p1/2

θ0+δ(x) − p1/2
θ0

(x)]

}2

dµ(x) ≤ 1
4δ

∫ δ

0

I(θ0 + λ)dλ .

By continuity of I(θ) at θ0, the right hand side tends to

1
4
I(θ0) =

∫
η2(x, θ0)dµ(x)

as δ → 0. But, for µ-almost all x,

1
δ
[p1/2

θ0+δ(x) − p1/2
θ0

(x)] → η(x, θ0) .

The result now follows by Vitali’s Theorem (Corollary 2.2.1).

Corollary 12.2.1 Suppose µ is Lebesgue measure on RI and that pθ(x) = f(x−
θ) is a location model, where f1/2(·) is absolutely continuous. Let

η(x, θ) =
−f ′(x − θ)

2f1/2(x − θ)

if f(x − θ) > 0 and f ′(x − θ) exists; otherwise, define η(x, θ) = 0. Also, let

I = 4

∫ ∞

−∞
η2(x, 0)dx ,

and assume I < ∞. Then, the family is q.m.d. at θ0 with quadratic mean
derivative η(x, θ0) and constant Fisher Information I.

The assumption that f1/2 is absolutely continuous can be replaced by the
assumption that f is absolutely continuous; see Hájek (1972), Lemma A.1. For
other conditions, see Le Cam and Yang (2000), Section 7.3.

Example 12.2.3 (Cauchy Location Model) The previous corollary applies
to the Cauchy location model, where pθ(x) = f(x − θ) and f(x) = 1

π
1

1+x2 , and
I(θ) = 1/2 (Problem 12.9).

Example 12.2.4 (Double Exponential Location Model) Consider the lo-
cation model pθ(x) = f(x − θ) where f(x) = 1

2 exp(−|x|). Although f(·) is
not differentiable at 0, the corollary shows the family is q.m.d. Also, I(θ) = 1
(Problem 12.9).

Example 12.2.5 Consider the location model pθ(x) = f(x − θ), where

f(x) = C(β) exp{−|x|β},
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where β is a fixed positive constant and C(β) is a normalizing constant. By the
previous corollary, this family is q.m.d. if β > 1

2 . In fact, one can check that
∫ ∞

−∞

[f ′(x)]2

f(x)
dx < ∞

if and only if β > 1
2 (Problem 12.10). This suggests that q.m.d. fails if β ≤ 1

2 ,
which is the case; see Rao (1968) or Le Cam and Yang (2000), pp.188-190.

In the k-dimensional case, sufficient conditions for a family to be q.m.d. in
terms of “ordinary” differentiation can be obtained by an argument similar to
the proof of Theorem 12.2.1. As an example, we state the following (Problem
12.11, or Bickel, Klaassen, Ritov and Wellner (1993), Proposition 2.1).

Theorem 12.2.2 Suppose Ω is an open subset of RI k , and Pθ has density pθ(·)
with respect to a measure µ. Assume pθ(x) is continuously differentiable in θ for
µ-almost all x, with gradient vector ṗθ(x) (of dimension 1 × k). Let

η(x, θ) =
ṗθ(x)

2p1/2
θ (x)

(12.9)

if pθ(x) > 0 and ṗθ(x) exists, and set η(x, θ) = 0 otherwise. Assume the Fisher
Information matrix I(θ) exists and is continuous in θ. Then, the family is q.m.d.
with derivative η(x, θ).

Example 12.2.6 (Exponential Families in Natural Form) Suppose

dPθ

dµ
(x) = pθ(x) = C(θ) exp[〈θ, T (x)〉],

where

Ω = int{θ ∈ RI k :

∫
exp[〈θ, T (x)〉] dµ(x) < ∞}

and T (x) = (T1(x), . . . , Tk(x))T is a Borel vector-valued function on the space X
where µ is defined. This family is q.m.d.

Example 12.2.7 (Three-parameter Lognormal Family) Suppose Pθ is the
distribution of γ +exp(X), where X ∼ N(µ, σ2). Here, θ = (γ, µ, σ), where γ and
µ may take on any real value and σ any positive value. Note the support of the
distribution varies with θ. Theorem 12.2.2 yields that this family is q.m.d., even
though the likelihood function is unbounded.

Example 12.2.8 (Uniform Family) Suppose Pθ is the uniform distribution
on [0, θ]. This family is not q.m.d., which can be seen by the fact that the
convergence (12.6) fails for any choice of η. Indeed, for h > 0,

n

∫
[p1/2

θ0
(x) − p1/2

θ0+hn−1/2(x)]2dx ≥ n

∫ θ0+hn−1/2

θ0

1

θ0 + hn−1/2
dx → ∞ .

In fact, it is quite typical that families whose support depends on unknown
parameters will not be q.m.d., though Example 12.2.7 is an exception.
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We are now in a position to obtain an asymptotic expansion of the loglikelihood
ratio whose asymptotic form corresponds to that of the normal location model
in Example 12.2.1. First, define the score function (or score vector) η̃(x, θ) by

η̃(x, θ) =
2η(x, θ)

p1/2
θ (x)

(12.10)

if pθ(x) > 0 and η̃(x, θ) = 0 otherwise. Under the conditions of Theorem 12.2.2,
η̃(x, θ) can often be computed as the gradient vector of log pθ(x). Also, define the
normalized score vector Zn by

Zn = Zn,θ0 = n−1/2
n∑

i=1

η̃(Xi, θ0) . (12.11)

The following theorem, due to Le Cam, is the main result of this section.

Theorem 12.2.3 Suppose {Pθ, θ ∈ Ω} is q.m.d. at θ0 with derivative η(·, θ0) and
Ω is an open subset of RI k. Suppose I(θ0) is nonsingular. Fix θ0 and consider the
likelihood ratio Ln,h defined by

Ln,h =
Ln(θ0 + hn−1/2)

Ln(θ0)
=

n∏

i=1

pθ0+hn−1/2(Xi)

pθ0(Xi)
, (12.12)

where the likelihood function Ln(·) is defined in (12.1).

(i) Then, as n → ∞,

log(Ln,h) −
[
〈h, Zn〉 −

1
2
〈h, I(θ0)h〉

]
= oP n

θ0
(1). (12.13)

(ii) Under P n
θ0 , Zn

d→ N(0, I(θ0)) and so

log(Ln,h)
d→ N

(
− 1

2 〈h, I(θ0)h〉, 〈h, I(θ0)h〉
)
. (12.14)

Proof. Consider the triangular array Yn,1, . . . , Yn,n, where

Yn,i =
p1/2

θ0+hn−1/2(Xi)

p1/2
θ0

(Xi)
− 1.

Note that Eθ0(Y
2

n,i) ≤ 2 < ∞ and

log(Ln,h) = 2
n∑

i=1

log(1 + Yn,i) . (12.15)

But,

log(1 + y) = y − 1
2y2 + y2r(y) ,

where r(y) → 0 as y → 0, so that

log(Ln,h) = 2
n∑

i=1

Yn,i −
n∑

i=1

Y 2
n,i + 2

n∑

i=1

Y 2
n,i r(Yn,i) .

The idea of expanding the likelihood ratio in terms of variables involving square
roots of densities is known as Le Cam’s square root trick; see Le Cam (1969).



490 12. Quadratic Mean Differentiable Families

The proof of (i) will follow from the following four convergence results:

n∑

i=1

Eθ0(Yn,i) → − 1
8 〈h, I(θ0)h〉 (12.16)

n∑

i=1

[Yn,i − Eθ0(Yn,i)] −
1
2
〈h, Zn〉

P n
θ0→ 0 (12.17)

n∑

i=1

Y 2
n,i

P n
θ0→ 1

4
〈h, I(θ0)h〉 (12.18)

∑
Y 2

n,i r(Yn,i)
P n

θ0→ 0 . (12.19)

Once these four convergences have been established, part (ii) of the theorem
follows by the Central Limit Theorem and the facts that

Eθ0 [〈η̃(X1, θ0), h〉] = 0 by Lemma 12.2.1 (i)

and

Varθ0 [〈η̃(X1, θ0), h〉] = 〈h, I(θ0)h〉 by Lemma 12.2.2.

(a) To show (12.16),

n∑

i=1

Eθ0(Yn,i) = n

∫ 


p1/2

θ0+hn−1/2(x)

p1/2
θ0

(x)
− 1



 pθ0(x) dµ(x)

= −n
2

∫ [
p1/2

θ0+hn−1/2(x) − p1/2
θ0

(x)
]2

dµ(x)

→ − 1
2

∫
|〈η(x, θ0), h〉|2dµ(x)

by (12.6). This last expression is equal to − 1
8 〈h, I(θ0)h〉 by Lemma 12.2.2, and

(12.16) follows.
(b) To show (12.17), write

Yn,i =
1
2
n−1/2〈h, η̃(Xi, θ0)〉 + n−1/2 Rn(Xi)

p1/2
θ0

(Xi)
, (12.20)

where
∫

R2
n(x) dµ(x) → 0 (by q.m.d.). Hence,

n∑

i=1

[Yn,i − Eθ0(Yn,i)] =
1
2
〈h, Zn〉 + hn−1/2

n∑

i=1

[
Rn(Xi)

p1/2
θ0

(Xi)
− Eθ0

(
Rn(Xi)

p1/2
θ0

(Xi)

)]
.

The last term, under P n
θ0 , has mean 0 and variance bounded by

h2Eθ0

[
R2

n(Xi)
pθ0(Xi)

]
= h2

∫
R2

n(x) dµ(x) → 0 .

So, (12.17) follows.
(c) To prove (12.18), by the Weak Law of Large Numbers, under θ0,

1
n

n∑

i=1

[〈h, η̃(Xi, θ0)〉]2 P→ Eθ0{[〈h, η̃(X1, θ0)〉]2} = 〈h, I(θ0)h〉 . (12.21)
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Now using equation (12.20), we get

n∑

i=1

Y 2
n,i = 1

4n

n∑

i=1

[〈h, η̃(Xi, θ0)〉]2 + 1
n

n∑

i=1

R2
n(Xi)

pθ0(Xi)

+ 1
n

n∑

i=1

[〈h, η̃(Xi, θ0)〉]
n∑

j=1

Rn(Xj)

p1/2
θ0

(Xj)
. (12.22)

By (12.21), the first term converges in probability under θ0 to 1
4 〈h, I(θ0)h〉. The

second term is nonnegative and has expectation under θ0 equal to
∫

R2
n(x)µ(dx) → 0 ;

hence, the second term goes to 0 in probability under P n
θ0 by Markov’s inequality.

The last term goes to 0 in probability under P n
θ0 by the Cauchy-Schwarz inequality

and the convergences of the first two terms. Thus, (12.18) follows. By taking
expectations in (12.22), a similar argument shows

nEθ0(Y
2

n,i) =
1
4
〈h, I(θ0)h〉 + o(1) (12.23)

as n → ∞, which also implies Eθ0(Yn,i) → 0.
(d) Finally, to prove (12.19), note that

∣∣∣∣∣

n∑

i=1

Y 2
n,i r(Yn,i)

∣∣∣∣∣ ≤ max
1≤i≤n

|r(Yn,i)|
n∑

i=1

Y 2
n,i.

So, it suffices to show maxi |r(Yn,i)| → 0 in probability under θ0, which follows
if we can show

max
1≤i≤n

|Yn,i|
P n

θ0→ 0 . (12.24)

But,
∑n

i=1[Yn,i −Eθ0(Yn,i)] is asymptotically normal by (12.17) and the Central
Limit Theorem. Hence, Corollary 11.2.2 is applicable with s2

n = O(1), which
yields the Lindeberg Condition

nEθ0 [|Yn,i − Eθ0(Yn,i)|2I{|Yn,i − Eθ0(Yn,i)| ≥ ε}] → 0 (12.25)

for any ε > 0. But then,

Pθ0{ max
1≤i≤n

|Yn,i − Eθ0(Yn,i)| > ε} ≤ nPθ0{|Yn,i − Eθ0(Yn,i)|2 > ε2} ,

which can be bounded by the expression on the left side of (12.25) divided by
ε2, and so max1≤i≤n |Yn,i − Eθ0(Yn,i)| → 0 in probability under θ0. The result
(12.24) follows, since Eθ0(Yn,i) → 0.

Remark 12.2.1 Since the theorem concerns the local behavior of the likelihood
ratio near θ0, it is not entirely necessary to assume Ω is open. However, it is
important to assume θ0 is an interior point; see Problem 12.14.



492 12. Quadratic Mean Differentiable Families

Remark 12.2.2 The theorem holds if h is replaced by hn on the left side of
each part of the theorem where hn → h. Under further assumptions, it is plausible
that the left side of (12.13) tends to 0 in probability uniformly in h as long as h
varies in a compact set; that is, for any c > 0, the supremum over h such that
|h| ≤ c of the absolute value of the left side of (12.13) tends to 0 in probability
under θ0; see Problem 13.12.

12.3 Contiguity

Contiguity is an asymptotic form of a probability measure Q being absolutely
continuous with respect to another probability measure P . In order to motivate
the concept, suppose P and Q are two probability measures on some measurable
space (X ,F). Assume that Q is absolutely continuous with respect to P . This
means that E ∈ F and P (E) = 0 implies Q(E) = 0.

Suppose T = T (X) is a random vector from X to RI k , such as an estimator,
test statistic, or test function. How can one compute the distribution of T under
Q if you know how to compute probabilities or expectations under P? Specifically,
suppose it is required to compute EQ[f(T )], where f is some measurable function
from RI k to RI . Let p and q denote the densities of P and Q with respect to a
common measure µ. Then, assuming Q is absolutely continuous with respect to
P ,

EQ[f(T (X))] =

∫

X
f(T (x))dQ(x) (12.26)

=

∫

X
f(T (x))

q(x)
p(x)

p(x)dµ(x) = EP [f(T (X))L(X)] , (12.27)

where L(X) is the usual likelihood ratio statistic:

L(X) =
q(X)
p(X)

. (12.28)

Hence, the distribution of T (X) under Q can be computed if the joint distribution
of (T (X), L(X)) under P is known. Let F T,L denote the joint distribution of
(T (X), L(X)) under P . Then, by taking f to be the indicator function f(T (X)) =
IB [T (X)] defined to be equal to one if T (X) falls in B and equal to zero otherwise,
we obtain:

Q{T (X) ∈ B} =

∫

X
I(T (x) ∈ B)L(x)p(x)µ(dx) (12.29)

= EP [I(T (X) ∈ B)L(X)] =

∫

B× RI
rdF T,L(t, r) . (12.30)

Thus, under absolute continuity of Q with respect to P , the problem of finding
the distribution of T (X) under Q can in principle be obtained from the joint
distribution of T (X) and L(X) under P .

More generally, if f = f(t, r) is a function from RI k × RI to RI ,

EQ[f(T (X), L(X))] =

∫

RI k × RI
f(t, r)rdF T,L(t, r) (12.31)
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(Problem 12.18).
Contiguity is an asymptotic version of absolute continuity that permits an

analogous asymptotic statement. Consider sequences of pairs of probabilities
{Pn, Qn}, where Pn and Qn are probabilities on some measurable space (Xn,Fn).
Let Tn be some random vector from Xn to RI k . Suppose the asymptotic distri-
bution of Tn under Pn is easily obtained, but the behavior of Tn under Qn is also
required. For example, if Tn represents a test function for testing Pn versus Qn,
the power of Tn is the expectation of Tn under Qn. Contiguity provides a means
of performing the required calculation. An example may help fix ideas.

LetX1, . . . ,Xn be
i.i.d. real-valued random variables with common density f(·). Assume that f(·)
is symmetric about θ. The problem is to test the null hypothesis that θ = 0
against the alternative hypothesis that θ > 0. Consider the Wilcoxon signed rank
statistic defined by:

Wn = Wn(X1, . . . , Xn) = n−3/2
n∑

i=1

R+
i,nsign(Xi) , (12.32)

where sign(Xi) is 1 if Xi ≥ 0 and is −1 otherwise, and R+
i,n is the rank of |Xi|

among |X1|, . . . , |Xn|. Under the null hypothesis, the behavior of Wn is fairly easy
to obtain. If θ = 0, the variables sign(Xi) are i.i.d., each 1 or -1 with probability
1/2, and are independent of the variables R+

i,n. Hence, Eθ=0(Wn) = 0. Define

Ĩk to be 1 if the kth largest |Xi| corresponds to a positive observation and −1
otherwise. Then, we have

V arθ=0(Wn) = n−3V ar(
n∑

k=1

kĨk) (12.33)

= n−3
n∑

k=1

k2 = n−3 n(n + 1)(2n + 1)
6

→ 1
3

(12.34)

as n → ∞. Not surprisingly, Wn
d→ N(0, 1

3 ). To see why, note that
(Problem 12.19)

Wn − n−1/2
n∑

i=1

Uisign(Xi) = oP (1) , (12.35)

where Ui = G(|Xi|) and G is the c.d.f. of |Xi|. But, under the null hypothesis,
Ui and sign(Xi) are independent. Moreover, the random variables Uisign(Xi) are
i.i.d., and so the Central Limit Theorem is applicable. Thus, Wn is asymptotically
normal with mean 0 and variance 1/3, and this is true whenever the underlying
distribution has a symmetric density about 0. Indeed, the exact distribution of
Wn is the same for all distributions symmetric about 0. Hence, the test that
rejects the null hypothesis if Wn exceeds 3−1/2z1−α has limiting level 1 − α. Of
course, for finite n, critical values for Wn can be obtained exactly. Suppose now
that we want to approximate the power of this test. The above argument does
not generalize to even close alternatives since it heavily uses the fact that the
variables are symmetric about zero. Contiguity provides a fairly simple means of
attacking this problem, and we will reconsider this example later.

Example 12.3.1 (The Wilcoxon Signed Rank Statistic)
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We now return to the general setup.

Definition 12.3.1 Let Pn and Qn be probability distributions on (Xn,Fn).
The sequence {Qn} is contiguous to the sequence {Pn} if Pn(En) → 0 implies
Qn(En) → 0 for every sequence {En} with En ∈ Fn.

The following equivalent definition is sometimes useful. The sequence {Qn} is
contiguous to {Pn} if for every sequence of real-valued random variables Tn such
that Tn → 0 in Pn-probability we also have Tn → 0 in Qn-probability.

If {Qn} is contiguous to {Pn} and {Pn} is contiguous to {Qn}, then we say
the sequences {Pn} and {Qn} are mutually contiguous, or just contiguous.

Example 12.3.2 Suppose Pn is the standard normal distribution N(0, 1) and
Qn is N(ξn, 1). Unless ξn is bounded, Pn and Qn cannot be contiguous. Indeed,
suppose ξn → ∞ and consider En = {x : |x − ξn| < 1}. Then, Qn(En) ≈ 0.68
for all n, but Pn(En) → 0. Note that, regardless of the values of ξn, Pn and Qn

are mutually absolutely continuous for every n.

Example 12.3.3 Suppose Pn is the joint distribution of n i.i.d. observations
X1, . . . , Xn from N(0, 1) and Qn is the joint distribution of n i.i.d. observations
from N(ξn, 1). Unless ξn → 0, Pn and Qn cannot be contiguous. For example,
suppose ξn > ε > 0 for all large n. Let X̄n = n−1 ∑n

i=1 Xi and consider En =
{X̄n > ε/2}. By the law of large numbers, Pn(En) → 0 but Qn(En) → 1. As will
be seen shortly, in order for Pn and Qn to be contiguous, it will be necessary and
sufficient for ξn → 0 in such a way so that n1/2ξn remains bounded.

We now would like a useful means of determining whether or not Qn is con-
tiguous to Pn. Suppose Pn and Qn have densities pn and qn with respect to µn.
For x ∈ Xn, define the likelihood ratio of Qn with respect to Pn by

Ln(x) =






qn(x)
pn(x) if pn(x) > 0

∞ if pn(x) = 0 < qn(x)
1 if pn(x) = qn(x) = 0.

(12.36)

Under Pn or Qn, the event {pn = qn = 0} has probability 0, so it really doesn’t
matter how Ln is defined in this case (as long as it is measurable). Note that Ln

is regarded as an extended random variable, which means it is allowed to take on
the value ∞, at least under Qn. Of course, under Pn, Ln is finite with probability
one.

Observe that

EPn(Ln) =

∫

Xn

Ln(x)pn(x)µn(dx) =

∫

{x: pn(x)>0}
qn(x)µn(dx)

= Qn{x : pn(x) > 0} = 1 − Qn{x : pn(x) = 0} ≤ 1 , (12.37)

with equality if and only if Qn is absolutely continuous with respect to Pn.

Example 12.3.4 (Contiguous but not absolutely continuous sequence)
Suppose Pn is uniformly distributed on [0, 1] and Qn is uniformly distributed on
[0, θn], where θn > 1. Then, Qn is not absolutely continuous with respect to Pn.
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Note that the likelihood ratio Ln is equal to 1/θn with probability one under Pn,
and so

EPn(Ln) =
1
θn

< 1 .

It will follow from Theorem 12.3.1 that Qn is contiguous to Pn if θn → 1.

The notation L(T |P ) refers to the distribution of a random variable (or possibly
an extended random variable) T = T (X) when X is governed by P . Let Gn =
L(Ln|Pn), the distribution of the likelihood ratio under Pn. Note that Gn is a
tight sequence, because by Markov’s inequality,

Pn{Ln > c} ≤ EPn(Ln)
c

≤ 1
c

, (12.38)

where the last inequality follows from (12.37).
The statement that EPn(Ln) = 1 implies that Qn is absolutely continuous

with respect to Pn, by (12.37). The following result, known as Le Cam’s First
Lemma, may be regarded as an asymptotic version of this statement.

Theorem 12.3.1 Given Pn and Qn, consider the likelihood ratio Ln defined in
(12.36). Let Gn denote the distribution of Ln under Pn. Suppose Gn converges
weakly to a distribution G. If G has mean 1, then Qn is contiguous to Pn.

Proof. Suppose Pn(En) = αn → 0. Let φn be a most powerful level αn test of
Pn versus Qn. By the Neyman-Pearson Lemma, the test is of the form

φn =

{
1 if Ln > kn

0 if Ln < kn,
(12.39)

for some kn chosen so the test is level αn. Since φn is at least as powerful as the
test that has rejection region En,

Qn{En} ≤
∫

φndQn ,

so it suffices to show the right side tends to zero. Now, for any y < ∞,
∫

φndQn =

∫

Ln≤y

φndQn +

∫

Ln>y

φndQn

≤ y

∫
φndPn +

∫

Ln>y

dQn ≤ y

∫
φndPn + 1 −

∫

Ln≤y

dQn

= yαn + 1 −
∫

Ln≤y

LndPn = yαn + 1 −
∫ y

0

xdGn(x) .

Fix any ε > 0 and take y to be a continuity point of G with
∫ y

0

xdG(x) > 1 − ε
2

,

which is possible since G has mean 1. But Gn converges weakly to G implies
∫ y

0

xdGn(x) →
∫ y

0

xdG(x) , (12.40)
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by an argument like that in Example 11.2.14 (Problem 12.27). Thus, for
sufficiently large n,

1 −
∫ y

0

xdGn(x) <
ε
2

and yαn < ε/2. It follows that, for sufficiently large n,
∫

φndQn < ε ,

as was to be proved.

The following result summarizes some equivalent characterizations of contigu-
ity. The notation L(T |P ) refers to the distribution (or law) of a random variable
T under P .

Theorem 12.3.2 The following are equivalent characterizations of {Qn} being
contiguous to {Pn}.

(i) For every sequence of real-valued random variables Tn such that Tn → 0 in
Pn-probability, it also follows that Tn → 0 in Qn-probability.

(ii) For every sequence Tn such that L(Tn|Pn) is tight, it also follows that
L(Tn|Qn) is tight.

(iii) If G is any limit point 3 of L(Ln|Pn), then G has mean 1.

Proof. First, we show that (ii) implies (i). Suppose Tn → 0 in Pn-probability;
that is, Pn{|Tn| > δ} → 0 for every δ > 0. Then, there exists εn ↓ 0 such that
Pn{|Tn| > εn} → 0. So, |Tn|/εn is tight under {Pn}. By hypothesis, |Tn|/εn is
also tight under {Qn}. Assume the conclusion that Tn → 0 in Qn-probability
fails; then, one could find ε > 0 such that Qn{|Tn| > ε} > ε for infinitely many
n. Then, of course, Qn{|Tn| >

√
εn} > ε for infinitely many n. Since 1/

√
εn ↑ ∞,

it follows that |Tn|/εn cannot be tight under {Qn}, which is a contradiction.
Conversely, to show that (i) implies (ii), assume that L(Tn|Pn) is tight. Then,

given ε > 0, there exists k such that Pn{|Tn| > k} < ε/2 for all n. If L(Tn|Qn) is
not tight, then for every j, Qn{|Tn| > j} > ε for some n. That is, there exists a
subsequence nj such that Qnj{|Tnj | > j} > ε for every j. As soon as j > k,

Pnj{|Tnj | > j} ≤ Pnj{|Tnj | > k} <
ε
2

,

a contradiction.
To show (iii) implies (i), first recall (12.38), which implies Gn is tight. Assuming

Pn{An} → 0, we must show Qn{An} → 0. Assume that this is not the case.
Then, there exists a subsequence nj and ε > 0 such that Qnj{Anj} ≥ ε for all nj .
But, there exists a further subsequence njk such that Gnjk

converges to some G.
Assuming (iii), G has mean 1. By Theorem 12.3.1, Pnjk

and Qnjk
are contiguous.

Since Qnjk
{Anjk

} → 0, this is a contradiction.

3G is a limit point of a sequence Gn of distributions if Gnj converges in distribution
to G for some subsequence nj .
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Conversely, suppose (i) and that Gn converges weakly to G (or apply the fol-
lowing argument to any convergent subsequence). By Example 11.2.14, it follows
that

∫
xdG(x) ≤ lim inf

n
EPn(Ln) ≤ 1 ,

so it suffices to show
∫

xdG(x) ≥ 1. Let t be a continuity point of G. Then, also
by Example 11.2.14 (specifically (11.39)),

∫
xdG(x) ≥

∫

{x≤t}
xdG(x) = lim

n
EPn(Ln1{Ln ≤ t}) = lim

n
Qn{Ln ≤ t} .

So, it suffices to show that, given any ε > 0, there exists a t such that Qn{Ln >
t} < ε for all large n. If this fails, then for every j, there exists nj such that
Qnj{Lnj > j} > ε. But, by (12.38),

Pnj{Lnj > j} ≤ 1
j
→ 0

as j → ∞, which would contradict (i).

As will be seen in many important examples, loglikelihood ratios are typically
asymptotically normally distributed, and the following corollary is useful.

Corollary 12.3.1 Consider a sequence {Pn, Qn} with likelihood ratio Ln defined
in (12.36). Assume

L(Ln|Pn)
d→ L(eZ) , (12.41)

where Z is distributed as N(µ, σ2). Then, Qn and Pn are mutually contiguous if
and only if µ = −σ2/2.

Proof. To show Qn is contiguous to Pn, apply part (iii) of Theorem 12.3.2
by showing E(eZ) = 1. But, recalling the characteristic function of Z from
equation (11.10), it follows that

E(eZ) = exp(µ +
1
2
σ2) ,

which equals 1 if and only if µ = −σ2/2. That Pn is contiguous to Qn follows by
Problem 12.23.

We may write (12.41) equivalently as

L(log(Ln)|Pn)
d→ L(Z) .

However, since Pn{Ln = 0} may be positive, we may have log(Ln) = −∞ with
positive probability, in which case log(Ln) is regarded as an extended real-valued
random variable taking values in RI

⋃
{±∞}. If Xn is an extended real-valued

random variable and X is a real-valued random variable with c.d.f. F , we say (as
in Definition 11.2.1) Xn converges in distribution to X if

Pn{Xn ∈ (−∞, t]} → F (t)

whenever t is a continuity point of F . It follows that if Xn converges in distribu-
tion to a random variable that is finite (with probability one), then the probability
that Xn is finite must tend to 1.
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Example 12.3.5 (Example 12.3.2, continued). Again, suppose that Pn =
N(0, 1) and Qn = N(ξn, 1). In this case,

Ln = Ln(X) = exp(ξnX − 1
2
ξ2

n) .

Thus,

L(log(Ln)|Pn) = N

(
−ξ2

n

2
, ξ2

n

)
.

Such a sequence of distributions will converge weakly along a subsequence nj if
and only if ξnj → ξ (for some |ξ| < ∞), in which case, the limiting distribution is

N(−ξ2

2 , ξ2) and the relationship between the mean and the variance (µ = −σ2/2)
is satisfied. Hence, Qn is contiguous to Pn if and only if ξn is bounded. In fact,
Qn and Pn are mutually contiguous under the same condition.

Example 12.3.6 (Example 12.3.3, continued). Suppose X1, . . . , Xn are
i.i.d. with common distribution N(ξ, 1). Let Pn represent the joint distribution
when ξ = 0 and let Qn represent the joint distribution when ξ = ξn. Then,

log(Ln(X1, . . . , Xn)) = ξn

n∑

i=1

Xi −
nξ2

n

2
, (12.42)

and so

L(log(Ln)|Pn) = N

(
−nξ2

n

2
, nξ2

n

)
.

By an argument similar to that of the previous example, Qn is contiguous to Pn

if and only if nξ2
n remains bounded, i.e. ξn = O(n−1/2); Pn and Qn are mutually

contiguous if and only if the same condition holds. Note that, even if ξn → 0,
but at a rate slower than n−1/2, Qn is not contiguous to Pn. This is related
to the assertion that the problem of testing Pn versus Qn is degenerate unless
ξn = n−1/2, in the sense that the most powerful level α test φn has asymptotic
power satisfying Eξn(φn) → 1 if n1/2|ξn| → ∞ and Eξn(φn) → α if n1/2ξn → 0.4

Indeed, suppose without loss of generality that ξn > 0. Then, the most powerful
level α test rejects when n1/2X̄n > z1−α, where X̄n =

∑
i=1 Xi/n and z1−α

denotes the 1−α quantile of the standard normal distribution. The power of φn

against ξn is then

Pξn{n
1/2X̄n > z1−α} == P{Z > z1−α − n1/2ξn},

where Z is a standard normal variable. Clearly, the last expression tends to 1 if
and only if n1/2ξn → ∞; furthermore, it tends to α if and only if n1/2ξn → 0.
The limiting power is bounded away from α and 1 if and only if ξn = n−1/2.

Example 12.3.7 (Q.m.d. families) Let {Pθ, θ ∈ Ω} with Ω an open subset
of RI k be q.m.d., with corresponding densities pθ(·). By Theorem 12.2.3, under

4Two real-valued sequences {an} and {bn} are said to be of the same order, written
an ) bn if |an/bn| is bounded away from 0 and ∞.
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θ0,

log(
dP n

θ0+hn−1/2

dP n
θ0

) = n−1/2
n∑

i=1

〈h, η̃(Xi, θ0)〉 −
1
2
〈h, I(θ0)h〉 + oP n

θ0
(1), (12.43)

where η̃(x, θ) = 2η(x, θ)/p1/2
θ (x), η(·, θ) is the quadratic mean derivative at θ,

and I(θ) is the Information matrix at θ. Hence, by Corollary 12.3.1, P n
θ0+hn−1/2

and P n
θ0 are mutually contiguous.

Suppose Qn is contiguous to Pn. As before, let Ln be the likelihood ratio
defined by (12.28). Let Tn be an arbitrary sequence of real-valued statistics. The
following theorem allows us to determine the asymptotic behavior of (Tn, Ln)
under Qn from the behavior of (Tn, Ln) under Pn.

Theorem 12.3.3 Suppose Qn is contiguous to Pn. Let Tn be a sequence of real-
valued random variables. Suppose, under Pn, (Tn, Ln) converges in distribution to
a limit law F (·, ·); that is, for any bounded continuous function f on (−∞,∞)×
[0,∞),

EPn [f(Tn, Ln)] →
∫ ∫

f(t, r)dF (t, r) . (12.44)

Then, the limiting distribution of (Tn, Ln) under Qn has density rdF (t, r); that
is,

EQn [f(Tn, Ln)] →
∫ ∫

f(t, r)rdF (t, r) (12.45)

for any bounded continuous f . Equivalently, if under Pn (Tn, log(Ln)) converges
weakly to a limit law F̄ (·, ·), then

EQn [f(Tn, log(Ln))] →
∫ ∫

f(t, r)erdF̄ (t, r) (12.46)

for any bounded continuous f .

Note that equation (12.45) is simply an asymptotic version of (12.31).

Remark 12.3.1 The result is also true if Tn is vector-valued, and the proof is
the same.

Proof. Let Fn = L((Tn, Ln)|Pn) and Gn = L((Tn, Ln)|Qn). Since Ln converges
in distribution under Pn, contiguity and Theorem 12.3.2 (iii) imply that

∫
rdF (t, r) = 1 .

Thus, rdF (t, r) defines a probability distribution on (−∞,∞) × [0,∞).
Let f be a nonnegative, continuous function on (−∞,∞) × [0,∞]. By the

Portmanteau Theorem (Theorem 11.2.1 (vi)), it suffices to show that

lim inf
n

∫
f(t, r)dGn(t, r) ≥

∫
f(t, r)rdF (t, r) .
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Note that
∫

f(t, r)dGn(t, r) = EQn [f(Tn, Ln)] =

∫
f(Tn, Ln)dQn

≥
∫

{pn>0}
f(Tn, Ln)dQn =

∫
f(Tn, Ln)LndPn =

∫
f(t, r)rdFn(t, r) .

So, it suffices to show

lim inf
n

∫
f(t, r)rdFn(t, r) ≥

∫
rf(t, r)dF (t, r) .

But, rf(t, r) is a nonnegative, continuous function, and so the result follows again
by the Portmanteau Theorem.

The following special case is often referred to as Le Cam’s Third Lemma.

Corollary 12.3.2 Assume that, under Pn, (Tn, log(Ln))
d→ (T, Z), where (T, Z)

is bivariate normal with E(T ) = µ1, V ar(T ) = σ2
1, E(Z) = µ2, V ar(Z) = σ2

2 and
Cov(T, Z) = σ1,2. Assume µ2 = −σ2

2/2, so that Qn is contiguous to Pn. Then,
under Qn, Tn is asymptotically normal:

L(Tn|Qn)
d→ N(µ1 + σ1,2, σ

2
1) .

Proof. Let F̄ (·, ·) denote the bivariate normal distribution of (T, Z). By
Theorem 12.3.3, the limiting distribution of L((Tn, log(Ln))|Qn) has density
erdF̄ (x, r); let (T̃ , Z̃) denote a random variable having this distribution. The
characteristic function of T̃ is given by:

E(eiλT̃ ) =

∫
eiλxerdF̄ (x, r) = E(eiλT+Z) , (12.47)

which is the characteristic function of (T, Z) evaluated at t = (t1, t2)
T = (λ,−i)T .

By Example 11.2.1, this is given by

exp(i〈µ, t〉 − 1
2
〈Σt, t〉) = exp(iµ1λ + µ2 −

1
2
〈Σ(λ,−i)T , (λ,−i)T 〉)

= exp(iµ1λ + µ2 −
1
2
λ2σ2

1 + λiσ1,2 +
σ2

2

2
) = exp[i(µ1 + σ1,2)λ − 1

2
λ2σ2

1 ] ,

the last equality following from the fact that µ2 = −σ2
2/2 (by contiguity). But,

this last expression is indeed the characteristic function of the normal distribution
with mean µ1 + σ1,2 and variance σ2

1 .

Example 12.3.8 (Asymptotically Linear Statistic) Let {Pθ, θ ∈ Ω} with
Ω an open subset of RI k be q.m.d., with corresponding densities pθ(·). Recall
Example 12.3.7, which shows that P n

θ0+hn−1/2 and P n
θ0 are mutually contiguous.

The expansion (12.43) shows a lot more. For example, suppose an estimator
(sequence) θ̂n is asymptotically linear in the following sense: under θ0,

n1/2(θ̂n − θ0) = n−1/2
n∑

i=1

ψθ0(Xi) + oP n
θ0

(1) , (12.48)
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where Eθ0 [ψθ0(X1)] = 0 and τ2 ≡ V arθ0 [ψθ0(X1)] < ∞. Thus, under θ0,

n1/2(θ̂n − θ0)
d→ N(0, τ2) .

Then, the joint behavior of θ̂n with the loglikelihood ratio satisfies

(n1/2(θ̂n − θ0), log(
dP n

θ0+hn−1/2

dP n
θ0

)) (12.49)

= [n−1/2
n∑

i=1

(ψθ0(Xi), 〈h, η̃(Xi, θ0)〉)] + (0,−1
2
〈h, I(θ0)h〉) + oP n

θ0
(1) .

By the bivariate Central Limit Theorem, this converges under θ0 to a bivariate
normal distribution with covariance

σ1,2 ≡ Covθ0(ψθ0(X1), 〈h, η̃(Xi, θ0)〉) . (12.50)

Hence, under P n
θ0+hn−1/2 , n1/2(θ̂n − θ0) converges in distribution to N(σ1,2, τ

2),
by Corollary 12.3.2. It follows that, under P n

θ0+hn−1/2 ,

n1/2(θ̂n − (θ0 + hn−1/2))
d→ N(σ1,2 − h, τ2) .

Example 12.3.9 (t-statistic) Consider a location model f(x − θ) for which
f(x) has mean 0 and variance σ2, and which satisfies the assumptions of Corollary
12.2.1, which imply this family is q.m.d. For testing θ = θ0 = 0, consider the
behavior of the usual t-statistic

tn =
n1/2X̄n

Sn
=

n1/2X̄n

σ
+ oPθ0

(1) .

Then, (12.48) holds with ψθ0(Xi) = Xi/σ. We seek the behavior of tn under
θn = h/n1/2. Although this can be obtained by direct means, let us obtain the
results by contiguity. Note that (12.43) holds with

η̃(Xi, θ0) = −f ′(x)
f(x)

.

Thus, σ1,2 in (12.50) reduces to

σ1,2 = −h
σ

Covθ0=0

(
Xi,

f ′(Xi)
f(Xi)

)
= −h

σ

∫ ∞

−∞
xf ′(x)dx =

h
σ

.

Hence, under θn = h/n1/2,

tn
d→ N(

h
σ

, 1) .

Example 12.3.10 (Sign Test) As in the previous example, consider a location
model f(x − θ), where f is a density with respect to Lebesgue measure. Assume
the conditions in Corollary 12.2.1, so that the family is q.m.d. Further suppose
that f(x) is continuous at x = 0 and Pθ=0{Xi > 0} = 1/2. For testing θ = θ0 = 0,
consider the (normalized) sign statistic

Sn = n−1/2
n∑

i=1

[I{Xi > 0}− 1
2
] ,
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where I{Xi > 0} is one if Xi > 0 and is 0 otherwise. Then, (12.48) holds with
ψ0(Xi) = I{Xi > 0}− 1

2 and so

Sn
d→ N(0,

1
4
) .

Under θn = h/n1/2, Sn
d→ N(σ1,2, 1/4), where σ1,2 is given by (12.50) and equals

σ1,2 = −hCov0

[
I{Xi > 0}, f ′(Xi)

f(Xi)

]
= −h

∫ ∞

0

f ′(x)dx = hf(0) .

Hence, under θn = h/n1/2,

Sn
d→ N(hf(0),

1
4
) .

Example 12.3.11 (Example 12.3.1, continued). Recall the Wilcoxon signed
rank statistic Wn given by (12.32). For illustration, suppose the underlying den-
sity f(·) of the observations is normal with mean θ and variance 1. Under the null
hypothesis θ = 0, Wn is asymptotically normal N(0, 1

3 ). The problem now is to

compute the asymptotic power against the sequence of alternatives θn = h/n1/2

for some h > 0. Under the null hypothesis, by (12.35) and (12.42),

(Wn, log(Ln)) = (n−1/2
n∑

i=1

Uisign(Xi), hn−1/2
n∑

i=1

Xi −
h2

2
) + oP n

0
(1) , (12.51)

where Ui = G(|Xi|) and G is the c.d.f. of |Xi|. This last expression is
asymptotically bivariate normal with covariance under θ = 0 equal to

σ1,2 = hCov0[G(|X1|)sign(X1), X1] = hE0[G(|X1|)|X1|] , (12.52)

and thus σ1,2 is equal to h/
√

π (Problem 12.28). Hence, under θn = h/n1/2, Wn is
asymptotically normal with mean h/

√
π and variance 1/3. Thus, the asymptotic

power of the test that rejects when Wn > 3−1/2z1−α is

lim
n→∞

Pθn{Wn − h√
π

> 3−1/2z1−α − h√
π
} = 1 − Φ(z1−α − (3/π)1/2h) ,

where Φ(·) is the standard normal c.d.f.
More generally, assume the underlying model is a location model f(x − θ),

where f(x) is assumed symmetric about zero. Assume f ′(x) exists for Lebesgue
almost all x and

0 < I ≡
∫

[f ′(x)]2

f(x)
dx < ∞ .

Then, by Corollary 12.2.1, this model is q.m.d. and (12.43) holds with

η̃(x, 0) = −f ′(x)
f(x)

.

Under the null hypothesis θ = 0, Wn
d→ N(0, 1/3), as in the normal case. Under

the sequence of alternatives θn = h/n1/2,

Wn
d→ N(σ1,2,

1
3
) ,
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where σ1,2 is given by (12.50). In this case,

σ1,2 = Covθ=0[Usign(X),−h
f ′(X)
f(X)

] ,

where U = G(|X|) and G is the c.d.f. of |X| when X has density f(·). So,
G(x) = 2F (x) − 1, where F is the c.d.f. of X. By an integration by parts (see
Problem 12.29),

σ1,2 = −hEθ=0[G(|X|)sign(X)
f ′(X)
f(X)

] = 2h

∫ ∞

−∞
f2(x)dx . (12.53)

Thus, under θn = h/n1/2,

Wn
d→ N(2h

∫ ∞

−∞
f2(x)dx,

1
3
) .

Example 12.3.12 (Neyman-Pearson Statistic) Assume {Pθ, θ ∈ Ω} is
q.m.d. at θ0, where Ω is an open subset of RI k and I(θ0) is nonsingular, so
that the assumptions behind Theorem 12.2.3 are in force. Let pθ(·) be the cor-
responding density of Pθ. Consider the likelihood ratio statistic based on n i.i.d.
observations X1, . . . , Xn given by

Ln,h =
dP n

θ0+hn−1/2

dP n
θ0

=
n∏

i=1

pθ0+hn−1/2(Xi)

pθ0(Xi)
. (12.54)

By Theorem 12.2.3, under Pθ0 ,

log(Ln,h)
d→ N(−σ2

h

2
, σ2

h) , (12.55)

where σ2
h = 〈h, I(θ0)h〉. Apply Corollary 12.3.2 with Tn ≡ log(Ln,h), so that

T = Z and σ1,2 = σ2
h. Then, under P n

θ0+hn−1/2 , log(Ln,h) is asymptotically

N(
σ2

h
2 , σ2

h). Hence, the test that rejects when log(Ln,h) exceeds − 1
2σ2

h + z1−ασh

is asymptotically level α for testing θ = θ0 versus θ = θ0 + hn−1/2, where z1−α

denotes the 1−α quantile of N(0, 1). Then, the limiting power of this test sequence
for testing θ = θ0 versus θ = θ0 + hn−1/2 is 1−Φ(z1−α − σh) (Problem 12.30).

12.4 Likelihood Methods in Parametric Models

The goal of this section is to study some classical large sample methods based on
the likelihood function. The classical likelihood ratio test, as well as the tests of
Wald and Rao will be introduced, but optimality of these tests will be deferred
until the next chapter. Throughout this section, we will assume that X1, . . . , Xn

are i.i.d. with common distribution Pθ, where θ ∈ Ω and Ω is an open subset
of RI k . We will also assume each Pθ is absolutely continuous with respect to a
common σ-finite measure µ, so that pθ denotes the density of Pθ with respect to
µ. The likelihood function is defined by

Ln(θ) =
n∏

i=1

pθ(Xi) . (12.56)
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It is thus the (joint) probability density of the observations at fixed values of
X1, . . . , Xn, viewed as a function of θ. Note that, for the sake of simplicity,
the dependence of Ln(θ) on X1, . . . , Xn has been suppressed. (In the case that
X1, . . . , Xn are not i.i.d., Ln(θ) is modified so that the joint density of the Xi’s
is used rather than the product of the marginal densities.)

12.4.1 Efficient Likelihood Estimation

In preparation for the construction of reasonable large sample tests and confidence
regions, we begin by studying some efficient point estimators of θ which will serve
as a basis for such tests. If the likelihood Ln(θ) has a unique maximum θ̂n, then
θ̂n is called the maximum likelihood estimator (MLE) of θ. If, in addition, Ln(θ)
is differentiable in θ, θ̂n will be a solution of the likelihood equations

∂
∂θj

log Ln(θ) = 0 j = 1, . . . , k .

Example 12.4.1 (Normal Family) Suppose X1, . . . , Xn is an i.i.d. sample
from N(µ, σ2), with both parameters unknown, so θ = (µ, σ2)T . In this case,
the log likelihood function is

log Ln(µ, σ2) = −n
2

log(2π) − n log(σ) − 1
2σ2

n∑

i=1

(Xi − µ)2 ,

and the likelihood equations reduce to

1
σ2

n∑

i=1

(Xi − µ) = 0

and

− n
2σ2

+
1

2σ4

n∑

i=1

(Xi − µ)2 = 0 .

These equations have a unique solution, given by the maximum likelihood esti-
mator (µ̂n, σ̂2

n), where µ̂n = X̄n is the usual sample mean and σ̂2
n is the biased

version of the sample variance given by

σ̂2
n = n−1

∑
(Xi − X̄n)2

(Problem 12.35). By the weak law of large numbers, X̄n → µ in probability;
by Example 11.2.6, σ̂2

n → σ2 in probability as well. A direct argument easily
establishes the joint limiting distribution of the MLE. First note that

n1/2[σ̂2
n − n−1

n∑

i=1

(Xi − µ)2] = n1/2(X̄n − µ)2
P→ 0

since n1/2(X̄n − µ) is N(0, σ2) and X̄n − µ
P→ 0. Hence, by Slutsky’s Theorem,

n1/2((X̄n, σ̂2
n)T − (µ, σ2)T ) has the same limiting distribution as

n1/2[(X̄n, n−1
n∑

i=1

(Xi − µ)2)T − (µ, σ2)T ] ,
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which by the multivariate CLT tends in distribution to N(0, Σ), where Σ is the 2×
2 diagonal matrix with (i, j) entry σi,j given by σ1,1 = σ2 and σ2,2 = V ar[(X1 −
µ)2] = 2σ4. In fact, Σ = I−1(θ) in this case.

Example 12.4.2 (MLE for a one-parameter exponential family) Suppose
X1, . . . , Xn is an i.i.d. sample from a one-parameter exponential family with
common density with respect to a σ-finite measure µ given by

pθ(x) = exp[θT (x) − A(θ)] .

Here, θ is assumed to be an interior point of the natural parameter space. From
Problem 2.16, recall that Eθ[T (Xi)] = A′(θ) and V arθ[T (Xi)] = A′′(θ). To show
the maximum likelihood estimator is well-defined and to find an expression for
it, we examine the derivative of the log of Ln(θ), which is equal to

∂ log Ln(θ)
∂θ

=
n∑

i=1

[T (Xi) − A′(θ)] .

The likelihood equation sets this equal to zero, which reduces to the equation
T̄n = A′(θ), where T̄n = n−1 ∑n

i=1 T (Xi). Hence, the MLE is found by equat-
ing the sample mean of the T (Xi) values to its expected value. Assuming the
equation T̄n = A′(θ) can be solved for θ, it must be the maximum likelihood
estimator. Indeed, the second derivative of the log likelihood is −nA′′(θ) < 0,
which also shows there can at be at most one solution to the likelihood equation.

Furthermore, by the law of large numbers, T̄n
P→ A′(θ), which combined with

the fact that A′′(θ) > 0 yields that, with probability tending to one, there ex-
ists exactly one solution to the likelihood equation. Thus, θ̂n is well-defined with
probability tending to one. To determine its limiting distribution, first note that

n1/2[T̄n − A′(θ)]
d→ N(0, A′′(θ)) ,

by the Central Limit Theorem. Since A′ is strictly increasing, we can define the
inverse function B of A′ so that B(A′(θ)) = θ. Then, θ̂n = B(A′(θ̂n)) = B(T̄n).
By the delta method,

n1/2(θ̂n − θ)
d→ N(0, τ2) ,

where

τ2 = A′′(θ)[B′(A′(θ))]2 .

But using the chain rule to differentiate both sides of the identity B(A′(θ)) = θ
yields B′(A′(θ))A′′(θ) = 1, so that

n1/2(θ̂n − θ)
d→ N

(
0,

1
A′′(θ)

)
.

In fact, the asymptotic variance [A′′(θ)]−1 is I−1(θ), where I(θ) is the Fisher
Information.

Problem 12.37 generalizes the previous example to multiparameter exponential
families.

The general theory of asymptotic normality of the MLE is much more difficult
and we shall here only give a heuristic treatment. For precise conditions and
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rigorous proofs, see Lehmann and Casella (1998), Chapter 6 and Ibragimov and
Has’minskii (1981), Section 3.3. Let X1, . . . , Xn be i.i.d. according to a family
{Pθ} which is q.m.d. at θ0 with nonsingular Fisher Information matrix I(θ0) and
quadratic mean derivative η(·, θ0). Define

Ln,h =
Ln(θ0 + hn−1/2)

Ln(θ0)
. (12.57)

By Theorem 12.2.3,

log(Ln,h) = 〈h, Zn〉 −
1
2
〈h, I(θ0)h〉 + oP n

θ0
(1) , (12.58)

where Zn is the normalized score vector

Zn = Zn(θ0) = 2n−1/2
n∑

i=1

[η(Xi, θ0)/p1/2
θ0

(Xi)] (12.59)

and satisfies, under θ0,

Zn
d→ N(0, I(θ0)) .

Note that Zn = Zn(θ0) depends on θ0, but we will usually omit this dependence
in the notation.

If the MLE θ̂n is well-defined, then θ̂n = θ0 + ĥnn−1/2, where ĥn is the value
of h maximizing Ln,h. The result (12.58) suggests that, if θ0 is the true value, ĥn

is approximately equal to h̃n which maximizes

log(L̃n,h) ≡ 〈h, Zn〉 −
1
2
〈h, I(θ0)h〉 . (12.60)

Since log(L̃n,h) is a simple (quadratic) function of h, it is easily checked (Problem
12.44) that

h̃n = I−1(θ0)Zn . (12.61)

It then follows that

n1/2(θ̂n − θ0) = ĥn ≈ h̃n = I−1(θ0)Zn
d→ N(0, I−1(θ0)) .

The symbol ≈ is used to indicate an approximation based on heuristic consider-
ations. Unfortunately, the above approximation is not rigorous without further
conditions. In fact, without further conditions, the maximum likelihood estimator
may not even be consistent. Indeed, an example of Le Cam (presented in Exam-
ple 4.1 of Chapter 6 in Lehmann and Casella (1998)) shows that the maximum
likelihood estimator θ̂n may exist and be unique but does not converge to the
true value θ in probability (i.e., it is inconsistent). Moreover, the example shows
this can happen even in very smooth families in which good estimators do exist.
Rigorous conditions for the MLE to be consistent were given by Wald (1949),
and have since then been weakened (for a survey, see Perlman (1972)). Cramér
(1946) derived good asymptotic behavior of the maximum likelihood estimator
under just certain smoothness conditions, often known as Cramér type conditions.
Furthermore, he gave conditions under which there exists a consistent sequence
of roots θ̂n of the likelihood equations (not necessarily the MLE) satisfying

n1/2(θ̂n − θ0) = I−1(θ0)Zn + oP n
θ0

(1) , (12.62)
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from which asymptotic normality follows. Cramér’s conditions required that the
underlying family of densities were three times differentiable with respect to θ, as
well as further technical assumptions on differentiability inside the integral signs;
see Chapter 6 of Lehmann and Casella (1998). Estimators satisfying (12.62) are
called efficient. In the case where θ̂n is a solution to the likelihood equations, it
is called an efficient likelihood estimator (ELE) sequence.

Determination of an efficient sequence of roots of the likelihood equations tends
to be difficult when the equations have multiple roots. Asymptotically equivalent
estimators can be constructed by starting with any estimator θ̃n that is n1/2-
consistent, i.e. for which n1/2(θ̃n − θ) is bounded in probability. The resulting
estimator can be taken to be the root closest to θ̃n, or an approximation to it
based on a Newton-Raphson linearization method; for more details, see Section
6.4 of Lehmann and Casella (1998), Gan and Jiang (1999) and Small, Wang
and Yang (2000). A similar, but distinct, approach based on discretization of an
initial estimator, leads to Le Cam’s (1956, 1969) one-step maximum likelihood
estimator, which satisfies (12.62) under fairly weak conditions.

If θ̂n is any estimator sequence (not necessarily the MLE or an ELE) which
satisfies (12.62), it follows that, under θ0,

n1/2(θ̂n − θ0)
d→ N(0, I−1(θ0)) .

For the remainder of this section, we will assume such an estimator sequence θ̂n

is available, by means of verification of Cramér type assumptions presented in
Lehmann and Casella (1998), or by direct verification as in the case of exponential
families of Example 12.4.2 and Problem 12.37. For testing applications, it is also
important to study the behavior of the estimator under contiguous alternatives.
The following theorem assumes the expansion (12.62) (which is only assumed to
hold under θ0) in order to derive the limiting behavior of θ̂n under contiguous
sequences θn.

Theorem 12.4.1 Assume X1, . . . , Xn are i.i.d. according to a q.m.d. model
{Pθ, θ ∈ Ω} with nonsingular Information matrix I(θ), θ ∈ Ω, an open sub-
set of RI k . Suppose an estimator θ̂n has the expansion (12.62) when θ = θ0. Let
θn = θ0 + hnn−1/2, where hn → h ∈ RI k . Then, under P n

θn
,

n1/2(θ̂n − θn)
d→ N(0, I−1(θ0)) ; (12.63)

equivalently, under P n
θn

,

n1/2(θ̂n − θ0)
d→ N(h, I−1(θ0)) . (12.64)

Furthermore, if g(θ) is a differentiable map from Ω to RI with nonzero gradient
ġ(θ) of dimension 1 × k, then under P n

θn
,

n1/2(g(θ̂n) − g(θn))
d→ N(0, σ2

θ0) , (12.65)

where

σ2
θ0 = ġ(θ0)I

−1(θ0)ġ(θ0)
T . (12.66)

Proof. We prove the result in the case hn = h, the more general case deferred
to Problem 13.13. We will first show (12.64). By the Cramér-Wold device, it is
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enough to show that, for any t ∈ RI k , under P n
θn

,

〈n1/2(θ̂n − θ0), t〉 d→ N(〈h, t〉, 〈t, I−1(θ0)t〉) .

By the assumption (12.62), we only need to show that, under P n
θn

,

〈I−1(θ0)Zn, t〉 d→ N(〈h, t〉, 〈t, I−1(θ0)t〉) .

By Example 12.3.7, P n
θn

is contiguous to P n
θ0 , so we can apply Corollary 12.3.2

with Tn = 〈I−1(θ0)Zn, t〉. Then,

(Tn, log(Ln,h)) = (〈I−1(θ0)Zn, t〉, 〈h, Zn〉 −
1
2
〈h, I(θ0)h〉) + oP n

θ0
(1) .

But, under θ0, Zn converges in law to Z, where Z is distributed as N(0, I(θ0)).
By Slutsky’s Theorem and the Continuous Mapping Theorem (or the bivariate
Central Limit Theorem), under θ0,

(Tn, log(Ln,h))
d→ (〈I−1(θ0)Z, t〉, 〈h, Z〉 − 1

2
〈h, I(θ0)h〉) .

This limiting distribution is bivariate normal with covariance

σ1,2 = Cov(〈I−1(θ0)Z, t〉, 〈h, Z〉) = E[(hT Z)(I−1(θ0)Z)T t]

= hT E(Z1Z
T
1 )I−1(θ0)t = hT I(θ0)I

−1(θ0)t = 〈h, t〉 .

The result (12.64) follows from Corollary 12.3.2. The assertion (12.65) follows
from (12.63) and the delta method.

Under the conditions of the previous theorem, the estimator sequence g(θ̂n)
possesses a weak robustness property in the sense that its limiting distribution
is unchanged by small perturbations of the parameter values. In the literature,
such estimator sequences are sometimes called regular.

Corollary 12.4.1 Assume X1, . . . , Xn are i.i.d. according to a q.m.d. model
{Pθ, θ ∈ Ω} with normalized score vector Zn given by (12.59) and nonsingu-
lar Information matrix I(θ0). Let θn = θ0 + hnn−1/2, where hn → h ∈ RI k .
Then, under P n

θn
,

Zn
d→ N(I(θ0)h, I(θ0)) . (12.67)

The proof is left as an exercise (Problem 12.38).

12.4.2 Wald Tests and Confidence Regions

Wald proposed tests and confidence regions based on the asymptotic distribu-
tion of the maximum likelihood estimator. In this section, we introduce these
methods and study their large sample behavior; some optimality properties will
be discussed in Sections 13.3 and 13.4. We assume θ̂n is any estimator satisfying
(12.62). Let g(θ) be a mapping from Ω to the real line, assumed differentiable
with nonzero gradient vector ġ(θ) of dimension 1× k. Suppose the problem is to
test the null hypothesis g(θ) = 0 versus the alternative g(θ) > 0. Let θ0 denote
the true value of θ. Under the assumptions of Theorem 12.4.1, under θ0,

n1/2[g(θ̂n) − g(θ0)]
d→ N(0, σ2

θ0) ,



12.4. Likelihood Methods in Parametric Models 509

where

σ2
θ0 = ġ(θ0)I

−1(θ0)ġ(θ0)
T .

Assuming that ġ(·) and I(·) are continuous, the asymptotic variance can be
consistently estimated by

σ̂2
n ≡ ġ(θ̂n)I−1(θ̂n)ġ(θ̂n)T .

Hence, the test that rejects when

n1/2g(θ̂n) > σ̂nz1−α

is pointwise asymptotically level α.
We can also calculate the limiting power against a sequence of alternatives

θn = θ0 + hn−1/2. Assume g(θ0) = 0. Then,

Pθn{n
1/2g(θ̂n) > σ̂nz1−α} = Pθn{n

1/2[g(θ̂n) − g(θn)] > σ̂nz1−α − n1/2g(θn)} .

By Theorem 12.4.1, n1/2[g(θ̂n) − g(θn)] is asymptotically N(0, σ2
θ0), under θn.

Also, σ̂n → σθ0 in probability under θn (since this convergence holds under θ0

and therefore under θn by contiguity). Finally, n1/2g(θn) → ġ(θ0)h. Hence, the
limiting power is

lim
n→∞

Pθn{n
1/2g(θ̂n) > σ̂nz1−α} = 1 − Φ(z1−α − σ−1

θ0
ġ(θ0)h) . (12.68)

Similarly, a pointwise asymptotically level 1 − α level confidence interval for
g(θ) is given by

g(θ̂n) ± z1− α
2
n−1/2σ̂n .

Example 12.4.3 (Normal Coefficient of Variation) Let X1, . . . , Xn be i.i.d.
N(µ, σ2) with both parameters unknown, as in Example 12.4.1. Consider infer-
ences for g((µ, σ2)T ) = µ/σ, the coefficient of variation. Recall that a uniformly
most accurate invariant one-sided confidence bound exists for µ/σ; however, it is
quite complicated to compute since it involves the noncentral t-distribution and
no explicit formula is available. However, a normal approximation leads to an
interval that is asymptotically valid. Note that

ġ((µ, σ2)T ) = (
1
σ

,− µ
2σ3

) .

By Example 12.4.1, n1/2[(X̄n, S2
n)T −(µ, σ2)T ] is asymptotically bivariate normal

with asymptotic covariance matrix Σ, where Σ is the diagonal matrix with (1, 1)
entry σ2 and (2, 2) entry 2σ4. Then, the delta method implies that

n1/2(
X̄n

Sn
− µ

σ
)

d→ N(0, 1 +
µ2

2σ2
) .

Thus, the interval

X̄n

Sn
± n−1/2(1 +

X̄2
n

2S2
n

)z1− α
2

is asymptotically pointwise level 1 − α.
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Consider now the general problem of constructing a confidence region for θ,
under the assumptions of Theorem 12.4.1. The convergence

n1/2(θ̂n − θ)
d→ N(0, I−1(θ)) (12.69)

implies that

I1/2(θ)n1/2(θ̂n − θ)
d→ N(0, Ik) ,

the multivariate normal distribution in RI k with mean 0 and identity covariance
matrix Ik. Hence, by the Continuous Mapping Theorem 11.2.13 and Example
11.2.8,

n(θ̂n − θ)T I(θ)(θ̂n − θ)
d→ χ2

k ,

the Chi-squared distribution with k degrees of freedom. Thus, a pointwise
asymptotic level 1 − α confidence region for θ is

{θ : n(θ̂n − θ)T I(θ)(θ̂n − θ) ≤ ck,1−α} , (12.70)

where ck,1−α is the 1−α quantile of χ2
k. In (12.70), I(θ) is often replaced by a con-

sistent estimator, such as I(θ̂n) (assuming I(·) is continuous), and the resulting
confidence region is known as Wald’s confidence ellipsoid.

By the duality between confidence regions and tests, this leads to an asymptotic
level α test of θ = θ0 versus θ += θ0, known as Wald tests. Specifically, for testing
θ = θ0 versus θ += θ0, Wald’s test rejects if

n(θ̂n − θ0)I(θ̂n)(θ̂n − θ0) > ck,1−α . (12.71)

Alternatively, I(θ̂n) may be replaced by I(θ0) or any consistent estimator of
I(θ0). Under θn = θ0 + hn−1/2, the limiting distribution of the Wald statistic
given by the left side of (12.71) is χ2

k(|I1/2(θ0)h|2), the noncentral Chi-squared
distribution with k degrees of freedom and noncentrality parameter |I1/2(θ0)h|2
(Problem 12.45).

More generally, consider inference for g(θ), where g = (g1, . . . , gq)
T is a map-

ping from RI k to RI q. Assume gi is differentiable and let D = D(θ) denote the
q×k matrix with (i, j) entry ∂gi(y1, . . . , yk)/∂yj evaluated at θ. Then, the Delta
Method and (12.69) imply that

n1/2[g(θ̂n) − g(θ)]
d→ N(0, V (θ)) , (12.72)

where V (θ) = D(θ)I−1(θ)DT (θ). Assume V (θ) is positive definite and continuous
in θ. By the Continuous Mapping Theorem,

n[g(θ̂n) − g(θ)]T V −1(θ)[g(θ̂n) − g(θ)]
d→ χ2

q .

Hence, a pointwise asymptotically level 1 − α confidence region for g(θ) is

{θ : n[g(θ̂n) − g(θ)]T V −1(θ̂n)[g(θ̂n) − g(θ)] ≤ χ2
q(1 − α)} .

Next, suppose it is desired to test g(θ) = 0. The Wald test rejects when

Wn = ng(θ̂n)V −1(θ̂n)gT (θ̂n)

exceeds χ2
q(1 − α), and it is pointwise asymptotically level α.
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12.4.3 Rao Score Tests

Instead of the Wald tests, it is possible to construct tests based directly on Zn in
(12.59), which have the advantage of not requiring computation of a maximum
likelihood estimator. Assume q.m.d. holds at θ0, with derivative η(·, θ0) and, as
usual, set

η̃(x, θ0) = 2η(x, θ0)/p1/2
θ0

(x) .

Under the assumptions of Theorem 12.2.2, the quadratic mean derivative η(·, θ0)
is given by (12.9) and n1/2Zn can then be computed by

n1/2Zn =
n∑

i=1

η̃(Xi, θ0) =

n∑

i=1

ṗθ0(Xi)
pθ0(Xi)

= (
∂

∂θ1
log Ln(θ), . . . ,

∂
∂θk

log Ln(θ))

∣∣∣∣∣
θ=θ0

. (12.73)

As mentioned earlier, the statistic Zn is known as the normalized score vector.
Its use stems from the fact that inference can be based on Zn, which involves
differentiating the log likelihood at a single point θ0, avoiding the problem of max-
imizing the likelihood. Even if the ordinary differentiability conditions assumed
in Theorem 12.2.2 fail, inference can be based on Zn, as we will now see.

Suppose for the moment that θ is real-valued and consider testing θ = θ0 versus
θ > θ0. For a given test φ = φ(X1, . . . , Xn), let

βφ(θ) = Eθ[φ(X1, . . . , Xn)]

denote its power function. By Problem 12.17, assuming q.m.d., βφ(θ) is
differentiable at θ0 with

β′
φ(θ0) =

∫
· · ·

∫
φ(x1, . . . , xn)

n∑

i=1

η̃(xi, θ0)
n∏

i=1

pθ0(xi)µ(dx1) · · ·µ(dxn) .

Consider the problem of finding the level α test φ that maximizes β′
φ(θ0). By the

general form of the Neyman-Pearson Lemma, the optimal test rejects for large
values of

∑
i η̃(Xi, θ0), or equivalently, large values of Zn. By Problem 8.2, if this

is the unique test maximizing the slope of the power function at θ0, then it is
also locally most powerful. Thus, tests based on Zn are appealing from this point
of view.

We turn now to the asymptotic behavior of tests based on Zn. Assume the
assumptions of quadratic mean differentiability hold for general k, so that under
θ0,

Zn
d→ N(0, I(θ0)) .

By Corollary 12.4.1, under θn = θ0 + hn−1/2,

Zn
d→ N(I(θ0)h, I(θ0)) .

It follows that, under θn = θ0 + hn−1/2,

I−1/2(θ0)Zn
d→ N(I1/2(θ0)h, Ik) . (12.74)
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Now, suppose k = 1 and the problem is to test θ = θ0 versus θ > θ0. Rao’s
score test rejects when the one-sided score statistic I−1/2(θ0)Zn exceeds z1−α

and is asymptotically level α. In this case, the Wald test that rejects when
I1/2(θ0)n

1/2(θ̂n − θ0) exceeds z1−α and the score test are asymptotically equiva-
lent, in the sense that the probability that the two tests yield the same decision
tends to one, both under the null hypothesis θ = θ0 and under a sequence of
alternatives θ0 + hn−1/2. The equivalence follows from contiguity, the expan-
sion (12.62), and the fact that I(θ̂n) → I(θ0) in probability under θ0 and under
θ0 + hn−1/2. Note that the two tests may differ greatly for alternatives far from
θ0; see Example 13.3.3.

Example 12.4.4 (Bivariate Normal Correlation) Assume Xi = (Ui, Vi)
are i.i.d. according to the bivariate normal distribution with means zero and
variances one, so that the only unknown parameter is ρ, the correlation. In this
case,

log Ln(ρ) = −n log(2π) − n
2

log(1 − ρ2) −
n∑

i=1

[
1

2(1 − ρ2)
(U2

i − 2ρUiVi + V 2
i )]

and so

∂
∂ρ

log Ln(ρ) =
nρ

1 − ρ2
+

1
1 − ρ2

n∑

i=1

UiVi −
ρ

(1 − ρ2)2

n∑

i=1

(U2
i − 2ρUiVi + V 2

i ) .

In the special case θ0 = ρ0 = 0,

Zn = n−1/2
n∑

i=1

UiVi
d→ N(0, 1) .

For other values of ρ0, the statistic is more complicated; however, we have by-
passed maximizing the likelihood, which may have multiple roots in this example.

For general k, consider testing a simple null hypothesis θ = θ0 versus a multi-
sided alternative θ += θ0. Then, assuming the expansion (12.62), we can replace
n1/2(θ̂n − θ0) in the Wald statistic (12.70) by I−1(θ0)Zn. In this case, the score
test rejects the null hypothesis when the multi-sided score statistic ZT

n I−1(θ0)Zn

exceeds ck,1−α, and is asymptotically level α. Again, the Wald test and Rao’s
score test are asymptotically equivalent in the sense described above.

Next, we consider a composite null hypothesis. Interest focuses on θ1, . . . , θr,
the first r components of θ with the remaining k − r components viewed as
nuisance parameters. Let θ1,0, . . . , θr,0 be fixed and consider testing the null
hypothesis θi = θi,0 for i = 1, . . . , r. The Wald test is based on the limit

n1/2(θ̂n,1 − θ1, . . . , θ̂n,r − θr)
d→ N

(
0, Σ(r)(θ)

)
,

where Σ(θ) = I−1(θ) and Σ(r)(θ) is the r×r matrix formed by the intersection of
the first r rows and columns of Σ(θ). Similarly, define I(r)(θ) as the r × r matrix
formed by the intersection of the first r rows and columns of I(θ). Partition I(θ)
as

I(θ) =

(
I(r)(θ) I12(θ)
I21(θ) I22(θ)

)
. (12.75)
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Note that (Problem 12.49)

[Σ(r)(θ)]−1 = [I(r)(θ)] − I12(θ)I
−1
22 (θ)I21(θ) . (12.76)

The score test is based on Z(r)
n (θ), the r-vector obtained as the first r components

of Zn(θ), where Zn(θ) is defined in (12.59). Under q.m.d. at θ,

Z(r)
n (θ)

d→ N
(
0, I(r)(θ)

)
,

and so,

Sn(θ) = [Z(r)
n (θ)]T [I(r)(θ)]−1[Z(r)

n (θ)]
d→ χ2

r .

However, when the null hypothesis is not completely specified, the Rao score test
statistic is Sn(θ̂n,0), where

θ̂n,0 = (θ1,0, . . . , θr,0, θ̂r+1,0, . . . , θ̂k,0)

is an efficient likelihood estimator of θ under the restricted parameter space
satisfying the constraints of the null hypothesis. In fact, as argued by Hall and
Mathiason (1990), any n1/2-consistent estimator can be used in the score statistic.
One-sided score tests are studied in Silvapulle and Silvapulle (1995).

12.4.4 Likelihood Ratio Tests

In addition to that Wald and Rao scores tests of Sections 12.4.2 and 12.4.3, let
us now consider a third test of θ ∈ Ω0 versus θ /∈ Ω0, based on the likelihood ratio
statistic 2 log(Rn), where

Rn =
supθ∈Ω Ln(θ)

supθ∈Ω0
Ln(θ)

. (12.77)

The likelihood ratio test rejects for large values of 2 log(Rn). If θ̂n and θ̂n,0 are
MLEs for θ as θ varies in Ω and Ω0 respectively, then

Rn = Ln(θ̂n)/Ln(θ̂n,0) . (12.78)

Example 12.4.5 (Multivariate Normal Mean) Suppose X = (X1, . . . , Xk)T

is multivariate normal with unknown mean vector θ and known positive definite
covariance matrix Σ. The likelihood function is given by

|Σ|−1/2

(2π)k/2
exp

[
−1

2
(X − θ)T Σ−1(X − θ)

]
.

Assume θ ∈ RI k and that the null hypothesis asserts θi = 0 for i = 1, . . . , k.
Then,

2 log(R1) = − inf
θ

(X − θ)T Σ−1(X − θ) + XT Σ−1X = XT Σ−1X = |Σ−1/2X|2 .

Under the null hypothesis, Σ−1/2X is exactly standard multivariate normal, and
so the null distribution of 2 log(R1) is exactly χ2

k in this case.
Now, consider testing the composite hypothesis θi = 0 for i = 1, . . . , p, with

the remaining parameters θp+1, . . . , θk regarded as nuisance parameters. More
generally, suppose

Ω0 = {θ = (θ1, . . . , θk) : A(θ − a) = 0} , (12.79)
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where A is a p × k matrix of rank p and a is some fixed k × 1 vector. Then,

2 log(R1) = − inf
θ∈ RI k

(X − θ)T Σ−1(X − θ) + inf
θ∈Ω0

(X − θ)T Σ−1(X − θ)

= inf
θ∈Ω0

(X − θ)T Σ−1(X − θ) . (12.80)

The null distribution of (12.80) is χ2
p (Problem 12.50).

Let us now consider the large sample behavior of the likelihood ratio test in
greater generality. First, suppose Ω0 = {θ0} is simple. Then,

log(Rn) = sup
h

[log(Ln,h)] ,

where Ln,h is defined in (12.57). If the family is q.m.d. at θ0, then

log(Rn) = sup
h

[〈h, Zn〉 −
1
2
〈h, I(θ0)h〉 + oP n

θ0
(1)] .

It is plausible that log(Rn) should behave like

log R̃n ≡ sup
h

[log(L̃n,h)] ,

where L̃n,h is defined by (12.60). But L̃n,h is maximized at h̃n = I−1(θ0)Zn and
so

log(Rn) ≈ log(R̃n) = log(L̃n,h̃n
) =

1
2
ZnI−1(θ0)Zn .

Since, 2 log(R̃n)
d→ χ2

k, the heuristics suggest that 2 log(Rn)
d→ χ2

k as well. In fact,
2 log(R̃n) is Rao’s score test statistic, and so these heuristics also suggest that
Rao’s score test, the likelihood ratio test, and Wald’s test, are all asymptotically
equivalent in the sense described earlier in comparing the Wald test and the score
test. Note, however, that the tests are not always asymptotically equivalent; some
striking differences will be presented in Section 13.3.

These heuristics can be made rigorous under stronger assumptions, such as
Cramér type differentiability conditions used in proving asymptotic normality of
the MLE or an ELE; see Theorem 7.7.2 in Lehmann (1999). Alternatively, once
the general heuristics point toward the limiting behavior, the approximations
may be made rigorous by direct calculation in a particular situation. A general
theorem based on the existence of efficient likelihood estimators will be presented
following the next example.

Example 12.4.6 (Multinomial Goodness of Fit) Consider a sequence of n
independent trials, each resulting in one of k +1 outcomes 1, . . . , k + 1. Outcome
j occurs with probability pj on any given trial. Let Yj be the number of trials
resulting in outcome j. Consider testing the simple null hypothesis pj = πj for
j = 1, . . . , k + 1. The parameter space Ω is

Ω = {(p1, . . . , pk) ∈ RI k : pi ≥ 0,
k∑

j=1

pj ≤ 1} (12.81)
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since pk+1 is determined as 1−
∑k

j=1 pj . In this case, the likelihood can be written
as

Ln(p1, . . . , pk) =
n!

Y1! · · ·Yk+1!
pY1
1 · · · pYk+1

k+1 .

By solving the likelihood equations, it is easily checked that the unique MLE is
given by p̂j = Yj/n (Problem 12.55 (i)). Hence, the likelihood ratio statistic is

Rn =
Ln(Y1/n, . . . , Yk/n)

Ln(π1, . . . , πk)
,

and so (Problem 12.55 (ii))

log(Rn) = n
k+1∑

j=1

p̂j log(
p̂j

πj
) . (12.82)

The previous heuristics suggest that 2 log(Rn) converges in distribution to χ2
k,

which will be proved in Theorem 12.4.2 below. Note that the Taylor expansion

f(x) = x log(x/x0) = (x − x0) +
1

2x0
(x − x0)

2 + o[(x − x0)
2]

as x → x0 implies 2 log(Rn) ≈ Qn , where Qn is Pearson’s Chi-squared statistic
given by

Qn =
k+1∑

j=1

(Yj − nπj)
2

nπj
. (12.83)

Indeed 2 log(Rn) − Qn
P→ 0, under the null hypothesis (Problem 12.57) and so

they have the same limiting distribution. Moreover, it can be checked (Problem
12.56) that Rao’s Score test statistic is exactly Qn. The Chi-squared test will be
treated more fully in Section 14.3.

Next, we present a fairly general result on the asymptotic distribution of the
likelihood ratio statistic. Actually, we consider a generalization of the likelihood
ratio statistic. Rather than having to compute the maximum likelihood estimators
θ̂n and θ̂n,0 in (12.78), we assume these estimators satisfy (12.62) under the
models with parameter spaces Ω and Ω0, respectively.

Theorem 12.4.2 Assume X1, . . . , Xn are i.i.d. according to q.m.d. family
{Pθ, θ ∈ Ω}, where Ω is an open subset of RI k and I(θ) is positive definite.
Further assume, for θ in a neighborhood of θ0 and a (measurable) function M(x)
satisfying Eθ0 [M(Xi)] < ∞,

| log pθ(x) − log pθ0(x) − (θ − θ0)η̃θ0(x)| ≤ M(x)|θ − θ0|2 . (12.84)

(i) Consider testing the simple null hypothesis θ = θ0. Suppose θ̂n is an efficient
estimator for θ assuming θ ∈ Ω in the sense that it satisfies (12.62) when θ = θ0.
Then, the likelihood ratio Rn = Ln(θ̂n)/Ln(θ0) satisfies, under θ0,

2 log(Rn)
d→ χ2

k .

(ii) Consider testing the composite null hypothesis θ ∈ Ω0, where

Ω0 = {θ = (θ1, . . . , θk) : A(θ − a) = 0} ,
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and A is a p×k matrix of rank p and a is a fixed k×1 vector. Let θ̂n,0 denote an
efficient estimator of θ assuming θ ∈ Ω0; that is, assume the expansion (12.62)
holds based on the model {Pθ, θ ∈ Ω0} and any θ ∈ Ω0. Then, the likelihood ratio
Rn = Ln(θ̂n)/Ln(θ̂n,0) satisfies, under any θ0 ∈ Ω0,

2 log(Rn)
d→ χ2

p .

(iii) More generally, suppose Ω0 is represented as

Ω0 = {θ : g = (g1(θ), . . . , gp(θ))T = 0} ,

where gi(θ) is a continuously differentiable function from RI k to RI . Let D = D(θ)
be the p × k matrix with (i, j) entry ∂gi(θ)/∂θj, assumed to have rank p. Then,

2 log(Rn)
d→ χ2

p.

Proof. First, consider (i). Let ĥn = n1/2(θ̂n − θ0) so that 2 log(Rn) =
2 log(Ln,ĥn

). Fix any c > 0 and define

εn,c = sup
|h|≤c

| log(Ln,h) − [〈h, Zn〉 −
1
2
〈h, I(θ0)h〉]| ;

by Problem 13.12, εn,c → 0 in probability under θ0. By the triangle inequality,

2 log(Ln,ĥn
) ≤ 2[〈ĥn, Zn〉 −

1
2
〈ĥn, I(θ0)ĥn〉 + εn,c]

if |ĥn| ≤ c. But, using (12.62),

2[〈ĥn, Zn〉 −
1
2
〈ĥn, I(θ0)ĥn〉] = ZT

n I−1(θ0)Zn + oPθ0
(1) ;

so,

2 log(Ln,ĥn
) ≤ ZT

n I−1(θ0)Zn + ε̃n,c

if |ĥn| ≤ c, where ε̃n,c → 0 in probability under θ0 for any c > 0. Therefore,

P{2 log(Ln,ĥn
) ≥ x} ≤ P{ZT

n I−1(θ0)Zn + ε̃n,c ≥ x, |ĥn| ≤ c} + P{|ĥn| > c}

≤ P{ZT
n I−1(θ0)Zn + ε̃n,c ≥ x} + P{|ĥn| > c} . (12.85)

But, under θ0 , ZT
n I−1(θ0)Zn is asymptotically χ2

k and ĥn
d→ Z where Z is

N(0, I−1(θ0)), so (12.85) tends to

P{χ2
k ≥ x} + P{|Z| > c} .

Let c → ∞ to conclude

lim sup
n

P{2 log(Ln,ĥn
) ≥ x} ≤ P{χ2

k ≥ x} .

A similar argument yields

lim inf
n

P{2 log(Ln,ĥn
) ≥ x} ≥ P{χ2

k ≥ x} , (12.86)

and (i) is proved.
The proof of (ii) is based on a similar argument, combined with the results

of Example 12.4.5 for testing a composite null hypothesis about a multivariate
normal mean vector. The proof of (iii) is left as an exercise (Problem 12.60).
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In the special case where the null hypothesis is specified by θi = θi,0 for
i = 1, . . . , p, with θi regarded as a nuisance parameter for θi > p, the degrees of
freedom can be remembered as the dimension of Ω minus the dimension of Ω0.

Example 12.4.7 (One-sample Normal Mean) Suppose X1, . . . , Xn are i.i.d.
N(µ, σ2) with both parameters unknown. Consider testing µ = 0 versus µ += 0.
Then (Problem 12.46),

2 log(Rn) = n log(1 +
t2n

n − 1
) , (12.87)

where t2n = nX̄2
n/S2

n is the one-sample t-statistic. By Problem 11.89, one can
deduce the following Edgeworth expansion for 2 log(Rn) (Problem 12.47):

P{2 log(Rn) ≤ r} = 1 − 2[Φ(−z) +
3
4n

zφ(z)] + O(n−2) , (12.88)

where z =
√

r, Φ is the standard normal c.d.f. and Φ′ = φ. This implies that
the test that rejects when 2 log(Rn) > z1− α

2
has rejection probability equal to

α+O(n−1). But, a simple correction, known as a Bartlett correction, can improve
the χ2

1 approximation. Indeed, (12.88) and a Taylor expansion implies

P{2 log(Rn)(1 +
b
n

) > z1− α
2
} = α + O(n−2) , (12.89)

if we take b = 3/2. Thus, the error in rejection probability of the Bartlett-
corrected test is O(n−2). Of course, in this example, the exact two-sided t-test is
available.

It is worth knowing that, quite generally, a simple multiplicative correction to
the likelihood ratio statistic greatly improves the quality of the approximation.
Specifically, for an appropriate choice of b, comparing 2 log(Rn)(1+ b

n ) to the usual
limiting χ2

p reduces the error in rejection probability from O(n−1) to O(n−2). In
practice, b can be derived by analytical means or estimated. The idea for such
a Bartlett correction originated in Bartlett (1937). For appropriate regularity
conditions that imply a Bartlett correction works, see Barndorff-Nielsen and Hall
(1988), Bickel and Ghosh (1990), Jensen (1993) and DiCiccio and Stern (1994).

12.5 Problems

Section 12.2

Problem 12.1 Generalize Example 12.2.1 to the case where X is multivariate
normal with mean vector θ and nonsingular covariance matrix Σ.

Problem 12.2 Generalize Example 12.2.2 to the case of a multiparameter
exponential family. Compare with the result of Problem 12.1.

Problem 12.3 Suppose gn is a sequence of functions in L2(µ); that is,∫
g2

ndµ < ∞. Assume, for some function g,
∫

(gn − g)2dµ → 0. Prove that∫
g2dµ < ∞.



518 12. Quadratic Mean Differentiable Families

Problem 12.4 Suppose gn is a sequence of functions in L2(µ) and, for some
function g,

∫
(gn − g)2dµ → 0. If

∫
h2dµ < ∞, show that

∫
hgndµ →

∫
hgdµ.

Problem 12.5 Suppose X and Y are independent, with X distributed as Pθ

and Y as P̄θ, as θ varies in a common index set Ω. Assume the families {Pθ} and
{P̄θ} are q.m.d. with Fisher Information matrices IX(θ) and IY (θ), respectively.
Show that the model based on the joint data (X, Y ) is q.m.d. and its Fisher
Information matrix is given by IX(θ) + IY (θ).

Problem 12.6 Fix a probability P . Let u(x) satisfy
∫

u(x)dP (x) = 0 .

(i) Assume supx |u(x)| < ∞, so that

pθ(x) = [1 + θu(x)]

defines a family of densities (with respect to P ) for all small |θ|. Show this family
is q.m.d. at θ = 0. Calculate the quadratic mean derivative, score function, and
I(0).
(ii) Alternatively, if u is unbounded, define pθ(x) = C(θ) exp(θu(x)), assuming∫

exp(θu(x))dP (x) exists for all small |θ|. For this family, argue the family is
q.m.d. at θ = 0, and calculate the score function and I(0).
(iii) Suppose

∫
u2(x)dP (x) < ∞. Define

pθ(x) = C(θ)2[1 + exp(−2θu(x))]−1 .

Show this family is q.m.d. at θ = 0, and calculate the score function and I(0).
[The constructions in this problem are important for nonparametric applications,
used later in Chapters 13 and 14. The last construction is given in van der Vaart
(1998).]

Problem 12.7 Fix a probability P on S and functions ui(x) such that∫
ui(x)dP (x) = 0 and

∫
u2

i (x)dP (x) < ∞, for i = 1, 2. Adapt Problem 12.6 to
construct a family of distributions Pθ with θ ∈ RI 2, defined for all small |θ|, such
that P0,0 = P , the family is q.m.d. at θ = (0, 0) with score vector at θ = (0, 0)
given by (u1(x), u2(x)). If S is the real line, construct the Pθ that works even if
Pθ is required to be smooth if P and the ui are smooth (i.e. having differentiable
densities) or subject to moment constraints (i.e. having finite pth moments).

Problem 12.8 Show that the definition of I(θ) in Definition 12.2.2 does not
depend on the choice of dominating measure µ.

Problem 12.9 In Examples 12.2.3 and 12.2.4, find the quadratic mean
derivative and I(θ).

Problem 12.10 In Example 12.2.5, show that
∫
{[f ′(x)]2/f(x)}dx is finite iff

β > 1/2.

Problem 12.11 Prove Theorem 12.2.2 using an argument similar to the proof
of Theorem 12.2.1.
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Problem 12.12 Suppose {Pθ} is q.m.d. at θ0 with derivative η(·, θ0). Show that,
on {x : pθ0(x) = 0}, we must have η(x, θ0) = 0, except possibly on a µ-null set.
Hint: On {pθ0(x) = 0}, write

0 ≤ n1/2p1/2

θ0+hn−1/2(x) = 〈h, η(x, θ0)〉 + rn,h(x) ,

where
∫

r2
n,h(x)µ(dx) → 0. This implies, with h fixed, that rn,h(x) → 0 except

for x in µ-null set, at least along some subsequence.

Problem 12.13 Suppose {Pθ} is q.m.d. at θ0. Show

Pθ0+h{x : pθ0(x) = 0} = o(|h|2)

as |h| → 0. Hence, if X1, . . . , Xn are i.i.d. with likelihood ratio Ln,h defined by
(12.12), show that

P n
θ0+hn−1/2{Ln,h = ∞} → 0 .

Problem 12.14 To see what might happen when the parameter space is not
open, let

f0(x) = xI{0 ≤ x ≤ 1} + (2 − x)I{1 < x ≤ 2} .

Consider the family of densities indexed by θ ∈ [0, 1) defined by

pθ(x) = (1 − θ2)f0(x) + θ2f0(x − 2) .

Show that the condition (12.5) holds when θ0 = 0, if it is only required that h
tends to 0 through positive values. Investigate the behavior of the likelihood ratio
(12.12) for such a family. (For a more general treatment, consult Pollard (1997).)

Problem 12.15 Suppose X1, . . . , Xn are i.i.d. and uniformly distributed on
(0, θ). Let pθ(x) = θ−1I{0 < x < θ}. and Ln(θ) =

∏
i pθ(Xi). Fix p and θ0.

Determine the limiting behavior of Ln(θ0 + hn−p)/Ln(θ0) under θ0. For what p
is the limiting distribution nondegenerate?

Problem 12.16 Suppose {Pθ, θ ∈ Ω} is a model with Ω an open subset of
RI k , and having densities pθ(x) with respect to µ. Define the model to be L1-
differentiable at θ0 if there exists a vector of real-valued functions ζ(·, θ0) such
that ∫

|pθ0+h(x) − pθ0(x) − 〈ζ(x, θ0), h〉|dµ(x) = o(|h|) (12.90)

as |h| → 0. Show that, if the family is q.m.d. at θ0 with q.m. derivative η(·, θ0),
then it is L1-differentiable with

ζ(x, θ0) = 2η(x, θ0)p
1/2
θ0

(x) ,

but the converse is false.

Problem 12.17 Assume {Pθ, θ ∈ Ω} is L1-differentiable, so that (12.90) holds.
For simplicity, assume k = 1 (but the problem generalizes). Let φ(·) be uniformly
bounded and set β(θ) = Eθ[φ(X)]. Show, β′(θ) exists at θ0 and

β′(θ0) =

∫
φ(x)ζ(x, θ0)µ(dx) . (12.91)
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Hence, if {Pθ} is q.m.d. at θ0 with derivative η(·, θ0), then,

β′(θ0) =

∫
φ(x)η̃(x, θ0)pθ0(x)µ(dx) , (12.92)

where η̃(x, θ0) = 2η(x, θ0)/p1/2
θ0

(x). More generally, if X1, . . . , Xn are i.i.d. Pθ

and φ(X1, . . . , Xn) is uniformly bounded, then β(θ) = Eθ[φ(X1, . . . , Xn)] is
differentiable at θ0 with

β′(θ0) =

∫
· · ·

∫
φ(x1, . . . , xn)

n∑

i=1

η̃(xi, θ0)
n∏

i=1

pθ0(xi)µ(dx1) · · ·µ(dxn) .

(12.93)

Section 12.3

Problem 12.18 Prove (12.31).

Problem 12.19 Show the convergence (12.35).

Problem 12.20 Fix two probabilities P and Q and let Pn = P and Qn = Q.
Show that {Pn} and {Qn} are contiguous iff P and Q are absolutely continuous.

Problem 12.21 Fix two probabilities P and Q and let Pn = P n and Qn = Qn.
Show that {Pn} and {Qn} are contiguous iff P = Q.

Problem 12.22 Suppose Qn is contiguous to Pn and let Ln be the likelihood
ratio defined by (12.36). Show that EPn(Ln) → 1. Is the converse true?

Problem 12.23 Consider a sequence {Pn, Qn} with likelihood ratio Ln defined

in (12.36). Assume L(Ln|Pn)
d→ W , where P{W = 0} = 0; show Pn is contiguous

to Qn. Also, under (12.41), deduce that Pn is contiguous to Qn and hence Pn

and Qn are mutually contiguous if and only if µ = −σ2/2.

Problem 12.24 Suppose, under Pn, Xn = Yn +oPn(1); that is, Xn −Yn → 0 in
Pn-probability. Suppose Qn is contiguous to Pn. Show that Xn = Yn + oQn(1).

Problem 12.25 Suppose Xn has distribution Pn or Qn and Tn = Tn(Xn) is
sufficient. Let P T

n and QT
n denote the distribution of Tn under Pn and Qn, respec-

tively. Prove or disprove: Qn is contiguous to Pn if and only if QT
n is contiguous

to P T
n .

Problem 12.26 Suppose Q is absolutely continuous with respect to P . If
P{En} → 0, then Q{En} → 0.

Problem 12.27 Prove the convergence (12.40).

Problem 12.28 Show that σ1,2 in (12.52) reduces to h/
√

π.
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Problem 12.29 Verify (12.53) and evaluate it in the case where f(x) =
exp(−|x|)/2 is the double exponential density.

Problem 12.30 Suppose X1, . . . , Xn are i.i.d. according to a model which is
q.m.d. at θ0. For testing θ = θ0 versus θ = θ0 +hn−1/2, consider the test ψn that
rejects H if log(Ln,h) exceeds z1−ασh − 1

2σ2
h, where Ln,h is defined by (12.54)

and σ2
h = 〈h, I(θ0)h〉. Find the limiting value of Eθ0+hn−1/2(ψn).

Problem 12.31 Suppose Pθ is the uniform distribution on (0, θ). Fix h and
determine whether or not P n

1 and P n
1+h/n are mutually contiguous. Consider

both h > 0 and h < 0.

Problem 12.32 Assume X1, . . . , Xn are i.i.d. according to a family {Pθ} which
is q.m.d. at θ0. Suppose, for some statistic Tn = Tn(X1, . . . , Xn) and some func-

tion µ(θ) assumed differentiable at θ0, n1/2(Tn − µ(θn))
d→ N(0, σ2) under θn

whenever θn = θ0 + hn−1/2. Show the same result holds, first whenever h is
replaced by hn → h, and then whenever n1/2(θn − θ0) = O(1).

Problem 12.33 Generalize Corollary 12.3.2 in the following way. Suppose Tn =
(Tn,1, . . . , Tn,k) ∈ RI k. Assume that, under Pn,

(Tn,1, . . . , Tn,k, log(Ln))
d→ (T1, . . . , Tk, Z) ,

where (T1, . . . , Tk, Z) is multivariate normal with Cov(Ti, Z) = ci. Then, under
Qn,

(Tn,1, . . . , Tn,k)
d→ (T1 + c1, . . . , Tk + ck) .

Problem 12.34 Suppose X1, . . . , Xn are i.i.d. according to a model {Pθ : θ ∈
Ω}, where Ω is an open subset of Rk. Assume that the model is q.m.d. Show that
there cannot exist an estimator sequence Tn satisfying

lim
n→∞

sup
|θ−θ0|≤n−1/2

P n
θ (n1/2|Tn − θ| > ε) = 0 (12.94)

for every ε > 0 and any θ0. (Here P n
θ means the joint probability distribution of

(X1, . . . , Xn) under θ). Suppose the above condition (12.94) only holds for some
ε > 0. Does the same conclusion hold?

Section 12.4

Problem 12.35 In Example 12.4.1, show that the likelihood equations have
a unique solution which corresponds to a global maximum of the likelihood
function.

Problem 12.36 Suppose X1, . . . , Xn are i.i.d. Pθ according to the lognormal
model of Example 12.2.7. Write down the likelihood function and show that it is
unbounded.

Problem 12.37 Generalize Example 12.4.2 to multiparameter exponential
families.
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Problem 12.38 Prove Corollary 12.4.1. Hint: Simply define θ̂n = θ0 +
n−1/2I−1(θ0)Zn and apply Theorem 12.4.1.

Problem 12.39 Let (Xi, Yi), i = 1 . . . n be i.i.d. such that Xi and Yi are inde-
pendent and normally distributed, Xi has variance σ2, Yi has variance τ2 and
both have common mean µ.
(i) If σ and τ are known, determine an efficient likelihood estimator (ELE) µ̂ of
µ and find the limit distribution of n1/2(µ̂ − µ).
(ii) If σ and τ are unknown, provide an estimator µ̄ for which n1/2(µ̄ − µ) has
the same limit distribution as n1/2(µ̂ − µ).
(iii) What can you infer from your results (i) and (ii) regarding the Information
matrix I(θ), θ = (µ, σ, τ)?

Problem 12.40 Let X1, . . . , Xn be a sample from a Cauchy location model with
density f(x − θ), where

f(z) =
1

π(1 + z2)
.

Compare the limiting distribution of the sample median with that of an efficient
likelihood estimator.

Problem 12.41 Let X1, . . . , Xn be i.i.d. N(θ, θ2). Compare the asymptotic
distribution of X̄2

n with that of an efficient likelihood estimator sequence.

Problem 12.42 Let X1, · · · , Xn be i.i.d. with density

f(x, θ) = [1 + θ cos(x)]/2π,

where the parameter θ satisfies |θ| < 1 and x ranges between 0 and 2π. (The
observations Xi may be interpreted as directional data. The case θ = 0 corre-
sponds to the uniform distribution on the circle.) Construct an efficient likelihood
estimator of θ, as explicitly as possible.

Problem 12.43 Suppose X1, . . . , Xn are i.i.d., uniformly distributed on [0, θ].
Find the maximum likelihood estimator θ̂n of θ. Determine a sequence τn such
that τn(θ̂n − θ) has a limiting distribution, and determine the limit law.

Problem 12.44 Verify that h̃n in (12.61) maximizes L̃n,h.

Problem 12.45 For a q.m.d. model with θ̂n satisfying (12.62), find the limiting
behavior of the Wald statistic given in the left side of (12.71) under θn = θ0 +
hn−1/2.

Problem 12.46 Suppose X1, . . . , Xn are i.i.d. N(µ, σ2) with both parameters
unknown. Consider testing µ = 0 versus µ += 0. Find the likelihood ratio
test statistic, and determine its limiting distribution under the null hypothe-
sis. Calculate the limiting power of the test against the sequence of alternatives
(µ, σ2) = (h1n

−1/2, σ2 + h2n
−1/2).

Problem 12.47 In Example 12.4.7, verify (12.88) and (12.89).
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Problem 12.48 Suppose X1, . . . , Xn are i.i.d. Pθ, with θ ∈ Ω, an open subset
of RI k . Assume the family is q.m.d. at θ0 and consider testing the simple null
hypothesis θ = θ0. Suppose θ̂n is an estimator sequence satisfying (12.62), and
consider the Wald test statistic n(θ̂n−θ0)

T I(θ0)(θ̂n−θ0). Find its limiting distri-
bution against the sequence of alternatives θ0 + hn−1/2, as well as an expression
for its limiting power against such a sequence of alternatives.

Problem 12.49 Prove (12.76). Then, show that

[Σ(r)(θ)]−1 ≤ [I(r)(θ)] .

What is the statistical interpretation of this inequality?

Problem 12.50 In Example 12.4.5, consider the case of a composite null hy-
pothesis with Ω0 given by (12.79). Show that the null distribution of the likelihood
ratio statistic given by (12.80) is χ2

p. Hint: First consider the case a = 0 so that

Ω0 is a linear subspace of dimension k − p. Let Z = Σ−1/2X, so that

2 log(Rn) = inf
θ∈Ω0

|Z − Σ−1/2θ|2 .

As θ varies in Ω0, Σ−1/2θ varies in a subspace L of dimension k − p. If P is
the projection matrix onto L and I is the identity matrix, then 2 log(Rn) =
|(I − P )Z|2.

Problem 12.51 In Example 12.4.5, determine the distribution of the likelihood
ratio statistic against an alternative, both for the simple and composite null
hypotheses.

Problem 12.52 Suppose X1, . . . , Xn are i.i.d. N(µ, σ2) with both parameters
unknown. Consider testing the simple null hypothesis (µ, σ2) = (0, 1). Find and
compare the Wald test, Rao’s Score test, and the likelihood ratio test.

Problem 12.53 Suppose X1, . . . , Xn are i.i.d. with the gamma Γ(g, b) density

f(x) =
1

Γ(g)bg
xg−1e−x/b x > 0 ,

with both parameters unknown (and positive). Consider testing the null hypothe-
sis that g = 1, i.e., under the null hypothesis the underlying density is exponential.
Determine the likelihood ratio test statistic and find its limiting distribution.

Problem 12.54 Suppose (X1, Y1), . . . , (Xn, Yn) are i.i.d., with Xi also indepen-
dent of Yi. Further suppose Xi is normal with mean µ1 and variance 1, and Yi is
normal with mean µ2 and variance 1. It is known that µi ≥ 0 for i = 1, 2. The
problem is to test the null hypothesis that at most one µi is positive versus the
alternative that both µ1 and µ2 are positive.
(i) Determine the likelihood ratio statistic for this problem.
(ii) In order to carry out the test, how would you choose the critical value
(sequence) so that the size of the test is α?
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Problem 12.55 (i) In Example 12.4.6, check that the MLE is given by p̂j =
Yj/n. (ii) Show (12.82).

Problem 12.56 In Example 12.4.6, show that Rao’s Score test is exactly
Pearson’s Chi-squared test.

Problem 12.57 In Example 12.4.6, show that 2 log(Rn) − Qn
P→ 0 under the

null hypothesis.

Problem 12.58 Prove (12.86).

Problem 12.59 Provide the details of the proof to part (ii) of Theorem 12.4.2.

Problem 12.60 Prove (iii) of Theorem 12.4.2. Hint: If θ0 satisfies the null hy-
pothesis g(θ0) = 0, then testing Ω0 behaves asymptotically like testing the null
hypothesis D(θ0)(θ − θ0) = 0, which is a hypothesis of the form considered in
part (ii) of the theorem.

Problem 12.61 The problem is to test independence in a contingency table.
Specifically, suppose X1, . . . , Xn are i.i.d., where each Xi is cross-classified, so
that Xi = (r, s) with probability pr,s, r = 1, . . . , R, s = 1, . . . , S. Under the
full model, the pr,s vary freely, except they are nonnegative and sum to 1. Let
pr· =

∑
s pr,s and p·s =

∑
r pr,s. The null hypothesis asserts pr,s = pr·p·s for all

r and s. Determine the likelihood ratio test and its limiting null distribution.

Problem 12.62 Consider the following model which therefore generalizes model
(iii) of Section 4.7. A sample of ni subjects is obtained from class Ai(i = 1, . . . , a),
the samples from different classes being independent. If Yi,j is the number of
subjects from the ith sample belonging to Bj(j = 1, . . . , b), the joint distribution
of (Yi,1, . . . , Yi,b) is multinomial, say,

M(ni; p1|i, . . . , pb|i) .

Determine the likelihood ratio statistic for testing the hypothesis of homogeneity
that the vector (p1|i, . . . , pb|i) is independent of i, and specify its asymptotic
distribution.

Problem 12.63 The hypothesis of symmetry in a square two-way contingency
table arises when one of the responses A1, . . . , Aa is observed for each of n subjects
on two occasions (e.g. before and after some intervention). If Yi,j is the number of
subjects whose responses on the two occasions are (Ai, Aj), the joint distribution
of the Yi,j is multinomial, with the probability of a subject response of (Ai, Aj)
denoted by pi,j . The hypothesis H of symmetry states that pi,j = pj,i for all i and
j; that is, that the intervention has not changed the probabilities. Determine the
likelihood ratio statistic for testing H, and specify its asymptotic distribution.
[Bowker (1948).]

Problem 12.64 In the situation of Problem 12.63, consider the hypothesis of
marginal homogeneity H ′ : pi+ = p+i for all i, where pi+ =

∑a
j=1 piij , p+i =∑a

j=1 pjii.
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(i) The maximum-likelihood estimates of the piij under H ′ are given by ˆ̂pij =
Yij/(1+λi−λj), where the λ’s are the solutions of the equations

∑
j Yij/(1+

λi−λj) =
∑

j Yij/(1+λj−λi). (These equations have no explicit solutions.)

(ii) Determine the number of degrees of freedom for the limiting χ2-distribution
of the likelihood ratio criterion.

Problem 12.65 Consider the third of the three sampling schemes for a 2×2×K
table discussed in Section 4.8, and the two hypotheses

H1 : ∆1 = · · · = ∆K = 1 and H2 : ∆1 = · · · = ∆K .

(i) Obtain the likelihood-ratio test statistic for testing H1.
(ii) Obtain equations that determine the maximum likelihood estimates of the
parameters under H2. (These equations cannot be solved explicitly.)
(iii) Determine the number of degrees of freedom of the limiting χ2-distribution
of the likelihood ratio test for testing (a) H1, (b) H2.
[For a discussion of these and related hypotheses, see for example Shaffer (1973),
Plackett (1981), or Bishop, Fienberg, and Holland (1975), and the recent study
by Liang and Self (1985).]

Problem 12.66 Suppose X1, . . . , Xn are i.i.d. N(θ, 1). Consider Hodges’ super-
efficient estimator of θ (unpublished, but cited in Le Cam (1953)), defined as
follows Let θ̂n be 0 if |X̄n| ≤ n−1/4; otherwise, let θ̂n = X̄n. For any fixed θ,
determine the limiting distribution of n1/2(θ̂n − θ). Next, determine the limiting
distribution of n1/2(θ̂n − θn) under θn = hn−1/2.

Problem 12.67 Let (Xj,1, Xj,2), j = 1, . . . , n be independent pairs of inde-
pendent exponentially distributed random variables with E(Xj,1) = θλj and
E(Xj,2) = λj . Here, θ and the λj are all unknown. The problem is to test θ = 1
against θ > 1. Compare the Rao, Wald, and likelihood ratio tests for this prob-
lem. Without appealing to any general results, find the limiting distribution of
your statistics, as well as the limiting power against suitable local alternatives.
(Note: the number of parameters is increasing with n so you can’t directly appeal
to our previous large sample results.)

12.6 Notes

According to Le Cam and Yang (2000), the notion of quadratic mean differentia-
bility was initiated in conversations between Hájek and Le Cam in 1962. Hájek
(1962) appears to be the first publication making use of this notion. The impor-
tance of q.m.d. was prominent in the fundamental works of Le Cam (1969, 1970)
and Hájek (1972), and has been used extensively ever since.

The notion of (mutual) contiguity is due to Le Cam (1960). Its usefulness
was soon recognized by Hájek (1962), who first considered the one-sided version.
Three of Le Cam’s fundamental lemmas concerning contiguity became known
as Le Cam’s three lemmas, largely due to their prominence in Hájek and Sidák
(1967). Further results can be found in Roussas (1972), Le Cam (1986), Chapter
6, Hájek, Sidák, and Sen (1999), and Le Cam and Yang (2000), Chapter 3.
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The methods studied in Section 12.4 are based on the notion of likelihood,
whose general importance was recognized in Fisher (1922, 1925). Rigorous ap-
proaches were developed by Wald (1939, 1943) and Cramér (1946). Cramér
defined the asymptotic efficiency of an asymptotically normal estimator to be
the ratio of its asymptotic variance to the Fisher Information; that such a def-
inition is flawed even for asymptotically normal estimators was made clear by
Hodges superefficient estimator (Problem 12.66). Le Cam (1956) introduced the
one-step maximum likelihood estimator, which is based on a discretization trick
coupled with a Newton-Raphson approximation. Such estimators satisfy (12.62)
under weak assumptions and enjoy other optimality properties; for example, see
Section 7.3 of Millar (1983). The notion of a regular estimator sequence introduced
at the end of Section 12.4.1 plays an important role in the theory of efficient esti-
mation and the Hajék-Inagaki Convolution Theorem; see Hajék (1970), Le Cam
(1979), Beran (1999), Millar (1985), and van der Vaart (1988).

The asymptotic behavior of the likelihood ratio statistic was studied in Wilks
(1938) and Chernoff (1954). Pearson’s Chi-squared statistic was introduced in
Pearson (1900) and the Rao score tests by Rao (1947). In fact, the Rao score
test was actually introduced in the univariate case by Wald (1941b). The asymp-
totic equivalence of many of the classical tests is explored in Hall and Mathiason
(1990). Methods based on integrated likelihoods are reviewed in Berger, Liseo
and Wolpert (1999). Caveats about the finite sample behavior of Rao and Wald
tests are given in Le Cam (1990); also see Fears, Benichou and Gail (1996) and
Pawitan (2000). The behavior of likelihood ratio tests under nonstandard con-
ditions is studied in Vu and Zhou (1997). Extensions of likelihood methods to
semiparametric and nonparametric models are developed in Murphy and van der
Vaart (1997), Owen (1988, 2001) and Fan, Zhang and Zhang (2001). Robust ver-
sion of the Wald, likelihood, and score tests are given in Heritier and Ronchetti
(1994).



13
Large Sample Optimality

13.1 Testing Sequences, Metrics, and Inequalities

In this chapter, some asymptotic optimality theory of hypothesis testing is de-
veloped. We consider testing one sequence of distributions against another (the
asymptotic version of testing a simple hypothesis against a simple alternative).
It turns out that this problem degenerates if the two sequences are too close
together or too far apart. The non-degenerate situation can be characterized in
terms of a suitable distance or metric between the distributions of the two se-
quences. Two such metrics, the total variation and the Hellinger metric, will be
introduced below.

We begin by considering some of the basic metrics for probability distributions
that are useful in statistics. Fundamental inequalities relating these metrics are
developed, from which some large sample implications can be derived. We now
recall the definition of a metric space; also see Section A.2 in the appendix.

Definition 13.1.1 A set P is a metric space if there exists a real-valued function
d defined on P × P such that, for all points p, q, and r in P, d(p, q) ≥ 0,
d(p, q) = d(q, p) and d(p, q) ≤ d(p, r) + d(r, q). A function d satisfying these
conditions is called a metric.

In the present context, P will be a collection of probabilities on a (measurable)
space X (endowed with a σ-field). We have already encountered two metrics
on the collection of probability distributions on RI . One is the Lévy distance
ρL(F, G), defined in Definition 11.2.3. The other, used in Example 11.2.12, is the
Kolmogorov-Smirnov distance between distribution functions F and G on the
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real line, defined as

dK(F, G) = sup
t

|F (t) − G(t)| . (13.1)

It is easy to see that dK is indeed a metric (Problem 11.21). In the context of
hypothesis testing, two additional distances arise naturally, the total variation
distance and the Hellinger distance.

Before considering the asymptotic problem, consider the problem of testing
a simple hypothesis P0 against a simple alternative P1. Here, Pi is a probabil-
ity measure on (X ,F) and pi will denote the density of Pi with respect to a
dominating measure µ.

In contrast to previous chapters where the hypothesis and alternative were
treated asymmetrically, consider the problem of finding the test φ = φ(X) that
minimizes the sum of the error probabilities. For a test φ, denote the sum of the
probability of rejecting P0 when P0 is true and the probability of rejecting P1

when P1 is true by

SP0,P1(φ) =

∫

X
φ(x)dP0(x) +

∫

X
(1 − φ(x))dP1(x) . (13.2)

and let

S(P0, P1) = inf
φ

[SP0,P1(φ)] . (13.3)

The following theorem gives the test φ∗ that minimizes SP0,P1(φ) over all possible
tests φ, as well as a simple expression for S(P0, P1). Just as in the Neyman-
Pearson setup where the level α is fixed, the optimal test φ∗ is based on comparing
p0 with p1 according to the likelihood ratio p1(x)/p0(x), so that the only difference
is the choice of critical value.

Theorem 13.1.1 SP0,P1(φ) is minimized by taking φ = φ∗ a.e. µ, where φ∗ is
any test satisfying φ∗(x) = 1 if p1(x) > p0(x) and φ∗(x) = 0 if p1(x) < p0(x).
Furthermore,

S(P0, P1) = SP0,P1(φ
∗) = 1 − 1

2

∫

X
|p1(x) − p0(x)|µ(dx) . (13.4)

Proof. For any test φ,

SP0,P1(φ) =

∫

X
φ(x)(p0(x) − p1(x))µ(dx) + 1 . (13.5)

Let D− = {x : p0(x) − p1(x) < 0}. On D−, the integrand is minimized by
taking φ∗(x) = 1 (since the only constraint on φ∗ is that it take values in [0, 1]).
Similarly, on D+ ≡ {x : p0(x) − p1(x) > 0}, the integrand is minimized by
taking φ∗(x) = 0. On the set {x : p0(x) = p1(x)}, it does not matter how φ∗(x)
is defined. Thus, for any minimizing φ∗,

SP0,P1(φ
∗) =

∫

D−

[p0(x) − p1(x)]µ(dx) + 1 . (13.6)

Reversing the roles of P0 and P1 yields

SP1,P0(φ
∗) =

∫

D+

[p1(x) − p0(x)]µ(dx) + 1 . (13.7)
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By symmetry, both expressions are the same, so summing the last two equations
and then dividing by two yields

SP0,P1(φ
∗) = 1 +

1
2
[

∫

D−

[p0(x) − p1(x)]µ(x) +

∫

D+

[p1(x) − p0(x)]µ(dx)] (13.8)

= 1 − 1
2

∫

X
|p1(x) − p0(x)|µ(dx) . (13.9)

The integral appearing in the last expression leads us to the so-called total
variation distance between P0 and P1.

Definition 13.1.2 The total variation distance between P0 and P1, denoted
‖P1 − P0‖1, is given by

‖P1 − P0‖1 =

∫
|p1 − p0|dµ , (13.10)

where pi is the density of Pi with respect to any measure µ dominating both P0

and P1.

It is easy to see that this distance defines a metric (Problem 13.1) and that
this distance is independent of the choice of dominating measure µ. For alterna-
tive characterizations of the total variation distance, see Problem 13.2. Equation
(13.9) can be restated as

SP0,P1(φ
∗) = 1 − 1

2
‖P1 − P0‖1 . (13.11)

If X1, . . . , Xn are i.i.d. P , let P n denote their joint distribution. We will next
consider a sequence of tests φn for testing P n

n against Qn
n. The minimum sum of

error probabilities is then S(P n
n , Qn

n). The test (sequence) that minimizes the sum
of error probabilities is connected with the more usual test in which probability
of false rejection of P n

n is fixed at α by the following lemma. The proof is left as
an exercise (Problem 13.5).

Lemma 13.1.1 (i) If there exists a sequence of tests φn for which the sum of
error probabilities tends to 0, then given any fixed α (0 < α < 1) and n sufficiently
large, the level of φn will be less than α, and its power will tend to 1 as n → ∞.
(ii). If for every sequence {φn}, the sum of the error probabilities tends to 1,
then for any sequence whose rejection probability under P n

n tends to α, the lim-
iting power is α, and hence is no better than that of a test that rejects P n

n with
probability α independent of the data.

We would like to determine conditions for which the limiting sum of error
probabilities is zero or one, as well as for the more important intermediate sit-
uation. In order to determine the limiting behavior of S(P n

n , Qn
n), we need to

study the behavior of ‖P n
n − Qn

n‖1. Unfortunately, this quantity is often difficult
to compute, but it is related to another distance which is easier to manage. This
is the following Hellinger distance.
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Definition 13.1.3 Let P0 and P1 be probabilities on (X ,F). The Hellinger
distance H(P0, P1) between P0 and P1 is given by

H2(P0, P1) =
1
2

∫

X
[
√

p1(x) −
√

p0(x)]2dµ(x) , (13.12)

where pi is the density of Pi with respect to any measure µ dominating P0 and
P1.

The value of H(P0, P1) is independent of the choice of µ (Problem 13.1) and
one can, for example, always use µ = P0 + P1. It is also easy to see that this
distance defines a metric.1 By squaring the integrand and using the fact that the
densities pi must integrate to one, it follows that

H2(P0, P1) = 1 − ρ(P0, P1) , (13.13)

where ρ(P0, P1) is known as the affinity between P0 and P1 and is given by

ρ(P0, P1) =

∫

X

√
p0(x)p1(x)dµ(x) . (13.14)

Note that, by Cauchy-Schwarz, 0 ≤ ρ(P0, P1) ≤ 1 and ρ(P0, P1) = 1 if and only
if P0 = P1. Furthermore, ρ(P0, P1) = 0 if and only if P0 and P1 are mutually
singular, i.e., there exists a (measurable) set E with P0(E) = 1 and P1(E) = 0.
It follows, for example, that H(P0, P1) = 0 if and only if P0 = P1.

From equation (13.14), it immediately follows that

ρ(P n
0 , P n

1 ) = ρn(P0, P1) (13.15)

and hence

H2(P n
0 , P n

1 ) = 1 − ρn(P0, P1) = 1 − [1 − H2(P0, P1)]
n . (13.16)

Therefore, the behavior of H2(P n
0 , P n

1 ) with increasing n can be obtained from
n and H(P0, P1) in a simple way.

Next, we will relate H(P0, P1) to ‖P0 − P1‖1, which was already seen to have
a clear statistical interpretation.

Theorem 13.1.2 The following relationships hold between Hellinger distance
and total variation distance:

H2(P0, P1) ≤
1
2
‖P0 − P1‖1

≤ H(P0, P1)[2 − H2(P0, P1)]
1/2 = [1 − ρ2(P0, P1)]

1/2 . (13.17)

Proof. To prove the first inequality, note that

H2(P0, P1) =
1
2

∫
[
√

p1 −
√

p0]
2dµ ≤ 1

2

∫
|√p1 −

√
p0| · |

√
p1 +

√
p0|dµ

1Some authors prefer to leave out the constant 1/2 in their definition. Using Definition
13.1.3, the square of the Hellinger distance between P0 and P1 is just one-half the square
of the L2(µ)-distance between

√
p0 and

√
p1. Using the Hellinger distance makes it

unnecessary to choose a particular µ, and the Hellinger distance is even defined for all
pairs of probabilities on a space where no single dominating measure exists.
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=
1
2

∫
|p1 − p0|dµ =

1
2
‖P0 − P1‖1 .

To prove the second inequality, apply the Cauchy-Schwarz inequality to get

1
2
‖P0 − P1‖1 =

1
2

∫
|√p1 −

√
p0| · |

√
p1 +

√
p0|dµ

≤ [
1
2

∫
(
√

p1 −
√

p0)
2dµ]1/2[

1
2

∫
(
√

p1 +
√

p0)
2dµ]1/2

= H(P0, P1)[
1
2

∫
(
√

p1 +
√

p0)
2dµ]1/2

= H(P0, P1)[1 + ρ(P0, P1)]
1/2 = H(P0, P1)[2 − H2(P0, P1)]

1/2 ,

with the last equality following from the definition H2(P0, P1) = 1 − ρ(P0, P1);
the last equality in the statement of the theorem follows immediately from this
definition as well.

Consider now the problem of deciding between P n
0 and P n

1 based on n i.i.d.
observations from P0 or P1. Theorems 13.1.1 and 13.1.2 immediately yield the
following result.

Corollary 13.1.1 Fix any P0 and P1 with P0 += P1. Then, S(P n
0 , P n

1 ) tends to
0 exponentially fast; more specifically,

S(P n
0 , P n

1 ) ≤ ρn(P0, P1) → 0 as n → ∞ . (13.18)

Proof. By Theorem 13.1.2 and equation (13.16),

1
2
‖P n

0 − P n
1 ‖1 ≥ H2(P n

0 , P n
1 ) = 1 − ρn(P0, P1) . (13.19)

Hence, by Theorem 13.1.1 and (13.19),

S(P n
0 , P n

1 ) = 1 − 1
2
‖P n

0 − P n
1 ‖1 ≤ ρn(P0, P1) → 0 (13.20)

as n → ∞, since ρ(P0, P1) < 1 as P0 += P1.

Thus, we can conclude there always exists a perfectly discriminating sequence
of tests for testing P0 against P1 based on n i.i.d. observations in the sense that
the sum of the error probabilities tends to 0.

Since, for any fixed n, the probabilities of error in testing P n
0 against P n

1 are not
zero (unless P0 and P1 are singular), such asymptotic convergence is of limited
value. To obtain a more discriminating result, we will consider the problem of
testing P n

θ0 against P n
θn

based on n i.i.d. observations, where Pθn is a sequence of
probability distributions getting closer to Pθ0 . Closeness here will conveniently
be expressed by the Hellinger metric. We would like to consider Pθn close enough
to Pθ0 as n → ∞ so that the testing problem becomes difficult for the statistician
in the sense that there does not exist a test sequence whose error probabilities
both tend to zero. On the other hand, we would also not want Pθn and Pθ0 to be
so close that no sequence of tests will have any reasonable amount of power. The
following theorem characterizes this situation and shows that the intermediate
situation occurs if and only if nH2(Pθ0 , Pθn) = 1.
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Theorem 13.1.3 Suppose

c1 = lim inf nH2(Pθ0 , Pθn) ≤ lim sup nH2(Pθ0 , Pθn) = c2 . (13.21)

Then,

1 − [1 − exp(−2c2)]
1/2 ≤ lim inf S(P n

θ0 , P n
θn) (13.22)

≤ lim sup S(P n
θ0 , P n

θn) ≤ exp(−c1) .

Proof. To prove lim sup S(P n
θ0 , P n

θn
) ≤ exp(−c1), assume first that

nH2(Pθ0 , Pθn) → c ≥ c1 .

By Corollary 13.1.1,

S(P n
θ0 , P n

θn) ≤ ρn(Pθ0 , Pθn) = [1 − H2(Pθ0 , Pθn)]n → exp(−c) ≤ exp(−c1) .

By applying this argument to subsequences θnj such that njH
2(Pθ0 , Pθnj

)

converges, the last inequality in (13.22) follows. Similarly, suppose

nH2(Pθ0 , Pθn) → c ≤ c2 .

The first inequality follows if we show that

1 − [1 − exp(−2c)]1/2 ≤ lim inf
n

S(P n
θ0 , P n

θn) .

By Theorem 13.1.1 and then Theorem 13.1.2,

S(P n
θ0 , P n

θn) = 1 − 1
2
‖P n

θn − P n
θ0‖1 ≥ 1 − [1 − ρ2(P n

θ0 , P n
θn)]1/2 .

By (13.15), this becomes

1−[1−ρ2n(Pθ0 , Pθn)]1/2 = 1−{1−[1−H2(Pθ0 , Pθn)]2n}1/2 → 1−[1−exp(−2c)]1/2 ,

and the result follows.

Thus, from an asymptotic point of view, it is reasonable to consider alternatives
θn to θ0 such that nH2(Pθ0 , Pθn) is bounded away from 0 and ∞. Otherwise, the
problem is asymptotically degenerate in the sense that, either there exists a test
sequence φn for testing θ0 versus θn such that the probability of a type 1 error
tends to zero and the power at θn tends to one, or no sequence of level α tests
will have asymptotic power greater than α. We next consider what the condition
on nH2(Pθ0 , Pθn) becomes in some classical examples.

Example 13.1.1 (Quadratic Mean Differentiable Families) Assume that
{Pθ, θ ∈ Ω} is q.m.d. with derivative η(·, θ0) at θ0 and positive definite I(θ0).
Suppose n1/2(θn − θ0) → h. By equation (12.6) and Lemma 12.2.2,

2nH2(Pθ0 , Pθn) = n

∫
[
√

pθn −√
pθ0 ]

2dµ

→
∫

|〈η(x, θ0), h〉|2dµ(x) =
1
4
〈h, I(θ0)h〉 < ∞ . (13.23)

Thus, the nondegenerate situation occurs when |θn − θ0| = O(n−1/2). Note that
the limiting value (13.23) is never 0 unless h = 0 (Problem 13.8).
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Example 13.1.2 (Uniform Family; Example 12.2.8, continued) Let Pθ be
the uniform distribution on (0, θ). Then, nH2(Pθ0 , Pθn) tends to a finite, positive
limit if and only if n(θn − θ0) → h < ∞ (Problem 13.4). Hence, alternatives
θn such that θn − θ0 = n−1 cannot be perfectly discriminated, yet tests can be
constructed that have reasonable power against these alternatives.

To clarify the difference between the previous two examples, note that in
Example 13.1.1 we have

H2(Pθ0 , Pθn) = (θn − θ0)
2

while in Example 13.1.2 we have

H2(Pθ0 , Pθn) = |θn − θ0| .

Example 13.1.3 (Example 12.2.5, continued) Consider densities

pθ(x) = C(β) exp{−|x − θ|β}

and set θ0 = 0. In this example, the following can be shown (see Le Cam and
Yang (1990), Lemma 5 in Section 7.3). If β > 1/2, the family is q.m.d. and
so H2(P0, Pδ)/δ2 tends to a finite limit as δ → 0; thus, the right rate to keep
the problem nondegenerate is δ = n−1/2. If β = 1/2, H2(P0, Pδ)/[δ2| log(δ)|]
tends to a finite limit as δ → 0, and so the corresponding nondegenerate rate is
δ = (n log n)−1/2. If 0 < β < 1/2, H2(P0, Pδ)/δ1+2β tends to a finite limit, in
which case the corresponding nondegenerate rate is δ = n−1/(1+2β).

Even though the above asymptotic development studies the limiting behavior
of tests based on the criterion of minimum sum of error probabilities, it is also rel-
evant to the usual Neyman-Pearson formulation when we we consider tests whose
level is α for some fixed α > 0. For, if nH2(Pθ0 , Pθn) → ∞, then S(P n

θ0 , P n
θn

) → 0,
by Theorem 13.1.3. Thus, by Lemma 13.1.1, given ε > 0, for large enough n there
exists a test sequence φn whose level is less than ε and whose power against θn is
at least 1 − ε. So clearly, there exist level α test sequences whose power against
θn tend to one.

On the other hand, if nH2(Pθ0 , Pθn) → 0, then no sequence of level α tests
has limiting power against θn greater than α (Problem 13.6).

As before, the interesting nondegenerate asymptotic situation occurs when
nH2(Pθ0 , Pθn) → c for some finite positive c. In this case, there exists a level
α test sequence whose limiting power against θn exceeds α. Typically, the value
of the limiting power is strictly less than one, but in some cases it may equal
one (which does not contradict Theorem 13.1.3 because the sum of the errors is
tending to α > 0); see Problem 13.9.

The following theorem clarifies the relationship between Pn and Qn being
contiguous and the Hellinger metric between Pn and Qn.

Theorem 13.1.4 (i) If nH2(Pn, Qn) → 0, then ‖Qn
n −P n

n ‖1 → 0 and {P n
n } and

{Qn
n} are contiguous.

(ii) If nH2(Pn, Qn) → ∞, then S(P n
n , Qn

n) → 0 and {P n
n } and {Qn

n} are not
contiguous.



534 13. Large Sample Optimality

Proof. To prove (i), note that Theorem 13.1.3 holds if Pθ0 is allowed to vary
with n, with no change in the argument or the conclusion. Thus, by (13.21) with
c2 = 0, nH2(Pn, Qn) → 0 implies S(P n

n , Qn
n) → 1. Therefore, by Problem 13.10,

‖P n
n − Qn

n‖1 → 0. To prove (ii), assume nH2(Pn, Qn) → ∞. By Theorem 13.1.3,
S(P n

n , Qn
n) → 0. Hence, there exists a test sequence φ∗

n such that EP n
n

(φ∗
n) → 0

and EQn
n
(φ∗

n) → 1. Let Ln denote the likelihood ratio of Qn
n with respect to P n

n .
But, Theorem 13.1.1 shows that φ∗

n can be taken to be the indicator of the set
An ≡ Ln > 1. Then, P n

n (An) → 0 but Qn
n(An) → 1.

Example 13.1.4 (Example 13.1.1, continued) Assume {Pθ, θ ∈ Ω} is q.m.d.
at θ0, and hn → h. Then, by a calculation similar to that in Example 13.1.1,
nH2(Pθ0+hn−1/2 , Pθ0+hnn−1/2) → 0 (Problem 13.11). Therefore, by Theorem
13.1.4(i), P n

θ0+hnn−1/2 is contiguous to P n
θ0 . This result forms the basis for gen-

eralizing results such as Theorem 12.2.3, Theorem 12.4.1 and Corollary 12.4.1,
which have been shown to be true when hn = h, to the more general case when
hn → h; see Problems 13.12 and 13.13.

In the intermediate situation nH2(Pn, Qn) = 1, P n
n and Qn

n may or may not be
contiguous. Example 13.1.1 provides an example where contiguity holds. However
reconsider Example 13.1.2, where Pn is uniform on [0, 1] and Qn is uniform on
[0, 1 + hn−1], where h > 0. Then, nH2(Pn, Qn) = 1, but Qn

n is not contiguous
with respect to P n

n . To see why, let An be the event that the maximum of n
i.i.d. observations exceeds 1. Then, P n

n (An) = 0, while Qn
n(An) → 1 − e−h. For

a sharp result on the relationship between contiguity and Hellinger distance, see
Oosterhoff and van Zwet (1979).

13.2 Asymptotic Relative Efficiency

Consider the problem of testing H : θ ∈ Ω0 against θ /∈ Ω0 when X1, . . . , Xn are
i.i.d. according to a model {Pθ, θ ∈ Ω}. Our main goal is to derive tests that are
asymptotically optimal. However, other considerations (such as robustness) may
suggest using non-optimal tests. It is then important to know how much is lost
by the use of such sub-optimal tests. In this section, we shall therefore compare
the performance of two test procedures φn and φ̃n. In this context, performance
is measured in terms of power. Roughly speaking, the relative efficiency of φ̃n

with respect to φn is defined to be n/ñ, where n and ñ are the sample sizes
required for φn and φ̃ñ to have the same power at the same level against the
same alternative. For instance, a ratio of 2 would indicate that φ̃n is twice as
efficient as φn because twice as many observations are required for φn to have
the same power at a given alternative as φ̃n. Such a comparison can be based on
the following result.

Theorem 13.2.1 Suppose X1, . . . , Xn are i.i.d. according to a q.m.d. family in-
dexed by a real parameter θ, and consider testing θ = θ0 versus θ > θ0. Assume
the sequence φ = {φn} is based on test statistics Tn satisfying the following: there
exists a function µ(·) and a number σ2 > 0 such that, under any sequence θn
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satisfying n1/2(θn − θ0) = O(1),

n1/2[Tn − µ(θn)]
d→ N(0, σ2) ; (13.24)

moreover, µ(·) is assumed to have a right-hand derivative µ′(θ0) > 0 at θ0.
Suppose φn rejects when n1/2[Tn − µ(θ0)] > ĉn, where

ĉn → z1−ασ (13.25)

in probability under θ0. Then, the following is true.
(i) Eθ0(φn) → α as n → ∞.
(ii) The limiting power of φn against θn satisfying n1/2(θn − θ0) → h is

lim
n

Eθn(φn) = 1 − Φ

[
z1−α − h

µ′(θ0)
σ

]
. (13.26)

(iii) Fix 0 < α < β < 1. Let θk be any sequence satisfying θk > θ0 and θk → θ0 as
k → ∞, and let nk be any sequence for which Eθk (φnk ) ≥ β and Eθk (φnk ) → β.
Then,2

nk ∼ (z1−α − z1−β)2σ2

[(θk − θ0)µ′(θ0)]2
. (13.27)

Proof. Part (i) follows by Slutsky’s Theorem. To prove (ii), let θn satisfy
n1/2(θn − θ0) → h. By contiguity (Example 13.1.4, it follows that ĉn → z1−ασ in
probability under θn. Also,

n1/2[µ(θn) − µ(θ0)] → hµ′(θ0) .

Letting Z denote a standard normal variable, by Slutsky’s Theorem,

Eθn(φn) = Pθn{n
1/2[Tn − µ(θn)] > ĉn − n1/2[µ(θn) − µ(θ0)]}

→ P{σZ > z1−ασ − hµ′(θ0)} ,

implying (ii).
To prove (iii), choose h = hβ so that the right side of (13.26) is β, and hence

hβ = (z1−α − z1−β) · σ
µ′(θ0)

.

By (ii), if θn satisfies n1/2(θn − θ0) → hβ , then the limiting power of φn against
θn is β. It follows that the limiting power of φn against θn is β if and only if θn

satisfies

n ∼ (z1−α − z1−β)2σ2

[(θn − θ0)µ′(θ0)]2
.

For an arbitrary sequence θk → θ0, let mk satisfy m1/2
k (θk − θ0) → hβ . Then,

since m1/2
k (θk − θ0) = O(1), the asymptotic normality assumption for Tmk holds,

and the above argument shows the limiting power of φmk against θk is β iff

mk ∼ (z1−α − z1−β)2σ2

[(θk − θ0)µ′(θ0)]2
.

2The notation ak ∼ bk means ak/bk → 1.
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To show nk ∼ mk, we first show that lim sup(nk/mk) ≥ 1. But, the q.m.d. as-
sumption precludes nk being bounded (Problem 13.17), while the above argument
shows the limiting power against nk would be bounded above by β if nk → ∞.
So, it suffices to show lim inf(nk/mk) ≤ 1. Fix ε > 0 and let sk satisfy

s1/2
k (θk − θ0) → (z1−α − z1−β) · σ

µ′(θ0)
+ ε .

Note that sk/mk < 1 + Cε for some C. Then, the limiting power of φsk against
θk is, by the above argument, strictly greater than β. Hence, for large enough n,
nk ≤ sk, and so

lim inf
nk

mk
≤ lim inf

sk

mk
≤ 1 + Cε .

Since ε was arbitrary, the result follows.
Inspection of (13.26) shows that, the larger the value µ′(θ0)/σ, the smaller is

the sample size required to achieve a given power β. A test sequence generated
by Tn will therefore be more efficient the larger its value of [µ′(θ0)/σ]. This value
is called the efficacy of the test sequence. Under some regularity conditions, Rao
(1963) proved that

[µ′(θ0)/σ(θ0)]
2 ≤ I(θ0) ,

where I(θ0) is the usual Fisher Information. Such a result will follow from the
results in Section 13.3 under the assumption of quadratic mean differentiability.

Example 13.2.1 (Wald and Rao Tests) Under the assumptions of Theorem
13.2.1, suppose θ̂n satisfies (12.62),and consider the Wald test that rejects for
large values of θ̂n − θ0. By Theorem 12.4.1, the assumptions of Theorem 13.2.1
hold with µ(θ) = θ and σ2 = I−1(θ0). (The theorem establishes asymptotic
normality under sequences θn of the form θ0+hn−1/2, but it holds more generally
for sequences θn satisfying n1/2(θn − θ0) = O(1), by Problem 12.32.) Hence, the
squared efficacy of the Wald test is I(θ0). The same is true for Rao’s score test
(Problem 13.18).

Corollary 13.2.1 Assume the conditions of Theorem 13.2.1 hold for φ = {φn}
and consider a competing test sequence φ̃ = {φ̃n} based on a test statistic T̃n

satisfying (13.24) with µ and σ replaced by µ̃ and σ̃. Fix 0 < α < β < 1 and for
θ > θ0, let N(θ) and Ñ(θ) be the smallest sample sizes necessary for φ and φ̃ to
have power at least β against θ. Then,

lim
θ↓θ0

N(θ)

Ñ(θ)
=

[
µ̃′(θ0)/σ̃
µ′(θ0)/σ

]2

, (13.28)

and the right hand side is called the (Pitman) Asymptotic Relative Efficiency
(ARE) of φ̃ with respect to φ.

Proof. Apply (iii) of Theorem 13.2.1.

Notice that the ARE is independent of α and β. Also, the tests are only required
to be asymptotically level α, and the critical values may be random. Thus, we
can, for example, compare tests based on an exact critical value, such as one
obtained from the exact sampling distribution of Tn under θ0, with tests based
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on asymptotic normality, possibly combined with an estimate of the asymptotic
variance. Another possibility is to use a critical value obtained from a permutation
distribution, such as the tests studied in Section 5.12. Nevertheless, under the
assumptions stated, the resulting efficacy of a test is unchanged whether a test is
based on an exact critical value or an approximate one. This implies the ARE is
one when comparing two tests based on the same test statistic but with different
critical values, as long as (13.25) is satisfied.

The ARE provides a single number for comparing two tests, independent of α
and β. However, for finite samples, the relative efficiency depends on both α and
β. Thus, the asymptotic measure may not give a very good picture of the actual
finite-sample situation.

The following lemma facilitates the computation of the efficacy of a test
sequence.

Lemma 13.2.1 Assume X1, . . . , Xn are i.i.d. according to a family which is
q.m.d. at θ0 and that the unknown parameter θ varies in an open subset of RI .
Suppose, under θn = θ0 + h/n1/2, we have

n1/2Tn
d→ N(hm, σ2) .

Then, the assumptions in Theorem 13.2.1 hold for Tn and the efficacy of Tn is
m/σ.

Proof. Let µ(θ) = m(θ − θ0). The assumptions imply

n1/2(Tn − µ(θn))
d→ N(0, σ2)

under θn whenever θn is of the form θn = θ0+hn−1/2. By Problem 12.32, the same
result holds whenever n1/2(θn − θ0) = O(1), so that the asymptotic normality
assumption holds for Tn with µ′(θ) = m. Thus, the efficacy of Tn is m/σ.

Example 13.2.2 (One-sample Tests of Location) Suppose X1, . . . , Xn are
i.i.d. according to a location model with density f(x − θ), where f is assumed
to be symmetric about 0. Assume f ′(x) exists for almost all x, and the Fisher
Information is positive and finite, so that the family is q.m.d. We would like to
compare competing tests for testing θ = 0 versus θ > 0. Consider the three tests
that reject for large values of tn, Sn, and Wn, the classical t-statistic tn, the sign
test statistic Sn, and the Wilcoxon signed rank statistic Wn studied in Examples
12.3.9, 12.3.10, and 12.3.11, respectively. Regardless of whether or not f is known,
all three tests can be used to yield tests that are pointwise consistent in level as
long as f is symmetric and has finite variance. Let σ2

f denote the variance of f .

Under θn = h/n1/2, we have

n1/2tn
d→ N(

h
σf

, 1) ,

n1/2Sn
d→ N(hf(0),

1
4
) ,

and

n1/2Wn
d→ N(2h

∫ ∞

−∞
f2(x)dx,

1
3
) .
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Thus, the efficacies of t, S, and W are 1/σ, 2f(0), and (12)1/2
∫

f2, respectively.
Therefore (with an obvious change of notation that shows the dependence on f),

eS,t(f) = [2f(0)σf ]2

and

eW,t(f) = 12σ2
f [

∫
f2]2 . (13.29)

In particular, when f is the normal density ϕ, eS,t(ϕ) = 2/π ≈ 0.637 and
eW,t(ϕ) = 3/π ≈ 0.955. Thus, under normality, the sign test requires a sam-
ple size that is about 57 percent greater than the t-test to achieve the same
power.

On the other hand, the efficiency loss for the Wilcoxon test is less than 5
percent. When f is not normal, the efficiency of both the sign test and the
Wilcoxon test with respect to the t-test can be arbitrary large. To see this, modify
ϕ by moving small masses out in the tails of the distribution so that σf becomes
quite large but f(0) and

∫
f2 remain about the same. Moreover, the Wilcoxon test

can never be much less efficient than the t-test, regardless of f ; in fact (Problem
13.21),

eW,t(f) ≥ 0.864 for all f . (13.30)

Interestingly, when f is the double exponential density, the sign test is the most
efficient of the three. In fact, it will later be seen in Section 13.3 that the sign
test is asymptotically uniformly most powerful for testing the location parameter
in a double exponential location model.

Example 13.2.3 (Two-Sample Tests of Shift) Suppose X1, . . . , Xm are i.i.d.
with c.d.f. F and, independently, Y1, . . . , Yn are i.i.d. with c.d.f. G. Assume

G(x) = F (x − θ) (13.31)

for some θ. If F is unknown, such a nonparametric two-sample shift model was
studied in Section 5.8, where the class of permutation tests was introduced. Con-
sider the problem of testing θ = 0 versus θ > 0. We would like to compare
the normal scores test and the Wilcoxon test W introduced in Section 6.9, as
well as the two-sample t-test and the permutation t-test. It turns out that, even
when F and G are normal with a common variance, the normal scores test and
the Wilcoxon test are nearly as powerful as the t-test. To obtain a numerical
comparison, suppose m = n. Then, the notion of relative efficiency applies with
no changes (by viewing the observations as pairs (Xi, Yi)), and so the (Pitman)
asymptotic relative efficiencies can be computed for test statistics satisfying the
assumptions of Theorem 13.2.1.

In the particular case of the Wilcoxon test, eW,t = 3/π when F and G are
normal with equal variance. Some numerical evidence supports the fact that the
relative efficiency is nearly independent of α and β in this context; see Lehmann
(1998), p.79. As in the one-sample case, the (Pitman) asymptotic relative effi-
ciency is always ≥ .864, but may exceed 1 and can be infinite. The situation is
even more favorable for the normal-scores test. Its asymptotic relative efficiency,
relative to the t-test, is always ≥ 1 under the model (13.31); moreover, it is 1 only
when F is normal. Thus, while the t-test is performance robust in the sense that
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its level and power is asymptotically independent of F as discussed in Section
11.3, the present results show that the efficiency and optimality properties of the
t-test are quite nonrobust. The same comments apply to the permutation t-test
(whose asymptotic properties will be discussed in Section 15.2.

The above results do not depend on the assumption of equal sample sizes; they
are also valid if m/n = 1. At least in the case that F is normal, the asymptotic
results given by the (Pitman) efficiencies agree well with those found for small
samples. The results also extend to testing the equality of s means, and the
asymptotic relative efficiency of the Kruskal-Wallis test to the normal theory F -
test is the same as the Wilcoxon to the t-test in the case s = 2. For a more detailed
discussion of these and related efficiency results, see for example, Lehmann (1998),
Randles and Wolfe (1979), Blair and Higgins (1980), and Groeneboom (1980).

The most ambitious goal in the nonparametric two-sample shift model would be
to find a test which does not depend on F , yet would have asymptotic efficiency at
least 1 with respect to any other test, for all F (or at least all F in a nonparametric
family). Such adaptive tests (which achieve simultaneous optimality by adapting
themselves to the unknown F ) do in fact exist if F is sufficiently smooth. Their
possibility was first suggested by Stein (1956b), and has been carried out for
point estimation problems by Beran (1974), Stone (1975) and Bickel (1982).

We now briefly mention some other notions of asymptotic relative efficiency.
Consider two test sequences φ = {φn} and φ̃ = {φ̃n}, each indexed by the sample
size n. For simplicity, suppose φ is determined by a test statistic T = {Tn} which
rejects for large values. Then, φn is really a family of tests indexed by n and
α, where the value α determines the size of the test. Define N(α, β, θ) to be
the sample size necessary for the test φn to have power ≥ β against the fixed
alternative θ, subject to the constraint that the size of φn is α. Thus, N is the
smallest sample size n such that, for some critical value c = c(n, α), we have

sup
θ0∈Ω0

Pθ0{Tn > c} ≤ α (13.32)

and

Pθ{Tn > c} ≥ β .

Similarly, define Ñ(α, β, θ) corresponding to a test φ̃n based on a test statistic
T̃n. Then, the relative efficiency of φ̃ with respect to φ is defined to be

eT̃ ,T (α, β, θ) = N(α, β, θ)/Ñ(α, β, θ) .

While this measure has a useful statistical interpretation, its value depends on
three arguments α, β and θ; moreover, it is typically quite difficult to compute
N(α, β, θ) for a given test φ. However, it is often possible to calculate the limiting
values of eT̃ ,T (α, β, θ) as α → 0, β → 1, or θ → θ0 ∈ Ω0, with the remaining
two arguments kept fixed. The case α → 0 is known as the Bahadur efficiency,
the case β → 1 as the Hodges-Lehmann efficiency, and the case θ → θ0 coincides
with the (Pitman) ARE already introduced. These various types of efficiency are
reviewed in Serfling (1980, Chapter 10) and Nikitin (1995, Chapter 1). While
each of these notions of asymptotic relative efficiency have some merit, we argue
that the Pitman ARE has the most practical significance. In practice, α, though
small, is regarded as fixed, and so comparisons based on the Bahadur efficiency
with α → 0 may be questionable. On the other hand, with α fixed, comparing
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procedures with power tending to 1 seems inappropriate since then the probability
of an error of the second kind now becomes smaller than the probability of an
error if the first kind. Typically, for values of the parameter at a fixed distance
from Ω0, any reasonable test will have power tending to one. It then becomes
more important to choose a test that is better equipped to deal with the more
difficult situation when θ is near Ω0, and the Pitman asymptotic relative efficiency
provides a useful measure in this situation. Numerical evidence for the superiority
of Pitman over Bahadur efficiency is provided in Groeneboom and Oosterhoff
(1981).

13.3 AUMP Tests in Univariate Models

Suppose X1, . . . , Xn are i.i.d. Pθ, with θ real-valued, and consider testing the
hypothesis θ = θ0 against θ > θ0. As was discussed in Section 3.4, even in this
one-parameter model, UMP tests rarely exist. In the present section we shall
show that under weak smoothness assumptions, asymptotically optimal tests do
exist.

As we saw in Section 13.1, when the q.m.d. assumption holds, informative
power calculations for large samples are obtained not against fixed alternatives
(for which the power tends to 1) but against sequences of alternatives of the form

θn,h = θ0 + hn−1/2 h > 0 , (13.33)

for which the power tends to a value strictly between α and 1. Asymptotic
optimality is most naturally studied in terms of these alternatives.

Let {αn} be a sequence of levels tending to α. By the Neyman-Pearson Lemma,
the most powerful test φn,h for testing θ = θ0 against θn,h at level αn rejects when

Ln,h =
n∏

i=1

[pθ0+hn−1/2(Xi)/pθ0(Xi)]

is sufficiently large; more specifically, it is given by

φn,h =






1 if log(Ln,h) > cn,h

γn,h if log(Ln,h) = cn,h

0 if log(Ln,h) < cn,h,
(13.34)

where the constants cn,h and γn,h are determined so that Eθ0(φn,h) = αn.
The limits of the critical values cn,h and the power of the tests (13.34) against

the alternatives (13.33) are given in the following lemma, under the assumption
of quadratic mean differentiability.

Lemma 13.3.1 Assume {Pθ, θ ∈ Ω} is q.m.d. at θ0 with Ω an open subset of
RI . Consider testing θ = θ0 against θn,h = θ0 + hn−1/2 at level αn → α ∈ (0, 1).
(i) As n → ∞, the critical values cn,h of the most powerful test sequence φn,h

defined in (13.34) satisfy

cn,h → −h2I(θ0)
2

+ hI1/2(θ0)z1−α , (13.35)
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where I(θ0) is the Fisher Information at θ0 and z1−α = Φ−1(1 − α) is the 1 − α
quantile of N(0, 1). Moreover,

Pθ0{log(Ln,h) > cn,h} → α (13.36)

and

Pθ0{log(Ln,h) = cn,h} → 0 . (13.37)

(ii) The power of φn,h satisfies

Eθ0+hn−1/2(φn,h) → 1 − Φ[z1−α − hI1/2(θ0)] . (13.38)

(iii) More generally, consider testing θ = θ0 against θn,hn where hn → h, with
|h| < ∞. Then, the power of φn,hn against θn,hn converges to the right side of
(13.38), i.e., it has the same limiting power as φn,h.

Proof. By Theorem 12.2.3, under θ0, log(Ln,h) converges weakly to N(−σ2
h/2, σ2

h),
where σ2

h = h2I(θ0). Then, (13.37) follows by Problem 11.42(i). Hence,

αn = Eθ0(φn,h) = Pθ0{log(Ln,h) > cn,h} + o(1) ,

and so (13.36) follows. By Problem 11.42(ii), it follows that cn,h tends to the
1 − α quantile of N(−σ2

h/2, σ2
h), and so (13.35) follows.

To prove (ii), under θn,h, log(Ln,h) converges in distribution to a variable
Yh distributed as N(σ2

h/2, σ2
h), as shown in Example 12.3.12 by a contiguity

argument. Hence, under θ0 +hn−1/2, the probability that log(Ln,h) = cn,h tends
to 0, again by Problem 11.42(i). Letting Z denote a standard normal variable,

Eθn,h(φn,h) = Pθn,h{log(Ln,h) > cn,h} + o(1)

→ P{Yh >
−σ2

h

2
+ σhz1−α} = P{Z > −σh + z1−α} = 1 − Φ(z1−α − hI1/2(θ0)),

and (ii) follows.
The proof of (iii) is left to Problem 13.27.

Next, we consider the notion of an asymptotically most powerful test sequence
for testing a simple hypothesis θ = θ0 against a simple alternative sequence θn.

Definition 13.3.1 For testing θ = θ0 against θ = θn, {φn} is asymptotically
most powerful (AMP) at (asymptotic) level α if lim supn Eθ0(φn) ≤ α and if for
any other sequence of test functions {ψn} satisfying lim supn Eθ0(ψn) ≤ α,

lim sup
n

Eθn(ψn) − Eθn(φn) ≤ 0 . (13.39)

For q.m.d. families, Lemma 13.3.1 implies the following result (Problem 13.28).

Theorem 13.3.1 Assume {Pθ, θ ∈ Ω} is q.m.d. at θ0 with Ω an open subset of
RI and Fisher Information I(θ0). Given X1, . . . , Xn i.i.d. Pθ, consider testing θ =
θ0 against θn = θ0 + hnn−1/2, where hn → h > 0. Then, φn = φn(X1, . . . , Xn)
is AMP level α if and only if Eθ0(φn) → α and

lim sup
n

Eθ0+hnn−1/2(φn) = [1 − Φ(z1−α − hI1/2(θ0))]. (13.40)
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Of course, for testing a simple null hypothesis against a simple alternative, one
always has available the optimal finite sample Neyman Pearson test sequence φn,h

given by (13.34). However, the tests φn,h will typically depend on h and therefore
will not be uniformly best against all alternatives. However, at this point, there is
a profound difference between the finite sample and the asymptotic theory. Most
powerful tests typically are unique while this is not true for asymptotically most
powerful tests, since they can be changed on sets whose probability tends to zero
without changing the asymptotic power. This difference opens up the possibility
that among the set of AMP tests there may be one that is AMP simultaneously
for all values of h. This possibility will be explored in the remainder of this
section.

For this purpose, recall the expansion of log(Ln,h). By Theorem 12.2.3,

log(Ln,h) − [hZn − 1
2
h2I(θ0)] = oP n

θ0
(1) , (13.41)

where η̃(x, θ) = 2η(x, θ)/p1/2
θ (x), η(·, θ) is the quadratic mean derivative at θ,

and Zn is the score statistic given by

Zn ≡ n−1/2
n∑

i=1

η̃(Xi, θ0), (13.42)

By Problem 12.24, the left hand side of (13.41) tends in probability to 0 not only
under the null hypothesis but also under the alternative sequence P n

θ0+hn−1/2

as well. Hence, the test that rejects for large values of log(Ln,h) should behave
approximately like the test that rejects for large values of hZn − 1

2h2I(θ0). But,
this latter test is equivalent to rejecting for large values of Zn, regardless of the
value of h.

Consider therefore the Rao’s score test φ̃n given by

φ̃n =

{
1 if Zn ≥ I1/2(θ0)z1−α

0 otherwise.
(13.43)

As discussed in Section 12.4.3, φ̃n maximizes the derivative of the power function
at θ0, and we will soon see that the limiting power of φ̃n against alternatives of
the form θ0 + hn−1/2 is the optimal value given by the right side of (13.38).

We now derive the asymptotic properties of φ̃n. Although we could argue
by comparing φ̃n with φn,h, we proceed instead with a direct calculation. First

observe that, under θ0, Eθ0(φ̃n) → α. To see why, note that, under θ0, Zn
d→

N(0, I(θ0)), by Theorem 12.2.3. The asymptotic consistency in level follows by
Slutsky’s Theorem.

Next, we calculate the limiting power of φ̃n against an alternative sequence
θn,hn with hn → h < ∞. By Corollary 12.4.1, under the alternative sequence
θ0 + hnn−1/2,

Zn
d→ N(hI(θ0), I(θ0)) . (13.44)

Therefore,

Eθ0+hnn−1/2(φ̃n) = Pθ0+hnn−1/2{Zn ≥ I−1/2(θ0)z1−α}

= Pθ0+hnn−1/2{
Zn − hI(θ0)

I1/2(θ0)
≥ I1/2(θ0)z1−α − hI(θ0)

I1/2(θ0)
}
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→ P{Z > z1−α − hI1/2(θ0)} = 1 − Φ[z1−α − hI1/2(θ0)]. (13.45)

Thus, φ̃n has the same limiting power against θn,hn as φn,hn . Moreover, the
convergence to the limiting power is uniform over h in [0, c] for any c < ∞; that
is,

sup
0≤h≤c

∣∣∣Eθ0+hn−1/2(φ̃n) − {1 − Φ[z1−α − hI1/2(θ0)]}
∣∣∣ → 0 (13.46)

as n → ∞. For if not, there would exist a sequence hn ∈ [0, c] for which

Eθ0+hnn−1/2(φ̃n) − {1 − Φ[z1−α − hI1/2(θ0)]} (13.47)

does not converge to 0. Then, there exists a subsequence hnj for which (13.47)
converges along this subsequence to δ += 0. Take a further subsequence hnjk

which
converges to a limit, say h. But by (13.45), along every subsequence hnjk

which
converges to h, we have

E
θ0+hnjk

n
−1/2
jk

(φ̃njk
) → 1 − Φ[z1−α − hI1/2(θ0)] ,

which renders a contradiction. In summary, we have proved the following.

Lemma 13.3.2 Under the assumption of Lemma 13.3.1, let φ̃n be the test
(13.43). Then, φ̃n is asymptotically level α and its limiting power against
θ0 + hn−1/2 converges to the optimal limiting power uniformly in h ∈ [0, c] for
any c > 0; specifically, (13.46) holds.

Lemma 13.3.2 asserts an optimality property for φ̃n. This notion of optimal-
ity is appropriate for q.m.d. families since the optimal limiting power against
sequences of the form θ0 + hn−1/2 is nondegenerate, i.e., strictly between α and
1. Even for q.m.d. families, the conclusion of Lemma 13.3.2 does not imply uni-
form optimality against all alternative sequences with h unrestricted to all of
RI . We would now like to define a general notion of asymptotically uniformly
most powerful of a test sequence φn satisfying lim sup Eθ0(φn) ≤ α. A natural
definition might be to require that, for any other test sequence ψn satisfying
lim sup Eθ0(ψn) ≤ α, we have

lim sup
n

[Eθ(ψn) − Eθ(φn)] ≤ 0

for all θ. This definition does not work because most tests are consistent, i.e., for
any fixed θ, both Eθ(φn) and Eθ(ψn) tend to one, and hence the difference will
tend to zero. To avoid this difficulty, we will require φn to behave well uniformly
across θ, which implies that φn must behave well against local alternatives θn

converging to θ0 at an appropriate rate. Of course, under the q.m.d. assumption,
it was seen in Section 13.1 and in Lemma 13.3.1 that the nondegenerate rate
corresponds to θn − θ0 = n−1/2.

Following Wald (1941a, 1943) and Roussas (1972), we therefore define an
asymptotically uniformly most powerful (AUMP) test sequence.

Definition 13.3.2 For testing θ = θ0 against θ > θ0, a sequence of tests {φn}
is called asymptotically uniformly most powerful (AUMP) at (asymptotic) level
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α if lim supn Eθ0(φn) ≤ α and if for any other sequence of test functions {ψn}
satisfying lim supn Eθ0(ψn) ≤ α,

lim sup
n

sup{Eθ(ψn) − Eθ(φn) : θ > θ0} ≤ 0 . (13.48)

Equivalently, φn is AUMP level α if lim supn Eθ0(φn) ≤ α and φn is AMP
against any sequence of alternatives {θn} with θn > 0 (Problem 13.29). Note that
this definition is not restricted to q.m.d. families; it also easily generalizes further
to problems with nuisance parameters; see (13.71). Also, note that the definition
differs slightly from those of Wald and Roussas in that we allow tests that are
not exactly level α for finite n, as long as the lim sup of the size is bounded above
by α. Of course, we will typically consider tests meeting the stronger requirement
Eθ0(φn) → α, but we prefer not to rule out a priori tests that do not satisfy this
convergence.

A slightly weaker notion than Definition 13.3.2 is the following.

Definition 13.3.3 For testing θ = θ0 against θ > θ0, a sequence of tests {φn}
is called locally asymptotically uniformly most powerful (LAUMP) at level α if
lim supn Eθ0(φn) ≤ α and for any other sequence of test functions {ψn} satisfying
lim supn Eθ0(ψn) ≤ α,

lim sup
n

sup{Eθ(ψn) − Eθ(φn) : 0 < n1/2(θ − θ0) ≤ c} ≤ 0 (13.49)

for any c > 0.

In (13.48), the sup over {θ : θ > θ0} can be reparametrized as the sup over
{h : θ0 + hn−1/2 > 0}. Hence, condition (13.48) can be rewritten as

lim sup
n

sup{Eθ0+hn−1/2(ψn) − Eθ0+hn−1/2(φn) : h > 0} ≤ 0

and (13.49) can be rewritten as this same expression with the sup over h > 0
replaced by the sup over {0 < h ≤ c}. In view of Lemma 13.3.1, under q.m.d.,
we can express the conditions for a test sequence φn to be AUMP or LAUMP in
terms of the limiting values of its power against local alternatives.

Theorem 13.3.2 Consider testing θ = θ0 against θ > θ0 in a q.m.d. family
with nonzero Fisher Information I(θ0). If φn = φn(X1, . . . , Xn) is any sequence
of tests based on n i.i.d. observations such that Eθ0(φn) → α, then

lim sup
n

Eθ0+hn−1/2(φn) ≤ [1 − Φ(z1−α − hI1/2(θ0))]. (13.50)

Moreover, φn is AUMP at level α if and only if

sup
h>0

|Eθ0+hn−1/2(φn) − [1 − Φ(z1−α − hI1/2(θ0))]| → 0 (13.51)

and φn is LAUMP if and only if, for every c > 0,

sup
c≥h>0

|Eθ0+hn−1/2(φn) − [1 − Φ(z1−α − hI1/2(θ0))]| → 0 . (13.52)

Lemma 13.3.2 asserts that φ̃n defined by (13.43) is not only AMP, but LAUMP.
We now obtain necessary and sufficient conditions for a test to be LAUMP, as
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well as a sufficient condition for a test to be AUMP. The results are summarized
as follows.

Theorem 13.3.3 Consider testing θ = θ0 against θ > θ0 in a q.m.d. family with
nonzero Fisher Information I(θ0). Let φ̃n be the test defined by (13.43).
(i). Then, φ̃n satisfies (13.52) and so is LAUMP at level α.
(ii). Any test sequence φn satisfying, under θ0,

φn − φ̃n
P→ 0 (13.53)

is also LAUMP at level α.
(iii). For φn to be LAUMP at level α, the condition (13.53) is also necessary.
(iv). If, in addition, Zn → ∞ in P n

θn
-probability whenever n1/2(θn − θ0) → ∞,

then φ̃n is also AUMP at level α.

Proof. The proof of (i) follows from Lemma 13.3.2 and Theorem 13.3.2. To prove
(ii), the condition (13.53) ensures the limiting size requirement. By contiguity,
under θn,hn , φn − φ̃n → 0 in probability whenever hn ≤ c. It follows that

Eθ0+hnn−1/2(φn) − Eθ0+hnn−1/2(φ̃n) → 0

whenever hn ≤ c, which implies

sup
0≤h≤c

∣∣∣Eθ0+hn−1/2(φn) − Eθ0+hn−1/2(φ̃n)
∣∣∣ → 0 ,

and (ii) follows.
To prove (iii), fix h > 0 and consider the sequence of alternatives θn,h. Let φ̄n

be the indicator of the event

Ln,h > k ≡ exp(
−σ2

h

2
+ σhz1−α) ,

where σ2
h = h2I(θ0). Then, φ̄n is LAUMP level α by (ii) (from the asymptotic

normality of log(Ln)). Suppose φ∗
n is also LAUMP level α. By Problem 13.30,

Eθ0(φ
∗
n) → α. Then, letting pn

θ denote the joint density under θ and letting µn

denote a measure dominating pn
θ0 and pn

θn,h
,

∫
(φ̄n − φ∗

n)(pn
θn,h

− kpn
θ0)dµn → 0 .

But, the integrand in the above equation is always nonnegative. Hence, the
integral over the set where {pn

θ0 > 0} also tends to 0, so that
∫

(φ̄n − φ∗
n)(Ln,h − k)pn

θ0dµn → 0 .

Since the integrand is nonnegative, it follows (by Markov’s inequality) that for
every η > 0, under θ0,

Pθ0{|φ̄n − φ∗
n| · |Ln,h − k| > η} → 0 . (13.54)

We want to conclude that, for any ε > 0,

Pθ0{|φ̄n − φ∗
n| > ε} → 0 .

But, for any δ > 0,

Pθ0{|φ̄n − φ∗
n| > ε} = Pθ0{|φ̄n − φ∗

n| > ε, |Ln,h − k| > δ}
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+Pθ0{|φ̄n − φ∗
n| > ε, |Ln,h − k| ≤ δ} . (13.55)

As n → ∞, the last term tends to a limit c(δ); moreover, c(δ) → 0 as δ → 0
since Ln,h has a continuous limiting distribution under θ0. Thus, the last term
in (13.55) can be made arbitrarily small if δ is chosen small enough, whereas the
first term is bounded above by

Pθ0{|φ̄n − φ∗
n| · |Ln,h − k| > εδ} → 0

by (13.54) with η = εδ, and the result follows.
To prove (iv), if the result were false, there would exist a sequence θn such

that n1/2(θn − θ0) → ∞ and Eθn(φ̃n) does not converge to one. But,

Eθn(φ̃n) = Pθn{Zn > I1/2(θ0)z1−α} → 1

by the added assumption.

Example 13.3.1 (Location Models) Suppose Pθ has density with respect to
Lebesgue measure on the real line given by f(x − θ), for some fixed f . Assume
the conditions of Corollary 12.2.1 to ensure the family is q.m.d., so that f ′ exists
almost everywhere (with respect to Lebesgue measure),

I = I(θ) =

∫ ∞

−∞

[f ′(x)]2

f(x)
dx

is finite and positive, and the quadratic mean derivative is

η(x, θ) = −1
2

f ′(x − θ)

f1/2(x − θ)
.

Then, the score statistic reduces to

Zn = −n−1/2
n∑

i=1

f ′(Xi − θ0)
f(Xi − θ0)

.

The test (13.43) is LAUMP level α. It is also AUMP level α if f is strongly
unimodal (Problem 13.36); in this case, Example 1 of Section 8.2 shows that the
test is also UMP if n = 1.

Example 13.3.2 (Double Exponential Location Family) As a special case
of the previous example, let f(x) = 1

2 exp(−|x|). Then, I(θ) = 1. Without loss of
generality, consider θ0 = 0. Then,

Zn = n−1/2
n∑

i=1

sign(Xi) ,

where we take sign(x) = 1 if x ≥ 0 and sign(x) = −1 otherwise. The resulting
test which rejects when Zn > z1−α is LAUMP at level α. Moreover, this test is
AUMP at level α as well. Although this follows from the previous example (since
f is strongly unimodal), we give a direct proof. Note that

V arθ(Zn) = V arθ[sign(X1)] ≤ Eθ{[sign(Xi)]
2} = 1 .

Hence, to show Zn → ∞ in P n
θn

-probability if n1/2θn → ∞, it is enough to
show that Eθn(Zn) → ∞ (by Chebyshev’s inequality and the previous bound for
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V arθ(Zn); see Problem 13.31). Letting F denote the c.d.f. with density f , we
have

Eθn(Zn) = 2n1/2[F (θn) − F (0)] = n1/2[1 − exp(−θn)] → ∞ ,

and the result follows.
In the double exponential location model, a MLE is a sample median θ̂n;

the test that rejects the null hypothesis if n1/2θ̂n > z1−α is also AUMP and is
asymptotically equivalent to the test based on Zn in the sense that the probability
that both tests lead to the same conclusion tends to 1, both under the null
hypothesis and against a sequence of contiguous alternatives (Problem 13.32).

The following example shows that, without strong unimodality, a LAUMP test
need not be AUMP in the location model of Example 13.3.1.

Example 13.3.3 (Cauchy Location Model) Here, f(x) = [π(1 + x2)]−1 and
f ′(x) = −2xπ−1(1 + x2)−2. Let θ0 = 0. Then,

Zn = 2n−1/2
n∑

i=1

Xi

1 + X2
i

.

By Theorem 13.3.3, since I(θ) = 1/2, the Rao score test that rejects when Zn

exceeds z1−α/
√

2 is LAUMP at level α. However, this test is not AUMP at level
α. To see why, first note that, for any large B > 0, Pθ{Xi > B} → 1 as θ → ∞,
and so, with n fixed,

Pθ{min(X1, . . . , Xn) > B} → 1

as θ → ∞. Since, x/(1 + x2) is decreasing in x on the set {x ≥ 1}, this implies
that, for any z > 0,

Pθ{Zn > z} → 0 as θ → ∞ (13.56)

and thus, for any c > 0,

lim
n→∞

inf
n1/2θ≥c

Pθ{Zn > z} = 0 . (13.57)

But, even the worst case power cannot be below α for an AUMP test.
Thus, the score test based on Zn cannot be AUMP. Next, compare the test

based on Zn with the test that rejects for large values of X̃n, the sample median.
By Theorem 11.2.8, under P n

θ ,

n1/2(X̃n − θ)
d→ N

(
0,

π2

4

)
.

Furthermore, since X̃n is location equivariant, the distribution of n1/2(X̃n − θ)
under θ does not depend on θ. Consider the asymptotically level α test that
rejects when n1/2X̃n > π

2 z1−α. We have

inf
n1/2θ≥c

Pθ{n1/2X̃n >
π
2

z1−α} = inf
n1/2θ≥c

Pθ{n1/2(X̃n − θ) >
π
2

z1−α − n1/2θ}

= inf
n1/2θ≥c

P0{n1/2X̃n >
π
2

z1−α − n1/2θ} = P0{n1/2X̃n >
π
2

z1−α − c} ,
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which, as n → ∞, tends to

1 − Φ

(
z1−α − 2c

π

)
> α > 0 .

Note, however, the test based on X̃n is neither LAUMP nor AUMP, though its
power tends to one uniformly over {θ : θ > δ} for any δ > 0.

However, AUMP tests do exist in the present situation. One such test is the
Wald test based on an efficient likelihood estimator. Actually, all that is required
is a location equivariant estimator θ̂n which satisfies

n1/2(θ̂n − θ)
d→ N(0, I−1(θ)) , (13.58)

where in this case I−1(θ) = 2. Indeed, the above argument with θ̂n replacing X̃n

applies with the asymptotic variance of X̃n of π2/4 replaced by 2.
As mentioned in Section 12.4.1, a difficulty in constructing an efficient likeli-

hood estimator is due to the fact that the likelihood equation may have multiple
roots. In order to deal with this situation, let 9n(θ) = log(Ln(θ)). Define

θ̂n = X̃n +
9′n(X̃n)

nI(X̃n)
. (13.59)

The construction is based on the fact that the nearest root to a consistent esti-
mator is efficient (under regularity conditions which hold for this model). Instead
of determining the closest root exactly, which involves solving 9′n(θ) = 0, a lin-
ear approximation to 9′n(θ) (expanded about X̃n) is used; see Section 6.4 of
Lehmann and Casella (1998). By Corollary 4.4 in Section 6.4 of Lehmann and
Casella (1998), θ̂n satisfies (13.58). The test that rejects when n1/2θ̂n > 21/2z1−α

therefore is AUMP (Problem 13.33).

Example 13.3.4 (Wald Tests) As Example 13.3.3 shows, a AUMP test can
be based on an efficient estimator, resulting in the Wald tests introduced in
Subsection 12.4.2. Actually, this holds more generally. Assume the conditions of
Theorem 13.3.3. Suppose θ̂n satisfies (12.62). For testing θ = θ0 versus θ > θ0,
the test φn that rejects when n1/2(θ̂n − θ0) > z1−αI−1/2(θ0) is LAUMP level α.
Indeed, the expansion (12.62) implies that φn − φ̃n → 0 in probability under θ0,
so that φn is LAUMP by (ii) of Theorem 13.3.3. To show φn is AUMP as well,
it is enough to show n1/2(θ̂n − θ0) → ∞ under θn whenever n1/2(θn − θ0) → ∞;
the argument is similar to (iv) of Theorem 13.3.3. This last condition holds in
any location model if θ̂n is location equivariant (Problem 13.34).

Example 13.3.5 (Correlation Coefficient) Let Xi = (Ui, Vi) be i.i.d. bivari-
ate normal with zero means, unit variances, and unknown correlation ρ. For
testing ρ = 0 versus ρ > 0, we saw in Example 12.4.4 that Rao’s score test rejects
for large values of

Zn = n−1/2
n∑

i=1

UiVi .

By Theorem 13.3.3, this test is LAUMP. To show it is also AUMP, we must show
Zn → ∞ in probability under ρn whenever n1/2ρn → ∞. Now,

Eρn(Zn) = n1/2ρn → ∞
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and

V arρn(Zn) = V arρn(U1V1) ≤ Eρn(U2
1 V 2

1 ) = Eρn [V 2
1 Eρn(U2

1 |V1)] .

But, the conditional distribution of U1 given V1 is N(ρnV1, 1 − ρ2
n) and so

Eρn(U2
1 |V1) = ρ2

nV 2
1 + (1 − ρ2

n) ≤ V 2
1 + 1 .

Hence,

V arρn(Zn) ≤ Eρn(V 4
1 + V 2

1 ) ≤ 4 .

The result now follows by Chebyshev’s inequality; see Problem 13.31.

It is important to recognize that no asymptotic method, efficient or not, can
perform well in all situations. Some anomalies with the Wald test are discussed
in Vaeth (1985), Mantel (1987), Le Cam (1990), Benichou, Fears and Gail (1996)
and Pawitan (2000). We also remark that, for two-sided hypotheses, AUMP tests,
or even LAUMP tests, typically do not exist (Problem 13.39), but an asymptotic
approach based on asymptotic unbiasedness is fruitful (Problem 13.55).

When θ = (θ1, . . . , θk), it is natural to next consider one-sided tests of θ1

in the presence of nuisance parameters θ2, . . . , θk. One approach to finding an
upper bound for the limiting power of a test sequence is to fix the nuisance
parameters and apply the results of this section. The resulting bounds need not
be attainable by any method. A more general approach that leads to bounds
which are attainable is discussed in Section 13.5.

13.4 Asymptotically Normal Experiments

In the previous section, a fairly direct approach was taken to compute the best
limiting power of a sequence of tests. Since the problem there was reduced to
testing a simple hypothesis versus a simple alternative, an optimal test could be
derived via the Neyman-Pearson Lemma for finite sample sizes, which resulted
in a calculation of the optimal limiting power. Implicit in the calculation was
the fact that the likelihood ratios behave approximately like those in a normal
location model. More explicitly, given n i.i.d. observations from a q.m.d. family
{Pθ}, when testing θ = θ0 versus θ = θ0 + hn−1/2, the optimal test rejects for
large values of the likelihood ratio Ln,h. By Theorem 12.2.3, Ln,h satisfies

log(Ln,h) − [hZn − 1
2
h2I(θ0)] = oP n

θ0
(1) , (13.60)

where Zn is the score vector

Zn = 2n−1/2
n∑

i=1

η(Xi, θ0)/p1/2
θ0

(Xi)

and η(·, θ0) is the quadratic mean derivative at θ0. By contiguity, the left side of
this expression tends to 0 in probability under P n

θ0+hn−1/2 as well. The asymptotic
power calculations flow from these results.

An alternative (and more general) approach is based upon a deeper connection
between the expansion (13.60) and the exact likelihood ratios for a particular
normal location model. Specifically, consider the normal location model where
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you observe an observation X from the normal location family {Qh, h ∈ RI },
where Qh is the normal distribution with unknown mean h and known variance
I−1(θ0). Let Lh denote the likelihood ratio dQh/dQ0(X). Then,

log(Lh) = hZ − 1
2
h2I(θ0) , (13.61)

where Z = I(θ0)X. Hence, the loglikelihood log(Ln,h) given by (13.60) behaves
similarly to log(Lh); the former is approximately quadratic in h, it is linear in Zn,
the coefficient of h2 is nonrandom, and Zn is asymptotically normal N(0, I(θ0)).
These approximations are exact for the normal experiment with Zn replaced by
Z. In a certain sense, the experiments {P n

θ0+hn−1/2 , h ∈ RI } and {Qh, h ∈ RI }
are close to each other. Le Cam (1964) formalized the notion of experiments
being close, and he showed some profound consequences.3 For our purposes, we
would like to show that, corresponding to any test φn based on X1, . . . , Xn from
{P n

θ+hn−1/2}, there exists a test φ for the normal location problem such that the
power functions are approximately the same, as functions of the local parameter
h. Then, since an optimality result is available for the normal location model (like
a UMP test in the one-sided testing problem), this will directly lead to an upper
bound for what is achievable asymptotically in terms of power for the testing
problem based on n observations from {Pθ}.

Consider the approximating normal experiment consisting of observing one
observation X from N(h, I−1(θ0)), for which θ0 is viewed as fixed. If Z = I(θ0)X,
then Z is an observation from Q̃h, where Q̃h = N(hI(θ0), I(θ0)). Clearly, the
Information contained in X is the same as that of Z. Thus, we could equally
well view the two experiments {N(h, I−1(θ0)), h ∈ RI } or {N(I(θ0)h, I(θ0))} as
limiting approximations to the experiment {P n

θ0+hn−1/2 , h ∈ RI }. The former

representation consisting of observing X from N(h, I−1(θ0)) seems more natural
since the unknown parameter h refers to the mean of X. On the other hand, the
experiment of observing Z from N(I(θ0)h, I(θ0)) directly matches Zn in (13.60).
The point is that either experiment applies since they are equivalent.

This approach works, not only for one-parameter problems with no nuisance
parameters, but also for more general testing problems where the hypothesis
concerns a real-valued parameter in the presence of nuisance parameters, and
multiparameter problems. For this purpose, we first give the definition of an
asymptotically normal sequence of experiments. Consider a sequence of statistical
models {Qn,h, h ∈ RI k }. (This can easily be generalized to the case where h is
only defined for a subset Ωn of RI k which can vary with n.) Thus, for a given
n, there is available data on the (measure) space (Xn,Fn) where the probability
distributions Qn,h live.

3The term experiment rather than model was used by Le Cam, but the terms are
essentially synonymous. While a model postulates a family of probability distributions
from which data can be observed, an experiment additionally specifies the exact amount
of data (or sample size) that is observed. Thus, if {Pθ, θ ∈ RI } is the family of normal
distributions N(θ, 1) which serves as a model for some data, the experiment {Pθ, θ ∈ RI }
implicitly means one observation is observed from N(θ, 1); if an experiment consists of
n observations from N(θ, 1), then this is denoted {Pn

θ , θ ∈ RI }.
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Definition 13.4.1 For a sequence of experiments {Qn,h, h ∈ RI k }, let Ln,h

denote the likelihood ratio of Qn,h with respect to Qn,0, defined by (12.36).
Suppose there exists a sequence of random k-vectors Zn mapping Xn to RI k and
a k × k positive definite symmetric matrix C such that

log(Ln,h) = 〈h, Zn〉 −
1
2
〈h, Ch〉 + oQn,0(1) (13.62)

and Zn
d→ N(0, C) under Qn,0. Then, the sequence {Qn,h, h ∈ RI k } is called

asymptotically normal.

If {Qh} denotes N(Ch, C), the k-variate normal distribution with mean vector
Ch and covariance matrix C, then we also say that {Qn,h, h ∈ RI k } converges to
the limiting experiment {Qh}. The terminology may be confusing, since Qn,h is
not asymptotically normal (and, in fact, Qn,h typically has a distribution on a
space that varies with n); it is the log likelihood ratios from the experiment that
are asymptotically normal. In particular, note that if L(h) denotes the likelihood
of an observation Z from Qh, then

log(L(h)/L(0)) = 〈h, Z〉 − 1
2
〈h, Ch〉 ;

that is, the right side of (13.62) without the error term is exact for the
(multivariate) normal location model.

Example 13.4.1 (Quadratic Mean Differentiable Families) Suppose the
family {Pθ, θ ∈ Ω} is q.m.d. at θ0. Let Qn,h = P n

θ0+hn−1/2 and C = I(θ0). By

Theorem 12.2.3, {Qn,h} is asymptotically normal with covariance C and Zn the
score vector as defined in (12.59). Because we are now parametrizing by the local
parameter h, we sometimes speak of {P n

θ0+hn−1/2} as being locally asymptotically
normal at θ0, and the terms asymptotically normal and locally asymptotically
normal are used interchangeably.

The random vector (sequence) Zn defined by (13.62) is called the score vector.
Note, however, that any Z̄n for which Zn − Z̄n → 0 in probability under Qn,0

also satisfies (13.62).

Example 13.4.2 (Two-Sample Problems) Suppose that X1, . . . , Xm are i.i.d.
according to Pθ, θ ∈ Ω, where Ω is an open subset of RI k . Independently of the
X ′s, suppose Y1, . . . , Yn are i.i.d. according to P̄θ, θ ∈ Ω. Suppose both fami-
lies are q.m.d. at θ0. Thus, {P m

θ0+hm−1/2 , h ∈ RI k } and {P̄ n
θ0+hn−1/2 , h ∈ RI k }

are each asymptotically normal with corresponding Zm and Z̄n satisfying as

m, n → ∞, Zm
d→ N(0, I(θ0)) and Z̄n

d→ N(0, Ī(θ0)) under θ0. Let Lm,h be
the likelihood ratio dP m

θ0+hm−1/2/dP m
θ0 based on X1, . . . , Xm, and let L̄n,h be

the corresponding likelihood ratio based on Y1, . . . , Yn. Then, for the combined
experiment (and noting hn−1/2 = hm−1/2(m/n)1/2),

log

(
d(P m

θ0+hn−1/2 × P̄ n
θ0+hn−1/2)

d(P m
θ0

× P̄ n
θ0

)

)
= log(Lm,h(m/n)1/2) + log(L̄n,h) (13.63)

= 〈h(m/n)1/2, Zm〉 − 1
2

m
n
〈h, I(θ0)h〉 + 〈h, Z̄n〉 −

1
2
〈h, Ī(θ0)h〉 + oP m

θ0
×P̄ n

θ0
(1)
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= 〈h, (m/n)1/2Zm + Z̄n〉 −
1
2
〈h, (

m
n

I(θ0) + Ī(θ0))h〉 + oP m
θ0

×P̄ n
θ0

(1) .

If we assume that m/n → λ < ∞, this last expression equals

〈h, λ1/2Zm + Z̄n〉 −
1
2
〈h, λI(θ0) + Ī(θ0)〉 + oP m

θ0
×P̄ n

θ0
(1) .

Thus, the experiment sequence {P m
θ0+hm−1/2 × P̄ n

θ0+hn−1/2} is asymptotically

normal with covariance C = C(θ0) = λI(θ0) + Ī(θ0).

Some properties of an asymptotically normal experiment sequence are the

following. First, Qn,h is contiguous to Qn,0, since under Qn,0, log(Ln,h)
d→

N(−σ2

2 , σ2), where σ2 = 〈h, Ch〉, so that Corollary 12.3.1 applies. In fact, the
expansion (13.62) implies that Qn,h1 and Qn,h2 are mutually contiguous for any
h1 and h2 (Problem 13.41). It also follows by Corollary 12.3.2 that, under Qn,h,

Zn
d→ N(Ch, C) (Problem 13.42).

We are now in a position to relate a testing problem for an asymptotically
normal {Qn,h} to one for the normal experiment {N(Ch, C)}.

Theorem 13.4.1 Suppose {Qn,h, h ∈ RI k } is an asymptotically normal sequence
of models with covariance matrix C. Let φn be a test, i.e., a function defined on
Xn, the space where the probabilities Qn,h live, with values in [0, 1]. Let βn(h) de-
note the power of φn against Qn,h. Then, for every subsequence {nj}, there exists
a further subsequence {njm} and a test φ in the limiting experiment {N(Ch, C)}
(or equivalently, the experiment {N(h, C−1)}) such that, for every h,

βnjm
(h) → β(h) ,

where β(h) is the power of φ.

Proof. Let Zn be the vector appearing in the definition (13.4.1), so that under

Qn,0, Zn
d→ N(0, C). Since φn ∈ [0, 1], {φn} is tight. Hence, under Qn,0, (φn, Zn)

is tight. By Prohorov’s Theorem 11.2.15, given any subsequence {nj}, there exists
a further subsequence {njm} such that

(φnjm
, Znjm

)
d→ (φ̄, Z̄)

under Qnjm ,0, where Z̄ denotes a random variable with distribution N(0, C)
(independent of h) and φ̄ ∈ [0, 1]. Let Ln,h denote the likelihood ratio of Qn,h

with respect to Qn,0. Then, by (13.62), under Qnjm ,0,

(φnjm
, Lnjm ,h)

d→ L(φ̄, exp(〈h, Z̄〉 − 1
2
〈h, Ch〉)) .

If F (·, ·) denotes this limit law, then under Qnjm ,h, we have by Theorem 12.3.3,
(φnjm

, Lnjm ,h) converges to a limit law with density rdF (t, r). But since φn ∈
[0, 1], weak convergence implies convergence of moments, so that

∫
φnjm

dQnjm ,h →
∫ ∫

trdF (t, r) = E[φ̄ exp(〈h, Z̄〉 − 1
2
〈h, Ch〉)]. (13.64)

Define φ(Z̄) = E(φ̄|Z̄), i.e., the conditional expectation under the (fixed) joint
distribution of (φ̄, Z̄). Then, the right side of (13.64) is equal to

E[φ(Z̄) exp(〈h, Z̄〉 − 1
2
〈h, Ch〉)]
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=

∫
φ(z̄) exp(〈h, z̄〉 − 1

2
〈h, Ch〉)dN(0, C)(z̄) .

But, exp(〈h, z̄〉− 1
2 〈h, Ch〉)dN(0, C)(z̄) is actually the density of N(Ch, C) (Prob-

lem 13.43). Hence, if the experiment consists of observing Z ∼ N(Ch, C), then
the last expression is

Eh[φ(Z)] =

∫
φ(z)dN(Ch, C)(z) .

Theorem 13.4.1 suggests the following strategy for obtaining asymptotically
optimal tests in a variety of situations. First, an optimal test, say a UMP test,
is derived (or quoted from an earlier chapter) and its power computed from an
appropriate normal experiment. Second, the actual experiment sequence is shown
(or known) to converge to the normal limiting experiment; as a result, the power
of the normal model serves as an upper bound for the asymptotic power of the
actual sequence. Finally, a test sequence is constructed whose asymptotic power
attains the upper bound and which is therefore asymptotically optimal. A similar
strategy will apply to constructing tests that are asymptotically maximin. The
remainder of this section will illustrate this approach.

13.5 Applications to Parametric Models

13.5.1 One-sided Hypotheses

We now apply Theorem 13.4.1 to the following situation. Suppose X1, . . . , Xn

are i.i.d. Pθ, where θ varies in Ω, an open subset of RI k . Assume the family is
q.m.d. with positive definite Information matrix I(θ).

First suppose θ = (θ1, . . . , θk) and consider testing θ1 ≤ 0 against θ1 > 0 in the
presence of nuisance parameters θ2, . . . , θk. Fix θ0 = (θ0,1, . . . , θ0,k) with θ0,1 = 0.
We now derive an upper bound for the limiting power of a test φn satisfying, for
h1 ≤ 0,

lim sup
n→∞

Eθ0+hn−1/2(φn) ≤ α . (13.65)

By Theorem 13.4.1, we can approximate the power of φn by the power of φ =
φ(X), where X ∼ N(h, I−1(θ0)). But then (13.65) implies

Ehφ(X) ≤ α if h1 ≤ 0 ,

i.e., φ(X) is a level α test for testing h1 ≤ 0 against h1 > 0 in the limit experiment.
But, by Example 3.9.2, a UMP level α test exists for this problem and has power
1 − Φ(z1−α − h1[I

−1(θ0)1,1]
−1/2). By Theorem 13.4.1 with h1 > 0,

lim sup
n

Eθ0+hn−1/2(φn) ≤ 1 − Φ(z1−α − h1[I
−1(θ0)1,1]

−1/2) .

More generally, let g be a function from Ω to RI , and assume g is differentiable
with gradient vector ġ(θ) of dimension 1 × k. The problem is to test g(θ) ≤ 0
against g(θ) > 0. Suppose φn is a test based on X1, . . . , Xn whose limiting size is
ᾱ ≤ α (see Definition 11.1.2). Fix θ0 such that g(θ0) = 0. We will derive an upper
bound for the limiting power of φn under θ0 + hn−1/2 and then obtain tests for
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which this limiting power is attained. First, note that

g(θ0 + hn−1/2) = n−1/2〈ġ(θ0)
T , h〉 + o(n−1/2) .

If h is such that 〈ġ(θ0)
T , h〉 < 0, then g(θ0 + hn−1/2) < 0 for all sufficiently large

n. The assumption on the limiting level of φn implies that, for such an h,

lim sup
n→∞

Eθ0+hn−1/2(φn) ≤ α . (13.66)

Now, according to Theorem 13.4.1, we can approximate the power of a test
sequence φn by the power of a test φ = φ(X) for the experiment based on
X from the model N(h, I−1(θ0)). Let βφ(h) denote the power of φ(X) when
X ∼ N(h, I−1(θ0)). Then, (13.66) implies that βφ(h) ≤ α if 〈ġ(θ0)

T , h〉 < 0.
Since βφ(·) is continuous, it follows that βφ(h) ≤ α if 〈ġ(θ0)

T , h〉 ≤ 0. Now, fix
an alternative h1 with 〈ġ(θ0)

T , h1〉 > 0. Theorem 13.4.1 implies that

lim sup
n→∞

Eθ0+h1n−1/2(φn) ≤ sup
φ∈Aα

βφ(h1) , (13.67)

where Aα = {φ : βφ(h) ≤ α whenever 〈ġ(θ0)
T , h〉 ≤ 0}. But then, the right

side of (13.67) is maximized when φ is the most powerful level α test for testing
〈ġ(θ0)

T , h〉 ≤ 0 against h = h1. In fact, for the problem of testing 〈ġ(θ0)
T , h〉 ≤ 0

versus 〈ġ(θ0)
T , h〉 > 0, there exists a uniformly most powerful test based on X

which rejects for large values of 〈ġ(θ0)
T , X〉; see Section 3.9.2. But,

〈ġ(θ0)
T , X〉 ∼ N(〈ġ(θ0)

T , h〉, σ2
θ0) ,

where

σ2
θ0 = ġ(θ0)I

−1(θ0)ġ(θ0)
T .

Hence, for testing 〈ġ(θ0)
T , h〉 ≤ 0 at level α, the UMP test rejects when

〈ġ(θ0)
T , X〉 > z1−ασθ0 . The power of this test against h is then

1 − Φ(z1−α − σ−1
θ0

〈ġ(θ0)
T , h〉) .

Therefore, Theorem 13.4.1 implies that, for any h such that 〈ġ(θ0)
T , h〉,

lim sup
n

Eθ0+hn−1/2(φn) ≤ 1 − Φ(z1−α − σ−1
θ0

〈ġ(θ0)
T , h〉) . (13.68)

An asymptotically level α test sequence whose power attains the bound for any
h (and hence uniformly for h in a compact set) is LAUMP. The above development
is summarized in (i) of the following theorem. Part (ii) asserts that an optimal
test sequence may be constructed if an efficient estimator sequence is available.

Theorem 13.5.1 Suppose X1, . . . , Xn are i.i.d. according to Pθ, θ ∈ Ω, where Ω
is assumed to be an open subset of RI k . Let Ω0 denote the set of θ with g(θ) ≤ 0,
for some function g from RI k to RI which is assumed differentiable with gradient
ġ(θ). Consider testing the null hypothesis θ ∈ Ω0 versus g(θ) > 0. Assume the
family {Pθ, θ ∈ Ω} is q.m.d. at every θ for which g(θ) = 0 with nonsingular
Fisher Information matrix I(θ).
(i) Let φn = φn(X1, . . . , Xn) be a uniformly asymptotically level α sequence of
tests, so that

lim sup
n→∞

sup
Ω0

Eθ(φn) ≤ α , (13.69)
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and suppose that g(θ0) = 0. Then, for any h such that 〈ġ(θ0)
T , h〉 > 0, (13.68)

holds.
(ii) Let θ̂n be any estimator satisfying (12.62) (such as an efficient likelihood
estimator). Suppose I(θ) is continuous in θ and ġ(θ) is continuous at θ0. Then,
the test sequence φn that rejects when n1/2g(θ̂n) ≥ z1−ασ̂n, where

σ̂2
n = ġ(θ̂n)I−1(θ̂n)ġ(θ̂n)T ,

is pointwise asymptotically level α. Moreover, the inequality (13.68) becomes an
equality, and the limsup on the left side of (13.68) may be replaced by a lim.

Proof. The proof of (i) follows from the discussion preceding the theorem (ap-
plying that argument to subsequences for which limits exist). The proof of (ii)
follows from Theorem 12.4.1 and the discussion in Subsection 12.4.2.

In fact, the properties claimed in (ii) above hold more generally for any test
sequence that rejects if Tn > tn, if Tn satisfies

Tn = ġ(θ0)I
−1(θ0)Zn,θ0 + oP n

θ0
(1)

for every θ0 ∈ Ω0, where Zn,θ0 is the score vector defined in (12.59), and if

tn
P→ z1−ασθ0

under θ0, where σθ0 is given by (12.66).

Example 13.5.1 (One-sample Normal Model) Let X1, . . . , Xn be i.i.d. nor-
mal with mean µ and variance σ2 so that θ = (µ, σ2). Consider testing µ ≤ 0
versus µ > 0. Of course, the usual t-test is UMPU and UMPI. Theorem 13.5.1
applies immediately to the test φn that rejects when n1/2X̄n/Sn exceeds z1−α.
Therefore, for any σ,

lim
n

Eh1n−1/2,σ+h2n−1/2(φn) = 1 − Φ(z1−α − h1σ
−1) , (13.70)

and so φn is LAUMP. Equation (13.70) also holds for the t-test, i.e., when the
normal critical value z1−α is replaced by the corresponding critical value obtained
from the t-distribution with n− 1 degrees of freedom, which gives an asymptotic
optimality property for the t-test that does not depend on the restriction to
unbiased or invariant tests. In fact, we now show φn is AUMP. Specifically, in
the case where there is a nuisance parameter σ, it is natural to define a test φn

to be AUMP level α if φn is uniformly asymptotically level α and for any other
uniformly asymptotically level α test ψ, we have

lim sup
n

sup{Eµ,σ(ψn) − Eµ,σ(φn) : µ > 0, σ > 0} ≤ 0 . (13.71)

(Obviously, we would modify this definition if the nuisance parameter σ varied
in a parameter space different from the positive reals.) To see that φn possesses
this property, argue as follows. If it did not, there would exist µn > 0 and σn > 0
such that

lim sup
n

{Eµn,σn(ψn) − Eµn,σn(φn)} > 0 .
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With σn now fixed, let ψ̃n the UMP test for testing µ ≤ 0 versus µ > 0 if σ = σn

is known. Since ψ̃n has greater power than ψn, it follows that

lim sup
n

{Eµn,σn(ψ̃n) − Eµn,σn(φn)} > 0 .

But,

Eµn,σn(ψ̃n) = 1 − Φ(z1−α − n1/2µn/σn) .

Since the power of the t-test and the power of the test φn depend on (µ, σ) only
through µ/σ,

Eµn,σn(φn) = E µn
σn

,1(φn) .

So, it suffices to show, uniformly in µ and σ = 1, that

sup
µ>0

|1 − Φ(z1−α − n1/2µ) − Eµ,1(φn)| → 0 ,

or, for any sequence µn with µn > 0,

Eµn,1(φn) − [1 − Φ(z1−α − n1/2µn)] → 0 . (13.72)

But,

Eµn,1(φn) = Pµn,1{n1/2(X̄n − µn)/Sn > z1−α − n1/2µn/Sn} .

Under µ = µn and σ = 1, the left hand side n1/2(X̄n − µn)/Sn has the t-
distribution with n − 1 degrees of freedom, and so tends in distribution to Z
which has the standard normal distribution. Also, Sn → 1 in probability. By
Slutsky’s theorem, if n1/2µn → δ, then

Eµn,1(φn) → P{Z > z1−α − δ}

and (13.72) holds. If n1/2µn → ∞, then n1/2(X̄n − µn)/Sn is still asymptot-
ically standard normal, while z1−α − n1/2µn/Sn → −∞ in probability; then,
Eµn,1(φn) → 1 and (13.72) holds. To complete the argument, one must pass to
subsequences such that n1/2µn converges (possibly to ∞) and apply the previous
argument along such subsequences. The conclusion is that φn is AUMP.

Consider the following special case of Theorem 13.5.1. Suppose θ = (θ1, . . . , θk)
and interest focuses on inference for θ1 in the presence of the nuisance parameters
θ2, . . . , θk. Specifically, consider testing θ1 = θ1,0 versus θ1 > θ1,0. As usual, let
I(θ) denote the Fisher Information matrix with (i, j) entry denoted Ii,j(θ); it is
assumed I(θ) is invertible with inverse I−1(θ) having (i, j) entry [I−1(θ)]i,j . It is
interesting to compare the power of the asymptotically optimal tests when the
nuisance parameters are unknown with the situation in which they are known. If
θ2, . . . , θk are fixed and known, then the best limiting power against the sequence
of alternatives θ1,0 + h1n

−1/2 of an asymptotically level α test was obtained in
Theorem 13.3.2, and is equal to

1 − Φ(z1−α − h1I
1/2
1,1 (θ1,0, θ2, . . . , θk)) .

If the nuisance parameters are unknown, the best limiting power was obtained
in Theorem 13.5.1; simply apply the theorem with g(θ) = θ1, ġ(θ) = (1, 0, . . . , 0)
and h = (h1, 0, . . . , 0). The resulting limiting power value is equal to

1 − Φ(z1−α − h1{I−1(θ1,0, θ2, . . . , θk)1,1}−1/2) .
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Comparing these situations, we see that

1
I1,1(θ)

≤ [I−1(θ)]1,1 ,

since the power of the test when (θ2, . . . , θk) are known exceeds that when
(θ2, . . . , θk) are unknown. Equality holds if I1,j(θ) = 0 for all j += 1. Since the
same argument applies to any of the components of θ, there is no loss in power
when testing any component in the presence of the remaining parameters if and
only if I(θ) is a diagonal matrix.

Example 13.5.2 (Location Scale Models) Suppose X1, . . . , Xn are i.i.d. with
density σ−1f((x − µ)/σ), where f is absolutely continuous. Both the location
parameter µ and the scale parameter σ are unknown. If θ = (µ, σ), then the
components of the Information matrix are given by (Problem 13.44)

I1,1 = σ−2
∫ [

f ′(x)
f(x)

]2

f(x)dx ,

I2,2 = σ−2
∫ [

xf ′(x)
f(x)

+ 1

]2

f(x)dx

and

I1,2 = σ−2
∫

x

[
f ′(x)
f(x)

]2

f(x)dx .

It follows that the off-diagonal element I1,2 is equal to 0 if f is symmetric.
We specialize further and let f(x) = C(β) exp(−|x|β) for some fixed β. Recall

from Example 12.2.5 that, if β > 1/2, then f generates a location model which is
q.m.d.; the location scale model with σ unknown is also q.m.d. (Problem 13.45).
For β > 1, the MLE µ̂n for µ is the unique minimizer of

∑
i |Xi − µ|β ; for β = 1,

any value between the middle order statistics is an MLE. Moreover, the unique
MLE σ̂n for σ is given by

σ̂n = β1/β

[∑
i |Xi − µ̂n|β

n

]1/β

. (13.73)

For testing µ ≤ 0 against µ > 0, the Wald test which rejects for large values of
µ̂n/σ̂n is LAUMP; If 1/2 < β < 1, Rao’s score test is more convenient to apply
and is LAUMP (Problem 13.46).

Example 13.5.3 (Bivariate Normal Correlation) As in Example 13.3.5, let
Xi = (Ui, Vi) be i.i.d. bivariate normal with unknown correlation ρ. However,
here we assume the means and variances of Ui and Vi are unknown as well. The
MLE ρ̂n is given by the sample correlation (11.29). A LAUMP test rejects when
n1/2ρ̂n > z1−α. Note that, in this case, the Information is not diagonal and the
optimal limiting power is strictly smaller than the case where only ρ is unknown
(Problem 13.47).

Theorem 13.5.1 can be generalized to two-sample problems, since the proof
essentially only depends on Theorem 13.4.1 and the assumption that the experi-
ment is asymptotically normal. By Example 13.4.2, asymptotic normality holds
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for two-sample models if each of the one-sample models is quadratic mean differ-
entiable. Specifically, suppose X1, . . . , Xm are i.i.d. Pθ, θ ∈ Ω, Ω an open subset of
RI k . Also, suppose Y1, . . . , Yn are i.i.d. P̄θ, θ ∈ Ω. Let I(θ) denote the Information
an Xi contains about θ; similarly, let Ī(θ) be the Information a Yj contains about
θ. Assume these Information matrices are nonsingular and continuous. Fix any
θ0 and assume both models are q.m.d. at θ0 with corresponding score statistics
Zm and Z̄n (in the notation of Example 13.4.2). Then, the combined experiment
is asymptotically normal with score statistic

Zm,n = (m/n)1/2Zm + Z̄n .

If we also assume m/n → λ < ∞, then the joint experiment is asymptotically
normal with covariance

C(θ0) = λI(θ0) + Ī(θ0) .

Consider testing g(θ) = 0 versus g(θ) > 0, for some continuously differen-
tiable g with gradient ġ(θ). A generalization of (13.68) yields for any uniformly
asymptotically level α test sequence that (Problem 13.48)

lim sup
n

Eθ0+hn−1/2(φn) ≤ 1 − Φ(z1−α − σ−1
θ0

〈ġ(θ0)
T , h〉) , (13.74)

where

σ2
θ0 = ġ(θ0)C

−1(θ0)ġ(θ0)
T .

To find such a test, assume there exists an estimator sequence θ̂n satisfying

n1/2(θ̂n − θ0) = C−1(θ0)Zm,n + oP m
θ0

×P̄ n
θ0

(1) . (13.75)

Then, the test that rejects when n1/2g(θ̂n) > z1−ασ̂n, where

σ̂2
n = ġ(θ̂n)C−1(θ̂n)ġ(θ̂n)T

is pointwise asymptotically level α and the inequality (13.74) is an equality
(Problem 13.49).

Example 13.5.4 (Behrens-Fisher Problem) As a special case of the above,
assume Pθ is N(ξ, σ2) and P̄θ is N(η, τ2) so that θ = (ξ, η, σ2, τ2), and all four
parameters vary freely. Consider testing η − ξ = 0 versus η − ξ > 0, so that
g(θ) = η − ξ and ġ(θ) = (−1, 1, 0, 0). For this problem, neither invariance nor
unbiasedness considerations reduce the problem sufficiently to obtain any kind
of optimal test. However, a large sample optimality result is easily obtained. Fix
θ0 = (ξ0, ξ0, σ

2, τ2). Assume m/n → λ < ∞. Then, it is easy to check that the
covariance matrix C in definition 13.4.1 is the diagonal matrix with diagonal
elements λ/σ2, 1/τ2, 2λ/σ2, and 2/τ2. Hence,

σ2
θ0 = ġ(θ0)C

−1(θ0)ġ(θ0)
T =

σ2

λ
+ τ2 . (13.76)

Thus, the bound in (13.74) with h = (h1, h2, 0, 0) reduces to

1 − Φ

[
z1−α − (

σ2

λ
+ τ2)−1/2(h2 − h1)

]
.
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It is easy to construct a test sequence that achieves this bound. Consider the test
that rejects the null hypothesis when

n1/2(Ȳn − X̄m) > z1−α

[
S2

Y + (
n
m

)S2
X

]1/2
,

where Ȳn = n−1 ∑
j Yj , S2

Y = (n− 1)−1 ∑
j(Yj − Ȳn)2, and similarly for X̄m and

S2
X . This test is pointwise consistent in level; the order of error in the rejection

probability will be revisited in Example 15.6.3. The limiting power of this test
against the sequence of parameter values (ξ0 + h1n

−1/2, ξ0 + h2n
−1/2, σ2, τ2) is

given by

P

{
n1/2[(Ȳn − h2n

1/2) − (X̄m − h1n
−1/2)]

(S2
Y + n

mS2
X)1/2

> z1−α − h2 − h1

(S2
Y + n

mS2
X)1/2

}
.

But, S2
Y → τ2 in probability, S2

X → σ2 in probability, and the left hand side is
asymptotically standard normal. The result follows by Slutsky’s theorem.

13.5.2 Equivalence Hypotheses

In this section, we will apply Theorem 13.4.1 to the following situation. Suppose
X1, . . . , Xn are i.i.d. Pθ where θ ∈ Ω and Ω is an open subset of RI k . Interest
focuses on g(θ), where g is a function from Ω to RI . Assume g is differentiable
with gradient vector ġ(θ) of dimension 1 × k. We wish to test the null hypoth-
esis |g(θ)| ≥ ∆ against the alternative |g(θ)| < ∆. (We are tacitly assuming
there exists values of θ satisfying g(θ) ≥ ∆ and g(θ) ≤ ∆.) This problem was
studied in Theorem 3.7.1, where a UMP test was derived for a one-parameter
exponential family. A UMP equivalence test for a linear combination of means of
a multivariate normal distribution was obtained in Example 3.9.3.

We will formulate the asymptotic problem in two distinct ways. First, we will
consider the case when the null hypothesis parameter space is the complement of
a fixed interval (−∆, ∆). Then, we will also consider the case when this interval
shrinks with n.

(i). Fixed ∆. Suppose ∆ > 0 is fixed and the problem is to test |g(θ)| ≥ ∆
versus |g(θ)| < ∆. For any fixed alternative value θ with |g(θ)| < ∆, the power of
any reasonable test against θ will tend to one. Therefore, just as we did for one-
sided hypotheses, we compare power functions against local alternatives. Consider
any fixed θ0 satisfying |g(θ0)| = ∆. For sake of argument, consider the case
g(θ0) = −∆. We wish to derive an (obtainable) upper bound for the limiting
power of a test sequence φn under θ0 + hn−1/2. But a crude way to bound the
power is based on the simple fact that any level α test for testing |g(θ)| ≥ ∆
versus |g(θ)| < ∆ is also level α for testing g(θ) ≤ −∆ versus g(θ) > −∆.
Since upper bounds for the asymptotic power were obtained in Theorem 13.5.1,
an immediate result follows. In this asymptotic setup, the statistical problem
is somewhat degenerate as it becomes one of testing a one-sided hypothesis.
For example, suppose X1, . . . , Xn are i.i.d. N(θ, 1) Then for large n, one can
distinguish θ ≤ −∆ and θ > −∆ with error probabilities that are uniformly
small and tend to zero exponentially fast with n. In essence, the statistical issue
arises only if the true θ is near the boundary of [−∆, ∆], in which case determining
significance essentially becomes one of testing a one-sided hypothesis.
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Theorem 13.5.2 Suppose X1, . . . , Xn are i.i.d. according to Pθ, θ ∈ Ω, where
Ω is assumed to be an open subset of RI k . Consider testing the null hypothesis

θ ∈ Ω0 = {θ : |g(θ)| ≥ ∆}

versus |g(θ)| < ∆, where the function g from RI k to RI is assumed differentiable
with gradient ġ(θ). Assume the family {Pθ, θ ∈ Ω} is q.m.d. at every θ with
|g(θ)| = ∆ and assume the Fisher Information matrix I(θ) is nonsingular for
such θ. Let φn = φn(X1, . . . , Xn) be a uniformly asymptotically level α sequence
of tests; that is,

lim sup
n→∞

sup
Ω0

Eθ(φn) ≤ α . (13.77)

(i) Assume θ0 satisfies g(θ0) = −∆. Then, for any h such that 〈ġ(θ0)
T , h〉 > 0,

lim sup
n

Eθ0+hn−1/2(φn) ≤ 1 − Φ(z1−α − σ−1
θ0

〈ġ(θ0)
T , h〉) , (13.78)

where

σ2
θ0 = ġ(θ0)I

−1(θ0)ġ(θ0)
T . (13.79)

(ii) Assume θ0 satisfies g(θ0) = ∆. Then, for any h such that 〈ġ(θ0)
T , h〉 < 0,

lim sup
n

Eθ0+hn−1/2(φn) ≤ 1 − Φ(z1−α − σ−1
θ0

|〈ġ(θ0)
T , h〉|) , (13.80)

(iii) Let θ̂n be any estimator satisfying (12.62). Suppose I(θ) is continuous in
θ and ġ(θ) is continuous at θ0. Then, the test sequence φn that rejects when
|g(θ̂n)| < ∆ − n−1/2σ̂nz1−α, where

σ̂2
n = ġ(θ̂n)I−1(θ̂n)ġ(θ̂n)T (13.81)

is pointwise asymptotically level α and is locally asymptotically UMP in the sense
that the inequality (13.78) is an equality. In fact, the same properties hold for any
test sequence that rejects if |Tn| < ∆ − n−1/2σ̂z1−α, if Tn satisfies

Tn = ġ(θ0)I
−1(θ0)Zn,θ0 + oP n

θ0
(1) (13.82)

for every θ0 ∈ Ω0, where Zn,θ0 is the score vector defined in (12.59).

Proof. As remarked above, (13.78) follows because φn is also a uniformly asymp-
totically level α test for testing g(θ) ≤ −∆ versus g(θ) > −∆. For this one-sided
testing problem, the optimal bound was obtained in Theorem 13.5.1. The same
argument applies to (13.80). To prove (iii), let θn = θ0+hn−1/2. Then, assumption
(12.62) and contiguity arguments imply that, under θn,

n1/2(θ̂n − θn)
d→ N(0, I−1(θ0)) .

Thus, under θn, σ̂n tends in probability to σθ0 . Moreover, the Delta method
implies, under θn,

n1/2(g(θ̂n) − g(θn))
d→ N(0, σ2

θ0) .

Now, if g(θ0) = −∆ and 〈ġ(θ0)
T , h〉 > 0, then

g(θn) = −∆ + n−1/2〈ġ(θ0)
T , h〉 + o(n−1/2) .
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So, under θn,

n1/2[g(θ̂n) + ∆]
d→ N

(
〈ġ(θ0)

T , h〉, σ2
θ0

)
. (13.83)

Therefore,

Eθn(φn) = Pθn{|g(θ̂n)| < ∆ − n−1/2σ̂nz1−α} ,

which tends to the right side of (13.78) by (13.83) and Slutsky’s Theorem. The
same proof works for any estimator Tn of the form (13.82).

Example 13.5.5 (Normal One-Sample Problem) Suppose X1, . . . , Xn are
i.i.d. N(µ, σ2), with both parameters unknown. Consider testing |µ| ≥ ∆ versus
|µ| < ∆. The standard t-test for testing the one-sided hypothesis µ ≤ ∆ against
µ > −∆ rejects if

n1/2(X̄n + ∆)/Sn > tn−1,1−α ,

where S2
n is the (unbiased) sample variance and tn−1,1−α is the 1−α quantile of

the t-distribution with n− 1 degrees of freedom. Similarly, the standard t-test of
the hypothesis µ ≥ ∆ rejects if

n1/2(X̄n − ∆)/Sn < −tn−1,1−α .

The intersection of these rejection regions is therefore a level α test of the
null hypothesis |µ| ≥ ∆. Such a construction that intersects the rejection re-
gions of two one-sided tests (TOST) was proposed in Westlake (1981) and
Schuirmann (1981), and can be viewed as a special case of Berger’s (1982)
intersection-union tests. The resulting test is denoted φTOST

n that rejects when
|X̄n| < ∆ − n−1/2Sntn−1,1−α. (In fact, we see here that our general asymptotic
construction in (iii) of the above theorem merely replaces the tn−1 quantiles by
the standard normal quantiles; that is, the intersection two rejection regions, each
of asymptotic size α yields a rejection region whose asymptotic size is bounded
above by α.) In general, by combining two one-sided tests, the resulting TOST
can be quite conservative in that its size can be quite less than α. However, in
this example, the size of φTOST

n is actually α, as can be seen by calculating the
rejection probability under (µ, σ) with µ = ∆ and σ → 0 (Problem 13.53). The
asymptotic power of φTOST

n against a sequence with mean −∆ + hn−1/2 (h > 0)
and variance fixed at σ2 is obtained by the previous theorem or calculated directly
as

lim
n→∞

P∆+hn−1/2,σ{|X̄n| < ∆ − n−1/2Sntn−1,1−α} = Φ(z1−α − h
σ

) ,

which is the optimal bound when (13.78) is specialized to this situation. A simi-
lar calculation applies to sequences of the form ∆ − hn−1/2. Thus, the TOST is
asymptotically optimal in this setup. It should be remarked that the TOST has
been criticized because it is biased (in finite samples) and tests have been pro-
posed that have greater power; some proposals are discussed in Brown, Casella,
and Hwang (1995), Berger and Hsu (1996), and Perlman and Wu (1999). Such
tests cannot have greater asymptotic power against local alternatives, at least
under the setup of Theorem 13.5.2. On the other hand, the TOST will be seen
to be inefficient under the asymptotic formulation treated below.
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(ii) Shrinking ∆. We now consider a second asymptotic formulation of the prob-
lem, in which the null hypothesis |g(θ)| ≥ δn−1/2 is tested against the alternative
hypothesis |g(θ)| < δn−1/2. Notice that now the parameter spaces (or hypothe-
ses) are changing with n. Of course, a given hypothesis testing situation deals
with a particular n, and there is flexibility in how the problem is embedded into
a sequence of similar problems to get a useful approximation. In particular, if
equivalence corresponds to |g(θ)| < ∆, we can always make the identification
δ = ∆n1/2. From an asymptotic point of view, it makes sense to allow the null
hypothesis parameter space to change with n, since otherwise the problem be-
comes degenerate in the sense that the values of ∆ and −∆ for g(θ) can be
perfectly distinguished asymptotically. In testing for bioequivalence, for exam-
ple, ∆ is chosen so small that a value of |g(θ)| ≤ ∆ is deemed to be essentially
zero. In a particular situation such as Example 13.5.5 with σ not too small, if a
value for µ of ∆ cannot be perfectly tested against a value for µ of 0, then ∆ and
−∆ cannot be perfectly tested as well, and the asymptotic setup should reflect
this.

The main result of this subsection is the following theorem.

Theorem 13.5.3 Suppose X1, . . . , Xn are i.i.d. according to Pθ, θ ∈ Ω, where
Ω is assumed to be an open subset of RI k . Consider testing the null hypothesis

θ ∈ Ω0,n = {θ : |g(θ)| ≥ δn−1/2}

versus |g(θ)| < δn−1/2, where the function g from RI k to RI is assumed differ-
entiable with gradient ġ(θ). Assume for every θ with g(θ) = 0 that the family
{Pθ, θ ∈ Ω} is q.m.d. at θ and I(θ) is nonsingular.
(i) Let φn = φn(X1, . . . , Xn) be a uniformly asymptotically level α sequence of
tests, so that

lim sup
n→∞

sup
Ω0,n

Eθ(φn) ≤ α .

Assume θ0 satisfies g(θ0) = 0. Then, for any h such that |〈ġ(θ0)
T , h〉| = δ′ < δ,

lim sup
n→∞

Eθ0+hn−1/2(φn) ≤ Φ

(
C − δ′

σθ0

)
− Φ

(
−C − δ′

σθ0

)
, (13.84)

where σ2
θ0 is given by

σ2
θ0 = ġ(θ0)I

−1(θ0)ġ(θ0)
T (13.85)

and C = C(α, δ, σθ0) satisfies

Φ

(
C − δ
σθ0

)
− Φ

(
−C − δ

σθ0

)
= α (13.86)

(ii) Let θ̂n be any estimator satisfying (12.62). Suppose I(θ) is continuous in
θ and ġ(θ) is continuous at θ0. Then, the test sequence φn that rejects when
n1/2|g(θ̂n)| ≤ C(α, δ, σ̂n), where

σ̂2
n = ġ(θ̂n)I−1(θ̂n)ġ(θ̂n)T ,

is pointwise asymptotically level α and is locally asymptotically UMP in the sense
that the inequality (13.84) is an equality. In fact, the same properties hold for any
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test sequence that rejects if |Tn| < C(α, δ, σ̂n), if Tn satisfies

Tn = ġ(θ0)I
−1(θ0)Zn,θ0 + oP n

θ0
(1)

for every θ0 ∈ Ω0, where Zn,θ0 is the score vector defined in (12.59).

Proof. Fix θ0 satisfying g(θ0) = 0. We will derive an upper bound for the
limiting power of a test sequence φn under θ0 + hn−1/2. Note that

g(θ0 + hn−1/2) = n−1/2〈ġ(θ0)
T , h〉 + o(n−1/2) .

So, if h is such that |〈ġ(θ0)
T , h〉| > δ, then |g(θ0 + hn−1/2)| > δn−1/2 for all

sufficiently large n. Hence, if φn has limiting size α, then for such an h,

lim sup
n→∞

Eθ0+hn−1/2(φn) ≤ α . (13.87)

By Theorem 13.4.1, we can approximate the power of a test sequence φn by
the power of a test φ = φ(X) for the (limit) experiment based on X from the
model N(h, I−1(θ0)). Let βφ(h) denote the power function of φ(X) when X ∼
N(h, I−1(θ0)). Then, (13.87) implies βφ(h) ≤ α if |〈ġ(θ0)

T , h〉| > δ. By continuity
of βφ(h), βφ(h) ≤ α for any h with |〈ġ(θ0)

T , h〉| ≥ δ. The test φ that maximizes
βφ(h) for this limiting normal problem was given in Example 3.9.3 with Σ =
I−1(θ0), ξ = h, and aT = ġ(θ0). Thus, if φ is level α for testing |〈ġ(θ0)

T , h〉| ≥ δ
and h satisfies |〈ġ(θ0)

T , h〉| = δ′ < δ, then

βφ(h) ≤ Φ

(
C − δ′

σθ0

)
− Φ

(
−C − δ′

σθ0

)
.

and C = C(α, δ, σθ0) satisfies (13.86).
To prove (ii), consider the test that rejects when n1/2|g(θ̂n)| ≤ C(α, δ, σ̂n). Fix

h such that |〈ġ(θ0)
T , h〉| < δ and let θn = θ0 + hn−1/2. Then, as in the proof of

Theorem 13.5.2 (iii), under θn,

n1/2[g(θ̂n) − g(θn)]
d→ N(0, σ2

θ0) .

But,

n1/2g(θn) = 〈h, ġ(θ0)
T 〉 + o(1) .

Therefore, under θn,

n1/2g(θ̂n)
d→ N

(
〈h, ġ(θ0)

T 〉, σ2
θ0

)
.

Also, under θn, σ̂n tends in probability to σθ0 , and so C(α, δ, σ̂n) tends in
probability to C(α, δ, σθ0). Hence, letting Z denote a standard normal variable,

Pθn{n
1/2|g(θ̂n)| ≤ C(α, δ, σ̂n)} → P{|σθ0Z + 〈h, ġ(θ0)

T 〉| ≤ C(α, δ, σθ0)} ,

which agrees with the right hand side of (13.84).

Example 13.5.6 (Normal Problem, Example 13.5.5, continued) Suppose
X1, . . . , Xn are i.i.d. N(µ, σ2) with both parameters unknown, so that θ = (µ, σ).
Let g(θ) = µ and consider testing |µ| ≥ δn−1/2 versus |µ| < δn−1/2. By the
previous theorem, for any test sequence φn with limiting size bounded by α and
any h with |h| < δ,

Ehn−1/2,σ(φn) ≤ Φ

(
C − h

σ

)
− Φ

(
−C − h

σ

)
, (13.88)
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where C = C(α, δ, σ) satisfies (13.86). A test whose limiting power achieves this
bound is given by the test φ∗

n that rejects when

n1/2|X̄n| ≤ C(α, δ, Sn) ,

where S2
n is the (unbiased) sample variance (or any consistent estimator of

σ2). On the other hand, the test φTOST
n given in example 13.5.5 is no longer

asymptotically efficient. This test (with ∆ = δn−1/2) rejects when

n1/2|X̄n| < δ − Sntn−1,1−α

and has power against (µ, σ) = (hn−1/2, σ) given by

Phn−1/2,σ

{
−δ + Sntn−1,1−α − h

σ
< Zn <

δ − Sntn−1,1−α − h
σ

}
, (13.89)

where

Zn = n1/2(X̄n − hn−1/2)/σ ∼ N(0, 1) .

Also, Sn → σ in probability and tn−1,1−α → z1−α. By Slutsky’s Theorem, (13.89)
converges to

P

{
−δ
σ

+ z1−α − h
σ

< Z <
δ
σ
− z1−α − h

σ

}
, (13.90)

where Z ∼ N(0, 1). Observe that this last expression is positive only if σz1−α < δ;
otherwise, the limiting power is zero! On the other hand, the limiting optimal
power of φ∗

n is always positive (and greater than α when |h| < δ). Even when the
limiting power of φTOST

n is positive, it is always strictly less than that of φ∗
n.

Note that the limiting expression (13.90) for the power of φTOST
n corresponds

exactly to using a TOST test in the limiting experiment N(h, σ2) for testing
|h| ≥ δ versus |h| < δ with σ known based on one observation X. In the limit
experiment, the TOST procedure corresponds to the test that rejects if |X| <
δ − σz1−α (which can be viewed as a TOST construction because its rejection
region is the intersection of the rejection regions of the two one-sided tests of
h < δ and h > −δ). But, for this limit experiment, the optimal UMP procedure
of Section 3.7 rejects when |X| < C(α, δ, σ). In general,

C(α, δ, σ) > δ − σz1−α

(Problem 13.54), which shows that the test φ∗
n of Theorem 13.5.3 is always more

powerful than the asymptotic TOST construction of Theorem 13.5.2.

13.5.3 Multi-sided Hypotheses

We now consider the problem of testing θ = θ0 versus θ += θ0 as θ varies in an
open subset of RI k . Theorem 13.4.1 relates this problem to testing h = 0 versus
h += 0 based on an observation X from the normal model N(h, I−1(θ0)), where,
as usual, I(θ0) is the Fisher Information. For this normal model, no UMP test
exists, and Theorem 13.4.1 does not lead to an asymptotically UMP test sequence
for the original problem. However, we will obtain an optimality result based
on the maximin approach. Indeed, for this limiting normal model, an optimal
maximin test exists, which allows one to construct an asymptotically maximin
test sequence.
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In order to have a nondegenerate asymptotically maximin procedure, it is nec-
essary to consider alternatives at some distance from the null hypothesis, just as
in the finite sample maximin theory. When testing based on n i.i.d. observations,
this distance must shrink with n, in order to avoid a degenerate asymptotic the-
ory, since there will typically exist test sequences whose asymptotic power tends
to one uniformly over alternatives whose distance from θ0 is fixed. It is convenient
to consider this fixed distance as given by |I1/2(θ0)(θ − θ0)|, where | · | denotes
the usual Euclidean norm of a vector in RI k . For q.m.d. models, it will be seen
that it is necessary to let this distance shrink at rate n−1/2 in order to obtain a
limiting minimum power greater than α and less than 1.

In the following theorem, ck,1−α denotes the upper 1 − α quantile of the Chi-
squared distribution with k degrees of freedom.

Theorem 13.5.4 Assume X1, . . . , Xn are i.i.d. Pθ, where θ varies in an open
subset Ω of RI k . Assume this family is q.m.d. at θ0 with positive definite Infor-
mation matrix I(θ0). The problem is to test the null hypothesis θ = θ0 against
θ += θ0. Let φn = φn(X1, . . . , Xn) be any sequence of tests such that Eθ0(φn) → α.
Then, for any b > 0,

lim sup
n→∞

inf{Eθ0+hn−1/2(φn) : |I1/2(θ0)h| ≥ b} ≤ P{χ2
k(b2) ≥ ck,1−α} , (13.91)

where χ2
k(b2) denotes a random variable that has the noncentral Chi-squared

distribution with k degrees of freedom and noncentrality parameter b2.

Proof. Denote by βn(h) the rescaled power function of φn, i.e.,

βn(h) ≡ Eθ0+hn−1/2(φn) .

By assumption, βn(0) → α. Denote by R = R(α, b) the right hand side of (13.91).
Now, argue by contradiction; that is, assume for the test sequence φn and some
subsequence {nj},

lim
nj→∞

inf{βnj (h) : |I1/2(θ0)h| ≥ b} > R .

Then, by Theorem 13.4.1, there exists a further subsequence njm such that

βnjm
(h) → β(h)

for every h, where β(h) corresponds to a level α test of h = 0 versus h += 0 in
the (limiting) experiment consisting of observing an X which is N(h, I−1(θ0)).
Thus, β(h) > R for every h such that |I1/2(θ0)h| ≥ b, which implies

inf{β(h) : |I1/2(θ0)h| ≥ b} > R .

This is a contradiction, since R is the maximin power for testing h = 0 versus
|I1/2(θ0)h| ≥ b based on X (Problem 8.29).

We first illustrate the theorem in the case k = 1.

Example 13.5.7 (Simple vs Two-sided Alternative) Suppose X1, . . . , Xn

are i.i.d. Pθ, θ ∈ RI . Consider testing θ = θ0 versus θ += θ0. Assume the family is
q.m.d. at θ0. Let φn be any test sequence satisfying Eθ0(φn) → α. By Theorem
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13.5.4 with d = I−1/2(θ0)b, an upper bound for the limiting maximin power over
the complement of shrinking neighborhoods is given by

lim sup
n

inf{Eθ0+hn−1/2(φn) : |h| ≥ d} ≤ P{χ2
1(I(θ0)d

2) ≥ c1,1−α} .

In the one-sided case, an AUMP level α test (13.43) rejects for large values of the
score statistic Zn given by (13.42). Consider the two-sided version φn,2 of this
test which rejects when I−1(θ0)Z

2
n > c1,1−α. Since I−1(θ0)Z

2
n is asymptotically

Chi-squared with one degree of freedom, this test is consistent in level. Moreover,
its power function satisfies, for any 0 < d < D < ∞,

inf[Pθ0+hn−1/2{I−1(θ0)Z
2
n > c1,1−α} : d ≤ h ≤ D]

→ P{χ2
1(I(θ0)d

2) ≥ c1,1−α} . (13.92)

To see why, the convergence (13.44) implies that, under θn = θ0 + hnn−1/2,

I−1(θ0)Z
2
n

d→ χ2
1(I(θ0)h

2) .

If (13.92) failed, there would exist hn satisfying hn → h ∈ [d, D] such that the
limiting power of φn,2 against θn tends to

P{χ2
1(I(θ0)h

2) > c1,1−α} < P{χ2
1(I(θ0)d

2) > c1,1−α} .

But, this last inequality is a contradiction since h ≥ d and the family of χ1(ψ
2)

with ψ2 varying has monotone likelihood ratio (see Problem 7.4). It is typically
possible to prove the stronger result with D in (13.92) replaced by ∞. This
technical issue is the same as encountered in the one-sided case in Section 13.3
when determining whether or not Rao’s score test is not only LAUMP but AUMP;
see Theorem 13.3.3 (iv). For an alternative asymptotic optimality approach in
the two-sided case, see Problem 13.55.

By a similar argument, we can prove the following optimality result for Rao’s
test in the general k multi-sided testing problem. Analogous results hold for both
the Wald and likelihood ratio tests (Problem 13.57).

Theorem 13.5.5 Assume the conditions of Theorem 13.5.4. For testing θ = θ0

versus θ += θ0, consider the test φ∗
n that rejects when ZT

n I−1(θ0)Zn > ck,1−α.
Then, Eθ0(φ

∗
n) → α and for any b and B satisfying 0 < b < B < ∞,

inf{Eθ0+hn−1/2(φ
∗
n) : b ≤ |I1/2(θ0)h| ≤ B} → P{χ2

k(b2) ≥ ck,1−α} . (13.93)

Proof. First suppose hn → h with h satisfying |I1/2(θ)h| ≥ b. By the Continuous
Mapping Theorem, under θ0 + hnn−1/2, Corollary 12.4.1 implies that

ZT
n I−1(θ0)Zn

d→ χ2
k(|I1/2(θ0)h|2) .

Hence, the limiting power of φ∗
n against such a sequence is

P{χ2
k(|I1/2(θ0)h|2) ≥ ck,1−α} ≥ P{χ2

k(b2) ≥ ck,1−α} , (13.94)

where the last inequality follows since the family of noncentral chi-squared distri-
butions with fixed degrees of freedom and varying noncentrality parameter has
monotone likelihood ratio. Now, if the result (13.93) were false, there would exist
a sequence hn satisfying b ≤ |I1/2(θ0)h| ≤ B and such that the limiting power of
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φ∗
n under hn is less than the right hand side of (13.94). But, hn lies in a compact

set, so we can extract a further subsequence hnj (if necessary) so that hnj con-
verges. Applying the argument leading to (13.94) to such a subsequence results
in a contradiction.

We will later apply these results to obtain some asymptotically maximin tests
of goodness of fit in Sections 14.3 and 14.4.

Note that the construction of asymptotically optimal tests in the multi-sided
case depends on the existence of an optimal test for testing the mean vector
h = 0 when X ∼ N(h, I−1(θ0)) and I−1(θ0) is a known nonsingular covariance
matrix. For this problem, if the alternatives are specified by |I1/2(θ0)h| ≥ b,
then the maximin test rejects for large values of XT Σ−1(θ0)X. But, the maximin
optimality of this test need not hold if the alternative parameter space is specified
differently; see Problem 8.30. Moreover, if C is any closed, convex set in RI k, then
the test that accepts if and only if X ∈ C is admissible; see Problem 6.39. Thus,
the optimality of the maximin test is not so compelling, particularly when k > 1.

13.6 Applications to Nonparametric Models

13.6.1 Nonparametric Mean

Let X1, . . . , Xn be i.i.d. with c.d.f. F , mean µ(F ) and variance σ2(F ). Assume
F ∈ F̃, where F̃ satisfies (11.77). We now would like to derive an optimality
property of the t-test for the mean in a nonparametric setting. Theorem 11.4.5
implies that the power of the t-test is bounded away from α for distributions F
whose standardized mean n1/2µ(F )/σ(F ) is bounded away from 0. It is then of
interest to measure a test sequence by its maximin power over such alternatives,
with the goal of finding the test that asymptotically maximizes the minimum
power over such alternatives. Consider testing µ(F ) = 0 against the alternatives
µ(F )/σ(F ) ≥ δ/n1/2. By Theorem 11.4.5, the limiting minimum power of the
t-test is 1 − Φ(z1−α − δ). We now show that this is indeed the optimal limiting
maximin power in a nonparametric setting.

If the unknown family of distributions F̃ contains the family N(θ, 1) for θ ≥ 0,
then an optimality result is easy to obtain. Indeed, for any sequence of test
functions φn = φn(X1, . . . , Xn) which satisfies EF (φn) → α for any F ∈ F̃ with
mean 0, we have

lim sup
n

inf
{F∈F̃, µ(F )/σ(F )≥δn−1/2}

EF (φn)

≤ lim sup
n

EF=N(δn−1/2,1)(φn) = 1 − Φ(z1−α − δ) ,

since the right hand side is the optimal limiting power for testing θ = 0 versus θ =
δ/n1/2 in the normal location model N(θ, 1). Hence, the t-test is asymptotically
maximin since its limiting minimum power attains this bound.

If the family of distributions F̃ does not contain the normal distributions, the
above argument does not work. For example, suppose we consider distributions
supported on [−1, 1]. Then, we can still obtain an optimality result for the t-test,
as long as F̃ satisfies (11.77). To this end, let F0 denote the family of all distri-
butions on [−1, 1]. Let φn be any test sequence satisfying EF (φn) → α if F ∈ F0
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and µ(F ) = 0. Fix any such F with µ(F ) = 0 and σ(F ) > 0. The smallest power
over a large class of alternatives can always be bounded above by the smallest
power over a smaller class. If the smaller class is chosen appropriately, the test-
ing problem for the smaller model (which will be a parametric model that we
have previously studied) will have relevance for the larger class (the nonparamet-
ric model we would like to study). So, introduce the parametric submodel with
density

pθ(x) = exp(θx − C(θ)) (13.95)

with respect to F . This is a one-parameter exponential family, and so the
conditions of Theorem 13.3.2 are satisfied. Let

µθ =

∫ 1

−1

xpθ(x)dF (x)

be the mean of pθ and let σ2
θ be its variance. Since µ(F ) = 0, µ0 = 0. In addition,

µθ = C′(θ) and σ2
θ = C′′(θ), so that C′(0) = 0 and C′′(0) = σ2(F ) > 0. Then,

µθ

σθ
=

C′(θ)

[C′′(θ)]1/2
=

θ[C′′(0)]1/2 + o(θ)

[C′′(θ)]1/2
= θσ(F ) + o(θ)

as θ → 0. Also, for this model, I(θ) = C′′(θ), so that I(0) = σ2(F ). It is also
easy to check that the family (13.95) satisfies (11.77), at least for small enough
θ (Problem 13.58).

With δ fixed, let θn be any fixed sequence such that n1/2θn > δ/σ(F ) and
n1/2θn → δ/σ(F ). Then,

n1/2µθn/σθn = n1/2θn/σ(F ) + o(1)

as θn → 0. Thus, n1/2µθn/σθn > δ for all sufficiently large n. So, the problem
of testing θ = 0 versus θ = θn is relevant to the nonparametric mean problem
because θ = 0 corresponds to a distribution in the null hypothesis parameter
space while θ = θn corresponds to a distribution in the alternative hypothesis
parameter space (sequence). Hence, for any test sequence φn,

lim sup
n

inf
F∈F0, n1/2µ(F )/σ(F )≥δ

EF (φn) ≤ lim sup
n

Eθn(φn) .

The right hand side is bounded above by the optimal limiting power for testing
θ = 0 versus θ = θn. The limiting value was obtained in Theorem 13.3.2 (with
h = δ/σ(F )) and is equal to

1 − Φ(z1−α − hσ(F )) = 1 − Φ(z1−α − δ) .

Hence, we have shown that

lim sup
n

inf
F∈F0, n1/2µ(F )/σ(F )≥δ

EF (φn) ≤ 1 − Φ(z1−α − δ) .

But, the t-test attains the right hand side, and so is asymptotically maximin.
Of course, one can obtain a bound using other parametric submodels. The

family pθ chosen above certainly works in that it yields an optimality result for
the t-test. To gain some insight into why this family works, let us consider the
more general family of densities with densities

pT,θ(x) = exp[θT (x) − CT (θ)]
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with respect to F . This assumes that the function T (x) is bounded on [−1, 1], or
at least that T (X) has a moment generating function if X has distribution F .
Let

µT,θ =

∫
xpT,θ(x)dF (x)

and σ2
T,θ be the variance of pT,θ. The functions µT,θ and σT,θ are infinitely

differentiable in θ. Then,

∂µT,θ

∂θ
=

∫
x[T (x) − C′

T (θ)]pT,θ(x) ,

so that

µ′
T,0 =

∫
x[T (x) − C′

T (0)]dF (x) = CovF [X, T (X)] .

Then,

µT,θ = θCovF [X, T (X)] + o(θ)

and

σT,θ = σ(F ) + o(θ)

as θ → 0. Hence,

µT,θ

σT,θ
=

θCovF [X, T (X)]
σ(F )

+ o(θ)

as θ → 0. Assume CovF [X, T (X)] += 0, in which case we may assume without
loss of generality that it is positive (or replace T with −T ). Let θn be any fixed
sequence with n1/2θn > δσ(F )/CovF [X, T (X)] and

n1/2θn → δσ(F )/CovF [X, T (X)] .

Then,

n1/2 µT,θn

σT,θn

= n1/2θn
CovF [X, T (X)]

σ(F )
+ o(1) .

So, n1/2µT,θn/σT,θn > δ for all sufficiently large n. Thus, for any test sequence
φn,

lim sup
n

inf
F∈F0, n1/2µ(F )/σ(F )≥δ

EF (φn) ≤ ET,θn(φn) ,

where ET,θn denotes expectation with respect to pT,θn . Note that, for this model,
the Information at θ = 0 satisfies

IT (0) = C′′
T (0) = V ar1/2

F [T (X)] .

The best limiting power among asymptotically level α tests of θ = 0 versus θ = θn

was obtained in Theorem 13.3.2 (with h = δσ(F )/CovF [X, T (X)]) as

1 − Φ(z1−α − hI1/2
T (0)) = 1 − Φ(z1−α − δσ(F )I1/2

T (0)/CovF [X, T (X)]) .

This reduces to the previous bound in the case T (X) = X. The sharpest pos-
sible result is obtained by choosing T to minimize the right hand side, which is
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equivalent to maximizing

CovF [X, T (X)]

{V arF (X)V arF [T (X)]}1/2
.

By the Cauchy-Schwarz inequality, this is bounded above by 1, and the resulting
value of 1 is attained when X = T (X).

Thus, in some sense, the model with T (X) = X is least favorable in that it is
the hardest parametric submodel to achieve high (limiting) power. The idea of
using a parametric submodel to obtain efficiency results in nonparametric models
dates back to Stein (1956b).

13.6.2 Nonparametric Testing of Functionals

Suppose X1, . . . , Xn are i.i.d. P ∈ P. In this section, the family P is a non-
parametric family. Specifically, we would like to consider problems where we do
not assume much or anything about P . Thus, P could be the family of all dis-
tributions on some sample space S, but it might be restricted by moment or
smoothness conditions, in which case P is still quite large.

Let θ(·) be a statistical functional; that is, θ(P ) is a real-valued function of
P , defined for P ∈ P. For example, if P is a distribution on RI , θ(P ) could be
the mean of P , or the variance of P . In such cases, P could be the set of all
distributions with finite variance. Or, if P is a distribution on RI 2, θ(P ) might
be the correlation of P , defined on the set P of all distributions whose marginals
have a finite nonzero variance.

We wish to test the null hypothesis θ(P ) ≤ 0 against θ(P ) > 0. Fix P with
θ(P ) = 0. In order to assess the power of a test at some distribution Q near P ,
we will consider parametric submodels that contain P . The basic idea is that the
power attainable in the full nonparametric model can be no greater than for any
submodel.

Let L2(P ) denote the space of (equivalence classes of) functions u which are
square integrable with respect to P . The inner product is given by

〈u, v〉P =

∫
u(x)v(x)dP (x),

and |u|2P = 〈u, u〉P . Also, let L2
0(P ) denote the subset of u ∈ L2(P ) satisfying∫

u(x)dP (x) = 0. By Problem 12.6, if u ∈ L2
0(P ), we can construct a one-

dimensional q.m.d. family Pu,t indexed by t in some neighborhood of 0, such
that Pu,0 = P and the score function at t = 0 is u. For example, if u is bounded
and |t| ≤ [supx |u(x)|]−1, then we can take Pu,t to be the distribution with density
with respect to P given by

dPu,t

dP
(x) = 1 + tu(x) . (13.96)

(Note that Pu,t ∈ P if P is the set of all probabilities on S, but if there are
restrictions on P , this construction may not work.)

In order to test θ(Pu,t) along such a parametric submodel, we assume that θ(·)
is differentiable in the sense

θ(Pu,t) − θ(P )
t

→ 〈u, θ̃P 〉P as t → 0 , (13.97)
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for some function θ̃P ∈ L2(P ). Evidently, this condition implies that, as a real-
valued function of the real variable t, θ(Pu,t) is differentiable at t = 0.4 Note that,
if θ̃P satisfies (13.97), then so does θ̃P + c for any constant c; we will henceforth
assume

∫
θ̃P (x)dP (x) = 0.

Example 13.6.1 (Linear Functionals) A statistical functional is linear if it
can be represented as

θ(P ) =

∫
f(x)dP (x) (13.98)

for some function f ∈ L2(P ). In this case, if Pu,t is given by (13.96), then

θ(Pu,t) − θ(P )
t

= 〈u, f〉P

with no error term; that is,

θ̃P (x) = f(x) −
∫

f(x)dP . (13.99)

Even if Pu,t is not specifically of the form (13.96), then it can be shown that θ(P )
is differentiable in the sense of (13.97) with θ̃P given by (13.99) if

sup
P∈P

EP [f2(X)] < ∞ ;

see Bickel et al. (1993, p.457-458). In particular, if f is a bounded function on a
set S and P is the set of all probabilities on S, then θ(·) is differentiable in the
sense of (13.97).

Next, for testing θ(P ) ≤ 0 against θ(P ) > 0, we obtain an upper bound for the
limiting local power function along a one-dimensional q.m.d. submodel, among
tests that are pointwise consistent in level. Note that, under (13.97),

θ(Pu,t) = θ(P ) + t〈θ̃P , u〉P + o(t) as t → 0 , (13.100)

which implies θ(Pu,t) > 0 for all small t > 0 if 〈θ̃P , u〉P > 0.
By Lemma 13.3.1(ii), if h > 0 and 〈θP , u〉P > 0, then (Problem 13.59)

lim sup
n

EP
u,hn−1/2 (φn) ≤ 1 − Φ(z1−α − h|u|P ) . (13.101)

Fix δ > 0 and let

h = h(u, δ) =
δ

〈θ̃P , u〉P
;

then, n1/2θ(Pu,h(u,δ)n−1/2) → δ. The bound (13.101) at h(u, δ)n−1/2 becomes

lim sup
n

EP
u,h(u,δ)n−1/2 (φn) ≤ 1 − Φ(z1−α − δ|u|P

〈θ̃P , u〉P
) . (13.102)

4The condition (13.97) further asserts that, as a function of u, the limiting value on
the right side of (13.97) is linear in u as u varies in L2

0(P ). In fact, the Riesz representation
theorem (see Theorem 6.4.1 of Dudley (1989)) asserts that any linear function of u must
be of the form 〈u, θ̃〉P for some θ̃.
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As u varies, the bound is smallest when |u|P /〈θ̃P , u〉P is minimized. But, by
Cauchy-Schwarz,

|u|P
〈θ̃P , u〉P

≥ 1

|θ̃P |P
,

and equality occurs when u = θ̃P . Note that, when u = θ̃P , the bound (13.102)
becomes

1 − Φ(z1−α − δ

|θ̃P |P
) . (13.103)

Moreover, taking u = θ̃P corresponds to the least favorable family (generalizing
the results of the previous subsection for the mean). Actually, we will obtain a
stronger result which will allow us to construct locally AUMP tests. First, we
obtain an upper bound which is smaller than (13.101) and is generally attainable
for all u.

Theorem 13.6.1 Let X1, . . . , Xn be i.i.d. P ∈ P, where P is the set of all
probabilities on space S (endowed with a σ-field). Assume θ(·) is differentiable
in the sense (13.97). Fix P with θ(P ) = 0, u ∈ L2

0(P ), and let {Pu,t} denote a
q.m.d. submodel, defined for t in some neighborhood of 0 with Pu,0 = P and score
function u. Let φn = φn(X1, . . . , Xn) be a sequence of level α tests of θ(P ) ≤ 0.
If 〈θ̃P , u〉P > 0 and h > 0, then,

lim sup
n

EP
u,hn−1/2 (φn) ≤ 1 − Φ

(
z1−α − h

〈θ̃P , u〉P
|θ̃|P

)
. (13.104)

Proof. Without loss of generality, assume |u|2P = 1. Let v = θ̃P − 〈θ̃P , u〉P u.
Note that v ∈ L2

0(P ), 〈u, v〉P = 0, and

〈v, v〉P = |θ̃P |2P − 〈θ̃P , u〉2P .

Consider a two-dimensional parametric submodel Pu,v,t1,t2 indexed by (t1, t2)
in some neighborhood of the origin in RI 2 such that the score function at
(t1, t2) = (0, 0) is (u, v)T . (See Problem 12.7 for a construction.) The ex-
periments P n

u,v,h1n−1/2,h2n−1/2 converge to a normal experiment where you

observe (Z1, Z2)
T with mean E(Zi) = hi, V ar(Z1) = 1, V ar(Z2) = |v|2P and

Cov(Z1, Z2) = 0 (since 〈u, v〉P = 0).
Fix h1 and h2 and let ti = thi. Then, h1u + h2v is the score function for the

family Pu,v,h1t,h2t indexed by t. Moreover,

θ(Pu,v,th1,th2) − θ(P ) = t〈h1u + h2v, θ̃P 〉P + o(t) .

So, if 〈h1u + h2v, θ̃P 〉P < 0, we have

lim sup EP
u,v,h1n−1/2,h2n−1/2 (φn) ≤ α .

Therefore, by Theorem 13.4.1, the local limiting power of φn along any
subsequence can be bounded above by the power of φ = φ(Z1, Z2), where

Eh1,h2(φ) ≤ α if 〈h1u + h2v, θ̃P 〉P < 0 ,
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and by continuity the result holds if 〈h1u+h2v, θ̃P 〉P = 0 as well. But, the UMP
level α test for testing

h1〈u, θ̃P 〉P + h2〈v, θ̃P 〉P ≤ 0

rejects if

Z1〈u, θ̃P 〉P + Z2〈v, θ̃P 〉P > z1−α

√
〈u, θ̃P 〉2P + 〈v, θ̃P 〉2P |v|2P = z1−α|θ̃P |P ,

which has power with h1 = h and h2 = 0 given by the right side of (13.104).

Remark 13.6.1 The tests φn need not be exact level α. All that is required
is that lim supn EP

u,hn−1/2 (φn) ≤ α if h has the opposite sign of 〈θ̃P , u〉P . This

must hold for u in the statement of (13.104) as well as any linear combination of
u and θ̃P .

The result and the proof applies even if P is not the set of all probabilities
on S. What is required is that the two-dimensional model Pu,v,t1,t2 used in the
proof also belongs to P. Also, it only required that the differentiability condition
need only hold for submodels Pu,v,h1t,h2t. For semiparametric models, the result
needs to be modified, but a similar result holds; see Theorem 25.44 of van der
Vaart (1998).

Next, we consider tests whose power attains the bound (13.104).

Example 13.6.2 (Linear Functionals, continued) Let P̂n be the empirical
measure, i.e., P̂n{E} is the proportion of observations that fall in E. Then, tests
of θ(P ) can be based on θ(P̂n) = n−1 ∑

i f(Xi). Under θ(P ) = 0,

n1/2θ(P̂n)
d→ N(0, |f |2P ) .

Since |f |P is unknown, consider the test that rejects when n1/2θ(P̂n)/Sn > z1−α,
where

S2
n =

1
n

n∑

i=1

[f(Xi) − θ(P̂n)]2 .

Under P , S2
n

P→ |f |2P ; by contiguity, this holds under P n
u,hn−1/2 as well. By

Example 12.3.8, under P n
u,hn−1/2 ,

n1/2θ(P̂n)
d→ N(h〈f, u〉P , |f |2P ) .

By Slutsky’s Theorem, under Pu,hn−1/2 ,

n1/2θ(P̂n)/Sn
d→ N(h

〈f, u〉P
|f |P

, 1) .

Therefore, the limiting power of the above test against P n
u,hn−1/2 is the upper

bound (13.104). Moreover, the convergence to the limiting power is uniform in h
for 0 ≤ h ≤ c and any c > 0 (Problem 13.61). The resulting test is locally AUMP
against all such alternatives. For example, the result applies to one-sided tests
of θ(P ) = P{E}, and tests based on the empirical measure are asymptotically
LAUMP.
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Example 13.6.3 (Variance Functional) Suppose P is a distribution on RI ,
and P is the set of all distributions with a uniformly bounded fourth moment. Let
σ2(P ) denote the variance of P , and µ(P ) denote the mean of P . The problem
is to test σ2(P ) ≤ σ2

0 . Let θ(P ) = σ2(P ) − σ2
0 . Then, the conditions of Theorem

13.6.1 hold with

θ̃P (x) = [x − µ(P )]2 − θ(P ) ,

and the test that rejects when n1/2[θ(P̂n) − σ2
0 ]/Sn > z1−α attains the bound

(13.104), where S2
n is a consistent estimator of the variance of [Xi −µ(P )]2, such

as

S2
n = n−1

∑

i

(Xi − X̄n)4 − σ4(P̂n) .

The details are left to Problem 13.63.

In general, consider tests of θ(P ) based on θ(P̂n). This implicitly assumes
θ(·) is defined for empirical measures. Suppose θ(P̂n) is an asymptotically linear
statistic in the sense that

n1/2[θ(P̂n) − θ(P )] =

∫
θ̃P d(P̂n − P ) + oP (1) . (13.105)

This can be verified directly in examples where θ(P̂n) is a smooth function of
sample means, such as the previous example. Otherwise, θ must be differentiable
in an appropriate sense, but such an approach is beyond the scope of the treat-
ment here; see Serfling (1980, Chapter 10) or van der Vaart and Wellner (1996,
Section 3.9). Note that (13.105) implies that, under P ,

n1/2[θ(P̂n) − θ(P )]
d→ N(0, |θ̃P |2P ) .

In order to construct an optimal test, it is necessary to construct a consistent
estimator of |θ̃P |P . Assuming Sn is such a consistent estimator, the test that
rejects for large n1/2θ(P̂n)/Sn is asymptotically LAUMP, by the same argument
used in Example 13.6.2. General approaches for constructing an estimator of the
asymptotic variance of n1/2θ(P̂n), as well as a means of estimating its sampling
distribution, are provided by bootstrap resampling and subsampling, which will
be discussed in Chapter 15.

13.7 Problems

Section 13.1

Problem 13.1 (i). Let Pi have density pi with respect to a dominating measure
µ. Show that ‖P1 − P0‖1 defined by

∫
|p1 − p0|dµ is independent of the choice of

µ and is a metric.
(ii). Show the Hellinger distance defined in (13.12) is also independent of µ and
is a metric.

Problem 13.2 Show that ‖P1 − P0‖1 can also be computed as

2 sup
B

|P1(B) − P0(B)| ,
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where the supremum is over all measurable sets B. In addition, it may be
computed as

sup
{φ:|φ|≤1}

∣∣∣∣
∫

φ(x)dP1(x) −
∫

φ(x)dP0(x)

∣∣∣∣ ,

where the supremum is over all measurable functions φ such that supx |φ(x)| ≤ 1.

Problem 13.3 (i) Suppose X is a random variable taking values in a sample
space S with probability law P . Let ω0 and ω1 be disjoint families of probability
laws. Assume that, for every Q ∈ ω1 and any ε > 0, there exists a subset A
of S (which may depend on ε) such that Q(A) ≥ 1 − ε and such that, if X
has distribution Q, then the conditional distribution of X given X ∈ A is a
distribution in ω0; call it Pε. Show ‖Q − Pε‖1 → 0 as ε → 0.
(ii) Based on data X with probability law P , consider the problem of testing the
null hypothesis P ∈ ω0 versus P ∈ ω1. Suppose that, for every Q ∈ ω1, there
exists a sequence {Pk} with Pk ∈ ω0 such that ‖Q − Pk‖1 → 0 as k → ∞. Show
that if a test φ is level α, then EQ[φ(X)] ≤ α for all Q ∈ ω1.
(iii) Suppose X1, . . . , Xn are i.i.d. on the real line. Let ω0 be distributions with a
finite mean and ω1 those without a finite mean. Apply (i) and (ii) to show that
no level α test of ω0 versus ω1 has power > α against any Q ∈ ω1.

[Such nonexistence results data back to Bahadur and Savage (1956); see Lemma
11.4.4. This example in (iii) and others are treated in Romano (2004), which also
contains many references on such problems.]

Problem 13.4 Let Pθ be uniform on [0, θ]. Let θn = θ0 + h/n. Calculate the
limit of nH2(Pθ0 , Pθ0+h/n). If h > 0, let φn be the UMP level α test which rejects
when the maximum order statistic is too large. Evaluate the limit of the power
of φn against the alternative θn.

Problem 13.5 Prove Lemma 13.1.1.

Problem 13.6 Consider testing P n
θ0 versus P n

θn
and assume nH2(Pθ0 , Pθn) →

0. Let φn be any test sequence such that lim sup Eθ0(φn) ≤ α. Show that
lim sup Eθn(φn) ≤ α.

Problem 13.7 Let Pθ be N(θ, 1). Fix h and let θn = hn−1/2. Compute
S(P n

0 , P n
θn

) and its limiting value. Compare your result with the upper bound
obtained from Theorem 13.1.3.

Problem 13.8 If I(θ0) is a positive definite Information matrix, show h = 0 if
and only if 〈h, I(θ0)h〉 = 0.

Problem 13.9 Let X1, . . . , Xn be i.i.d. according to a model {Pθ, θ ∈ Ω}, where
θ is real-valued. Consider testing θ = θ0 versus θ = θn at level α (α fixed,
0 < α < 1). Show that it is possible to have nH2(Pθ0 , Pθn) → c < ∞ and still
have a sequence of level α tests φn = φn(X1, . . . , Xn) such that Eθn(φn) → 1.
Hint: Take Pθ uniform on [0, θ] and θn = θ0 − h/n for h > 0.
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Problem 13.10 Suppose ‖Pn − Qn‖1 → 0. Show that Pn and Qn are mutu-
ally contiguous. Furthermore, show that, for any sequence of test functions φn,∫

φndPn −
∫

φndQn → 0.

Problem 13.11 For a q.m.d. family, show nH2(Pθ0+hn−1/2 , Pθ0+hnn−1/2) → 0
whenever hn → h. Then, show P n

θ0+hnn−1/2 is contiguous to P n
θ0 whenever hn →

h.

Problem 13.12 Use Problem 13.11 to show that Theorem 12.2.3 (i) remains
valid if h is replaced by hn as long as hn falls in a bounded subset of RI k . Also,
show part (ii) of Theorem 12.2.3 generalizes if h in the left hand side of the
convergence (12.14) is replaced by hn → h in RI k . Further assume (12.84) and
show that, for any c > 0, the supremum over h such that |h| ≤ c of the left side
of (12.13) tends to 0 in probability under θ0.

Problem 13.13 Use problem 13.11 to prove Theorem 12.4.1 when hn → h.

Problem 13.14 Give an example where ‖Qn − Pn‖1 → δ > 0 but Pn and Qn

are mutually contiguous.

Problem 13.15 Let Pn and Qn be two sequences of probability measures de-
fined on (Ωn,Fn). Assume they are contiguous. Assume further that both of them
are product measures, i.e.

Pn =
n∏

i=1

Pn,i and Qn =
n∏

i=1

Qn,i .

Let ‖Q − P‖1 denote the total variation distance between P and Q. Show that

sup
n

n∑

i=1

‖Qn,i − Pn,i‖2
1 < ∞ .

Problem 13.16 Let f(x) be the triangular density on [−1, 1] defined by

f(x) = (1 − |x|)I{x ∈ [−1, 1]} .

Let Pθ be the distribution with density f(x−θ). Find the asymptotic behavior of
H(Pθ0 , Pθ0+h) as h → 0, where H is the Hellinger distance. Compare your result
with q.m.d. families.

Section 13.2

Problem 13.17 Under the assumptions of Theorem 13.2.1, suppose θk → θ0

and β > α > 0. Show, for any N < ∞, there does not exist a test φk with k ≤ N
such that lim infk Eθk (φk) ≥ β.

Problem 13.18 Under the assumptions of Example 13.2.1, show that the
squared efficacy of the Wald test is I(θ0).
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Problem 13.19 Suppose Ω0 = {θ0}. In order to determine c = c(n, α) in
(13.32), define c(n, α) to be

c(n, α) = inf{d : Pθ0{Tn > d} ≤ α} .

Argue that this choice of c(n, α) satisfies (13.32). What if Tn > d is replaced by
Tn ≥ d ?

Problem 13.20 For a double exponential location family, calculate the Pitman
AREs among pairwise comparisons of the t-test, the Wilcoxon test, and the Sign
test.

Problem 13.21 Prove the inequality (13.30). Hint: The quantity (13.29) is in-
variant with respect to scale. By taking σ2 = 1, the problem reduces to choosing
f to minimize

∫
f2 subject to f being a mean 0 density with variance 1. Using

the method of undetermined multipliers, it is sufficient to minimize
∫

[f2(x) + 2b(x2 − a2)f(x)]dx ,

where a and b are chosen so that f is a mean 0 density with variance 1.

Problem 13.22 Suppose X1, . . . , Xn are i.i.d. Poisson with unknown mean θ.
The problem is to test θ = θ0 versus θ > θ0. Consider the test that rejects for
large X̄n and the test that rejects for large

S2
n =

1
n − 1

n∑

i=1

(Xi − X̄n)2 .

Compute the Pitman ARE.

Problem 13.23 Suppose X1, . . . , Xn are i.i.d. N(0, σ2). Let Tn,1 = Ȳn =
n−1 ∑n

i=1 Yi, where Yi = X2
i . Also, let Tn,2 = (2n)−1 ∑n

i=1(Yi − Ȳn)2. For testing
σ = 1 versus σ > 1, does the Pitman asymptotic relative efficiency of Tn,1 with
respect to Tn,2 exist? If so, find it.

Section 13.3

Problem 13.24 For testing θ = θ0 versus θ > θ0, define two test sequences
φn and ψn to be asymptotically equivalent under the null hypothesis if φn −
ψn → 0 in probability under θ0. Does this imply that, if θ0 is the true value,
the probability the tests reach the same conclusion tends to 1? Show that, under
q.m.d., asymptotic equivalence under the null hypothesis also implies that, under
an alternative sequence θn,h = θ0 + hn−1/2,

Eθn,h(φn) − Eθn,h(ψn) → 0 .

Furthermore, assume at least one of the two, say φn is nonrandomized. Then,
conclude the tests are asymptotically equivalent in the sense that the probability
the tests reach the same conclusion tends to 1, both under θ0 and a sequence
θn,h.
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Problem 13.25 Under the q.m.d. assumptions of this section, show that φn,h

given by (13.34) and φ̃n given by (13.43) are asymptotically equivalent in the
sense of Problem 13.24 for testing θ0 against θ0 + hn−1/2.

Problem 13.26 Let X1, . . . , Xn be i.i.d. N(θ, 1). For testing θ = 0 against θ > 0,
let φn be the UMP level α test. Let φ̃n be the test which rejects if X̄n ≥ bn/n1/2

or X̄n ≤ −an/n1/2, where bn = z1−α + n−1/4 and an is then determined to meet
the level constraint. Are the tests asymptotically equivalent? Show that, for all
θ ≥ 0,

1 − Eθ(φn)

1 − Eθ(φ̃n)
→ 0 as n → ∞ .

How do you interpret this result? [Lehmann (1949)]

Problem 13.27 Prove Lemma 13.3.1 (iii). Hint: Problems 13.12-13.13.

Problem 13.28 Prove Theorem 13.3.1.

Problem 13.29 Prove the equivalence of Definition 13.3.2 and the definition
in the statement immediately following Definition 13.3.2. What is an equivalent
characterization for LAUMP tests?

Problem 13.30 For testing θ0 versus θn, let φ∗
n be a test satisfying

lim sup
n

Eθ0(φ
∗
n) = α∗ < α

and Eθn(φ∗
n) → β∗.

(i) Show there exists a test sequence ψn satisfying lim supn Eθ0(ψn) = α and a
number β such that

lim Eθn(ψn) = β ≥ β∗ ,

and this last inequality is strict unless β∗ = 1.
(ii) Hence, show that, under the conditions of Theorem 13.3.3, any LAUMP level
α test sequence φ∗

n satisfies Eθ0(φ
∗
n) → α.

Problem 13.31 Suppose Zn is any sequence of random variables such that
V arθn(Zn) ≤ 1 while Eθn(Zn) → ∞. Here, θn merely indicates the distribution
of Zn at time n. Show that, under θn, Zn → ∞ in probability.

Problem 13.32 In the double exponential location model of Example 13.3.2,
show that a MLE estimator is a sample median θ̂n. The test that rejects the null
hypothesis if n1/2θ̂n > z1−α is AUMP and is asymptotically equivalent to Rao’s
score test in the sense of Problem 13.24.

Problem 13.33 For the Cauchy location model of Example 13.3.3, consider the
estimator θ̂n defined by (13.59). Show that the test that rejects when n1/2θ̂n >
21/2z1−α is AUMP. Is the estimator location equivariant? Is the estimator θ̂n =
θ̂n(X1, . . . , Xn) monotone in the sense it is nondecreasing as any one component
Xi increases?
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Problem 13.34 Let X1, . . . , Xn be i.i.d. according to a q.m.d. location model
f(x− θ). Let θ̂n be any location equivariant estimator satisfying (13.58) (such as
an efficient likelihood estimator). For testing θ ≤ 0 against θ > 0, show that the
test that rejects when n1/2θ̂n > I−1/2(0)z1−α is AUMP.

Problem 13.35 Assume the conditions of Theorem 13.3.3. Assume φn is
LAUMP level α. Suppose the power function of φn is nondecreasing in θ, for
θ ≥ θ0. Show φn is also AUMP level α.

Problem 13.36 Assume the conditions of Example 13.3.1. Further assume f is
strongly unimodal, i.e., − log(f) is convex. Show the test φ̃n given by (13.43) is
AUMP level α. Hint: Use Problem 13.35.

Problem 13.37 Suppose X1, ...Xn are i.i.d. Poisson(λ). Consider testing the
null hypothesis H0 : λ = λ0 versus the alternative, HA : λ > λ0.
(i) Consider the test φ1

n with rejection region n1/2[X̄n − λ0] > z1−αλ1/2
0 , where

Φ(zα) = α and Φ is the cdf of a standard normal random variable. Find the
limiting power of this test against λ0 + hn−1/2.
(ii) Alternatively, let g be a differentiable, monotone increasing function with
g′(λ0) > 0, and consider the test φg

n with rejection region

n1/2[g(X̄n) − g(λ0)] > z1−αg′(λ0)λ
1/2
0 .

Show that φ1
n and φg

n are equivalent in the sense that, for any b > 0,

sup
0≤h≤b

Eλ0+hn−1/2 |φ1
n − φg

n| → 0 .

(iii) Can we replace b by ∞?

Problem 13.38 Suppose X1, ...Xn are i.i.d. N(θ, 1+θ2). Consider testing θ = θ0

versus θ > θ0 and let φn be the test that rejects when n1/2[X̄n − θ0] > z1−α(1 +
θ2
0)

1/2.
(i) Compute the limiting power of this test against θ0 + hn−1/2.
(ii) Is this test AUMP?

Problem 13.39 Define appropriate extensions of the definitions of LAUMP and
AUMP to two-sided testing of a real parameter. Let X1, . . . , Xn be i.i.d. N(θ, 1).
Show that neither LAUMP nor AUMP tests exist for testing θ = 0 against θ += 0.

Section 13.4

Problem 13.40 Suppose {Qn,h, h ∈ RI k } is asymptotically normal according to
Definition 13.4.1, with Zn and C satisfying (13.62). Show the matrix C is uniquely
determined. Moreover, if Z̃n is any other sequence also satisfying (13.62), then
Zn − Z̃n → 0 in Qn,h-probability for any h.

Problem 13.41 Suppose {Qn,h, h ∈ RI k } is asymptotically normal. Show that
Qn,h1 and Qn,h2 are mutually contiguous for any h1 and h2.
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Problem 13.42 Assume {Qn,h, h ∈ RI k } is asymptotically normal according
to Definition 13.4.1, with Zn and C satisfying (13.62). Show that, under Qn,h,

Zn
d→ N(Ch, C).

Problem 13.43 Let dN(h, C) denote the density of the normal distribution
with mean vector h ∈ RI k and positive definite covariance matrix C. Prove that
exp(〈h, x〉 − 1

2 〈h, Ch〉)dN(0, C)(x) is the density of N(Ch, C) evaluated at x.
Hint: Use characteristic functions.

Section 13.5

Problem 13.44 In the location scale model of Example 13.5.2, verify the ex-
pressions for the Information matrix. Deduce that the matrix is diagonal if f is
an even function.

Problem 13.45 For the location scale model of Example 13.5.2 with f(x) =
C(β) exp[−|x|β ], argue that the family is q.m.d. if β > 1/2.

Problem 13.46 For the location scale model in Problem 13.45, show that, for
testing µ ≤ 0 versus µ > 0, argue that the Wald test is LAUMP if β ≥ 1. If σ̂n

is replaced by any consistent estimator of σ, does the LAUMP property continue
to hold? If 1/2 < β < 1, argue that the Rao test is LAUMP.

Problem 13.47 In Example 13.5.3, for testing ρ ≤ 0 versus ρ > 0, find the
optimal limiting power of the LAUMP against alternatives hn−1/2. Compare
with the case where the means and variances are known. Generalize to the case
of testing ρ ≤ ρ0 against ρ > ρ0.

Problem 13.48 Derive the inequality (13.74) under general conditions which
assume the model is asymptotically normal.

Problem 13.49 Assume (13.75) and the setup described there. Show that the
test that rejects when g(θ̂n) > z1−ασ̂n is pointwise level α and has a power
function such that there is equality in (13.74).

Problem 13.50 Verify (13.76) as well as the form of the matrix C(θ0).

Problem 13.51 Assume the conditions of Theorem 13.5.1, Consider the prob-
lem of testing g(θ) = 0 against g(θ) += 0. Restrict attention to tests φn that are
asymptotically unbiased in the sense

lim inf
n

inf
{θ: g(θ) '=0}

Eθ(φn) ≥ α ,

as well as (13.69). Prove a result analogous to Theorem 13.5.1. Hint: See Problem
5.10.

Problem 13.52 Consider the one-sample N(µ, 1) problem for testing |µ| ≥ ∆
versus |µ| < ∆. Show that the level α test based on combining the two one-sided
UMP level α tests has size strictly less than α.
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Problem 13.53 Show that the size of the TOST test considered in Example
13.5.5 is α.

Problem 13.54 Let C = C(α, δ, σ) be defined by (13.86). Show that C > δ −
σz1−α. Use this to show that, in Example 13.5.6, the limiting power of φ∗

n always
exceeds that of φIUT

n .

Problem 13.55 As in Example 13.5.7, consider testing θ = θ0 versus θ += θ0.
Suppose φn is asymptotically level α and asymptotically unbiased in the sense

lim inf
n

Eθ0+hn−1/2(φn) ≥ α

for any h += 0. Argue that, among such tests φn, the two-sided Rao test φn,2 is
LAUMP.

Problem 13.56 Generalize Example 13.5.7 to the case of testing θ = θ0 versus
θ += θ0 in the presence of nuisance parameters.

Problem 13.57 Under the conditions of Theorem 13.5.5 used to prove an
asymptotic maximin result for Rao’s test, derive analogous optimality results
for both the Wald and likelihood ratio tests.

Section 13.6

Problem 13.58 Show that the family of densities (13.95) satisfies (11.77) for
small enough θ.

Problem 13.59 Verify (13.101).

Problem 13.60 Compare the bounds (13.101) and (13.104). For what u is each
attainable? Why is (13.101) generally not attainable for all u, even though there
exists a test for the submodel {Pu,t} for which the bound is attainable.

Problem 13.61 In Example 13.6.2, argue that the given test attains the optimal
limiting power uniformly in h, for 0 ≤ h ≤ c and any c > 0.

Problem 13.62 In Theorem 13.6.1, compute the limiting power against
Pu,hn−1/2 where h is chosen so that n1/2θ(Pu,hn−1/2) → δ. [The solution does
not depend on u but only on the value of δ, which was noted by Pfanzagl and
Wefelmeyer (1985).]

Problem 13.63 Provide the details for the optimality claimed in Example
13.6.3 for testing the variance in a nonparametric setting.

Problem 13.64 Let P be the set of all joint distributions in RI 2 on some com-
pact set. Let θ(P ) denote the correlation functional. For testing θ(P ) ≤ 0,
construct an asymptotically optimal test in a nonparametric setting.

Problem 13.65 Consider testing the difference of two population means
µ(PX) − µ(PY ) ≤ 0 in a nonparametric setting. Generalize Theorem 13.6.1 to
obtain locally AUMP tests.
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13.8 Notes

The Hellinger distance introduced in Section 13.1 was fundamental in Kakutani
(1948) and does not seem to have been employed by Hellinger (Le Cam and Yang
(2000), p. 48). The use of Hellinger distance to construct estimators and tests is
developed in Beran (1977) and Simpson (1989).

The concept of Pitman asymptotic relative efficiency can be traced to an un-
published set of his lecture notes in (1949); Noether (1955) published a slightly
more general result. The inequality (13.30) is due to Hodges and Lehmann (1956).
Further results and references can be found in Serfling (1980) and Nikitin (1995).
Some important alternative concepts of efficiency can be found in Bahadur (1960,
1965), Kallenberg (1982, 1983), and Inglot, Kallenberg and Ledwina (2000). Some
numerical calculations are given in Groeneboom and Oosterhoff (1981). Higher
order asymptotic comparisons can be approached through the concept of defi-
ciency, introduced in Hodges and Lehmann (1970). Some general results for rank
and permutation tests in the one-sample problem are obtained in Albers, Bickel
and van Zwet (1976); analogous results for the two-sample problem are obtained
in Bickel and van Zwet (1978). Pitman efficiencies of multivariate spatial sign
and rank tests are considered in Peters and Randles (1991) and Möttönen, Oja
and Tienari (1997). Asymptotic efficiency of rank tests is studied in Behnen and
Neuhaus (1989) and Hájek, Sidák, and Sen (1999). Higher order efficiency is also
considered in Bening (2000).

Our approach to large sample efficiency of tests is largely due to ideas in Wald
(1939, 1941ab, 1943), though his assumptions were too strong. He focused on
MLEs and the tests now known as Wald tests. Wald basically argued that one
could construct optimal large sample tests based on the normal approximation
to the MLE. A more formal approach was later provided by Le Cam’s (1964,
1972) elegant notion of convergence of experiments, of which convergence to a
normal experiment in the sense of Definition 13.4.1 is an important special case.
This approach was used in Choi, Hall and Schick (1996). For references of (lo-
cal) asymptotically normal experiments in time series models, see Hallin et al.
(1999). Generalizations to limiting Poisson experiment and locally asymptotically
quadratic experiments are discussed in Le Cam and Yang (2000). Roussas (1972)
formulated and developed the concept of AUMP tests. The proof of Theorem
13.4.1 is based on Lemma 3.4.4 of Rieder (1994). The results in Section 13.5.2
are obtained in Romano (2005). Nonparametric tests of equivalence are studied
in Janssen (2000b); also see Wellek (2003). The reduction of a nonparametric
problem to a parametric one through the use of a least favorable family is due
to Stein (1956b), and is prominent in the work of Koshevnik and Levit (1976),
Pfanzagl (1982, 1985), Bickel et al (1993) and Janssen (1999), among others. The
proof of Theorem 13.6.1 is based on the more general result Theorem 25.44 of van
der Vaardt (1998). Efficiency of nonparametric confidence intervals is discussed
in Low (1997) and Romano and Wolf (2000).



14
Testing Goodness of Fit

14.1 Introduction

So far, the principal framework of this book has been optimality (either exact or
asymptotic) in situations where both the hypothesis and the class of alternatives
were specified by parametric models. In the present chapter, we shall take up
the crucial problem of testing the validity of such models, the hypothesis of
goodness of fit. For example, we would like to know whether a set of measurements
X1, . . . , Xn is consonant with the assumption that the X’s are an i.i.d. sample
from a normal distribution.

A difficulty in testing such a hypothesis is that the class of alternatives typically
is enormously large and can no longer be described by a parametric model. As
a result, although some asymptotic optimality results are presented, they are
isolated; no general asymptotic optimality theory seems to exist for this problem.
In fact, there is growing evidence, such as the results of Janssen (2000a) (see
Theorem 14.6.2), that any test can achieve high asymptotic power against local
or contiguous alternatives for at most a finite-dimensional parametric family.

Because of the importance of the problem of testing goodness of fit, we shall
nevertheless consider this problem here. However, the focus will no longer be on
optimality. Instead, we shall present some of the principal methods that have
been proposed and study their relative strengths and weaknesses.

For the sake of simplifying a very complicated problem we shall consider the
case where X1, . . . , Xn are i.i.d. according to some probability distribution P ,
and shall mostly assume that the null hypothesis P = P0 completely specifies
the distribution. While this assumption frequently is not fulfilled in applications,
it makes it possible to cover some principal features of the problem which carry
over to the more complex case of composite hypotheses.
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In the case where the observations are real-valued, we index the unknown
distribution by the underlying c.d.f. F and the problem is to test F = F0. We
will typically consider the case where F0 is the uniform distribution on (0, 1).
This special case can be generalized to the problem of testing the simple null
hypothesis H that X1, . . . , Xn are i.i.d. from any fixed continuous c.d.f. F on the
real line. To see how, define Yi = F (Xi), so that the Yi are i.i.d. U(0,1) under
H (Problem 3.22); then, test the hypothesis that Y1, . . . , Yn are i.i.d. uniform on
[0, 1].

Let F̂n be the empirical c.d.f., which uniformly tends to F with probability
one, by the Glivenko-Cantelli theorem. For testing the simple null hypothesis
F = F0, a natural starting point is to base a test statistic on some measure of
discrepancy between F̂n and F0. In particular, if d is any metric on the space of
distribution functions, then d(F̂n, F0) could serve as a test statistic. A classical
choice is d = dK , the Kolmogorov-Smirnov metric, which historically was the
first test of goodness of fit that is (pointwise) consistent against any alternative.
This test is studied in Section 14.2, but many other choices are possible; see
14.2.2. Two such choices are the Cramér-von Mises statistic and the Anderson-
Darling statistic; in fact, these choices are often much more powerful than the
Kolmogorov-Smirnov test.

In Section 14.3, the classical Chi-squared test is studied, and its asymptotic
properties are derived. The class of Neyman smooth tests is considered in Section
14.4; it includes the Chi-squared test as a special case, and serves to motivate the
class of weighted quadratic test statistics studied in Section 14.5. The difficulty
of constructing goodness of fit tests with good power against broad alternatives
is studied in Section 14.6.

14.2 The Kolmogorov-Smirnov Test

14.2.1 Simple Null Hypothesis

Suppose X1, . . . , Xn are i.i.d. real-valued observations with c.d.f. F , and consider
the problem of testing the simple null hypothesis that F = F0 versus F += F0.
The classical Kolmogorov-Smirnov goodness of fit test statistic, introduced in
Section 6.13 and Example 11.2.12, is

Tn ≡ sup
t∈ RI

n1/2|F̂n(t) − F0(t)| = n1/2dK(F̂n, F0) , (14.1)

where dK is the Kolmogorov-Smirnov distance

dK(F, G) = sup
t

|F (t) − G(t)| .

Note that dK(F, G) = 0 if and only if F = G.
The distribution of Tn under F0 is the same for all continuous F0 (Problem

11.57). Let sn,1−α be the 1 − α quantile of the distribution of Tn under any
continuous F0. The Kolmogorov-Smirnov test rejects the null hypothesis if Tn >
sn,1−α. If F0 is not continuous, using sn,1−α results in a test that has level less
than α (Problem 11.58), but in principle, one can determine (or simulate) a
critical value that yields an exact level α test for this situation. Much of the
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remaining discussion in the section will focus on the case where the critical value
sn,1−α is used (but the arguments apply more generally). For references to tables
of critical values and finite sample power calculations, see the references given in
Example 11.2.12.

In order to study the limiting behavior of Tn, introduce the function

Bn(t) = n1/2[F̂n(t) − F0(t)] . (14.2)

For each t, Bn(t) is a real-valued random variable; in addition, Bn(·) can be
viewed as a random function (or process) on [0, 1], called the empirical process.
By the multivariate Central Limit Theorem, if the null hypothesis is true, then
for any t1, . . . , tk,

[Bn(t1), . . . , Bn(tk)]
d→ [B(t1), . . . , B(tk)] , (14.3)

where [B(t1), . . . , B(tk)] has the multivariate normal distribution with mean 0
and covariance matrix Σ, whose (i, j)th entry σi,j is given by

σi,j =

{
F0(ti)(1 − F0(ti)) if i = j
F0(min(ti, tj)) − F0(ti)F0(tj) otherwise.

(14.4)

By the Continuous Mapping Theorem, it follows that, for any t1, . . . , tk,

max
1,...,k

n1/2|F̂n(ti) − F0(ti)| d→ max
1,...,k

|B(ti)| . (14.5)

In fact, B(·) itself can be represented as a random continuous process on [0, 1],
called the Brownian Bridge process. The study of random functions and empirical
processes is beyond the scope of this book, but it is developed in Pollard (1984)
and van der Vaart and Wellner (1996). However, the result (14.5) provides both
insight and a basis for a rigorous treatment of the limiting behavior of Tn, which
is the supremum over all t, and not just a finite set, of |Bn(t)|. It turns out that Tn

has a limiting distribution which is continuous and strictly increasing on (0,∞).
More specifically, Kolmogorov (1933) showed that if F0 is continuous, then for
any d > 0,

P{Tn > d} → 2
∞∑

k=1

(−1)k+1 exp(−2k2d2) .

The 1 − α quantile of this distribution will be denoted by s1−α.
We now discuss some power properties of the Kolmogorov-Smirnov test.

Theorem 14.2.1 The Kolmogorov-Smirnov test is pointwise consistent in power
against any fixed F += F0; that is,

PF {Tn > sn,1−α} → 1

as n → ∞.

Proof. By the Glivenko-Cantelli theorem, under an alternative F ,

sup
t

|F̂n(t) − F0(t)| → dK(F, F0) > 0

almost surely, and so Tn → ∞ almost surely. Hence, by Slutsky’s theorem,

PF {Tn > sn,1−α} → 1 ,
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since sn,1−α → s1−α < ∞.
For an alternative instructive proof of consistency (due to Massey (1950)), fix

any F with dK(F, F0) > 0. Then, there exists some t with F (t) += F0(t). First,
assume F (t) > F0(t). Then,

PF {Tn > sn,1−α} ≥ PF {
∣∣∣n1/2[F̂n(t) − F0(t)]

∣∣∣ > sn,1−α}

≥ PF {n1/2[F̂n(t) − F (t)] ≥ sn,1−α − n1/2[F (t) − F0(t)]} , (14.6)

which tends to 1 as n → ∞ since the left side in the probability expression is
bounded in probability while the right hand tends to −∞. Hence, the limiting
power is 1 against any F if there exists a t with F (t) > F0(t). By similar reasoning,
the limiting power is 1 against F with F (t) < F0(t) for some t, and hence for any
F += F0.

We now show that the Kolmogorov-Smirnov test is uniformly consistent in
power against alternatives F satisfying n1/2dK(F, F0) ≥ ∆n, as long as ∆n → ∞.

Theorem 14.2.2 Let X1, . . . , Xn be i.i.d. random variables with c.d.f. F . For
testing F = F0 against F += F0, the power of the Kolmogorov-Smirnov test tends
to one uniformly over all alternatives F satisfying n1/2dk(F, F0) ≥ ∆n if ∆n →
∞ as n → ∞; that is,

inf
{

PF {Tn > sn,1−α} : n1/2dK(F, F0) ≥ ∆n

}
→ 1

if ∆n → ∞.

Proof. Let Fn be any sequence satisfying n1/2dK(Fn, F0) ≥ ∆n. By the triangle
inequality,

dK(Fn, F0) ≤ dK(Fn, F̂n) + dK(F̂n, F0) ,

which implies

Tn ≥ ∆n − n1/2dK(F̂n, Fn) .

Therefore,

PFn{Tn > sn,1−α} ≥ PFn{n
1/2dK(F̂n, Fn) ≤ ∆n − sn,1−α} . (14.7)

But, by Problem 11.60, under Fn, n1/2dK(F̂n, Fn) is tight. Since ∆n → ∞ and
sn,1−α has a finite limit, it follows that ∆n − sn,1−α → ∞ and therefore

PFn{Tn > sn,1−α} → 1 .

One can also obtain nonasymptotic lower bounds to the power of the
Kolmogorov-Smirnov test by using (14.7). For example, application of the
Dvoretzky Kiefer Wolfowitz inequality (Theorem 11.2.18) yields

PFn{Tn > sn,1−α} ≥ 1 − 2 exp[−2(∆n − sn,1−α)2] , (14.8)

if n1/2dK(Fn, F0) ≥ ∆n and ∆n > sn,1−α (Problem 14.2).
It follows from Theorem 14.2.2 that the Kolmogorov-Smirnov test is uniformly

consistent in power against alternatives F such that dK(F, F0) ≥ ∆, for any
fixed ∆ > 0. Note, however, that for any fixed n and ∆, the rejection probability
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may be less than α; that is, the Kolmogorov-Smirnov test is biased, as shown by
Massey (1950).

It also follows from Theorem 14.2.2 that the limiting power of the Kolmogorov-
Smirnov test against a sequence of alternatives Fn is arbitrarily close to one for
sequences Fn tending to F0 sufficiently slowly. In the opposite direction, by the
triangle inequality,

PF {Tn > sn,1−α} ≤ PF {n1/2dK(F̂n, F ) + n1/2dK(F, F0) > sn,1−α} , (14.9)

which implies the power of the Kolmogorov-Smirnov test is poor against se-
quences of alternatives tending to F0 sufficiently fast (Problem 14.4). More
specifically, the following holds.

Theorem 14.2.3 For testing F = F0 at level α, the limiting power of the
Kolmogorov-Smirnov test is no better than α against any sequence of alternatives
Fn satisfying n1/2dK(Fn, F0) → 0; that is,

lim sup
n

PFn{Tn > sn,1−α} ≤ α .

Thus, the Kolmogorov Smirnov test cannot distinguish sequences that are at a
distance o(n−1/2) from F0, where distance refers to the metric dK . In fact, no test
can have good power against all sequences Fn satisfying n1/2dK(Fn, F0) → 0. To
prove this statement, consider a smooth parametric model containing F0, such
as a one-parameter exponential family having density of the form

exp(θT (x) − A(θ))dF0(x) .

Let Fn denote the c.d.f. corresponding to this density with θ = hnn−1/2. Note
that dK(Fn, F0) = O(hnn−1/2) (Problem 14.5). Then, the AMP test sequence
for testing θ = 0 (corresponding to F0) against θn = hnn−1/2 has limiting power
α if hn → 0.

One can also obtain an upper bound to the power against alternatives Fn

satisfying

n1/2dK(Fn, F0) → δ < s1−α .

By (14.9),

PF {Tn > sn,1−α} ≤ PF {dK(F̂n, F ) > n−1/2sn,1−α − dK(F, F0)} .

Then, by the Dvoretzky, Kiefer and Wolfowitz Inequality (Theorem 11.2.18), the
last expression is bounded above by

2 exp{−2n[sn,1−αn−1/2 − dK(F, F0)]
2} .

Therefore, if Fn is a sequence satisfying

n1/2dK(Fn, F0) → δ < s1−α ,

then the limiting power against Fn is bounded above by

2 exp[−2(s1−α − δ)2] .

So far, we have obtained crude upper and lower bounds to the power of
the Kolmogorov-Smirnov test, and it follows from Theorems 14.2.2 and 14.2.3
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that, like the parametric situations considered earlier, it is against sequences of
alternatives Fn with

n1/2dK(Fn, F0) → δ (0 < δ < ∞)

that we expect the power of the test to tend to limits strictly between α and 1.
Let us now sketch an approach to calculating the exact limiting power against a
local sequence of alternatives Fn. Consider the normalized difference

dn(t) = n1/2[Fn(t) − F0(t)] ,

and assume that for some function d

sup
t

|dn(t) − d(t)| → 0 .

Note the basic identity

n1/2[F̂n(t) − F0(t)] = n1/2[F̂n(t) − Fn(t)] + dn(t) . (14.10)

Under Fn, n1/2[F̂n(t) − Fn(t)] has mean 0 and variance

Fn(t)[1 − Fn(t)] → F0(t)[1 − F0(t)] .

For fixed t, the Lindeberg Central Limit Theorem (see Problem 11.13) implies
that, under Fn,

n1/2[F̂n(t) − Fn(t)]
d→ B(t) ,

where B(t) has the same limiting normal distribution N(0, F0(t)[1−F0(t)]) that
arose when studying the limiting behavior (14.3) of the empirical process Bn(t)
(defined in 14.2) under F0. Hence, under Fn, (14.10) implies that

n1/2[F̂n(t) − F0(t)]
d→ B(t) + d(t) ∼ N (d(t), F0(t)[1 − F0(t)]) .

Similarly, for any fixed t1, . . . , tk, under Fn,

n1/2[F̂n(t1) − F0(t1), . . . , F̂n(tk) − F0(tk)]
d→ [B(t1) + d(t1), . . . , B(tk) + d(tk)] .

By the Continuous Mapping Theorem, it then follows that, under Fn

max
1,...,k

n1/2|F̂n(ti) − F0(ti)| d→ max
1,...,k

|B(ti) + d(ti)| . (14.11)

This result suggests that, under Fn,

sup
t

n1/2|F̂n(t) − F0(t)| d→ sup
t

|B(t) + d(t)| ,

where B(t) is the Brownian Bridge process which was introduced at the beginning
of this section. This suggested result does in fact hold, and so the limiting power
of the Kolmogorov-Smirnov test against Fn can be expressed as

P{sup
t

|B(t) + d(t)| > s1−α} . (14.12)

The evaluation of this expression involves so-called general boundary-crossing
probabilities and is beyond the present treatment; see Siegmund (1986) and the
references given in Shorack and Wellner (1986), Section 4.2. Approximations to
this limiting power are also obtained in Hájek, Sidák and Sen (1999), Section 7.4.

The results in this section show that the limiting power of the Kolmogorov-
Smirnov test against alternatives Fn satisfying n1/2dK(Fn, F0) → δ is 0 or 1
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unless δ is finite and positive. Moreover, the result (14.12) can be used to show
that typically, the limiting power is strictly between α and 1. Surprisingly, and
in distinction to the typical parametric situation, the limiting power can be α
or 1 against a sequence of alternatives Fn satisfying n1/2dK(Fn, F0) → δ even if
0 < δ < ∞; for a construction, see Problem 14.6.

14.2.2 Extensions of the Kolmogorov-Smirnov Test

The basis of the Kolmogorov-Smirnov test is a measure of discrepancy between
the hypothesized distribution function F0 and the empirical (cumulative) distri-
bution function F̂n. Any such statistic is called an EDF statistic. In particular,
if d is a metric on the space of distribution functions, any statistic of the form
d(F̂n, F0) is an EDF statistic. with the choice d = dK corresponding to the
Kolmogorov-Smirnov statistic.

A second class of EDF statistics is given by the Cramér-von Mises family of
statistics

Vn = n

∫ ∞

−∞
[F̂n(x) − F0(x)]2ψ(x)dF0(x) .

Taking ψ(x) = 1 yields the Cramér-von Mises statistic, while

ψ(x) = {F0(x)[1 − F0(x)]}−1

yields the Anderson-Darling statistic. Both choices will be studied in Section 14.5.
Tests based on EDF statistics can be used to test composite null hypothesis.

For example, suppose it is desired to test whether the underlying c.d.f. is Fθ for
some θ lying in a parameter space Θ0, and that θ̂n is some reasonable estimator
of θ. Then, an EDF test statistic is defined by some measure of discrepancy
between F̂n and Fθ̂n

. For example, for testing normality with unspecified mean

µ and variance σ2, a Kolmogorov-Smirnov test statistic is given by

sup
x

|F̂n(x) − Φ

(
x − X̄n

σ̂n

)
| , (14.13)

where Φ(·) is the standard normal c.d.f. and (X̄n, σ̂n) is the MLE for (µ, σ)
under the normal model. It is easy to see that, under the null hypothesis, the
distribution of (14.13) does not depend on (µ, σ) (Problem 14.9), and critical
values can be approximated by simulation. Many other tests have been proposed
to test for normality; see D’Agostino and Stephens (1986).

Unfortunately, for testing general parametric submodels indexed by θ, the
asymptotic null distribution of an EDF statistic with estimated parameters de-
pends on θ, which limits their use. For discussion and references to the literature
of this problem, see D’Agostino and Stephens (1986) and De Wet and Randles
(1987). An alternative approach based on the bootstrap is given in Beran (1986)
and Romano (1988); see Example 15.6.5.

EDF tests can be extended to the case where the observations are not real-
valued. Suppose X1, . . . , Xn are i.i.d. P (on some arbitrary space). The natural
extension of the empirical c.d.f. is the empirical measure, defined by

P̂n(E) =
1
n

n∑

i=1

I{Xi ∈ E} .



590 14. Testing Goodness of Fit

Then, EDF test statistics can be constructed by some measure of discrepancy
between P̂n and a hypothesized P0 (or Pθ̂n

in the composite null hypothesis
case). See Shorack and Wellner (1986), who also discuss the two-sample problem
of comparing two samples by a measure of discrepancy between the empirical
c.d.f.s of the samples.

14.3 Pearson’s Chi-squared Statistic

14.3.1 Simple Null Hypothesis

In this section, we return to the simple goodness of fit problem for categorical
data that was briefly considered in Example 12.4.6. As before, we are dealing
with a sequence of n independent trials, each resulting in one of k + 1 possible
outcomes named 1, . . . , k + 1. The jth outcome occurs with probability pj on
any given trial, so that

∑k+1
j=1 pj = 1. Let Yj be the number of trials resulting in

outcome j. The joint distribution of (Y1, . . . , Yk+1) is the multinomial distribution

P{Y1 = y1, . . . , Yk+1 = yk+1} =
n!

y1! · · · yk+1!
py1
1 · · · pyk+1

k+1 , (14.14)

with
∑k+1

j=1 yj = n. The parameter space Ω is

Ω = {(p1, . . . , pk) ∈ RI k : pi ≥ 0,
k∑

j=1

pj ≤ 1} (14.15)

since pk+1 = 1 −
∑k

j=1 pj .
Consider testing the simple null hypothesis pj = πj for j = 1, . . . , k+1 against

the alternatives pj += πj for some j. It will be assumed that π1, . . . , πk is an
interior point of Ω.

A standard test, proposed by Pearson (1900), rejects for large values of
Pearson’s Chi-squared statistic, given by

Qn =
k+1∑

j=1

(Yj − nπj)
2

nπj
. (14.16)

This test was already introduced in Example 12.4.6 as an approximation to the
likelihood ratio test, and it was shown that the limiting null distribution of Qn

as n → ∞ is the Chi-squared distribution with k degrees of freedom. Below,
we will give a direct argument of this result in Theorem 14.3.1. Thus, if ck,1−α

is the 1 − α quantile of χ2
k, then the test that rejects when Qn > ck,1−α is

asymptotically level α. The accuracy of the Chi-squared approximation to the
exact null distribution of the test statistic is discussed for example by Radlow
and Alf (1975); for more accurate approximations in this and related problems,
see McCullagh (1985, 1986) and the literature cited there.

Consider next a fixed alternative

(p1, . . . , pk+1) += (π1, . . . , πk+1) .



14.3. Pearson’s Chi-squared Statistic 591

If, for some j, pj += πj , then

Qn ≥ n(
Yj

n
− πj)

2 P→ ∞

since Yj/n
P→ pj , by the law of large numbers. Hence, the power against such an

alternative tends to one.
As in Example 11.2.5, a more discriminating result is obtained by considering

local alternatives p(n)
j of the form

p(n)
j = πj + n−1/2hj ,

where
∑k+1

j=1 hj = 0. We shall now show that, against such an alternative
sequence, the limiting power is nondegenerate.

Theorem 14.3.1 Assume the above multinomial setup.

(i) Under the null hypothesis H: pj = πj for j = 1, . . . , k + 1, Qn
d→ χ2

k, the
Chi-squared distribution with k degrees of freedom.
(ii) Under the alternative hypothesis (sequence) K: p(n)

j = πj + n−1/2hj where
∑k+1

j=1 hj = 0, Qn
d→ χ2

k(λ), the noncentral Chi-squared distribution with k degrees
of freedom and noncentrality parameter

λ =
k+1∑

j=1

h2
j

πj
. (14.17)

(iii) The power of the χ2 test based on Qn against the alternatives in (ii) with
not all the hj equal to 0 tends to a limit strictly greater than α and less than 1.
This holds if the test is carried out using an exact level α critical value, or any
critical value sequence tending to ck,1−α in probability (such as ck,1−α itself).

Proof. The proof of (i) is an application of the multivariate CLT followed by
the continuous mapping theorem. Let Vn be the k × 1 vector defined by

V T
n = n1/2(

Y1

n
− π1, . . . ,

Yk

n
− πk) . (14.18)

By the multivariate CLT, Vn
d→ N(0, Σ), where the k × k covariance matrix Σ

has (i, j) entry (Problem 14.12 (i))

σi,j =

{
πi(1 − πi) if j = i
−πiπj otherwise.

(14.19)

It can be checked that Σ has inverse Σ−1 = A, where A has (i, j) entry given by
(Problem 14.12 (ii))

ai,j =

{
1
πi

+ 1
πk+1

if j = i
1

πk+1
otherwise.

(14.20)

Hence, A1/2Vn
d→ N(0, Ik), where Ik is the k × k identity matrix. By the

Continuous Mapping Theorem 11.2.13,

(A1/2Vn)T (A1/2Vn)
d→ χ2

k .
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But, the left hand side is V T
n AVn, which in turn is equal to

n
k∑

j=1

1
πj

(
Yj

n
− πj)

2 +
n

πk+1

k∑

i=1

k∑

j=1

(
Yi

n
− πi)(

Yj

n
− πj) .

The last term reduces to

n[
k∑

j=1

(
Yj

n
− πj)]

2/πk+1 = n(
Yk+1

n
− πk+1)

2/πk+1 ,

where, in the last equality, we have used
∑k

j=1 Yj = n − Yk+1 and
∑k

j=1 πj =

1 − πk+1. Thus, V T
n AVn = Qn.

The proof of (ii) is similar. First, note that

V T
n = n1/2(

Y1

n
− p(n)

1 , . . . ,
Yk

n
− p(n)

k ) + (h1, . . . , hk) .

It follows from the Cramér-Wold device and the Berry-Esseen Theorem (Problem
14.13) that, under the alternative sequence,

Vn
d→ N(h, Σ) . (14.21)

Therefore,

A1/2Vn
d→ N(A1/2h, Ik)

and so

(A1/2Vn)T (A1/2Vn)
d→ χ2

k(λ) ,

where

λ = (A1/2h)T (A1/2h) = hT Ah ;

simple algebra shows that hT Ah agrees with the expression (14.17) for λ and the
proof of (ii) follows.

The proof of (iii) is left as an exercise (Problem 14.15).

We are now in a position to prove an optimality result for Pearson’s Chi-
squared test in the multinomial goodness of fit problem. The problem is to test
the null hypothesis p = π, where π is the vector with jth component πj . The
goal is to show Pearson’s Chi-squared test is asymptotically maximin over an
appropriate (shrinking) set of alternatives p which tend to π at rate n−1/2. First,
note that the Information matrix I(p) with (i, j) entry ai,j is given by

ai,j =

{
1
pi

+ 1
pk+1

if j = i
1

pk+1
otherwise.

(14.22)

(Problem 14.14). Let hT = (h1, . . . , hk) and set hk+1 = −
∑k

i=1 hi so that∑k+1
i=1 hi = 0. Then,

|I1/2(π)h|2 =
k+1∑

i=1

h2
i

πi
.
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Theorem 14.3.2 Assume the above multinomial setup.
(i) For any test sequence φn such that Eπ(φn) → α,

lim sup
n→∞

inf{Eπ+hn−1/2(φn) :
k+1∑

i=1

h2
i

πi
≥ b2, π + hn−1/2 ∈ Ω}

≤ P{χ2
k(b2) > ck,1−α} . (14.23)

(ii) Pearson’s Chi-squared test φ∗
n, which rejects when

k+1∑

i=1

(Yi − nπi)
2

nπi
> ck,1−α ,

is asymptotically maximin in the sense that the inequality in (14.23) is an equality
when φn = φ∗

n. Thus, φ∗
n maximizes

lim
n

inf{Eπ+hn−1/2(φn) :
k+1∑

i=1

h2
i

πi
≥ b2, π + hn−1/2 ∈ Ω}

among all tests with asymptotic level α.

Proof. Theorem 13.5.4 immediately implies (i). To prove (ii), assume the op-
posite. Let R denote the right side of (14.23). Then, there exists a sequence of

alternatives h(n) (with ith component denoted h(n)
i ) satisfying

k+1∑

i=1

[h(n)
i ]2

πi
≥ b2,

k+1∑

i=1

h(n)
i = 0

such that

Eπ+h(n)n−1/2(φ
∗
n) → 9 ,

and 9 is strictly less than R. Since

k+1∑

i=1

[h(n)
i ]2

πi
≥ b2,

we cannot have h(n)
i → 0 for every i.

We also cannot have [h(n)
i ]2 → ∞ for any i, for then

Eπ+h(n)n−1/2(φ
∗
n) → 1 ,

which would be a contradiction since R < 1. To see why this expectation would
tend to 1, suppose h(n)

i → ∞ (and a similar argument holds if h(n)
i → −∞).

Then,

Eπ+h(n)n−1/2(φ
∗
n) ≥ Pπ+h(n)n−1/2

{
(Yi − nπi)

2

nπi
> ck,1−α

}

> Pπ+h(n)n−1/2

{
n1/2(

Yi

n
− πi) > c1/2

k,1−α

}

= Pπ+h(n)n−1/2

{
n1/2

[
Yi

n
− (πi + h(n)

i n−1/2)

]
+ h(n)

i > c1/2
k,1−α

}
. (14.24)
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But, by Chebyshev’s inequality,

n1/2

[
Yi

n
− (πi + h(n)

i n−1/2)

]

is bounded in probability, since it has mean 0 and variance bounded by one.
Hence, (14.24) tends to one and so

Eπ+h(n)n−1/2(φ
∗
n) → 1 .

The same conclusion holds along any subsequence nk satisfying h(nk)
i → ∞.

Thus, we must have h(n)
i = 1 for every i. By passing to subsequences which

converge, assume

h(n)
i → h(∞)

i < ∞ , and λ ≡
k+1∑

i=1

[h(∞)
i ]2

πi
≥ b2 .

The limiting power was obtained in Theorem (14.3.1) with h(n)
i = hi fixed, but

the argument applies with obvious modifications to sequences that converge;
moreover, this limiting power is

P{χ2
k(λ) > ck,1−α} ≥ P{χ2

k(b2) > ck,1−α} ,

since the family of Chi-squared distributions has monotone likelihood ratio. This
again yields a contradiction. The same conclusion holds for any subsequence,
because we can apply the argument to further subsequences where h(n)

i converges
along the subsubsequences.

The above result states that the Chi-squared test is asymptotically maximin for
the multinomial goodness of fit problem. The same result holds for the likelihood
ratio test (Problem 14.16). Moreover, the above argument shows that the worst
case power over alternatives π + hn−1/2 with

k∑

i=1

h2
i /πi ≥ b2

occurs (asymptotically) when
∑k

i=1 h2
i /πi = b2.

14.3.2 Chi-squared Test of Uniformity

So far, we have been concerned with testing the parameters of a multinomial
model. Let us now return to the problem stated at the beginning of Section
14.2, where X1, . . . , Xn are i.i.d. real-valued observations with c.d.f. F , and the
problem is that of testing the null hypothesis H that F = F0, where F0(t) = t
is the uniform c.d.f. on (0, 1). To reduce this problem of goodness of fit to that
of testing a multinomial hypothesis, fix a positive integer k and divide the unit
interval into k + 1 subintervals of length 1/(k + 1); for j = 1, . . . , k + 1, let Yj be
the number of Xi observations that fall in the interval Ik,j defined by

Ik,j = [(j − 1)/(k + 1), j/(k + 1)) .

Under the null hypothesis, the joint distribution of (Y1, . . . , Yk+1) is multinomial
based on n trials and equal class probabilities of 1/(k + 1). So, one can test H
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by using the Chi-squared test which rejects for large values of

k+1∑

j=1

(Yj − n
k+1 )2

n
k+1

.

It follows that, for fixed k, the Chi-squared test is consistent against any al-
ternative distribution F which does not assign equal probability to all intervals
Ik,j .

Next, consider a sequence of alternative densities fn of the form

fn(x) = 1 + bnu(x) , (14.25)

where u satisfies
∫ 1

0
u(x)dx = 0 and

∫
u2(x)dx < ∞. Then, fn assigns probability

∫

Ik,j

[1 + bnu(x)]dx =
1

k + 1
+ bn

∫

Ik,j

u(x)dx

to Ik,j . By Theorem 14.3.1 (ii), with k fixed and bn = hn−1/2, the limiting power
of the Chi-squared test is given by

P{χ2
k(λk) > ck,1−α} ,

where

λk = h2(k + 1)
k+1∑

j=1

[∫

Ik,j

u(x)dx

]2

.

Note that, if
∫

Ik,j

u(x)dx

is not zero for at least one j, then the noncentrality parameter λk is positive.
Also, if u is continuous except at most a finite number of points, then

λk → λ∞ ≡ h2
∫ 1

0

u2(x)dx as k → ∞ . (14.26)

Note that for any fixed k, λk can be 0 even if λ∞ > 0. Indeed, the Chi-squared
test has power equal to the size of the test against any distribution that has mass
1/(k + 1) on each subintervals, and so for fixed k, the Chi-squared test is not
consistent against all alternatives.

Therefore, it is tempting to allow k = kn to increase with n in order to obtain
power against an even broader range of alternatives. On the other hand, if λk

approaches λ∞ quite fast, then it would be undesirable to let kn increase too
quickly. To illustrate this point, consider the following example. Let u0(x) = 1
for x ≤ 1/2 and u0(x) = −1 for x > 1/2. Then, λk = λ∞ = h2 for all k odd. If
k = 1, then the limiting power of the Chi-squared test against fn given by

fn(x) = 1 + hn−1/2u0(x)

is

P{χ2
1(h

2) > c1,1−α} .

If instead, k = 2j + 1 with j ≥ 1, the limiting power is exactly

P{χ2
k(h2) > ck,1−α} .
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Notice that the noncentrality parameter is the same for all odd k. But, for fixed
h, this probability is decreasing in k its limiting value is α as k → ∞, as shown
by the following lemma.

Lemma 14.3.1 Let M(k, h) be defined as

M(k, h) = P{χ2
k(h2) > ck,1−α} , (14.27)

where χ2
k(h2) denotes a noncentral Chi-squared variable with k degrees of freedom

and noncentrality parameter h2.
(i) For fixed h, M(k, h) is nonincreasing in k, and is strictly decreasing if h += 0.
(ii) If hk → h for some finite h, M(k, hk) → α as k → ∞. In particular,
M(k, h) → α as k → ∞.
(iii) If (2k)−1/2h2

k → c as k → ∞, then

M(k, hk) → 1 − Φ(z1−α − c) .

Proof. The proof of (i) is left as an exercise (Problem 14.17). To prove (ii), let
Z1, Z2, . . . denote i.i.d. standard normal variables. By the Central Limit Theorem,

(2k)−1/2(
k∑

i=1

Z2
i − k)

d→ N(0, 1) , (14.28)

which implies

(2k)−1/2(ck,1−α − k) → z1−α (14.29)

as k → ∞. Of course, the result (14.28) holds even if the i = 1 term is omitted
from the sum. Hence,

M(k, hk) = P{(Z1 + hk)2 +
k∑

i=2

Z2
i > ck,1−α}

= P{(2k)−1/2(Z1+hk)2+(2k)−1/2(
k∑

i=2

Z2
i −k) > (2k)−1/2(ck,1−α−k)} . (14.30)

By (14.29), the right side of the last expression tends to z1−α. Also, as k → ∞,

(2k)−1/2(Z1 + hk)2
P→ 0 .

By Slutsky’s Theorem, the left side of (14.30) tends in distribution to N(0, 1).
The result (ii) follows by another application of Slutsky’s Theorem. The proof of
(iii) is similar. The only difference is that the term

(2k)−1/2(Z1 + hk)2
P→ c

if (2k)−1/2h2
k → c.

Thus, the results in (i) and (ii) of Lemma 14.3.1 show that the choice k = 1 is
optimal for the situation with u = u0. The point is that increasing k too much
decreases the limiting power. Furthermore, if k is quite large, the limiting power
is approximately α. This latter conclusion applies to any alternative sequence of
the form (14.25) with bn = n−1/2; also see Problem 14.19.
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Mann and Wald (1942) considered the optimal choice of kn. In particular, let

dK(F, F0) = sup
t

|F (t) − t| .

Mann and Wald (1942) determined an optimal rate for kn which satisfies kn =
O(n2/5), and show that with such an optimal rate the limiting power is 1/2 > α
against a sequence of alternatives Fn satisfying n2/5dK(Fn, F0) → ∞. This result
on optimal rates is somewhat contradicted by the above analysis and other results
that indicate that the best choice of kn is rather small; see Stuart and Ord (1991,
Chapter 30).)

It is interesting to compare the results of Mann and Wald with the fact
that the Kolmogorov-Smirnov goodness of fit test has limiting power one if
n1/2dK(Fn, F0) → ∞, as shown in Theorem 14.2.2. It follows that the Kol-
mogorov Smirnov test (and this is also true of Cramér von-Mises test) is
asymptotically superior to the Chi-squared test in this case. However, it has been
pointed out that this superiority is connected with the choice of distance with
which one measures deviations from F0. If one replaces the Kolmogorov-Smirnov
distance with an L2 distance based on the integral of the squared difference
in densities (satisfying smoothness conditions), then the Chi-squared test can
asymptotically outperform the Kolmogorov-Smirnov test; see Ingster (1993). We
will later obtain further results, since Chi-squared tests can be viewed as a special
case of the more general class of Neyman smooth tests that will be studied in
Section 14.4.

14.3.3 Composite Null Hypothesis

Next, we consider the application of the Chi-squared test to composite hypothe-
ses. First, suppose data (Y1, . . . , Yk+1) has the multinomial distribution (14.14),
where Yj is the number of trials resulting in outcome j and pj is the probability
of the jth outcome for any given trial. The full model allows the pj to vary freely,
subject to their being nonnegative and summing to one.

Consider testing the null hypothesis that the pj are of the form

pj = fj(β1, . . . , βq) , j = 1, . . . , k + 1,

where the fj are known functions of β = (β1, . . . , βq), and β varies in a subset
of RI q for some q < k. For testing the simple null hypothesis that pj = fj(β),
1 ≤ j ≤ k, for a fixed value of β, the Chi-squared test is based on the statistic

Qn(β) =
k+1∑

j=1

(Yj − nfj(β))2

nfj(β)
. (14.31)

If β is unspecified, Fisher (1928b) suggested the test statistic Qn(β̃n), where β̃n

is a MLE of β under the null hypothesis submodel (or any efficient estimator).
Following Fisher, Neyman (1949) recommends Qn(β̃n), where β̃n is chosen to
minimize Qn(β) (in which case β̃n is called a minimum Chi-squared estimator).
Not surprisingly, it is typically the case that, under the null hypothesis,

Qn(β̂n) − Qn(β̃n)
P→ 0 .
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Example 14.3.1 (Fisher linkage model) Fisher (1928b) postulated a genet-
ics model with 4 possible types of offspring, whose probabilities are of the
form

(p1, p2, p3, p4) =
1
4
(2 + β, 1 − β, 1 − β, β)

for some β ∈ (0, 1). In the above notation, f1(β) = 2 + β, f2(β) = f3(β) = 1− β,
and f4(β) = β. (The parameter β depends on the linkage between the two genetic
factors under consideration.) To test the validity of such a model, a Chi-squared
test can be employed. To estimate β, it is easily checked (Problem 14.23) that
the likelihood equation is

Y1

2 + β
− (Y2 + Y3)

1 − β
+

Y4

β
= 0 , (14.32)

which reduces to a quadratic equation, and the MLE β̂n is the root of this
equation that lies in [0, 1]. The resulting test statistic is then Qn(β̂n).

Just as in the case of simple null hypothesis, if the null hypothesis is true, then
(Problem 14.20)

2 log(Rn) − Qn(β̂n)
P→ 0 . (14.33)

Thus, under the assumptions of Theorem 12.4.2 (iii), it follows that, under the
null hypothesis,

Qn(β̂n)
d→ χ2

k−q . (14.34)

As in the case of a simple null hypothesis, the problem of testing a composite
hypothesis of goodness of fit can be reduced to the multinomial case. Suppose
X1, . . . , Xn are i.i.d. according to a model {Pθ, θ ∈ Ω}, where Ω ⊂ RI k. The null
hypothesis specifies θ = f(β) for some fixed function f from RI q to RI k. Now,
partition the range of the Xi into k + 1 sets E1, . . . , Ek+1, and let Pθ{Ei} be the
probability of Ei under θ. Let Yj denote the number of Xi falling in Ej and let

Qn(β) =
k+1∑

j=1

(Yj − nPf(β){Ei})2

nPf(β){Ei}
.

Then, a test can be based on Qn(β̂n), where β̂n is an estimator of β assuming
the null hypothesis submodel.

Just as in the case of a simple null hypothesis, the choice of k (and now also
of the sets Ei) is complex; note the references in the previous subsection.1 In
addition, a further complication arises, which is the choice of estimator β̂n. If the
estimator is an efficient likelihood estimator based on the likelihood of the catego-
rized data Y1, . . . , Yk+1, then we have returned to the setting of the multinomial
case considered at the beginning of this section, and the limiting distribution
of Qn(β̂n) is Chi-squared. On the other hand, one might also estimate β based
on the likelihood of the original sample X1, . . . , Xn. In this case, Chernoff and

1For randomly chosen partitions, see Chapter 2 of Greenwood and Nikulin (1996)
and Theorem 5.7.1 of Lehmann (1999). Data-based partitions occur, for example, when
the number of observations falling in any set is small and one then combines such sets.
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Lehmann (1954) showed that Qn(β̂n) need not be Chi-squared. For an example,
see Problem 14.24.

14.4 Neyman’s Smooth Tests

Suppose that X1, . . . , Xn are i.i.d. according to a probability distribution P on
some sample space S. Consider testing the simple null hypothesis P = P0, where
P0 is some fixed probability distribution on S. When S = RI , one possible test
is the Kolmogorov-Smirnov test, discussed in Section 14.2, which was seen to
be consistent in power against any fixed alternative, and uniformly consistent
against the large class of distributions F with dK(F, F0) > ∆ for any small ∆.
Even so, the Kolmogorov-Smirnov test can have poor power against local alter-
natives; see Problems 14.6 and 14.7. In fact, whenever the family of alternative
distributions is large, it is unlikely that there will exist a single test that will
perform uniformly well across against all of them, and certainly no UMP test
will exist. For a q.m.d. family indexed by a real-valued parameter, one can con-
struct AUMP tests, as discussed in Section 13.3. However, even if the family of
alternatives is q.m.d. and indexed by a parameter in RI 2, there exists no test that
is asymptotically uniformly optimal (Problem 14.25). Thus, one goal might be to
construct tests that perform well across a fairly broad range of alternatives. In
this spirit, Neyman (1937b) considered large parametric families of alternatives
and derived tests that asymptotically maximize minimum (and average) power
against these alternatives. Such tests will be described in this section.

Consider the parametric model of densities pθ(x) with respect to P0 given by

pθ(x) = Ck(θ) exp[
k∑

j=1

θjTj(x)] , (14.35)

where k is some positive integer so that θ ∈ RI k . Setting T0(x) = 1, the functions
T1, . . . , Tk are chosen so that T0, . . . , Tk is a set of orthonormal functions on
L2(P0), the space of functions that are square integrable with respect to P0; that
is

Cov0[Ti(X1), Tj(X1)] =

∫

S

Ti(x)Tj(x)dP0(x) = δi,j ,

where δi,j = 1 if i = j and δi,j = 0 if i += j. This implies E0(Tj) = 0 for
j = 1, . . . , k. The normalizing constant Ck(θ) is given by

Ck(θ) = {
∫

S

exp[
k∑

j=1

θjTj(x)]dP0(x)}−1 . (14.36)

Let Ωk denote the set of θ where the integral in (14.36) is finite so that pθ is a
proper density. We will also assume 0 is an interior point of Ωk, in which case
the family of densities constitutes a k-parameter exponential family of full rank.
The null hypothesis asserts θ = 0.

Example 14.4.1 (Testing uniformity using Legendre polynomials) As a
prototype, consider the goodness of fit problem of testing that X1, . . . , Xn are
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i.i.d. from the uniform distribution on [0, 1], so that S = [0, 1] and P0 is the
uniform distribution on [0, 1]. For this problem, Neyman (1937b) chose Tj(x) to
be a polynomial of degree j. Specifically, set T0(x) = 1, T1(x) =

√
3(2x − 1),

T2(x) =
√

5(6x2 − 6x + 1), T3(x) =
√

7(20x3 − 30x2 + 12x − 1), and so on, so
that Tj is constructed to be a polynomial of degree j such that it is orthogonal to
T0, . . . Tj−1, and its square integrates to one. The polynomials Tj are the so-called
normalized Legendre polynomials.

Returning to the general case, we next derive Neyman’s test as a special case of
Rao’s score test for testing θ = 0 in the parametric model. The family of densities
(14.35) is a k-parameter exponential family in natural form. By Example 12.2.6,
this family is q.m.d. at θ = θ0 = 0. By Theorem 12.2.2, the score vector at θ0 = 0
(12.73) is given by

ZT
n = n−1/2(

∂
∂θ1

log Ln(θ), . . . ,
∂

∂θk
log Ln(θ))

∣∣∣∣∣
θ=0

,

where Ln(θ) is the likelihood function

Ln(θ) = Cn
k (θ) exp[

n∑

i=1

k∑

j=1

θjTj(Xi)] .

Hence,

∂
∂θm

log[Ln(θ)] = n
∂

∂θm
log[Ck(θ)] +

n∑

i=1

Tm(Xi) .

But, by Problem 2.16,

− ∂
∂θm

log[Ck(θ)] = Eθ[Tm(Xi)] ,

which is 0 when θ = 0 (since we are assuming T0(x) = 1 and Tm is orthogonal to
T0). Hence, the score vector at θ0 reduces to

ZT
n = n−1/2

(
n∑

i=1

T1(Xi), . . . ,
n∑

i=1

Tk(Xi)

)
. (14.37)

By the orthogonality of the Ti, we have Cov[Ti(X1), Tj(X1)] = δi,j . Arguing
directly, the Multivariate Central Limit Theorem implies that, under θ = 0,

Zn
d→ N(0, Ik) ,

where Ik is the k × k identity matrix. Moreover, the Fisher Information at θ = 0
is I(0) = Ik. Therefore, Rao’s score test rejects for large values of

ZT
n I−1(0)Zn = ZT

n Zn =
k∑

j=1

Z2
n,j ,

where

Zn,j = n−1/2
n∑

i=1

Tj(Xi) . (14.38)
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Let ck,1−α be the 1−α quantile of the χ2-distribution with k degrees of freedom.
By the Continuous Mapping Theorem,

ZT
n Zn

d→ χ2
k ,

and so the test φ∗
n which rejects when ZT

n Zn > ck,1−α is asymptotically consistent
in level. The test φ∗

n will be referred to as Neyman’s smooth test. (Of course, one
can always replace ck,1−α by the exact 1 − α quantile of the finite sampling null
distribution of ZT

n Zn, or the null distribution can be simulated.)

Example 14.4.2 (Continuation of Example 14.4.1) In this case,

Z2
n,1 = [n−1/2

n∑

i=1

√
3(2Xi − 1)]2 = 12[n(X̄n − 1

2
)2] . (14.39)

Thus, Z2
n,1 is large when the sample mean differs 1/2, from the hypothesized

mean. Similarly, Z2
n,j is large when the first j sample moments differ greatly

from those of U(0, 1).

Example 14.4.3 (The χ2 test) As in Section 14.3, consider the goodness of fit
problem for testing a multinomial distribution with k+1 categories. For concrete-
ness, suppose X1, . . . , Xn are i.i.d., each Xi taking the value ej with probability
pj , where ej is the vector with 1 in the jth component and 0 in the remaining k
components. Then, the chi-squared statistic Qn given by (14.16) can be viewed
as a Neyman smooth test. Recall Vn given by (14.18) and the matrix A given
by (14.20). Now, let Zn be the vector A1/2Vn, so that Qn = ZT

n Zn. Further-
more, the probability mass function of Xi can be written in the form (14.35)
with Tj satisfying n−1/2 ∑

i Tj(Xi) equal to the jth component of Zn (Prob-
lem 14.26). (Note, however, that unlike the Legendre polynomials of Example
14.4.1, the functions Tj depend on k, so that we really have a triangular array of
orthonormal functions.)

14.4.1 Fixed k Asymptotics

Assuming the model (14.35) holds, we can apply Corollary 12.4.1 to conclude
that, under h/n1/2,

ZT
n Zn

d→ χ2
k(|h|2) . (14.40)

We now apply Theorems 13.5.4 and 13.5.5 in order to obtain an asymptotic
maximin property for φ∗

n.

Theorem 14.4.1 Assume the model (14.35) and assume θ = 0 is an interior
point of Ωk. Consider the problem of testing θ = 0.
(i) For any sequence of tests φn such that E0(φn) → α and any b and B satisfying
0 < b < B ≤ ∞,

lim sup
n→∞

inf{Ehn−1/2(φn) : b ≤ |h| ≤ B} ≤ P{χ2
k(b2) > ck,1−α} , (14.41)

where χ2
k(b2) is noncentral Chi-squared with k degrees of freedom and noncentral-

ity parameter b2.
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(ii) Neyman’s smooth test φ∗
n is asymptotically maximin in the sense that, for

any 0 < b < B < ∞,

inf{Ehn−1/2(φ
∗
n) : b ≤ |h| ≤ B} → P{χ2

k(b2) > ck,1−α} . (14.42)

Thus, for any 0 < b < B < ∞, φ∗
n maximizes

lim
n

inf{Ehn−1/2(φn) : b ≤ |h| ≤ B}

among all tests with asymptotic level α.

Proof. Theorem 13.5.4 implies (14.41) and Theorem 13.5.5 implies (14.42).

The result (14.41) holds if B = ∞ (since the inf over a larger set is bounded
above by the inf over a smaller set). In many cases, one can replace B by ∞
in (14.42) as well. For example, suppose V arθ[Tj(X1)] is a uniformly bounded
function of θ. Then, (14.42) holds if B = ∞ (Problem 14.27). This condition is
satisfied, for example, if the Tj(x) are uniformly bounded functions of x, as they
are in Neyman’s choice of the Legendre polynomials.

Theorem 14.4.1 states an asymptotic maximin property over alternatives θ that
are O(n−1/2) from θ = 0. Of course, Neyman’s smooth test is also consistent in
power against any fixed θ += 0. Actually, it is consistent in power against a broad
range of alternatives, not just alternatives in the parametric model (14.35).

To make this statement more precise, first consider Neyman’s original con-
struction with k = 1 for testing the hypothesis of uniformity, as described in
Example 14.4.1. Then, the test statistic reduces to (14.39). The test statistic is
designed to have power against distributions with mean not equal to 1/2 and it
serves this purpose. For, under an alternative distribution P on (0, 1) with mean
µ(P ) += 1/2, the power of the test which rejects when Z2

n,1 > c1,1−α tends to 1.
To see why, note that by the Weak Law of Large Numbers,

(X̄n − 1
2
)2

P→ (µ(P ) − 1
2
)2 > 0 ,

and so

12n(X̄n − 1
2
)2

P→ ∞ .

Therefore, by Slutsky’s Theorem,

P{12n(X̄n − 1
2
)2 > c1,1−α} → 1 .

The point is that the test will be consistent against any alternative P with mean
µ(P ) += 1/2, even if P is not a member of the parametric model (14.35).

Similarly, for k > 1, Neyman’s test will be consistent against any distribution
P , as long as the first k moments of P are not identical to the first k moments
of the uniform distribution (Problem 14.28). Thus, Neyman’s test for testing
P = P0 has good power across a broader range of distributions than just the
original parametric model (14.35).

Example 14.4.4 (Limiting Power Against a Contiguous Sequence) Consider
a sequence of alternative densities of the form

fn(x) = 1 + bnu(x) , (14.43)
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where bn → 0 and u satisfies
∫ 1

0

u(x)dx = 0 .

Assume sup |u(x)| < ∞, so that fn is a density for bn small enough. If we set
bn = hn−1/2, we can calculate the limiting power of Neyman’s smooth test against
fn as follows. The family of densities 1 + θu(x) is q.m.d. at θ = 0 (Problem 12.6)
with score function n−1/2 ∑

i u(Xi). If Pn denotes the probability distribution

with density fn with bn = hn−1/2, then P n
n is contiguous to P n

0 . Under θ =
0, (ZT

n , n−1/2u(Xi)) is asymptotically multivariate normal. By the multivariate
generalization of Corollary 12.3.2 obtained in Problem 12.33, under fn with bn =
hn−1/2,

ZT
n

d→ N(c, Ik) ,

where c is the vector with jth component given by

cj = Cov(Zn,j , hn−1/2
∑

i

u(Xi)) = h〈Tj , u〉 ,

and

〈Tj , u〉 =

∫ 1

0

Tj(x)u(x)dx .

Hence, under fn,

ZT
n Zn

d→ χ2
k(δ2) , (14.44)

where

δ2 = h2
k∑

j=1

〈Tj , u〉2 .

Thus, the limiting power is M(k, δ2), with M(k, h) defined by (14.27). Note that
if u is represented as u(x) =

∑k
j=1 γjTj(x), then by Parseval’s identity (see A.7),

k∑

j=1

〈Tj , u〉2 =

∫ 1

0

u2(x)dx .

Thus, Neyman’s test has limiting power exceeding α against alternatives of the
form (14.43) with bn = n−1/2 if u is in the span of T1, . . . , Tk.

14.4.2 Neyman’s Smooth Tests With Large k

In the previous section, Neyman’s smooth test was shown to be an asymptotically
maximin procedure for the parametric model (14.35) with k fixed. Obviously, the
larger the value of k, the greater the number of orthogonal directions used to
construct the test statistic. For fixed k, consistency of Neyman’s smooth test holds
for a restricted class of alternatives. For example, Neyman’s construction results
in a test of uniformity that is consistent in power against any distribution that
does not have the same first k moments as that of the uniform distribution. This
suggests the possibility that, if we let k increase with n, we can obtain consistency
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against all distributions because on the unit interval, a distribution is uniquely
determined by its moments; see Feller (1971), Section VII.3. To investigate this
possibility, we now develop some basic properties of the test based on

Sn,kn =
kn∑

j=1

Z2
n,j , (14.45)

where kn is some fixed sequence satisfying kn → ∞.
For fixed k, we saw that, under H0,

k∑

j=1

Z2
n,j

d→ χ2
k .

If k is large, the Chi-squared distribution with k degrees of freedom is
approximately N(k, 2k), and so it is reasonable to expect that, under H0,

∑kn
j=1 Z2

n,j − kn

(2kn)1/2

d→ N(0, 1) .

In order to prove this convergence, we need the following lemma, due to Bentkus
(2003), which can be viewed as a multivariate version of the Berry-Esseen Theo-
rem. In the statement of the result, let Ek denote the class of Euclidean balls in
RI k; that is, the family of sets {y ∈ RI k : |x− y| < r} as x ∈ RI k and r > 0 vary.
Also, let Ck denote the class of convex sets in RI k.

Lemma 14.4.1 Let Y1, Y2, . . . , Yn be i.i.d. random vectors in RI k with mean
vector 0 and k × k identity covariance matrix Ik. Let β = E(|Yi|3), and let Z(k)

denote a multivariate normal random vector with mean 0 and covariance matrix
Ik. Then,

sup
B∈Ck

∣∣∣∣∣P{n−1/2
n∑

i=1

Yi ∈ B}− P{Z(k) ∈ B}

∣∣∣∣∣ ≤ 400k1/4βn−1/2 .

If Ck is replaced by Ek, then the right side can be replaced by the upper bound
Cβn−1/2, where C is an absolute constant (independent of k). Hence,

sup
t∈ RI

∣∣∣∣∣P{|n−1/2
n∑

i=1

Yi|2 ≤ t}− P{|Z(k)|2 ≤ t}

∣∣∣∣∣ ≤ Cβn−1/2 .

We now apply the lemma with

Yi = (T1(Xi), . . . , Tk(Xi)) (14.46)

so that

Sn,k =

∣∣∣∣∣n
−1/2

n∑

i=1

Yi

∣∣∣∣∣

2

.

Note that

β = E
(
[T 2

1 (Xi) + · · · + T 2
k (Xi)]

3/2
)

.
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By Minkowski’s Inequality (Problem 14.30),

β2/3 ≤
k∑

j=1

E[|Tj(Xi)|3]2/3 . (14.47)

If

sup
j

E[|Tj(Xi)|3] ≤ B < ∞ ,

then, β ≤ Bk3/2. Hence, the following is true.

Theorem 14.4.2 Consider Sn,kn given by (14.45), where

Zn,j = n−1/2
n∑

i=1

Tj(Xi) ,

and let T0 = 1, and T0, T1, T2, . . . be an infinite sequence of orthonormal functions
on L2(P0). Assume

sup
j

EP0 [|Tj(Xi)|3] = B < ∞ . (14.48)

If kn → ∞ and k3
n/n → 0, then, under P = P0,

Sn,kn − kn

(2kn)1/2

d→ N(0, 1) .

Proof. Apply the lemma with Yi given by (14.46). Then,
∣∣∣P{Sn,kn ≤ t(2kn)1/2 + kn}− P{|Z(kn |2 ≤ t(2kn)1/2 + kn}

∣∣∣

is bounded above by

(Bkn)3/2n−1/2 → 0 .

But, by the Central Limit Theorem,

P{|Z(kn)|2 ≤ t(2kn)1/2 + kn} → Φ(t) , (14.49)

where Φ is the standard normal c.d.f., and the result follows.
Under the assumptions of Theorem 14.4.2, the sequence of tests that rejects

when

Sn,kn − kn

(2kn)1/2
> z1−α (14.50)

is asymptotically level α.

Example 14.4.5 Let

Tj(x) =
√

2 cos(πjx) .

Such a choice arises in the construction of the Cramér-von Mises test, which will
be discussed further in Example 14.5.1. Under the null hypothesis P = P0 =
U(0, 1),

EP0 [|Tj(Xi)|3] ≤
√

2EP0 [T
2
j (Xi)] =

√
2 .

Hence, the condition (14.48) is satisfied.
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Next, we consider the power of (14.50) (with kn → ∞) against a fixed al-
ternative. As in Theorem 14.5.1, suppose P is any probability distribution such
that

EP [Tj(X1)] += EP0 [Tj(X1)]

for some j. Then, for such a j,

Z2
n,j

n
=

[
1
n

n∑

i=1

Tj(Xi)

]2

P→ {EP [Tj(X1)]}2 > 0 ,

by the Weak Law of Large Numbers. Hence,

Sn,kn − kn

(2kn)1/2
≥

Z2
n,j − kn

(2kn)1/2
=

Z2
n,j

n − kn
n

(2kn)1/2

n

P→ ∞

if kn/n → 0. Hence, the test (14.50) (or the test that rejects if Sn,kn > ckn,1−α)
satisfies

P{Sn,kn − kn

(2kn)1/2
> z1−α} ≥ P{

Z2
n,j − kn

(2kn)1/2
> z1−α} → 1

and is therefore pointwise consistent in power against P .
Note that the condition kn/n → 0 is a sufficient condition to ensure the test

statistic [Sn,kn − kn]/(2kn)1/2 tends to ∞ in probability under an alternative
P . The stronger condition k3

n/n → 0 is sufficient to show asymptotic normality
under the null hypothesis. These conditions can be weakened, but the message is
that one can obtain consistency against a broad family of distributions by letting
k increase with n.

Next, we discuss the limiting power of the test (14.50) against a local sequence
of alternatives. Suppose we consider alternatives of the form (14.35) used in
the construction of Neyman’s smooth tests. Specifically, consider the family of
densities indexed by θ1 ∈ RI given by

pθ1(x) = C1(θ1) exp[θ1T1(x)] .

Fix h > 0. For testing θ1 = 0 versus θ1 = hn−1/2 at level α, the limiting power
of an asymptotically most powerful test sequence is 1 − Φ(z1−α − h), by Lemma
13.3.1. This optimal limiting power exceeds α for h > 0 and approaches 1 as
h → ∞.

Now, consider the limiting power of Neyman’s smooth test with any fixed k
against the same sequence of alternatives. By (14.40), if k is fixed, the limiting
power against hn−1/2 of the test that rejects when Sn,k > ck,1−α is M(k, h) given
by (14.27). Lemma 14.3.1 implies that, for large k, the power of the test that
rejects for large Sn,k is nearly α, against the sequence of alternatives defined by
θ1 = hn−1/2. In other words, Neyman’s smooth test has poor power against such a
sequence of alternatives, even though this family of alternatives is included in the
original parametric model (14.35) leading to the derivation of the Neyman smooth
tests. Moreover, one can show (Problem 14.32) that, assuming the conditions of
Theorem 14.4.2, under θ1 = hn−1/2,

[Sn,kn − kn]/(2kn)1/2 d→ N(0, 1) (14.51)
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as n, kn → ∞. Thus, the limiting distribution of the normalized Sn,kn is the same
under θ1 = 0 as under the sequence θ1 = hn−1/2. Hence, the limiting power is α
against either sequence.

In order for the limiting power to be nontrivial against local alternatives, it
is necessary to consider alternatives that converge to H0 at a rate slower than
the usual parametric rate n−1/2. For example, let fn be defined as in (14.43),
but with bn not of the form hn−1/2. By (14.44), if k is fixed, under fn, Sn,k is
approximately distributed as χ2

k(δ2
k), where

δ2
k = nb2

n

k∑

j=1

〈Tj , u〉2 .

But,

χ2
k(δ2

k) − k

(2k)1/2

d→ N(µ, 1)

if δ2
k/(2k)1/2 → µ as k → ∞. Therefore, one might expect that, under fn,

Sn,kn − kn

(2kn)1/2

d→ N(µ, 1) (14.52)

if

nb2
n

∑kn
j=1〈Tj , u〉2

(2kn)1/2
→ µ .

Now, if T0, T1, T2, . . . form a complete orthonormal system for the space of square
integrable functions on (0, 1), then,

kn∑

j=1

〈Tj , u〉2 →
∫ 1

0

u2(x)dx .

Therefore, if we take bn = (2kn)1/4/n1/2, we expect that (14.52) holds, where

µ =

∫ 1

0

u2(x)dx .

In fact, such a result is proved in Eubank and LaRiccia (1992) in the case Tj(x) =√
2 cos(πjx) if k5

n/n2 → 0. The conclusion is that Neyman’s test with increasing
order kn has nonnegligible power against alternatives converging to the null at
rate k1/4

n /n1/2. This result suggests that kn should not increase too quickly.
Further theoretical results concerning Neyman’s smooth tests, especially in

regard to the choice of k, can be found in Eubank and LaRiccia (1992), Led-
wina (1994), Kallenberg and Ledwina (1995), Fan (1996) and Inglot and Ledwina
(1996). This growing literature includes simulation studies which show that Ney-
man’s smooth tests perform well across a broad range of alternatives and are
competitive with existing tests.

14.5 Weighted Quadratic Test Statistics

In the construction of Neyman’s smooth tests based on k, equal weight was given
to the first k directions determined by the orthonormal functions T1, T2, . . . ..
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Instead, one might consider modifying the test statistic so that different weights
are given to different directions; with such a modification, it becomes possible to
consider an infinite number of directions. Such weighted quadratic test statistics
are considered in this section.

Under the setup and notation of Section 14.4, consider the problem of testing
the simple null hypothesis H0 : P = P0. Let T0 = 1 and suppose T0, T1, , T2, . . .
is an infinite sequence of orthonormal functions on L2(P0). Let Zn,j be defined
by (14.38) and consider the test statistic

Wn =
∞∑

j=1

ajZ
2
n,j , (14.53)

where aj is a sequence of nonnegative numbers. Typically, we would choose aj

to decrease with j, so that less weight is given to the jth component making up
Wn. Note that Wn is only computable if only finitely many aj are nonzero, or -
as will be exemplified later - the infinite sum can be explicitly evaluated by an
alternative computable formula.

Let FWn denote the c.d.f. of Wn under P0, and set

wn,1−α = inf{x : FWn(x) ≥ 1 − α} .

The following result summarizes some basic properties of Wn.

Theorem 14.5.1 Assume aj ≥ 0 and
∑

j aj < ∞.
(i) Under H0, Wn is a well-defined random variable; that is, Wn < ∞ with
probability one.
(ii) Under H0,

Wn
d→ W =

∞∑

j=1

ajZ
2
j ,

where Z1, Z2, . . . are i.i.d. N(0, 1) random variables, and W has a continuous
distribution function FW which is strictly increasing on (0,∞).
(iii) Let w1−α denote the 1 − α quantile of the distribution of W , so that

FW (w1−α) = 1 − α .

Then, wn,1−α → w1−α.
(iv) Assume aj is such that aj > 0. Suppose P is any probability distribution such
that

EP [Tj(X1)] += EP0 [Tj(X1)] (14.54)

(where the expectation on the left side is assumed to exist). Then, the limiting
power of the test that rejects when Wn > wn(1 − α) against the alternative P is
one. Hence, if all the aj satisfy aj > 0, then the test is consistent in level against
any P which satisfies (14.54) for some j.

Proof. First, note that

0 ≤ Eθ0(Wn) =
∞∑

j=1

ajV arθ0(Zn,j) ≤
∞∑

j=1

ajEθ0T 2
j (X1) =

∞∑

j=1

aj < ∞ .
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Part (i) follows, since a nonnegative random variable with a finite mean is finite
with probability one. To prove (ii), first note that W is a well-defined random
variable since

E(W ) =
∞∑

j=1

aj < ∞ .

Now, let

W (k) =
k∑

j=1

ajZ
2
j .

Then, W (k) d→ W as k → ∞. Indeed,

0 ≤ W − W (k) =
∞∑

j=k+1

ajZ
2
j

P→ 0

since, by Markov’s Inequality (Problem 11.26), for δ > 0,

P{W − W (k) > δ} ≤ E(W − W (k))
δ

=

∑∞
j=k+1 aj

δ
→ 0

as k → ∞. Moreover, the distribution of W is continuous and strictly increasing
(Problem 14.33). To show that Wn converges in distribution to W , write

Wn = W (k)
n + R(k)

n ,

where

W (k)
n =

k∑

j=1

ajZ
2
n,j .

For any fixed k, the Multivariate Central Limit Theorem yields

(Zn,1, . . . , Zn,k)
d→ (Z1, . . . , Zk) .

By the Continuous Mapping Theorem,

P{Wn ≤ t} ≤ P{W (k)
n ≤ t} → P{W (k) ≤ t} .

Therefore, for any k,

lim sup
n

P{Wn ≤ t} ≤ P{W (k) ≤ t}

and so

lim sup
n

P{Wn ≤ t} ≤ lim
k→∞

P{W (k) ≤ t} = P{W ≤ t} . (14.55)

Similarly, for any δ > 0,

P{Wn ≤ t} ≥ P{Wn ≤ t, R(k)
n < δ} ≥ P{W (k)

n ≤ t − δ, R(k)
n < δ} .

Using the general inequality P (AB) ≥ P (A) − P (ABc) yields

P{Wn ≤ t} ≥ P{W (k)
n ≤ t − δ}− P{R(k)

n ≥ δ} .
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But, by Markov’s Inequality,

P{R(k)
n ≥ δ} ≤ δ−1E(R(k)

n ) ≤ δ−1
∞∑

j=k+1

aj .

Hence, for any δ and k,

P{Wn ≤ t} ≥ P{W (k)
n ≤ t − δ}− δ−1

∞∑

j=k+1

aj

and so

lim inf
n

P{Wn ≤ t} ≥ P{W (k) ≤ t − δ}− δ−1
∞∑

j=k+1

aj .

Now, let k → ∞ to conclude

lim inf
n

P{Wn ≤ t} ≥ P{W ≤ t − δ} .

Letting δ → 0 and using the continuity of the distribution of W , we conclude

lim inf
n

P{Wn ≤ t} ≥ P{W ≤ t} (14.56)

Combining (14.55) and (14.56) yields (ii).
Part (iii) follows from Lemma 11.2.1. To prove (iv), suppose j is such that

EP [Tj(X1)] += EP0 [Tj(X1)] .

By the Law of Large Numbers,

1
n

n∑

i=1

Tj(Xi)
P→ EP [Tj(X1)]

and so

|Zn,j | = |n1/2 · 1
n

n∑

i=1

{Tj(Xi) − EP0 [Tj(Xi)]}| P→ ∞ .

Therefore,

P{Wn > wn(1 − α)} ≥ P{ajZ
2
n,j > w(1 − α)} → 1 .

Note that the conclusion (iv) holds if the critical value of the test wn,1−α is re-
placed by w1−α. Using either critical value results in a test that is asymptotically
consistent in level. Of course, one can achieve exact level α if FWn is not contin-
uous by rejecting H0 if Wn > wn,1−α and possibly randomizing if Wn = wn,1−α.
But, the above result also implies Wn = wn,1−α with probability tending to 0.

Thus, we can conclude that the test that rejects for large Wn is consistent in
power against a broad family of alternatives. Indeed, for a given set of orthonor-
mal functions T1, T2, . . ., let Ωk denote the family of densities (14.35) with k fixed.
Let Wn be of the form (14.53) with positive, summable weights aj . Then, the test
that rejects for large Wn is consistent in power against any P += P0 in

⋃∞
k=1 Ωk.

Actually, letting Ω′
k denote the family of distributions P such that

EP [Tk(X1)] += EP0 [Tk(X1)] .
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Then, the test is consistent in power against any P in
⋃∞

k=1 Ω′
k. In contrast,

Neyman’s smooth tests are consistent in power against Ωk and
⋃k

j=1 Ω′
j , where

k is fixed.
For example, for testing uniformity using the normalized Legendre polynomials

T1, T2, . . ., the test that rejects for large Wn is consistent in power against any P
that is not the uniform distribution, since P and the uniform distribution cannot
have the same sequence of moments.

Example 14.5.1 (The Cramér-von Mises Test) Let X1, . . . , Xn be i.i.d.
real-valued random variables with c.d.f. F . For testing F = F0, the Cramér-von
Mises statistic is given by

Cn = n

∫ ∞

−∞
[F̂n(x) − F0(x)]2dF0(x) , (14.57)

where F̂n(x) is the empirical c.d.f.

F̂n(x) =
1
n

n∑

i=1

I{Xi ≤ x} .

The distribution of Cn under F0 is the same for all F0 which are continuous
(Problem 14.34). Hence, we now assume that F0(x) = x. Now, Cn can actually
be represented as a weighted quadratic test statistic Wn with

Tj(x) =
√

2 cos(πjx) , j = 1, 2, . . .

and aj = 1/(π2j2). To see this, note that the functions
√

2 sin(πjx), j = 1, 2, . . .
form an orthonormal basis of the space L2[0, 1], the (equivalence class of) func-
tions that are square integrable on [0, 1] (see Section A.3). By Parseval’s formula
(A.7), it follows that

Cn = n
∞∑

j=1

{
∫ 1

0

[F̂n(x) − x]
√

2 sin(πjx)dx}2 .

By integration by parts (Billingsley (1995), Theorem 18.4),
∫ 1

0

[F̂n(x) − x]
√

2 sin(πjx)dx =
−1
πj

∫ 1

0

√
2 cos(πjx)d(F̂n(x) − x)

=
−1
πj

∫ 1

0

√
2 cos(πjx)dF̂n(x) = − 1

πjn

n∑

i=1

Tj(Xi) = − Zn,j

πjn1/2
.

Hence,

Cn =
∞∑

j=1

1
π2j2

Z2
n,j ,

as required.
By Theorem 14.5.1, it follows that, under the null hypothesis,

Cn
d→

∞∑

j=1

1
π2j2

Z2
j ,
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where Z1, Z2, . . . is a sequence of i.i.d. standard normal random variables. It also
follows that the test is pointwise consistent in power against any alternative c.d.f.
F for which

EF [Tj(X1)] =

∫ 1

0

√
2 cos(πjx)dF (x) +=

∫ 1

0

√
2 cos(πjx)dF0(x) = 0

for some j. But,
∫ 1

0

cos(πjx)dF (x) = 0 for all j = 1, 2, . . .

implies F = F0 (Problem 14.36), and so the test is pointwise consistent in power
against any F += F0.

Example 14.5.2 (The Anderson-Darling Test) As in Example 14.5.1 for
testing F (x) = F0(x) = x, consider the Anderson-Darling statistic defined by

An = n

∫ 1

0

[F̂n(x) − x]2

x(1 − x)
dx . (14.58)

It can be shown (Problem 14.37) that An has the form (14.38) of a weighted
quadratic test statistic with

aj =
1

j(j + 1)

and Tj(x) the jth normalized Legendre polynomial on [0, 1] (used in Neyman’s
original proposal of Neyman’s smooth tests; see Section 14.4). Thus,

An =
∞∑

j=1

1
j(j + 1)

Z2
n,j , (14.59)

(while Neyman’s test corresponds to
∑k

j=1 Z2
n,j). It then follows that, under

F = F0,

An
d→

∞∑

j=1

1
j(j + 1)

Z2
j .

In fact, many test statistics defined by an integral of the form
∫ 1

0

U2(x)dx

can be rewritten in the form of a weighted quadratic test statistic. A general
treatment of such integral tests of fit can be found in Chapter 5 of Shorack and
Wellner (1986); also, see van der Vaart and Wellner (1996).

Theorem 14.5.1 considered the behavior of a general weighted quadratic test
under the null hypothesis P = P0 and under a fixed alternative. Next, we would
like to consider the behavior of Wn under a sequence of local alternatives Pn.

Suppose Pn has density pn and P0 has density p0 with respect to some common
measure µ. Consider the likelihood ratio based on n i.i.d. observations X1, . . . , Xn

given by

Ln = Ln(X1, . . . , Xn) =

∏n
i=1 pn(Xi)∏n
i=1 p0(Xi)

.
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Assume, under P0,

log(Ln) = n−1/2
n∑

i=1

η̃(Xi) −
σ2

2
+ oP n

0
(1) , (14.60)

where

EP0 [η̃(Xi)] = 0

and

0 < EP0 [η̃
2(Xi)] = σ2 < ∞ .

Then, the Central Limit Theorem implies that, under P0,

log(Ln)
d→ N(−σ2

2
, σ2)

and {P n
n } and {P n

0 } are contiguous (by Corollary 12.3.1). Furthermore, under
P0,

Zn,j = n−1/2
n∑

i=1

Tj(Xi)
d→ N(0, 1) .

By the bivariate Central Limit Theorem, under P0, (Zn,j , log(Ln)) is asymptoti-
cally bivariate normal with asymptotic covariance

cj = CovP0 [Tj(X1), η̃(X1)] . (14.61)

It follows from Corollary 12.3.2 that, under Pn,

Zn,j
d→ N(cj , 1) .

Similarly, for any fixed integer k and constants α1, . . . , αk, under P0,

k∑

j=1

αjZn,j = n−1/2
n∑

i=1

k∑

j=1

αjTj(Xi)
d→ N(0,

k∑

j=1

α2
j )

and

(
k∑

j=1

αjZn,j , log(Ln))

is asymptotically bivariate normal with covariance

CovP0(
k∑

j=1

αjZn,j , log(Ln)) = CovP0(
k∑

j=1

αjTj(Xi), η̃(Xi)) =
k∑

j=1

αjcj .

Hence, under Pn,

k∑

j=1

αjZn,j
d→ N(

k∑

j=1

αjcj , 1) ,

again by Corollary 12.3.2. By the Cramér-Wold device, it follows that, under Pn,

(Zn,1, . . . , Zn,k)
d→ (Z1 + c1, . . . , Zk + ck) , (14.62)
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where Z1, . . . , Zk are i.i.d. N(0, 1). This suggests that, under Pn,

Wn
d→

∞∑

j=1

aj(Zj + cj)
2 .

In fact, the following result is true.

Theorem 14.5.2 Let Wn be defined by (14.38) with aj ≥ 0 and

∞∑

j=1

aj < ∞ .

(i) Assume, based on n i.i.d. observations from Pn, for any k,

(Zn,1, . . . , Zn,k)
d→ (Z1 + c1, . . . , Zk + ck) , (14.63)

where Z1, Z2, . . . are i.i.d. N(0, 1). If
∑∞

j=1 ajc
2
j < ∞, then

Wn
d→

∞∑

j=1

aj(Zj + cj)
2 . (14.64)

(ii) If Pn is such that the loglikelihood ratio Ln satisfies (14.60), then, under Pn,
(14.63) holds with cj given by (14.61). Furthermore,

∑
j ajc

2
j < ∞ and so (14.64)

holds as well.

Proof. The proof of (i) is a straightforward generalization of Theorem 14.5.1.
(Note that it can be generalized further in that the Zn,j need not be a normalized
average and the Zj need not be normal nor independent.) To prove (ii), note that
(14.63) holds by the discussion leading to (14.62). Moreover,

∞∑

j=1

ajc
2
j =

∞∑

j=1

ajCov2
P0 [Tj(Xi), η̃(Xi)]

≤
∞∑

j=1

ajV arP0 [Tj(Xi)]V arP0 [η̃(Xi)] = V arP0 [η̃(Xi)] ·
∞∑

j=1

aj < ∞ .

Hence, the condition (14.63) in (i) holds.

Example 14.5.3 (Limiting Power Calculation) As in Example 14.4.4, let
fn(x) be given by (14.43) with bn = hn−1/2. As noted in Example 14.4.4, under
fn,

(Zn,1, . . . , Zn,k)T d→ N(c, Ik) ,

where c has jth component cj = h〈Tj , u〉. Note that

∑

j

ajc
2
j ≤ h2

∫ 1

0

u2(x)dx
∑

j

aj < ∞ .

Therefore, by Theorem 14.5.2, (14.64) holds.
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Assume the hypothesis in Theorem 14.5.2 (ii). Let w1−α be the 1−α quantile of
the limit distribution under the null hypothesis. Then, the limiting power against
Pn is given by

P{
∞∑

j=1

aj(Zj + cj)
2 > w1−α} . (14.65)

If there exists a nonzero cj for which aj > 0, then (14.65) exceeds α (Problem
14.41). For example, if aj > 0 for all j, then the requirement is that there exists
some j for which cj is nonzero. But, this must be the case if 1, T1, T2, . . . form an
orthonormal basis for L2(P0), because Parseval’s identity implies

0 < V arP0 [η̃(X1)] =
∞∑

j=1

c2
j .

It follows that not all cj can be 0.
Thus, unlike Neyman’s smooth test with kn → ∞, the limiting power for Wn

is nontrivial against certain contiguous alternatives, and so it appears that tests
based on Wn are better at detecting alternatives that are close to H0. However, we
now show that the limiting power of Wn can be α against a contiguous sequence
of alternatives.

Example 14.5.4 (Another Local Power Calculation) Let

Tj(x) =
√

2 cos(πjx) .

Set pθ(x) = C(θ) exp[θTB(x)]. If B is fixed and large, the limiting distribution of
Wn against θ = hn−1/2 is given by the distribution of aB(ZB +h)2. Since aB → 0
as B → ∞, it follows that

aB(ZB + h)2
P→ 0

as B → ∞. Therefore, the limiting power against such a sequence is small. In
order to obtain a limiting value of α, let

fn(x) = Cn(θ) exp[θTn(x)] . (14.66)

Then, if θ = hn−1/2, the limiting power of the test based on Wn against such a
sequence is α, even though P n

n is contiguous to P n
0 , where Pn is the distribution

with density fn when θ = hn−1/2 (Problem 14.39).

A difficulty in applying a weighted quadratic test statistic is the computation of
critical values and power. Of course, one may resort to Monte Carlo simulation of
the null distribution. Alternatively, the representation of the limiting distribution
as that of

W =
∞∑

j=1

aj(Zj + cj)
2 (14.67)

can be useful. For example, the null distribution (in the case cj = 0) has
characteristic function

ζW (t) =
∞∏

j=1

(1 − 2iajt)
−1/2
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(Problem 14.40). In the special case of the Cramér-von Mises test, Smirnov
inverted ζW (see Durbin (1973)) and obtained

P{W > x} =
1
π

∞∑

j=1

(−1)j+1
∫ 4j2π2

(2j−1)2π2

1
y

√
−√

y

sin(
√

y)
exp(−xy

2
)dy .

Alternatively, one may truncate the series (14.67) to a finite sum and use nu-
merical methods; see Durbin and Knott (1972). Another possibility is to match
moments of W to a Pearson family of distributions, as done by Stephens (1976).

Some numerical power comparisons between competing goodness of fit tests
can be found in Durbin and Knott (1972) and Stephens (1974), where both the
Anderson-Darling and Cramér-von Mises statistics outperform the Kolmogorov-
Smirnov test. A further comparison is presented in D’Agostino and Stephens
(1986), Section 8.14. However, Example 14.5.4 shows that tests based on weighted
quadratic statistics Wn can have poor power against higher frequency alterna-
tives, such as (14.66). In the case of the Cramér-von Mises statistic and the
Anderson-Darling statistic, this can be explained by the rapid downweighting of
the aj . Moreover, several simulation studies have demonstrated that Neyman’s
smooth tests can outperform tests based on Wn over a wide range of alterna-
tives; see Miller and Quesenberry (1979), Rayner and Best (1989) and Eubank
and LaRiccia (1992). In summary, both Neyman’s smooth tests and weighted
quadratic tests offer viable approaches to testing goodness of fit, but neither
approach is asymptotically uniformly optimal. Unfortunately, we will see in the
next section that no test can perform uniformly well against local or contiguous
alternatives when the family of possible alternatives is large.

14.6 Global Behavior of Power Functions

For testing uniformity, the Kolmogorov-Smirnov and the weighted quadratic tests
such as the Cramér-von Mises test are consistent in power against any alternative.
Even the Chi-squared test with a finite number of partitions and the Neyman
smooth tests with finite k are consistent in power against a broad range of alter-
natives. However, as we will see in this section, the power of any goodness of fit
test is poor against a local sequence of (contiguous) alternatives, except possi-
bly in a finite (bounded) number of directions, even with increasing sample size.
Such a statement is not surprising for Neyman’s smooth tests with k fixed, since
then only a finite number of orthogonal directions are used. While a quadratic
test statistic gives positive weight to infinitely many components, the weights aj

satisfy
∑

j aj < ∞; this condition evidently entails

∞∑

j=k+1

aj < ε

for large enough k, so that the test essentially only uses a finite number of direc-
tions as well; roughly, the test behaves similar to the corresponding test obtained
by summing over only the first k components. (For a rigorous statement, see
Milbrodt and Strasser (1990, Remark 2.6) and Janssen (1995).) Thus, while con-
sistency may hold against any fixed alternative as n → ∞, there remains the
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possibility that, for any fixed sample size n, any test will perform poorly against
a broad range of alternatives. Moreover, one cannot simply increase k to obtain
power against a broader family of distributions. As we saw in the case of the Chi-
squared test of uniformity with k + 1 cells, while increasing k increases the set
of consistent alternatives, it will decrease the limiting power against contiguous
alternatives. Roughly speaking, we will see that one can only obtain reasonable
power locally across a family of distributions of fixed bounded dimension.

In order to make this precise, first consider the following normal model, which
arises as the limiting experiment for testing goodness of fit in Section 14.4. The
argument leading to the optimality result (14.42) was based on the fact that,
for the parametric model Pθ of densities pθ given by (14.35), the experiment
{P N

hn−1/2} is (locally) asymptotically normal at θ0 = 0, where the limit experi-

ment {Qh} consists of observing ZT = (Z1, . . . , Zk) and the Zi are independent
with Zi ∼ N(hi, 1). In this model, for testing h = 0 against |h| ≥ b, the max-
imin test rejects when

∑k
i=1 Z2

i > ck,1−α. The maximin power of this test over
alternatives |h| ≥ b is given by the right side of (14.42), which is denoted by

M(k, b) = P{χ2
k(b2) > ck,1−α} .

By Lemma 14.3.1, M(k, b) → α as k → ∞. Thus, in the limiting normal ex-
periment with k large, one cannot test h against |h| ≥ b uniformly well in all
directions. To put this another way, consider the rk-dimensional subspace Vk

of RI k which, without loss of generality, we take to be spanned by the first rk

axes of the original k-dimensional space. Then, the maximin power against al-
ternatives in Vk with

∑k
i=1 h2

i = b2 is attained by h1 = · · · = hrk = b/rk and
hrk+1 = · · · = hk = 0. The same argument used in Lemma 14.3.1 shows that the
maximum power will tend to α if rk → ∞. Therefore, in order for the power to
be bounded away from α as k → ∞, we must require rk bounded as k → ∞.
Thus, one cannot expect to construct tests with high power, except possibly in a
finite-dimensional subspace. This point was made clear by Janssen (2000a), who
provided more specific bounds on the dimension of the subspace. We now develop
his results.

Lemma 14.6.1 Suppose Z1, . . . , Zk are independent with Zi distributed as
N(hi, 1). Here, the parameter (h1, . . . , hk) varies in RI k. Consider testing the
null hypothesis that hi = 0 for all i, against the alternative that not all the hi

are 0. Let φ = φ(Z1, . . . , Zk) be any test with E0(φ) = α. Define ei to be the unit
vector in RI k with 1 in the ith component and 0 in the other components. Then,
for each H > 0,

k∑

i=1

[sup |Etei(φ) − α| : |t| ≤ H]2 ≤ α(1 − α)(exp(H2) − 1) . (14.68)

Proof. The function

gi(t) = |Etei(φ) − α|

is continuous on t ∈ [−H, H], and so it attains its maximum at some point ti.
Let

Yi = exp(tiZi −
t2i
2

) − 1 .
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Using the fact that E[exp(tZ)] = exp(t2/2) if Z is N(0, 1) yields E0(Yi) = 0 and

V ar0(Yi) = exp(t2i ) − 1 ≤ exp(H2) − 1 .

Let ϕ denote the standard normal density. Then, the point of introducing the Yi

is that

Etiei [φ(Z1, . . . , Zk)] =

∫
φ(z1, . . . , zk)ϕ(zi − ti)

∏

j '=i

ϕ(zj)
k∏

i=1

dzi

=

∫
φ(z1, . . . , zk)

ϕ(zi − ti)
ϕ(zi)

k∏

i=1

ϕ(zi)dzi

=

∫
φ(z1, . . . , zk) exp(tizi −

t2i
2

)
k∏

i=1

ϕ(zi)dzi = E0[φ(Z1, . . . , Zk)Yi] + α

and so

Etiei [φ(Z1, . . . , Zk)] − α = Cov0(φ, Yi) .

Define

βi =

{
Cov0(φ,Yi)
V ar0(Yi)

if V ar0(Yi) > 0

0 otherwise.
(14.69)

Note that, if ti += 0, then V ar0(Yi) > 0; if ti = 0, then Yi = 0 and βi = 0. Define
φ̃ by the relation

φ(Z1, . . . , Zk) − α =
k∑

i=1

βiYi + φ̃ ,

so that

E0(φ̃) = 0 , E0(φ̃
2) < ∞

and

Cov0(φ̃, Yi) = 0 i = 1, . . . n .

This implies φ̃ is uncorrelated with φ − φ̃, and so

V ar0(φ) = V ar0(φ̃ + φ − φ̃) = V ar0(φ̃) + V ar0(φ − φ̃) .

Therefore,

V ar0(φ − φ̃) ≤ V ar0(φ) = E0(φ
2) − α2 ≤ α(1 − α) .

Also,

k∑

i=1

β2
i V ar0(Yi) = V ar0(

k∑

i=1

βiYi) = V ar0(φ − φ̃) ≤ α(1 − α) . (14.70)

But,

Etiei(φ) − α = βiV ar0(Yi)
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implies

|Etiei(φ) − α|2 ≤ β2
i V ar0(Yi) · V ar0(Yi) ≤ β2

i V ar0(Yi)(exp(H2) − 1) .

Summing over i and using the bound (14.70) yields the result.

Notice that the bound on the right side of (14.68) does not depend on k, the
dimension of the parameter space. In fact, the same bound holds for tests based
on an infinite sequence Z1, Z2, . . .. In order to avoid certain technical aspects of
likelihoods on infinite product spaces, we restrict attention to the case of k finite.

We now use the previous lemma to show that, for the normal testing problem
studied in Lemma 14.6.1, the power of any level α test is poor, except possibly
on a restricted range of alternatives. Thus, for fixed large k, it is impossible to
construct a test that has high power in all directions (which certainly implies the
same conclusion for any larger k or when k = ∞). The following notation will be
used. For a set V in RI k, let V ⊥ be defined as

V ⊥ = {x : 〈x, v〉 = 0 for all v ∈ V } .

Theorem 14.6.1 Suppose Z1, . . . , Zk are independent, with Zi normally dis-
tributed with mean hi and variance one. The parameter h = (h1, . . . , hk)T varies
freely in RI k. For testing h = 0 versus h += 0, let φ = φ(Z1, . . . , Zk) be any test
with E0(φ) = α. Fix any ε and any H > 0. Assume

k > 1 + ε−1α(1 − α)[exp(H2) − 1] . (14.71)

Then, there exists a linear subspace V , whose dimension d is independent of k
and φ, such that

sup{|Eh(φ) − α| : h ∈ V ⊥, |h| ≤ H} ≤ ε (14.72)

and

d ≤ 1 + ε−1α(1 − α)[exp(H2) − 1] . (14.73)

In words, the power of φ is poor on V ⊥ ⋂
{h : |h| ≤ H}.

Proof. Let V0 = {0}. We will inductively choose linear subspaces Vn =
span{v1, . . . , vn} of RI k as follows. Given v1, . . . , vn, let vn+1 be orthogonal to
v1, . . . , vn and satisfy |vn+1| = 1 and
[
sup |Etv(φ) − α| : |t| ≤ H, v ∈ V ⊥

n , |v| = 1
]2

≤ |Etn+1vn+1(φ) − α|2 +
ε

2n+1
.

Let bn+1 = |Etn+1vn+1(φ) − α|2. Choose m to be the smallest positive integer
satisfying

bm +
ε

2m
≤ ε . (14.74)

To see that such an m exists and m ≤ k, note that Lemma 14.6.1 implies (possibly
after an orthogonal transformation) that

k∑

n+1

(
bn +

ε
2n

)
≤ α(1 − α)[exp(H2) − 1] + ε .
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But, the assumption on k implies

α(1 − α)[exp(H2) − 1]
εk

+
1
k

< 1

which implies

1
k

k∑

n=1

(
bn +

ε
2n

)
≤ α(1 − α)[exp(H2) − 1]

k
+

ε
k

< ε .

Hence, there exists such an m with m ≤ k. Let V in the statement of the theorem
be Vm−1. Then (14.72) is satisfied because m satisfies (14.74). Moreover, since

bj +
ε
2j

> ε for j = 1, . . . , m − 1 ,

we have

(m − 1)ε <
m−1∑

j=1

(
bj +

ε
2j

)
≤ α(1 − α)[exp(H2) − 1] + ε ,

where the last inequality follows from Lemma 14.6.1. Therefore,

m − 1 ≤ 1 + ε−1α(1 − α)[exp(H2) − 1] .

The point of Lemma 14.6.1 and Theorem 14.6.1 is that one cannot have high
power uniformly in all orthonormal directions. This is not particularly surprising
given that there are k observations and k parameters. Nevertheless, the statisti-
cian must then implicitly or explicitly construct a test so that the power is high
in certain important directions.

We can obtain analogous results for the problem of testing P = P0 based on n
i.i.d. observations from P . Even with increasing n, the total amount of squared
power greater than α of any test (sequence) is bounded.

Theorem 14.6.2 Let X1, . . . , Xn be i.i.d. Pθ, where Pθ has density pθ given by
(14.35) with θ ∈ RI k . For testing θ = 0 versus θ += 0, let φn = φn(X1, . . . , Xn)
be any level α test. Fix ε > 0 and H > 0, and assume k satisfies (14.71). Then,
(i)

lim sup
n

k∑

i=1

[
sup |Etein−1/2(φn) − α| : |t| ≤ H

]2
(14.75)

≤ α(1 − α)[exp(H2) − 1] .

(ii) There exists a subspace V of RI k whose dimension d satisfies (14.73)
(independent of k) such that

lim sup
n

sup{|Ehn−1/2(φn) − α| : h ∈ V ⊥, |h| ≤ H} ≤ ε . (14.76)

Proof. The sequence of models P n
hn−1/2 is asymptotically normal with identity

covariance matrix Ik, in the sense of Definition 13.4.1. Indeed, the family is an ex-
ponential family and hence is quadratic mean differentiable. In fact, as previously
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pointed out, the score vector for this model is given by (14.37) and is asymptoti-
cally multivariate normal with mean 0 and identity covariance matrix. The proof
then follows from Theorem 13.4.1, which compares the limiting power of any test
sequence with that of a test for the normal model studied in Lemma 14.6.1. For
the limiting normal experiment, an upper bound for the sum of squared powers
is given in Lemma 14.6.1, and so this bound must hold asymptotically. Similarly,
(ii) follows by Theorem 14.6.1.

Of course, the theorem has implications for testing P = P0 against alternatives
outside the parametric model (14.35). Indeed, since the right side of (14.75) does
not depend on k, we may take k = ∞ on the left side and obtain the same
result. That is, the squared infinite sum of deviations of power from α remains
bounded. We have stated the result first for finite k since our proof then only
requires convergence to a normal experiment in a finite dimensional space (as we
have not considered infinite dimensional spaces).

In fact, Janssen (2000a) shows that this result holds for each n as well; that is,
one can simply delete the limsup in (14.75). Thus, the power of any test sequence
is essentially flat outside a space of dimension d, where d does not depend on n.

To explain the result a little further, fix θ ∈ RI k and consider the one-
dimensional model indexed by t with density ptθ defined in (14.35). If we know
that the actual distribution belongs to this one-dimensional exponential family
submodel for some t > 0, then a UMP level α test sequence exists for testing
t = 0 against t > 0, which we now denote by φ∗

θ = {φ∗
n,θ}; moreover,

lim
n

Etθn−1/2(φ
∗
n,θ) = 1 − Φ(z1−α − t|θ|) (14.77)

(Problem 14.42). We will now connect the performance of an arbitrary test se-
quence φ = {φn} with the notion of asymptotic relative efficiency, as developed
in Section 13.2. Let Nφ(t, θ, α, β) be the smallest sample size required to achieve
power at least β if the true density is ptθ. In the case of φ∗

θ , it follows from (14.77)
(or Theorem 13.2.1(iii)) that, if |θ| = 1,

lim
t→0+

t2Nφ∗
θ
(t, θ, α, β) = (zα − zβ)2 . (14.78)

With α and β fixed, choose any small δ > 0, any ε satisfying 0 < ε < β−α and
H > 0 large enough so that (zα − zβ)2/H2 ≤ δ. For an arbitrary test φ, Theorem
14.6.2(ii) implies that there exists V ⊂ RI k of dimension d satisfying (14.73) such
that, for all small t and θ ∈ V ⊥ with |θ| = 1, the power function at tθ is bounded
above by α + ε < β, at least for t such that tn1/2 ≤ H. This in turn implies that
n must satisfy n1/2t > H in order to achieve power β; thus,

lim inf
t→0+

t2Nφ(t, θ, α, β) ≥ H2 . (14.79)

Combining (14.78) and (14.79) yields, for θ ∈ V ⊥,

lim sup
t→0+

Nφ∗
θ
(t, θ, α, β)

Nφ(t, θ, α, β)
≤ (zα − zβ)2

H2
≤ δ . (14.80)

If the limsup on the left side of (14.80) is replaced by a limit, which is shown to
exist, the limiting value would be the Pitman ARE of φ with respect to φ∗

θ for the
submodel Ptθ. While we are not claiming such a limit exists, the interpretation of
the result is the following. Except on a set of θ values of dimension d (independent
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of n and k), the test φ∗
θ requires approximately no more than a small proportion δ

of the sample size required by φ to achieve power β. Therefore, it is not possible
to simultaneously have high power along all “directions” θ, at least from this
local point of view.

The possibility of high power for parameter values far from 0 (corresponding
to |t| > H) remains however, and so this result does not contradict the uniform
consistency result, Theorem 14.2.2, of the Kolmogorov-Smirnov test; there, the
power tends to one against nonlocal alternatives. But, for testing goodness of fit
against a broad nonparametric class of alternatives, Lemma 14.3.1 and Theorem
14.6.1 imply that any test (sequence) performs well locally only in some fixed
finite dimensional subset of alternatives, even as n increases. To put it another
way, any test has a preferred set of alternatives (of bounded dimension) for which
its power is locally high. Unfortunately, it may be difficult to analyze the pre-
ferred alternatives for any particular test. For certain classes of tests, such as the
integral tests of Cramér-von Mises or Anderson and Darling, there exist princi-
ple component decompositions of the test statistics, which lead to useful power
calculations; see Shorack and Wellner (1986), Chapter 5. For the Kolmogorov-
Smirnov test, it is known that it is roughly speaking more powerful to deviations
of the median; see Milbrodt and Strasser (1990) and Janssen (1995) for a more
careful statement. Since any given test sequence can only perform well for some
finite dimensional set of alternatives, it seems natural to design tests that per-
form well on a given finite dimensional set, which is exactly the approach taken
in the construction of Neyman’s smooth tests. A general theory of efficiency of
goodness of fit tests is developed in Nitikin (1995), who also compares distinct
notions of efficiency; also see Janssen (2003). Unfortunately, different efficiency
notions give rise to different tests. It appears that a proper choice of test must
be based on some knowledge of the possible set of alternatives for a given exper-
iment. By restricting attention to families of densities with different degrees of
smoothness, asymptotically maximin results have been obtained; see Ingster and
Suslina (2003).

14.7 Problems

Section 14.2

Problem 14.1 Verify (14.3).

Problem 14.2 (i) Let X1, . . . , Xn be i.i.d. real-valued random variables with
c.d.f. F . Consider testing F = F0 against F += F0 based on the Kolmogorov-
Smirnov test. Fix F with n1/2dK(F, F0) > sn,1−α. Show that

PF {Tn > sn,1−α} ≥ 1 − 1

4|n1/2dK(F, F0) − sn,1−α|2
.

Hint: Use (14.6) and Chebyshev’s inequality.
(ii) Derive the alternative lower bound to the power of the Kolmogorov-Smirnov
test given by (14.8). Compare the two lower bounds.
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Problem 14.3 For testing F = F0, where F0 is the uniform (0,1) c.d.f., consider
alternatives Fn to F0 of the form

Fn(t) = (1 − λn)F0(t) + λnG(t) ,

where G += F0 is some fixed distribution. Show that, if λn = λn−1/2, then the
limiting power of the Kolmogorov-Smirnov test is bounded away from α if λ is
large enough.

Problem 14.4 Suppose Fn satisfies n1/2dK(Fn, F0) → 0. For testing F = F0 at
level α, show that the limiting power of the Kolmogorov-Smirnov test against Fn

is no better than α. In the case that Fn is continuous for every n, show that the
limiting power is equal to α.

Problem 14.5 (i) Suppose {Pθ} is q.m.d. at θ0, where Pθ is a probability distri-
bution on RI with corresponding c.d.f. Fθ. Show that there exists B = Bθ0(h) <
∞ such that

lim sup
n

nd2
K(Fθ0+hn−1/2 , θ0) ≤ Bθ0(h)

and Bθ0(h) → 0 as h → 0.
(ii) Construct a sequence of probability distributions Pn on the real line with
corresponding c.d.f.s Fn satisfying dK(Fn, F0) → 0 but H(Pn, P0) is bounded
away from 0, where H is the Hellinger metric. On the other hand, show that
H(Pn, P0) → 0 implies dK(Fn, F0) → 0.

Problem 14.6 Let F0 be the uniform (0,1) c.d.f. and consider testing F = F0

by the Kolmogorov Smirnov test.
(i) Construct a sequence of alternatives Fn to F0 satisfying n1/2dK(Fn, F0) → δ
with 0 < δ < ∞ such that the limiting power against Fn is α, even though there
exist tests whose limiting power against Fn exceeds α.
(ii) Construct a sequence of alternatives Fn to F0 satisfying n1/2dK(Fn, F0) → δ
with 0 < δ < ∞ such that the limiting power against Fn is one.
[Hint: Fix 1 > γn > 0 with n1/2γn → δ > 0 and let Fn(t) be defined by

Fn(t) =

{
0 if t < γn

t if γn ≤ t ≤ 1.
(14.81)

Note that dK(Fn, F0) = γn by construction. Let U1, . . . , Un be i.i.d. according to
the uniform distribution on (0, 1), and let Ĝn(t) denote the empirical c.d.f. of the
Ui. Set

Xi =

{
Ui if Ui ≥ γn

γn if Ui < γn,
(14.82)

so that X1, . . . , Xn are i.i.d. with c.d.f. Fn. Let F̂n(t) denote the empirical c.d.f.
of the Xi. Argue that

sup
t

|F̂n(t) − t| ≤ max

[
sup

t
|Ĝn(t) − t|, γn

]

and

PFn{Tn > sn,1−α} ≤ P{n1/2 sup
t

|Ĝn(t) − t| > sn,1−α}
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if n1/2γn < sn,1−α. If δ < s1−α, then this last condition will be satisfied for large
enough n. Finally, the last displayed expression equals α.]

Problem 14.7 Let F be the family of distributions having density F ′ = f on
(0, 1) and let F ′

0 = f0 be the uniform density. Consider testing the null hypothesis
that F = F0 based on the Kolmogorov Smirnov test. Show that, if dk(f, f0) is
the sup distance between densities and 0 < c < 1, then, for every n,

inf PF {Tn ≥ sn,1−α : F ∈ F, dK(F ′, f0) ≥ c} ≤ α . (14.83)

Argue that the result applies if dK is replaced by the L2 distance between den-
sities. Hint: Consider densities of the form fθ(t) = 1 + c sin(2πθt). [Compare
this result with Theorem 14.2.2. Ingster and Suslina (2003) argue that alterna-
tives based on the sup distance between distribution functions are less natural
than metrics between densities. This problem shows it is impossible for the
Kolomogorv-Smirnov test to have power bounded away from α against such
alternatives. In fact, this is true for any test; see Ingster (1993) and Section
14.6. However, by restricting the family of densities to have further smoothness
properties, Ingster and Suslina (2003) have obtained positive results.]

Problem 14.8 Generalize Theorem 14.2.2 to any EDF test statistic of the form
n1/2d(F̂n, F0), if d is a metric weaker than the Kolmogorov-Smirnov metric dk in
the sense

d(F, G) ≤ CdK(F, G)

for some constant C. In particular, show the result applies to the Cramér-von
Mises test.

Problem 14.9 For testing the null hypothesis that X1, . . . , Xn are i.i.d. from a
normal distribution with unknown mean µ and unknown variance σ2, show that
the null distribution of (14.13) does not depend on (µ, σ) (but it does depend on
n). Describe a simulation method to approximate this null distribution. How can
you construct a test that is exact level α = 0.05 based on simulation? Generalize
this problem to testing a general location-scale family.

Problem 14.10 Suppose X1, . . . , Xn are i.i.d. with c.d.f F on the real line. The
problem is to test the null hypothesis H0 that the Xi are uniform on (0, θ] for
some θ. Let θ̂n = max(X1, . . . , Xn), and let F̂n be the empirical distribution
function. Let dK(F, G) be the Kolmogorov-Smirnov distance between F and G.
Consider the test statistic

Tn = n1/2dK(F̂n, Fθ̂n
) ,

where Fθ is the uniform (0, θ) c.d.f. Under H0, what is the limiting distribution
of Tn?

Problem 14.11 Let X1, · · · , Xn be a sample from the normal distribution with
mean θ and variance 1, with cdf denoted by Fθ(·). Let Φ(z) denote the standard
normal cdf, so that Fθ(t) = Φ(t − θ). For any two cdfs F and G, let ‖F − G‖
denote supt |F (t) − G(t)|. Let θ̂n be the estimator of θ minimizing ‖F̂n − Fθ‖,
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where F̂n(t) = n−1 ∑n
i=1 1(Xi ≤ t) denotes the empirical cdf. In case you are

worried about problems of existence or uniqueness, you may assume θ̂n is any
estimator satisfying

‖F̂n − Fθ̂n
‖ ≤ inf

θ
‖F̂n − Fθ‖ + εn,

where εn is any sequence of positive constants tending to 0.
(i) Prove θ̂n is a consistent estimator of θ.
(ii) Suppose now the observations come from a cdf F , possibly nonnormal. The
problem is to test the null hypothesis that F is normal with variance 1 against
the alternative hypothesis that F is not. Consider the test statistic

Tn = inf
θ

‖F̂n − Fθ‖.

Argue, if F is N(θ, 1), then the distribution of Tn does not depend on θ.
(iii) If F is not normal with variance one, argue that Tn tends in probability to
the constant γF = infθ ‖F − Fθ‖, and γF > 0.
(iv) Find a sequence of constants cn so that the test that rejects iff Tn ≥ cn has
probability of a Type I error tending to 0, and has power tending to one for any
fixed alternative F . Hint: Use the Dvoretzky, Kiefer, Wolfowitz Inequality.

Section 14.3

Problem 14.12 (i) Verify (14.19).
(ii) Verify (14.20).

Problem 14.13 Prove the convergence (14.21).

Problem 14.14 In the multinomial goodness of fit problem, calculate the
Information matrix I(p) given by (14.22).

Problem 14.15 Prove part (iii) of Theorem 14.3.1.

Problem 14.16 Show that the result Theorem 14.3.2 (ii) holds for the likelihood
ratio test.

Problem 14.17 Prove Lemma 14.3.1(i).

Problem 14.18 Recall M(k, h) defined by (14.27) and let Fk denote the c.d.f.
of the central Chi-squared distribution with k degrees of freedom. Show that

M(k, h) = α + γk
h2

2
+ o(h2) as h → 0 ,

where

γk = Fk(ck,1−α) − Fk+2(ck,1−α) .

Problem 14.19 As in Section 14.3.2, consider the Chi-squared test for testing
uniformity on (0, 1) based on k + 1 cells; call if φ∗

n,k. Fix any B < ∞ and ε > 0.
Let UB be the set of u with

∫
u = 0 and

∫
u2 ≤ B. For alternative sequences of
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the form (14.25) with bn = n−1/2 , show that, if k is large enough (but fixed),
then

lim sup
n

sup
u:u∈UB

Efn(φ∗
n,k) ≤ α + ε .

Problem 14.20 Verify (14.33).

Problem 14.21 Under the setup of Problem 12.61, determine a Chi-squared
test statistic, as well as its limiting distribution under the null hypothesis. [For
a discussion of the Chi-squared test for testing independence in a two-way table,
see Diaconis and Efron (1985) and Loh (1989).]

Problem 14.22 The Hardy-Weinberg law says the following. If gene frequencies
are in equilibrium, the genotypes AA, Aa, and aa occur in a population with fre-
quencies θ2, 2θ(1−θ), and (1−θ)2. In an i.i.d. sample of size n, with each outcome
being an AA, Aa, or aa with the above probabilities, let X1, X2, and X3 be the
observed counts. For example, X1 is the number of trials where the observation
is AA. Note that X1 + X2 + X3 = n. The joint distribution of (X1, X2, X3) is a
trinomial distribution. Hence,

Pθ{X1 = x1, X2 = x2, X3 = x3} =
n!

x1!x2!x3!
(θ2)x1 [2θ(1 − θ)]x2 [(1 − θ)2]x3

for any nonnegative integers x1, x2, and x3 summing to n. Find the MLE and
its limiting distribution (suitably normalized). Derive the likelihood ratio and
chi-squared tests to test the Hardy-Weinberg law.

Problem 14.23 In Example 14.3.1, verify (14.32) and determine the MLE β̂n

for the linkage submodel being tested. Determine the limiting distribution of the
Chi-squared statistic Qn(β̂n).

Problem 14.24 Consider the limit distribution of the Chi-squared goodness-of-
fit statistic for testing normality if using the maximum likelihood estimators to
estimate the unknown parameters. Specifically, suppose X1, . . . , Xn are i.i.d. and
the problem is to test whether the underlying distribution is N(θ, 1) for some
θ. Group the observations into just 2 groups: positive observations and negative
observations. Derive the limit distribution of the Chi-squared statistic using the
sample mean to estimate θ and show it is not Chi-squared.

Section 14.4

Problem 14.25 Let X1, . . . , Xn be i.i.d. F , and consider testing the null hy-
pothesis that F is the uniform (0,1) c.d.f. For θ = (θ1, θ2) ∈ RI 2, consider a
family of alternative densities of the form

pθ(x) = C(θ) exp[θ1T1(x) + θ2T2(x)], 0 < x < 1 .

Assume this two-parameter exponential family is well-defined for all small enough
|θ|, so that the family is a full rank exponential family which is q.m.d. at θ = 0
with Information matrix at θ = 0 denoted by I(0). For the submodel with θ2 = 0,
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what is the optimal limiting power for testing θ1 = 0 against θ1 = hn−1/2 at level
α. Similarly, with θ1 = 0, what is the optimal limiting power for testing θ2 = 0
against θ2 = hn−1/2. Prove that no level α test sequence exists whose limiting
power simultaneously achieves these optimal values. Hint: If (Z1, Z2) is bivariate
normal with (h1, h2), then no UMP test exists for testing (h1, h2) = (0, 0).

Problem 14.26 In Example 14.4.3, show that the multinomal distribution can
be written in the form (14.35) for the given orthogonal choice of functions Tj .

Problem 14.27 Show that (14.42) holds with B = ∞ if V arθ[Tj(X1)] is uni-
formly bounded in θ. Hint: Argue by contradiction. Suppose there exists hn with
|hn| ≥ b such that

Ehnn−1/2(φ
∗
n) → 9 ,

where 9 is less than the right side of (14.42). This is a contradiction if

Ehnn−1/2(φ
∗
n) → 1

if |hn| → ∞. By taking subsequences if necessary, assume the jth component
hn,j of hn satisfies |hn,j | → ∞. Then,

Ehnn−1/2(φ
∗
n) ≥ Phnn−1/2{Z2

n,j > ck,1−α} .

It now suffices to show |Zn,j | → ∞ in probability under hnn−1/2. But
|Eθ[Tj(X1)]| increases in θ (using properties of exponential families) while the
variance of Zn,j remains bounded.

Problem 14.28 For testing P = P0 in the model of densities (14.35) with Tj the
normalized Legendre polynomials, show that Neyman’s smooth test is consistent
in power against any distribution P as long as the first k moments of P are not
all identical to the first k moments of P0.

Problem 14.29 Let X1, . . . , Xn be i.i.d. random variables on [0,1] with un-
known distribution P . The problem is to test P = P0, the uniform distribution
on [0, 1]. Assume a parametric model with densities of the form (14.35) for some
fixed positive integer k. Set T0(x) = 1 and assume the functions T1, . . . , Tk are
chosen so that T0, . . . , Tk is a set of orthonormal functions on L2(P0). Assume
that

sup
x,j

|Tj(x)| < ∞ ,

so that Ck(θ) is well-defined for all k-vectors θ. Let Λn be a probability distri-
bution over values of θ and let A(φn, Λn) denote the average power of a test φn

with respect to Λn; that is,

A(φn, Λn) =

∫

θ

Eθ(φn)dΛn(θ) .

In particular, let Λn be the k-dimensional normal distribution with mean vector
0 and covariance matrix equal to n−1 times the identity matrix. Among tests φn

such that E0(φn) → α, find one that maximizes

lim
n

A(φn, Λn)
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and find a simple expression for this limiting average power.

Problem 14.30 Use Minkowski’s Inequality (Section A.3) to show (14.47).

Problem 14.31 Show (14.49).

Problem 14.32 Argue the validity of (14.51).

Section 14.5

Problem 14.33 In Theorem 14.5.1, show that W has a continuous, strictly
increasing distribution function on (0,∞). Hint: Write W = aiZ

2
i + R for some

i with ai > 0 and note that aiZ
2
i has a density.

Problem 14.34 Show that the distribution of the Cramér-von Mises test
statistic (14.57) under F0 is the same for all continuous distributions F0.

Problem 14.35 Show that the Cramér-von Mises test statistic Cn given by
(14.57) can be computed by

Cn =
1

12n
+

n∑

i=1

[X(i) −
2i − 1

2n
]2 ,

where X(1) ≤ · · · ≤ X(n) denote the order statistics; see D’Agostino and Stephens
(1986), p.101 for computing formulas for other test statistics based on the
empirical distribution function.

Problem 14.36 Let F be a c.d.f. on (0, 1). If
∫ 1

0

cos(πjx)dF (x) = 0

for all j = 1, 2, . . ., then F must be the uniform distribution on (0, 1). Hint:
Integrate by parts and use the fact the functions

√
2 sin(πjx) form a complete,

orthonormal system for L2[0, 1].

Problem 14.37 Show that the Anderson-Darling statistic (14.58) can be
rewritten in the form (14.59).

Problem 14.38 Consider Wn with Tj(x) =
√

2 cos(πjx). Fix γj ≥ 0 with γ2
j <

∞. Let

qθ(x) = C(θ) exp[θ
∞∑

j=1

γjTj(x)] .

Show that, under θ = hn−1/2,

Wn
d→

∑

j

aj(Zj + hγj)
2 .

Problem 14.39 Verify the claims made in Example 14.5.4.
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Problem 14.40 What is the characteristic function of the limiting random vari-
able W of Theorem 14.5.1? As a special case, show that the characteristic function
of the limiting null distribution of the Cramér-von Mises statistic is given by

ζ(t) =
∞∏

j=1

(1 − 2t
πj

)−1/2 .

(Note this characteristic function was inverted by Smirnov; see Durbin (1973),
p.32.)

Problem 14.41 Show that the expression (14.65) exceeds α if there exists a j
for which aj > 0 and cj += 0. Also, show that (14.65) is an increasing function of
|cj |.

Section 14.6

Problem 14.42 Show why (14.77) is true.

Problem 14.43 Consider the setting of Problem 8.30 with δ = δk → 0 as
k → ∞. At what rate should δk → 0 as k → ∞ so that the limiting maximin
power is strictly between α and 1?

14.8 Notes

Goodness of fit tests based on the empirical distribution function were introduced
by Cramér (1928), von Mises (1931) and Kolmogorov (1933). A classical refer-
ence for the asymptotic theory of such tests is Durbin (1973); also see Kendall
and Stuart (1979, Chapter 30), Neuhaus (1979) and Tallis (1983). Readable ac-
counts of many goodness of fit tests can be found in D’Agostino and Stephens
(1986) and Read and Cressie (1988). Methods particularly suitable for testing
normality are discussed for example in Shapiro, Wilk, and Chen (1968), Hegazy
and Green (1975), D’Agostino (1982), Hall and Welsh (1983), and Spiegelhal-
ter (1983), and for testing exponentiality in Galambos (1982), Brain and Shapiro
(1983), Spiegelhalter (1983), Deshpande (1983), Doksum and Yandell (1984), and
Spurrier (1984). See also Kent and Quesenberry (1982). Modern treatments are
provided by Shorack and Wellner (1986), van der Vaart and Wellner (1996) and
Nikitin (1995). Some recent generalizations of the Kolmogorov-Smirnov test for
testing goodness of fit are discussed in Beran and Millar (1986, 1988), Romano
(1988), Khmaladze (1993), Cabaña and Cabaña (1997), Dümbgen (1998), and
Polonik (1999).

The Chi-squared test was introduced by Pearson (1900). Cohen and Sackrowitz
(1975) prove a finite sample local optimality property of the Chi-squared test in
the case of testing a simple null hypothesis of equal cell probabilities. In the
context of testing a multinomial, Hoeffding (1965) compares the Chi-squared
and likelihood ratio tests while letting α → 0 as n → ∞; he finds the likelihood
ratio test superior if the number of cells is fixed, but notes the situation can
be reversed otherwise. As mentioned in Section 14.3, the use of the Chi-squared
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test for testing goodness of fit for continuous observations is hampered by the
apparent loss of information through data grouping and the choice of the number
of groups. The choice of the number of groups is considered, among others, by
Quine and Robinson (1985) and by Kallenberg, Oosterhoff, and Schriever (1985).
A class of generalized Chi-squared tests is studied in Drost (1988, 1989), who uses
the concept of Pitman asymptotic relative efficiency to study the effect of number
of groups; a particular test, known as the Rao-Robson-Nikulin test, is advocated.
In the case of nuisance parameters, Fisher (1924) argued that estimating nuisance
parameters changes the limiting distribution of the Chi-squared statistic, contrary
to early opinion. Chernoff and Lehmann (1954) showed that, when parameters
are estimated by MLEs, the limiting distribution need not even be Chi-squared;
also see de Wet and Randles (1987). For further discussion on the Chi-squared
test, as well as its generalizations, see Kendall and Stuart (1979). A full account
of the practical implementation of the Chi-squared test, including the accuracy
of the Chi-squared approximation and choice of classes, as well as an extensive
bibliography, are provided by Greenwood and Nikulin (1996).

Neyman’s smooth tests were introduced in Neyman (1937b), which were seen
to be a special case of the general score tests of Rao (1947). An elementary
treatment is provided by Rayner and Best (1989), who also consider extensions
to problems with nuisance parameters. The use of smooth tests for multinomial
data with adaptive choice of order is advocated in Eubank (1997). For recent work
on smooth tests for composite hypotheses, see Inglot, Kallenberg and Ledwina
(1997), Pena (1998), and Fan and Lin (1998).

Goodness of fit tests based on the Kullback-Leibler divergence are studied in
Barron (1989). Tests based on spacings are considered in Wells, Jammalamadaka
and Tiwari (1993). Tests based on the likelihood ratio are given in Zhang (2002).



15
General Large Sample Methods

15.1 Introduction

In this chapter, we shall deal with situations where both the hypothesis and the
class of alternatives may be nonparametric and where as a result it may be diffi-
cult even to construct tests (or confidence regions) that satisfactorily control the
level (exactly or asymptotically). For such situations, we shall develop methods
which achieve this modest goal under fairly general assumptions. A secondary
aim will then be to obtain some idea of the power of the resulting tests.

In Section 15.2, we consider the class of randomization tests as a generalization
of permutation tests. Under the randomization hypothesis (see Definition 15.2.1
below), the empirical distribution of the values of a given statistic recomputed
over transformations of the data serves as a null distribution; this leads to exact
control of the level in such models. When the randomization hypothesis holds,
the construction applies broadly to any statistic. Efficiency properties ensue if
the statistic is chosen appropriately.

In Section 15.3 we review some basic constructions of confidence regions and
tests, which derive from the limiting distribution of an estimator or test sequence.
This serves to motivate the bootstrap construction studied in Section 15.4; the
bootstrap method offers a powerful approach to approximating the sampling
distribution of a given statistic or estimator. The emphasis here is to find methods
that control the level constraint, at least asymptotically. Like the randomization
construction, the bootstrap approach will be asymptotically efficient if the given
statistic is chosen appropriately; for example, see Theorem 15.4.2 and Corollary
15.4.1.

While the bootstrap is quite general, how does it compare in situations when
other large sample approaches apply as well? In Section 15.5, we provide some
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support to the claim that the bootstrap approach can improve upon methods
which rely on a normal approximation. The use of the bootstrap in the context
of hypothesis testing is studied in Section 15.6.

While the bootstrap method is quite broadly applicable, in some situations, it
can be inconsistent. A more general approach based on subsampling is presented
in 15.7. Together, these approaches serve as valuable tools for inference without
having to make strong assumptions about the underlying distribution.

15.2 Permutation and Randomization Tests

Permutation tests were introduced in Chapter 5 as a robust means of controlling
the level of a test if the underlying parametric model only holds approximately.
For example, the two-sample permutation t-test for testing equality of means
studied in Section 11 of Chapter 5 has level α whenever the two populations
have the same distribution under the null hypothesis (without the assumption of
normality). In this section, we consider the large sample behavior of permutation
tests and, more generally, randomization tests. The use of the term randomiza-
tion here is distinct from its meaning in Sections 5.10. There, randomization was
used as a device prior to collecting data, for example, by randomly assigning
experimental units to treatment or control. Such a device allows for a meaning-
ful comparison after the data has been observed, by considering the behavior
of a statistic recomputed over permutations in the data. Thus, the term ran-
domization referred to both the experimental design and the analysis of data by
recomputing a statistic over permutations or randomizations (sometimes called
rerandomizations) of the data. It is this latter use of randomization that we now
generalize. Thus, the term randomization test will refer to tests obtained by re-
computing a test statistic over transformations (not necessarily permutations) of
the data.

A general test construction will be presented that yields an exact level α test for
a fixed sample size, under a certain group invariance hypothesis. Then, two main
questions will be addressed. First, we shall consider the robustness of the level. For
example, in the two-sample problem just mentioned, the underlying populations
may have the same mean under the null hypothesis, but differ in other ways,
as in the classical Behrens-Fisher problem, where the underlying populations
are normal but may not have the same variance. Then, the rejection probability
under such populations is no longer α, and it becomes necessary to investigate
the behavior of the rejection probability. In addition, we also consider the large
sample power of permutation and randomization tests. In the two-sample problem
when the underlying populations are normal with common variance, for example,
we should like to know whether there is a significant loss in power when using a
permutation test as compared to the UMPU t-test.

15.2.1 The Basic Construction

Based on data X taking values in a sample space X , it is desired to test the null
hypothesis H that the underlying probability law P generating X belongs to a
certain family Ω0 of distributions. Let G be a finite group of transformations g



15.2. Permutation and Randomization Tests 633

of X onto itself. The following assumption, which we will call the randomization
hypothesis, allows for a general test construction.

Definition 15.2.1 (Randomization Hypothesis) Under the null hypothe-
sis, the distribution of X is invariant under the transformations in G; that is, for
every g in G, gX and X have the same distribution whenever X has distribution
P in Ω0.

The randomization hypothesis asserts that the null hypothesis parameter space
Ω0 remains invariant under g in G. However, here we specifically do not require
the alternative hypothesis parameter space to remain invariant (unlike what was
assumed in Chapter 6).

As an example, consider testing the equality of distributions based on two inde-
pendent samples (Y1, . . . , Ym) and (Z1, . . . , Zn), which was previously considered
in Sections 5.8-5.11. Under the null hypothesis that the samples are generated
from the same probability law, the observations can be permuted or assigned at
random to either of the two groups, and the distribution of the permuted samples
is the same as the distribution of the original samples. (Note that a test that is
invariant with respect to all permutations of the data would be useless here.)

To describe the general construction of a randomization test, let T (X) be any
real-valued test statistic for testing H. Suppose the group G has M elements.
Given X = x, let

T (1)(x) ≤ T (2)(x) ≤ · · · ≤ T (M)(x)

be the ordered values of T (gx) as g varies in G. Fix a nominal level α, 0 < α < 1,
and let k be defined by

k = M − [Mα] , (15.1)

where [Mα] denotes the largest integer less than or equal to Mα. Let M+(x) and
M0(x) be the number of values T (j)(x) (j = 1, . . . , M) which are greater than
T (k)(x) and equal to T (k)(x), respectively. Set

a(x) =
Mα − M+(x)

M0(x)
.

Generalizing the construction presented in Section 5.8, define the randomiza-
tion test function φ(x) to be equal to 1, a(x), or 0 according to whether T (x) >
T (k)(x), T (x) = T (k)(x), or T (x) < T (k)(x), respectively. By construction, for
every x in X ,

∑

g∈G

φ(gx) = M+(x) + a(x)M0(x) = Mα . (15.2)

The following theorem shows that the resulting test is level α, under the hy-
pothesis that X and gX have the same distribution whenever the distribution of
X is in Ω0. Note that this result is true for any choice of test statistic T .

Theorem 15.2.1 Suppose X has distribution P on X and the problem is to test
the null hypothesis P ∈ Ω0. Let G be a finite group of transformations of X
onto itself. Suppose the randomization hypothesis holds, so that, for every g ∈ G,
X and gX have the same distribution whenever X has a distribution P in Ω0.
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Given a test statistic T = T (X), let φ be the randomization test as described
above. Then,

EP [φ(X)] = α for all P ∈ Ω0 . (15.3)

Proof. To prove (15.3), by (15.2),

Mα = EP [
∑

g

φ(gX)] =
∑

g

EP [φ(gX)] .

By hypothesis EP [φ(gX)] = EP [φ(X)], so that

Mα =
∑

g

EP [φ(X)] = MEP [φ(X)] ,

and the result follows.

To gain further insight as to why the construction works, for any x ∈ X , let
Gx denote the G-orbit of x; that is,

Gx = {gx : g ∈ G} .

Recall from Section 6.2 that these orbits partition the sample space. The hy-
pothesis in Theorem 15.2.1 implies that the conditional distribution of X given
X ∈ Gx is uniform on Gx, as will be seen in the next theorem. Since this con-
ditional distribution is the same for all P ∈ Ω0, a test can be constructed to be
level α conditionally, which is then level α unconditionally as well. Because the
event {X ∈ Gx} typically has probability zero for all x, we need to be careful
about how we state a result. As x varies, the sets Gx form a partition of the
sample space. Let G be the σ-field generated by this partition.

Theorem 15.2.2 Under the null hypothesis of Theorem 15.2.1, for any real-
valued statistic T = T (X), any P ∈ Ω0, and any Borel subset B of the real
line,

P{T (X) ∈ B|X ∈ G} = M−1
∑

g

I{T (gx) ∈ B} (15.4)

with probability one under P . In particular, if the M values of T (gx) as g varies
in G are all distinct, then the uniform distribution on these M values serves as
a conditional distribution of T (X) given that X ∈ Gx.

Proof. First, we claim that, for any g ∈ G and E ∈ G, gE = E. To see why,
assume y ∈ E. Then, g−1y ∈ E, because g−1y is on the same orbit as y. Then,
gg−1y ∈ gE or y ∈ gE. A similar argument shows that, if y ∈ gE, then y ∈ E,
so that gE = E. Now, the right hand side of (15.4) is clearly G-measurable, since
the right hand side is constant on any orbit. We need to prove, for any E ∈ G,

∫

E

M−1
∑

g

I{T (gx) ∈ B}dP (x) = P{T (X) ∈ B, X ∈ E} .

But, the left hand side is

M−1
∑

g

∫

E

I{T (gx) ∈ B}dP (x) = M−1
∑

g

P{T (gX) ∈ B, X ∈ E}
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= M−1
∑

g

P{T (gX) ∈ B, gX ∈ gE} = M−1
∑

g

P{T (gX) ∈ B, gX ∈ E} ,

since gE = E. Hence, this last expression becomes (by the randomization
hypothesis)

M−1
∑

g

P{T (X) ∈ B, X ∈ E} = P{T (X) ∈ B, X ∈ E} ,

as was to be shown.

Example 15.2.1 (One Sample Tests) Let X = (X1, . . . , Xn), where the Xi

are i.i.d. real-valued random variables. Suppose that, under the null hypothesis,
the distribution of the Xi is symmetric about 0. This applies, for example, to the
parametric normal location model when the null hypothesis specifies the mean
is 0, but it also applies to the nonparametric model that consists of all distribu-
tions with the null hypothesis specifying the underlying distribution is symmetric
about 0. For i = 1, . . . , n, let εi take on either the value 1 or −1. Consider a trans-
formation g = (ε1, . . . , εn) of RI n that takes x = (x1, . . . , xn) to (ε1x1, . . . , εnxn).
Finally, let G be the M = 2n collection of such transformations. Then, the ran-
domization hypothesis holds, i.e., X and gX have the same distribution under
the null hypothesis.

Example 15.2.2 (Two Sample Tests) Suppose Y1, . . . , Ym are i.i.d. observa-
tions from a distribution PY and, independently, Z1, . . . , Zn are i.i.d. observations
from a distribution PZ . Here, X = (Y1, . . . , Ym, Z1, . . . , Zn). Suppose that, un-
der the null hypothesis, PY = PZ . This applies, for example, to the parametric
normal two-sample problem for testing equality of means when the populations
have a common (possibly unknown) variance. Alternatively, it also applies to
the parametric normal two-sample problem where the null hypothesis is that the
means and variances are the same, but under the alternative either the means or
the variances may differ; this model was advocated by Fisher (1935a, p.122-124).
Lastly, this setup also applies to the nonparametric model where PY and PZ may
vary freely, but the null hypothesis is that PY = PZ . To describe an appropriate
G, let N = m + n. For x = (x1, . . . , xN ) ∈ RI N , let gx ∈ RI N be defined by
(xπ(1), . . . , xπ(N)), where (π(1), . . . , π(N)) is a permutation of {1, . . . , N}. Let G
be the collection of all such g, so that M = N !. Whenever PY = PZ , X and
gX have the same distribution. In essence, each transformation g produces a
new data set gx, of which the first m elements are used as the Y sample and
the remaining n as the Z sample to recompute the test statistic. Note that, if a
test statistic is chosen that is invariant under permutations within each of the Y
and Z samples (which makes sense by sufficiency), it is enough to consider the(

N
m

)
transformed data sets obtained by taking m observations from all N as the

Y observations and the remaining n as the Z observations (which, of course, is
equivalent to using a subgroup G′ of G).

As a special case, suppose the observations are real-valued and the underlying
distribution is assumed continuous. Suppose T is any statistic that is a function
of the ranks of the combined observations, so that T is a rank statistic (previously
studied in Sections 6.8 and 6.9). The randomization (or permutation) distribution
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can be obtained by recomputing T over all permutations of the ranks. In this
sense, rank tests are special cases of permutation tests.

Example 15.2.3 (Tests of Independence) Suppose that X consists of i.i.d.
random vectors X = ((Y1, Z1), . . . , (Yn, Zn)) having common joint distribution
P and marginal distributions PY and PZ . Assume, under the null hypothe-
sis, Yi and Zi are independent, so that P is the product of PY and PZ . This
applies to the parametric bivariate normal model when testing that the cor-
relation is zero, but it also applies to the nonparametric model when the null
hypothesis specifies Yi and Zi are independent with arbitrary marginal distri-
butions. To describe an appropriate G, let (π(1), . . . , π(n)) be a permutation of
{1, . . . n}. Let g be the transformation that takes ((y1, z1), . . . , (yn, zn)) to the
value ((y1, zπ(1)), . . . , (yn, zπ(n))). Let G be the collection of such transforma-
tions, so that M = n!. Whenever Yi and Zi are independent, X and gX have the
same distribution.

In general, one can define a p-value p̂ of a randomization test by

p̂ =
1
M

∑

g

I{T (gX) ≥ T (X)} . (15.5)

It can be shown (Problem 15.2) that p̂ satisfies, under the null hypothesis,

P{p̂ ≤ u} ≤ u for all 0 ≤ u ≤ 1 . (15.6)

Therefore, the nonrandomized test that rejects when p̂ ≤ α is level α.
Because G may be large, one may resort to an approximation to construct

the randomization test, for example, by randomly sampling transformations g
from G with or without replacement. In the former case, for example, suppose
g1, . . . , gB−1 are i.i.d. and uniformly distributed on G. Let

p̃ =
1
B

[
1 +

B−1∑

i=1

I{T (giX) ≥ T (X)}
]

. (15.7)

Then, it can be shown (15.3) that, under the null hypothesis,

P{p̃ ≤ u} ≤ u for all 0 ≤ u ≤ 1 , (15.8)

where this probability reflects variation in both X and the sampling of the gi.
Note that (15.8) holds for any B, and so the test that rejects when p̃ ≤ α is level
α even when a stochastic approximation is employed. Of course, the larger the
value of B, the closer p̂ and p̃ are to each other; in fact, p̂− p̃ → 0 in probability
as B → ∞ (Problem 15.4). Approximations based on auxiliary randomization
(such as the sampling of gi) are known as stochastic approximations.

15.2.2 Asymptotic Results

We next study the limiting behavior of the randomization test in order to derive
its large sample power properties. For example, for testing the mean of a normal
distribution is zero with unspecified variance, one would use the optimal t-test.
But if we use the randomization test based on the transformations in Example
15.2.1, we will find that the randomization test has the same limiting power
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as the t-test against contiguous alternatives, and so is LAUMP. Of course, for
testing the mean, the randomization test can be used without the assumption of
normality, and we will study its asymptotic properties both when the underlying
distribution is symmetric so that the randomization hypothesis holds, and also
when the randomization hypothesis fails.

Consider a sequence of situations with X = Xn, P = Pn, X = Xn, G = Gn,
T = Tn, etc. defined for n = 1, 2, . . .; notice we use a superscript for the data
X = Xn. Typically, X = Xn = (X1, . . . , Xn) consists of n i.i.d. observations
and the goal is to consider the behavior of the randomization test sequence as
n → ∞.

Let R̂n denote the randomization distribution of Tn defined by

R̂n(t) = M−1
n

∑

g∈Gn

I{Tn(gXn) ≤ t} . (15.9)

We seek the limiting behavior of R̂n(·) and its 1 − α quantile, which we now
denote r̂n(1 − α) (but in the previous subsection was denoted T (k)(X)); thus,

r̂n(1 − α) = R̂−1
n (1 − α) = inf{t : R̂n(t) ≥ 1 − α} .

We will study the behavior of R̂n under the null hypothesis and under a sequence
of alternatives. First, observe that

E[R̂n(t)] = P{Tn(GnXn) ≤ t} ,

where Gn is a random variable that is uniform on Gn. So, in the case the ran-
domization hypothesis holds, GnXn and Xn have the same distribution and
so

E[R̂n(t)] = P{Tn(Xn) ≤ t} .

Then, if Tn converges in distribution to a c.d.f. R(·) which is continuous at t, it
follows that

E[R̂n(t)] → R(t) .

In order to deduce R̂n(t)
P→ R(t) (i.e., the randomization distribution asymp-

totically approximates the unconditional distribution of Tn), it is then enough
to show V ar[R̂n(t)] → 0. This approach for proving consistency of R̂n(t) and
r̂n(1 − α) is used in the following result, due to Hoeffding (1952). Note that the
randomization hypothesis is not assumed.

Theorem 15.2.3 Suppose Xn has distribution Pn in Xn, and Gn is a finite
group of transformations from Xn to Xn. Let Gn be a random variable that is
uniform on Gn. Also, let G′

n have the same distribution as Gn, with Xn, Gn,
and G′

n mutually independent. Suppose, under Pn,

(Tn(GnXn), Tn(G′
nXn))

d→ (T, T ′) , (15.10)

where T and T ′ are independent, each with common c.d.f. R(·). Then, under Pn,

R̂n(t)
P→ R(t) (15.11)

for every t which is a continuity point of R(·). Let

r(1 − α) = inf{t : R(t) ≥ 1 − α} .
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Suppose R(·) is continuous and strictly increasing at r(1 − α). Then, under Pn,

r̂n(1 − α)
P→ r(1 − α) .

Proof. Let t be a continuity point of R(·). Then,

EPn [R̂n(t)] = Pn{Tn(GnXn) ≤ t} → R(t) ,

by the convergence hypothesis (15.10). It therefore suffices to show that
V arPn [R̂n(t)] → 0 or, equivalently, that

EPn [R̂2
n(t)] → R2(t) .

But,

EPn [R̂2
n(t)] = M−2

n

∑

g

∑

g′

Pn{Tn(gXn) ≤ t, Tn(g′Xn) ≤ t}

= Pn{Tn(GnXn) ≤ t, Tn(G′
nXn) ≤ t} → R2(t) ,

again by the convergence hypothesis (15.10). Hence, R̂n(t) → R(t) in Pn-
probability. The convergence of r̂n(1 − α) now follows by Lemma 11.2.1
(ii).

Note that, if the randomization hypothesis holds, then Tn(Xn) and Tn(GnXn)
have the same distribution. The assumption (15.10) then implies the un-
conditional distribution of Tn(Xn) under Pn converges to R in distribution.
The conclusion is that the randomization distribution approximates this
(unconditional) limit distribution in the sense that (15.11) holds.

Example 15.2.4 (One Sample Test, continuation of Example 15.2.1) In
Example 15.2.1, first consider Tn = n1/2X̄n. If P denotes the common distribu-
tion of the Xi, then Pn = P n is the joint distribution of the sample. Let P be any
distribution with mean 0 and finite nonzero variance σ2(P ) (not necessarily sym-
metric). We will verify (15.10) with R(t) = Φ(t/σ(P )). Let ε1, . . . , εn, ε′1, . . . , ε

′
n

be mutually independent random variables, each 1 or −1 with probability 1
2 each.

We must find the limiting distribution of

n−1/2
∑

i

(εiXi, ε
′
iXi) .

But, the vectors (εiXi, ε
′
iXi), 1 ≤ i ≤ n, are i.i.d. with

EP (εiXi) = EP (ε′iXi) = E(εi)EP (Xi) = 0 ,

EP [(εiXi)
2] = E(ε2i )EP (X2

i ) = σ2(P ) = EP [(ε′iXi)
2] ,

and

CovP (εiXi, ε
′
iXi) = EP (εiε

′
iX

2
i ) = E(εi)E(ε′i)EP (X2

i ) = 0 .

By the bivariate Central Limit Theorem,

n−1/2
∑

i

(εiXi, ε
′
iXi)

d→ (T, T ′) ,
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where T and T ′ are independent, each distributed as N(0, σ2(P )). Hence, by
Theorem 15.2.3, we conclude

R̂n(t)
P→ Φ(t/σ(P ))

and

r̂n(1 − α)
P→ σ(P )z1−α .

Let φn be the randomization test which rejects when Tn > r̂n(1 − α), accepts
when Tn < r̂n(1− α) and possibly randomizes when Tn = r̂n(1− α). Since Tn is
asymptotically normal, it follows by Slutsky’s Theorem that

EP (φn) = P{Tn > r̂n(1 − α)} + o(1) → P{σ(P )Z > σ(P )z1−α} = α ,

where Z denotes a standard normal variable. In other words, we have deduced
the following for the problem of testing the mean of P is zero versus the mean
exceeds zero. By Theorem 15.2.1, φn is exact level α if the underlying distribution
is symmetric about 0; otherwise, it is at least asymptotically pointwise level α as
long as the variance is finite.

We now investigate the asymptotic power of φn against the sequence of
alternatives that the observations are N(hn−1/2, σ2). By the above, under
N(0, σ2), r̂n(1− α) → σz1−α in probability. By contiguity, it follows that, under
N(hn−1/2, σ2), r̂n(1 − α) → σz1−α in probability as well. Under N(hn−1/2, σ2),
Tn is N(h, σ2). Therefore, by Slutsky’s Theorem, the limiting power of φn against
N(hn−1/2, σ2) is then

EPn(φn) → P{σZ + h > σz1−α} = 1 − Φ(z1−α − h
σ

) .

In fact, this is also the limiting power of the optimal t-test for this problem. Thus,
there is asymptotically no loss in efficiency when using the randomization test
as opposed to the optimal t-test, but the randomization test has the advantage
that its size is α over all symmetric distributions. In the terminology of Section
13.2, the efficacy of the randomization test is 1/σ and its ARE with respect to
the t-test is 1. In fact, the ARE is 1 whenever the underlying family is a q.m.d.
location family with finite variance (Problem 15.6).

In fact, the randomization test that is based on Tn is identical to the random-
ization test that is based on the usual t-statistic tn. To see why, first observe
that the randomization test based on Tn is identical to the randomization test
based on T̃n = Tn/(

∑
i X2

i )1/2, simply because all “randomizations” of the data
have the same value for the sum of squares. But, as was seen in Section 5.2,
tn is an increasing function of Sn for positive Sn. Hence, the one-sample t-test
which rejects when tn exceeds tn−1,1−α, the 1 − α quantile of the t-distribution
with n− 1 degrees of freedom, is equivalent to a randomization test based on the
statistic tn, except that tn−1,1−α is replaced by the data-dependent value. Such
an analogy was previously made for the two-sample test in Section 5.8.

The value of the randomization test is that one does not have to assume
normality. On the other hand, the asymptotic results allow one to avoid the
exact computation of the randomization distribution by approximating the criti-
cal value by the normal quantile z1−α or even tn−1,1−α. The problem of whether
to use z1−α or tn−1,1−α is solved in Diaconis and Holmes (1994), who also give
algorithms for the exact evaluation of the randomization distribution.
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In the previous example, it was seen that the randomization distribution
approximates the (unconditional) null distribution of Tn in the sense that

R̂n(t) − P{Tn ≤ t} P→ 0

if P has mean 0 and finite variance, since P{Tn ≤ t} → Φ(t/σ(P )). The following
is a more general version of this result.

Theorem 15.2.4 (i) Suppose X1, . . . , Xn are i.i.d. real-valued random variables
with distribution P , assumed symmetric about 0. Assume Tn is asymptotically
linear in the sense that, for some function ψP ,

Tn = n−1/2
n∑

i=1

ψP (Xi) + oP (1) , (15.12)

where EP [ψP (Xi)] = 0 and τ2
P = V arP [ψP (Xi)] < ∞. Also, assume ψP is an

odd function. Let R̂n denote the randomization distribution based on Tn and the
group of sign changes in Example 15.2.1. Then, the hypotheses of Theorem 15.2.3
hold with Pn = P n and R(t) = Φ(t/τ(P )), and so

R̂n(t)
P→ Φ(t/τ(P )) .

(ii) If P is not symmetric about 0, let F denote its c.d.f. and define a symmetrized
version P̃ of P as the probability with c.d.f.

F̃ (t) =
1
2
[F (t) + 1 − F (−t)] .

Assume Tn satisfies (15.12) under P̃ . Then, under P ,

R̂n(t)
P→ Φ(t/τ(P̃ )) and r̂n(1 − α)

P→ τ(P )z1−α .

Proof. Independent of Xn = (X1, . . . , Xn) let ε1, . . . , εn and ε′1, . . . , ε
′
n be mutu-

ally independent, each ±1 with probability 1
2 . Then, in the notation of Theorem

15.2.3, GnXn = (ε1X1, . . . , εnXn). Set rn(X1, . . . , Xn) = Tn − n−1/2 ∑
ψP (Xi)

so that rn(X1, . . . , Xn)
P→ 0. Since εiXi has the same distribution as Xi, it follows

that rn(ε1X1, . . . , εnXn)
P→ 0, and the same is true with εi replaced by ε′i. Then,

(
Tn(GnXn), Tn(G′

nXn)
)

= n−1/2
n∑

i=1

(
ψP (εiXi), ψP (ε′iXi)

)
+ oP (1) .

But since ψP is odd, ψP (εiXi) = εiψP (Xi). By the bivariate CLT,

n−1/2
n∑

i=1

(
εiψP (Xi), ε

′
iψP (Xi)

) d→ (T, T ′) ,

where (T, T ′) is bivariate normal, each with mean 0 and variance τ2
P , and

Cov(T, T ′) = Cov
(
εiψP (Xi), ε

′
iψP (Xi)

)
= E(εi)E(ε′i)EP [ψ2

P (Xi)] = 0 ,

and so (i) follows.
To prove (ii), observe that, if X has distribution P and X̃ has distribution

P̃ , then |X| and |X̃| have the same distribution. But, the construction of the
randomization distribution only depends on the values |X1|, . . . , |Xn|. Hence, the
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behavior of R̂n under P and P̃ must be the same. But, the behavior of R̂n under
P̃ is given in (i).

Example 15.2.5 (One-Sample Location Models) Suppose X1, . . . , Xn are
i.i.d. f(x− θ), where f is assumed symmetric about θ0 = 0. Assume the family is

q.m.d. at θ0 with score statistic Zn. Thus, under θ0, Zn
d→ N(0, I(θ0)). Consider

the randomization test based on Tn = Zn (and the group of sign changes). It is
exact level α for all symmetric distributions. Moreover, Zn = n−1/2 ∑

i η̃(Xi, θ0),
where η̃ can always be taken to be an odd function if f is even. So, the assumptions
of Theorem 15.2.4 (i) hold. Hence, when θ0 = 0,

r̂n(1 − α) → I1/2(θ0)z1−α .

By contiguity, the same is true under θn,h = hn−1/2. By Theorem 13.2.1, the
efficacy of the randomization test is I1/2(θ0). By Corollary 13.2.1, the ARE of
the randomization test with respect to the Rao test that uses the critical value
z1−αI1/2(θ0) (or even an exact critical value based on the true unconditional
distribution of Zn under θ0) is 1. Indeed, the randomization test is AUMP. There-
fore, there is no loss of efficiency in using the randomization test, and it has the
advantage of being level α across symmetric distributions.

Example 15.2.6 (Two-Sample Tests, Continuation of Example 15.2.2)
Recall the setup of Example 15.2.2 where Y1, . . . , Ym are i.i.d. PY and, inde-
pendently, Z1, . . . , Zn are i.i.d. PZ , where PY and PZ are now assumed to be
distributions on the real line. Let µ(P ) and σ2(P ) denote the mean and variance,
respectively, of a distribution P . Consider the test statistic

Tm,n = m1/2(Ȳm − Z̄n) = m−1/2[
m∑

i=1

Yi −
m
n

n∑

j=1

Zj ] . (15.13)

Assume m/n → λ ∈ (0,∞) as m, n → ∞. If the variances of PY and PZ are finite
and nonzero and µ(PY ) = µ(PZ), then

Tm,n
d→ N

(
0, σ2(PY ) + λσ2(PZ)

)
.

We wish to study the limiting behavior of the randomization test based on the
test statistic Tm,n. If the null hypothesis implies that PY = PZ , then the ran-
domization test is exact level α, though we may still require an approximation
to its power. On the other hand, we may consider using the randomization test
for testing the null hypothesis µ(PY ) = µ(PZ), and the randomization test is no
longer exact if the distributions differ.

Let N = m + n and write

(X1, . . . , XN ) = (Y1, . . . , Ym, Z1, . . . , Zn) .

Independent of the Xs, let (π(1), . . . , π(N)) and (π′(1), . . . , π′(N)) be indepen-
dent random permutations of 1, . . . , N . In order to verify the conditions for
Theorem 15.2.3, we need to determine the joint limiting behavior of

(Tm,n, T ′
m,n) = m−1/2(

N∑

i=1

XiWi,
N∑

i=1

XiW
′
i ) , (15.14)
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where Wi = 1 if π(i) ≤ m and Wi = −m/n otherwise; W ′
i is defined with π

replaced by π′. Note that E(Wi) = E(XiWi) = 0. Moreover, an easy calculation
(Problem 15.8) gives

V ar(Tm,n) =
m
n

σ2(PY ) + σ2(PZ) (15.15)

and

Cov(Tm,n, T ′
m,n) = m−1

N∑

i=1

N∑

j=1

E(XiXjWiW
′
j) = 0 , (15.16)

by the independence of the Wi and the W ′
i . These calculations suggest the

following result.

Theorem 15.2.5 Assume the above setup with m/n → λ ∈ (0,∞). If σ2(PY )
and σ2(PZ) are finite and nonzero and µ(PY ) = µ(PZ), then (15.14) converges
in law to a bivariate normal distribution with independent, identically distributed
marginals having mean 0 and variance

τ2 = λσ2(PY ) + σ2(PZ) .

Proof. Assume without loss of generality that µ(PY ) = 0. By the Cramér-Wold
device (Theorem 11.2.3), it suffices to show, for any a and b,

m−1/2
N∑

i=1

Xi(aWi + bW ′
i )

d→ N
(
0, (a2 + b2)τ2) .

The argument follows by conditioning on the Wi and W ′
i and writing the left side

as

m−1/2
m∑

i=1

Yi(aWi + bW ′
i ) + m−1/2

n∑

j=1

Zj(aWm+j + bW ′
m+j) , (15.17)

which becomes (conditionally) an independent sum of a linear combination of
independent variables. It is not hard to check that m−1 ∑m

i=1(aWi + bW ′
i )

2 is
bounded in probability (because its expectation is uniformly bounded) and

m−1 max
i

|aWi + bW ′
i |2

P→ 0 . (15.18)

Thus, Lemma 11.3.3 can be applied (conditionally) to each term in (15.17) and
the result follows.

Consider the problem of testing equality of means in the two-sample problem
without imposing parametric assumptions on the underlying distributions, which
can be viewed as a nonparametric version of the Behrens-Fisher problem. Theo-
rem 15.2.3 and Theorem 15.2.5 imply that the randomization distribution is, in
large samples, approximately a normal distribution with mean 0 and variance τ2.
Hence, the critical value of the randomization test that rejects for large values
of Tm,n converges in probability to z1−ατ . On the other hand, the true sampling
distribution of Tm,n is approximately normal with mean 0 and variance

σ2(PY ) + λσ2(PZ) ,
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if µ(PY ) = µ(PZ). These two distributions are identical if and only if λ = 1 or
σ2(PY ) = σ2(PZ). Therefore, for testing equality of means, the randomization
test will be pointwise consistent in level even if PY and PZ differ, as long as the
variances of the populations are the same, or the sample sizes are roughly the
same. In particular, when the underlying distributions have the same variance
(as in the normal theory model assumed in Section 5.3 for which the two-sample
t-test is UMPU), the two-sample t-test is asymptotically equivalent to the cor-
responding randomization test. This equivalence is not limited to the behavior
under the null hypothesis; see Problem 15.10.

If the underlying variances differ and λ += 1, the permutation test based on
Tm,n given in (15.13) will have rejection probability that does not tend to α.
However, if one replaces Tm,n by the studentized version

T̃m,n = Tm,n/

√
S2

Y +
m
n

S2
Z , (15.19)

where

S2
Y = (m − 1)−1

m∑

i=1

(Yi − Ȳm)2 and S2
Z = (n − 1)−1

n∑

j=1

(Zj − Z̄n)2 ,

then the permutation test is pointwise consistent in level for testing equality of
means, even when the underlying distributions have possibly different variances
and the sample sizes differ (Problem 15.11).

Further results are given in Romano (1990). For example, two-sample permu-
tations tests based on sample medians lead to tests that are not even pointwise
consistent in level, unless the strict randomization hypothesis of equality of dis-
tributions holds. Thus, if testing equality of population medians based on the
difference between sample medians, the asymptotic rejection probability of the
randomization test need not be α even with the underlying populations have the
same median.

15.3 Basic Large Sample Approximations

In the previous section, it was shown how permutation and randomization tests
can be used in certain problems where the randomization hypothesis holds. Un-
fortunately, randomization tests only apply to a restricted class of problems. In
this section, we discuss some generally used asymptotic approaches for construct-
ing confidence regions or hypothesis tests based on data X = Xn. In what follows,
Xn = (X1, . . . , Xn) is typically a sample of n i.i.d. random variables taking values
in a sample space S and having unknown probability distribution P , where P is
assumed to belong to a certain collection P of distributions. Even outside the i.i.d.
case, we think of the data Xn as coming from a model indexed by the unknown
probability mechanism P . The collection P may be a parametric model indexed
by a Euclidean parameter, but we will also consider nonparametric models.

We shall be interested in inferences concerning some parameter θ(P ). By the
usual duality between the construction of confidence regions and hypothesis tests,
we can restrict the discussion to the construction of confidence regions. Let the
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range of θ be denoted Θ, so that

Θ = {θ(P ) : P ∈ P} .

Typically, Θ is a subset of the real line, but we also consider more general param-
eters. For example, the problem of estimating the entire cumulative distribution
function (c.d.f.) of real-valued observations may be treated, so that Θ is an
appropriate function space.

This leads to considering a root Rn(Xn, θ(P )), a term first coined by Be-
ran (1984), which is just some real-valued functional depending on both Xn

and θ(P ). The idea is that a confidence interval for θ(P ) could be constructed if
the distribution of the root were known. For example, an estimator θ̂n of a real-
valued parameter θ(P ) might be given so that a natural choice is Rn(Xn, θ(P )) =
[θ̂n − θ(P )], or alternatively Rn(Xn, θ(P )) = [θ̂n − θ(P )]/sn, where sn is some
estimate of the standard deviation of θ̂n.

When P is suitably large so that the problem is nonparametric in nature, a
natural construction for an estimator θ̂n of θ(P ) is the plug-in estimator θ̂n =
θ(P̂n), where P̂n is the empirical distribution of the data, defined by

P̂n(E) = n−1
n∑

i=1

I{Xi ∈ E} .

Of course, this construction implicitly assumes that θ(·) is defined for empirical
distributions so that θ(P̂n) is at least well-defined. Alternatively, in parametric
problems for which P is indexed by a parameter ψ belonging to a subset Ψ of
RI p so that P = {Pψ : ψ ∈ Ψ}, then θ(P ) can be described as a functional t(ψ).
Hence, θ̂n is often taken to be t(ψ̂n), where ψ̂n is some desirable estimator of ψ,
such as an efficient likelihood estimator.

Let Jn(P ) be the distribution of Rn(Xn, θ(P )) under P , and let Jn(·, P ) be
the corresponding cumulative distribution function defined by

Jn(x, P ) = P{Rn(Xn, θ(P )) ≤ x}.

In order to construct a confidence region for θ(P ) based on the root
Rn(Xn, θ(P )), the sampling distribution Jn(P ) or its appropriate quantiles must
be known or estimated. Some standard methods, based on pivots and asymptotic
approximations, are now briefly reviewed. Note that in many of the examples
when the observations are real-valued, it is more convenient and customary to
index the unknown family of distributions by the cumulative distribution function
F rather than P . We will freely use both, depending on the situation.

15.3.1 Pivotal Method

In certain exceptional cases, the distribution Jn(P ) of Rn(Xn, θ(P )) under P does
not depend on P . In this case, the root Rn(Xn, θ(P )) is called a pivotal quantity
or a pivot for short. Such quantities were previously considered in Section 6.12.
From a pivot, a level 1 − α confidence region for θ(P ) can be constructed by
choosing constants c1 and c2 so that

P{c1 ≤ Rn(Xn, θ(P )) ≤ c2} ≥ 1 − α . (15.20)
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Then, the confidence region

Cn = {θ ∈ Θ : c1 ≤ Rn(Xn, θ) ≤ c2}

contains θ(P ) with probability under P at least 1 − α. Of course, the coverage
probability is exactly 1 − α if one has equality in (15.20).

Classical examples where confidence regions may be formed from a pivot are
the following.

Example 15.3.1 (Location and Scale Families) Suppose we are given an
i.i.d. sample Xn = (X1, . . . , Xn) of n real-valued random variables, each hav-
ing a distribution function of the form F [(x − θ)/σ], where F is known, θ is a
location parameter, and σ is a scale parameter. More generally, suppose θ̂n is
location and scale equivariant in the sense that

θ̂n(aX1 + b, . . . , aXn + b) = aθ̂n(X1, . . . , Xn) + b ;

also suppose σ̂n is location invariant and scale equivariant in the sense that

σ̂n(aX1 + b, . . . , aXn + b) = |a|σ̂n(X1, . . . , Xn) .

Then, the root Rn(Xn, θ(P )) = n1/2[θ̂n − θ(P )]/σ̂n is a pivot (Problem 15.14).
For example, in the case where F is the standard normal distribution function, θ̂n

is the sample mean and σ̂2
n is the usual unbiased estimate of variance, Rn has a

t-distribution with n−1 degrees of freedom. For another example, if σ̂n is location
invariant and scale equivariant, then σ̂n/σ is also a pivot, since its distribution
will not depend on θ or σ, but will of course depend on F . When F is not
normal, exact distribution theory may be difficult, but one may resort to Monte
Carlo simulation of Jn(P ) (discussed below). This example can be generalized
to a class of parametric problems where group invariance considerations apply,
and pivotal quantities lead to equivariant confidence sets; see Section 6.12 and
Problems 6.69-6.72.

Example 15.3.2 (Kolmogorov-Smirnov Confidence Bands) Suppose that
Xn = (X1, · · · , Xn) be a sample of n real-valued random variables having a dis-
tribution function F . For a fixed value of x, a (pointwise) confidence interval for
F (x) can be based on the empirical distribution function F̂n(x), by using the fact
that nF̂n(x) has a binomial distribution with parameters n and F (x). The goal
now is to construct a uniform or simultaneous confidence band for θ(F ) = F , so
that it is required to find a set of distribution functions containing the true F (x)
for all x (or uniformly in x) with coverage probability 1 − α. Toward this end,
consider the root

Rn(Xn, F ) = n1/2 sup
x

|F̂n(x) − F (x)|.

Recall that, if F is continuous, then the distribution of Rn(Xn, F ) under F
does not depend on F and so Rn(Xn, F ) is a pivot (Section 6.13 and Problem
11.57). As discussed in Section 6.13 and 14.2, the finite sample quantiles of this
distribution have been tabled. Without the assumption that F is continuous, the
distribution of Rn(Xn, F ) under F does depend on F , both in finite samples and
asymptotically.
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In general, if Rn(Xn, θ(P )) is a pivot, its distribution may not be explicitly
computable or have a known tractable form. However, since there is only one
distribution that needs to be known (and not an entire family indexed by P ), the
problem is much simpler than if the distribution depends on P . One can resort to
Monte Carlo simulation to approximate this distribution to any desired level of
accuracy, by simulating the distribution of Rn(Xn, θ(P )) under P for any choice
of P in P. For further details, see Example 11.2.13.

15.3.2 Asymptotic Pivotal Method

In general, the above construction breaks down because Rn(Xn, θ(P )) has a
distribution Jn(P ) which depends on the unknown probability distribution P
generating the data. However, it is then sometimes the case that Jn(P ) con-
verges weakly to a limiting distribution J which is independent of P . In this
case, the root (sequence) Rn(Xn, θ(P )) is called an asymptotic pivot, and then
the quantiles of J may be used to construct an asymptotic confidence region for
θ(P ).

Example 15.3.3 (Parametric Models) Suppose Xn = (X1, . . . , Xn) is a
sample from a model {Pθ, θ ∈ Ω}, where Ω is a subset of RI k. To construct a con-
fidence region for θ, suppose θ̂n is an efficient likelihood estimator (as discussed
in Section 12.4), satisfying

n1/2(θ̂n − θ)
d→ N(0, I−1(θ)) ,

where I(θ) is the Fisher Information matrix, assumed continuous. Then, the root
(expressed as a function of θ rather than Pθ)

Rn(Xn, θ) = n(θ̂n − θ)T I(θ̂n)(θ̂n − θ)

is an asymptotic pivot. The limiting distribution is the χ2
k, the Chi-squared dis-

tribution with k degrees of freedom, and the resulting confidence region is Wald’s
confidence ellipsoid introduced in Section 12.4.2. Alternatively, let

R̃n(Xn, θ) =
supβ∈Ω Ln(β)

Ln(θ)
,

where Ln(θ) is the likelihood function (12.56). As discussed in Section 12.4.2,
under regularity conditions, 2 log R̃n(Xn, θ) is asymptotically χ2

k, in which case
R̃n(Xn, θ) is an asymptotic pivot.

Example 15.3.4 (Nonparametric Mean) Suppose Xn = (X1, . . . , Xn) is a
sample of n real-valued random variables having distribution function F , and
we wish to construct a confidence interval for θ(F ) = EF (Xi), the mean of the
observations. Assume Xi has a finite nonzero variance σ2(F ). Let the root Rn be
the usual t-statistic defined by Rn(Xn, θ(F )) = n1/2[X̄n−θ(F )]/Sn, where X̄n is
the sample mean and S2

n is the (unbiased version of the) sample variance. Then,
Jn(F ) converges weakly to J = N(0, 1), and so the t-statistic is an asymptotic
pivot.
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15.3.3 Asymptotic Approximation

The pivotal method assumes the root has a distribution Jn(P ) which does not
depend on P , while the asymptotic pivotal method assumes the root has an
asymptotic distribution J(P ) which does not depend on P . More generally, Jn(P )
converges to a limiting distribution J(P ) which depends on P , and we shall now
consider this case. Suppose that this limiting distribution has a known form which
depends on P , but only through some unknown parameters. For example, in the
nonparametric mean example, the root n1/2[X̄n − θ(F )] has the N(0, σ2(F ))
distribution, and so depends on F through the variance parameter σ2(F ). An
approximation of the asymptotic distribution is J(P̂n), where P̂n is some esti-
mate of P . Typically, J(P ) is a normal distribution with mean zero and variance
τ2(P ). The approximation then consists of a normal approximation based on
an estimated variance τ2(P̂n) which converges in probability to τ2(P ), and the
quantiles of Jn(P ) may then be approximated by those of J(P̂n). Of course, this
approach depends very heavily on knowing the form of the asymptotic distri-
bution as well as being able to construct consistent estimates of the unknown
parameters upon which J(P ) depends. Moreover, the method essentially con-
sists of a double approximation; first, the finite sampling distribution Jn(P ) is
approximated by an asymptotic approximation J(P ), and then J(P ) is in turn
approximated by J(P̂n).

The most general situation occurs when the limiting distribution J(P ) has an
unknown form, and methods to handle this case will be treated in the subsequent
sections.

Example 15.3.5 (Nonparametric Mean, continued) In the previous ex-
ample, consider instead the non-studentized root

Rn(Xn, θ(F )) = n1/2[X̄n − θ(F )] .

In this case, Jn(F ) converges weakly to J(F ), the normal distribution with mean
zero and variance σ2(F ). The resulting approximation to Jn(F ) is the normal
distribution with mean zero and variance S2

n. Alternatively, one can estimate the
variance by any consistent estimator, such as the sample variance σ2(F̂n), where
F̂n is the empirical distribution function. In effect, studentizing an asymptotically
normal root converts it to an asymptotic pivot, and both methods lead to the
same solution. (However, the bootstrap approach in the next section treats the
roots differently.)

Example 15.3.6 (Binomial p) As in Example 11.2.7, Suppose X is binomial
based on n trials and success probability p. Let p̂n = X/n. As in the previ-
ous example, the non-studentized root n1/2(p̂n − p) and the studentized root
n1/2(p̂n − p)/[p̂n(1 − p̂n)]1/2 lead to the same approximate confidence interval
given by (11.23). On the other hand, the Wilson interval (11.25) based on the root
n1/2(p̂n − p)/[p(1 − p)]1/2 leads to a genuinely different solution which performs
better in finite samples; see Brown, Cai and DasGupta (2001).

Example 15.3.7 (Trimmed mean) Suppose Xn = (X1, . . . , Xn) is a sample
of n real-valued random variables with unknown distribution function F . Assume
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that F is symmetric about some unknown value θ(F ). Let θ̂n,α(X1, . . . , Xn) be
the α-trimmed mean; specifically,

θ̂n,α =
1

n − 2[αn]

n−[αn]∑

i=[αn]+1

X(i) ,

where X(1) ≤ X(2) ≤ · · · ≤ X(n) denote the order statistics and k = [αn] is
the greatest integer less than or equal to αn. Consider the root Rn(Xn, θ(F )) =
n1/2[θ̂n,α − θ(F )]. Then, under reasonable smoothness conditions on F and as-
suming 0 ≤ α < 1/2, it is known that Jn(F ) converges weakly to the normal
distribution J(F ) with mean zero and variance σ2(α, F ), where

σ2(α, F ) =
1

(1 − 2α)2
[

∫ F−1(1−α)

F−1(α)

(t − θ(F ))2dF (t) + 2α(F−1(α) − θ(F ))2];

(15.21)
see Serfling (1980, p.236). Then, a very simple first-order approximation to J(F )
is J(F̂n), where F̂n is the empirical distribution. The resulting J(F̂n) is just the
normal distribution with mean zero and variance σ2(α, F̂n).

The use of the normal approximation in the previous example hinged on the
availability of a consistent estimate of the asymptotic variance. The simple expres-
sion (15.21) easily led to a simple estimator. However, a closed form expression for
the asymptotic variance may not exist. A fairly general approach to estimating
the variance of a statistic is provided by the jackknife estimator of variance, for
which we refer the reader to Shao and Tu (1995, Chapter 2). However, the dou-
ble approximation based on asymptotic normality and an estimate of the limiting
variance may be poor. An alternative approach that more directly attempts to
approximate the finite sample distribution will be presented in the next section.

15.4 Bootstrap Sampling Distributions

15.4.1 Introduction and Consistency

In this section, the bootstrap, due to Efron (1979), is introduced as a general
method to approximate a sampling distribution of a statistic or a root (dis-
cussed in Section 15.3) in order to construct confidence regions for a parameter
of interest. The use of the bootstrap to approximate a null distribution in the
construction of hypothesis tests will be considered later as well.

The asymptotic approaches in the previous section are not always applicable, as
when the limiting distribution does not have a tractable form. Even when a root
has a known limiting distribution, the resulting approximation may be poor in
finite samples. The bootstrap procedure discussed in this section is an alternative,
more general, direct approach to approximate the sampling distribution Jn(P ).
An important aspect of the problem of estimating Jn(P ) is that, unlike the usual
problem of estimation of parameters, Jn(P ) depends on n.

The bootstrap method consists of directly estimating the exact finite sampling
distribution Jn(P ) by Jn(P̂n), where P̂n is an estimate of P in P. In this light,
the bootstrap estimate Jn(P̂n) is a simple plug-in estimate of Jn(P ).
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In nonparametric problems, P̂n is typically taken to be the empirical distribu-
tion of the data. In parametric problems where P = {Pψ : ψ ∈ Ψ}, P̂n may be
taken to be Pψ̂n

, where ψ̂n is an estimate of ψ.

In general, Jn(x, P̂n) need not be continuous and strictly increasing in x, so
that unique and well-defined quantiles may not exist. To get around this and in
analogy to (11.19), define

J−1
n (1 − α, P ) = inf{x : Jn(x, P ) ≥ 1 − α} .

If Jn(·, P ) has a unique quantile J−1
n (1 − α, P ), then

P{Rn(Xn, θ(P )) ≤ J−1
n (1 − α, P )} = 1 − α ;

in general, the probability on the left is at least 1 − α. If J−1
n (1 − α, P ) were

known, then the region

{θ ∈ Θ : Rn(Xn, θ) ≤ J−1
n (1 − α, P )}

would be a level 1−α confidence region for θ(P ). The bootstrap simply replaces
J−1

n (1 − α, P ) by J−1
n (1 − α, P̂n). The resulting bootstrap confidence region for

θ(P ) of nominal level 1 − α takes the form

Bn(1 − α, Xn) = {θ ∈ Θ : Rn(Xn, θ) ≤ J−1
n (1 − α, P̂n)} . (15.22)

Suppose the problem is to construct a confidence interval for a real-valued
parameter θ(P ) based on the root |θ̂n−θ(P )| for some estimator θ̂n. The interval
(15.22) would then be symmetric about θ̂n. An alternative equi-tailed interval
can be based on the root θ̂n − θ(P ) and uses both tails of Jn(P̂n); it is given by

{θ ∈ Θ : J−1
n (

α
2

, P̂n) ≤ Rn(Xn, θ) ≤ J−1
n (1 − α

2
, P̂n)} .

A comparison of the two approaches will be made in Section 15.5.
Outside certain exceptional cases, the bootstrap approximation Jn(x, P̂n)cannot

be calculated exactly. Even in the relatively simple case when θ(P ) is the mean
of P , the root is n1/2[X̄n − θ(P )], and P̂n is the empirical distribution, the ex-
act computation of the bootstrap distribution involves an n-fold convolution.1

Typically, one resorts to a Monte Carlo approximation to Jn(P ), as introduced
in Example 11.2.13. Specifically, conditional on the data Xn, for j = 1, . . . , B,
let Xn∗

j = (X∗
1,j , . . . , X

∗
n,j) be a sample of n i.i.d. observations from P̂n; Xn∗

j

is referred to as the jth bootstrap sample of size n. Of course, when P̂n is the
empirical distribution, this amounts to resampling the original observations with
replacement. The bootstrap estimator Jn(P̂n) is then approximated by the em-
pirical distribution of the B values Rn(Xn∗

j , θ̂n). Because B can be taken to be
large (assuming enough computing power), the resulting approximation can be
made arbitrarily close to Jn(P̂n) (see Example 11.2.13), and so we will subse-
quently focus on the exact bootstrap estimator Jn(P̂n) while keeping in mind it
is usually only approximated by Monte Carlo simulation.

The bootstrap can then be viewed as a simple plug-in estimator of a distribu-
tion function. This simple idea, combined with Monte Carlo simulation, allows
for quite a broad range of applications.

1Diaconis and Holmes (1994) show how the exact bootstrap distribution can be
calculated in some examples.
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We will now discuss the consistency of the bootstrap estimator Jn(P̂n) of the
true sampling distribution Jn(P ) of Rn(Xn, θ(P )). Typically, one can show that
Jn(P ) converges weakly to a nondegenerate limit law J(P ). Since the bootstrap
replaces P by P̂n in Jn(·), it is useful to study Jn(Pn) under more general se-
quences {Pn}. In order to understand the behavior of the random sequence of
distributions Jn(P̂n), it will be easier to first understand how Jn(Pn) behaves
for certain fixed sequences {Pn}. For the bootstrap to be consistent, Jn(P ) must
be smooth in P since we are replacing P by P̂n. Thus, we are led to studying
the asymptotic behavior of Jn(Pn) under fixed sequences of probabilities {Pn}
which are “converging” to P in a certain sense. Once it is understood how Jn(Pn)
behaves for fixed sequences {Pn}, it is easy to pass to random sequences {P̂n}.

In the theorem below, the existence of a continuous limiting distribution is
assumed, though its exact form need not be explicit. Although the conditions of
the theorem are strong, they can be verified in many interesting examples.

Theorem 15.4.1 Let CP be a set of sequences {Pn ∈ P} containing the sequence
{P, P, · · ·}. Suppose that, for every sequence {Pn} in CP , Jn(Pn) converges weakly
to a common continuous limit law J(P ) having distribution function J(x, P ). Let
Xn be a sample of size n from P . Assume that P̂n is an estimate of P based on
Xn such that {P̂n} falls in CP with probability one. Then,

sup
x

|Jn(x, P ) − Jn(x, P̂n)| → 0 with probability one. (15.23)

If J(·, P ) is continuous and strictly increasing at J−1(1 − α, P ), then

J−1
n (1 − α, P̂n) → J−1(1 − α, P ) with probability one. (15.24)

Also, the bootstrap confidence set Bn(1 − α, Xn) given by equation (15.22) is
pointwise consistent in level; that is,

P{θ(P ) ∈ Bn(1 − α, Xn)} → 1 − α . (15.25)

Proof. For the proof of part (15.23), note that the assumptions and Polya’s
Theorem (Theorem 11.2.9) imply that

sup
x

|Jn(x, P ) − Jn(x, Pn)| → 0

for any sequence {Pn} in CP . Thus, since {P̂n} ∈ CP with probability one,
(15.23) follows. Lemma 11.2.1 implies J−1

n (1−α, Pn) → J−1(1−α, P ) whenever
{Pn} ∈ CP ; so (15.24) follows. In order to deduce (15.25), the probability on the
left side of (15.25) is equal to

P{Rn(Xn, θ(P )) ≤ J−1
n (1 − α, P̂n)} . (15.26)

Under P , Rn(Xn, θ(P )) has a limiting distribution J(·, P ) and, by (15.24),
J−1

n (1 − α, P̂n) → J−1(1 − α, P ). Thus, by Slutsky’s Theorem, (15.26) tends
to J(J−1(1 − α, P ), P ) = 1 − α.

Often, the set of sequences CP can be described as the set of sequences {Pn}
such that d(Pn, P ) → 0, where d is an appropriate metric on the space of prob-
abilities. Indeed, one should think of CP as a set of sequences {Pn} that are
converging to P in an appropriate sense. Thus, the convergence of Jn(Pn) to
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J(P ) is locally uniform in the sense d(Pn, P ) → 0 implies Jn(Pn) converges
weakly to J(P ). Note, however, that the appropriate metric d will depend on the
precise nature of the root.

When the convergences (15.23) and (15.24) hold with probability one, we say
the bootstrap is strongly consistent. If these convergences hold in probability, we
say the bootstrap is weakly consistent. In any case, (15.25) holds even if (15.23)
and (15.24) only hold in probability; see Problem 15.16.

Example 15.4.1 (Parametric Bootstrap) Suppose Xn = (X1, . . . , Xn) is a
sample from a q.m.d. model {Pθ, θ ∈ Ω}, where Ω ⊂ RI k . Suppose θ̂n is an
efficient likelihood estimator in the sense that (12.62) holds. Suppose g(θ) is a
differentiable map from Ω to RI with nonzero gradient vector ġ(θ). Consider
the root Rn(Xn, θ) = n1/2[g(θ̂n) − g(θ)], with distribution function Jn(x, θ). By
Theorem 12.4.1, Jn(x, θ) → J(x, θ), where J(x, θ) = Φ(x/σθ) and

σ2
θ = ġ(θ)I−1(θ)ġ(θ)T .

One approach to estimating the distribution of n1/2[g(θ̂n) − g(θ)] is to use the
normal approximation N(0, σ̂2

n), where σ̂2
n is a consistent estimator of σ2

θ . For
example, if ġ(θ) and I(θ) are continuous in θ, then a weakly consistent estimator
of σ2

θ is

σ̂2
n = ġ(θ̂n)I−1(θ̂n)ġ(θ̂n)T .

In order to calculate σ̂2
n, the forms of ġ(·) and I(·) must be known. This approach

of using a normal approximation with an estimator of the limiting variance is a
special case of asymptotic approximation discussed in Subsection 15.3.3. Because
it may be difficult to calculate a consistent estimator of the limiting variance, and
because the resulting approximation may be poor, it is interesting to consider
the bootstrap method. A discussion of higher order asymptotic comparisons will
be discussed in Section 15.5. For now, we show the bootstrap approximation
Jn(x, θ̂n) to J(x, θ) is weakly consistent.

Theorem 15.4.2 Under the above setup, under θ,

sup
x

|Jn(x, θ) − J(x, θ)| → 0

and

sup
x

|Jn(x, θ̂n) − Jn(x, θ)| → 0 (15.27)

in probability; therefore, (15.25) holds.

Proof. By Theorem 12.4.1, for any sequence θn such that n1/2(θn − θ) → h,
Jn(x, θn) → J(x, θ). In trying to apply the previous theorem, define Cθ as the
set of sequences {θn} satisfying n1/2(θn −θ) → h, for some finite h. (Rather than
describe CP as a set of sequences of distributions, we identify Pθ with θ and de-
scribe Cθ as a set of sequences of parameter values.) Unfortunately, θ̂n does not
fall in Cθ with probability one because n1/2(θ̂n−θ) need not converge with prob-
ability one. However, we can modify the argument as follows. Since n1/2(θ̂n − θ)
converges in distribution, we can apply the Almost Sure Representation Theorem
(Theorem 11.2.19). Thus, there exist random variables θ̃n and H defined on a
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common probability space such that θ̂n and θ̃n have the same distribution and
n1/2(θ̃n − θ) → H almost surely. Then, {θ̃n} ∈ Cθ with probability one, and we
can conclude

sup
x

|Jn(x, θ̃n) − Jn(x, θ)| → 0

almost surely. Since θ̂n and θ̃n have the same distributional properties, so do
Jn(θ̂n) and Jn(θ̃n), and the result (15.27) follows.

A one-sided bootstrap lower confidence bound for g(θ) takes the form

g(θ̂n) − n−1/2J−1
n (1 − α, θ̂n) .

The previous theorem implies, under θ,

J−1
n (1 − α, θ̂n)

P→ σθz1−α .

Suppose now the problem is to test g(θ) = 0 versus g(θ) > 0. By the dual-
ity between tests and confidence regions, one possibility is to reject the null
hypothesis if the lower confidence bound exceeds zero, or equivalently when
n1/2g(θ̂n) > J−1

n (1 − α, θ̂n). This test is pointwise asymptotically level α be-
cause, by Slutsky’s Theorem, n1/2g(θ̂n) is asymptotically N(0, σ2

θ) if g(θ) = 0.
The limiting power of this test against a contiguous sequence of alternatives is
given in the following corollary.

Corollary 15.4.1 Under the setup of Example 15.4.1 with θ satisfying g(θ) = 0,
the limiting power of the test that rejects when n1/2g(θ̂n) > J−1

n (1−α, θ̂n) against
the sequence θn = θ + hn−1/2 satisfies

P n
θn{n

1/2g(θ̂n) > J−1
n (1 − α, θ̂n)} → 1 − Φ(z1−α − σ−1

θ 〈ġ(θ)T , h〉) . (15.28)

Proof. The left hand side can be written as

P n
θn{n

1/2[g(θ̂n) − g(θn)] > J−1
n (1 − α, θ̂n) − n1/2g(θn)} . (15.29)

Under P n
θ , J−1

n (1−α, θ̂n) converges in probability to σθz1−α; by contiguity, under
P n

θn
, J−1

n (1 − α, θ̂n) converges to the same constant. Also, by differentiability of
g and the fact that g(θ) = 0

n1/2g(θn) → 〈ġ(θ)T , h〉 .

By Theorem 12.4.1, the left hand side of (15.29) is asymptotically N(0, σ2
θ). Let-

ting Z denote a standard normal variable, by Slutsky’s theorem, (15.29) converges
to

P{σθZ > σθz1−α − 〈ġ(θ)T , h〉} ,

and the result follows.

In fact, it follows from Theorem 13.5.1 that this limiting power is optimal. The
moral is that the bootstrap can produce an asymptotically optimal test, but only
if the initial estimator or test statistic is optimally chosen. Otherwise, if the root
is based on a suboptimal estimator, the bootstrap approach to approximating the
sampling distribution of a root is so good that the bootstrap will not be optimal.
For example, in a normal location model N(θ, 1), the bootstrap distribution based
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on the root X̄n−θ is exact as previously discussed (except possibly for simulation
error), as is the bootstrap distribution for Tn − θ, where Tn is any location
equivariant estimator. But, taking Tn equal to the sample median would not lead
to an AUMP test, since the bootstrap is approximating the distribution of the
sample median, a suboptimal statistic in this case. Furthermore, this leads to the
observation that the bootstrap can be used adaptively to approximate several
distributions, and then inference can be based on the one with better properties;
see Léger and Romano (1990a,b).

15.4.2 The Nonparametric Mean

In this section, we consider the case of Example 15.3.4, confidence intervals for
the nonparametric mean. This example deserves special attention because many
statistics can be approximated by linear statistics. We will examine this case in
detail, since similar considerations apply to more complicated situations. Given
a sample Xn = (X1, . . . , Xn) from a distribution F on the real line, consider
the problem of constructing a confidence interval for θ(F ) = EF (Xi). Let σ2(F )
denote the variance of F . The conditions for Theorem 15.4.1 are verified in the
following result.

Theorem 15.4.3 Let F be a distribution on the line with finite, nonzero variance
σ2(F ). Let Jn(F ) be the distribution of the root Rn(Xn, θ(F )) = n1/2[X̄n−θ(F )].

(i) Let CF be the set of sequences {Fn} such that Fn converges weakly to F ,
θ(Fn) → θ(F ), and σ2(Fn) → σ2(F ). If {Fn} ∈ CF , then Jn(Fn) converges
weakly to J(F ), where J(F ) is the normal distribution with mean zero and
variance σ2(F ).

(ii) Let X1, . . . , Xn be i.i.d. F , and let F̂n denote the empirical distribution
function. Then, the bootstrap estimator Jn(F̂n) is strongly consistent so
that (15.23), (15.24), and (15.25) hold.

Proof of Theorem 15.4.3. For the purpose of proving (i), construct variables
Xn,1, . . . , Xn,n which are independent with identical distribution Fn, and set
X̄n =

∑
i Xn,i/n. We must show that the law of n1/2(X̄n − µ(Fn)) converges

weakly to J(F ). It suffices to verify the Lindeberg Condition for Yn,i, where
Yn,i = Xn,i − µ(Fn). This entails showing that, for each ε > 0,

lim
n→∞

E[Y 2
n,11(Y 2

n,1 > nε2)] = 0 . (15.30)

Note that Yn,1
d→ Y , where Y = X − µ(F ) and X has distribution F , and

E(Y 2
n,1) → E(Y 2). By the continuous mapping theorem (Theorem 11.2.13),

Y 2
n,1

d→ Y 2. Now, for any fixed β > 0 and all n > β/ε2,

E[Y 2
n,11(Y 2

n,1 > nε2)] ≤ E[Y 2
n,11(Y 2

n,1 > β)] → E[Y 21(Y 2 > β)] ,

where the last convergence holds if β is a continuity point of the distribution of
Y 2, by (11.40). Since the set of continuity points of any distribution is dense and
E[Y 21(Y 2 > β)] ↓ 0 as β → ∞, Lindeberg’s Condition holds.
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We now prove (ii) by applying Theorem 15.4.1; we must show that {F̂n} ∈ CF

with probability one. By the Glivenko-Cantelli theorem,

sup
x

|F̂n(x) − F (x)| → 0 with probability one .

Also, by the Strong Law of Large Numbers, θ(F̂n) → θ(F ) with probability
one and σ2(F̂n) → σ2(F ) with probability one. Thus, bootstrap confidence in-
tervals for the mean based on the root Rn(Xn, θ(F )) = n1/2(X̄n − θ(F )) are
asymptotically consistent in the sense of the theorem.

Remark 15.4.1 Let F and G be two distribution functions on the real line and
define dp(F, G) to be the infimum of {E[|X − Y |p]}1/p over all pairs of random
variables X and Y such that X has distribution F and Y has distribution G. It
can be shown that the infimum is attained and that dp is a metric on the space of
distributions having a pth moment. Further, if F has a finite variance σ2(F ), then
d2(Fn, F ) → 0 is equivalent to Fn converging weakly to F and σ2(Fn) → σ2(F ).
Hence, Theorem 15.4.3 may be restated as follows. If F has a finite variance
σ2(F ) and d2(Fn, F ) → 0, then Jn(Fn) converges weakly to J(F ). The metric d2

is known as the Mallow’s metric. For details, see Bickel and Freedman (1981).

Continuing the example of the nonparametric mean, it is of interest to consider
roots other than n1/2(X̄n − θ(F )). Specifically, consider the studentized root

Rs
n(Xn, θ(F )) = n1/2(X̄n − θ(F ))/σ(F̂n) , (15.31)

where σ2(F̂n) is the usual bootstrap estimate of variance. To obtain consistency
of the bootstrap method, called the bootstrap-t, we appeal to the following result.

Theorem 15.4.4 Suppose F is a c.d.f. with finite nonzero variance σ2(F ). Let
Kn(F ) be the distribution of the root (15.31) based on a sample of size n from F .

(i) Let CF be defined as in Theorem 15.4.3. Then, for any sequence {Fn} ∈
CF , Kn(Fn) converges weakly to the standard normal distribution.

(ii) Hence, the bootstrap sampling distribution Kn(F̂n) is consistent in the sense
that equations (15.23), (15.24), and (15.25) hold.

Before proving this theorem, we first need a weak law of large numbers for a
triangular array that generalizes Theorem 11.2.10. The following lemma serves
as a suitable version for our purposes.

Lemma 15.4.1 Suppose Yn,1, . . . , Yn,n is a triangular array of independent ran-
dom variables, the n-th row having c.d.f. Gn. Assume Gn converges in distribution
to G and

E[|Yn,1|] → E[|Y |] < ∞

as n → ∞, where Y has c.d.f. G. Then,

Ȳn ≡ n−1
n∑

i=1

Yn,i
P→ E(Y )

as n → ∞.
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Proof. Apply Lemma 11.4.2 and (11.40).

Proof of Theorem 15.4.4. For the proof, let Xn,1, . . . , Xn,n be independent
with distribution Fn. By Theorem 15.4.3 and Slutsky’s Theorem, it is enough to
show σ2(F̂n) → σ2(F ) in probability under Fn. But,

σ2(F̂n) =
1
n

∑

i

(Xn,i − X̄n)2 .

Now, apply Lemma 15.4.1 on the Weak Law of Large Numbers for a triangu-
lar array with Yn,i = Xn,i and also with Yn,i = X2

n,i. The consistency of the
bootstrap method based on the root (15.31) now follows easily.

It is interesting to consider how the bootstrap behaves when the underlying
distribution has an infinite variance (but well-defined mean). The short answer
is that the bootstrap procedure considered thus far will fail, in the sense that the
convergence in expression (15.23) does not hold. The failure of the bootstrap for
the mean in the infinite variance case was first noted by Babu (1984); further
elucidation is given in Athreya (1987) and Knight (1989). In fact, a striking
theorem due to Giné and Zinn (1989) asserts that the simple bootstrap studied
thus far will work for the mean in the sense of strong consistency if and only if
the variance is finite. For a nice exposition of related results, see Giné (1997).

Related results for the studentized bootstrap based on approximating the dis-
tribution of the root (15.31) were considered by Csörgö and Mason (1989) and
Hall (1990). The conclusion is that the bootstrap is strongly or almost surely
consistent if and only if the variance is finite; the bootstrap is weakly consistent
if and only if Xi is in the domain of attraction of the normal distribution.

In fact, it was realized by Athreya (1985) that the bootstrap can be modified so
that consistency ensues even with infinite variance. The modification consists of
reducing the bootstrap sample size. Further results are given in Arcones and Giné
(1989, 1991). In other instances where the simple bootstrap fails, consistency can
often be recovered by reducing the bootstrap sample size. The benefit of reducing
the bootstrap sample size was recognized first in Bretagnolle (1983). An even
more general approach based on subsampling will be considered later in Section
15.7.

15.4.3 Further Examples

Example 15.4.2 (Multivariate Mean) Let Xn = (X1, . . . , Xn) be a sample
of n observations from F , where Xi takes values in RI k . Let θ(F ) = EF (Xi) be
equal to the mean vector, and let

Sn(Xn, θ(F )) = n1/2(X̄n − θ(F )) , (15.32)

where X̄n =
∑

i Xi/n is the sample mean vector. Let

Rn(Xn, θ(F )) = ‖Sn(Xn, θ(F ))‖ ,

where ‖ · ‖ is any norm on RI k. The consistency of the bootstrap method based
on the root Rn follows from the following theorem.
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Theorem 15.4.5 Let Ln(F ) be the distribution (in RI k) of Sn(Xn, θ(F )) under
F , where Sn is defined in (15.32). Let Σ(F ) be the covariance matrix of Sn

under F . Let CF be the set of sequences {Fn} such that Fn converges weakly to
F and Σ(Fn) → Σ(F ), so that each entry of the matrix Σ(Fn) converges to the
corresponding entry (assumed finite) of Σ(F ).

(i) Then, Ln(Fn) converges weakly to L(F ), the multivariate normal distribu-
tion with mean zero and covariance matrix Σ(F ).

(ii) Assume Σ(F ) contains at least one nonzero component. Let ‖ · ‖ be
any norm on RI k and let Jn(F ) be the distribution of Rn(Xn, θ(F )) =
‖Sn(Xn, θ(F ))‖ under F . Then, Jn(Fn) converges weakly to J(F ), which
is the distribution of ‖Z‖ when Z has distribution L(F ).

(iii) Suppose X1, . . . , Xn are i.i.d. F with empirical distribution F̂n (in RI k ).
Then, the bootstrap approximation satisfies

ρ(Jn(F ), Jn(F̂n)) → 0 with probability one ,

and bootstrap confidence regions based on the root Rn are consistent in the
sense that the convergences (15.23) to (15.25) hold.

Proof. The proof of (i) follows by the Cramer-Wold device (Theorem 11.2.3)
and by Theorem 15.4.3 (i). To prove (ii), note that any norm ‖ · ‖ on RI k is
continuous almost everywhere with respect to L(F ). A proof of this statement
can be based on the fact that, for any norm ‖ · ‖, the set {x ∈ RI k : ‖x‖ = c}
has Lebesgue measure zero because it is the boundary of a convex set. So, the
continuous mapping theorem applies and so Jn(Fn) converges weakly to J(F ).

Part (iii) follows because {F̂n} ∈ CF with probability one, by the Glivenko-
Cantelli theorem (on RI k ) and the strong law of large numbers.

Note the power of the bootstrap method. Analytical methods for approximat-
ing the distribution of the root Rn = ‖Sn‖ would depend heavily on the choice
of norm ‖ · ‖, but the bootstrap handles them all with equal ease.

Let Σ̂n = Σ(F̂ ) be the sample covariance matrix. As in the univariate case,
one can also bootstrap the root defined by

R̃n(Xn, θ(F )) = ‖Σ̂−1/2
n (X̄n − θ(F ))‖, (15.33)

provided Σ(F ) is assumed positive definite. In the case where ‖ · ‖ is the usual
Euclidean norm, this root leads to confidence ellipsoid, i.e., a confidence set whose
shape is an ellipsoid.

Example 15.4.3 (Smooth Functions of Means) Let X1, . . . , Xn be i.i.d. S-
valued random variables with distribution P . Suppose θ = θ(P ) = (θ1, . . . , θp),
where θj = EP [hj(Xi)] and the hj are real-valued functions defined on S. In-
terest focuses on θ or some function f of θ. Let θ̂n = (θ̂n,1, . . . , θ̂n,p), where
θ̂n,j =

∑n
i=1 hj(Xi)/n. Assume moment conditions on the hj(Xi). Then, by

the multivariate mean case, the bootstrap approximation to the distribution of
n1/2(θ̂n − θ) is appropriately close in the sense

ρ
(
LP (n1/2(θ̂n − θ)),LP∗

n
(n1/2(θ̂∗

n − θ̂n))
)
→ 0 (15.34)
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with probability one, where ρ is any metric metrizing weak convergence in RI p

(such as the Bounded-Lipschitz metric introduced in Problem 11.23). Here, P ∗
n

refers to the distribution of the data resampled from the empirical distribution
conditional on X1, . . . Xn. Moreover,

ρ
(
LP (n1/2(θ̂n − θ)),L(Z)

)
→ 0 , (15.35)

where Z is multivariate normal with mean zero and covariance matrix Σ having
(i, j)-th component

Cov(Zi, Zj) = Cov[hi(X1), hj(X1)].

To see why, define Yi to be the vector in RI p with j-th component hj(Xi),
so that we are exactly back in the multivariate mean case. Now, suppose f is
an appropriately smooth function from RI p to RI q, and interest now focuses
on the parameter µ = f(θ). Assume f = (f1, . . . , fq)

T , where fi(y1, . . . , yp) is
a real-valued function from RI p having a nonzero differential at (y1, · · · , yp) =
(θ1, . . . , θp). Let D be the q × p matrix with (i, j) entry ∂fi(y1, . . . , yp)/∂yj

evaluated at (θ1, . . . , θp). Then, the following is true.

Theorem 15.4.6 Suppose f is a function satisfying the above smoothness as-
sumptions. If E[h2

j (Xi)] < ∞, then equations (15.34) and (15.35) hold.
Moreover,

ρ
(
LP (n1/2[f(θ̂n) − f(θ)]),LP∗

n
(n1/2[f(θ̂∗

n) − f(θ̂n)])
)
→ 0

with probability one and

sup
s

∣∣∣P{‖f(θ̂n) − f(θ)‖ ≤ s}− P ∗
n{‖f(θ̂∗

n) − f(θ̂n)‖ ≤ s}
∣∣∣ → 0

with probability one.

Proof. The proof follows as equations (15.34) and (15.35) are immediate from
the multivariate mean case, and the smoothness assumptions on f and the
Delta Method imply that n1/2[f(θ̂n) − f(θ)] has a limiting multivariate normal
distribution with mean 0 and covariance matrix DΣDT ; see Theorem 11.2.14.

Example 15.4.4 (Joint Confidence Rectangles) Under the assumptions of
Theorem 15.4.6, a joint confidence set can be constructed for (f1(θ), . . . , fq(θ))
with asymptotic coverage 1 − α. In the case where ‖x‖ = max |xi|, the set is a
rectangle in RI q. Such a set is easily described as

{f(θ) : |fi(θ̂n) − fi(θ)| ≤ b̂n(1 − α) for all i },

where b̂n(1 − α) is the bootstrap approximation to the 1 − α quantile of the
distribution of maxi |fi(θ̂n) − fi(θ)|. Thus, a value for fi(θ) is included in the
region if and only if fi(θ) ∈ fi(θ̂n) ± b̂n(1 − α). Note, however, the intervals
fi(θ̂n) ± b̂n(1 − α) may be unbalanced in the sense that the limiting coverage
probability for each marginal parameter fi(θ) may depend on i. To fix this, one
could instead bootstrap the distribution of maxi |fi(θ̂n)− fi(θ)|/σ̂n,i, where σ̂n,i

is some consistent estimate of the (i, i) entry of the asymptotic covariance matrix
DΣDT for n1/2f(θ̂n). For further discussion, see Beran (1988a), who employs a
transformation called prepivoting to achieve balance.
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Example 15.4.5 (Uniform Confidence Bands for a c.d.f. F ) Consider a
sample Xn = (X1, . . . , Xn) real-valued observations having c.d.f. F . The
empirical c.d.f. F̂n is then

F̂n(t) = n−1
n∑

i=1

I{Xi ≤ t} .

For two distribution functions F and G, define the Kolmogorov-Smirnov (or
uniform) metric

dK(F, G) = sup
t

|F (t) − G(t)| .

Now, consider the root

Rn(Xn, θ(F )) = n1/2dK(F̂n, F ) ,

whose distribution under F is denoted Jn(F ). As discussed in Example 11.2.12,
Jn(F ) has a continuous limiting distribution. In fact, the following triangular

array convergence holds. If dK(Fn, F ) → 0, then Jn(Fn)
d→ J(F ); for a proof, see

Politis, Romano, and Wolf (1999, p.20). Thus, we can define CF to be the set
of sequences {Fn} satisfying dK(Fn, F ) → 0. By the Glivenko-Cantelli Theorem,
dK(F̂n, F ) → 0 with probability one, and strong consistency of the bootstrap
follows. The resulting uniform confidence bands for F are then consistent in the
sense that (15.25) holds, and no assumption on continuity of F is needed (unlike
the classical limit theory). This example has been generalized considerably, and
the proof depends on the behavior of n1/2[F̂n(t)−F (t)], which can be viewed as a
random function and is called the empirical process. The general theory of boot-
strapping empirical processes is developed in van der Vaart and Wellner (1996)
and in Chapter 2 of Giné (1997). In particular, the theory generalizes to quite
general spaces S, so that the observations need not be real-valued. In the special
case when S is k-dimensional Euclidean space, the k-dimensional empirical pro-
cess was considered in Beran and Millar (1986). Confidence sets for a multivariate
distribution based on the bootstrap can then be constructed which are pointwise
consistent in level.

15.4.4 Stepdown Multiple Testing

Suppose data X = Xn is generated from some unknown probability distribution
P , where P belongs to a certain family of probability distributions Ω. For j =
1, . . . , s, consider the problem of simultaneously testing hypotheses Hj : P ∈ ωj .

For any subset K ⊂ {1, . . . , s}, let HK =
⋂

j∈K Hj be the hypothesis that
P ∈

⋂
j∈K ωj . Suppose that a test of the individual hypothesis Hj is based on a

test statistic Tn,j , with large values indicating evidence against the Hj .
The goal is to construct a stepdown method that controls the familywise error

rate (FWER). Recall that the FWER is the probability of rejecting at least one
true null hypothesis. More specifically, if P is the true probability mechanism,
let I = I(P ) ⊂ {1, . . . , s} denote the indices of the set of true hypotheses; that
is, i ∈ I if and only P ∈ ωi. Then, FWER is the probability under P that any
Hi with i ∈ I is rejected. To show its dependence on P , we may write FWER
= FWERP . We require that any procedure satisfy that the FWER be no bigger
than α (at least asymptotically).
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Suppose Hi is specified a real-valued parameter βi(P ) = 0. Then, one approach
to constructing a multiple test is to invert a simultaneous confidence region.
Under the setup of Example 15.4.4, with βi(P ) = fi(θ(P )), any hypothesis Hi

is rejected if fi(θ̂n) > b̂n(1 − α). A procedure that uses a common critical value
b̂n(1 − α) for all the hypotheses is called a single-step method.

Another approach is to compute (or approximate) a p-value for each individual
test, and then use Holm’s method discussed in Section 9.1, However, Holm’s
method, which makes no assumptions about the dependence structure of the
test statistics, can be improved by methods that implicitly or explicitly estimate
this dependence structure. In this section, we consider a stepdown procedure
that incorporates the dependence structure and thereby improves upon the two
methods just described.

Let

Tn,r1 ≥ Tn,r2 ≥ · · · ≥ Tn,rs (15.36)

denote the observed ordered test statistics, and let Hr1 , Hr2 , . . . , Hrs be the
corresponding hypotheses.

Recall the stepdown method presented in Procedure 9.1.1. The problem now
is how to construct the ĉn,K(1 − α) so that the FWER is controlled, at least
asymptotically. The following is an immediate consequence of Theorem 9.1.3, and
reduces the multiple testing problem of asymptotically controlling the FWER to
the single testing problem of asymptotically controlling the probability of a Type
1 error.

Corollary 15.4.2 Let P denote the true distribution generating the data. Con-
sider Procedure 9.1.1 based on critical values ĉn,K(1 − α) which satisfy the
monotonicity requirement: for any K ⊃ I(P ),

ĉn,K(1 − α) ≥ ĉn,I(P )(1 − α) . (15.37)

If ĉn,I(P )(1 − α) satisfies

lim sup
n

P{max(Tn,j : j ∈ I(P )) > ĉn,I(P )(1 − α)} ≤ α , (15.38)

then lim supn FWERP → α as n → ∞.

Under the monotonicity requirement (15.37), the multiplicity problem is ef-
fectively reduced to testing a single intersection hypothesis at a time. So, the
problem now is to construct intersection tests whose critical values are monotone
and asymptotically control the rejection probability.

We now specialize a bit and develop a concrete construction based on the
bootstrap. Suppose hypothesis Hi is specified by {P : θi(P ) = 0} for some
real-valued parameter θi, and θ̂n,i is an estimate of θi. Also, let Tn,i = τn|θ̂n,i|
for some nonnegative (nonrandom) sequence τn → ∞; usually, τn = n1/2. The
bootstrap method relies on its ability to approximate the joint distribution of
{τn[θ̂n,i − θi(P )] : i ∈ K}, whose distribution we denote by Jn,K(P ). Also, let
Ln,K(P ) denote the distribution under P of max{τn|θ̂n,i − θi(P )| : i ∈ K}, with
corresponding distribution function Ln,K(x, P ) and α-quantile

bn,K(α, P ) = inf{x : Ln,K(x, P ) ≥ α} .
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Let Q̂n be some estimate of P . Then, a nominal 1−α level bootstrap confidence
region for the subset of parameters {θi(P ) : i ∈ K} is given by

{(θi : i ∈ K) : max
i∈K

τn|θ̂n,i − θi| ≤ bn,K(1 − α, Q̂n)} .

So a value of 0 for θi(P ) falls outside the region iff Tn,i = τn|θ̂n,i| > bn,K(1 −
α, Q̂n). By the usual duality of confidence sets and hypothesis tests, this suggests
the use of the critical value

ĉn,K(1 − α) = bn,K(1 − α, Q̂n) , (15.39)

at least if the bootstrap is a valid asymptotic approach for confidence region
construction.

Note that, regardless of asymptotic behavior, the monotonicity assumption
(15.37) is always satisfied for the choice (15.39). Indeed, for any Q and if I ⊂ K,
bn,I(1 − α, Q) is the 1 − α quantile under Q of the maximum of |I| variables,
while bn,K(1 − α, Q) is the 1 − α quantile of these same |I| variables together
with |K|− |I| variables.

Therefore, in order to apply Theorem 15.4.2 to conclude lim supn FWERP ≤ α,
it is now only necessary to study the asymptotic behavior of bn,K(1 − α, Q̂n)
in the case K = I(P ). For this, we assume the usual conditions for bootstrap
consistency when testing the single hypothesis that θi(P ) = 0 for all i ∈ I(P );
that is, we assume the bootstrap consistently estimates the joint distribution of
τn[θ̂n,i − θi(P )] for i ∈ I(P ). In particular, we assume

Jn,I(P )(P )
d→ JI(P )(P ) , (15.40)

a nondegenerate limit law. Assumption (15.40) implies Ln,I(P )(P ) has a limiting
distribution LI(P )(P ), with c.d.f. denoted LI(P )(x, P ). We will further assume
LI(P )(P ) is continuous and strictly increasing on its support. It follows that

bn,I(P )(1 − α, P ) → bI(P )(1 − α, P ) , (15.41)

where bI(P )(α, P ) is the α-quantile of the limiting distribution LI(P )(P ).

Theorem 15.4.7 Fix P and assume (15.40) and that LI(P )(P ) is continuous

and strictly increasing on its support. Let Q̂n be an estimate of P satisfying: for
any metric ρ metrizing weak convergence on RI |I(P )|,

ρ
(
Jn,I(P )(P ), Jn,I(P )(Q̂n)

)
P→ 0 . (15.42)

Consider the generic stepdown method in Procedure 9.1.1 with cn,K(1− α) equal
to bn,K(1 − α, Q̂n). Then, lim supn FWERP ≤ α.

Proof. By the Continuous Mapping Theorem and a subsequence argument
(Problem 15.28), the assumption (15.40) implies

ρ1

(
Ln,I(P )(P ), Ln,I(P )(Q̂n)

)
P→ 0 , (15.43)

where ρ1 is any metric metrizing weak convergence on RI . It follows from Lemma
11.2.1(ii) that

bn,I(P )(1 − α, Q̂n)
P→ bI(P )(1 − α, P ) .
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By Slutsky’s Theorem,

P{max(Tn,j : j ∈ I(P ))} > bn,I(P )(1− α, Q̂n)} → 1 − LI(P )(bI(P )(1− α, P ), P ),

and the last expression is α.

Example 15.4.6 (Multivariate Mean) Assume Xi = (Xi,1, . . . , Xi,s) are n
i.i.d. random vectors with E(|Xi|2) < ∞ and mean vector µ = (µ1, . . . , µs).
Note that the vector Xi can have an arbitrary s-variate distribution, so that
multivariate normality is not assumed as it was in Example 9.1.4. Suppose Hi

specifies µi = 0 and Tn,i = n−1/2|
∑n

j=1 Xj,i|. Then, the conditions of Theorem
15.4.7 are satisfied by Example 15.4.2. Alternatively, one can also consider the
studentized test statistic tn,i = Tn,i/Sn,i, where S2

n,i is the sample variance of
the ith components of the data (Problem 15.29).

Example 15.4.7 (Comparing Treatment Means) For i = 1, . . . , k, suppose
we observe k independent samples, and the ith sample consists of ni i.i.d. ob-
servations Xi,1, . . . , Xi,ni with mean µi and finite variance σ2

i . Hypothesis Hi,j

specifies µi = µj , so that the problem is to compare all s =
(

k
2

)
means. (Note

that we are indexing hypotheses and test statistics now by 2 indices i and j.)
Let Tn,i,j = n1/2|X̄n,i − X̄n,j |, where X̄n,i =

∑n
j=1 Xi,j/ni. Let Q̂ni,i be the

empirical distribution of the ith sample. The bootstrap resampling scheme is to
independently resample ni observations from Q̂n,i, i = 1, . . . , k. Then, Theorem
15.4.7 applies and it also applies to appropriately studentized statistics (Problem
15.30) The setup can easily accommodate comparisons of k treatments with a
control group (Problem 15.31).

Example 15.4.8 (Testing Correlations) Suppose X1, . . . , Xn are i.i.d. ran-
dom vectors in RI k, so that Xi = (Xi,1, . . . , Xi,k). Assume E|Xi,j |2 < ∞ and
V ar(Xi,j) > 0, so that the correlation between X1,i and X1,j , namely ρi,j is
well-defined. Let Hi,j denote the hypothesis that ρi,j = 0, so that the multiple
testing problem consists in testing all s =

(
k
2

)
pairwise correlations. Also let Tn,i,j

denote the ordinary sample correlation between variables i and j. (Note that we
are indexing hypotheses and test statistics now by 2 indices i and j.) By Exam-
ple 15.4.3, the conditions for the bootstrap hold because correlations are smooth
functions of means.

15.5 Higher Order Asymptotic Comparisons

One of the main reasons the bootstrap approach is so valuable is that it can be
applied to approximate the sampling distribution of an estimator in situations
where the finite or large sample distribution theory is intractable, or depends on
unknown parameters. However, even in relatively simple situations, we will see
that there are advantages to using a bootstrap approach. For example, consider
the problem of constructing a confidence interval for a mean. Under the assump-
tion of a finite variance, the standard normal theory interval and the bootstrap-t
are each pointwise consistent in level. In order to compare them, we must con-
sider higher order asymptotic properties. More generally, suppose In is a nominal



662 15. General Large Sample Methods

1 − α level confidence interval for a parameter θ(P ). Its coverage error under P
is

P{θ(P ) ∈ In}− (1 − α) ,

and we would like to examine the rate at which this tends to zero. In typical prob-
lems, this coverage error is a power of n−1/2. It will be necessary to distinguish
one-sided and two-sided confidence intervals because their orders of coverage error
may differ.

Throughout this section, attention will focus on confidence intervals for the
mean in a nonparametric setting. Specifically, we would like to compare some
asymptotic methods based on the normal approximation and the bootstrap. Let
Xn = (X1, . . . , Xn) be i.i.d. with c.d.f. F , mean θ(F ), and variance σ2(F ). Also,
let F̂n denote the empirical c.d.f., and let σ̂n = σ(F̂n).

Before addressing coverage error, we recall from Section 11.4.1 the Edgeworth
expansions for the distributions of the roots

Rn(Xn, F ) = n1/2(X̄n − θ(F ))

and

Rs
n(Xn, F ) = n1/2(X̄n − θ(F ))/σ̂n ;

as in Section 15.4.2, their distribution functions under F are denoted Jn(·, F )
and Kn(·, F ), respectively. Let Φ and ϕ denote the standard normal c.d.f. and
density, respectively.

Theorem 15.5.1 Assume EF (X4
i ) < ∞. Let ψF denote the characteristic

function of F , and assume

lim sup
|s|→∞

|ψF (s)| < 1 . (15.44)

Then,

Jn(t, F ) = Φ(t/σ(F )) − 1
6
γ(F )ϕ(t/σ(F ))(

t2

σ2(F )
− 1)n−1/2 + O(n−1) , (15.45)

where

γ(F ) = EF [X1 − θ(F )]3/σ3(F )

is the skewness of F . Moreover, the expansion holds uniformly in t in the sense
that

Jn(t, F ) = [Φ(t/σ(F )) − 1
6
γ(F )ϕ(t/σ(F ))(

t2

σ2(F )
− 1)n−1/2] + Rn(t, F ) ,

where |Rn(t, F )| ≤ C/n for all t and some C = CF which depends on F .

Theorem 15.5.2 Assume EF (X4
i ) < ∞ and that F is absolutely continuous.

Then, uniformly in t,

Kn(t, F ) = Φ(t) +
1
6
γ(F )ϕ(t)(2t2 + 1)n−1/2 + O(n−1) . (15.46)
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Note that the term of order n−1/2 is zero if and only if the underlying skewness
γ(F ) is zero, so that the dominant error in using a standard normal approxima-
tion to the distribution of the studentized statistic is due to skewness of the
underlying distribution. We will use these expansions in order to derive some
important properties of confidence intervals. Note, however, that the expansions
are asymptotic results, and for finite n, including the correction term (i.e. the
term of order n−1/2) may worsen the approximation.

Expansions for the distribution of a root such as (15.45) and (15.46) imply
corresponding expansions for their quantiles, which are known as Cornish-Fisher
Expansions. For example, K−1

n (1−α, F ) is a value of t satisfying Kn(t, F ) = 1−α.
Of course, K−1

n (1 − α, F ) → z1−α. We would like to determine c = c(α, F ) such
that

K−1
n (1 − α, F ) = z1−α + cn−1/2 + O(n−1) .

Set 1 − α equal to the right hand side of (15.46) with t = z1−α + cn−1/2, which
yields

Φ(z1−α + cn−1/2)+
1
6
γ(F )ϕ(z1−α + cn−1/2)(2z2

1−α +1)n−1/2 +O(n−1) = 1−α .

By expanding Φ and ϕ about z1−α, we find that

c = −1
6
γ(F )(2z2

1−α + 1) .

Thus,

K−1
n (1 − α, F ) = z1−α − 1

6
γ(F )(2z2

1−α + 1)n−1/2 + O(n−1) . (15.47)

In fact, under the assumptions of Theorem 15.5.2, the expansion (15.46) holds
uniformly in t, and so the expansion (15.47) holds uniformly in α ∈ [ε, 1− ε], for
any ε > 0 (Problem 15.34). Similarly, one can show (Problem 15.35) that, under
the assumptions of Theorem 15.5.1,

J−1
n (1 − α, F ) = σ(F )z1−α +

1
6
σ(F )γ(F )(z2

1−α − 1)n−1/2 + O(n−1) , (15.48)

uniformly in α ∈ [ε, 1 − ε].

Normal Theory Intervals. The most basic approximate upper one-sided confidence
interval for the mean θ(F ) is given by

X̄n + n−1/2σ̂nz1−α , (15.49)

where σ̂2
n = σ2(F̂n) is the (biased) sample variance. Its one-sided coverage error

is given by

PF {θ(F ) ≤ X̄n + n−1/2σ̂nz1−α}− (1 − α)

= α − PF {n1/2(X̄n − θ(F ))/σ̂n < zα} . (15.50)

By (15.46), the one-sided coverage error of this normal theory interval is

−1
6
γ(F )ϕ(zα)(2z2

α + 1)n−1/2 + O(n−1) = O(n−1/2) . (15.51)
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Analogously, the coverage error of the two-sided confidence interval of nominal
level 1 − 2α,

X̄n ± n−1/2σ̂nz1−α , (15.52)

satisfies

PF {−z1−α ≤ n1/2(X̄n − θ(F ))/σ̂n ≤ z1−α}− (1 − 2α)

= P{n1/2(X̄n−θ(F ))/σ̂n ≤ z1−α}−P{n1/2(X̄n−θ(F ))σ̂n < −z1−α}−(1−2α) ,

which by (15.46) is equal to

[Φ(z1−α) +
1
6
γ(F )ϕ(z1−α)(2z2

1−α + 1)n−1/2 + O(n−1)]

−[Φ(−z1−α)+
1
6
γ(F )ϕ(−z1−α)(2z2

1−α +1)n−1/2 +O(n−1)]− (1−2α) = O(n−1) ,

using the symmetry of the function ϕ. Thus, while the coverage error of the
one-sided interval (15.49) is O(n−1/2), the two-sided interval (15.52) has cov-
erage error O(n−1). The main reason the one-sided interval has coverage error
O(n−1/2) derives from the fact that a normal approximation is used for the dis-
tribution of n1/2(X̄n − θ(F ))/σ̂n and no correction is made for skewness of the
underlying distribution. For example, if γ(F ) > 0, the one-sided upper confi-
dence bound (15.49) undercovers slightly while the one-sided lower confidence
bound overcovers. The combination of overcoverage and undercoverage yields a
net result of a reduction in the order of coverage error of two-sided intervals. Ana-
lytically, this fact derives from the key property that the n−1/2 term in (15.46) is
an even polynomial. (Note, however, that the one-sided coverage error is O(n−1)
if γ(F ) = 0.) These results are in complete analogy with the corresponding re-
sults in Section 11.4.1 for error in rejection probability of tests of the mean based
on the normal approximation.

Basic Bootstrap Intervals. Next, we consider bootstrap confidence intervals for
θ(F ) based on the root

Rn(Xn, θ(F )) = n1/2(X̄n − θ(F )) . (15.53)

It is plausible that the bootstrap approximation Jn(t, F̂n) to Jn(t, F ) satisfies an
expansion like (15.45) with F replaced by F̂n. In fact, it is the case that

Jn(t, F̂n) = Φ(t/σ̂n) − 1
6
γ(F̂n)ϕ(t/σ̂n)(

t2

σ̂2
n
− 1)n−1/2 + OP (n−1) . (15.54)

Both sides of (15.54) are random and the remainder term is now of order n−1

in probability. Similarly, the bootstrap quantile function J−1
n (1 − α, F̂n) has an

analogous expansion to (15.48) and is given by

J−1
n (1 − α, F̂n) = σ̂n[z1−α +

1
6
γ(F̂n)(z2

1−α − 1)n−1/2] + OP (n−1) . (15.55)

The validity of these expansions is quite technical and is proved in Hall (1992, Sec-
tion 5.2), and a sufficient condition for them to hold is that F satisfies Cramér’s
condition and has infinitely many moments; such assumptions will remain in force
for the remainder of this section. From (15.45) and (15.54), it follows that

Jn(t, F̂n) − Jn(t, F ) = OP (n−1/2)
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because

σ̂n − σ(F ) = OP (n−1/2) .

Thus, the bootstrap approximation Jn(t, F̂n) to Jn(t, F ) has the same order of
error as that provided by the normal approximation.

Turning now to coverage error, consider the one-sided coverage error of the
nominal level 1 − α upper confidence bound X̄n − n−1/2J−1

n (α, F̂n), given by

PF {θ(F ) ≤ X̄n − n−1/2J−1
n (α, F̂n)}− (1 − α)

= α − PF {n1/2(X̄n − θ(F )) < J−1
n (α, F̂n)}

= α − PF {n1/2(X̄n − θ(F ))/σ̂n < zα +
1
6
γ(F )(z2

α − 1)n−1/2 + OP (n−1)}

= α − PF {n1/2(X̄n − θ(F ))/σ̂n < zα +
1
6
γ(F )(z2

α − 1)n−1/2} + O(n−1) .

The last equality, though plausible, requires a rigorous argument, but follows
from Problem 15.36. The last expression, by (15.46) and a Taylor expansion,
becomes

−1
2
γ(F )ϕ(zα)z2

αn−1/2 + O(n−1) ,

so that the one-sided coverage error is of the same order as that provided by
the basic normal approximation. Moreover, by similar reasoning, the two-sided
bootstrap interval of nominal level 1 − 2α, given by

[X̄n − n−1/2J−1
n (1 − α, F̂n), X̄n − n−1/2J−1

n (α, F̂n)] , (15.56)

has coverage error O(n−1). Although these basic bootstrap intervals have the
same orders of coverage error as those based on the normal approximation, there
is evidence that the bootstrap does provide some improvement (in terms of the
size of the constants); see Liu and Singh (1987).

Bootstrap-t Confidence Intervals. Next, we consider bootstrap confidence inter-
vals for θ(F ) based on the studentized root

Rs
n(Xn, θ(F )) = n1/2(X̄n − θ(F ))/σ̂n , (15.57)

whose distribution under F is denoted Kn(·, F ). The bootstrap versions of the
expansions (15.46) and (15.47) are

Kn(t, F̂n) = Φ(t) +
1
6
γ(F̂n)ϕ(t)(2t2 + 1)n−1/2 + OP (n−1) (15.58)

and

K−1
n (1 − α, F̂n) = z1−α − 1

6
γ(F̂n)(2z2

1−α + 1)n−1/2 + OP (n−1) . (15.59)

Again, these results are obtained rigorously in Hall (1992), and a sufficient con-
dition for their validity is that F is absolutely continuous with infinitely many
moments. By comparing (15.46) and (15.58), it follows that

Kn(t, F̂n) − Kn(t, F ) = OP (n−1) , (15.60)



666 15. General Large Sample Methods

since γ(F̂n) − γ(F ) = OP (n−1/2). Similarly,

K−1
n (1 − α, F̂n) − K−1

n (1 − α, F ) = OP (n−1) . (15.61)

Thus, the bootstrap is more successful at estimating the distribution or quantiles
of the studentized root than its nonstudentized version.

Now, consider the nominal level 1 − α upper confidence bound X̄n −
n−1/2σ̂nK−1

n (α, F̂n). Its coverage error is given by

PF {θ(F ) ≤ X̄n − n−1/2σ̂nK−1
n (α, F̂n)}− (1 − α)

= α − PF {n1/2(X̄n − θ(F ))/σ̂n < K−1
n (α, F̂n)}

= α − PF {n1/2(X̄n − θ(F ))/σ̂n < zα − 1
6
γ(F )(2z2

α + 1)n−1/2 + OP (n−1)} ,

since (15.59) implies the same expansion for K−1
n (α, F̂n) with γ(F̂n) replaced by

γ(F ) (again using the fact that γ(F̂n) − γ(F ) = OP (n−1/2)). By Problem 15.36,
this last expression becomes

α − PF {n1/2(X̄n − θ(F ))/σ̂n < zα − 1
6
γ(F )(2z2

α + 1)n−1/2} + O(n−1) .

Let

tn = tn(α, F ) = zα − 1
6
γ(F )(2z2

α + 1)n−1/2 ,

so that (tn − zα) = O(n−1/2). Then, the coverage error becomes

α − [Φ(tn) +
1
6
γ(F )ϕ(tn)(2t2n + 1)n−1/2 + O(n−1)] .

By expanding Φ and ϕ about zα and combining terms that are O(n−1), the last
expression becomes

α − Φ(zα) − (tn − zα)ϕ(zα) + O(n−1)

−1
6
γ(F )[ϕ(zα) + (tn − zα)ϕ′(zα) + O(n−1)](2z2

α + 1)n−1/2 + O(n−1) = O(n−1) .

Thus, the one-sided coverage error of the bootstrap-t interval is O(n−1) and is
of smaller order than that provided by the normal approximation or the boot-
strap based on a nonstudentized root. Intervals with one-sided coverage error of
order O(n−1) are said to be second-order accurate, while intervals with one-sided
coverage error of order O(n−1/2) are only first-order accurate.

A heuristic reason why the bootstrap based on the root (15.57) outperforms
the bootstrap based on the root (15.53) is as follows. In the case of (15.53), the
bootstrap is estimating a distribution that has mean 0 and unknown variance
σ2(F ). The main contribution to the estimation error is the implicit estimation
of σ2(F ) by σ2(F̂n). On the other hand, the root (15.57) has a distribution that
is nearly independent of F since it is an asymptotic pivot.

The two-sided interval of nominal level 1 − 2α,

[X̄n − n−1/2σ̂nK−1
n (1 − α, F̂n), X̄n − n−1/2σ̂nK−1

n (α, F̂n)] , (15.62)
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also has coverage error O(n−1) (Problem 15.38). This interval was formed by
combining two one-sided intervals. Instead, consider the absolute studentized
root

Rt
n(Xn, θ(F )) = |n1/2(X̄n − θ(F ))|/σ̂n ,

whose distribution and quantile functions under F are denoted Ln(t, F ) and
L−1

n (1−α, F ), respectively. An alternative two-sided bootstrap confidence interval
for θ(F ) of nominal level 1 − α is given by

X̄n ± n−1/2σ̂nL−1
n (1 − α, F̂n) .

Note that this interval is symmetric about X̄n. Its coverage error is actually
O(n−2). The arguments for this claim are similar to the previous claims about
coverage error, but more terms are required in expansions like (15.46).

Bootstrap Calibration. By considering a studentized statistic, the bootstrap-t
yields one-sided confidence intervals with coverage error smaller than the non-
studentized case. However, except in some simple problems, it may be difficult to
standardize or studentize a statistic because an explicit estimate of the asymptotic
variance may not be available. An alternative approach to improving coverage
error is based on the following calibration idea of Loh (1987). Let In = In(1−α)
be any interval with nominal level 1 − α, such as one given by the bootstrap, or
a simple normal approximation. Its coverage is defined to be

Cn(1 − α, F ) = PF {θ(F ) ∈ In(1 − α)} .

We can estimate Cn(1−α, F ) by its bootstrap counterpart Cn(1−α, F̂n). Then,
determine α̂n to satisfy

Cn(1 − α̂n, F̂n) = 1 − α ,

so that α̂n is the value that results in the estimated coverage to be the nominal
level. The calibrated interval then is defined to be In(1 − α̂n).

To fix ideas, suppose In(1 − α) is the one-sided normal theory interval
(−∞, X̄n + n−1/2σ̂nz1−α]. We argued its coverage error is O(n−1/2). More
specifically,

Cn(1 − α, F ) = PF {n1/2(X̄n − θ(F ))/σ̂n < zα}

= 1 − α +
1
6
ϕ(zα)(2z2

α + 1)n−1/2 + O(n−1) .

Under smoothness and moment assumptions, the bootstrap estimated coverage
satisfies

Cn(1 − α, F̂n) = 1 − α +
1
6
ϕ(zα)γ(F̂n)(2z2

α + 1)n−1/2 + OP (n−1) ,

and the value of α̂n is obtained by setting the estimated coverage equal to 1−α.
One can then show that

α̂n − α = −1
6
ϕ(zα)γ(F )(2z2

α + 1)n−1/2 + OP (n−1) . (15.63)

By using this expansion and (15.46), it can be shown that the interval In(1− α̂n)
has coverage 1−α+O(n−1), and hence is second-order accurate (Problem 15.39).
Thus, calibration reduces the order of coverage error.
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Other Bootstrap Methods. There are now many variations on the basic boot-
strap idea that yield confidence regions that are second-order accurate, assuming
the validity of Edgeworth Expansions like the ones used in this section. The
calibration method described above is due to Loh (1987, 1991) and is essentially
equivalent to Beran’s (1987, 1988) method of prepivoting (Problem 15.43). Given
an interval In(1−α) of nominal level 1−α, calibration produces a new interval,
say I1

n(1 − α) = In(1 − α̂n), where α̂n is chosen by calibration. It is tempting
to iterate this idea to further reduce coverage error. That is, now calibrate I1

n to
yield a new interval I2

n, and so on. Further reduction in coverage error is indeed
possible (at the expense of increased computational effort). For further details
on these and other methods such as Efron’s BCa method, see Hall and Martin
(1988), Hall (1992) and Efron and Tibshirani (1993).

The analysis of this section was limited to methods for constructing confi-
dence intervals for a mean, assuming the underlying distribution is smooth and
has sufficiently many moments. But, many of the conclusions extend to smooth
functions of means studied in Example 15.4.3. In particular, in order to reduce
coverage error, it is desirable to use a root that is at least asymptotically pivotal,
such as a studentized root that is asymptotically standard normal. Otherwise, the
basic bootstrap interval (15.22) has the same order of coverage error as one based
on approximating the asymptotic distribution. However, whether or not the root
is asymptotically pivotal, bootstrap calibration reduces the order of coverage er-
ror. Of course, some qualifications are necessary. For one, even in the context
of the mean, Cramér’s condition may not hold, as in the context of a binomial
proportion. Edgeworth expansions for such discrete distributions supported on
a lattice are studied in Chapter 5 of Bhattacharya and Rao (1976) and Kolassa
and McCullagh (1990); also see Brown, Cai and DasGupta (2001), who study the
binomial case. In other problems where smoothness is assumed, such as inference
for a density or quantiles, Edgeworth expansions for appropriate statistics behave
somewhat differently than they do for a mean. Such problems are treated in Hall
(1992).

15.6 Hypothesis Testing

In this section, we consider the use of the bootstrap for the construction of hy-
pothesis tests. Assume the data Xn is generated from some unknown law P .
The null hypothesis H asserts that P belongs to a certain family of distributions
P0, while the alternative hypothesis K asserts that P belongs to a family P1.
Of course, we assume the intersection of P0 and P1 is the empty set, and the
unknown law P belongs to P, the union of P0 and P1.

There are several approaches one can take to construct a hypothesis test. First,
consider the case when the null hypothesis can be expressed as a hypothesis about
a real- or vector-valued parameter θ(P ). Then, one can exploit the familiar duality
between confidence regions and hypothesis tests to test hypotheses about θ(P ).
Thus, a consistent in level test of the null hypothesis that θ(P ) = θ0 can be
constructed by a consistent in level confidence region for θ(P ) by the rule: accept
the null hypothesis if and only if the confidence region includes θ0. Therefore,
all the methods we have thus far discussed for constructing confidence regions
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may be utilized: methods based on a pivot, an asymptotic pivot, an asymptotic
approximation, or the bootstrap. Indeed, this was the bootstrap approach already
considered in Corollary 15.4.1, and it was also the basis for the multiple test
construction in Section 15.4.4.

However, not all hypothesis testing problems fit nicely into the framework of
testing parameters. For example, consider the problem of testing whether the
data come from a certain parametric submodel (such as the family of normal
distributions) of a nonparametric model, the so-called goodness of fit problem.
Or, when Xi is vector-valued, consider the problem of testing whether Xi has a
distribution that is spherically symmetric.

Given a test statistic Tn, its distribution must be known, estimated, or approx-
imated (at least under the null hypothesis), in order to construct a critical value.
The approach taken in this section is to estimate the null distribution of Tn by
resampling from a distribution obeying the constraints of the null hypothesis.

To be explicit, assume we wish to construct a test based on a real-valued test
statistic Tn = Tn(Xn) which is consistent in level and power. Large values of Tn

reject the null hypothesis. Thus, having picked a suitable test statistic Tn, our
goal is to construct a critical value, say cn(1 − α), so that the test which rejects
if and only if Tn exceeds cn(1 − α) satisfies

P{Tn(Xn) > cn(1 − α)} → α as n → ∞

when P ∈ P0. Furthermore, we require this rejection probability to tend to one
when P ∈ P1. Unlike the classical case, the critical value will be constructed to be
data-dependent (as in the case of a permutation test). To see how the bootstrap
can be used to determine a critical value, let the distribution of Tn under P be
denoted by

Gn(x, P ) = P{Tn(Xn) ≤ x} .

Note that we have introduced Gn(·, P ) instead of utilizing Jn(·, P ) to dis-
tinguish from the case of confidence intervals where Jn(·, P ) represents the
distribution of a root which may depend both on the data and on P . In the hy-
pothesis testing context, Gn(·, P ) represents the distribution of a statistic (and
not a root) under P . Let

gn(1 − α, P ) = inf{x : Gn(x, P ) ≥ 1 − α} .

Typically, Gn(·, P ) will converge in distribution to a limit law G(·, P ), whose
1 − α quantile is denoted g(1 − α, P ).

The bootstrap approach is to estimate the null sampling distribution by
Gn(·, Q̂n), where Q̂n is an estimate of P in P0 so that Q̂n satisfies the con-
straints of the null hypothesis, since critical values should be determined as if
the null hypothesis were true. A bootstrap critical value can then be defined by
gn(1−α, Q̂n). The resulting nominal level α bootstrap test rejects H if and only
if Tn > gn(1 − α, Q̂n).

Notice that we would not want to replace a Q̂n satisfying the null hypothe-
sis constraints by the empirical distribution function P̂n, the usual resampling
mechanism of resampling the data with replacement. One might say that the
bootstrap is so adept at estimating the distribution of a statistic that Gn(·, P̂n)
is a good estimate of Gn(·, P ) whether or not P satisfies the null hypothesis con-
straints. Hence, the test that rejects when Tn exceeds gn(1 − α, P̂n) will (under
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suitable conditions) behave asymptotically like the test that rejects when Tn ex-
ceeds gn(1 − α, P ), and this test has an asymptotic probability of α of rejecting
the null hypothesis, even if P ∈ P1. But, when P ∈ P1, we would want the test
to reject with probability that is approaching one.

Thus, the choice of resampling distribution Q̂n should satisfy the following. If
P ∈ P0, Q̂n should be near P so that Gn(·, P ) ≈ Gn(·, Q̂n); then, gn(1−α, P ) ≈
gn(1 − α, Q̂n) and the asymptotic rejection probability approaches α. If, on the
other hand, P ∈ P1, Q̂n should not approach P , but some P0 in P0. In this way,
the critical value should satisfy

gn(1 − α, Q̂n) ≈ gn(1 − α, P0) → g(1 − α, P0) < ∞

as n → ∞. Then, assuming the test statistic is constructed so that Tn → ∞
under P when P ∈ P1, we will have

P{Tn > gn(1 − α, Q̂n)} ≈ P{Tn > g(1 − α, P0)} → 1

as n → ∞, by Slutsky’s Theorem.
As in the construction of confidence intervals, Gn(·, P ) must be smooth in P in

order for the bootstrap to succeed. In the theorem below, rather than specifying
a set of sequences CP as was done in Theorem 15.4.1, smoothness is described in
terms of a metric d, but either approach could be used. The proof is analogous
to the proof of Theorem 15.4.1.

Theorem 15.6.1 Let Xn be generated from a probability law P ∈ P0. Assume
the following triangular array convergence: d(Pn, P ) → 0 and P ∈ P0 implies
Gn(·, Pn) converges weakly to G(·, P ) with G(·, P ) continuous. Moreover, assume
Q̂n is an estimator of P based on Xn which satisfies d(Q̂n, P ) → 0 in probability
whenever P ∈ P0. Then,

P{Tn > gn(1 − α, Q̂n)} → α as n → ∞ .

Example 15.6.1 (Normal Correlation) Suppose (Yi, Zi), i = 1, . . . , n are
i.i.d. bivariate normal with unknown means, variances, and correlation ρ. The
null hypothesis specifies ρ = ρ0 versus ρ > ρ0. Let Tn = n1/2ρ̂n, where ρ̂n is
the usual sample correlation. Under the null hypothesis, the distribution of Tn

doesn’t depend on any unknown parameters. So, if Q̂n is any bivariate normal
distribution with ρ = ρ0, the bootstrap sampling distribution Gn(·, Q̂n) is ex-
actly equal to the true null sampling distribution. Note, however, that inverting
a parametric bootstrap confidence bound using the root n1/2(ρ̂n − ρ) would not
be exact.

Example 15.6.2 (Likelihood Ratio Tests) Suppose X1, . . . , Xn are i.i.d. ac-
cording to a model {Pθ, θ ∈ Ω}, where Ω is an open subset of RI k. Assume
θ is partitioned as (ξ, µ), where ξ is a vector of length p and µ is a vector of
length k − p. The null hypothesis parameter space Ω0 specifies ξ = ξ0. Under
the conditions of Theorem 12.4.2, the likelihood ratio statistic Tn = 2 log(Rn)
is asymptotically χ2

p under the null hypothesis. Suppose (ξ0, µ̂n,0) is an efficient
likelihood estimator of θ for the model Ω0. Rather than using the critical value
obtained from χ2

p, one could bootstrap Tn. So, let Gn(x, θ) denote the distribu-
tion of Tn under θ. An appropriate parametric bootstrap test obeying the null
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hypothesis constraints is to reject the null when Tn exceeds the 1−α quantile of
Gn(x, (ξ0, µ̂n,0)). Beran and Ducharme (1991) argue that, under regularity condi-
tions, the bootstrap test has error in rejection probability equal to O(n−2), while
the usual likelihood ratio test has error O(n−1). Moreover, the bootstrap test can
be viewed as an analytical approximation to a Bartlett-corrected likelihood ratio
test (see Section 12.4.4). In essence, the bootstrap automatically captures the
Bartlett correction and avoids the need for analytical calculation. As an exam-
ple, recall Example 12.4.7, where it was observed the Bartlett-corrected likelihood
ratio test has error O(n−2). Here, the bootstrap test is exact (Problem 15.45).

Example 15.6.3 (Behrens-Fisher Problem Revisited) For j = 1, 2, let
Xi,j , i = 1, . . . , nj be independent with Xi,j distributed as N(µj , σ

2
j ). All four

parameters are unknown and vary independently. The null hypothesis asserts
µ1 = µ2 and the alternative is µ1 > µ2. Let n = n1 + n2, and for simplicity
assume n1 to be the integer part of λn for some 0 < λ < 1. Let (X̄n,j , S

2
n,j) be

the usual unbiased estimators of (µj , σ
2
j ) based on the jth sample. Consider the

test statistic

Tn = (X̄1 − X̄2)/

√
S2

n,1

n1
+

S2
n,2

n2
.

By Example 13.5.4, the test that rejects the null hypothesis when Tn > z1−α is
efficient. However, we now study its actual rejection probability.

The null distribution of Tn depends only on σ2 = (σ2
1 , σ2

2) through the ratio
σ1/σ2, and we denote this distribution by Gn(·, σ2). Let S2

n = (S2
n,1, S

2
n,2). Like

the method used in Problem 11.89, by conditioning on S2
n, we can write

Gn(x, σ2) = E[a(S2
n, σ2, x)] ,

where

a(S2
n, σ2, x) = Φ[(1 + δ)1/2x]

and

δ =
2∑

j=1

n−1
j (S2

n,j − σ2
j )/

2∑

j=1

n−1
j σ2

j .

By Taylor expansion and the moments of S2
n, it follows that (Problem 15.46)

Gn(x, σ2) = Φ(x) +
1
n

bn(x, σ2) + O(n−2) , (15.64)

where

1
n

bn(x, σ2) = −(x + x3)φ(x)ρ2
n/4

is O(n−1) and

ρ2
n =

2∑

j=1

(nj − 1)−1n−2
j σ4

j /(
2∑

j=1

n−1
j σ2

j )2 .

Correspondingly, the quantile function satisfies

G−1
n (1 − α, σ2) = z1−α + (z1−α + z3

1−α)ρ2
n/4 + O(n−2) . (15.65)
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It follows that the rejection probability of the asymptotic test that rejects when
Tn > z1−α is α + O(n−1).

Consider next the (parametric) bootstrap-t, which rejects when Tn > G−1
n (1−

α, S2
n). Its rejection probability can be expressed as

1 − E[a(S2
n, σ2, G−1

n (1 − α, S2
n))] .

By Taylor expansion, it can be shown that the rejection probability of the test is
α + O(n−2) (Problem 15.47). Thus, the bootstrap-t improves upon the asymp-
totic expansion. In fact, bootstrap calibration (or the use of prepivoting) further
reduces the error in rejection probability to O(n−3). Details are in Beran (1988),
who further argues that the Welch method described in Section 11.3.1 behaves
like the bootstrap-t method. Although the Welch approximation is based on ele-
gant mathematics, the bootstrap approach essentially reproduces the analytical
approximation automatically.

Example 15.6.4 (Nonparametric Mean) Let X1, . . . , Xn be i.i.d. observa-
tions on the real line with probability law P , mean µ(P ) and finite variance
σ2(P ). The problem is to test µ(P ) = 0 against either a one-sided or two-sided
alternative. So, P0 is the set of distributions with mean zero and finite variance.
In the one-sided case, consider the test statistic Tn = n1/2X̄n, where X̄n is the
sample mean, since test statistics based on X̄n were seen in Section 11.4 to pos-
sess a certain optimality property. We will also consider the studentized statistic
T ′

n = n1/2X̄n/Sn, where we shall take S2
n to be the unbiased estimate of variance.

To apply Theorem 15.6.1, let Q̂n be the empirical distribution P̂n shifted by X̄n

so it has mean 0. Then, the error in rejection probability will be O(n−1/2) for Tn,
and will be O(n−1) for T ′

n, at least under the assumptions that F is smooth and
has infinitely many moments; these statements follow from the results in Section
15.5 (Problem 15.49).

While shifting the empirical distribution works in this example, it is not easy
to generalize when testing other parameters. Therefore, we consider the following
alternative approach. The idea is to choose the distribution in P0 that is in some
sense closest to the empirical distribution P̂n. One way to describe closeness is
the following. For distributions P and Q on the real line, let δKL(P, Q) be the
(forward) Kullback-Leibler divergence between P and Q (studied in Example
11.2.4), defined by

δKL(P, Q) =

∫
log(

dP
dQ

)dP . (15.66)

Note that δKL(P, Q) may be ∞, δKL is not a metric, and it is not even sym-
metric in its arguments. Let Q̂n be the Q that minimizes δKL(P̂n, Q) over Q
in P0. This choice for Q̂n can be shown to be well-defined and corresponds to
finding the nonparametric maximum likelihood estimator of P assuming P is con-
strained to have mean zero. (Another possibility is to minimize the (backward)
Kullback-Leibler divergence δKL(Q, P̂n).) By Efron (1981) (Problem 15.50), Q̂n

assigns mass wi to Xi, where wi satisfies

wi ∝
(1 + tXi)

−1

∑n
j=1(1 + tXj)−1
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and t is chosen so that
∑n

i=1 wiXi = 0. Now, one could bootstrap either Tn or

T ′
n from Q̂n.
In fact, this approach suggests an alternative test statistic given by T ′′

n =
nδKL(P̂n, Q̂n), where Q̂n is the Q minimizing the Kullback-Leibler divergence
δKL(P̂n, Q) over Q in P0. This is equivalent to the test statistic used by
Owen (1988, 2001) in his construction of empirical likelihood, who shows the
limiting distribution of 2T ′′

n under the null hypothesis is Chi-squared with 1 de-
gree of freedom. The wide scope of empirical likelihood is presented in Owen
(2001).

Example 15.6.5 (Goodness of fit) The problem is to test whether the under-
lying probability distribution P belongs to a parametric family of distributions
P0 = {Pθ, θ ∈ Θ0}, where Θ0 is an open subset of k-dimensional Euclidean
space. Let P̂n be the empirical measure based on X1, . . . , Xn. Let θ̂n ∈ Θ0 be an
estimator of θ. Consider the test statistic

Tn = n1/2δ(P̂n, Pθ̂n
) ,

where δ is some measure (typically a metric) between P̂n and Pθ̂n
. (In fact, δ

need not even be symmetric, which is useful sometimes: for example, consider
the Cramér–von Mises statistic.) Beran (1986) considers the case where θ̂n is
a minimum distance estimator, while Romano (1988) assumes that θ̂n is some
asymptotically linear estimator (like an efficient likelihood estimator). For the
resampling mechanism, take Q̂n = Pθ̂n

. Both Beran (1986) and Romano (1988)
give different sets of conditions so that the above theorem is applicable, both
requiring the machinery of empirical processes.

15.7 Subsampling

In this section, a general theory for the construction of approximate confidence
sets or hypothesis tests is presented, so the goal is the same as that of the boot-
strap. The basic idea is to approximate the sampling distribution of a statistic
based on the values of the statistic computed over smaller subsets of the data. For
example, in the case where the data are n observations which are independent
and identically distributed, a statistic θ̂n is computed based on the entire data
set and is recomputed over all

(
n
b

)
data sets of size b. Implicit is the notion of

a statistic sequence, so that the statistic is defined for samples of size n and b.
These recomputed values of the statistic are suitably normalized to approximate
the true sampling distribution.

This approach based on subsamples is perhaps the most general one for ap-
proximating a sampling distribution, in the sense that consistency holds under
extremely weak conditions. That is, it will be seen that, under very weak as-
sumptions on b, the method is consistent whenever the original statistic, suitably
normalized, has a limit distribution under the true model. The bootstrap, on
the other hand, requires that the distribution of the statistic is somehow locally
smooth as a function of the unknown model. In contrast, no such assumption
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is required in the theory for subsampling. Indeed, the method here is applica-
ble even in the several known situations which represent counterexamples to the
bootstrap. However, when both subsampling and the bootstrap are consistent,
the bootstrap is typically more accurate.

To appreciate why subsampling behaves well under such weak assumptions,
note that each subset of size b (taken without replacement from the original
data) is indeed a sample of size b from the true model. If b is small compared
to n (meaning b/n → 0), then there are many (namely

(
n
b

)
) subsamples of size b

available. Hence, it should be intuitively clear that one can at least approximate
the sampling distribution of the (normalized) statistic θ̂b by recomputing the
values of the statistic over all these subsamples. But, under the weak convergence
hypothesis, the sampling distributions based on samples of size b and n should
be close. The bootstrap, on the other hand, is based on recomputing a statistic
over a sample of size n from some estimated model which is hopefully close to
the true model.

The use of subsample values to approximate the variance of a statistic is well-
known. The Quenouille-Tukey jackknife estimates of bias and variance based on
computing a statistic over all subsamples of size n− 1 has been well-studied and
is closely related to the mean and variance of our estimated sampling distribution
with b = n−1. For further history of subsampling methods, see Politis, Romano,
and Wolf (1999).

15.7.1 The Basic Theorem in the I.I.D. Case

Suppose X1, . . . , Xn is a sample of n i.i.d. random variables taking values in an
arbitrary sample space S. The common probability measure generating the ob-
servations is denoted P . The goal is to construct a confidence region for some
parameter θ(P ). For now, assume θ is real-valued, but this can and will be general-
ized to allow for the construction of confidence regions for multivariate parameters
or confidence bands for functions.

Let θ̂n = θ̂n(X1, . . . , Xn) be an estimator of θ(P ). It is desired to estimate the
true sampling distribution of θ̂n in order to make inferences about θ(P ). Nothing
is assumed about the form of the estimator.

As in previous sections, let Jn(P ) be the sampling distribution of the root
τn(θ̂n − θ(P )) based on a sample of size n from P , where τn is a normalizing
constant. Here, τn is assumed known and does not depend on P . Also define the
corresponding cumulative distribution function:

Jn(x, P ) = P{τn[θ̂n(X1, . . . , Xn) − θ(P )] ≤ x} .

Essentially, the only assumption that we will need to construct asymptotically
valid confidence intervals for θ(P ) is the following.

Assumption 15.7.1 There exists a limiting distribution J(P ) such that Jn(P )
converges weakly to J(P ) as n → ∞.

This assumption will be required to hold for some sequence τn. The most
informative case occurs when τn is such that the limit law J(P ) is nondegenerate.

To describe the subsampling method, consider the Nn =
(

n
b

)
subsets of size b of

the data {X1, . . . , Xn}; call them Y1, . . . , YNn , ordered in any fashion. Thus, each



15.7. Subsampling 675

Yi constitutes a sample of size b from P . Of course, the Yi depend on b and n,
but this notation has been suppressed. Only a very weak assumption on b will be
required. In the consistency results that follow, it will be assumed that b/n → 0
and b → ∞ as n → ∞. Now, let θ̂n,b,i be equal to the statistic θ̂b evaluated at
the data set Yi. The approximation to Jn(x, P ) we study is defined by

Ln,b(x) = N−1
n

Nn∑

i=1

I{τb(θ̂n,b,i − θ̂n) ≤ x} . (15.67)

The motivation behind the method is the following. For any i, Yi is actually
a random sample of b i.i.d. observations from P . Hence, the exact distribution of
τb(θ̂n,b,i−θ(P )) is Jb(P ). The empirical distribution of the Nn values of τb(θ̂n,b,i−
θ(P )) should then serve as a good approximation to Jn(P ). Of course, θ(P ) is
unknown, so we replace θ(P ) by θ̂n, which is asymptotically permissible because
τb(θ̂n − θ(P )) is of order τb/τn, and τb/τn will be assumed to tend to zero.

Theorem 15.7.1 Suppose Assumption 15.7.1 holds. Also, assume τb/τn → 0,
b → ∞, and b/n → 0 as n → ∞.

(i) If x is a continuity point of J(·, P ), then Ln,b(x) → J(x, P ) in probability.

(ii) If J(·, P ) is continuous, then

sup
x

|Ln,b(x) − Jn(x, P )| → 0 in probability . (15.68)

(iii) Let

cn,b(1 − α) = inf{x : Ln,b(x) ≥ 1 − α} .

and

c(1 − α, P ) = inf{x : J(x, P ) ≥ 1 − α} .

If J(·, P ) is continuous at c(1 − α, P ), then

P{τn[θ̂n − θ(P )] ≤ cn,b(1 − α)} → 1 − α as n → ∞ . (15.69)

Therefore, the asymptotic coverage probability under P of the confidence
interval [θ̂n − τ−1

n cn,b(1 − α),∞) is the nominal level 1 − α.

Proof. Let

Un(x) = Un,b(x, P ) = N−1
n

Nn∑

i=1

I{τb[θ̂n,b,i − θ(P )] ≤ x} . (15.70)

Note that the dependence of Un(x) on b and P will now be suppressed for nota-
tional convenience. To prove (i), it suffices to show Un(x) converges in probability
to J(x, P ) for every continuity point x of J(x, P ). To see why, note that

Ln,b(x) = N−1
n

∑

i

I{τb[θ̂n,b,i − θ(P )] + τb[θ(P ) − θ̂n] ≤ x} ,

so that for every ε > 0,

Un(x − ε)I{En} ≤ Ln,b(x)I{En} ≤ Un(x + ε)I{En} ,



676 15. General Large Sample Methods

where I{En} is the indicator of the event En ≡ {τb|θ(P ) − θ̂n| ≤ ε}. But, the
event En has probability tending to one. So, with probability tending to one,

Un(x − ε) ≤ Ln,b(x) ≤ Un(x + ε)

for any ε > 0. Hence, if x + ε and x − ε are continuity points of J(·, P ), then
Un(x ± ε) → J(x ± ε, P ) in probability implies

J(x − ε, P ) − ε ≤ Ln,b(x) ≤ J(x + ε, P ) + ε

with probability tending to one. Now, let ε → 0 so that x ± ε are continu-
ity points of J(·, P ). Then, it suffices to show Un(x) → J(x, P ) in probability
for all continuity points x of J(·, P ). But, 0 ≤ Un(x) ≤ 1 and E[Un(x)] =
Jb(x, P ). Since Jb(x, P ) → J(x, P ), it suffices to show V ar[Un(x)] → 0. To
this end, suppose k is the greatest integer less than or equal to n/b. For
j = 1, . . . , k, let Rn,b,j be equal to the statistic θ̂b evaluated at the data set
θ̂b(Xb(j−1)+1, Xb(j−1)+2, . . . , Xb(j−1)+b) and set

Ūn(x) = k−1
k∑

j=1

I{τb[Rn,b,j − θ(P )] ≤ x} .

Clearly, Ūn(x) and Un(x) have the same expectation. But, since Ūn(x) is the
average of k i.i.d. variables (each of which is bounded between 0 and 1), it follows
that

V ar[Ūn(x)] ≤ 1
4k

→ 0

as n → ∞. Intuitively, Un(x) should have a smaller variance than Ūn(x), because
Ūn(x) uses the ordering in the sample in an arbitrary way. Formally, we can write

Un(x) = E[Ūn(x)|Xn] ,

where Xn is the information containing the original sample but without regard
to their order. Applying the inequality [E(Y )]2 ≤ E(Y 2) (conditionally) yields

E[U2
n(x)] = E{E[Ūn(x)|Xn]}2 ≤ {E[Ū2

n(x)|Xn]} = E[Ū2
n(x)] .

Thus, V ar[Un(x)] → 0 and (i) follows.
To prove (ii), given any subsequence {nk}, one can extract a further subse-

quence {nkj} so that Lnkj
(x) → J(x, P ) almost surely. Therefore, Lnkj

(x) →
J(x, P ) almost surely for all x in some countable dense set of the real line. So,
Lnkj

tends weakly to J(x, P ) and this convergence is uniform by Polya’s Theorem.

Hence, the result (ii) holds.

To prove (iii), cn,b(1 − α)
P→ c(1 − α, P ) by Lemma 11.2.1 (ii). The limiting

coverage probability now follows from Slutsky’s Theorem.

The assumptions b/n → 0 and b → ∞ need not imply τb/τn → 0. For example,
in the unusual case τn = log(n), if b = nγ and γ > 0, the assumption τb/τn → 0
is not satisfied. In fact, a slight modification of the method is consistent without
assuming τb/τn → 0; see Politis, Romano, and Wolf (1999), Corollary 2.2.1. In
regular cases, τn = n1/2, and the assumptions on b simplify to b/n → 0 and
b → ∞.

The assumptions on b are as weak as possible under the weak assumptions of
the theorem. However, in some cases, the choice b = O(n) yields similar results;
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this occurs in Wu (1990), where the statistic is approximately linear with an
asymptotic normal distribution and τn = n1/2. This choice will not work in
general; see Example 15.7.2.

Assumption 15.7.1 is satisfied in numerous examples, including all previous
examples considered by the bootstrap.

15.7.2 Comparison with the Bootstrap

The usual bootstrap approximation to Jn(x, P ) is Jn(x, Q̂n), where Q̂n is some
estimate of P . In many nonparametric i.i.d. situations, Q̂n is taken to be the em-
pirical distribution of the sample X1, . . . , Xn. In Section 15.4, we proved results to
(15.68) and (15.69) with Ln,b(x) replaced by Jn(x, Q̂n). While the consistency of
the bootstrap requires arguments specific to the problem at hand, the consistency
of subsampling holds quite generally.

To elaborate a little further, we proved bootstrap limit results in the following
manner. For some choice of metric (or pseudo-metric) d on the space of probability
measures, it must be known that d(Pn, P ) → 0 implies Jn(Pn) converges weakly
to J(P ). That is, Assumption 15.7.1 must be strengthened so that the convergence
of Jn(P ) to J(P ) is suitably locally uniform in P . In addition, the estimator Q̂n

must then be known to satisfy d(Q̂n, P ) → 0 almost surely or in probability
under P . In contrast, no such strengthening of Assumption 15.7.1 is required in
Theorem 15.7.1. In the known counterexamples to the bootstrap, it is precisely a
certain lack of uniformity in convergence which leads to failure of the bootstrap.

In some special cases, it has been realized that a sample size trick can often
remedy the inconsistency of the bootstrap. To describe how, focus on the case
where Q̂n is the empirical measure, denoted by P̂n. Rather than approximating
Jn(P ) by Jn(P̂n), the suggestion is to approximate Jn(P ) by Jb(P̂n) for some b
which usually satisfies b/n → 0 and b → ∞. The resulting estimator Jb(x, P̂n) is
obviously quite similar to our Ln,b(x) given in (2.1). In words, Jb(x, P̂n) is the
bootstrap approximation defined by the distribution (conditional on the data)
of τb[θ̂b(X

∗
1 , . . . , X∗

b ) − θ̂n], where X∗
1 , . . . , X∗

b are chosen with replacement from
X1, . . . , Xn. In contrast, Ln,b(x) is the distribution (conditional on the data) of
τb[θ̂b(Y

∗
1 , . . . , Y ∗

b ) − θ̂n)], where Y ∗
1 , . . . , Y ∗

b are chosen without replacement from
X1, . . . , Xn. Clearly, these two approaches must be similar if b is so small that
sampling with and without replacement are essentially the same. Indeed, if one
resamples b numbers (or indices) from the set {1, . . . , n}, then the chance that
none of the indices is duplicated is Πb−1

i=1 (1 − i
n ). This probability tends to 0 if

b2/n → 0. (To see why, take logs and do a Taylor expansion analysis.) Hence, the
following is true.

Corollary 15.7.1 Under the further assumption that b2/n → 0, parts (i)–(iii) of
Theorem 15.7.1 remain valid if Ln,b(x) is replaced by the bootstrap approximation
Jb(x, P̂n).

The bootstrap approximation with smaller resample size, Jb(P̂n), is further stud-
ied in Bickel, Götze, and van Zwet (1997). In spite of the Corollary, we point
out that Ln,b is more generally valid. Indeed, without the assumption b2/n → 0,
Jb(x, P̂n) can be inconsistent. To see why, let P be any distribution on the real
line with a density (with respect to Lebesgue measure). Consider any statistic θ̂n,
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τn, and θ(P ) satisfying Assumption 15.7.1. Even the sample mean will work here.
Now, modify θ̂n to θ̃n so that the statistic θ̃n(X1, . . . , Xn) completely misbehaves
if any pair of the observations X1, . . . , Xn are identical. The bootstrap approxi-
mation to the distribution of θ̃n must then misbehave as well unless b2/n → 0,
while the consistency of Ln,b remains intact.

The above example, though artificial, was designed to illustrate a point. We
now consider some further examples.

Example 15.7.1 (U-statistics of Degree 2) Let X1, . . . , Xn be i.i.d. on the
line with c.d.f. F . Denote by F̂n the empirical distribution of the data. Let

θ(F ) =

∫ ∫
ω(x, y)dF (x)dF (y)

and assume ω(x, y) = ω(y, x). Assume
∫

ω2(x, y)dF (x)dF (y) < ∞. Set τn = n1/2

and θ̂n =
∑

i<j ω(Xi, Xj)/
(

n
2

)
. Then, it is well known that Jn(F ) converges

weakly to J(F ), the normal distribution with mean 0 and variance given by

v2(F ) = 4

{∫
[ω(x, y)dF (y)]2dF (x) − θ2(F )

}
.

Hence, assumption 15.7.1 holds. However, in order for the bootstrap to succeed,
the additional condition

∫
ω2(x, x)dF (x) < ∞ is required. Bickel and Freedman

(1981) give a counterexample to show the inconsistency of the bootstrap without
this additional condition.

Interestingly, the bootstrap may fail even if
∫

ω2(x, x)dF (x) < ∞, stemming
from the possibility that v2(F ) = 0. (Otherwise, Bickel and Freedman’s argument
justifies the bootstrap.) As an example, let w(x, y) = xy. In this case, θ(F̂n) =
X̄2

n − S2
n/n, where S2

n is the usual unbiased sample variance. If θ(F ) = 0, then
v(F ) = 0. Then, n[θ(F̂n) − θ(F )] converges weakly to σ2(F )(Z2 − 1), where Z
denotes a standard normal random variable and σ2(F ) denotes the variance of F .
However, it is easy to see that the bootstrap approximation to the distribution
of n[θ(F̂n)− θ(F )] has a representation σ2(F )Z2 + 2Zσ(F )n1/2X̄n. Thus, failure
of the bootstrap follows.

In the context of U-statistics, the possibility of using a reduced sample size
in the resampling has been considered in Bretagnolle (1983); an alternative
correction is given by Arcones (1991).

Example 15.7.2 (Extreme Order Statistic) The following counterexample
is taken from Bickel and Freedman (1981). If X1, . . . , Xn are i.i.d. according to
a uniform distribution on (0, θ), let X(n) be the maximum order statistic. Then,
n[X(n) − θ] has a limit distribution given by the distribution of −θX, where X is
exponential with mean one. Hence, Assumption 15.7.1 is satisfied here. However,
the usual bootstrap fails. To see why, let X∗

1 , . . . , X∗
n be n observations sampled

from the data with replacement, and let X∗
(n) be the maximum of the bootstrap

sample. The bootstrap approximation to the distribution of n[X(n) − θ] is the
distribution of n[X∗

(n) − X(n)], conditional on X1, . . . , Xn. But, the probability
mass at 0 for this bootstrap distribution is the probability that X∗

(n) = X(n),

which occurs with probability 1 − (1 − 1
n )n → 1 − exp(1). However, the true

limiting distribution is continuous. Note in Theorem 15.7.1 that the conditions
on b (with τn = n) reduce to b/n → 0 and b → ∞. In this example, at least, it is
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clear that we cannot assume b/n → c, where c > 0. Indeed, Ln,b(x) places mass
b/n at 0. Thus, while it is sometimes true that, under further conditions such as
Wu (1990) assumes, we can take b to be of the same order as n, this example
makes it clear that we cannot in general weaken our assumptions on b without
imposing further structure.

Example 15.7.3 (Superefficient Estimator) Assume X1, . . . , Xn are i.i.d.
according the normal distribution with mean θ(P ) and variance one. Fix c > 0.
Let θ̂n = cX̄n if |X̄n| ≤ n−1/4 and θ̂n = X̄n otherwise. The resulting estimator
is known as Hodges’ superefficient estimator; see Lehmann and Casella (1998),
p.440 and Problem 12.66. It is easily checked that n1/2(θ̂n−θ(P )) has a limit dis-
tribution for every θ, so the conditions for our Theorem 15.7.1 remain applicable.
However, Beran (1984) showed that the distribution of n1/2(θ̂n − θ(P )) cannot
be bootstrapped, even if one is willing to apply a parametric bootstrap!

We have claimed that subsampling is superior to the bootstrap in a first or-
der asymptotic sense, since it is more generally valid. However, in many typical
situations, the bootstrap is far superior and has some compelling second-order
asymptotic properties. Some of these were studied in Section 15.5; also see Hall
(1992). In nice situations, such as when the statistic or root is a smooth func-
tion of sample means, a bootstrap approach is often very satisfactory. In other
situations, especially those where it is not known that the bootstrap works even
in a first-order asymptotic sense, subsampling is preferable. Still, in other situa-
tions (such as the mean in the infinite variance case), the bootstrap may work,
but only with a reduced sample size. The issue becomes whether to sample with
or without replacement (as well as the choice of resample size). Although this
question is not yet answered unequivocally, some preliminary evidence in Bickel
et al. (1997) suggests that the bootstrap approximation Jb(x, P̂n) might be more
accurate; more details on the issue of higher-order accuracy of the subsampling
approximation Ln,b(x) are given in Chapter 10 of Politis, Romano, and Wolf
(1999).

Because
(

n
b

)
can be large, Ln,b may be difficult to compute. Instead, an approx-

imation may be employed. For example, let I1, . . . IB be chosen randomly with
or without replacement from {1, 2, . . . , Nn}. Then, Ln,b(x) may be approximated
by

L̂n,b(x) =
1
B

B∑

i=1

I{τb(θ̂n,b,Ii − θ̂n) ≤ x}. (15.71)

Corollary 15.7.2 Under the assumptions of Theorem 15.7.1 and the assumption
B → ∞ as n → ∞, the results of Theorem 15.7.1 are valid if Ln,b(x) is replaced
by L̂n,b(x).

Proof. If the Ii are sampled with replacement, supx |L̂n,b(x) − Ln,b(x)| → 0
in probability by the Dvoretzky, Kiefer, Wolfowitz inequality. This result is also
true in the case the Ii are sampled without replacement; apply Proposition 4.1
of Romano (1989b).

An alternative approach, which also requires fewer computations, is the follow-
ing. Rather than employing all

(
n
b

)
subsamples of size b from X1, . . . , Xn, just
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use the n− b+1 subsamples of size b of the form {Xi, Xi+1, . . . , Xi+b−1}. Notice
that the ordering of the data is fixed and retained in the subsamples. Indeed,
this is the approach that is applied for time series data; see Chapter 3 of Politis,
Romano and Wolf (1999), where consistency results in data-dependent situations
are given. Even when the i.i.d. assumption seems reasonable, this approach may
be desirable to ensure robustness against possible serial correlation. Most infer-
ential procedures based on i.i.d. models are simply not valid (i.e., not even first
order accurate) if the independence assumption is violated, so it seems worth-
while to account for possible dependencies in the data if we do not sacrifice too
much in efficiency.

15.7.3 Hypothesis Testing

In this section, we consider the use of subsampling for the construction of hy-
pothesis tests. As before, X1, . . . , Xn is a sample of n independent and identically
distributed observations taking values in a sample space S. The common unknown
distribution generating the data is denoted by P . This unknown law P is assumed
to belong to a certain class of laws P. The null hypothesis H asserts P ∈ P0,
and the alternative hypothesis K is P ∈ P1, where Pi ⊂ P and P0

⋃
P1 = P.

The goal is to construct an asymptotically valid test based on a given test
statistic,

Tn = τntn(X1, . . . , Xn) ,

where, as before, τn is a fixed nonrandom normalizing sequence. Let

Gn(x, P ) = P{τntn(X1, . . . , Xn) ≤ x} .

We will be assuming that Gn(·, P ) converges in distribution, at least for P ∈ P0.
Of course, this would imply (as long as τn → ∞) that tn(X1, . . . , Xn) → 0 in
probability for P ∈ P0. Naturally, tn should somehow be designed to distinguish
between the competing hypotheses. The theorem we will present will assume tn is
constructed to satisfy the following: tn(X1, . . . , Xn) → t(P ) in probability, where
t(P ) is a constant which satisfies t(P ) = 0 if P ∈ P0 and t(P ) > 0 if P ∈ P1.
This assumption easily holds in typical examples.

To describe the test construction, as in Subsection 15.7.1, let Y1, . . . , YNn be
equal to the Nn =

(
n
b

)
subsets of {X1, . . . , Xn}, ordered in any fashion. Let tn,b,i

be equal to the statistic tb evaluated at the data set Yi. The sampling distribution
of Tn is then approximated by

Ĝn,b(x) = N−1
n

Nn∑

i=1

I{τbtn,b,i ≤ x} . (15.72)

Using this estimated sampling distribution, the critical value for the test is
obtained as the 1 − α quantile of Ĝn,b(·); specifically, define

gn,b(1 − α) = inf{x : Ĝn,b(x) ≥ 1 − α} . (15.73)

Finally, the nominal level α test rejects H if and only if Tn > gn,b(1 − α).
The following theorem gives the asymptotic behavior of this procedure, show-

ing the test is pointwise consistent in level and pointwise consistent in power.
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In addition, an expression for the limiting power of the test is obtained under a
sequence of alternatives contiguous to a distribution in the null hypothesis.

Theorem 15.7.2 Assume b/n → 0 and b → ∞ as n → ∞.

(i) Assume, for P ∈ P0, Gn(P ) converges weakly to a continuous limit law
G(P ), whose corresponding cumulative distribution function is G(·, P ) and
whose 1−α quantile is g(1−α, P ). If G(·, P ) is continuous at g(1−α, P )
and P ∈ P0, then

gn,b(1 − α) → g(1 − α, P ) in probability

and

P{Tn > gn,b(1 − α)} → α as n → ∞.

(ii) Assume the test statistic is constructed so that tn(X1, . . . , Xn) → t(P ) in
probability, where t(P ) is a constant which satisfies t(P ) = 0 if P ∈ P0

and t(P ) > 0 if P ∈ P1. Assume lim infn(τn/τb) > 1. Then, if P ∈ P1,
the rejection probability satisfies

P{Tn > gn,b(1 − α)} → 1 as n → ∞.

(iii) Suppose Pn is a sequence of alternatives such that, for some P0 ∈ P0, {P n
n }

is contiguous to {P n
0 }. Then,

gn,b(1 − α) → g(1 − α, P0) in P n
n -probability.

Hence, if Tn converges in distribution to T under Pn and G(·, P0) is
continuous at g(1 − α, P0), then

P n
n {Tn > gn,b(1 − α)} → Prob{T > g(1 − α, P0)}.

The proof is similar to that of Theorem 15.7.1 (Problem 15.52).

Example 15.7.4 Consider the special case of testing a real-valued parameter.
Specifically, suppose θ(·) is a real-valued function from P to the real line. The
null hypothesis is specified by P0 = {P : θ(P ) = θ0}. Assume the alternative is
one-sided and is specified by {P : θ(P ) > θ0}. Suppose we simply take

tn(X1, . . . , Xn) = θ̂n(X1, . . . , Xn) − θ0 .

If θ̂n is a consistent estimator of θ(P ), then the hypothesis on tn in part (ii) of the
theorem is satisfied (just take the absolute value of tn for a two-sided alternative).
Thus, the hypothesis on tn in part (ii) of the theorem boils down to verifying a
consistency property and is rather weak, though this assumption can in fact be
weakened further. The convergence hypothesis of part (i) is satisfied by typical
test statistics; in regular situations, τn = n1/2.

The interpretation of part (iii) of the theorem is the following. Suppose, instead
of using the subsampling construction, one could use the test that rejects when
Tn > gn(1 − α, P ), where gn(1 − α, P ) is the exact 1 − α quantile of the true
sampling distribution Gn(·, P ). Of course, this test is not available in general
because P is unknown and so is gn(1−α, P ). Then, the asymptotic power of the
subsampling test against a sequence of contiguous alternatives {Pn} to P with
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P in P0 is the same as the asymptotic power of this fictitious test against the
same sequence of alternatives. Hence, to the order considered, there is no loss in
efficiency in terms of power.

15.8 Problems

Section 15.2

Problem 15.1 Generalize Theorem 15.2.1 to the case where G is an infinite
group.

Problem 15.2 With p̂ defined in (15.5), show that (15.6) holds.

Problem 15.3 (i) Suppose Y1, . . . , YB are exchangeable real-valued random
variables; that is, their joint distribution is invariant under permutations. Let
q̃ be defined by

q̃ =
1
B

[
1 +

B−1∑

i=1

I{Yi ≥ YB}
]

.

Show, P{q̃ ≤ u} ≤ u for all 0 ≤ u ≤ 1. Hint: Condition on the order statistics.
(ii) With p̃ defined in (15.7), show that (15.8) holds.
(iii) How would you construct a p-value based on sampling without replacement
from G?

Problem 15.4 With p̂ and p̃ defined in (15.5) and (15.7), respectively, show
that p̂ − p̃ → 0 in probability.

Problem 15.5 As an approximation to (15.9), let g1, . . . , gB−1 be i.i.d. and
uniform on G. Also, set gB to be the identity. Define

R̃n,B(t) =
1
B

B∑

i=1

I{Tn(giX) ≤ t} .

Show, conditional on X,

sup
t

|R̃n,B(t) − R̂n(t)| → 0

in probability as B → ∞, and so

sup
t

|R̃n,B(t) − R̂n(t)| → 0

in probability (unconditionally) as well. Do these results hold only under the null
hypothesis? Hint: Apply Theorem 11.2.18. For a similar result based on sampling
without replacement, see Romano (1989b).

Problem 15.6 Suppose X1, . . . , Xn are i.i.d. according to a q.m.d. location
model with finite variance. Show the ARE of the one-sample t-test with respect
to the randomization t-test (based on sign changes) is 1 (even if the underlying
density is not normal).
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Problem 15.7 In Theorem 15.2.4, show the conclusion may fail if ψP is not an
odd function.

Problem 15.8 Verify (15.15) and (15.16). Hint: Let S be the number of positive
integers i ≤ m with Wi = 1, and condition on S.

Problem 15.9 Provide the remaining details for the proof of Theorem 15.2.5.

Problem 15.10 In the two-sample problem of Example 15.2.6, suppose the un-
derlying distributions are normal with common variance. For testing µ(PY ) =
µ(PZ) against µ(PY ) > µ(PZ) compute the limiting power of the randomization
test based on the test statistic Tm,n given in (15.13) against contiguous alterna-
tives of the form µ(PY ) = µ(PZ) + hn−1/2. Show this is the same as the optimal
two-sample t-test. Argue that the two tests are asymptotically equivalent in the
sense of Problem 13.24.

Problem 15.11 Using Theorem 15.2.3, prove a result analogous to Theorem
15.2.5 with Tm,n replaced by T̃m,n defined in (15.19). Deduce that the two-sample
permutation test is consistent in level for testing equality of population means, as
long as the underlying populations have a finite variance. [This result was proved
in Janssen (1997) by an alternative method.]

Problem 15.12 Under the setting of Problem 11.52 for testing equality of Pois-
son means λi based on the test statistic T , show how to construct a randomization
test based on T . Examine the limiting behavior of the randomization distribution
under the null hypothesis and contiguous alternatives.

Problem 15.13 Suppose (X1, Y1), . . . (Xn, Yn) are i.i.d. bivariate observations
in the plane, and let ρ denote the correlation between X1 and Y1. Let ρ̂n be the
sample correlation

ρ̂n =

∑
(Xi − X̄n)(Yi − Ȳn)

[
∑

i(Xi − X̄n)2
∑

j(Xj − Ȳn)2]2
.

(i) For testing independence of Xi and Yi, construct a randomization test based
on the test statistic Tn = n1/2|ρ̂n| .
(ii) For testing ρ = 0 versus ρ > 0 based on the test statistic ρ̂n, determine the
limit behavior of the randomization distribution when the underlying population
is bivariate Gaussian with correlation ρ = 0. Determine the limiting power of the
randomization test under local alternatives ρ = hn−1/2. Argue that the random-
ization test and the optimal UMPU test (5.75) are asymptotically equivalent in
the sense of Problem 13.24.
(iii) Investigate what happens if the underlying distribution has correlation 0,
but Xi and Yi are dependent.

Section 15.3

Problem 15.14 Assume X1, . . . , Xn are i.i.d. according to a location scale
model with distribution of the form F [(x − θ)/σ], where F is known, θ is a lo-
cation parameter, and σ is a scale parameter. Suppose θ̂n is a location and scale
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equivariant estimator and σ̂n is a location invariant, scale equivariant estimator.
Then, show that the roots [θ̂n − θ]/σ̂n and σ̂n/σ are pivots.

Problem 15.15 Let X = (X1, . . . , Xn)T and consider the linear model

Xi =
s∑

j=1

ai,jβj + σεi ,

where the εi are i.i.d. F , where F has mean 0 and variance 1. Here, the ai,j are
known, β = (β1, . . . , βs)

T and σ are unknown. Let A be the n×s matrix with (i, j)
entry ai,j and assume A has rank s. As in Section 11.3.3, let β̂n = (AT A)−1AT X
be the least squares estimate of β. Consider the test statistic

Tn =
(n − s)(β̂n − β)(AT A)(β̂n − β)

sS2
n

,

where S2
n = (X − Aβ̂n)T (X − Aβ̂n)/(n − s). Is Tn a pivot when F is known?

Section 15.4

Problem 15.16 Suppose the convergences (15.23) and (15.24) only hold in
probability. Show that (15.25) still holds.

Problem 15.17 In Theorem 15.4.1, one cannot deduce the uniform convergence
result (15.23) without the assumption that the limit law J(P ) is continuous. Show
that, without the continuity assumption for J(P ),

ρL(Jn(P̂n), Jn(P )) → 0

with probability one, where ρL is the Lévy metric defined in Definition 11.2.3.

Problem 15.18 In Theorem 15.4.3 (i), show that the assumption that θ(Fn) →
θ(F ) actually follows from the other assumptions.

Problem 15.19 Reprove Theorem 15.4.3 under the assumption E(|Xi|3) < ∞
by using the Berry-Esseen Theorem.

Problem 15.20 Prove the following extension of Theorem 15.4.3 holds. Let DF

be the set of sequences {Fn} such that Fn converges weakly to a distribution G
and σ2(Fn) → σ2(G) = σ2(F ). Then, Theorem (15.4.3) holds with CF replaced
by DF. (Actually, one really only needs to define DF so that and sequence {Fn}
is tight and any weakly convergent subsequence of {Fn} has the above property.)
Thus, the possible choices for the resampling distribution are quite large in the
sense that the bootstrap approximation Jn(Ĝn) can be consistent even if Ĝn is
not at all close to F . For example, the choice where Ĝn is normal with mean
X̄n and variance equal to a consistent estimate of the sample variance results
in consistency. Therefore, the normal approximation can in fact be viewed as a
bootstrap procedure with a perverse choice of resampling distribution. Show the
bootstrap can be inconsistent if σ2(G) += σ2(F ).
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Problem 15.21 In the case that θ(P ) is real-valued, Efron initially proposed
the following construction, called the bootstrap percentile method. Let θ̂n be an
estimator of θ(P ), and let J̃n(P ) be the distribution of θ̂n under P . Then, Efron’s
two-sided percentile interval of nominal level 1 − α takes the form

[J̃−1
n (

α
2

, P̂n), J̃−1
n (1 − α

2
, P̂n)] . (15.74)

Also, consider the root Rn(Xn, θ(P )) = n1/2(θ̂n−θ(P )), with distribution Jn(P ).
Write (15.74) as a function of θ̂n and the quantiles of Jn(P̂n). Suppose Theorem
15.4.1 holds for the root Rn, so that Jn(P ) converges weakly to J(P ). What must
be assumed about J(P ) so that P{θ(P ) ∈ In} → 1 − α?

Problem 15.22 Let θ̂n be an estimate of a real-valued parameter θ(P ). Suppose
there exists an increasing transformation g such that

g(θ̂n) − g(θ(P ))

is a pivot, so that its distribution does not depend on P . Also, assume this
distribution is continuous, strictly increasing and symmetric about zero.
(i) Show that Efron’s percentile interval (15.74), which may be constructed
without knowledge of g, has exact coverage 1 − α.
(ii) Show that the percentile interval is transformation equivariant. That is, if
φ = m(θ) is a monotone transformation of θ, then the percentile interval for φ is
the percentile interval for θ transformed by m, at least if φ̂n is taken to be m(θ̂)n.
This holds true for the theoretical percentile interval as well as its approximation
due to simulation.
(iii) If the parameter θ only takes values in an interval I and θ̂n does as well,
then the percentile interval is range-preserving in the sense that the interval is
always a subset of I.

Problem 15.23 Suppose θ̂n is an estimate of some real-valued parameter θ(P ).
Let Hn(x, θ) denote the c.d.f. of θ̂n under θ, with inverse H−1

n (1 − α, θ). The
percentile interval lower confidence bound of level 1 − α is then H−1

n (α, θ̂n).
Suppose that, for some increasing transformation g, and constants z (called the
bias correction) and a (called the acceleration constant),

P{g(θ̂n) − g(θ)
1 + ag(θ)

+ z0 ≤ x} = Φ(x) , (15.75)

where Φ is the standard normal c.d.f.
(i) Letting φ̂n = g(θ̂n), show that θ̂n,L given by

θ̂n,L = g−1
{

φ̂n + (zα + z)(1 + aφ̂n)/[1 − a(zα + z0)]
}

is an exact 1 − α lower confidence bound for θ.
(ii) Because θ̂n,L requires knowledge of g, let

θ̂n,BCa = H−1
n (β, θ̂n) ,

where

β = Φ(z + (zα + z)/[1 − a(zα + z)] .
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Show that θ̂n,BCa = θ̂n,L. [The lower bound θ̂n,BCa is called the BCa lower
bound and Efron shows one may take z = Φ−1(Gn(θ̂n, θ̂n)) and gives methods
to estimate a; see Efron and Tibshirani (1993, Chapter 14).]

Problem 15.24 Assume the setup of Problem 15.23 and condition (15.75). Let
θ0 be any value of θ and let θ1 = G−1

n (1 − α, θ0). Let

θ̂n,AP = G−1
n (β′, θ̂n) ,

where

β′ = Gn(θ0, θ1) .

Show that θ̂n,AP is an exact level 1 − α lower confidence bound for θ. [This
is called the automatic percentile lower bound of DiCiccio and Romano (1989),
and may be computed without knowledge of g, a or z. Its exactness holds under
assumptions even weaker than (15.75).]

Problem 15.25 Let X1, . . . , XnX be i.i.d. with distribution FX , and let
Y1, . . . , YnY be i.i.d. with distribution FY . The two samples are independent.
Let µ(F ) denote the mean of a distribution F , and let σ2(F ) denote the vari-
ance of F . Assume σ2(FX) and σ2(FY ) are finite. Suppose we are interested in
θ = θ(FX , FY ) = µ(FX)−µ(FY ). Construct a bootstrap confidence interval for θ
of nominal level 1−α, and prove that it asymptotically has the correct coverage
probability.

Problem 15.26 Let X1, · · · , Xn be i.i.d. Bernoulli trials with success probability
θ.
(i). As explicitly as possible, find a uniformly most accurate upper confidence
bound for θ of nominal level 1−α. State the bound explicitly in the case Xi = 0
for every i.
(ii). Describe a bootstrap procedure to obtain an upper confidence bound for θ
of nominal level 1 − α. What does it reduce to for the previous data set?
(iii). Let B̂1−α denote your upper bootstrap confidence bound for θ. Then, Pθ(θ ≤
B̂1−α) → 1 − α as n → ∞. Prove the following.

sup
θ

|Pθ(θ ≤ B̂1−α) − (1 − α)|

does not tend to 0 as n → ∞.

Problem 15.27 Let X1, . . . , Xn be i.i.d. with c.d.f. F , mean µ(F ) and finite
variance σ2(F ). Consider the root Rn = n1/2(X̄2

n − µ2(F )) and the bootstrap
approximation to its distribution Jn(F̂n), where F̂n is the empirical c.d.f. Deter-
mine the asymptotic behavior of Jn(F̂n). Hint: Distinguish the cases µ(F ) = 0
and µ(F ) += 0.

Problem 15.28 Show why (15.43) is true.

Problem 15.29 (i) Under the setup of Example 15.4.6, prove that Theorem
15.4.7 applies if studentized statistics are used.
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(ii) In addition to the X1, . . . , Xn, suppose i.i.d. Y1, . . . , Yn′ are observed, with
Yi = (Yi,1, . . . , Yi,s). The distribution of Yi need not be that of Xi. Suppose
the mean of Yi is (µ′

1, . . . , µ
′
s). Generalize Example 15.4.6 to simultaneously test

Hi : µi = µ′
i. Distinguish between two cases, first where the Xis are independent

of the Yjs, and next where (Xi, Yi) are paired (so n = n′) and Xi need not be
independent of Yi.

Problem 15.30 Under the setup of Example 15.4.7, provide the details to show
that the FWER is asymptotically controlled.

Problem 15.31 Under the setup of Example 15.4.7, suppose that there is also
an i.i.d. control sample X0,1, . . . , X0,n0 , independent of the other Xs. Let µ0

denote the mean of the controls. Now consider testing Hi : µi = µ0. Describe a
method that asymptotically controls the FWER.

Problem 15.32 Under the setup of Example 15.4.7, let Fi denote the distri-
bution of the ith sample. Now, consider H ′

i,j : Fi = Fj based on the same test
statistics. Describe a randomization test that has exact control of the FWER.
[Hint: Recall Theorem 9.1.3(ii).]

Problem 15.33 Let ε1, ε2, . . . be i.i.d. N(0, 1). Let Xi = µ+ εi +βεi+1 with β a
fixed nonzero constant. The Xi form a moving average process studied in Section
11.3.1.
(i) Examine the behavior of the nonparametric bootstrap method for estimating
the mean using the root n1/2(X̄n − µ) and resampling from the empirical distri-
bution. Show that the coverage probability does not tend to the nominal level
under such a moving average process.
(ii) Suppose n = bk for integers b and k. Consider the following moving blocks
bootstrap resampling scheme. Let Li,b = (Xi, Xi+1, . . . , Xi+b−1) be the block of
b observations beginning at “time” i. Let X∗

1 , . . . , X∗
n be obtained by randomly

choosing with replacement k of the n− b + 1 blocks Li,b; that is, X∗
1 , . . . , X∗

b are
the observations in the first sampled block, X∗

b+1, . . . , X
∗
2b are the observations

from the second sampled block, etc. Then, the distribution of n1/2[X̄n − µ] is
approximated by the moving blocks bootstrap distribution given by the distribu-
tion of n1/2[X̄∗

n − X̄n], where X̄∗
n =

∑n
i=1 X∗

i /n. If b is fixed, determine the mean
and variance of this distribution as n → ∞. Now let b → ∞ as n → ∞. At
what rate should b → ∞ so that the mean and variance of the moving blocks
distribution tends to the same limiting values as the true mean and variance, at
least in probability? [The moving blocks bootstrap was independently discovered
by Künsch (1989) and Liu and Singh (1992). The stationary bootstrap of Politis
and Romano (1994a) and other methods designed for dependent data are studied
in Lahiri (2003).]

Section 15.5

Problem 15.34 Under the assumptions of Theorem 15.5.2, show that, for any
ε > 0, the expansion (15.47) holds uniformly in α ∈ [ε, 1 − ε].
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Problem 15.35 Under the assumptions of Theorem 15.5.1, show that, for any
ε > 0, the expansion (15.48) holds uniformly in α ∈ [ε, 1 − ε].

Problem 15.36 Suppose Yn is a sequence of random variables satisfying

P{Yn ≤ t} = g0(t) + g1(t)n
−1/2 + O(n−1) ,

uniformly in t, where g0 and g1 have uniformly bounded derivatives. If Tn =
OP (n−1), then show, for any fixed (nonrandom) sequence tn,

P{Yn ≤ tn + Tn} = g0(tn) + g1(tn)n−1/2 + O(n−1) .

Problem 15.37 Assuming the expansions in the section hold, show that the
two-sided bootstrap interval (15.56) has coverage error of order n−1.

Problem 15.38 Assuming the expansions in the section hold, show that the
two-sided bootstrap-t interval (15.62) has coverage error of order n−1.

Problem 15.39 Verify the expansion (15.63) and argue that the resulting
interval In(1 − α̂n) has coverage error O(n−1).

Problem 15.40 In the nonparametric mean setting, determine the one- and
two-sided coverage errors of Efron’s percentile method described in (15.74).

Problem 15.41 Assume F has infinitely many moments and is absolutely con-
tinuous. Under the notation of this section, argue that n1/2[Jn(t, F̂n)− Jn(t, F )]
has an asymptotically normal limiting distribution, as does n[Kn(t, F̂n) −
Kn(t, F )].

Problem 15.42 (i) In a normal location model N(µ, σ2), consider the root Rn =
n1/2(X̄n−µ), which is not a pivot. Show that bootstrap calibration, by parametric
resampling, produces an exact interval.

(ii) Next, consider the root n1/2(S2
n − σ2), where S2

n is the usual unbiased
estimate of variance. Show that bootstrap calibration, by parametric resampling,
produces an exact interval.

Problem 15.43 (i) Show the bootstrap interval (15.22) can be written as

{θ ∈ Θ : Jn(Rn(Xn, θ), P̂n) ≤ 1 − α} (15.76)

if, for the purposes of this problem, Jn(x, P ) is defined as the left continuous
c.d.f.

Jn(x, P ) = P{Rn(Xn, θ(P )) < x}

and J−1
n (1 − α, P ) is now defined as

J−1
n (1 − α, P ) = sup{x : Jn(x, P ) ≤ 1 − α} .

[Hint: If a random variable Y has left continuous c.d.f. F (x) = P{Y < x} and
F−1(1 − α) is the largest 1 − α quantile of F , then the event {X ≤ F−1(1 − α)}
is identical to {F (X) ≤ 1 − α} for any random variable X (which need not have
distribution F ). Why?]
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(ii) The bootstrap interval (15.76) pretends that

Rn,1(X
n, θ(P )) ≡ Jn(Rn(Xn, θ(P )), P̂n)

has the uniform distribution on (0, 1). Let Jn,1(P ) be the actual distribution
of Rn,1(X

n, θ(P )) under P , with left continuous c.d.f. denoted Jn,1(x, P ). This
results in a new interval with Rn and Jn replaced by Rn,1 and Jn,1 in (15.76).
Show that the resulting interval is equivalent to bootstrap calibration of the
initial interval. [The mapping of Rn into Rn,1 by estimated c.d.f. of the former
is called prepivoting. Beran (1987, 1988b) argues that the interval based on Rn,1

has better coverage properties than the interval based on Rn.]

Section 15.6

Problem 15.44 In Example 15.6.1, rather than exact evaluation of Gn(·, Q̂n),
describe a simulation test of H that has exact level α.

Problem 15.45 In Example 15.6.2, why is the parametric bootstrap test exact
for the special case of Example 12.4.7?

Problem 15.46 In the Behrens-Fisher problem, show that (15.64) and (15.65)
hold.

Problem 15.47 In the Behrens-Fisher problem, verify the bootstrap-t has
rejection probability equal to α + O(n−2).

Problem 15.48 In the Behrens-Fisher problem, what is the order of error in
rejection probability for the likelihood ratio test? What is the order of error in
rejection probability if you bootstrap the non-studentized statistic n1/2(X̄n,1 −
X̄n,2).

Problem 15.49 In Example 15.6.4, with resampling from the empirical distri-
bution shifted to have mean 0, what are the errors in rejection for the tests based
on Tn and T ′

n? How do these tests differ from the corresponding tests obtained
through inverting bootstrap confidence bounds?

Problem 15.50 Let X1, . . . , Xn be i.i.d. with a distribution P on the real
line, and let P̂n be the empirical distribution function. Find Q that minimizes,
δKL(P̂n, Q), where δKL is the Kullback-Leibler divergence defined by (15.66).

Problem 15.51 Suppose X1, . . . , Xn are i.i.d. real-valued with c.d.f. F . The
problem is to test the null hypothesis that F is N(µ, σ2) for some (µ, σ2). Consider
the test statistic

Tn = n1/2 sup
t

|F̂n(t) − Φ((t − X̄n)/σ̂n)| ,

where F̂n is the empirical c.d.f. and (X̄n, σ̂2
n) is the MLE for (µ, σ2) assuming

normality. Argue that the distribution of Tn does not depend on (µ, σ2) and
describe an exact bootstrap test construction. [Such problems are studied in
Romano (1988)].
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Section 15.7

Problem 15.52 Prove Theorem 15.7.2. [Hint: For (ii), rather than considering
Ĝn,b(x), just look at the empirical distribution of the values of tn,b,i (not scaled
by τb) and show Ĝ0

n,b(·) converges in distribution to a point mass at t(P ).]

Problem 15.53 Prove a result for subsampling analogous to Theorem 15.4.7,
but that does not require assumption (15.42). [Theorem 15.4.7 applies to test-
ing real-valued parameters; a more general multiple testing procedure based on
subsampling is given by Theorem 4.4 of Romano and Wolf (2004).]

Problem 15.54 To see how subsampling extends to a dependent time series
model, assume X1, . . . , Xn are sampled from a stationary time series model that
is m-dependent. [Stationarity means the distribution of the X1, X2, . . . is the
same as that of Xt, Xt+1, . . . for any t. The process is m-dependent if, for any
t and m, (X1, . . . , Xt) and (Xt+m+1, Xt+m+2, . . .) are independent; that is, ob-
servations separated in time by more than m units are independent.] Suppose
the sum in the definition (15.67) of Ln,b extends only over the n − b + 1 sub-
samples of size b of the form (Xi, Xi+1, . . . , Xi+b−1); call the resulting estimate
L̃n,b. Under the assumption of stationarity and m-dependence, prove a theorem
analogous to Theorem 15.7.1. [The theorem can be extended to much weaker
types of dependence; see Politis, Romano, and Wolf (1999).]

15.9 Notes

Early references to permutations tests were provided at the end of Chapter 5. An
elementary account is provided by Good (1994), who provides an extensive bib-
liography, and Edgington (1995). Multivariate permutation tests are developed
in Pesarin (2001). The present large sample approach is due to Hoeffding (1952).
Applications to block experiments is discussed in Robinson (1973). Expansions
for the power of rank and permutation tests in the one- and two-sample prob-
lems are obtained in Albers, Bickel and van Zwet (1976) and Bickel and van Zwet
(1978), respectively. A full account of the large sample theory of rank statistics
is given in Hájek, Sidák, and Sen (1999). Robust two-sample permutation tests
are obtained in Lambert (1985).

The bootstrap was discovered by Efron (1979), who coined the name. Much of
the theoretical foundations of the bootstrap are laid out in Bickel and Freedman
(1981) and Singh (1981). The development in Section 15.4 is based on Beran
(1984). The use of Edgeworth expansions to study the bootstrap was initiated in
Singh (1981) and Babu and Singh (1983), and is used prominently in Hall (1992).
There have since been hundreds of papers on the bootstrap, as well as several
book length treatments, including Hall (1992), Efron and Tibshirani (1993), Shao
and Tu (1995), Davison and Hinkley (1997) and Lahiri (2003). Comparisons of
bootstrap and randomization tests are made in Romano (1989b) and Janssen and
Pauls (2003). Westfall and Young (1993) and van der Lann, Dudoit and Pollard
(2004) apply resampling to multiple testing problems. Theorem 15.4.7 is based
on Romano and Wolf (2004).
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The method of empirical likelihood referred to in Example 15.6.4 is fully treated
in Owen (2001). Similar to parametric models, the method of empirical likelihood
can be improved through a Bartlett correction, yielding two-sided tests with
error in rejection probability of O(n−2); see DiCiccio, Hall and Romano (1991).
Alternatively, rather than using the asymptotic Chi-squared distribution to get
critical values, a direct bootstrap approach resamples from Q̂n. Higher order
properties of such procedures are considered in DiCiccio and Romano (1990).

The roots of subsampling can be traced to Quenouille’s (1949) and Tukey’s
(1958a) jackknife. Hartigan (1969) and Wu (1990) used subsamples to construct
confidence intervals, but in a very limited setting. A general theory for using
subsampling to approximate a sampling distribution is presented in Politis and
Romano (1994b), including i.i.d. and data-dependent settings. A full treatment
with numerous references is given by Politis, Romano, and Wolf (1999).



AppendixA
Auxiliary Results

A.1 Equivalence Relations; Groups

A relation: x ∼ y among the points of a space X is an equivalence relation if it
is reflexive, symmetric, and transitive, that is, if

(i) x ∼ x for all x ∈ X ;

(ii) x ∼ y implies y ∼ x;

(iii) x ∼ y, y ∼ z implies x ∼ z.

Example A.1.1 Consider a class of statistical decision procedures as a space,
of which the individual procedures are the points. Then the relation defined by
δ ∼ δ′ if the procedures δ and δ′ have the same risk function is an equivalence
relation. As another example consider all real-valued functions defined over the
real line as points of a space. Then f ∼ g if f(x) = g(x) a.e. is an equivalence
relation.

Given an equivalence relation, let Dx denote the set of points of the space that
are equivalent to x. Then Dx = Dy if x ∼ y, and Dx∩Dy = 0 otherwise. Since by
(i) each point of the space lies in at least one of the sets Dx, it follows that these
sets, the equivalence classes defined by the relation ∼, constitute a partition of
the space.

A set G of elements is called a group if it satisfies the following conditions.

(i) There is defined an operation, group multiplication, which with any two
elements a, b ∈ G associates an element c of G. The element c is called the
product of a and b and is denoted by ab.
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(ii) Group multiplication obeys the associative law

(ab)c = a(bc).

(iii) There exists an element e ∈ G, called the identity, such that

ae = ea = a for all a ∈ G.

(iv) For each element a ∈ G, there exists an element a−1 ∈ G, its inverse, such
that

aa−1 = a−1a = e.

Both the identity element and the inverse a−1 of any element a can be shown
to be unique.

Example A.1.2 The set of all n× n orthogonal matrices constitutes a group if
matrix multiplication and inverse are taken as group multiplication and inverse
respectively, and if the identity matrix is taken as the identity element of the
group. With the same specification of the group operations, the class of all non-
singular n × n matrices also forms a group. On the other hand, the class of all
n × n matrices fails to satisfy condition (iv).

If the elements of G are transformations of some space onto itself, with the
group product ba defined as the result of applying first transformation a and
following it by b, then G is called a transformation group. Assumption (ii) is then
satisfied automatically. For any transformation group defined over a space X the
relation between points of X given by

x ∼ y if there exists a ∈ G such that y = ax

is an equivalence relation. That it satisfies conditions (i), (ii), and (iii) required
of an equivalence follows respectively from the defining properties (iii), (iv), and
(i) of a group.

Let C be any class of 1 : 1 transformations of a space, and let G be the class
of all finite products a±1

1 a±1
2 . . . a±1

m , with a1, . . . , am ∈ C, m = 1, 2, . . . , where
each of the exponents can be +1 or −1 and where the elements a1, a2, . . . need
not be distinct. Then it is easily checked that G is a group, and is in fact the
smallest group containing C.

A.2 Convergence of Functions; Metric Spaces

When studying convergence properties of functions it is frequently convenient to
consider a class of functions as a realization of an abstract space F of points f
in which convergence of a sequence fn to a limit f , denoted by fn → f , has been
defined.

Example A.2.1 Let µ be a measure over a measurable space (X ,A).
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(i) Let F be the class of integrable functions. Then fn converges to f in the
mean if1 ∫

|fn − f | dµ → 0. (A.1)

(ii) Let F be a uniformly bounded class of measurable functions. The sequence
is said to converge to f weakly if

∫
fnp dµ →

∫
fp dµ (A.2)

for all functions p that are integrable µ.

(iii) Let F be the class of measurable functions. Then fn converges to f pointwise
if

fn(x) → f(x) a.e. µ. (A.3)

A subset of F0 is dense in F if, given any f ∈ F , there exists a sequence in F0

having f as its limit point. A space F is separable if there exists a countable dense
subset of F . A space F such that every sequence has a convergent subsequence
whose limit point is in F is compact.2 A space F is a metric space if for every
pair of points f , g in F there is defined a metric (or distance) d(f, g) ≥ 0 such
that

(i) d(f, g) = 0 if and only if f = g;

(ii) d(f, g) = d(g, f);

(iii) d(f, g) + d(g, h) ≥ d(f, h) for all f , g, h.

The space is a pseudometric space if (i) is replaced by

(i′) d(f, f) = 0 for all f ∈ F .

A pseudometric space can be converted into a metric space by introducing the
equivalence relation f ∼ g if d(f, g) = 0. The equivalence classes F , G, . . . then
constitute a metric space with respect to the metric D(F, G) = d(f, g) where
f ∈ F , g ∈ G.

In any pseudometric space a natural convergence definition is obtained by
putting fn → f if d(fn, f) → 0.

Example A.2.2 The space of integrable functions of Example A.2.1(i) becomes
a pseudometric space if we put

d(f, g) =

∫
|f − g| dµ

and the induced convergence definition is that given by (1).

1Here and in the examples that follow, the limit f is not unique. More specifically,
if fn → f , then fn → g if and only if f = g (a.e. µ). Putting f ∼ g when f = g
(a.e. µ), uniqueness can be obtained by working with the resulting equivalence classes
of functions rather than with the functions themselves.

2The term compactness is more commonly used for an alternative concept. which
coincides with the one given here in metric spares. The distinguishing term sequential
compactness is then sometimes given to the notion defined here.
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Example A.2.3 Let P be a family of probability distributions over (X ,A). Then
P is a metric space with respect to the metric

d(P, Q) = sup
A∈A

|P (A) − Q(A)|. (A.4)

Lemma A.2.1 If F is a separable pseudometric space, then every subset of F
is also separable.

Proof. By assumption there exists a dense countable subset {fn} of F . Let

Sm,n =

{
f : d(f, fn) <

1
m

}
,

and let A be any subset of F . Select one element from each of the intersections
A ∩ Sm,n that is nonempty, and denote this countable collection of elements by
A0. If a is any element of A and m any positive integer, there exists an element
fnm such that d(a, fnm) < 1/m. Therefore a belongs to Sm,nm , the intersection
A∩Sm,nm is nonempty, and there exists therefore an element of A0 whose distance
to a is < 2/m. This shows that A0 is dense in A, and hence that A is separable.

Lemma A.2.2 A sequence fn of integrable functions converges to f in the mean
if and only if

∫

A

fn dµ →
∫

A

f dµ uniformly for A ∈ A. (A.5)

Proof. That (1) implies (5) is obvious, since for all A ∈ A
∣∣∣∣
∫

A

fn dµ −
∫

A

f dµ

∣∣∣∣ ≤
∫

|fn − f | dµ.

Conversely, suppose that (5) holds, and denote by An and A′
n the set of points

x for which fn(x) > f(x) and fn(x) < f(x) respectively. Then
∫

|fn − f | dµ =

∫

An

(fn − f) dµ −
∫

A′
n

(fn − f) dµ → 0 .

Lemma A.2.3 A sequence fn of uniformly bounded functions converges to a
bounded function f weakly if and only if

∫

A

fn dµ →
∫

A

f dµ for all A with µ(A) < ∞. (A.6)

Proof. That weak convergence implies (6) is seen by taking for p in (2) the
indicator function of a set A, which is integrable if µ(A) < ∞. Conversely (6)
implies that (2) holds if p is any simple function s =

∑
aiIAi with all the µ(Ai) <

∞. Given any integrable function p, there exists, by the definition of the integral,
such a simple function s for which

∫
|p − s| dµ < ε/3M , where M is a bound on

the |f |’s. We then have
∣∣∣∣
∫

(fn − f)p dµ

∣∣∣∣ ≤
∣∣∣∣
∫

fn(p − s) dµ

∣∣∣∣ +

∣∣∣∣
∫

f(s − p) dµ

∣∣∣∣ +

∣∣∣∣
∫

(fn − f)s dµ

∣∣∣∣ .
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The first two terms on the right-hand side are < ε/3, and the third term tends to
zero as n tends to infinity. Thus the left-hand side is < ε for n sufficiently large,
as was to be proved.

Lemma A.2.43 Let f and fn, n = 1, 2, . . . , be nonnegative integrable
functions with

∫
f dµ =

∫
fn dµ = 1.

Then pointwise convergence of fn to f implies that fn → f in the mean.

Proof. If gn = fn − f , then g ≥ −f , and the negative part g−
n = max(−gn, 0)

satisfies |g−
n | ≤ f . Since gn(x) → 0 (a.e. µ), it follows from Theorem 2.2.2(ii) of

Chapter 2 that
∫

g−
n dµ → 0, and

∫
g+

n dµ then also tends to zero, since
∫

gn dµ =
0. Therefore

∫
|gn| dµ =

∫
(g+

n + g−
n ) dµ → 0, as was to be proved.

Let P and Pn, n = 1, 2, . . . be probability distributions over (X ,A) with
densities pn and p with respect to µ. Consider the convergence definitions

(a) pn → p (a.e. µ);

(b)
∫
|pn − p| dµ → 0;

(c)
∫

gpn dµ →
∫

gp dµ for all bounded measurable g;

and

(b′) Pn(A) → P (A) uniformly for all A ∈ A;

(c′) Pn(A) → P (A) for all A ∈ A.

Then Lemmas A.2.2 and A.2.4 together with a slight modification of Lemma
A.2.3 show that (a) implies (b) and (b) implies (c), and that (b) is equivalent to
(b′) and (c) to (c′). It can further be shown that neither (a) and (b) nor (b) and
(c) are equivalent.4

A.3 Banach and Hilbert Spaces

A set V is called a vector space (or linear space) over the reals if there exists a
function + on V × V to V and a function · on R × V to V which satisfy for
x, y, z ∈ V ,

(i) x + y = y + x.
(ii) (x + y) + z = z + (y + z).
(iii) There is a vector 0 ∈ V : x + 0 = x for all x ∈ V .
(iv) λ(x + y) = λx + λy for any λ ∈ R.
(v) (λ1 + λ2)x = λ1x + λ2x for λi ∈ R.
(vi) λ1(λ2x) = (λ1λ2)x for λi ∈ R.
(vii) 0 · x = 0, 1 · x = x.

3Scheffé (1947).
4Robbins (1948).
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The operation + is called addition by scalars and · is multiplication by scalars.
A nonnegative real-valued function ‖ ‖ defined on a vector space is called a norm
if

(i) ‖x‖ = 0 if and only if x = 0.
(ii) ‖x + y‖ ≤ ‖x‖ + ‖y‖.
(iii)‖λx‖ = |λ|‖x‖.
A vector space with norm ‖ ‖ is a then a metric space if we define the metric

d to be d(x, y) = ‖x − y‖.
A sequence {xn} of elements in a normed vector space V is called a Cauchy

sequence if, given ε > 0, there is an N such that for all m, n ≥ N , we have
‖xn − xm‖ < ε. A Banach space is a normed vector space that is complete in the
sense that every Cauchy sequence {xn} satisfies ‖xn − x‖ → 0 for some x ∈ V .

Example A.3.1 (Lp spaces.) Let µ be a measure over a measurable space
(X ,A). Fix p > 0 and Lp[X , µ] denote the measurable functions f such that∫
|f |pdµ < ∞. If we identify equivalence classes of functions that are equal al-

most everywhere µ, then, for p ≥ 1, this vector space becomes a normed vector
space by defining

‖f‖ = ‖f‖p =

[∫
|f |pdµ

]1/p

.

In this case, the triangle inequality

‖f + g‖p ≤ ‖f‖p + ‖g‖p

is known as Minkowski’s inequality. Moreover, this space is a Banach space.5

A Hilbert space H is a Banach space for which there is defined a function 〈x, y〉
on H × H to R, called the inner product of x and y, satisfying, for xi, y ∈ H,
λi ∈ R,

(i) 〈λ1x1 + λ2x2, y〉 = λ1〈x1, y〉 + λ2〈x2, y〉 .
(ii) 〈x, y〉 = 〈y, x〉 .
(iii) 〈x, x〉 = ‖x‖2 .
Two vectors x and y of H are called orthogonal if 〈x, y〉 = 0. A collection

H0 ⊂ H of vectors is called an orthogonal system if any two elements in H0

are orthogonal. An orthogonal system is orthonormal if each vector in it has
norm 1. An orthonormal system H0 is called complete if 〈x, h〉 = 0 for all h ∈ H0

implies x = 0. In a separable Hilbert space, every orthonormal system is countable
and there exists a complete orthonormal system. Letting {h1, h2, . . .} denote a
complete orthonormal system, Parseval’s identity says that, for any x ∈ H,

‖x‖2 =
∞∑

j=1

[〈x, hj〉]2 . (A.7)

Example A.3.2 (L2 spaces.) In example A.3.1 with p = 2, the equivalence
classes of square integrable functions is a Hilbert space with inner product given

5For proofs of the results in this section, see Chapter 5 of Dudley (1989).
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by

〈f1, f2〉 =

∫
f1f2dµ .

If X is [0, 1] and µ is Lebesgue measure, then a complete orthonormal system
is given by the functions fj(u) =

√
2 sin(πju), j = 1, 2, . . .. Therefore, for any

square integrable function f , Parseval’s identity yields
∫ 1

0

f2(u)du = 2
∞∑

j=1

[∫ 1

0

f(u) sin(πju)du

]2

.

A.4 Dominated Families of Distributions

Let M be a family of measures defined over a measurable space (X ,A). Then
M is said to be dominated by a σ-finite measure µ defined over (X ,A) if each
member of M is absolutely continuous with respect to µ. The family M is said
to be dominated if there exists a σ-finite measure dominating it. Actually, if M
is dominated there always exists a finite dominating measure. For suppose that
M is dominated by µ and that X = ∪Ai, with µ(Ai) finite for all i. If the sets
Ai are taken to be mutually exclusive, the measure ν(A) =

∑
µ(A∩Ai)/2iµ(Ai)

also dominates M and is finite.

Theorem A.4.16 A family P of probability measures over a Euclidean space
(X ,A) is dominated if and only if it is separable with respect to the metric (4) or
equivalently with respect to the convergence definition

Pn → P if Pn(A) → P (A) uniformly for A ∈ A.

Proof. Suppose first that P is separable and that the sequence {Pn} is dense
in P, and let µ =

∑
Pn/2n. Then µ(A) = 0 implies Pn(A) = 0 for all n, and

hence P (A) = 0 for all P ∈ P. Conversely suppose that P is dominated by a
measure µ, which without loss of generality can be assumed to be finite. Then we
must show that the set of integrable functions dP/dµ is separable with respect
to the convergence definition (5) or, because of Lemma A.2.2, with respect to
convergence in the mean. It follows from Lemma A.2.1 that it suffices to prove
this separability for the class F of all functions f that are integrable µ. Since by
the definition of the integral every integrable function can be approximated in
the mean by simple functions, it is enough to prove this for the case that F is the
class of all simple integrable functions. Any simple function can be approximated
in the mean by simple functions taking on only rational values, so that it is
sufficient to prove separability of the class of functions

∑
riIAi where the r’s

are rational and the A’s are Borel sets, with finite µ-measure since the f ’s are
integrable. It is therefore finally enough to take for F the class of functions IA,
which are indicator functions of Borel sets with finite measure. However, any such
set can be approximated by finite unions of disjoint rectangles with rational end

6Berger (1951b).
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points. The class of all such unions is denumerable, and the associated indicator
functions will therefore serve as the required countable dense subset of F .

An examination of the proof shows that the Euclidean nature of the space
(X ,A) was used only to establish the existence of a countable number of sets
Ai ∈ A such that for any A ∈ A with finite measure there exists a subsequence Ai

with µ(Ai) → µ(A). This property holds quite generally for any σ-field A which
has a countable number of generators, that is, for which there exists a countable
number of sets Bi such that A is the smallest σ-field containing the Bi.

7 It
follows that Theorem A.4.1 holds for any σ-field with this property. Statistical
applications of such σ-fields occur in sequential analysis, where the sample space
X is the union X = ∪iXi of Borel subsets Xi of i-dimensional Euclidean space. In
these problems, Xi is the set of points (x1, . . . , xi) for which exactly i observations
are taken. If Ai is the σ-field of Borel subsets of Xi, one can take for A, the σ-
field generated by the Ai, and since each Ai possesses a countable number of
generators, so does A.

If A does not possess a countable number of generators, a somewhat weaker
conclusion can be asserted. Two families of measures M and N are equivalent if
µ(A) = 0 for all µ ∈ M implies ν(A) = 0 for all ν ∈ N and vice versa.

Theorem A.4.28 A family P of probability measures is dominated by a σ-finite
measure if and only if P has a countable equivalent subset.

Proof. Suppose first that P has a countable equivalent subset {P1, P2, . . .}. Then
P is dominated by µ =

∑
Pn/2n. Conversely, let P be dominated by a σ-finite

measure µ, which without loss of generality can be assumed to be finite. Let Q
be the class of all probability measures Q of the form

∑
ciPi, where Pi ∈ P, the

c’s are positive, and
∑

ci = 1. The class Q is also dominated by µ, and we denote
by q a fixed version of the density dQ/dµ. We shall prove the fact, equivalent to
the theorem, that there exists Q0 in Q such that Q0(A) = 0 implies Q(A) = 0
for all Q ∈ Q.

Consider the class C of sets C in A for which there exists Q ∈ Q such that
q(x) > 0 a.e. µ on C and Q(C) > 0. Let µ(Ci) tend to supC µ(C), let qi(x) > 0
a.e. on Ci, and denote the union of the Ci by C0. Then q∗0(x)

∑
ciqi(x) agrees

a.e. with the density of Q0 =
∑

ciQi and is positive a.e. on C0, so that C0 ∈
C. Suppose now that Q0(A) = 0, let Q be any other member of Q, and let
C = {x : q(x) > 0}. Then Q0(A ∩ C0) = 0, and therefore µ(A ∩ C0) = 0 and
Q(A∩C0) = 0. Also Q(A∩ C̃0 ∩ C̃) = 0. Finally, Q(A ∩ C̃0 ∩C) > 0 would lead
to µ(C0 ∪ [A ∩ C̃0 ∩ C]) > µ(C0) and hence to a contradiction of the relation
µ(C0) = supC µ(C), since A ∩ C̃0 ∩ C and therefore C0 ∪ [A ∩ C̃0 ∩ C] belongs
to C.

7A proof of this is given for example by Halmos (1974, Theorem B of Section 40).
8Halmos and Savage (1949).
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A.5 The Weak Compactness Theorem

The following theorem forms the basis for proving the existence of most powerful
tests, most stringent tests, and so on.

Theorem A.5.19 (Weak compactness theorem). Let µ be a σ-finite mea-
sure over a Euclidean space, or more generally over any measurable space (XA)
for which A has a countable number of generators. Then the set of measurable
functions φ with 0 ≤ φ ≤ 1 is compact with respect to the weak convergence (2).

Proof. Given any sequence {φn}, we must prove the existence of a subsequence
{φnj} and a function φ such that

lim

∫
φnip dµ =

∫
φp dµ

for all integrable p. If µ∗ is a finite measure equivalent to µ, then p∗ is integrable
µ∗ if and only if p = (dµ∗/dµ)p∗ is integrable µ, and

∫
φp dµ =

∫
φp∗ dµ∗ for all

φ. We may therefore assume without loss of generality that µ is finite. Let {pn}
be a sequence of p’s which is dense in the p’s with respect to convergence in the
mean. The existence of such a sequence is guaranteed by Theorem A.4.1 and the
remark following it. If

Φn(p) =

∫
φnp dµ,

the sequence Φn(p) is bounded for each p. A subsequence Φnk can be extracted
such that Φnk (pm) converges for each pm by the following diagonal process.
Consider first the sequence of numbers {Φn(p1)} which possesses a convergent
subsequence Φn′

1
(p1), Φn′′

2
(p1), . . . . Next the sequence Φn′

1
(p2), Φ′

n2(p2), . . . has
a convergent subsequence Φn′′

1
(p2), Φn′′

2
(p2), . . . . Continuing in this way, let

n1 = n′
1, n2 = n′′

2 , n′′′
3 , . . . . Then n1 < n2 < . . . , and the sequence {Φni}

converges for each pm. It follows from the inequality
∣∣∣∣
∫

(φnj − φni)p dµ

∣∣∣∣ ≤
∣∣∣∣
∫

(φnj − φni)pm dµ

∣∣∣∣ + 2

∫
|p − pm| dµ

that Φni(p) converges for all p. Denote its limit by Φ(p), and define a set function
Φ∗ over A by putting

Φ∗(A) = Φ(IA).

Then Φ∗ is nonnegative and bounded, since for all A, Φ∗(A) ≤ µ(A). To see
that it is also countably additive let A = ∪Ak, where the Ak are disjoint. Then
Φ∗(A) = lim Φ∗

ni
(∪Ak) and

∣∣∣∣
∫

∪Ak

φni dµ −
∑

Φ∗(Ak)

∣∣∣∣ ≤

∣∣∣∣∣

∫

∪m
k=1Ak

φni dµ −
m∑

k=1

Φ∗(Ak)

∣∣∣∣∣

9Banach (1932). The theorem is valid even without the assumption of a countable
number of generators; see Nölle and Plachky (1967) and Aloaglu’s theorem, given for
example in Royden (1988).
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+

∣∣∣∣∣

∫

∪∞
k=m+1Ak

φni dµ −
∞∑

k=m+1

Φ∗(Ak)

∣∣∣∣∣ .

Here the second term is to be taken as zero in the case of a finite sum A = ∪m
k=1Ak,

and otherwise does not exceed 2µ(∪∞
k=m+1Ak), which can be made arbitrarily

small by taking m sufficiently large. For any fixed m the first term tends to zero
as i tends to infinity. Thus Φ∗ is a finite measure over (X ,A). It is furthermore
absolutely continuous with respect to µ, since µ(A) = 0 implies Φni(IA) = 0 for
all i, and therefore Φ(IA) = Φ∗(A) = 0 We can now apply the Radon–Nikodym
theorem to get

Φ∗(A) =

∫

A

φ dµ for all A,

with 0 ≤ φ ≤ 1. We then have
∫

A

φni dµ →
∫

A

φ dµ for all A,

and weak convergence of the φni to φ follows from Lemma A.2.3.
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Paedagogik und Psychologic. Z. Pädag. Psychol. 15, 114–131, 145–159,
229–242.



716 References

Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer-Verlag,
New York.

de Wet, T. and Randles, R. (1987). On the effect of substituting parameter
estimators in limiting χ2 U and V statistics. Annals of Statistics 15, 398–412.

Diaconis, P. (1988). Group representations in probability and statistics. IMS
Lecture Notes, 11, Institute of Statistical Mathematics, Hayward, CA.

Diaconis, P. and Efron, B. (1985). Testing for independence in a two-way table.
New interpretations of the chi-square statistic (with discussion). Annals of
Statistics 13, 845–913.

Diaconis, P. and Holmes, S. (1994). Gray codes for randomization procedures.
Statistics and Computing 4, 287-302.

DiCiccio, T., Hall, P., and Romano, J. P (1991). Empirical likelihood is Bartlett-
correctable. Annals of Statistics 19, 1053–1061.

DiCiccio, T. and Romano, J. P. (1989). The automatic percentile method: accu-
rate confidence limits in parametric models. Canadian Journal of Statistics 17,
155–169.

DiCiccio, T. and Romano, J. (1990). Nonparametric confidence limits by resam-
pling and least favorable distributions. International Statistical Review 58,
59–76.

DiCiccio, T. and Stern, S. (1994). Frequentist and Bayesian Bartlett correction
of test statistics based on adjusted profile likelihoods. Journal of the Royal
Statistical Society Series B 56, 397–408.

Dobson, A. (1990). An Introduction to Generalized Linear Models. Chapman &
Hall, London.

Doksum, K. A. and Yandell, B. S. (1984). Tests for exponentiality. In Handbook
of Statistics (Krishnaiah and Sen, editors), Vol. 4, 579–611.

Donoghue, J. (2004). Implementing Shaffer’s multiple comparison procedure for
a large number of groups. To appear in Recent Developments in Multiple
Comparison Procedures, IMS Lecture Notes Monograph Series.

Donoho, D. (1988). One-sided inference about functionals of a density. Annals of
Statistics 16, 1390–1420.

Draper, D. (1981). Rank-Based Robust Analysis of Linear Models, Ph.D. Thesis,
Dept. of Statistics, University of California. Berkeley.

Draper, D. (1983). Rank-Based Robust Analysis of Linear Models. I. Exposi-
tion and Background, Tech. Report No. 17, Dept. of Statistics, University of
California, Berkeley.

Drost, F. (1988). Asymptotics for Generalized Chi-Square Goodness-of-Fit Tests.
Centrum voor Wiskunde en Informatica 48, Amsterdam.

Drost, F. (1989). Generalized chi-square goodness-of-fit tests for location-scale
models when the number of classes tends to infinity. Annals of Statistics 17,
1285–1300.

Dudley, R. (1989). Real Analysis and Probability. Wadsworth, Belmont.



References 717

Dudoit, S., Shaffer, J. P. and Boldrick, J. (2003). Multiple hypothesis testing in
microarray experiments. Statistical Science 18, 71–103.
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George, E. I. and Casella, G. (1994). An empirical Bayes confidence report.
Statistica Sinica 4, 617–638.

Ghosh, J. (1961). On the relation among shortest confidence intervals of different
types. Calcutta Statist. Assoc. Bull. 147-152.

Ghosh, J., Morimoto, H. and Yamada, S. (1981). Neyman factorization and
minimality of pairwise sufficient subfields. Annals of Statistics 9, 514–530.

Ghosh, M. (1948). On the problem of similar regions. Sankhyā 8, 329–338.
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Hájek, J. (1972). Local asymptotic minimax and admissibility in estimation.
Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and
Probability 1, 175–194.
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Turnbull, H. (1952). Theory of Equations, 5th ed., Oliver and Boyd, Edinburgh.

Tweedie, M. C. K. (1957). Statistical properties of inverse Gaussian distributions
I, II. Annals of Mathematical Statistics 28, 362–377, 696–705.

Unni, K. (1978). The Theory of Estimation in Algebraic and Analytic Exponential
Families with Applications to Variance Components Models, unpublished Ph.D.
Thesis, Indian Statistical Institute.

Uthoff, V. A. (1970). An optimum test property of two well-known statistics.
Journal of the American Statistical Association 65, 1597–1600.

Uthoff, V. A. (1973). The most powerful scale and location invariant test of
normal versus double exponential. Annals of Statistics 1, 170–174.

Vadiveloo, J. (1983). On the theory of modified randomization tests for
nonparametric hypotheses. Communications in Statistics A12, 1581–1596.

Vaeth, M. (1985). On the use of Wald’s test in exponential families. International
Statistical Review 53, 199–214.



References 753

van Beek, P. (1972). An application of Fourier methods to the problem of sharp-
ening the Berry-Esseen inequality. Zeitschrift für Wahrscheinlichkeitstheorie
und verwandte Gebiete 23, 187-196.

van der Laan, M., Dudoit, S. and Pollard, K. (2004). Multiple testing. Part
II. Step-down procedures for control of the familywise error rate. Statistical
Applications in Genetics and Molecular Biology 3, Article 14.

van der Vaart, A. (1988). Statistical Estimation in Large Parameter Spaces.
C.W.I. Tract 44, Amsterdam.

van der Vaart, A. (1998). Asymptotic Statistics. Cambridge University Press.

van der Vaart, A. and Wellner, J. (1996). Weak Convergence and Empirical
Processes. Springer, New York.

Venable, T. C. and Bhapkar, V. P. (1978). Gart’s test of interaction in a 2×2×2
contingency table for small samples. Biometrika 65, 669–672.

von Mises, R. (1931). Wahrscheinlichkeitsrechnung. Franz Deuticke, Leipzig,
Germany.

Vu, H. and Zhou, S. (1997). Generalization of likelihood ratio tests under
nonstandard conditions. Annals of Statistics 25, 897–916.

Wacholder, S. and Weinberg, C. R. (1982). Paired versus two-sample design for
a clinical trial of treatments with dichotomous outcome: Power considerations.
Biometrics 38, 801–812.

Wald, A. (1939). Contributions to the theory of statistical estimation and testing
hypotheses. Annals of Mathematical Statistics 10, 299–326. [A general formu-
lation of statistical problems containing estimation and testing problems as
special cases. Discussion of Bayes and minimax procedures.]

Wald, A. (1941a). Asymptotically most powerful tests of statistical hypotheses.
Annals of Mathematical Statistics 12, 1–19.

Wald, A. (1941b). Some examples of asymptotically most powerful tests. Annals
of Mathematical Statistics 12, 396–408.

Wald, A. (1942). On the power function of the analysis of variance test. Annals of
Mathematical Statistics 13, 434–439. [Problem 7.5. This problem is also treated
by Hsu, “On the power function of the E2-test and the T 2-test”, Annals of
Mathematical Statistics 16 (1945), 278–286.]

Wald, A. (1943). Tests of statistical hypotheses concerning several parame-
ters when the number of observations is large. Trans. Amer. Math. Soc. 54,
426–482. [General asymptotic distribution and optimum theory of likelihood
ratio (and asymptotically equivalent) tests.]

Wald, A. (1949). Note on the consistency of the maximum likelihood estimate.
Annals of Mathematical Statistics 20, 595–601.

Wald, A. (1950). Statistical Decision Functions. John Wiley, New York.
[Definition of most stringent tests.]

Wald, A. (1958). Selected Papers in Statistics and Probability by Abraham Wald.
Stanford Univ. Press. [Defines and characterizes complete classes of decision
procedures for general decision problems. The ideas of this and the preceding
paper were developed further in a series of papers culminating in Wald’s book
(1950).]



754 References

Wallace, D. (1958). Asymptotic approximations to distributions. Annals of
Mathematical Statistics 29, 635–654.

Wallace, D. (1980). The Behrens–Fisher and Fieller–Creasy problems. In R. A.
Fisher: An Appreciation (Fienberg and Hinkley. eds.) Springer. New York, pp.
119–147.

Walsh, J. E. (1949). Some significance tests for the median which are valid under
very general conditions. Annals of Mathematical Statistics 20, 64–81. [Lemma
6.7.1; proposes the Wilcoxon one-sample test in the form given in Problem
6.48. The equivalence of the two tests was shown by Tukey in an unpublished
mimeographed report dated 1949. Contains a result related to Problem 4.13.]

Wang, H. (1999). Brown’s paradox in the estimated confidence approach. Annals
of Statistics 27, 610–626.

Wang, Y. Y. (1971). Probabilities of the type I errors of the Welch tests for the
Behrens-Fisher problem. Journal of the American Statistical Association 66,
605–608.

Weisberg, S. (1985). Applied Linear Regression, 2nd edition. John Wiley, New
York.

Welch, B. L. (1939). On confidence limits and sufficiency with particular reference
to parameters of location. Annals of Mathematical Statistics 10, 58–69.

Welch, B. L. (1951). On the comparison of several mean values: An alternative
approach. Biometrika 38, 330–336.

Welch, W. (1990). Construction of permutation tests. Journal of the American
Statistical Association 85, 693–698.

Wellek, S. (2003). Testing Statistical Hypotheses of Equivalence. Chapman &
Hall/CRC.

Wells, M., Jammalamadaka, S. and Tiwari, R. (1993). Large sample theory of
spacings statistics for tests of fit for the composite hypothesis. Journal of the
Royal Statistical Society Series B 55, 189–203.

Westfall, P. H. (1989). Power comparisons for invariant variance ratio tests in
mixed ANOVA models. Annals of Statistics 17, 318–326.

Westfall, P. H. (1997). Multiple testing of general contrasts using logical con-
straints and correlations. Journal of the American Statistical Association 92,
299–306.

Westfall, P. H. and Young, S. (1993). Resampling-Based Multiple Testing:
Examples and Methods for P -Value Adjustment. John Wiley, New York.

Westlake, W. (1981). Response to T. B. L. Kirkwood: bioequivalence testing – a
need to rethink. Biometrics 37, 589–594.

Wijsman, R. (1979). Constructing all smallest simultaneous confidence sets in a
given class, with applications to manova. Annals of Statistics 7, 1003–1018.

Wijsman, R. (1980). Smallest simultaneous confidence sets with applications in
multivariate analysis. Journal of Multivariate Analysis V, 483–498.

Wijsman, R. (1990). Invariant Measures on Groups and Their Use in Statistics.
IMS Lecture Notes. Institute of Mathematical Statistics, Hayward, CA.



References 755

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometries 1,
90–83. [Proposes the two tests bearing his name. (See also Deuchler, 1914.)]

Wilk, M. B. and Kempthorne, O. (1955). Fixed, mixed, and random models.
Journal of the American Statistical Association 50, 1144–1167.

Wilks, S. S. (1938). The large-sample distribution of the likelihood ratio for test-
ing composite hypotheses. Annals of Mathematical Statistics 9, 60–62. [Derives
the asymptotic distribution of the likelihood ratio when the hypothesis is true.]

Williams, D. (1991). Probability With Martingales. Cambridge University Press,
Cambridge, England.

Wilson, E. B. (1927). Probable inference, the law of succession, and statistical
inference. Journal of the American Statistical Association 22, 209–212.

Wolfowitz, J. (1949). The power of the classical tests associated with the normal
distribution. Annals of Mathematical Statistics 20, 540–551.
[Proves Lemma 6.5.1 for a number of special cases. Proves that the standard
tests of the univariate linear hypothesis and for testing the absence of multi-
ple correlation are most stringent among all similar tests and possess certain
related optimum properties.]

Wolfowitz, J. (1950). Minimax estimates of the mean of a normal distribution
with known variance. Annals of Mathematical Statistics 21, 218–230.

Working, H. and Hotelling, H. (1929). Application of the theory of error to the
interpretation of trends. Journal of the American Statistical Association 24,
Mar. Suppl., 73–85.

Wu, C. F. (1990). On the asymptotic properties of the jackknife histogram. Annals
of Statistics 18, 1438–1452.

Wu, C. F. and Hamada, M. (2000). Experiments: Planning, Analysis and
Parameter Design. John Wiley, New York.

Wynn, H. P. (1984). An exact confidence band for one-dimensional polynomial
regression. Biometrika 71, 375–379.

Wynn, H. P. and Bloomfield, P. (1971). Simultaneous confidence bands in regres-
sion analysis (with discussion). Journal of the Royal Statistical Society Series B
33, 202–217.

Yamada, S. and Morimoto, H. (1992). Sufficiency. In Current Issues in Statistical
Inference: Essays in Honor of D. Basu. Gosh and Pathak (eds.), IMS Lecture
Notes 17, Hayward, CA.

Yanagimoto, T. (1990). Dependence ordering in statistical models and other no-
tions. In Topics in Statistical Dependence, Block, Sampson and Savits (eds.)
(1990), IMS Lecture Notes 16, Hayward, CA.

Yuen, K. K. (1974). The two-sample trimmed t for unequal population variances.
Biometrika 61, 165–170.

Zabell, S. (1992). R. A. Fisher and the fiducial argument. Statistical Science 7,
369–387.

Zhang, J. (2002). Powerful goodness-of-fit tests based on the likelihood ratio.
Journal of the Royal Statistical Society Series B 64, 281–294.



756 References

Zhang, J. and Boos, D. (1992). Bootstrap critical values for testing homogeneity
of covariance matrices. Journal of the American Statistical Association 87,
425–429.



Author Index

Agresti, A., 127, 129, 133, 134, 135,
168, 318
Aiyar, R. J., 272
Akritas, M., 318
Albers, W., 272, 451, 582, 690
Albert, A., 286
Alf, E., 590
Andersen, S. L., 210
Anderson, T. W., 90, 218, 306, 318
Andersson, S., 218
Anscombe, F., 474
Antille, A., 248
Arbuthnot, J., 107, 149
Arcones, M., 655, 678
Armsen, P., 127
Arnold, S., 239, 274, 292-293, 318,

374
Arrow, K., 58
Arthur, K. H., 306
Arvesen, J. N., 300
Athreya, K., 655
Atkinson, A., 169, 293, 318

Babu, G., 655, 690
Bahadur, R., 54, 210, 466, 481, 575,

582
Bain, L. J., 200, 201

Baker, R., 446
Balakrishnan, N., 156, 159, 193, 197,

281, 306, 307, 446
Banach, S., 700
Barankin, E. W., 47
Bar-Lev, S., 118, 201
Barlow, R. E., 287
Barnard, G. A., 175, 413
Barndorff-Nielsen, O., 47, 55, 106,

214, 398, 403, 517
Barnett, V., 6
Barron, A., 630
Bartholomew, D. J., 287
Bartlett, M. S., 95, 517
Basu, D., 106, 210, 395, 397, 398, 410,

411, 412
Basu, S., 462, 481
Bayarri, J., 108
Bayarri, M., 175
Becker, B., 109
Becker, N., 397
Bednarski, T., 328
Behnen, K., 582
Bell, C. B., 118, 241
Bell, C. D., 210
Benichou, J., 526, 549
Bening, V., 582



758 Author Index

Benjamini, Y., 354, 374, 445
Bennett, B., 127, 171
Bentkus, V., 604
Beran, R., 481, 526, 539, 582, 589,

629, 657, 658, 668, 671, 672,
673, 679, 689, 690

Berger, A., 320, 698
Berger, J., 15, 16, 18, 27, 95, 108, 173,

175, 331, 400, 414, 415, 526
Berger, R., 108, 287, 561
Berk, R., 220, 226, 241
Bernardo, J., 16
Bernoulli, D., 107
Best, D., 616, 630
Bhapkar, V. P., 135
Bhat, U., 145
Bhattacharya, P. K., 248
Bhattacharya, R., 460, 481, 668
Bickel, P., 11, 27, 226, 241, 474, 481,

488, 517, 539, 571, 582, 654,
677, 678, 679, 690

Billingsley, P., 42, 55, 117, 147, 185,
223, 256, 424, 427, 451, 476,
480, 611

Birch, M. W., 135
Birnbaum, A., 99, 126, 276, 400, 414
Birnbaum, Z. W., 108, 256, 442
Bishop, Y. M. M., 135, 525
Blackwell, D., 16, 21, 27, 40, 95, 118
Blair, R. C., 539
Bloomfield, P., 378, 384
Blyth, C. R., 6, 75, 108, 167, 168
Bohrer, R., 384
Boldrick, J., 109, 391
Bondar, J. V., 334, 415
Bondessen, L., 13
Boos, D., 108, 210, 248, 446, 481
Boschloo, R. D., 127
Bose, R. C., 391
Boukai, B., 175
Bowker, A. H., 524
Box, G. E. P., 210, 293, 304, 421, 474,

480
Box, J. F., 27
Brain, C. W., 629
Braun, H., 391
Breiman, L., 118
Bremner, J. M., 287
Bretagnolle, J., 655, 678

Brockwell, P. J., 451
Bromeling, L. D., 304
Bross, I. D. J., 127
Brown, K. G., 304
Brown, L. D., 18, 18, 47, 55, 69, 71,

108, 115, 141, 157, 237, 308,
336, 347, 408, 409, 414, 415,
435, 561, 647, 668

Brown, M. B., 448, 480
Brownie, C., 409, 446
Brunk, H. D., 287
Brunner, E., 318
Buehler, R., 175, 196, 408, 408, 412,

413, 414, 414
Burkholder, D. L., 54

Cabaña, A., 629
Cabaña, E., 629
Cai, T., 18, 435, 647, 668
Carroll, R. J., 318
Casella, G., vii, 5, 13, 17, 21, 55, 108,

124, 157, 173, 174, 201, 292,
335, 336, 395, 396, 408, 415,
506, 507, 548, 561, 679

Castillo, J., 144
Chakraborti, S., 146, 245, 251, 286,

290, 442
Chalmers, T. C., 57
Chambers, E. A., 134
Chapman, D. G., 108
Chatterjee, S., 169
Chebyshev, P., 481
Chen, H. J., 629
Chen, L., 445
Chernoff, H., 231, 526, 598-599, 630
Chhikara, R. S., 100, 197, 197
Chmielewski, M. A., 314
Choi, K., 318
Choi, S., 582
Chou, Y. M., 306
Choy, K., 582
Christensen, R., 318
Cima, J. A., 384
Clinch, J. C., 448, 480
Cochran, W. G., 448
Cohen, A., 57, 69, 135, 201, 210, 239,

287, 316, 318, 341, 629
Cohen, J., 281
Cohen, L., 95



Author Index 759

Conover, W. J., 446, 481
Coull, B., 168
Cox, D., 214
Cox, D. R., 6, 108, 134, 134, 220, 397,

414, 474
Cramér, H., 27, 481, 506, 526, 629
Cressie, N., 445, 629
Csörgö, S., 655
Cvitanic, J., 338
Cyr, J. L., 481

D’Agostino, R., 408, 589, 616, 628,
629

Dantzig, G. B., 78, 108
Darmois, G., 57
DasGupta, A., 18, 276, 435, 462, 481,

647, 668
Davenport, J. M., 231
David, H. A., 243
Davis, B. M., 127
Davis, R. A., 451
Davison, A., 690
Dawid, A. P., 106, 411
Dayton, C., 373
de Leeuw, J., 11
de Moivre, A., 480
Dempster, A. P., 175
Deshpande, J. V., 629
Deuchler, G., 276
Devroye, L., 443
de Wet, T., 589, 630
Diaconis, P., 180, 270, 318, 626, 639,

649
DiCiccio, T., 517, 686, 691
Dobson, A., 318
Doksum, K. A., 27, 474, 629
Donev, A., 293
Donoghue, J., 366
Donoho, D., 481
Draper, D., 286
Drost, F., 630
Dubins, L. E., 40
Ducharme, G., 671
Dudley, R., 55, 424, 472 480, 486,

571, 697
Dudoit, S., 109, 391, 690
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one-parametric family for, 191;
testing for independence in,
192, 271. See also Dependence

Bivariate normal correlation
coefficient: asymptotic test for,
512; confidence intervals for,
201; test for, 201, 231, 261,
397; confidence bounds for,
273

Bivariate normal distribution, 190,
207; ancillary statistics in, 397;
joint distribution of second
moments in, 208; test for
independence in, 190

Bonferroni procedure, 350, 385
Bootstrap, vii, 648; consistency of,

650; higher order properties,
664; hypothesis testing, 668; in
multiple testing, 658

Bootstrap calibration, 667
Bootstrap-t: consistency of, 654;

higher order properties,
665–667

Bounded-Lipschitz metric, 471
Borel set, 29
Bounded completeness, 118,

228; example of, without
completeness, 141. See also
Completeness of family of
distributions

Brownian Bridge process, 585, 588

Calibration, 667
Cauchy distribution, 71, 99, 324, 339
Cauchy location model: AUMP and

LAUMP tests for, 547, 548;
q.m.d. property, 487

Causal influence, 132
CDF, see Cumulative distribution

function
Center of symmetry: confidence

intervals for, 203, 206. See also
Symmetric distribution

Central limit theorems: for dependent
variables, 448, 449; for linear

combinations, 452; for sample
median, 429; Lindeberg, 427;
Lyapounov, 427; multivariate,
427; uniform, 463, 465

Characteristic function, 426
Chebyshev inequality, 472
Chi-squared distribution, 47; for

testing linear hypothesis with
known variance, 310; in testing
normal variance, 114, 155;
limit for likelihood ratio, 515,
516; non-central, 306, 308,
311; relation to exponential
distribution, 54; relation to
F -distribution, 158; relation to
t-distribution, 156. See also
Gamma distribution; Normal
one-sample problem, variance;
Wishart distribution

Chi-squared test: as a Neyman smooth
test, 601; asymptotically
maximin property, 593,
594; for simple hypotheses,
420, 514, 515, 590–597;
for composite hypotheses,
597–599; in contingency tables,
626; for testing uniformity,
594–597

Closure method for multiple testing,
385

Cluster sampling, 449
Cochran-Mantel-Haenszel test, 135
Coefficient of variation: asymptotic

confidence interval for, 509;
confidence bounds for, 273;
tests for, 157, 222, 230

Comparison of experiments, 136, 204
Complement of a set E, denoted Ec,

28
Completeness of a class of decision

procedures, 17, 18, 108; for
one-parameter exponential
family, 141; of classes of
one-sided tests, 69; of class of
two-sided tests, 140; relation
to sufficiency, 21. See also
Admissibility

Completeness of family of
distributions, 115; of
binomial distributions, 116;
of exponential families, 117;
of nonparametric family,
118; of normal distributions,
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116; of order statistics, 118,
143; relations to bounded
completeness, 118, 141; of
uniform distributions, 116

Completion of measure, 29
Complexity: of multiple comparison

procedure, 373
Components of variance, 303. See

also Random effects model
Composite hypothesis, 59; vs. simple

alternative, 84
Conditional distribution, 40, 41;

example of nonexistence, 40
Conditional expectation, 37, 42;

properties of, 39
Conditional independence: test for,

133
Conditional inference, 393, 394, 408;

optimal, 400
Conditional power, 123, 138, 188,

398, 400
Conditional probability, 39, 40
Conditional test, 549–553
Confidence bands: for cumulative

distribution function, 255, 276;
for linear models, 375; for
regression line, 384, 391. See
also Simultaneous confidence
intervals

Confidence bounds, 72; equivariant,
272; impossible, 300, 408;
in presence of nuisance
parameters, 162; most
accurate, 72; relation to
median unbiased estimates,
162; relation to one-sided
tests, 163; standard, 76; with
minimum risk, 102

Confidence coefficient, 72 162;
conditional, 408

Confidence intervals, 6, 76, 162; after
rejection of a hypothesis, 140,
408; distribution-free, 189,
203, 251; empty, 300; expected
length of, 170; history of,
108, 211; in randomization
models, 188; interpretation of,
162; logarithmically shortest,
252; loss functions for, 76;
of bounded length, 197, 198;
randomized, 166; relation to
two-sided tests, 163; uniformly
most accurate unbiased,

165. See also Simultaneous
confidence intervals

Confidence level, 72
Confidence sets, 72; admissibility of,

239, 335; average smallest,
251; based on multiple tests,
391; derived from a pivotal
quantity, 254; equivariant, 248,
336; example of inadmissible,
336; minimax, 335,336; of
smallest expected Lebesgue
measure, 200; relation to tests,
171; unbiased, 164; which are
not intervals, 225. See also
Credible region; Equivariant
confidence sets; Relevant
and semirelevant subsets;
Simultaneous confidence sets

Conjugate distribution, 173
Conservative test, 127
Consumer preferences, 135
Contiguity, 492–494; and limiting

distribution of a statistic; 499,
500; characterizations of, 496,
497; examples of, 498–503

Contingency tables: loglinear models
for, 134; r × c tables, 127;
three factor, 132; 2 × 2 × K,
138, 148; 2 × 2 × 2, 139;
2 × 2 × 2 × L, 148. See also
Two by two tables

Continuity correction, 127
Continuity point, 425
Continuity theorem, 426
Continuous Mapping theorem, 435,

436
Consistent estimator, 432
Contrasts, 382, 472
Convergence in distribution (or in

law), 425
Convergence in probability, 431
Convergence of moments, 443, 444
Convergence theorem: for densities,

696; dominated, 32; monotone,
32. See also Central limit
theorem; Continuity theorem;
Continuous mapping theorem;
Cramér-Wold theorem; Delta
method ; Glivenko-Cantelli
theorem; Prohorov’s theorem

Cornish-Fisher expansion, 460, 663
Correlation coefficient: in bivariate

normal distribution, 190,
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548, 549, 557; confidence
bounds for, 273; intraclass,
313; multiple tests of, 661;
nonparametric bootstrap test
of, 670; testing value of, 190,
231, 261. See also Bivariate
distribution; Dependence,
positive; Multiple correlation
coefficient; Rank correlation
coefficient; Sample correlation
coefficient

Countable additivity, 28
Countable generators of σ-field, 699
Counting measure, 29
Covariance matrix, 89, 305
Coverage error, 662–668
Cramér’s condition, 459
Cramér-von Mises statistic 459;

limiting distribution, 616; as
a weighted quadratic statistic,
611, 612

Cramér-Wold device, 426
Credible region, 172, 173; highest

probability density, 173, 175,
202

Critical function, 58
Critical region, 56
Cross product ratio, see Odds ratio
Cumulative distribution function

(cdf), 30, 52, 424; confidence
bands for, 255, 276; empirical,
245, 255; inverse of, 266.
See also Kolmogorov test for
goodness of fit; Probability
integral transformation

d-admissibility, 233, 264. See also
Admissibility

Data Snooping, 378
Decision problem: specification of, 4
Decision space, 4, 5
Decision theory, 27, 28; and inference,

6
Deficiency, 157
Delta method, 436–439
Density point, 185
Dependence: measure of, 129;

mo;dels for, 448–451 positive,
145; positive quadrant, 145;
regression, 191, 240. See
also Correlation coefficient;
Independence

Design of experiments, 8, 9, 130,
204, 293. See also Random
assignment; Sample size

Directional error, 139, 140, 373
Direct product (of two sets), 33
Dirichlet distribution, 202
Distribution, see the following

families of distributions:
Beta, Binomial, Bivariate
normal, Cauchy, Chi-squared,
Dirichlet, Double exponential,
Exponential, F , Gamma,
Hypergeometric, Inverse
Gaussian, Logistic, Lognormal,
Multinomial, Multivariate
normal, Negative binomial,
Noncentral, Normal, Pareto,
Poisson, Polya, Power series,
t, Hotelling’s T 2, Triangular,
Uniform, Weibull, Wishart.
See also Exponential family;
Monotone likelihood ratio;
Total positivity; Variation
diminishing

Dominated convergence theorem, 32
Dominated family of distributions,

45, 698, 699
Domination: of one procedure

over another, 17. See also
Admissibility; Inadmissibility

Double exponential distribution, 259,
323, 342; AUMP and LAUMP
property, 546, 547; locally
most powerful test in, 342;
q.m.d. property, 487; UMP
conditional test in, 402

Duncan multiple comparison
procedure, 368

Dunnett’s multiple comparison
method, 390

Dvoretzky, Kiefer, Wolfowitz
inequality, 442

EDF, see Empirical distribution
function

Edgeworth expansions, 459–462, 481,
662

Efficacy, 536
Efficient likelihood estimation, 504
Elliptically symmetric distribution,

314
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Empirical cumulative distribution
function, 245, 255, 441;
statistics, 589

Empirical likelihood, 673, 690, 691
Empirical measure, 475, 589
Empirical process, 585, 588, 658
Envelope power function, 262, 337.

See also Most stringent test
Equi-tailed confidence interval, 649
Equivalence: of family of distributions

or measures, 45; of statistics,
26; of two measures, 51

Equivalence classes, 69
Equivalence hypotheses 81, 90–92;

LAUMP tests for, 559–564
Equivalence relation, 692
Equivariance, 13, 396. See also

Invariance
Equivariant confidence bands, 255,

376, 384, 390
Equivariant confidence bounds, 272
Equivariant confidence sets, 248,

251, 252, 272, 273, 276; and
pivotal quantities, 274. See
also Uniformly most accurate
confidence sets

Error control: strong, 350; weak, 350
Error of first and second kind, 57, 66;

of type 3, 139; familywise error
rate, 349; directional, 373

Essentially complete class of decision
procedures, 17, 54, 69, 96. See
also Completeness of a class of
decision procedures

Estimation, see Confidence bands;
Confidence bounds; Confidence
intervals; Confidence sets;
Equivariance; Maximum
likelihood; Median: Point
estimation; Unbiasedness

Euclidean sample space, 41
Exchangeable, 355
Expectation (of a random available),

33, 39; conditional, 37, 39, 42
Expected order statistics, 243
Experimental design, see Design of

experiments
Exponential distribution, 22, 68,

74; confidence bounds and
intervals in, 74; order statistics
from, 54; relation to Pareto
distribution, 94; relation
to Poisson process, 54,

68; sufficient statistics for,
27; testing against gamma
distribution, 200; testing
against normal or uniform
distribution, 260; tests for
parameters of, 93, 195; two-
sample problem for, 259. See
also Chi-squared distribution;
Gamma distribution; Life
testing

Exponential family, 46, 55;
admissibility of tests in,
234; completeness of, 117;
differentiability of, 49;
equivalent forms of, 123;
expansion of loglikelihood,
483, 484; median unbiased
estimators in, 162; moments
of sufficient statistics, 55;
monotone likelihood ratio of,
67; natural parameter space of,
48, 55, 119; q.m.d. property,
488; regression models for,
210; testing in multiparameter,
119, 121, 123, 234; total
positivity of, 104. See also
One-parameter exponential
family

Exponential waiting times, 22, 54,
74. See also Exponential
distribution

Extreme order statistic, 678, 679

Factorization criterion for sufficient
statistics, 19, 45, 46

False discovery rate, 354, 386
Family of hypotheses, 349, 374
Familywise error rate (FWER), 349,

354, 355, 372, 386; control
based on bootstrap, 658–661

Fatou’s Lemma, 32
F -distribution, 158; for simultaneous

confidence intervals 381; in
Hotelling’s T 2-test, 306; in
tests and confidence intervals
for ratio of variances, 166, 299;
noncentral, 307; relation to
beta distribution, 159. See also
F -test for linear hypothesis;
F -test for ratio of variances

Fiducial, 108; distribution 175;
probability, 108, 175

Fieller’s problem, 197



Subject Index 773

Finite decision problem, 54
First-order accurate, 666
Fisher’s exact test, 127, 149. See also

Two by two tables
Fisher Information, 485, 486
Fisher’s least significant difference

method, 368
Fisher linkage model, 598
Fisher’s z-transformation, 439
Fixed effects model, 297. See also

Linear model; Model I and II
Free Group, 25
Frequentist point of view, 175
Friedman’s rank test, 290
F -test for linear hypothesis, 280;

admissibility of, 281; as
Bayes test, 309; for nested
classification, 302; has best
average power, 308; in Fisher’s
least significant difference
method, 368; in Gabriel’s
simultaneous test procedure,
368; in mixed models, 426; in
model II analysis of variance,
299; power of, 281; robustness
of, 445, 446, 448, 480, 491 See
also F -distribution

F -test for ratio of variances, 106, 107,
220, 238; admissibility of, 239;
nonrobustness of, 446. See
also F -distribution; Normal
two-sample problem, ratio of
variances

F -test in multiple comparison
procedures, 366

Fubini’s theorem, 34
Fully informative statistics, 96
Functionals, 571
Fundamental lemma, see Neyman-

Pearson fundamental
lemma

Gabriel’s simultaneous test procedure,
368

Gamma distribution Γ(g, b), 99, 196;
relation to Beta distribution,
196; scale parameter of, 201;
shape parameter of, 196.
See also Beta distribution;
Chi-squared distribution;
Exponential distribution

Gaussian curvature, 341
Generalized linear models, 318

Ghosh-Pratt identity, 200
Glivenko-Cantelli theorem, 441
Goodness of fit test, vii, 256 583;

bootstrap tests of, 673;
in multinomial models,
514–516; See also Chi-squared
tests; Kolmogorov-Smirnov;
Neyman’s smooth tests;
Separate families; Weighted
quadratic tests

Group: amenable, 334; free, 25;
generated by subgroups,
217; linear, 216, 227, 334; of
monotone transformations,
215; orthogonal, 215, 217,
330;; permutation, 215; scale,
215; transformation, 212,
213; transitive, 215, 220;
translation, 215, 219, 333. See
also Equivariance; Invariance

Group, 692, 693; family, 395, 401
Guaranteed power: achieved through

sequential procedure, 124, 126,
198, 199

Haar measure, 227, 331
Hazard ordering, 101
Hellinger distance, 530–534, 582
Hierarchical classification. see Nested

classification
Higher order asymptotics, 661–668
Highest probability density (HPD)

credible region, 173, 175, 202
Hilbert space, 696–698
Hodges-Lehmann efficiency, 539
Hodges’ superefficient estimator, 525
Holm procedure for multiple testing,

350, 351, 363, 385
Homogeneity of means: tests of, 285;

against ordered alternatives,
287; multiple comparisons for,
364, 366; for normal means,
285, 287; nonparametric, 286,
290, 458. See also Multiple
comparisons

Homomorphism, 12
Hotelling’s T 2-test, 306; admissibility

of, 317; as Bayes solution, 317;
minimaxity of, 335

HPD region. see Highest probability
density

Huber condition 455
Hunt-Stein theorem, 331
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Hypergeometric distribution, 66,
134; in testing equality of two
binomials, 127; in testing for
independence in a 2 × 2 table,
131; relation to distribution
of runs, 146. See also Fisher’s
exact test; Two by two tables

Hypergeometric function, 209
Hypothesis testing, 5, 56; history of,

107; loss functions for, 59, 69,
222; without stochastic basis,
131, 132

Improper prior distribution, 172
Inadmissibility, 17; of confidence

sets for vector means, 335; of
likelihood ratio test, 263; of
UMP invariant test, 306. See
also Admissibility

Independence: conditional, 133; of
sample mean from function
of differences in normal
samples, 152; of statistic from
a complete sufficient statistic,
152; of sum and ratio of
independent χ2 variables, 153;
of two random variables, 34

Independence, test for: in bivariate
normal distribution, 191; in
nonparametric models, 241,
271; in r × c contingency
tables, 127; in two by two
tables, 127–130

Indicator function of a set, 33
Indifference zone, 320
Inference, statistical. see Statistical

inference
Information matrix, 485, 486
Integrable function, 31
Integration, 31
Interaction, 291, 292, 311; as main

effects, 311; in random effects
and mixed models, 313, 314;
test for absence of, 291

Interval estimation, see Confidence
intervals

Into, see Transformation
Intraclass correlation coefficient, 313
Invariance: of decision procedure,

12, 13; of likelihood ratio,
341; of measure, 299, 518,
519; and admissibility, 26;
and ancillarity, 395, 397, 401;

and symmetry, 212; history
of, 276; of likelihood ratio,
262; of measure, 227; of power
functions, 227–229; of tests,
214, 276; principle of, 214;
relation to equivariance, 13;
relation to minimax principle,
25, 329; relation to sufficiency,
220; relation to unbiasedness,
23, 229, 230; warning against
inappropriate use of, 286.
See also Almost invariance;
Equivariance

Invariant measure, 227, 230; over
orthogonal group, 330; over
translation group, 333

Inverse Gaussian distribution, 100,
197

Inverse sampling: for binomial trials,
67; for Poisson variables, 68,
98. See also Negative binomial
distribution; Poisson process;
Waiting times

Jackknife, 648, 674
Joint confidence rectangles 657. See

also Simultaneous confidence
sets

Kendall’s statistic, 272
k-FWER, 374, 386
Kolmogorov-Smirnov: and bootstrap

confidence bands, 658;
asymptotic behavior of, 441,
442, 584–589; based on a pivot,
645; extensions of, 589–590;
statistic, 256; test for goodness
of fit, 256. See also Goodness
of fit

Kolmogorov-Smirnov distance, 441
Kruskal-Wallis test, 286
Kullback-Leibler information (or

divergence) 432; backward, 672
Kurtosis, 459

Large-sample theory, vii, 417
Latin squares design, 293, 312
Lattice distribution, 459
Laws of large numbers: Weak, 431;

Strong, 441; Uniform, 463, 464
Least favorable distribution, 18, 84,

85, 86, 321, 361
Least squares estimates, 281
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Lebesgue convergence theorems, 39
Lebesgue integral, 31
Lebesgue measure, 29
Legendre polynomials, 599, 600
Level of significance, see Significance

level
Lévy distance, 430
Life testing, 54. See also Exponential

distribution; Poisson process
Likelihood, 16; function, 503, 504 See

also Maximum likelihood
Likelihood ratio, 15, 101, 494;

censored, 326; invariance
of, 262; large-sample theory
of, 494, 503; monotone, 65;
preference order based on, 60,
66; sufficiency of, 53. See also
Monotone likelihood ratio

Likelihood ratio test, 16; example of
inadmissible, 263; large-sample
theory of, 513–517; using
bootstrap critical values, 670,
671

Lindley’s Paradox, 95
Linear functionals 571; LAUMP

property, 572–574
Linear hypothesis, 277, 333;

admissibility of test for 281;
Bayes test for, 309; canonical
form for, 278, 317; F -test
for, 200; inhomogeneous,
283; more efficient tests for,
287; parametric form of, 284,
309; power of test for, 280;
properties of test for, 280,
308, 333, 338, 341; reduction
of, through invariance, 279;
robustness of tests for,
451–458. See also Analysis
of variance; Additive linear
model, Generalized linear
model

Linear model, 277, 318; confidence
intervals in, 309; history of,
317; simultaneous confidence
intervals in, 380

Locally asymptotically uniformly
most powerful (LAUMP): for
equivalence hypotheses, 559–
564; for one-sided hypotheses
in multiparameter models,
553–559; in nonparametric

models, 572; in univariate
models, 544–549

Locally most powerful rank test, 244,
275

Locally optimal tests, 322, 339, 340,
403, 511

Locally unbiased, 340
Local power 433; of t-test 465, 466
Location families (or models), 70,

100, 396; are stochastically
increasing 70; comparing two,
219; conditional inference for,
414; condition for monotone
likelihood ratio, 323, 401;
example lacking monotone
likelihood ratio, 71; LAUMP
tests for, 546–548; strongly
unimodal, 401

Location-scale families, 12; confidence
intervals based on pivot,
645; comparing two, 258;
LAUMP tests in, 557. See also
Normality, testing for

Log convexity, 323, 412
Logistic distribution, 134, 323, 402
Logistic response model, 134
Loglikelihood ratio, 483; expansion

due to Le Cam, 489–491
Loglinear model, 134, 318
Lognormal family, 488
Loss function, 3, 7; in confidence

interval estimation, 23, 72, 76;
in hypothesis testing, 69, 141,
222; monotone, 76

Lp-space, 697, 698

Main effects, 287, 292; as interactions,
311; confidence sets for, 289;
tests for, 287, 291.

Mallow’s metric, 654
Mantel-Haenszel test, 135
Markov chain, 145
Markov property, 145
Markov’s inequality, 472
Matched pairs, 138, 183, 221, 239,

324; comparison with complete
randomization, 149; confidence
intervals for, 189; rank tests
for, 242, 246

Maximal invariant, 214; ancillarity
of, 395; distribution of, 218;
method for determining, 216;
obtained in steps, 217
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Maximin multiple tests, 354, 357,
358, 360

Maximin test, 320; by Hunt-Stein
theorem 333; existence of,
338; local, 322; relation to
invariance, 329. See also
Least favorable distribution;
Minimax principle; Most
stringent test

Maximum likelihood, 16, 17, 504–508;
in normal model, 504, 505; in
exponential family models,
505. See also Likelihood ratio
test

Maximum modulus confidence
intervals, 379

McNemar’s test, 138, 149
Measurable: function, 30; set, 29;

space, 29; transformation, 30,
34

Measure, 29
Median, confidence bounds for, 105
Median unbiasedness, 22; relation to

confidence bounds, 162
Meta-analysis, 109
Metric space, 527, 571, 694. See

also Hellinger; Kolmogorov-
Smirnov; Kullback-Leibler;
Lévy; Mallows; Prohorov,
Total variation

Minimal complete class of decision
procedures, 17. See also
Completeness of a class of
distributions; Essentially
complete class of decision
procedures

Minimal sufficient statistic, 21
Minimum Chi-squared estimator, 597
Minimax principle, 15, 347; and

least favorable distribution,
18; in confidence estimation,
335; relation to invariance,
25; relation to unbiasedness,
24. See also Maximin test;
Restricted Bayes solution

Minkowski’s inequality, 697
Missing observations, 410
Mixed model, 297, 304, 314, 315
Mixtures of experiments, 392, 394,

395, 410, 414
MLR, see Monotone likelihood ratio
Model I and II, 297. See also Mixed

model; Random effects model

Model selection, 11
Monotone class of sets, 50
Monotone convergence theorem, 32
Monotone decision rule, 355, 357, 387
Monotone likelihood ratio, 65,

69, 101, 104; mixtures of
distributions with, 341,
401, 403; necessary and
sufficient condition for, 98; of
differences, 402; of distribution
of correlation coefficient, 261;
of exponential family, 67; of
location families, 323, 401,
402; of noncentreal χ2 and F ,
307; of noncentral t, 224; of
scale families, 324; relation to
total positivity, 103; tests and
confidence procedures in the
presence of, 65, 69, 73. See also
Stochastic increasing

Monotone loss function, 76
Monte Carlo simulation 442, 443;

for bootstrap, 649; for
subsampling, 679

Mortality. see Hazard ordering
Most stringent test, 276, 337;

existence of, 346
Moving average process, 450
Moving blocks bootstrap, 687
Multinomial distribution, 47, 202; as

conditional distribution, 54;
Dirichlet prior for, 202; for
entries of 2 × 2 table, 128

Multinomial model: maximum
likelihood estimation in, 514,
515; testing a composite
hypothesis in, 597, 598;
testing a simple hypothesis
in, 514–516, 590–597; for
2 × 2 table, 128, 130; for
three-factor contingency table,
133. See also Chi-squared test;
Contingency tables

Multiple comparison procedures,
iii, 293, 343; complexity
of, 373; history of, 391;
interpretability of, 372;
significance levels for, 368,
370, 371. See also Duncan and
Dunnett multiple comparison
methods; Newman-Keuls
multiple comparison
procedure; Simultaneous
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confidence intervals;
Stepdown procedures; Stepup
procedures; Tukey levels;
Tukey’s T -method

Multiple decision procedures,
5. See also Multiple
comparisons; Multiple testing;
Three-decision problems

Multiple testing, iii, 293, 348; history
of, 391, maximin procedures,
354

Multiplicity problem, 349
Multivariate cumulative distribution

function, 424
Multivariate linear hypothesis, 306,

318 See also Linear hypothesis
Multivariate mean: nonparametric

confidence regions based on
bootstrap, 655, 656; multiple
testing for, 661

Multivariate normal distribution,
89, 304, 426; testing linear
combination of means 90, tests
for, 345, 513, 514. See also
Bivariate normal distribution

Multivariate normal one-sample
problem, the mean: confidence
intervals for, 415; tests
for, 305, 335, 353. See
also Hotelling’s T2-test;
Simultaneous confidence sets

Multivariate t-distribution, 275

Natural parameter space of an
exponential family, 48, 55, 119

Negative binomial distribution 22, 68,
144

Neighborhood model, 326, 328
Nested classification, 301, 313
Nested rejection regions, 63, 96, 105
Newman-Keuls multiple comparison

procedure, 368, 370
Newton’s identities, 39
Neyman-Pearson fundamental lemma,

60, 108; approximate version
of, 326; generalized, 77, 108

Neyman-Pearson statistic, 503
Neyman’s smooth tests, 599–601;

large sample behavior 601–607
Neyman structure, 115, 118
Noncentral: beta distribution, 280,

307; χ2-distribution, 306,
311; F -distribution, 307;

t-distribution, 156, 161, 193,
224

Noninformative prior, 172
Nonparametric: independence

problem, 191, 240, 242;
many-sample problem, 286;
methods for linear hypotheses,
290; one-sample problem, 118;
test in two-way layout, 290.
See also Permutation test;
Rank tests; Sign test

Nonparametric mean 420, 459; and
the Bahadur-Savage result;
466–468; and the bootstrap,
653, 655; and Edgeworth
expansions, 459–462; and the
t-test, 462–466; asymptotic
maximin and LAUMP
property, 567–574; confidence
intervals for based on a root,
646, 647; resampling-based
tests for 672, 673. See also
Multivariate mean

Nonparametric two-sample problem,
130, 176, 242; confidence
intervals in, 188, 203, 268;
omnibus alternatives, 245;
universally unbiased test in,
269. See also Normal scores
test; Wilcoxon test

Nonparametric test, 85
Nonparametric variance, LAUMP

property, 574
Normal approximation, order of error,

663, 664
Normal distribution N(ξ, σ2), 5, 86;

loglikelihood for, 483; testing
against Cauchy or double
exponential, 259; testing
against uniform or exponential,
260. See also Bivariate normal
distribution; Multivariate
normal distribution

Normality, testing for, 260, 589. See
also Normal distribution

Normal many-sample problem:
confidence sets for vector
means, 252, 336, 366, 375, 378;
tests for means, 285, 399. See
also Homogeneity of means,
tests of

Normal one-sample problem, the
coefficient of variation:
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confidence intervals for, 273;
test for, 157, 224, 294, 303

Normal one-sample problem, the
mean: admissibility of test
for, 235; AUMP test for, 555,
556; confidence intervals for,
163, 250, 405; credible region
for, 172m 174; Edgeworth
expansion for t-statistic, 517;
LAUMP test of equivalence
with unknown variance, 563,
564; likelihood ratio test for,
87; median unbiased estimate
of, 164; nonexistence of test
with controlled power, 157;
nonexistence of UMP test
for, 89; optimum test for, 92,
155, 156, 260, 283, 401; test
for, based on random sample
size, 95; two-stage confidence
intervals for, of fixed length,
198, 199; two-stage test
for, with controlled power,
199; two-sided test for, 260;
sequential confidence intervals
for, 163, 199. See also Matched
pairs; t-test

Normal one-sample problem, the
variance: admissibility of test
for, 238; conditional confidence
intervals for, 415; confidence
intervals for, 165, 201; credible
region for, 174; likelihood ratio
test for, 87; optimum test for,
87, 92, 154, 220, 325

Normal response model, 134
Normal scores statistic, 269
Normal scores test, 243; optimality

of, 243, 244
Normal subgroup, 257
Normal two-sample problem,

difference of means:
comparison with matched
pairs, 204; confidence intervals
for, 165; credible region for,
202; optimal tests for for
(with variances equal), 107,
160, 195, 225, 260, 284. See
also Behrens-Fisher problem;
Homogeneity of means, tests
of; t-distribution; t-test

Normal two-sample problem, ratio of
variances, 107, 157, 220, 238;

confidence intervals for, 166,
254, 272; credible region for,
202; nonrobustness of test for,
446; test for, 107, 157, 259.
See also F -test for ratio of
variances; Ratio of variances

Nuisance parameters, 318, 402
Null set, 40

Odds ratio, 126, 399; most accurate
unbiased confidence intervals
for, 200. See also Binomial
probabilities; Contingency
table; Two by two tables

One parameter exponential family,
67, 81, 111; complete class for,
141; most stringent test in,
338.

One-sided hypotheses, 65, 124
One-way layout, 285, 353; Bayesian

inference for, 304; model II
for, 297; nonparametric, 286.
See also Homogeneity, tests of;
Normal many-sample problem

Onto, see Transformation
Optimality, 9, 10
Orbit of transformation group, 214
Ordered alternatives, 287
Order notation OP (1), oP (1), 433;

an = bn, 498; an ∼ bn, 535
Order statistics, 37, 38; as

maximal invariants, 215;
as sufficient statistics, 53,
176; completeness of, 118,
141; distribution of, 266;
equivalent to sums of powers,
38; expected values of, 243; in
permutation tests, 176

Orthogonal group, 215, 217, 330
Orthogonal: transformations, 194,

215; vector, 697
Orthonormal: system, 697; vector,

697

Paired comparisons, see Matched
pairs

Pairwise sufficiency, 53
Parameter space, 3
Parameters, unrelated, see Variation

independent parameters
Parametric bootstrap, 651–653; in

Behrens-Fisher problem, 671,
672
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Pareto distribution, 94, 196
Parseval’s identity, 697, 698
Partial ancillarity, 398, 399
Partial sufficiency, 106
Pearson’s Chi-squared test. see

Chi-squared test
Percentile method, 685
Permutation group, 215
Permutation test, 130, 177,

187; approximated by
standard t-test, 180, 447;
as randomization test, 242,
635, 641–643; complete class,
186; computational methods
for, 180; confidence intervals
based on, 189, 203, 206; for
testing independence, 192;
history of, 210, 690; most
powerful, 178; robustness of,
447, 638–643; most stringent,
346. See also Nonparametric;
Randomization model

Pillai-Bartlett trace test, 463;
robustness of, 465

Pitman asymptotic relative efficiency.
see Asymptotic relative
efficiency

Pivotal: method, 644–646, quantity,
253, 274

Plug-in estimate, 648
Point estimation, viii, 5, 7;

equivariant, 13; history of, 27;
unbiased, 14

Pointwise asymptotically level α: for
confidence sets, 423; for tests,
422

Pointwise consistent in power, 423
Poisson distribution, 4, 6, 54;

comparison of two, 125,
398; relation to exponential
distribution, 27, 68, 98;
square root transformation
for, 474; sufficient statistics
for, 19; sums of, 54. See also
Exponential distribution;
Poisson parameters; Poisson
process

Poisson model: for 2 × 2 table, 130,
132; for 2 × 2 × K table, 133,
148

Poisson parameters: comparing two,
125, 398; confidence intervals
for the ratio of two, 168;

one-sided test for, 68, 98;
one-sided test for sum of, 105

Poisson process, 4, 68, 98; and
2 × 2 tables, 130; confidence
bounds for scale parameter,
74; distribution of waiting
times in, 22; test for scale
parameter in, 68, 98. See also
Exponential distribution

Polyá’s theorem, 429
Polyá frequency function, 323
Population models, 132
Portmanteau theorem, 425
Positive dependence, see Dependence,

positive
Positive part of a function, 31
Posterior distribution, 172; percentiles

of, 175. See also Bayesian
inference

Posterior probability, 94
Power function, 57; of invariant test,

228; of one-sided test, 68; of
two-sided test, 82

Power of a test, 57, 98; conditional,
124, 399; unbiased estimation
of, 123

Power series distribution, 142
Preference ordering of decision

procedures, 10, 14
Prepivoting, 657, 668
Prior distribution, 14, 172; improper,

172; noninformative, 172.
See also Bayesian inference;
Least favorable distribution;
Posterior distribution

Probability density (with respect to
µ), 33; convergence theorem
for, 696

Probability distribution of a
random variable, 30. See
also Cumulative distribution
function (cdf)

Probability integral transformation,
97, 266

Probability measure, 39, 30
Product measure, 34
Prohorov’s theorem, 440
Projection, as maximal invariant,

216, 284
Pseudometric space, 694
P-value, 57, 63, 97, 98, 108;

combination of, from
independent experiments, 97,
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109; for randomization test,
636; for randomized tests, 64;
in multiple testing, 350, 364;
in stepdown procedures, 360;
properties of, 64, 139; versus
fixed levels, 65

Quadrant dependence, 145, 210, 371,
372. See also Dependence,
positive

Quadratic mean derivative, 484
Quadratic mean differentiable

(q.m.d.) families, 484;
examples of: 486, 488;
loglikelihood expansion for,
489; properties of, 485–487

Quadrinomial distribution, 133
Quality control, 85, 223
Quantiles, 430, 649

Rao’s score tests. see Score tests
Radon-Nikodym derivative, 33, 51
Radon-Nikodym theorem, 33
Random assignment, 131, 182, 247,

293
Random effects model, 297; for

nested classifications, 301, 313;
for one-way layout, 297; for
two-way layout, 313. See also
Ratio of variances

Randomization, 8, 293; as basis for
inference, 182; possibility of
dispensing with, 95; relation to
permutation test, 184; tests,
632–643. See also Random
assignment; Randomized
procedure

Randomization distribution, 637
Randomization hypothesis, 633
Randomization models, 132, 187;

confidence intervals in, 188;
history of, 210

Randomized procedure, 8; confidence
intervals, 167; in conditioning,
414

Randomized test, 58; representation
as nonrandomized test, 74

Randomness, hypothesis of, 270
Random sample size, 95, 142, 210
Random variable, 30
Rank correlation coefficient, 272
Ranks, 216; as maximal invariants,

216, 241; distribution under

alternative, 265, 266; null
distribution of, 242. See also
Signed ranks

Rank-sum test, 147. See also
Wilcoxon test

Rank tests, 241; as special case
of permutation tests,
635, 636; in multivariate
problems, 318; surveys of,
286. See also Nonparametric;
Nonparametric two-sample
problem; Symmetry; Trend

Ratio of variances: confidence
intervals for, 166, 254, 272,
299, 558; in model II, 299;
tests for, 157, 220, 259, 298,
412. See also F -test for ratio of
variances; Homogeneity, tests
of; Random effects model

Recognizable subsets, see Relevant
subsets

Rectangular distribution, see Uniform
distribution

Regression, 169, 318, 395; as linear
model, 278, 293; comparing
several lines, 295, 312;
confidence band for, 384,
391; confidence intervals
for coefficients, 223, 295;
intercepts and ordinates
of line, 170; polynomial,
278; robustness of tests for,
451–458; tests for coefficients,
169, 293; with both variables
subject to error, 312. See also
Trend

Regression dependence, 191, 240. See
also Dependence, positive

Regular (estimator sequence), 508,
526

Relative efficiency, 539. See also
Asymptotic relative efficiency

Relevant and semirelevant subsets,
175, 405, 406, 413; history of,
414, 415; randomized version
of, 414; relation to Bayesian
inference, 415

Restricted Bayes solution, 15
Riemann integral, 31
Risk function, 4, 9, 10
Robustness, 11, 347; against

dependence, 448–451, 680;
against F -test of means, 445,
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446, 448, 480; of efficiency, 421;
of general linear models tests,
451–458 ; of validity, 421; lack
of, for F -test of variances, 446;
lack of, for Chi-squared test
of a normal variance, 445; of
test of independence or lack of
correlation, 476; for tests in
two-way layout, 455; of t-test,
444, 445. See also Adaptive
test; Behrens-Fisher problem;
Permutation test; Rank tests

Root, 644
Runs test, for testing independence

in a Markov chain, 145, 146

Sample, 5; haphazard, 181; stratified,
176, 182, 188

Sample correlation coefficient, 190,
207; distribution of, 209;
limiting distribution of, 438;
monotone likelihood ratio of
distribution, 261; variance
stabilizing transformation for,
438, 439. See also Bivariate
normal distribution; Rank
correlation coefficient

Sample covariance matrix, 305, 316;
distribution of, 208

Sample distribution function,
see Empirical cumulative
distribution function

Sample inspection: by attributes, 66,
223; by variables, 85, 223; for
comparing two products, 135,
225

Sample size, 8; required to achieve
specified power, 57. 125. 199.
320

Sample median, 429
Sample space, 30
Sample standard deviation, 434
S-ancillary, 398, 399
Scale families, 324; comparing

two, 259, 412; conditional
inference for, 414; condition
for monotone likelihood ratio,
323

Scheffé’s S-method, 375, 380, 384,
388; alternatives to, 384

Score tests, 511–513; asymptotically
maximin property, 566, 567;
asymptotical relative efficiency

of, 536 AUMP and LAUMP
property, 545; counterexample
to AUMP property, 547

Score vector (or function), 489, 511
Second-order accurate, 666
Selection procedures, 102
Separable: family of distributions,

698; space, 694
Separate families of hypotheses, 220,

258
Sequential procedures, 8, 9, 145, 157,

163
Shift, confidence intervals for: based

on permutation tests, 203;
based on rank tests, 251,
268. See also Behrens-Fisher
problem; Exponential
distribution; Nonparametric
two-sample problem; Normal
two-sample problem, difference
of means

Shift model, 134, 250, 578, 579
σ-field, 29; with countable generators,

699
σ-finite, 29
Signed ranks, 242; distribution

under alternatives, 270; null
distribution of, 246

Significance level, 57; for multiple
comparisons, 368, 370; for
stepdown procedures, 351, 361;
nominal, 387. See also P-value

Significance probability, see P-value
Sign test, 85; asymptotic relative

efficiency of, 537, 538; for
matched pairs, 138; for testing
consumer preferences, 135; for
testing symmetry with respect
to a given point, 137; history
of, 149; in double exponential
distribution, 342; limiting
behavior, 501, 502; treatment
of ties in, 167, 186. See
also Binomial probabilities;
Median; Sample inspection

Similar test, 110, 115; relation to
unbiased test, 111; history of,
149.

Simple: class of distributions, 59;
hypothesis, 59

Simple function, 31
Simple hypothesis vs. simple

alternative, 60, 415; with
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large samples, 503. See also
Neyman-Pearson lemma

Simpson’s paradox, 132
Simultaneous confidence intervals,

375, 391; bootstrap, 657; for
all contrasts, 382. See also
Confidence bands; Dunnett’s
multiple comparison method;
Scheffé’s S-method; Tukey’s
T -method

Simultaneous confidence sets for a
family of linear functions, 375,
381; smallest, 378; taut, 378

Simultaneous testing, 349. See also
Multiple comparisons

Single step procedure for multiple
testing, 351

Singly truncated normal distribution
(STN), 144

Skewness, 459, 662
Slutsky’s theorem, 433
Small-sample theory, iii
Smirnov test, 245
Smooth function of means, 656
Spherically symmetric distributions,

194, 314
Stagewise tests, 367
Standard confidence bounds, 77, 175
Starshaped, 101
Stationarity, 145
Statistic, 30, 34; and random

variables, 31; equivalent
representations of, 36; fully
informative, 96; subfield
induced by, 34

Statistical inference, 3; and decision
theory, 6; history of, 27

Stein’s two-stage procedure, 198
Stepdown procedures, 351, 352, 391;

canonical form for, 360; large
sample bootstrap, 658–661

Stepup procedures, 351, 356
Stochastically increasing, 70, 135
Stochastically larger, 70, 101, 240,

354
Stratified sampling, 176, 182, 188
Strictly unbiased, 112
Strongly unimodal, 323, 401, 412,

546, 547
Studentization, 286, 445
Studentized range, 367, 390
Student’s t-distribution, see

t-distribution

Student’s t-test, see t-test
Subfield, 34
Sufficient statistic, 19, 44, 54,

55; Bayes definition of, 21;
factorization criterion for, 19,
45; for exponential families,
47; in presence of nuisance
parameters, 96; likelihood ratio
as, 53; minimal, 21; pairwise,
53; relation to ancillarity, 397;
relation to fully informative
statistic, 96; relation to
invariance, 220; statistics
independent of, 151, 152. See
also Partial sufficiency

Subsampling, 673–676; comparisons
with bootstrap, 677–680; for
hypothesis testing, 680, 681

Superefficient estimator, 525;
bootstrap of, 679

Symmetric: confidence interval, 649
distribution, 53

Symmetry, 11, 13; and invariance, 12,
212; sufficient statistics for
distributions with, 53; testing
for, 241, 246, 270; testing, with
respect to given point, 137,
246, 248, 270

Tautness, 378
t-distribution, 156, 161, 286;

approximation to permutation
distribution, 180; as
distribution of function of
sample correlation coefficient,
207; as posterior distribution,
174; Edgeworth expansion for,
517; in two-stage sampling,
198; monotone likelihood ratio
of, 224; multivariate, 275;
noncentral, 156, 161, 193, 224

Test (of a hypothesis), 5, 56;
almost invariant, 225, 241;
conditional, 394, 400, 403;
invariant, 214, 276; locally
maximin, 322; locally most
powerful 339; maximin, 322;
most stringent, 337; of type D
and E, 340, 341; randomized,
58, 127; strictly unbiased, 112;
unbiased, 110; uniformly most
powerful (UMP), 58

Three-decision problems, 81, 124
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Three factor contingency table, 132
Ties, 136
Tight sequence, 439
Time series models, 450, 451
Total positivity, 71, 103, 115, 308, 323
Total variation distance, 529
Transformation: into, 30; of integrals,

34; onto, 30; probability
integral, 97; variance
stabilizing, 439

Transformation group, 12, 212, 213.
See also Invariance; Group

Transitive: binary relation, 569;
transformation group, 285

Trend: test for absence of, 271
Triangular distribution, 259
Trimmed mean, 647, 648
t-test: admissibility of, 235, 237,

281; as Bayes solution, 237;
as likelihood ratio test, 25,
87; comparison with Wilcoxon
and sign tests, 537, 538; for
matched pairs, 183, 204; for
regression coefficients, 169,
294; in linear hypothesis with
one constraint, 281; local
power of, 465, 466; one-sample,
89, 156, 192, 260; optimality
in nonparametric model,
567–574, permutation version
of, 180, 635, 638, 639; power
of, 156, 192, 193; relevant
subsets for, 408; robustness
of, 445, 446; two-sample, 161,
176; two-stage, 199; under
local alternatives, 501; uniform
asymptotic behavior, 465, 466.
See also Normal one- and
two-sample problem

Tukey levels for multiple comparisons,
368, 387

Tukey’s T -method, 367, 374, 388,
389, 390

Two by two by K tables, 138, 148
Two by two tables: alternative models

for, 128, 130, 132; comparison
of experiments for, 130;
Fisher’s exact test for, 127,
149; for matched pairs, 138,
149; McNemar’s test for, 138,
149; multinomial model for,
128, 130; S-ancillaries for, 399.
See also Contingency tables

Two by two by two table, 135
Two-sample problem, see Behrens-

Fisher problem; Binomial
probabilities; Exponential
distribution; Matched pairs;
Nonparametric two-sample
problem; Normal two-sample
problem; Permutation test;
Poisson parameters; Shift,
confidence intervals for;
Two-by-two tables

Two-sided alternatives, 81
Two-way contingency tables, see

Contingency tables; Two by
two tables

Two-way layout, 287, 290, 304; mixed
models for, 314, 315; multiple
testing in, 374; rank tests
for, 290; reorganization of
variables in, 311; robustness in,
455; simultaneous confidence
intervals in, 383; with one
observation per cell, 287;
with m observations per cell,
290. See also Contingency
tables; Interactions; Nested
classifications; Two by two
tables

UMP invariant test, 150, 218, 219;
admissibility, 232; conditional,
404; conditions to be UMP
almost invariant, 227; example
of inadmissibility, 232;
examples of nonuniqueness,
231, 232; relation with UMP
unbiased test, 230; trivial, 232.
See also Invariance; Linear
hypothesis

Uniformly most powerful (UMP)
test, 58, 108; conditional, 394,
401, 403; examples involving
two parameters, 93, 95; for
exponential distributions, 93;
for monotone likelihood ratio
families, 65; for one-parameter
exponential families; for
uniform distribution, 92,
99; in inverse Gaussian
distribution, 100; in normal
one-sample problem, 87, 88;
in Weibell distribution, 99;
nonparametric example of, 85
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UMP unbiased test, 111; admissibility
of, 139; example of
nonexistence of, 140; for
multiparameter exponential
families, 119, 121, 150; for
one-parameter exponential
families, 111; for strictly
totally positive families, 115;
relation to UMP almost
invariant tests, 230; via
invariance, 150, 230. See also
Unbiasedness

Unbiasedness, 13, 27, 110; and
admissibility, 26; and
invariance, 23, 229, 230; and
minimax, 24; and similarity,
111; for confidence intervals,
23, 131; for point estimation,
14, 22, 27; for two-decision
procedures, 13; of tests, 110,
strict, 112. See also UMP
unbiased test; Uniformly most
accurate confidence sets

Undetermined multipliers, 80

Uniform confidence bands, 442

Uniform distribution U(a, b), 9, 22;
as distribution of probability
integral transformation, 97;
completeness of, 116, 141;
discrete, 142; distribution of
order statistics from, 267; not
q.m.d., 488, 533; of p-values,
64, 65; one-sample problem
for, 92, 99, 413; relation to
exponential distribution, 93;
sufficient statistics for, 26;
testing against exponential or
triangular distribution, 260;
other tests for, 480, 482

Uniformly asymptotically level α: for
confidence sets, 423, 424; for
tests, 422

Uniformly integrable, 472

Uniformly most accurate confidence
sets, 72, 73; equivariant, 249;
minimize expected Lebesgue
measure, 251; relation to
UMP tests, 73; unbiased, 164.
See also Confidence bands;
Confidence bounds; Confidence
intervals; Confidence sets;
Simultaneous confidence

intervals; Simultaneous
confidence intervals and sets

Unimodal, 412. See also Strongly
unimodel

Unrelated parameters, 398
U-statistic, 678

Variance components, see
Components of variance

Variance stabilizing transformation,
439

Variation diminishing, 71. See also
Total positivity

Variation independent parameters,
398

Vector space, 696–698
Vitali’s theorem, 32

Waiting times, 22, 98
Wald tests and confidence regions,

508–510, 646; efficiency of, 536;
AUMP and LAUMP property,
548, 549

Weak compactness theorem, 700, 701
Weak convergence, 425, 694
Weak conditionality principle, 400
Weibull distribution, 99
Weighted quadratic test statistics,

607, 608; examples of, 611,
612; local power calculations,
614, 615

Welch approximate t-test, 231, 447,
448

Welch-Aspin test, 231, 408
Wilcoxon one-sample test, 246
Wilcoxon signed-rank statistic, 269,

493, 502, 503
Wilcoxon signed-rank test. see

Wilcoxon one-sample test
Wilcoxon statistic, 268, 269;

expectation and variance of,
265

Wilcoxon two-sample test, 243,
245; alternative form of 265;
comparison with T -test, 537.
538; confidence intervals
based on, 251; history of, 276;
optimality of, 243, 244, 267,
268

Wilson confidence interval for
binomial, 435, 647

Yule’s measure of association, 129
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