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1 The EM algorithm and self-consistency

We recall the basic model and notation of Chapter 7, section 1, of Stat582, but use (for
reasons that soon will become clear) the letters Y, Y , B and Qθ instead of X, X, A, and
Pθ, respectively. So our model is a probability space (Y,B, Qθ), where θ ∈ Θ ⊂ IRm, and we
assume that Y has the probability distribution Qθ on this space, i.e.,

IP{Y ∈ B} = Qθ(B), B ∈ B.

Also suppose, as in Chapter 7, section 1, of Stat582, that Y has a density qθ w.r.t. some
σ-finite measure ν, i.e., we can write

Qθ(B) =
∫
B
qθ(y) dν(y), B ∈ B.

Then, for a given realization y of the random variable Y , we would compute the maximum
likelihood estimator (MLE) θ̂ of θ by maximizing qθ(y) as a function of θ.

But suppose that the maximization is, for some reason, difficult. The idea of the EM
algorithm is then to construct a “hidden space” (X,A, Pθ), such that Y can be represented
as Y = T (X), where X has distribution Pθ and T is a measurable mapping from (X,A) to
(Y,B), and such that the computation of the MLE of θ is easier on the space (X,A, Pθ). On
the “hidden space” (X,A, Pθ) we again assume that X has a density pθ w.r.t. some σ-finite
measure µ, i.e., we can write

Pθ(A) =
∫
A
pθ(x) dµ(x), A ∈ A.

Note that in this situation Qθ can be represented as

Qθ = PθT
−1,

where the probability measure PθT−1 is defined by

PθT
−1(B) = Pθ

(
T−1(B)

)
,
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for each B ∈ B. Also note that we usually cannot observe the random variable X, and that
the construction of the “hidden space” is just an artifice for computing the MLE of θ.

The EM algorithm now proceeds as follows for a given observation y.
Start with an initial estimate θ(0) of θ. This yields an initial guess for the probability distri-
bution Pθ(0) (and hence also an initial guess for the probability distribution Qθ(0) = Pθ(0)T−1).
Do the E-step: compute, for θ ∈ Θ, the conditional expectation

φ0(θ) def= EP
θ(0)

{
log pθ(X)

∣∣ T (X) = y
}
. (1.1)

Then do the M-step: maximize
φ0(θ), (1.2)

as a function of θ.
Suppose that θ(1) maximizes (1.2).
Next start with Pθ(1) instead of Pθ(0) , and compute in the E-step

φ1(θ) def= EP
θ(1)

{
log pθ(X)

∣∣ T (X) = y
}
.

Then, in the M-step, we maximize φ1(θ) as a function of θ.
Generally, in the mth step, we first compute the conditional expectation

φm(θ) def= EP
θ(m)

{
log pθ(X)

∣∣ T (X) = y
}
. (1.3)

and then maximize
φm(θ), (1.4)

as a function of θ.
Repeat these E- and M-steps until θ(m) does not change in, say, the 10th decimal (or until
some other criterion is met) at, say, the mth iteration step. Then we take θ(m) as our estimate
of the MLE.

Will this work? Sometimes it will and sometimes it won’t! We now first give an argument,
explaining why the EM algorithm might work, and, after that, some examples of situations
where it indeed works.

Suppose that, for given y, the real MLE is given by θ̂, where θ̂ is an interior point of Θ,
and that the function

θ 7→ qθ(y), θ ∈ Θ,

is differentiable on the interior of Θ. Then Rolle’s theorem tells us that we must have:

∂

∂θ
qθ(y)

∣∣∣
θ=θ̂

= 0. (1.5)

But if the EM algorithm converges to an interior point θ(∞) ∈ Θ, then θ(∞) maximizes the
function

θ 7→ EP
θ(∞)

{
log pθ(X)

∣∣ T (X) = y
}
, (1.6)
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see (1.3) and (1.4). But this implies, assuming that (1.6) is differentiable at interior points
θ ∈ Θ and that we may interchange expectation and differentiation:

∂

∂θ
EP

θ(∞)

{
log pθ(X)

∣∣ T (X) = y
}

= EP
θ(∞)

{
∂

∂θ
log pθ(X)

∣∣∣ T (X) = y

}
= 0. (1.7)

at θ = θ(∞).
Let, as in Chapter 7, section 1, of Stat582, l̇θ be defined by

l̇θ(x) =
∂

∂θ
log pθ(x).

Then, using properties of conditional expectations, and assuming that certain interchanges
of differentiation and integration (or summation) are allowed (homework assignment!), it is
seen that:

EPθ

{
l̇θ(X)

∣∣∣ T (X) = y
}
qθ(y) =

∂

∂θ
qθ(y).

Hence (1.7) would imply, for θ = θ(∞),

∂

∂θ
qθ(y) = 0,

at a value y such that qθ(y) > 0. Or, written differently, we would have, for θ = θ(∞),

∂

∂θ
log qθ(y) =

∂
∂θqθ(y)
qθ(y)

= 0, (1.8)

if (1.7) is satisfied and qθ(y) > 0. So (1.5) would be satisfied at θ = θ(∞), and hence, if there
is only one θ for which this “score equation” is zero, θ(∞) would be the MLE!

The equation
EPθ

{
l̇θ(X)

∣∣∣ T (X) = y
}

= 0, (1.9)

that is satisfied at θ = θ(∞), is called the self-consistency equation (the reason for this name
will become clearer in the sequel). So the reason for believing that the EM algorithm might
work is the fact that (1.9) implies (1.8) for θ = θ(∞), if qθ(∞)(y) > 0. So, if the likelihood
function θ 7→ log qθ(y) is only maximized at a value θ where the derivative w.r.t. θ is zero,
then a stationary point θ(∞) of the EM algorithm would give the MLE.

This argument also points to potential difficulties with the EM algorithm: it might not
work if the maximum is not attained at an interior point, or if the likelihood function is not
differentiable at the MLE, or if the score equation (1.8) has multiple roots, some (or all) of
which do not maximize the likelihood. Indeed all these situation can occur.

Example 1.1 (from Dempster, Laird and Rubin (1977)) Suppose that Y = (Y1, . . . , Y4) ∼
Qθ, where Qθ is the multinomial Mult4

(
n, q(θ)

)
–distribution, with

q(θ) =
(

1
2 + 1

4θ,
1
4(1− θ), 1

4(1− θ), 1
4θ
)
, θ ∈ (0, 1).
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Then Qθ has the density

qθ(y1, . . . , y4) =
n!

y1! . . . y4!
(

1
2 + 1

4θ
)y1
(

1
4(1− θ)

)y2
(

1
4(1− θ)

)y3
(

1
4θ
)y4

w.r.t. counting measure ν on N4, where N is the set of natural numbers with 0 included. So
our “observation space” is (Y,B, Qθ), where Y = N4 and B is the set of subsets of Y.

To compute the MLE of θ with the EM algorithm, we introduce the “hidden space”
(X,A, Pθ), where X = N5. A is the set of subsets of X, and Pθ is the multinomial
Mult5

(
n, p(θ)

)
–distribution, with

p(θ) =
(

1
2 ,

1
4θ,

1
4(1− θ), 1

4(1− θ), 1
4θ
)
, θ ∈ (0, 1),

and again n = 197. Then Pθ has the density

pθ(x1, . . . , x5) =
n!

x1! . . . x5!
(

1
2

)x1
(

1
4θ
)x2
(

1
4(1− θ)

)x3
(

1
4(1− θ)

)x4
(

1
4θ
)x5

w.r.t. counting measure µ on N5, and we introduce a random variable X = (X1, . . . , X5)
with distribution Pθ on X. The mapping T , taking X to Y is given by

T (x) = (x1 + x2, x3, x4, x5), x ∈ N5.

It is easily verified that if X is distributed according to Pθ, then Y = T (X) is distributed
according toQθ, and henceQθ = PθT

−1, as is required for the application of the EM algorithm
(see above).

If we could observe a realization of the vector X (instead of Y ), we could easily compute
the MLE of θ. This is seen as follows. For a given x = (x1, . . . , x5), the log likelihood for θ
(or, equivalently pθ) is

log pθ(x) = c+ (x2 + x5) log
(

1
4θ
)

+ (x3 + x4) log
(

1
4(1− θ)

)
. (1.10)

where c is a part of the log likelihood not depending on θ. Setting the derivative w.r.t. θ
equal to zero yields

x2 + x5

θ
− x3 + x4

1− θ = 0.

Hence the MLE of θ would be

θ̂ =
x2 + x5

x2 + x3 + x4 + x5
, (1.11)

since we can verify that the stationary point indeed corresponds to a maximum.
However, we do not observe X, but instead a realization of the random variable Y which

is distributed as T (X). So we want to apply the EM algorithm by updating our estimates
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of the “hidden” X in the E-step and subsequently maximizing over θ in the M-step. For the
E-step we have to compute

φm(θ) def= EP
θ(m)

{
log pθ(X)

∣∣ T (X) = y
}
,

see (1.3). But by (1.10) is is sufficient to compute the conditional expectations

EP
θ(m)

{
X2 +X5

∣∣ T (X) = y
}

and
EP

θ(m)

{
X3 +X4

∣∣ T (X) = y
}
,

since these are the only ingredients that are needed in the M-step. We have:

EP
θ(m)

{
X1

∣∣ T (X) = y
}

= y1
1/2

1/2 + θ(m)/4
, (1.12)

EP
θ(m)

{
X2

∣∣ T (X) = y
}

= y1
θ(m)/4

1/2 + θ(m)/4
, (1.13)

and
EP

θ(m)

{
Xk

∣∣ T (X) = y
}

= yk−1, k = 3, 4, 5. (1.14)

So we get

φm(θ) = EP
θ(m)

{
log pθ(X)

∣∣ T (X) = y
}

=

(
y1

θ(m)/4
1/2 + θ(m)/4

+ y4

)
log
(

1
4θ
)

+ (y2 + y3) log
(

1
4(1− θ)

)
+ g(y),

where g(y) only depends on y (and not on θ), and where y1

(
θ(m)/4

) / {
1/2 + θ(m)/4

}
is the

updated estimate of X2 at the mth iteration. Note that this updated estimate of X2 will in
general not be an integer!

Writing

x
(m)
2 = y1

θ(m)/4
1/2 + θ(m)/4

for this updated estimate of X2, we find by (1.11) that

θ(m+1) =
x

(m)
2 + y4

x
(m)
2 + y2 + y3 + y4

maximizes φm(θ) at the mth iteration step.
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A simple C program that implements the E- and M-steps above, and started with θ(0) =
0.5, produced the following output for the observation vector y = (125, 18, 20, 34) (hence
n = 197):

Iteration θ(m) θ(m) − θ̂ log likelihood θ(m+1)−θ̂
θ(m)−θ̂

0 0.500000000000 -0.126821497871 67.320170488171 0.146458412039
1 0.608247422680 -0.018574075191 67.382924965794 0.134620296088
2 0.624321050369 -0.002500447502 67.384081218564 0.133023705192
3 0.626488879080 -0.000332618791 67.384101726379 0.132811268713
4 0.626777322347 -0.000044175524 67.384102088226 0.132783053828
5 0.626815632110 -0.000005865761 67.384102094606 0.132779307312
6 0.626820719019 -0.000000778852 67.384102094718 0.132778809278
7 0.626821394456 -0.000000103415 67.384102094720 0.132778740769
8 0.626821484140 -0.000000013731 67.384102094720 0.132778707205
9 0.626821496048 -0.000000001823 67.384102094720 0.132778513910
10 0.626821497629 -0.000000000242 67.384102094720 -
11 0.626821497839 -0.000000000032 67.384102094720 -
12 0.626821497867 -0.000000000004 67.384102094720 -
13 0.626821497870 -0.000000000001 67.384102094720 -
14 0.626821497871 0.000000000000 67.384102094720 -
15 0.626821497871 0.000000000000 67.384102094720 -

Note that in Dempster, Laird and Rubin (1977) the minus signs are missing in the second
column (a mistake that has subsequently been copied by many authors referring to this
example!). Here the “log likelihood” is not really the log likelihood log qθ(y), but a version
that only differs from log qθ(y) by constant. I took:

l̃(θ) def= y1 log(2 + θ) + (y2 + y3) log(1− θ) + y4 log(θ). (1.15)

Note that l̃(θ) increases in the first 8 iterations, but after that doesn’t change any more, using
12 decimals. The real MLE θ̂ is approximately (in 15 decimals):

θ̂ ≈ 0.626821497870982.

The column headed by θ(m+1)−θ̂
θ(m)−θ̂ provides an estimate of the “rate of convergence” of

the EM algorithm to the stationary point for this particular example. In this example it is
suggested that this (linear) rate of convergence is approximately 0.132778. This means that
we have:

lim
m→∞

θ(m+1) − θ̂
θ(m) − θ̂

≈ 0.132778.

In practice this rate of convergence is often estimated by the ratio

θ(m+1) − θ(m)

θ(m) − θ(m−1)
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for large m (but not so large that the denominator is too close to zero). As an example, in
the present situation we get

θ(m+1) − θ(m)

θ(m) − θ(m−1)
= 0.132778715949,

for m = 10.
A linear rate of convergence means that we have∣∣θ(m+1) − θ̂

∣∣ ≤ c∣∣θ(m) − θ̂
∣∣,

for some c ∈ (0, 1). In this case this is apparently satisfied for c ≈ 0.132778 (and m sufficiently
large). There are other methods that have superlinear convergence in this case, meaning that∣∣θ(m+1) − θ̂

∣∣ ≤ c∣∣θ(m) − θ̂
∣∣α,

for some α > 1 and m sufficiently large For example, with Newton’s method we would get a
relation of this type with α = 2, so-called quadratic convergence. Using (1.15) (the likelihood,
modulo a constant not involving θ), the Newton method is based on the iterations

θ(m+1) = θ(m) + I
(
θ(m)

)−1 ∂

∂θ
l̃(θ)

∣∣∣
θ=θ(m)

,

where
∂

∂θ
l̃(θ) =

y1

2 + θ
− y2 + y3

1− θ +
y4

θ

and

I(θ) = − ∂2

∂θ2
l̃(θ) =

y1

(2 + θ)2
+
y2 + y3

(1− θ)2
+
y4

θ2
.

The corresponding table for Newton’s method is, for the present example:

Iteration θ(m) θ(m) − θ̂ log likelihood θ(m+1)−θ̂
θ(m)−θ̂

0 0.500000000000000 -0.126821497870982 64.629744483953 -0.075240701717
1 0.636363636363636 0.009542138492654 67.366740797467 0.015423623821
2 0.626968672225539 0.000147174354557 67.384098005534 0.000228693022
3 0.626821531528730 0.000000033657748 67.384102094720 0.000000065971
4 0.626821497870984 0.000000000000002 67.384102094720 -
5 0.626821497870982 0.000000000000000 67.384102094720 -
6 0.626821497870982 0.000000000000000 67.384102094720 -

So in this case the method has fully converged at the 5th iteration step, using the same
starting value. Also notice the rapid decrease of the numbers in the last column, indicating
the quadratic convergence.
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Example 1.2 (The exponential mixtures model) Let Y = (Y1 . . . , Yn), where the Yi are i.i.d.
with density

g(p,λ,µ)(y) =
{
pλe−λy + (1− p)µe−µy

}
1(0,∞)(y)

w.r.t. Lebesgue measure on IR, where p ∈ (0, 1) and λ, µ > 0. This means: Y is distributed
according to the probability distribution Qθ, where θ = (p, λ, µ), and where Qθ has density

qθ(y1, . . . , yn) = gθ(y1) . . . gθ(yn),

w.r.t. Lebesgue measure on IRn+. So our observation space is (Y,B, Qθ), where

Y = IRn+,

and B is (as usual) the collection of Borel sets on Y.
Let y = (y1, . . . , yn) be a (sample) realization of the random vector Y = (Y1, . . . , Yn).

Then the log likelihood for θ = (p, λ, µ) is given by

l(θ|y) = log gθ(y1) + . . .+ log gθ(yn),

and the partial derivatives w.r.t. p, λ and µ are given by

l̇p(θ|y) =
n∑
i=1

λe−λyi − µe−µyi
gθ(yi)

,

l̇λ(θ|y) =
n∑
i=1

pe−λyi{1− λyi}
gθ(yi)

,

and

l̇µ(θ|y) =
n∑
i=1

(1− p)e−µyi{1− µyi}
gθ(yi)

,

respectively. The MLE θ̂ = (p̂, λ̂, m̂) of θ = (p, λ, µ) is found by solving the score equation(
l̇p(θ|y), l̇λ(θ|y), l̇µ(θ|y)

)
= (0, 0, 0).

in (p, λ, µ). This is a complicated set of equations (in fact a lot more complicated than the
corresponding 1-dimensional score equation in Example 1.1!).

Now we introduce the ”hidden space” (X,A, Pθ), where

X = (IR+ × {0, 1})n

and Pθ is specified by the density

pθ ((y1, δ1), . . . , (yn, δn)) = fθ(y1, δ1) . . . fθ(yn, δn),
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where
fθ(y, δ) =

(
pλe−λy

)δ (
(1− p)µe−µy

)1−δ
, θ = (p, λ, µ). (1.16)

The idea is that on the hidden space we introduce an extra experiment, with outcome 1 or 0,
telling us whether we get the exponential distribution with parameter λ (this happens when
the outcome is 1) or the exponential distribution with parameter µ (when the outcome is
0). The outcome is represented by the value of the indicator δi. If δi = 1 (resp. δi = 0)
the outcome of the ith variable of our vector of n variables is coming from the exponential
distribution with parameter λ (resp. µ).

The mapping going from the hidden space to the observation space is simply:

T (x) = (y1, . . . , yn) , if x = ((y1, δ1), . . . , (yn, δn)) . (1.17)

For the E-step we have to compute:

EP
θ(m)

{
log pθ(X)

∣∣ T (X) = y
}

= EP
θ(m)

{
n∑
i=1

(∆i log(pλ)−∆iλYi

+(1−∆i) log ((1− p)µ)− (1−∆i)µYi)
∣∣ T (X) = (y1, . . . , yn)

}

=
n∑
i=1

EP
θ(m)

{
∆i log(pλ)−∆iλyi

+(1−∆i) log ((1− p)µ)− (1−∆i)µyi
∣∣ T (X) = (y1, . . . , yn)

}
,

where
X = ((Y1,∆1), . . . , (Y1,∆1)) ,

and where we switched to capitals to indicate that the mapping (1.17) now has a random
argument. But

EP
θ(m)

{
∆i

∣∣ T (X) = (y1, . . . , yn)
}

=
fθ(m)(yi, 1)
gθ(m)(yi)

, (1.18)

see (1.16). Define

δ
(m)
i =

fθ(m)(yi, 1)
gθ(m)(yi)

,

i.e., δ(m)
i is the updated conditional expectation of ∆i at the mth iteration. Then we get,

using (1.18),

EP
θ(m)

{
log pθ(X)

∣∣ T (X) = (y1, . . . , yn)
}

=
n∑
i=1

{
δ

(m)
i log p+

(
1− δ(m)

i

)
log(1− p)

+δ(m)
i (log λ− λyi) +

(
1− δ(m)

i

)
(logµ− µyi)

}
. (1.19)
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For the M-step we have to maximize (1.19) over θ = (p, λ, µ). Setting the partial derivative
w.r.t. p equal to zero yields:

∑n
i=1 δ

(m)
i

p
−

∑n
i=1

(
1− δ(m)

i

)
1− p = 0,

and hence

p(m+1) =
1
n

n∑
i=1

δ
(m)
i .

Similarly we get:

1/λ(m+1) =
∑n

i=1 δ
(m)
i yi∑n

i=1 δ
(m)
i

,

and

1/µ(m+1) =

∑n
i=1

(
1− δ(m)

i

)
yi∑n

i=1

(
1− δ(m)

i

) .

It can be verified (look at the diagonal matrix of the second derivatives!) that θ(m+1) =(
p(m+1), λ(m+1), µ(m+1)

)
indeed maximizes (1.19) as a function of θ. So we have specified the

E-step and M-step, and writing a simple C program, implementing these two step is no more
difficult than in Example 1.1.

Monotonicity of EM
Let, as before,

lθ(y) = log qθ(y).

We want to show
lθ(m+1)(y) ≥ lθ(m)(y),

This is what we call “monotonicity of EM”: at each step of the EM algorithm we will get a
likelihood that is at least as big as the likelihood at the preceding step.

Suppose T is, as before, the mapping from the hidden space X to the observation space
Y, that Qθ = PθT

−1, that Qθ has a density qθ w.r.t. a σ-finite measure ν and Pθ has a density
pθ w.r.t. a σ-finite measure µ. Let kθ(x|y) be the conditional density of X, given T (X) = y.
Then:

kθ(x|y) =
pθ(x)
qθ(y)

,

for values of x such that T (x) = y. If T (x) 6= y, we put kθ(x|y) = 0. We can now write:

lθ(y) = log pθ(x)− log kθ(x|y), if T (x) = y, pθ(x) > 0 and qθ(y) > 0.
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Suppose that qθ(y) > 0 (note that any “candidate MLE” θ will at least need to have this
property, since otherwise the log likelihood is −∞ for this candidate MLE). Then we get, for
each m (m being the index of the mth iteration of the EM algorithm):

log qθ(y) = E
P

(m)
θ

{
log qθ(y)

∣∣ T (X) = y
}

= E
P

(m)
θ

{
log pθ(X)− log kθ(X|y)

∣∣ T (X) = y
}

= E
P

(m)
θ

{
log pθ(X)

∣∣ T (X) = y
}
− E

P
(m)
θ

{
log kθ(X|y)

∣∣ T (X) = y
}
. (1.20)

(to think about what happens if pθ(X) = 0 will be part of the homework!)
Now we look separately at the two terms in the last line of (1.20), and compare the

expressions we get, by replacing θ by θ(m) and θ(m+1), respectively. Note that we keep the
distribution P

(m)
θ , determining the distribution of the conditional expectation, fixed!

First of all, we get:

E
P

(m)
θ

{
log pθ(m+1)(X)

∣∣ T (X) = y
}
− E

P
(m)
θ

{
log pθ(m)(X)

∣∣ T (X) = y
}
≥ 0, (1.21)

since θ(m+1) maximizes the conditional expectation

φm(θ) def= E
P

(m)
θ

{
log pθ(X)

∣∣ T (X) = y
}

over all θ, so the value we get by plugging in θ(m+1) will certainly be at least as big as the
value we get by plugging in θ(m)!

Secondly, we get:

EP
θ(m)

{
log kθ(m+1)(X|y)

∣∣ T (X) = y
}
− EP

θ(m)

{
log kθ(m)(X|y)

∣∣ T (X) = y
}

EP
θ(m)

{
log

kθ(m+1)(X|y)
kθ(m)(X|y)

∣∣ T (X) = y

}
≤ logEP

θ(m)

{
kθ(m+1)(X|y)
kθ(m)(X|y)

∣∣ T (X) = y

}
, (1.22)

where (the conditional form of) Jensen’s inequality is used in the last step. But we have:

EP
θ(m)

{
kθ(m+1)(X|y)
kθ(m)(X|y)

∣∣ T (X) = y

}
= 1, a.e. [Qθ(m) ] . (1.23)

This is seen in the following way. Let the function g : Y → IR represent the left-hand side of
(1.23):

g(y) = EP
θ(m)

{
kθ(m+1)(X|y)
kθ(m)(X|y)

∣∣ T (X) = y

}
. (1.24)

Then g is a B-measurable function that is defined by the following relation:∫
B
g(y) dQθ(m)(y) =

∫
T−1(B)

kθ(m+1)(x|T (x))
kθ(m)(x|T (x))

dPθ(m)(x), ∀B ∈ B, (1.25)
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(using the general definition of conditional expectations). But since we can write

kθ(m+1)(x|T (x))
kθ(m)(x|T (x))

=
pθ(m+1)(x)

qθ(m+1)(T (x))
· qθ(m)(T (x))

pθ(m)(x)
,

the right-hand side of (1.25) can be written:∫
T−1(B)

pθ(m+1)(x)
qθ(m+1)(T (x))

· qθ(m)(T (x)) dµ(x) =
∫
T−1(B)

qθ(m)(T (x))
qθ(m+1)(T (x))

dPθ(m+1)(x)

=
∫
B

qθ(m)(y)
qθ(m+1)(y)

dQθ(m+1)(y) =
∫
B
qθ(m)(y) dν(y) =

∫
B

1 dQθ(m)(y). (1.26)

implying, using (1.25) and (1.26),

g(y) = E
P

(m)
θ

{
kθ(m+1)(X|y)
kθ(m)(X|y)

∣∣ T (X) = y

}
= 1 a.e. [Qθ(m) ] .

So (neglecting things happening on sets of Qθ(m)-measure zero) we get that the last expression
in (1.22) is equal to zero!

The preceding somewhat elaborate argument is needed, since in general the conditional
density k(x|y) will be singular w.r.t. the measure µ, implying that the simple argument

E
P

(m)
θ

{
kθ(m+1)(X|y)
kθ(m)(X|y)

∣∣ T (X) = y

}
=
∫
T−1(y)

kθ(m+1)(x|y)
kθ(m)(x|y)

kθ(m)(x|y) dµ(x)

=
∫
T−1(y)

kθ(m+1)(x|y) dµ(x) = 1

does not work, since in general, in dealing with absolutely continuous distributions, we will
get ∫

T−1(y)
kθ(m+1)(x|y) dµ(x) = 0.

As an example, take µ to be Lebesgue measure on the unit square, and consider the mapping
T (x, y) = y. Then a conditional density of the type kθ(m)(x|y) will be concentrated on a
line segment and the corresponding measure is singular w.r.t. µ. This difficulty is completely
glossed over in, e.g., Dempster, Laird and Rubin (1977); the difficulty is already there in
their very first formula (1.1) (and returns, for example, in the first line of the proof of Lemma
2). If one writes dx everywhere (as they do), it is of course generally unclear what really is
going on, and how discrete distributions are covered. Similar difficulties occur in the book
McLachlan and Krishnan (1997), completely devoted to the EM algorithm (see, e.g., (3.10)
on p. 83 of their book).

12



Now, by combining (1.20), (1.21) and (1.22), we get

lθ(m+1)(y)− lθ(m)(y) ≥ 0,

i.e., the likelihood for the parameter θ in the observation space is increased (at least “nonde-
creased”) at each step of the EM algorithm.

For the general theory on change of variables in integrals w.r.t. measures, see, e.g.,
Billingsley (1995), third edition (the first edition of this book contained an incorrect result
of this type!).

2 Nonparametric maximum likelihood estimators

Suppose that X1, . . . , Xn is a sample of 1-dimensional random variables, generated by a dis-
tribution with distribution function (df) F0, and that we want to estimate F0 by maximizing
a likelihood. If we want to do this “nonparametrically”, i.e., without making any paramet-
ric assumptions on F0, like F0 is a normal distribution function with location parameter µ
and variance σ2, we are in trouble, because there is no dominating measure that allows us
to specify a density. In the case that we want to estimate a finite-dimensional parameter,
like in the case where assume that F0 is the distribution function of a normal distribution
with location parameter µ and variance σ2, the likelihood of a realization (x1, . . . , xn) of our
random vector (X1, . . . , Xn) would be

n∏
i=1

1
σ
φ

(
xi − µ
σ

)
, where φ(x) =

1√
2π

exp
{
−1

2x
2
}
,

w.r.t. Lebesgue measure on IRn. Similarly, if we assume that our sample vector (x1, . . . , xn)
is generated by a Binomial Bin(n, p) distribution, the likelihood would be

n∏
i=1

(
n

xi

)
pxi(1− p)n−xi ,

w.r.t. counting measure on {0, . . . , n}n. So in these cases there is a fixed dominating measure,
respectively Lebesgue measure and counting measure. But in the case of nonparametric
maximum likelihood such a fixed dominating measure is often not available.

One way out of the difficulty is to restrict the set of distributions over which we are going
the maximize to a set for which we can specify a dominating measure. As an example, let
us take the counting measure µ on the set {x1, . . . , xn}, where, for simplicity, the xi’s are
assumed to be different. Then the likelihood of the sample would be

n∏
i=1

pF (xi)

13



w.r.t. counting measure on {x1, . . . , xn}n, where pF (xi) is the probability that Xi = xi, if the
underlying distribution function is F . This means that we restrict the maximization problem
to the set of discrete dfs F , corresponding to a probability distribution that is concentrated
on the finite set {x1, . . . , xn}.

Now the maximization problem becomes simply: maximize

n∑
i=1

log pi

over the vector (p1, . . . , pn), under the restrictions
∑n

i=1 pi = 1 and pi ≥ 0, i = 1, . . . , n.
One way to do this is to use a Lagrange multiplier. So we consider the problem of

minimizing the function

φλ(p) = −
n∑
i=1

log pi + λ

{
n∑
i=1

pi − 1

}
,

as a function of p = (p1, . . . , pn), for a suitably chosen Lagrange multiplier λ. The reason
for going from a maximization problem to a minimization problem is that we want to put
the problem into the general framework of minimization of convex functions under side con-
straints, which will be useful later, if we meet more difficult problems of this type. Setting
the partial derivatives w.r.t. pi equal to zero gives us the equations

− 1
pi

+ λ = 0, i = 1, . . . , n.

Since
∑n

i=1 pi = 1, we must have:
n∑
i=1

pi =
n

λ
= 1,

and hence λ = n and pi = 1/n. We now get for any vector q = (q1, . . . , qn) with nonnegative
components and such that

∑n
i=1 qi = 1:

−
n∑
i=1

log qi = φn(q) ≥ φn(p) = −
n∑
i=1

log pi,

where the inequality holds since p minimizes the function φn over all vectors r = (r1, . . . , rn)
with nonnegative components (where the components ri do not necessarily sum to 1).

So the distribution function maximizing the likelihood for all distributions which have
as support the finite set of points {x, . . . , xn} is just the empirical distribution function Fn.
So in this sense the empirical distribution function is the nonparametric maximum likelihood
estimator (NPMLE) of F0. Note, however, that the dominating measure with respect to which
we maximized the likelihood depended on the sample, and hence this dominating measure
will change from sample to sample.

14



So the dominating measure is in fact itself random! But this is not necessarily a bad
thing. For example, we know that, by Donsker’s theorem

√
n {Fn − F0}

D−→ B ◦ F0,

where D−→ means convergence in distribution and B is the Brownian bridge. This means
that the “distance” between Fn and F0 is of order n−1/2, so the NPMLE stabilizes and will
be closer and closer to the real distribution function, as the sample size increases. Also, the
Glivenko-Cantelli theorem tells us that

sup
x∈IR
|Fn(x)− F0(x)| → 0,

with probability one (this is sometimes called “the fundamental theorem of statistics”), which
also points to this stabilizing phenomenon. The following example describes a situation where
we do not have the problem of specifying the dominating measure.

Example 2.1 (Current status data) Let (X1, U1), . . . , (Xn, Un) be a sample of random vari-
ables in IR2

+, where Xi and Ui are independent (non-negative) random variables with distri-
bution functions F0 and G, respectively. The only observations that will be available are Ui
(“observation time”) and ∆i = {Xi ≤ Ui}. Here and (sometimes) in the sequel I will denote
the indicator of an event A (such as {Xi ≤ Ui}) just by A, instead of 1A. The (marginal) log
likelihood for F0 at a realization ((u1, δ1), . . . , (un, δn)) of ((U1,∆1), . . . , (Un,∆n)) is given by
the function

F 7→
n∑
i=1

{
δi logF (ui) + (1− δi) log

(
1− F (ui)

)}
, (2.1)

where F is a right-continuous distribution function. This is the simplest case of interval
censoring and often called the “current status” model. A nonparametric maximum likelihood
estimator (NPMLE) F̂n of F0 is a (right-continuous) distribution function F , maximizing
(2.1).

I will show later that there exists a 1-step algorithm for computing the NPMLE in this
model. But, since this is a clear case of a situation where we have a (real!) hidden space,
it is tempting to put this into the framework of the EM algorithm. The random variables
(Xi, Ui) are living on the hidden space X, the random variables (Ui,∆i) on the observation
space Y, and our mapping T is given by:

T ((x1, u1), . . . , (xn, un)) = ((u1, δ1), . . . , (un, δn)) , where δi = {xi ≤ ui}. (2.2)

We now proceed from here as in section 3.1 of Groeneboom and Wellner (1992) (things
are done a bit differently in Groeneboom (1996), where also a more general discussion of the
merits of the EM algorithm versus other algorithms is presented).

Suppose that, in our search for an NPMLE of F0, we restrict attention to the class F
of purely discrete distribution functions F of distributions with mass concentrated on the
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set of observation points u(i), i = 1, . . . , n, where u(i) is the ith order statistics of the set
{u1, . . . , un}, with an arbitrary additional point u(n+1) > u(n) for “remaining mass”. The
latter point is needed, since we may have evidence that the distribution, corresponding to
F0, has mass beyond the largest observation point u(n), and, at first sight perhaps somewhat
artificially, we take an arbitrary point u(n+1) > u(n) for the location of this mass (but it will
be clear from the sequel that we can indeed do this without limiting the generality of our
approach).

By restricting ourselves to the set F of purely discrete distribution functions F of dis-
tributions with mass concentrated on the set of observation points u(i), i = 1, . . . , n and
the additional point u(n+1), we have in fact reduced the problem to a finite-dimensional
maximization problem: the distribution F ∈ F is completely specified by the parameters

pi = PF
{
X = u(i)

}
, 1 ≤ i ≤ n+ 1, (2.3)

where X has the probability distribution, specified by the distribution function F , and where
the parameters pi satisfy

∑n+1
i=1 pi = 1 and pi ≥ 0, 1 ≤ i ≤ n+ 1.

We now denote the probability density pF in (2.3) by

f(x) = PF {X = x} , x ∈
{
u(1), . . . , u(n+1)

}
,

and take as our starting point of the EM algorithm for F the discrete uniform distribution
function on the points u(1), . . . , u(n+1). Note that the Xi’s are supposed to be identically
distributed so that

PF {Xi = x} = f(x), i = 1, . . . , n.

In the E-step we have to compute

E(0)

{
n∑
i=1

log f(Xi)
∣∣ T ((X1, U1), . . . , (Xn, Un)) = ((u1, δ1), . . . , (un, δn))

}
, (2.4)

where E(0) denotes the expectation at the first step of the EM algorithm (where we have
the uniform distribution on the points u(1), . . . , u(n+1)). We will denote the probability mea-
sure, corresponding to E(0) by P (0). Note that in taking the conditional expectation, the
distribution of the Ui’s does not have to specified, since we can immediately reduce (2.4) to:

E(0)

{
n∑
i=1

log f(Xi)
∣∣ T ((X1, u1), . . . , (Xn, un)) = ((u1, δ1), . . . , (un, δn))

}
, (2.5)

implying that we only have to specify the distribution of the Xi’s to compute this conditional
expectation.

We can rewrite (2.4) in the following way:

n∑
i=1

E(0)
{

log f(Xi)
∣∣ T ((X1, u1), . . . , (Xn, un)) = ((u1, δ1), . . . , (un, δn))

}
16



n∑
i=1

{
n+1∑
k=1

log f
(
u(k)

)
P (0)

{
Xi = u(k)

∣∣ ∆i = δi
}}

n+1∑
k=1

log f
(
u(k)

) n∑
i=1

P (0)
{
Xi = u(k)

∣∣ ∆i = δi
}
.

So, if we denote f
(
u(k)

)
by pk, the M-step of the first iteration consists of maximizing

n+1∑
k=1

log pk
n∑
i=1

P (0)
{
Xi = u(k)

∣∣ ∆i = δi
}
. (2.6)

over the set of parameters p = (p1, . . . , pn+1) such that
∑n+1

i=1 pi = 1 and pi ≥ 0, 1 ≤ i ≤ n+1.
It is easily shown (homework!) that (2.6) is maximized over this set by taking

pk =
1
n

n∑
i=1

P (0)
{
Xi = u(k)

∣∣ ∆i = δi
}
, 1 ≤ k ≤ n+ 1.

Hence the combined E- and M-step yield at the end of the first iteration:

p
(1)
k =

1
n

n∑
i=1

P (0)
{
Xi = u(k)

∣∣ ∆i = δi
}
, 1 ≤ k ≤ n+ 1.

So the estimate of the distribution function F0 that we obtain at the end of the first E- and
M-step is given by

F (1)(t) =
∑

{k:u(k)≤t}
p

(1)
k , (2.7)

where we put F (1)(t) = 0, if t < u(1) (i.e., when the set of indices over which we sum in (2.7)
is empty). Generally we get, as the result of the E- and M-step at the mth iteration:

p
(m+1)
k =

1
n

n∑
i=1

P (m)
{
Xi = u(k)

∣∣ ∆i = δi
}
, 1 ≤ k ≤ n+ 1, (2.8)

where P (m) denotes the probability distribution at the mth iteration step. The corresponding
relation for the distribution function, obtained at the end of the mth iteration step is:

F (m+1)(t) =
1
n

n∑
i=1

P (m)
{
Xi ≤ t

∣∣ ∆i = δi
}
. (2.9)

But the right-hand side of (2.9) can be written

1
n

n∑
i=1

E(m)
{

1{Xi≤t}
∣∣ ∆i = δi

}
= E(m)

{
1
n

n∑
i=1

1{Xi≤t}
∣∣ T ((X1, U1), . . . , (Xn, Un)) = ((u1, δ1), . . . , (un, δn))

}
= E(m)

{
Fn(t)

∣∣ T ((X1, U1), . . . , (Xn, Un)) = ((u1, δ1), . . . , (un, δn))
}
, (2.10)
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where E(m) is the expectation under P (m), and Fn is the (unobservable!) empirical distribu-
tion function of the Xi. So, combining (2.9) and (2.10), we get

F (m+1)(t) = E(m)
{
Fn(t)

∣∣ T ((X1, U1), . . . , (Xn, Un)) = ((u1, δ1), . . . , (un, δn))
}
. (2.11)

Hence, if the EM algorithm converges to a limit distribution F (∞) with corresponding expec-
tation E(∞), the corresponding relation would be:

F (∞)(t) = E(∞)
{
Fn(t)

∣∣ T ((X1, U1), . . . , (Xn, Un)) = ((u1, δ1), . . . , (un, δn))
}
. (2.12)

This is an equation that again is called a self-consistency equation. It tells us that, if F (∞)

really is the NPMLE of F0, the conditional expectation of the NPMLE in the hidden space is
equal to the NPMLE in the observation space (since the empirical distribution function Fn is
the NPMLE in the hidden space). Note that the expectation E(∞) in principle also involves
the distribution of the Ui’s, but that, in taking the conditional expectation, we only have to
specify the distribution of the Xi (see (2.5)).

We can write (2.8) in the following explicit form:

p
(m+1)
k =

1
n

n∑
i=1

{
δi

F (m)(ui)
{ui ≥ u(k)}+

1− δi
1− F (m)(ui)

{ui < u(k)}
}
p

(m)
k , 1 ≤ k ≤ n+ 1,

since

P (m)
{
Xi = u(k)

∣∣ ∆i = δi
}

= p
(m)
k

{
δi

F (m)(ui)
{ui ≥ u(k)}+

1− δi
1− F (m)(ui)

{ui < u(k)}
}
.

(2.13)
This means that if the EM algorithm converges, we get for the probability masses p(∞)

k in
the limit

p
(∞)
k =

1
n

n∑
i=1

{
δi

F (∞)(ui)
{ui ≥ u(k)}+

1− δi
1− F (∞)(ui)

{ui < u(k)}
}
p

(∞)
k , 1 ≤ k ≤ n+ 1.

(2.14)
Hence, if p(∞)

k > 0, we get:

1 =
1
n

n∑
i=1

{
δi

F (∞)(ui)
{ui ≥ u(k)}+

1− δi
1− F (∞)(ui)

{ui < u(k)}
}
, (2.15)

and if p(∞)
k = 0:

1 ≥ 1
n

n∑
i=1

{
δi

F (∞)(ui)
{ui ≥ u(k)}+

1− δi
1− F (∞)(ui)

{ui < u(k)}
}
. (2.16)
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We are now going to show that, in the previous example, instead of the EM algorithm,
we can use a 1-step algorithm for computing the NPMLE. For this we will need to develop
a little bit of convex duality theory (which will also be useful for other purposes). For this I
will use some material that is also included in the notes Groeneboom (1999).

Let φ be a smooth convex function defined on IRn. The following lemma gives necessary
and sufficient conditions for a vector x̂ to be the minimizer of φ over a convex cone K in IRn,
where a cone in IRn is a subset K of IRn, satisfying

x ∈ K =⇒ c · x ∈ K, for all c ≥ 0.

The elementary proof of the following lemma is based on the proof of Lemma 2.1 in
Jongbloed (1995). It is a special case of Fenchel’s duality theorem (see Rockafellar (1970),
Theorem 31.4) and it is also used at several places in Groeneboom and Wellner (1992),
see, e.g., the proof of Proposition 1.1 on p. 39.

We write ∇φ for the vector of partial derivatives of φ,

∇φ(x) =
(

∂

∂x1
φ(x), · · · , ∂

∂xn
φ(x)

)
,

and 〈·, ·〉 for the usual inner product in IRn.

Lemma 2.1 Let φ : IRn → IR ∪ {∞} be a continuous convex function. Let K ⊂ IRn be a
convex cone and let K0 = K ∩ φ−1(IR). Moreover, suppose that K0 is non-empty, and that φ
is differentiable on K0. Then x̂ ∈ K0 satisfies

φ(x̂) = min
x∈K

φ(x), (2.17)

if and only if x̂ satisfies
∀x ∈ K : 〈x,∇φ(x̂)〉 ≥ 0, (2.18)

and
〈x̂,∇φ(x̂)〉 = 0. (2.19)

Proof: We first prove the if-part. Let x ∈ K be arbitrary and let x̂ ∈ K0 satisfy (2.18) and
(2.19). Then we get, using the convexity of φ,

φ(x)− φ(x̂) ≥ 〈x− x̂,∇φ(x̂)〉 ≥ 0,

implying φ(x̂) = minx∈K φ(x). Note that the inequality is trivially satisfied if x ∈ K \ K0.
Conversely, let x̂ satisfy (2.17), and first suppose that (2.18) is not satisfied. Then there

exists an x ∈ K such that 〈x,∇φ(x̂)〉 < 0. Since, for each ε ≥ 0,

x̂+ εx = (1 + ε)
{

1
1 + ε

x̂+
(

1− 1
1 + ε

)
x

}
∈ K,
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we have, for ε ↓ 0, using the continuity of φ and the assumption that φ is differentiable on
K0,

φ(x̂+ εx)− φ(x̂) = ε 〈x,∇φ(x̂)〉+ o(ε).

This shows that for ε sufficiently small, φ(x̂+ εx) < φ(x̂), contradicting the assumption that
x̂ minimizes φ over K.

Now suppose (2.19) is not satisfied. Then x̂ 6= 0 and, for |ε| ≤ 1, (1 + ε)x̂ ∈ K. Taking
the sign of ε opposite to that of 〈x̂,∇φ(x̂)〉, we get for ε→ 0

φ((1 + ε)x̂)− φ(x̂) = ε 〈x̂,∇φ(x̂)〉+ o(ε),

and hence the left-hand side will be negative for |ε| sufficiently small, contradicting again the
assumption that x̂ minimizes φ over K. 2

We say that a cone K is finitely generated if there are finitely many vectors z(1), . . . ,
z(k) ∈ K such that

x ∈ K ⇐⇒ ∃α1, α2, . . . , αk ≥ 0 such that x =
k∑
i=1

αiz
(i).

For finitely generated convex cones we have the following corollary of Lemma 2.1.

Corollary 2.1 Let φ satisfy the conditions of lemma 2.1 and let the convex cone K be gen-
erated by the vectors z(1), z(2), . . . , z(k). Then x̂ ∈ K0 = K ∩ φ−1(IR) satisfies

φ(x̂) = min
x∈K

φ(x),

if and only if
〈z(i),∇φ(x̂)〉 ≥ 0, for 1 ≤ i ≤ k, (2.20)

〈z(i),∇φ(x̂)〉 = 0, if α̂i > 0, (2.21)

where the nonnegative numbers α̂1, α̂2, . . . , α̂k satisfy

x̂ =
k∑
i=1

α̂iz
(i).

Proof: If x ∈ K, then

x =
k∑
i=1

αiz
(i),

where the αi are nonnegative. Hence we can write

〈x,∇φ(x̂)〉 =
k∑
i=1

αi 〈z(i),∇φ(x̂)〉. (2.22)
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If (2.20) and (2.21) hold, then (2.18) follows, since all terms in the sum on the right-hand
side of (2.22) are nonnegative. If x = x̂, (2.19) follows since in that case all terms on the
right-hand side of (2.22) are zero.

Suppose (2.18) and (2.19) hold. Then (2.20) follows trivially. Taking x = x̂ in (2.22)
and observing that all terms in the sum on the right-hand side of (2.22) are nonnegative, it
follows that (2.19) can only hold if (2.21) holds. 2

We now show how Corollary 2.1 leads to a one-step algorithm for computing the NPMLE
for the distribution function F0 in Example 2.1 (current status data). It follows from Theorem
1.5.1 in Robertson et. al. (1988), applied to the convex function Φ, defined by

Φ(x) = x log x+ (1− x) log(1− x), x ∈ (0, 1),

extended to [0, 1] by defining Φ(0) = Φ(1) = 0, that maximizing the function

x 7→
n∑
i=1

{δ(i) log xi + (1− δ(i)) log(1− xi)}, x = (x1, . . . , xn) ∈ [0, 1]n,

over all vectors x ∈ [0, 1]n with ordered components x1 ≤ . . . ≤ xn, is equivalent to minimizing
the convex function

φ : x 7→
n∑
i=1

{xi − δ(i)}2, x = (x1, . . . , xn) ∈ [0, 1]n, (2.23)

over all such vectors. Here δ(i) is a realization of an indicator ∆j , corresponding to the ith
order statistic u(i) of the (realized) observation times u1, . . . , un, and is equal to zero or one.
We can extend φ to IRn by defining

φ(x) =
n∑
i=1

{xi − δ(i)}2, x = (x1, . . . , xn) ∈ IRn,

and for this extended function the conditions of Lemma 2.1 are satisfied.
Let K be the convex cone

K = {x ∈ IRn : x = (x1, . . . , xn), x1 ≤ · · · ≤ xn}. (2.24)

Then K is finitely generated by the vectors z(i) =
∑n

j=i ej , 1 ≤ i ≤ n, where the ej are the
unit vectors in IRn, and the vector z(0) = −z(1). This means that any x ∈ K can be written
in the form

x =
n∑
i=1

αiz
(i), α1 ∈ IR, αi ≥ 0, i = 2, . . . , n.

By Corollary 2.1, x̂ =
∑n

i=1 α̂iz
(i) minimizes φ(x) over K, if and only if

〈z(i),∇φ(x̂)〉
{
≥ 0 for 1 ≤ i ≤ n,
= 0 if α̂i > 0 or i = 1.

(2.25)
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The condition 〈z(1),∇φ(x̂)〉 = 0 arises from the fact that the inner product of ∇φ(x̂) with
both z(1) and −z(1) has to be non-negative.

Since z(i) =
∑n

j=i ej , i ≥ 1, this gives, by (2.23), that x̂ =
∑n

i=1 α̂iz
(i) has to satisfy

n∑
j=i

x̂j ≥
n∑
j=i

δ(j), i = 1, . . . , n, and
n∑
j=i

x̂j =
n∑
j=i

δ(j), if α̂i > 0 or i = 1. (2.26)

Let P0 = (0, 0) and Pi = (i,
∑i

j=1 δ(j)), i = 1, . . . , n. Furthermore, let C : [0, n] → IR
be the biggest convex function on [0, n], lying below (or touching) the points Pi. The set of
points Pi is usually denoted as the cumulative sum diagram (or just cusum diagram) and the
function C as the (greatest) convex minorant of this cusum diagram. Then, defining x̂i as the
left derivative of the convex minorant C at i, it is easily verified that the x̂i’s satisfy (2.26).

In fact, the (greatest) convex minorant has to touch the cusum diagram at P0 and Pn,
which means that we will have

n∑
j=1

x̂j =
n∑
j=1

δ(j). (2.27)

Furthermore, since the convex minorant lies below the points Pi, we must have

i∑
j=1

x̂j ≤
i∑

j=1

δ(j), i = 1, . . . , n. (2.28)

By (2.27) and (2.28) we now get

n∑
j=i

x̂j ≥
n∑
j=i

δ(j), i = 1, . . . , n,

Defining the α̂i’s by x̂ =
∑n

i=1 α̂iz
(i), where x̂ = (x̂1, . . . , x̂n), it is seen that α̂i > 0, i > 1,

means that the slope of C changes at i−1, and this means that C touches the cusum diagram
at Pi−1. Since x̂i is the left-continuous slope of C, we get from this

n∑
j=i

x̂j =
n∑
j=i

δ(j).

It now follows that x̂ satisfies (2.26), and since it is also easily seen that 0 ≤ x̂i ≤ 1, for
1 ≤ i ≤ n, we get that x̂ actually minimizes φ(x) over all vectors x ∈ [0, 1]n with ordered
components.

Hence we have the following one-step algorithm for computing the NPMLE: construct
the cusum diagram, consisting of the points Pi, and construct its convex minorant. Then
the value F̂n(u(i)) of the NPMLE F̂n at the ith ordered observation time u(i) is given by the
left-continuous slope of the convex minorant at i.
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Example 2.2 Suppose that δ(1) = δ(4) = δ(6) = 1 and δ(2) = δ(3) = δ(5) = 0. Then the cusum
diagram consists of the points (0, 0), (1, 1), (2, 1), (3, 1), (4, 2), (5, 2) and (6, 3). A picture of
the cusum diagram and the convex minorant for this situation is shown below.

0 1 2 3 4 5 6
0

1

2

3

Figure 1: Cusum diagram

From this diagram we can see that x̂1 = x̂2 = x̂3 = 1/3, x̂4 = x̂5 = 1/2, and x̂6 = 1,
since these are the left-continuous slopes of the convex minorant at the points 1, . . . , 6. So,
if u(1) < . . . , u(6) are our (strictly) ordered observation points, the NPMLE F̂6 is given by

F̂6

(
u(i)

)
= x̂i, i = 1, . . . , 6.

Note that the exact location of the points u(i) does not matter in the computation of the
NPMLE.

It was shown in exercises 3 and 4 of the second homework assignment that, if δ(1) = 1
and δ(n) = 0, the relations (2.15) and (2.16), characterizing the NPMLE, are equivalent to
the following two relations:

n∑
i=k

{
δ(i)

F
(
u(i)

) − 1− δ(i)

1− F
(
u(i)

)} ≤ 0, k = 1, . . . , n, (2.29)
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and
n∑
i=1

{
δ(i)

F
(
u(i)

) − 1− δ(i)

1− F
(
u(i)

)}F (u(i)

)
= 0. (2.30)

The last equation is the equivalent of a “score equation” in the case of finite-dimensional
maximum likelihood estimation. But because we are essentially dealing with an infinite
dimensional set this time (the set of all distribution functions on IR or on [0,∞)), the situation
is more complicated now; we also need the inequalities (2.29).

If we make the identification

x̂
def= (x̂1, . . . , x̂n) =

(
F̂n
(
u(1)

)
, . . . , F̂n

(
u(n)

))
,

and define the cone K as in (2.24), then (2.29) corresponds to (2.20) and (2.30) corresponds
to (2.21). Note that the set of vectors

(
F
(
u(1)

)
, . . . , F

(
u(n)

))
is a subset of the cone K,

but that the cone K itself contains many more vectors, since components bigger than 1 and
smaller than 0 are allowed. But if δ(1) = 1 and δ(n) = 0, we know that the function

−
n∑
i=1

{
δ(i) logF (u(i)) + (1− δ(i))

(
1− logF (u(i))

)}
, (2.31)

(the log likelihood with a minus sign in front), is infinite if F (u(1)) = 0 or F (u(n)) = 1. In
such a case one says that the constraints that the values of the distribution function have to
be between zero and one are not active, and that we can reduce the problem of minimizing
(2.31) to a minimization problem over the cone K, defining

− log x =∞, if x ≤ 0.

This is the reason that (2.30) and (2.29) characterize the NPMLE in this case.
Now, exactly as in the usual finite-dimensional maximum likelihood problems, we can try

to get the solution by taking partial derivatives of the log likelihood. The big difficulty here,
though, is that we can only take partial derivatives in certain directions, because we have to
stay inside the parameter space. For example, one could wonder whether (2.12) is, in some
sense, really the same as (1.9), since both equations are called “self-consistency equations”.

To make the connection, we start by assuming that the probability mass in the hidden
space is concentrated on the set of points {u(k1), . . . , u(km+1)} which is a subset of the set of
points {u(1), . . . , u(n+1)}, and we introduce the parameter vector

θ = (pk1 , . . . , pkm) , 1 ≤ k1 < . . . < km ≤ n,

representing the probability masses at the points u(kj). For similar reasons as in the case of
a multinomial distribution, we express pkm+1 in terms of the pki , i ≤ m, and do not include
this parameter in our parameter vector θ.
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The log likelihood in the “hidden space” is now given by:

n∑
i=1

log fθ(xi),

where
fθ
(
u(ki)

)
= pki , i = 1, . . . ,m+ 1,

The score function l̇θ in the hidden space is now given by

l̇θ(x1, . . . , xn) =
(
n1

pk1

− nm+1

pkm+1

, . . . ,
nm
pkm
− nm+1

pkm+1

)
, (2.32)

where nj is the number of xi’s that is equal to u(kj). So, if we want (1.9) to be true for this
parametrization, we must have for the corresponding random variables Nj :

Eθ

{
Nj

pkj
− Nm+1

pkm+1

∣∣∣∣ T ((X1, U1), . . . , (Xn, Un)) = ((u1, δ1), . . . , (un, δn))
}

= 0, j = 1, . . . ,m.

(2.33)
where the mapping T is defined as in (2.2). But since

Eθ
{
Nj

∣∣ T ((X1, U1), . . . , (Xn, Un)) = ((u1, δ1), . . . , (un, δn))
}

=
n∑
i=1

Pθ

{
Xi = u(kj)

∣∣ ∆i = δi

}
,

(2.34)
for j = 1, . . . ,m+ 1, (2.33) can be written:∑n

i=1 Pθ
{
Xi = u(k1)

∣∣ ∆i = δi
}

pk1

= . . . =

∑n
i=1 Pθ

{
Xi = u(km+1)

∣∣ ∆i = δi
}

pkm+1

. (2.35)

However, (2.35) implies

pkj =
1
n

n∑
i=1

Pθ

{
Xi = u(kj)

∣∣ ∆i = δi

}
, j = 1, . . . ,m+ 1. (2.36)

Now, if the distribution function Fθ is defined by

Fθ(t) =
∑

j:u(kj)≤t
pkj ,

we get from (2.36):

Fθ(t) = Eθ
{
Fn(t)

∣∣ T ((X1, U1), . . . , (Xn, Un)) = ((u1, δ1), . . . , (un, δn))
}
, (2.37)

where Fn denotes the empirical distribution function in the hidden space (see the transition
from (2.8) to (2.11)). So indeed (1.9) leads us to (2.12). Note however that the biggest problem

25



in the maximum likelihood procedure, i.e., finding the points with strictly positive masses, is
not addressed by this approach; we chose these points in advance. This means that we have
absolutely no guarantee that the distribution function found in this way is really the NPMLE!
For checking that we really found the NPMLE, we also need inequalities like (2.29).

Example 2.3 (Right-censoring and the Kaplan-Meier estimator) In accordance with our
approach so far, we will discuss the right-censoring model in the context of a mapping from
a hidden space to an observation space. Let (X1, U1), . . . , (Xn, Un) be a sample of random
variables in IR2

+, where Xi and Ui are independent (non-negative) random variables with
distribution functions F0 and G, respectively. The observations available to us will be:

Yi = Xi ∧ Ui and ∆i = {Xi ≤ Ui},

where Xi ∧ Ui = min{Xi, Ui}. The random variables (Xi, Ui) are living on the hidden space
X, the random variables (Yi,∆i) on the observation space Y, and our mapping T is given
by:

T ((x1, u1), . . . , (xn, un)) = ((x1 ∧ u1, δ1), . . . , (xn ∧ un, δn)) , where δi = {xi ≤ ui}. (2.38)

Very often the Xi have the interpretation of survival times and the Ui the interpretation of
censoring times. As in the case of the preceding examples, we are going to construct an
NPMLE of F0 by restricting the allowed distribution functions to distribution functions with
mass concentrated on a finite set, in this case {y1, . . . , yn} ∪ {y(n+1)}, where yi = xi ∧ ui,
i = 1, . . . , n, and where y(n+1) is an extra point to the right of all yi’s, i ≤ n, for extra mass
(Pollard (1984) uses on p. 183 the catchy description “we dump the remaining mass all
down on a fictitious supersurvivor at ∞”, taking y(n+1) =∞). For simplicity we will assume
that the yi’s are different.

The (part of the) likelihood (involving the distribution of the Xi) in the observation space
is then given by

n∏
i=1

f (yi)
δi {1− F (yi)}1−δi . (2.39)

Note that the big difference with the likelihood in the current status model is the presence
of the density f in (2.39): the factor F (ui)

δi is now replaced by f (yi)
δi (and of course the ui

have a different interpretation than the yi, but this in itself has no effect on the maximization
procedure).

Switching, as before, to the order statistics y(i), the log likelihood becomes:

n∑
i=1

{
δ(i) log f

(
y(i)

)
+ {1− δ(i)} log

{
1− F

(
y(i)

)}}
, (2.40)

where δ(i) = δj if y(i) = yj . Contrary to the situation just discussed for the current status
model, we now know exactly where to put the probability mass: it is concentrated on the set
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of points
{
y(k1), . . . , y(km+1)

}
, where y(km+1) is the extra point y(n+1) if the last observation

is censored (δ(n) = 0), and where y(km+1) = y(n), otherwise, and where the other points y(ki)

are points corresponding to noncensored observations (δ(ki) = 1). So we take

θ = (pk1 , . . . , pkm) , where pi = f
(
y(i)

)
,

as the parameter we want to estimate by maximum likelihood, and again express pkm+1 in
terms of the pki , i ≤ m, and do not include this parameter in our parameter vector θ.

The log likelihood in the “hidden space” is again given by:

n∑
i=1

log fθ(xi),

where
fθ
(
y(ki)

)
= pki , i = 1, . . . ,m+ 1,

and, likewise, the score function l̇θ in the hidden space is given by

l̇θ(x1, . . . , xn) =
(
n1

pk1

− nm+1

pkm+1

, . . . ,
nm
pkm
− nm+1

pkm+1

)
, (2.41)

where nj is the number of xi’s that is equal to y(kj). This leads to the equations

pkj =
1
n

n∑
i=1

Pθ

{
Xi = y(kj)

∣∣ ∆i = δi

}
, j = 1, . . . ,m+ 1. (2.42)

(compare with (2.36)), and, if the distribution function Fθ is defined by

Fθ(t) =
∑

j:y(kj)≤t
pkj ,

we get from (2.42):

Fθ(t) = Eθ
{
Fn(t)

∣∣ T ((X1, U1), . . . , (Xn, Un)) = ((y1, δ1), . . . , (yn, δn))
}
, (2.43)

But now it is very easy to solve these equations. The solution vector θ̂ = (p̂k1 , . . . , p̂km)
satisfies:

p̂ki∑m+1
j=i p̂kj

=
1

n− ki + 1
, i = 1, . . . ,m. (2.44)

The number n− ki + 1 is called “the size of the population at risk” just before time y(ki) (in
the literature on the right-censoring model). This leads to the Kaplan-Meier estimator F̂n
(sse Kaplan and Meier (1958)), defined by

1− F̂n(t) =
∏

i:y(ki)
≤t

(
1− 1

n− ki + 1

)
. (2.45)
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In the present set-up, the Kaplan-Meier estimator is the NPMLE in the right-censoring model,
and can also be defined by

F̂n(t) =
∑

i:y(ki)
≤t
p̂ki , (2.46)

where the p̂ki are defined by the equations (2.44). Hence the Kaplan-Meier estimator is
another example of an estimator satisfying the self-consistency equations (in this case given
by (2.43)).
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