Stat 591B: Concentration Inequalities and Empirical Process Methods for High-Dimensional Statistics Autumn 2017

Time:	12:00 - 1:30 T Th (lecture)
Place:	Padelford C301
Professor:	Jon A. Wellner
Office:	B320 Padelford
Phone:	543-6207
e-mail:	jaw@stat.washington.edu
Office Hours:	1:30 - 3:30 MWF; or by appointment
Textbooks:	Boucheron, Lugosi, and Massart (2013).
	Concentration Inequalities. Oxford.
Prerequisites:	Stat 581-2-3 or Stat 521-2-3, or comparable,
	and an interest in high-dimensional statistics.
Grading: (Cr/NC)	Homework: 40%
	Project: 60%
Course Web site:	http://www.stat.washington.edu/
	/jaw/COURSES/EMPIR/591.17/591-f17.html

Homework: Homeworks will be roughly once every two weeks ... and will cover theory, methods, and computations supplementing the lecture material. Here is the tentative schedule for the homeworks:

HW1: handed out 5 October; due 19 October.

HW2: handed out 19 October; due 2 November.

HW3: handed out 2 November; due 16 November.

HW4: handed out 16 November; due 30 November.

Class projects: Typical projects might include:

- Read a theory paper and write 5-10 pages on the results of the paper, the methods used, and the *problems remaining*.
- Evaluate the use of concentration inequalities in a statistics or probability paper of interest to you.
- Survey a set of concentration inequalities or empirical process methods not covered in the lectures.

Those of you taking the course for credit should decide on a potential project by Tuesday, October 17. Projects related to your current research are encouraged. Please write a one-two paragraph proposal describing your project to be submitted in class on Tuesday, October 17. I will schedule presentations of projects for the last two weeks of the quarter.

Other books and sources:

- Bühlmann and Van de Geer (2011). Statistics for High-Dimensional Data. Springer.
- Giné and Nickl (2016). Mathematical Foundations of Infinite-Dimensional Models. Cambridge U. Press.
- Talagrand, M. (2005). The Generic Chaining. Springer.
- Talagrand, M. (2014). Upper and lower bounds for stochastic processes. Springer.
- Ledoux, M. (2001). The Concentration of Measure Phenomenon. American Mathematical Society.
- Massart (2007). Concentration Inequalities and Model Selection. Springer.
- Koltchinskii, V. (2008). Oracle inequalities in empirical risk minimization and sparse recovery problems. *Lectures from the 38th Probability Summer School held in Saint-Flour*, Lecture Notes in Mathematics **2033**, École d'Été de Probabilités de Saint-Flour. Springer.
- Van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes. Springer.
- Van de Geer (2000), Empirical Processes in M-Estimation. Cambridge University Press.
- de la Pena and Giné (1999). Decoupling. Springer.
- Bakry, Gentil, and Ledoux (2014). Analysis and Geometry of Markov Diffusion Operators. Springer
- Ghosal, S. and van der Vaart, A. W. (2917). Fundamentals of Nonparametric Bayesian Inference. Cambridge University Press, Cambridge.

Policies regarding phones and computers: Cell phones should be turned of (or set to vibrate only) during class. Likewise for laptop computers. Use class time to understand the lectures and take part in discussions.