Statistics 591B, Problem Set 1

Wellner; 10/05/2017

Due: Thursday, October 19, 2017

1. BLM, page 47, problem 2.7: Prove that if $Z \sim N(0,1)$ is a centered normal random variable with variance 1 , then

$$
\frac{z}{1+z^{2}} \phi(z) \leq P(Z \geq z) \leq\left\{\begin{array}{l}
\frac{1}{2} \exp \left(-\frac{z^{2}}{2}\right) \\
z^{-1} \phi(z)
\end{array}\right.
$$

for all $z \geq 0$.
2. BLM, page 47, problem 2.7: Elementary inequalities:

$$
\begin{aligned}
& -\log (1-u)-u \leq \frac{u^{2}}{2(1-u)} \text { for } u \in(0,1) \\
& \bar{h}(u)=(1+u) \log (1+u)-u \geq \frac{u^{2}}{2(1+u / 3)} \text { for } u>0 \\
& h_{1}(u)=1+u-\sqrt{1+2 u} \geq \frac{u^{2}}{2(1+u)}, \text { for } u>0 .
\end{aligned}
$$

3. Verify the elementary calculation required to show that

$$
\psi^{*}(t) \equiv \sup _{0<\lambda<1 / c}\left(t \lambda-\frac{\nu \lambda^{2}}{2(1-c \lambda)}\right)=\frac{\nu}{c^{2}} h_{1}\left(\frac{c t}{\nu}\right)
$$

where $h_{1}(u)=1+u-\sqrt{1+2 u}, u>0$.
4. Let (T, d) be a pseudo-metric space. Show that

$$
N(\epsilon, T, d) \leq D(\epsilon, T, d) \leq N(\epsilon / 2, T, d)
$$

5. Let Z_{1}, Z_{2}, \ldots be i.i.d. $N(0,1)$ random variables, and define $X_{n} \equiv Z_{n} / \sqrt{1+\log n}$ for $n \geq 1$. Show that $\left\{X_{n}: n \geq 1\right\}$ is almost surely bounded and $E\|X\| \equiv$ $E \sup _{n>1}\left|X_{n}\right|<\infty$, but (with $T=\mathbb{N}^{+} \equiv\{1,2,3, \ldots\}$ and $\left.d^{2}(n, m) \equiv E\left(X_{n}-X_{m}\right)^{2}\right)$

$$
\int_{0}^{\operatorname{diam}(T)} \sqrt{\log N(\epsilon, T, d)} d \epsilon=\infty
$$

Hint: Let $\sigma_{n}^{2} \equiv 1 /(1+\log n)$. Show that $P\left(\left|X_{n}\right| \geq \lambda\right) \leq \exp \left(-\lambda^{2} / 2 \sigma_{n}^{2}\right)=$ $n^{-\lambda^{2} / 2} \exp \left(-\lambda^{2} / 2\right)$, and hence find a bound for $P\left(\sup _{n \geq 1}\left|X_{n}\right|>\lambda\right)$ for $\lambda \geq 2$.

