Statistics 591B, Problem Set 2

Wellner; 10/19/2017

Due: Thursday, November 2, 2017

1. One remaining basic inequality comparison: verify that $\bar{h}(x) \equiv h(1+x)$ and $h_{1}(x) \equiv 1+x-\sqrt{1+2 x}$ satisfy

$$
\bar{h}(x) \geq 9 h_{1}(x / 3) \text { for all } \quad x \geq 0
$$

2. (a) The moment condition for (the extended form of) Bernstein's inequality is: $E\left|X_{i}\right|^{k} \leq k!c^{k-2} v_{i} / 2$ for every $k \geq 2$ and all $i \leq n$ and constants $c>0$ and v_{i}. Show that this holds if we have

$$
E\left(e^{\left|X_{i}\right| / c}-1-\frac{\left|X_{i}\right|}{c}\right) c^{2} \leq \frac{1}{2} v_{i}
$$

On the other hand, show that if the moment condition holds, then the previous display holds with c replaced by $2 c$ and v_{i} replaced by $2 v_{i}$.
(b) Show that the moment condition of Bernstein's inequality holds with $c=M / 3$ if $\left|X_{i}\right| \leq M$ with probability 1 .
3. (a) We showed in class on $10 / 17 / 2017$ that if $Y \sim \operatorname{Poisson}(\nu)$, then

$$
P(Y-\nu \geq t) \leq \exp (-\nu h(1+t / \nu))=\exp \left(-\frac{t^{2}}{2 \nu} \psi(t / \nu)\right) \text { for all } t>0
$$

where $h(x)=x(\log x-1)+1$ and $\psi(x)=2 x^{-2} h(1+x)$. Show that

$$
\begin{aligned}
P(-(Y-\nu) \geq t) & \leq \exp (-\nu h(1-t / \nu))=\exp \left(-\frac{t^{2}}{2 \nu} \psi(-t / \nu)\right) \\
& \leq \exp \left(-\frac{t^{2}}{2 \nu}\right) \text { for all } 0<t \leq \nu
\end{aligned}
$$

(b) Now suppose that X_{1}, \ldots, X_{n} are independent non-negative random variables. Let $S_{n} \equiv \sum_{i=1}^{n}\left(X_{i}-E\left(X_{i}\right)\right)$, and let $\nu \equiv \sum_{i=1}^{n} E\left(X_{i}^{2}\right)$. Show that

$$
P(-S \geq t) \leq \exp \left(-\frac{t^{2}}{2 \nu}\right) \text { for all } t>0
$$

Can this be improved?
4. Suppose that X_{1}, \ldots, X_{n} are i.i.d. random variables. In the notation used in class on $10 / 17 / 2017$, let $\psi_{X_{1}}(\lambda) \equiv \log E e^{\lambda X_{1}}$ and let $\psi_{X_{1}}^{*}(t)=\sup _{\lambda}\left\{\lambda t-\psi_{X_{1}}(\lambda)\right.$. Let $Z \equiv \sum_{1}^{n} X_{i}$. Show that $\psi_{Z}(\lambda)=n \psi_{X_{1}}(\lambda)$ and $\psi_{Z}^{*}(t)=n \psi_{X_{1}}^{*}(t / n)$.
5. Suppose that $Z=\sum_{i=1}^{n}\left(X_{i}-p\right)$ where $X_{i} \sim \operatorname{Bern}(p)$ for $1 \leq i \leq n$.
(a) Use the previous problem to show that $P(Z \geq t) \leq \exp \left(-n h_{p}(p+t / n)\right)$ for all $t>0$ where

$$
h_{p}(a)=a \log \left(\frac{a}{p}\right)+(1-a) \log \left(\frac{1-a}{1-p}\right) .
$$

(b) The \log-MGF of $Z_{1}=X_{1}-p$ is $\psi_{Z_{1}}(\lambda)=\log \left(p e^{\lambda}+(1-p)\right)-\lambda p$. Use the inequality $\log (1+w) \leq w$ for all $w>-1$ to find an alternative inequality to the one you found in (a). The alternative inequality should involve the function \bar{h} or h as in Bennett's inequality.

