Statistics 591B, Problem Set 2 Wellner; 10/19/2017

Due: Thursday, November 2, 2017

1. One remaining basic inequality comparison: verify that $\overline{h}(x) \equiv h(1+x)$ and $h_1(x) \equiv 1 + x - \sqrt{1+2x}$ satisfy

$$\overline{h}(x) \ge 9h_1(x/3)$$
 for all $x \ge 0$.

2. (a) The moment condition for (the extended form of) Bernstein's inequality is: $E|X_i|^k \leq k! c^{k-2} v_i/2$ for every $k \geq 2$ and all $i \leq n$ and constants c > 0 and v_i . Show that this holds if we have

$$E\left(e^{|X_i|/c} - 1 - \frac{|X_i|}{c}\right)c^2 \le \frac{1}{2}v_i.$$

On the other hand, show that if the moment condition holds, then the previous display holds with c replaced by 2c and v_i replaced by $2v_i$. (b) Show that the moment condition of Bernstein's inequality holds with c = M/3 if $|X_i| \leq M$ with probability 1.

3. (a) We showed in class on 10/17/2017 that if $Y \sim \text{Poisson}(\nu)$, then

$$P(Y - \nu \ge t) \le \exp(-\nu h(1 + t/\nu)) = \exp\left(-\frac{t^2}{2\nu}\psi(t/\nu)\right) \quad \text{for all } t > 0$$

where $h(x) = x(\log x - 1) + 1$ and $\psi(x) = 2x^{-2}h(1 + x)$. Show that

$$P(-(Y-\nu) \ge t) \le \exp(-\nu h(1-t/\nu)) = \exp\left(-\frac{t^2}{2\nu}\psi(-t/\nu)\right)$$
$$\le \exp\left(-\frac{t^2}{2\nu}\right) \text{ for all } 0 < t \le \nu.$$

(b) Now suppose that X_1, \ldots, X_n are independent non-negative random variables. Let $S_n \equiv \sum_{i=1}^n (X_i - E(X_i))$, and let $\nu \equiv \sum_{i=1}^n E(X_i^2)$. Show that

$$P(-S \ge t) \le \exp\left(-\frac{t^2}{2\nu}\right)$$
 for all $t > 0$.

Can this be improved?

- 4. Suppose that X_1, \ldots, X_n are i.i.d. random variables. In the notation used in class on 10/17/2017, let $\psi_{X_1}(\lambda) \equiv \log E e^{\lambda X_1}$ and let $\psi^*_{X_1}(t) = \sup_{\lambda} \{\lambda t \psi_{X_1}(\lambda) \}$. Let $Z \equiv \sum_{i=1}^{n} X_i$. Show that $\psi_Z(\lambda) = n\psi_{X_1}(\lambda)$ and $\psi^*_Z(t) = n\psi^*_{X_1}(t/n)$.
- 5. Suppose that $Z = \sum_{i=1}^{n} (X_i p)$ where $X_i \sim \text{Bern}(p)$ for $1 \le i \le n$. (a) Use the previous problem to show that $P(Z \ge t) \le \exp(-nh_p(p+t/n))$ for all t > 0 where

$$h_p(a) = a \log\left(\frac{a}{p}\right) + (1-a) \log\left(\frac{1-a}{1-p}\right).$$

(b) The log-MGF of $Z_1 = X_1 - p$ is $\psi_{Z_1}(\lambda) = \log(pe^{\lambda} + (1-p)) - \lambda p$. Use the inequality $\log(1+w) \leq w$ for all w > -1 to find an alternative inequality to the one you found in (a). The alternative inequality should involve the function \overline{h} or h as in Bennett's inequality.