Statistics 591B, Problem Set 3

Wellner; November 2, 2017

Due: Thursday, November 16, 2017

1. Let $h(x) \equiv x(\log x-1)+1$. Show that for $f \geq 0$

$$
E n t_{\mu}(f)=\int h(f) d \mu-h\left(\int f d \mu\right) .
$$

2. Suppose that f satisfies the Gaussian log-Sobolev inequality:

$$
E n t_{\gamma}\left(f^{2}\right) \leq 2 \int|\nabla f|^{2} d \gamma
$$

Show that this implies that f satisfies a Gaussian Poincaré-type inequality; that is, for $f \in C^{1}$ and some constant C

$$
\operatorname{Var}(f(Z)) \leq C E\left\{\|\nabla f(Z)\|^{2}\right\}
$$

Hint: Apply the log-Sobolev inequality to $(1+\epsilon f)$ and expand the resulting functions of ϵ.
3. Use Hoeffding's Lemma (BLM, Lemma 2.2) to prove Pinsker's inequality

$$
d_{T V}^{2}(Q, P) \leq \frac{1}{2} K(Q, P)
$$

See BLM, Theorem 4.19, p. 103.
4. BLM, page 155, problem 5.5: (a) Prove the following variant of Theorem 5.3. Let $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ and let X be uniformly distributed on $\{-1,1\}^{n}$. Let $\nu>0$ satisfy

$$
\sum_{i=1}^{n}\left(f(x)-f\left(\bar{x}^{(i)}\right)\right)^{2} \leq \nu
$$

for all $x \in\{-1,1\}^{n}$. (Note that, as opposed to the statement of Theorem 5.3, the positive part is omitted in the definition of ν.) Prove that, for all $t>0$, $Z=f(X)$ satisfies

$$
\begin{equation*}
P(Z-E(Z)>t) \leq \exp \left(-2 t^{2} / \nu\right) \tag{1}
\end{equation*}
$$

Hint: Proceed as in the proof of the theorem, but instead of using the simple convexity argument establish first that for real numbers $z \geq y$,

$$
\begin{equation*}
\left(e^{z / 2}-e^{y / 2}\right)^{2} \leq \frac{(z-y)^{2}}{8}\left(e^{z}+e^{y}\right) \tag{2}
\end{equation*}
$$

Use this to show that

$$
\operatorname{Ent}\left(e^{\lambda f(X)}\right) \leq \frac{1}{2} \sum_{i=1}^{n}\left\{\left(e^{\lambda X / 2}-e^{\lambda f\left(\bar{X}^{(i)}\right) / 2}\right)^{2}\right\} \leq E\left\{\frac{\nu \lambda^{2}}{8} e^{\lambda f(X)}\right\}
$$

(b) Show that the inequality (1) contains Hoeffding's inequality with the right constant in the exponent for the special case of symmetric Bernoulli random variables: If X_{1}, \ldots, X_{n} are independent Rademacher random variables, then

$$
P\left(n^{-1 / 2} \sum_{1}^{n} X_{i}>t\right) \leq \exp \left(-t^{2} / 2\right) \text { for all } t>0
$$

(c) Show that the inequality (2) can be rewritten as a lower bound for the geometric mean $\sqrt{a b}$ of two positive numbers a, b, thereby complementing the usual arithmetic mean - geometric mean upper bound, $\sqrt{a b} \leq(a+b) / 2$.
5. (a) Suppose that X_{1}, \ldots, X_{n} are i.i.d. P on \mathbb{R} with $E\left|X_{1}\right|<\infty$. Consider the measure of dispersion $D_{n} \equiv n^{-1} \sum_{i=1}^{n}\left|X_{i}-\bar{X}_{n}\right|$ Use a Glivenko-Cantelli theorem to show that $D_{n} \rightarrow_{\text {a.s. }} E\left|X_{1}-\mu\right| \equiv d$ where $\mu=E\left(X_{1}\right)$.
(b) Now suppose that the X_{i} 's and D_{n} are as defined in (a), but now assume that $E\left(X_{1}^{2}\right)<\infty$. Use a Donsker theorem to show that $\sqrt{n}\left(D_{n}-d\right) \rightarrow_{d}$ something and identify "something". Hint: This is from Pollard (1989), Statistical Science 4, 341-366.

