Statistics 593A, Problem Set 2

Wellner; 4/17/2014

Due: Thursday, May 1, 2014

1. BLM, page 79, problem 3.7: Show that the conditional Rademacher average Z satisfies the self-bounding property. Here Z is defined by

$$
Z \equiv E\left\{\max _{1 \leq j \leq d} \sum_{i=1}^{n} \epsilon_{i} X_{i, j} \mid X_{1}, \ldots, X_{n}\right\}
$$

where X_{1}, \ldots, X_{n} are independent random variables taking values in $[-1,1]^{d}$ and $\epsilon_{1}, \ldots, \epsilon_{n}$ are independent Rademacher random variables which are independent of the X_{i} 's
2. BLM, page 78, problem 3.5: Consider the class \mathcal{F} of functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ that are Lipschitz with respect to the ℓ^{1} distance: i.e.

$$
\left|f\left(x_{1}, \ldots, x_{n}\right)-f\left(y_{1}, \ldots, y_{n}\right)\right| \leq \sum_{i=1}^{n}\left|x_{i}-y_{i}\right|
$$

Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be a vector of independent random variables with finite variance. Use the Efron - Stein inequality to show that the maximal value of $\operatorname{Var}(f(X))$ over $f \in \mathcal{F}$ is attained by the function $f(x)=\sum_{i=1}^{n} x_{i}$. (This is from Bobkov and Houdré (1996).)
3. BLM, page 114, problem 4.11: prove that for any fixed probability measure P on \mathcal{X}, the function $Q \mapsto D(Q \| P)$ is convex on the set of probability distributions over \mathcal{X}. Hint: Use the duality representation.
4. BLM, page 114, problem 4.13: Let Z be a real-valued random variable. Recall that $\psi_{Z}(\lambda)=\log E e^{\lambda Z}$ for $\lambda \in \mathbb{R}$. Let $\psi^{*}(t)=\sup _{\lambda \in \mathbb{R}}\left\{\lambda t-\psi_{Z-E(Z)}(\lambda)\right\}$. Prove that for all $t>0$

$$
\psi^{*}(t)=\inf \left\{D(Q \| P): E_{Q}(Z)-E(Z) \geq t\right\}
$$

5. Bonus problem: BLM, page 115, problem 4.17: Let C be a convex body (a compact convex set with nonempty interior) in \mathbb{R}^{n}, and let P be the uniform probability distribution over C. Prove Borell's lemma that states the following: if A is a symmetric convex subset of C with $P(A)>1 / 2$, then for any $t>1$,

$$
P\left((t A)^{c}\right) \leq P(A)\left(\frac{1-P(A)}{P(A)}\right)^{(t+1) / 2}
$$

Hint: Prove first that for $t>1$

$$
\frac{2}{t+1}(t A)^{c}+\frac{t-1}{t+1} A \subset A^{c}
$$

where $A^{c}=C \backslash A=C \cap A^{c}$ where the complement on the right side is the usual complement in \mathbb{R}^{n}. Then use the Brunn-Minkowski inequality. (This is an example of the concentration of measure phenomenon: note that the inequality does not depend on the ambient dimension n.)

