Statistics 593A, Problem Set 3

Wellner; 5/1/2014

Due: Thursday, May 15, 2014

1. BLM, page 155, problem 5.5: (a) Prove the following variant of Theorem 5.3. Let $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ and let X be uniformly distributed on $\{-1,1\}^{n}$. Let $\nu>0$ satisfy

$$
\sum_{i=1}^{n}\left(f(x)-f\left(\bar{x}^{(i)}\right)\right)^{2} \leq \nu
$$

for all $x \in\{-1,1\}^{n}$. (Note that, as opposed to the statement of Theorem 5.3, the positive part is omitted in the definition of ν.) Prove that, for all $t>0$, $Z=f(X)$ satisfies

$$
\begin{equation*}
P(Z-E(Z)>t) \leq \exp \left(-2 t^{2} / \nu\right) \tag{1}
\end{equation*}
$$

Hint: Proceed as in the proof of the theorem, but instead of using the simple convexity argument establish first that for real numbers $z \geq y$,

$$
\begin{equation*}
\left(e^{z / 2}-e^{y / 2}\right)^{2} \leq \frac{(z-y)^{2}}{8}\left(e^{z}+e^{y}\right) \tag{2}
\end{equation*}
$$

Use this to show that

$$
\operatorname{Ent}\left(e^{\lambda f(X)}\right) \leq \frac{1}{2} \sum_{i=1}^{n}\left\{\left(e^{\lambda X / 2}-e^{\lambda f\left(\bar{X}^{(i)}\right) / 2}\right)^{2}\right\} \leq E\left\{\frac{\nu \lambda^{2}}{8} e^{\lambda f(X)}\right\}
$$

(b) Show that the inequality (1) contains Hoeffding's inequality with the right constant in the exponent for the special case of symmetric Bernoulli random variables: If X_{1}, \ldots, X_{n} are independent Rademacher random variables, then

$$
P\left(n^{-1 / 2} \sum_{1}^{n} X_{i}>t\right) \leq \exp \left(-t^{2} / 2\right) \text { for all } t>0
$$

(c) Show that the inequality (2) can be rewritten as a lower bound for the geometric mean $\sqrt{a b}$ of two positive numbers a, b, thereby complementing the usual arithmetic mean - geometric mean upper bound, $\sqrt{a b} \leq(a+b) / 2$.
2. BLM, page 156, problem 5.8: (Littlewood's inequality for real Rademacher sums) Let $Z=\left|\sum_{1}^{n} b_{i} \epsilon_{i}\right|$ where $b_{1}, \ldots, b_{n} \in \mathbb{R}$ are fixed coefficients and $\epsilon_{1}, \ldots, \epsilon_{n}$ are i.i.d Rademacher random variables. Show first by elementary arguments that $E\left[Z^{4}\right] \leq$ $3\left(E\left[Z^{2}\right]\right)^{2}$. Next use Hölder's inequality to show that $E\left[Z^{2}\right] \leq(E Z)^{2 / 3}\left(E\left[Z^{4}\right]\right)^{1 / 3}$. Conclude that $E\left[Z^{2}\right] \leq 3(E Z)^{2}$. Is the comparison between the fourth and second moment improvable?
3. Suppose that Z is as in the previous problem. Use an exponential bound for $P(Z>t)$ to show that for every $p \geq 1$ there exist positive constants A_{p} and B_{p} such that

$$
A_{p}\left\{E Z^{2}\right\}^{1 / 2} \leq\left\{E Z^{p}\right\}^{1 / p} \leq B_{p}\left\{E Z^{2}\right\}^{1 / 2}
$$

where $E Z^{2}=\sum_{1}^{n} b_{i}^{2}$. (These are known as Khinchine's inequalities.) Hint: See Ledoux and Talagrand (1991), page 91.
4. BLM, page 157, problem 5.14: Provide details for the first step of the proof of Theorem 5.8: Hint: By total boundedness and sample path continuity, $Z=$ $\sup _{t \in \mathcal{D}} X_{t}$ where \mathcal{D} is a dense countable subset of \mathcal{T}. Use the Gaussian Poincaré inequality for finite subsets and monotone convergence to show that Z has an expected value (by relating it to the median of Z). Then use monotone convergence and the theorem for finite sets to finish the proof.
Hint: See van der Vaart \& W (1996), pages 438-439.
5. Bonus problem: BLM, page 157, problem 5.16: (Adapting Herbst's argument) Let X_{1}, \ldots, X_{n} be independent standard Gaussian random variables. Let f denote a differentiable function on \mathbb{R}^{n} such that $E\left\{\exp \left(\lambda\left\|\nabla f\left(X_{1}, \ldots, X_{n}\right)\right\|^{2}\right)\right\}<\infty$ for $\lambda<\lambda_{0}$ where λ_{0} may be ∞. Let $Z=f\left(X_{1}, \ldots, X_{n}\right)$. Prove that for λ, θ satisfying $\lambda / \theta<\lambda_{0}$ and $\lambda \theta<2$,

$$
\log E\{\exp (\lambda(Z-E(Z)))\} \leq \frac{\lambda \theta}{2(1-\lambda \theta / 2)} \log E\left\{\exp \left(\lambda\|\nabla f\|^{2} / \theta\right)\right\}
$$

Hint: Starting from the Gaussian logarithmic Sobolev inequality, use Corollary 4.15 to upper bound $E\left\{\|\nabla f\|^{2} \exp (\lambda Z)\right\}$. Apply this result when f is the squared norm of the orthogonal projection of X on some linear subspace of \mathbb{R}^{n}.

