
Statistics 593A, Problem Set 3

Wellner; 5/1/2014

Due: Thursday, May 15, 2014

1. BLM, page 155, problem 5.5: (a) Prove the following variant of Theorem 5.3.
Let f : {−1, 1}n → R and let X be uniformly distributed on {−1, 1}n. Let ν > 0
satisfy

n∑
i=1

(f(x)− f(x(i)))2 ≤ ν

for all x ∈ {−1, 1}n. (Note that, as opposed to the statement of Theorem 5.3,
the positive part is omitted in the definition of ν.) Prove that, for all t > 0,
Z = f(X) satisfies

P (Z − E(Z) > t) ≤ exp(−2t2/ν). (1)

Hint: Proceed as in the proof of the theorem, but instead of using the simple
convexity argument establish first that for real numbers z ≥ y,

(ez/2 − ey/2)2 ≤ (z − y)2

8
(ez + ey). (2)

Use this to show that

Ent(eλf(X)) ≤ 1

2

n∑
i=1

{(
eλX/2 − eλf(X

(i)
)/2
)2}

≤ E

{
νλ2

8
eλf(X)

}
(b) Show that the inequality (1) contains Hoeffding’s inequality with the right
constant in the exponent for the special case of symmetric Bernoulli random
variables: If X1, . . . , Xn are independent Rademacher random variables, then

P (n−1/2
n∑
1

Xi > t) ≤ exp(−t2/2) for all t > 0.

(c ) Show that the inequality (2) can be rewritten as a lower bound for the
geometric mean

√
ab of two positive numbers a, b, thereby complementing the

usual arithmetic mean - geometric mean upper bound,
√
ab ≤ (a+ b)/2.
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2. BLM, page 156, problem 5.8: (Littlewood’s inequality for real Rademacher sums)
Let Z = |

∑n
1 biεi| where b1, . . . , bn ∈ R are fixed coefficients and ε1, . . . , εn are i.i.d

Rademacher random variables. Show first by elementary arguments that E[Z4] ≤
3(E[Z2])2. Next use Hölder’s inequality to show that E[Z2] ≤ (EZ)2/3(E[Z4])1/3.
Conclude that E[Z2] ≤ 3(EZ)2. Is the comparison between the fourth and second
moment improvable?

3. Suppose that Z is as in the previous problem. Use an exponential bound for
P (Z > t) to show that for every p ≥ 1 there exist positive constants Ap and Bp

such that
Ap{EZ2}1/2 ≤ {EZp}1/p ≤ Bp{EZ2}1/2

where EZ2 =
∑n

1 b
2
i . (These are known as Khinchine’s inequalities.)

Hint: See Ledoux and Talagrand (1991), page 91.

4. BLM, page 157, problem 5.14: Provide details for the first step of the proof
of Theorem 5.8: Hint: By total boundedness and sample path continuity, Z =
supt∈DXt where D is a dense countable subset of T . Use the Gaussian Poincaré
inequality for finite subsets and monotone convergence to show that Z has an
expected value (by relating it to the median of Z). Then use monotone conver-
gence and the theorem for finite sets to finish the proof.
Hint: See van der Vaart & W (1996), pages 438-439.

5. Bonus problem: BLM, page 157, problem 5.16: (Adapting Herbst’s argument)
Let X1, . . . , Xn be independent standard Gaussian random variables. Let f de-
note a differentiable function on Rn such that E{exp(λ‖∇f(X1, . . . , Xn)‖2)} <∞
for λ < λ0 where λ0 may be ∞. Let Z = f(X1, . . . , Xn). Prove that for λ, θ sat-
isfying λ/θ < λ0 and λθ < 2,

logE{exp(λ(Z − E(Z)))} ≤ λθ

2(1− λθ/2)
logE{exp(λ‖∇f‖2/θ)}.

Hint: Starting from the Gaussian logarithmic Sobolev inequality, use Corollary
4.15 to upper bound E{‖∇f‖2 exp(λZ)}. Apply this result when f is the squared
norm of the orthogonal projection of X on some linear subspace of Rn.
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