Statistics 593A, Problem Set 4 Wellner; 5/15/2014

Due: Thursday, May 29, 2014

- 1. BLM, page 336, problem 11.1: Show that it is not necessarily true that the variance of the supremum of an empirical process is upper bounded by the wimpy variance. *Hint:* consider n = 1, $\mathcal{T} = \{1, 2\}$, and binary-valued random variables.
- 2. BLM, page 337, problem 11.8: (Nemirovski's inequality in the non-symmetric case) Using the notation of Theorem 11.2, prove that even if the X_i 's are not assumed to be symmetric but centered,

$$E \|S_n\|_{\infty}^2 \le 2(1 + 4\log(2d))\Sigma^2.$$

- 3. (a) Suppose that X₁,..., X_n are i.i.d. P on ℝ with E|X₁| < ∞. Consider the measure of dispersion D_n ≡ n⁻¹∑_{i=1}ⁿ |X_i X̄_n| Use a Glivenko-Cantelli theorem to show that D_n →_{a.s.} E|X₁ μ| ≡ d where μ = E(X₁).
 (b) Now suppose that the X_i's and D_n are as defined in (a), but now assume that E(X₁²) < ∞. Use a Donsker theorem to show that √n(D_n d) →_d something and identify "something". Hint: This is from Pollard (1989), Statistical Science 4, 341-366.
- 4. BLM, page 212, problem 6.11: (A log-Sobolev inequality for the exponential distribution) Assume that X is exponentially distributed; i.e. X has density $\exp(-x)$ for x > 0. Prove that if $f : [0, \infty) \to \mathbb{R}$ is differentiable, then

$$Ent(f(X)^2) \le 4E\{x(f'(X))^2\}.$$

Hint: Use the fact that if X_1 and X_2 are independent N(0, 1) random variables, $(X_1^2 + X_2^2)^2$ is exponentially distributed, and use the Gaussian log-Sobolev inequality.

5. Bonus problem: BLM, page 213, problem 6.12 (Square root of a Poisson random variable). Let X be a Poisson random variable (with parameter ν). Prove that for $0 \le \lambda < 1/2$

$$\log E \exp(\lambda(\sqrt{X} - E\sqrt{X})) \le \frac{\lambda^2}{1 - 2\lambda}.$$