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Nous presentons quelques applications d’inegalites de con-
centration a la resolution de problemes de selection de modeles en statis-
tique. Nous etudions en detail deux exemples pour lesquels cette ap-
proche s’avere particulirement fructueuse. Nous considerons tout d’abord
le classique mais delicat probleme du choix d’un bon histogramme. Nous
presentons un extrait de travail de Castellan sur la question, mettant en
evidence que la structure meme des inegalites de concentration de Tala-
grand pour des processus empiriques influence directement la construc-
tion d’un critere de selection de type Akaike modifie. Nous presentons
egalement un nouveau theoreme de selection de modeles bien adapte a la
resolution de problemes d’apprentissage. Ce resultat per met de reinterpre-
ter et d’ameliorer la methode dite de minimisation structurelle du risque
due a Vapnik.

ABSTRACT. - The purpose of this paper is to illustrate the power of con-
centration inequalities by presenting some striking applications to various
model selection problems in statistics. We shall study in details two main
examples. We shall consider the old-standing problem of optimal selection
of an histogram (following the lines of Castellan’s work on this topic) for
which the structure of Talagrand’s concentration inequalities for empir-
ical processes directly influences the construction of a modified Akaike
criterion. We shall also present a new model selection theorem which can
be applied to improve on Vapnik’s structural minimization of the risk
method for the statistical learning problem of pattern recognition.

(1) Equipe de "Probabilites, Statistique et Modelisation", Laboratoire de Mathemati-
que UMR 8628, Bat. 425, Centre d’Orsay, Universite de Paris-Sud 91405 Orsay Cedex.



1. Introduction

Since the last ten years, the phenomenon of the concentration of measure
has received much attention mainly due to the remarkable series of works
by Michel Talagrand which led to a variety of new powerfull inequalities
(see in particular [37] and [39]). Our purpose in this paper is to explain
why concentration inequalities for functionals of independent variables are
important in statistics. We shall also present some applications to random
combinatorics which in turn can lead to new results in statistics. Our choice
here is to present some selected applications in details rather than provide
a more or less exhaustive review of applications. Some of these results are
borrowed from very recent papers (mainly from Castellan [23], Birge and
Massart [12] and Boucheron, Lugosi and Massart [16]) and some others are
new (see Section 4).

Since the seminal works of Dudley in the seventies, the theory of prob-
ability in Banach spaces has deeply influenced the development of asymp-
totic statistics, the main tools involved in these applications being limit
theorems for empirical processes. This led to decisive advances for the the-
ory of asymptotic efficiency in semi-parametric models for instance and the
interested reader will find numerous results in this direction in the books by
van der Vaart and Wellner [43] or van der Vaart [42]. The main interesting
feature of concentration inequalities is that, unlike central limit theorems
or large deviations inequalities, they are nonasymptotic. We believe that
the introduction of these new tools is an important step towards the con-
struction of a non asymptotic theory in statistics. By non asymptotic, we
do not mean that large samples of observations are not welcome but that,
for instance, it is of great importance to allow the number of parameters
of a parametric model to depend on the sample size in order to be able
to warrant that the statistical model is not far from the truth. Let us now

introduce a framework where this idea can be developed in great generality.

1.1. Introduction to model selection

Suppose that one observes independent variables ..., fln taking their
values in some measurable space E. Let us furthermore assume, for the sake

of simplicity, that these variables are identically distributed with common
distribution P depending on some unknown "parameter" s E S (note that
the results we are presenting here are non asymptotic and remain valid
even in the non stationary case, where P is the arithmetic mean of the
distributions of the variables ~; ... , gn and therefore may depend on n) . The
aim is to estimate s by using as few prior information as possible. One can
typically think of s as a function belonging to some infinite dimensional



space S The two main examples that we have in mind are respectively the
density and the regression frameworks. More precisely:

. In the density framework, P = is some unknown non negative
function and S can be taken as the set of probability densities with
respect to 

. In the regression framework, the variables = YZ) are indepen-
dent copies of a pair of random variables (X, Y), where X takes its
values in some measurable space X. Assuming the variable Y to be
square integrable, one defines the regression function s as s (x) -
E [Y X = x] for every x E X. Denoting by  the distribution of X, ,
one can set S == L~ (~).

One of the most common used method to estimate s is minimum contrast
estimation.

1.1.1. . Minimum contrast estimation

Let us consider some contrast function q, defined on S x " which means
that

In other words, the functional t - E (7 (t, achieves a minimum at point
s. The heuristics of minimum contrast estimation is that, if one substitutes
the empirical criterion

to its expectation P ~~y (t, .)~ = E ~~y (t, ~1)J and minimizes the empirical cri-
terion -yn on some subset S of S (that we call a model), there is some hope
to get a sensible estimator of s, at least if s belongs (or is close enough) to
model S. This estimation method is widely used and has been extensively
studied in the asymptotic parametric setting for which one assumes that
S is a given parametric model, s belongs to S and n is large. Probably,
the most popular examples are maximum likelihood and least squares esti-
mation. For the density and the regression frameworks, the corresponding
contrast functions can be defined as follows.

. Assume that one observes independent and identically distributed
random variables (~1, ...~n) with common distribution sp. Then the
contrast function leading to maximum likelihood estimation is simply



for every density t and the corresponding loss function l is given by

where K (s, t) denotes the Kullback-Leibler information number be-
tween the probabilities Sjj and i.e.

if sp is absolutely continuous with respect to tp and K (s, t) = +00
otherwise.

. Assume that one observes independent and identically distributed
copies of a pair (X, Y), the distribution of X being denoted by p.
Then the contrast function leading to least squares estimation is de-
fined for every t E L2 (J.t) by

and the loss function l is given by

where 11.11 denotes the norm in L2 (~c) .

The main problem which arises from minimum contrast estimation in a
parametric setting is the choice of a proper model S on which the minimum
contrast estimator is to be defined. In other words, it may be difficult to

guess what is the right parametric model to consider in order to reflect the
nature of data from the real life and one can get into problems whenever
the model S is false in the sense that the true s is too far from S. One could

then be tempted to choose S as big as possible. Taking S as S itself or as a

"huge" subset of S is known to lead to inconsistent (see [5]) or suboptimal
estimators (see [8]). We see that choosing some model S in advance leads
to some difficulties

. If S is a "small" model (think of some parametric model, defined by
1 or 2 parameters for instance) the behavior of a minimum contrast
estimator on S is satisfactory as long as s is close enough to S but
the model can easily turn to be false.

. On the contrary, if S is a "huge" model (think of the set of all contin-
uous functions on [0,1] in the regression framework for instance), the
minimization of the empirical criterion leads to a very poor estimator
of s.



It is therefore interesting to consider a family of models instead of a
single one and try to select some appropriate model from the data in or-
der to estimate s by minimizing some empirical criterion on the selected
model. The idea of estimating s by model selection via penalization has
been extensively developed in [10] and [7]. .

1.1.2. Model selection via penalization

Let us describe the method. Let us consider some countable or finite

(but possibly depending on n) collection of models and the cor-

responding collection of minimum contrast estimators Ideally,
one would like to consider m (s) minimizing the risk E [1 (s, with respect
to m E Mn. The minimum contrast estimator 8m(s) on the corresponding
model is called an omcle (according to the terminology introduced by
Donoho and Johnstone, see [21] for instance). Unfortunately, since the risk
depends on the unknown parameter s, so does m (s) and the oracle is not
an estimator of s. However, the risk of an oracle is a benchmark which will
be useful in order to evaluate the performance of any data driven selection
procedure among the collection of estimators The purpose is
therefore to define a data driven selection procedure within this family of
estimators, which tends to mimic an oracle, i.e. one would like the risk of
the selected estimator ? to be as close as possible to the risk of an oracle.
The trouble is that it is not that easy to compute explicitly the risk of a
minimum contrast estimator and therefore of an oracle (except for special
cases of interest such as least square estimators on linear models for exam-

ple). This is the reason why we shall rather compare the risk of s to an
upper bound for the risk of an oracle. In a number of cases (see [9]), a good
upper bound (up to constant) for the risk of 8m has the following form

where Dm is a measure of the "size" of the model (something like the number
of parameters defining the model 8m) and l (s, = inft~Sm l (s, t). This
means that, at a more intuitive level, an oracle is making a good compromise
between the "size" of the model (that one would like to keep as small as
possible) and the fidelity to the data. The model selection via penalization
method can be described as follows. One considers some function penn :
Mn - R+ which is called the penalty function. Note that penn can possibly
depend on the observations ~1, ..., ~~, but not of course on s. Then, for every
m E Mn, one considers the minimum contrast estimator within model Sm



Selecting fii as a minimizer of

over Mn, one finally estimates s by the minimum penalized contrast esti-
mator

Since some problems can occur with the existence of a solution to the pre-
ceding minimization problems, it is useful to consider approximate solutions
(note that even if 8m does exist, it is relevant from a practical point of view
to consider approximate solutions since 8m will typically be approximated
by some numerical algorithm). Therefore, given 0 (in practice, tak-
ing pn = n-2 makes the introduction of an approximate solution painless),
we shall consider for every m E Mn some approximate minimum contrast
estimator 8m satisfying

and say that ? is a pn-minimum penalized contrast estimator of s if

Tn (S) + penn In (t) + penn (m) + 03C1n,~m E Mn and Vt E (4)
The reader who is not familiar with model selection via penalization can
legitimately ask the question: where does the idea of penalization come
from? It is possible to answer this question at two different levels:

. at some intuitive level by presenting the heuristics of one of the first
criterion of this kind which has been introduced by Akaike (1973);

. at some technical level by explaining why such a strategy of model
selection has some chances to succeed.

We shall now develop these two points. We first present the heuristics
of Akaike’s criterion on the case example of histogram selection which will
be studied in details in Section 3, following the lines of [23]. .

1.2. A case example and Akaike’s criterion

We consider here the density framework where one observes n indepen-
dent and identically distributed random variables with common density s
with respect to the Lebesgue measure on [0,1]. Let Mn be some finite (but
possibly depending on n) collection of partitions of [0,1] into intervals. For
any partition m, we consider the corresponding histogram estimator 8m
defined by 

--



where tt denotes the Lebesgue measure on [0,1], and the purpose is to select
"the best one". Recall that The histogram estimator on some partition
m is known to be the maximum likelihood estimator on the model Sm
of densities which are piecewise constants on the corresponding partition
m and therefore falls into our analysis. Then the natural loss function to
be considered is the Kullback-Leibler loss and in order to understand the
construction of Akaike’s criterion, it is essential to describe the behavior of
an oracle and therefore to analyze the Kullback-Leibler risk. First it easy to
see that the Kullback-Leibler projection sm of s on the histogram model 8m
(i.e. the minimizer of t --> K (s, t) on 8m) is simply given by the orthogonal
projection of s on the linear space of piecewise constant functions on the
partition m and that the following Pythagore’s type decomposition holds

Hence the oracle should minimize K (s, 8m) +E [K (sr,.~, s~.,.~)~ or equivalently,
since s - sm is orthogonal to log (s~.,z),

Since sm log sm depends on s, it has to be estimated. One could think of
j 8m log 8m as being a good candidate for this purpose but since E ~s~.,.z~ =

the following identity holds

which shows that it is necessary to remove the bias of j 8m log 8m if one
wants to use it as an estimator of j sm log sm . In order to summarize the
preceding analysis of the oracle procedure (with respect to the Kullback-
Leibler loss), let us set

Then the oracle minimizes

The idea underlying Akaike’s criterion relies on two heuristics:

. neglecting the remainder term Rm (which is centered at its expecta-
tion),



. replacing E [K (sm , [K (s.",,, s"~)~ by its asymptotic equivalent
when n goes to infinity which is equal to Dm/n, where 1+D", denotes
the number of pieces of the partition m (see [23] for a proof of this
result).

Making these two approximations leads to Akaike’s method which amounts
to replace (6) by

and proposes to select a partition m minimizing Akaike’s criterion (7). An
elementary computation shows that

If we denote by yn the empirical criterion corresponding to maximum
likelihood estimation, i.e. (t) = Pn [- log (t)~, we derive that Akaike’s
criterion can be written as

and is indeed a penalized model selection criterion of type (3) with penn (m) =
Dm /n. It will be one of the main issues of Section 3 to discuss whether this
heuristic approach can be validated or not but we can right now try to guess
why concentration inequalities will be useful and in what circumstances
Akaike’s criterion should be corrected. Indeed, we have seen that Akaike’s
heuristics rely on the fact that some quantities Rm stay close to their ex-

pectations (they are actually all centered at 0). Moreover, this should hold
with a certain uniformity over the list of partitions Mn . This means that if
the collection of partitions is not too rich, we can hope that the IUn’s will
be concentrated enough around their expectations to warrant that Akaike’s
heuristics works, while if the collection is too rich, concentration inequali-
ties will turn to be an essential tool to understand how one should correct

(substantially) Akaike’s criterion.

1.3. The role of concentration inequalities

The role of the penalty function is absolutely fundamental in the defi-
nition of the penalized criterion (3) or (4), both from a theoretical and a
practical point of view. Ideally, one would like to understand how to choose
this penalty function in an optimal way, that is in order that the perfor-
mance of the resulting penalized estimator be as close as possible as that
of an oracle. Moreover one would like to provide explicit formulas for these



penalty functions to allow the implementation of the corresponding model
selection procedures. We shall see that concentration inequalities are not
only helpful to analyze the mathematical performance of the minimum pe-
nalized contrast estimator in terms of risk bounds but also to specify what
kind of penalty functions are sensible. In fact these questions are two dif-
ferent aspects of the same problem since in our analysis, sensible penalty
functions will be those for which we shall be able to provide efficient risk
bounds for the corresponding penalized estimators. The key of this analysis
is to take l (s, t) as a loss function and notice that the definition of the pe-
nalized procedure leads to a very simple but fundamental control for l ( s, s’ .
Indeed, by the definition of s we have, whatever m E Mn and sm E 

and therefore

If we introduce the centered empirical process

and notice that E ~~y (t, ~1 )~ - E ~7 (u, $1)] = l (s, t) - l (s, u) for all t, u E S,
we readily get from (8)

Roughly speaking, starting from inequality (9), one would like to choose a
penalty function in such a way that it dominates the fluctuations of the
variable yn (s~) - ~yn (S). The trouble is that this variable is not that easy
to control since we do not know where m is located. This is the reason why
we shall rather control yn (s~.,.z) - ~yn (s~.,.t~ ), uniformly over m’ E At this

stage we shall use empirical processes techniques and more precisely concen-
tration inequalities that will help us to understand how the "complexity"
of the collection of models has to be taken into account in the definition of
the penalty function.

We can indeed derive from this approach some quite general way of de-
scribing these penalty functions. Let be a family of nonnegative
weights such that, for some absolute constant ~

Most of the time E can be taken as 1, but it is useful to keep some flex-
ibility with the choice of this normalizing constant. We should think of



as some prior finite measure on the collection of models which
in some sense measures its " complexity" . For every m E fl4n, let ~~ be
some quantity measuring the difficulty for estimating within model As

suggested by (2), one should expect that am = Dm/n, if Dm is a prop-
erly defined "dimension" of the model Sm (typically, in our case example of
histograms above 1 + Dm is the number of pieces of partition m). Then

where Ki and K2 are proper constants. Obviously one would like to know
what is the right definition for am and what values for ~1 and K2 are al-
lowed. The advances for a better understanding of the calibration of penalty
functions are of three different types.

. When the centered empirical process "1 n is acting linearly on Sm
which is itself some part of a Dm dimensional linear space, it is pos-
sible to get a very precise idea of what the minimal penalty functions
to be used are. This idea, first introduced in [10], was based on a pre-
liminary version of Talagrand’s deviation inequalities for empirical
processes established in [38]. It really became successful with the ma-
jor improvement obtained by Talagrand in [39]. This new version is
truly a concentration inequality around its expectation for the supre-
mum of an empirical process and not a deviation inequality from
some unknown (or unrealistic) numerical constant as was the previ-
ous one. As a result, in the linear situations described above, it is

possible to compute explicitly cr~ together with a minimal value for
the constant Ki . This, of course, is of great importance in the situa-
tion where Xm behaves like a corrective term and not like a leading
term in formula (10), which concretely means that the list of mod-
els is not too rich (one model per dimension is a typical example of
that kind like in the problem of selecting the best regular histogram
for instance). This program has been successfully applied in various
frameworks (see [2], [23], [24], [12] where random penalty functions
are also considered and [3] where the context of weakly dependent
data is even more involved).

. When the collection of models is too rich, like in the problem of
selecting irregular histograms for instance, Xm no longer behaves like
a corrective term but like a leading term and it becomes essential to
evaluate the constant K2. This program can be achieved whenever one
has at one’s disposal some precise exponential concentration bounds,
that is involving explicit numerical constants. This is exactly the case
for the Gaussian frameworks considered in [11], where one can use
the Gaussian concentration inequality due to Cirelson, Ibragimov and



Sudakov (see [1 7] and Inequality 11 below). More than that, thanks to
Ledoux’s way of proving Talagrand’s inequality (as initiated in [28])
it is also possible to evaluate the constants involved in Talagrand’s
concentration inequalities for empirical processes (see [33]), which
leads to some evaluations of K2. This idea is exploited in [12] and
will be illustrated in Section 3 following the lines of Castellan’s work
[23].

. For the linear situations mentioned above, there is some obvious def-
inition for the dimension Dm of Sm In the nonlinear case, things are
not that clear and one can find in the literature various ways of defin-

ing analogues of the linear dimension. In [7], various notions of metric
dimensions are introduced (defined from covering by different types
of brackets) while an alternative notion of dimension is the Vapnik-
Chervonenkis dimension (see [40]). Since the early eighties Vapnik
has developed a statistical learning theory (see the pioneering book
[40] and more recent issues in [41]). One of the main methods intro-
duced by Vapnik is what he called the structural minimization of the
risk which is a model selection via penalization method in the above
sense but with a calibration for the penalty function which differs
substantially from (10). A minor difference with what can be found
in [7] is that in Vapnik’s theory, the Vapnik-Chervonenkis dimension
is used to measure the size of a given model instead of " bracketing"
dimensions. But there exists some much more significant difference
concerning the order of magnitude of the penalty functions since the
calibration of the penalty in Vapnik’s structural minimization of the
risk method is rather of the order of the square root of (10). Our
purpose in Section 4 will be to show that the reason for this is that
this calibration for the penalty function is related to "global" (that is
of Hoeffding type) concentration inequalities for empirical processes.
We shall also propose some general theorem (for bounded contrast
functions) based on Talagrand’s inequality in [39] (which is "local"
, that is of Bernstein’s type) which allows to deal with any kind of
dimension (bracketing dimension or VC-dimension). From this new
result we can recover some of the results in [7] and remove the square
root in Vapnik’s calibration of the penalty function which leads to
improvements on the risk bounds for the corresponding penalized es-
timators. Moreover, following the idea introduced in [16], we show
that it is possible to use a random combinatorial entropy number
rather than the VC dimension in the definition of the penalty func-
tion. This is made possible by using again a concentration argument
for the random combinatorial entropy number around its expecta-
tion. The concentration inequality which is used for this purpose is



established in [16]. It is an extension to non negative functionals of
independent variables of a Poissonian bound given in [33] for the

supremum of non negative empirical processes. There exist applica-
tions of this bound to random combinatorics which are developed in

[16] and that we shall not reproduce here. However, this inequality
is so simple to state and to prove that we could not resist to the
temptation of presenting its proof in Section 2 of the present paper
dedicated to Michel Talagrand.

2. Concentration inequalities and some direct applications

The oldest striking result illustrating the concentration of product prob-
ability measures phenomenon is the concentration of the standard Gaussian
measure on Let P denote the canonical Gaussian measure on the Eu-

clidean space RD and let ( be some Lipschitz function on RD with Lipschitz
constant L. Then, for every x  0,

where M denotes either the mean or the median of ( with respect to P

(of course the same inequality holds when replacing ( by -( which implies
that ( concentrates around M). This inequality has been established inde-
pendently by Cirelson and Sudakov in [18] and Borell in [15] when M is
a median and by Cirelson, Ibragimov and Sudakov in [17] when M is the
mean. The striking feature of these inequalities is the fact that they do not

depend on the dimension D (or more precisely only through M and L) which
allows to use them for studying infinite dimensional Gaussian measures and
Gaussian processes for instance (see [27]). Extending such results to more
general product measures is not easy. Talagrand’s approach to this problem
relies on isoperimetric ideas in the sense that concentration inequalities for
functionals around their median are derived from probability inequalities
for enlargements of sets with respect to various distances. A typical result
which can be obtained by his methods is as follows (see [36] and [37] for
the best constant). Let ~a, be equipped with the canonical Euclidean
distance and let ( be some convex and Lipschitz function on (a, with

Lipschitz constant L. Let P be some product probability measure on [a, b]n
and M be some median of ( (with respect to the probability P), then, for
every x  0



Moreover, the same inequality holds for -( instead of (. For this problem,
the isoperimetric approach developed by Talagrand consists in proving that
for any convex set A of [a, ,

where d (., A) denotes the Euclidean distance function to A . The latter
inequality can be proved by at least two methods: the original proof by
Talagrand in [37] relies on a control of the Laplace transform of d (., A)
which is proved by induction on the number of coordinates while Marton’s
or Dembo’s proofs (see [31] and [20] respectively) are based on some in-
formation inequalities. An alternative approach to this question has been
proposed by Ledoux in [28]. It consists in focusing on the functional (, rather
than starting from sets, and proving a logarithmic Sobolev type inequality
which leads to some differential inequality on the Laplace transform of (.
Integrating this differential inequality yields, for every ~ ~ 0,

which in turn implies via Chernoff’s inequality

It is instructive to compare (12) and (13). Since (12) holds when replacing
( by -(, some straightforward integration shows that for some appropriate
positive numerical constant C

which is of the same nature as (13) but is obviously weaker from the point
of view of getting as good constants as possible. For the applications that
we have in view, deviation inequalities of a functional from its mean (rather
than from its median) are more suitable. For the sake of presenting inequal-
ities with the best available constants, we shall record below a number of
inequalities of that type obtained by direct methods such as martingale dif-
ferences (see [35]) or logarithmic Sobolev inequalities (see [28]). We begin
with Hoeffding type inequalities for empirical processes.



2.0.1. Hoeffding type inequalities for empirical processes

The connection between convex Lipschitz functionals and Hoeffding type
inequalities comes from the following elementary observation. Let ~1, ..., ~n
be independent ~a, b]-valued random variables and let be some
finite family of real numbers, then by Cauchy-Schwarz inequality, the func-
tion ( defined on [a, by

is convex and Lipschitz on with Lipschitz constant y, where o~2 =

supt~T 03A3ni=1 ai t Therefore (13) implies that the random variable Z defined
by

satisfies for every x  0

This inequality is due to Ledoux (see inequality (1.9) in [28]) and can
be easily extended to the following more general framework. Let Z =
SUPtET Xi,t, where bi,t for some real numbers and bi,t,
for all i x n and all t E T . . Then, setting L2 = suptET ~2 1 (bZ,t - 
one has for every x > 0 (see [33]),

The classical Hoeffding inequality (see [25]) ensures that when T = ~ 1 ~,
the variable Z = ~Z ~ satisfies

for every positive x. When we compare (15) to (16), we notice that some
factor 4 has been lost in the exponent of the upper bound. As a matter of
fact, at the price of changing



Inequality (16) can be shown to hold for Z = supt~T 03A3ni=1 XZ,t. This re-
sult derives from the martingale difference method as shown by McDiarmid
in [35]. A useful consequence of this result concerns empirical processes.
Indeed, if ..., ~n are independent random variables and .?~’ is a finite or
countable class of functions such that, for some real numbers a and b, one has
a  f  b for every f then setting Z = sUPfEF ~Z 1 f (~2 ) --1E [1 (~2 )~,
we get by monotone convergence

It should be noticed that (17) does not generally provide a subgaussian
inequality. The reason is that the maximal variance

can be substantially smaller than n(b-a)2 /4 and therefore (17) can be
much worse than its "sub-Gaussian" version which should make 0’2 appear
instead of n (b - a)2 /4 . It is precisely our purpose now to provide sharper
bounds than Hoeffding type inequalities. We begin by considering nonneg-
ative functionals.

2.1. A Poissonian inequality for nonnegative functionals

We intend to present here some extension to nonnegative functionals of
independent random variables due to Boucheron, Lugosi and Massart (see
[16]) of a Poissonian bound for the supremum of non negative empirical pro-
cesses established in [33] by using Ledoux’s approach to concentration in-
equalities. The motivations for considering general nonnegative functionals
of independent random variables came from random combinatorics. Several
illustrations are given in [16] but we shall focus here on the case example of
random combinatorial entropy since the corresponding concentration result
will turn out to be very useful for designing random penalties to solve the
model selection problem for pattern recognition (see Section 4). Roughly
speaking, under some condition (C) to be given below, we shall show that
a nonnegative functional Z of independent variables concentrates around
its expectation like a Poisson random variable with expectation E [Z] (this
comparison being expressed in terms of Laplace transform). This Poissonian
inequality can be deduced from the integration of a differential inequality
for the Laplace transform of Z which derives from a key information bound.



A very remarkable fact is that Han’s inequality for Kullback-Leibler infor-
mation is at the heart of the proof of this bound and is also deeply involved
in the verification of condition (C) for combinatorial entropies.

2.1.1. Han’s inequality for entropy

Let us first recall some well known fact about Shannon’s entropy and
Kullback-Leibler information. Given some random variable Y taking its val-
ues in some finite set y, Shannon entropy is defined by

Setting, qy = P (Y = y) for any point y in the support of Y, Shannon entropy
can also be written as hs (Y) = E [- log qy], from which one readily sees
that it is a nonnegative quantity. The relationship between Shannon entropy
and Kullback-Leibler information is given by the following identity. Let Q
be the distribution of Y, P be the uniform distribution on V and N be the

cardinality of y, then

We derive from this equation and the nonnegativity of the Kullback-Leibler
information that

with equality if and only if Y is uniformly distributed on its support. Han’s
inequality for Shannon entropy can be stated as follows (see ~19~, p. 491 for
a proof ) .

PROPOSITION 2.1 (Han’s inequality). - Let us consider some random
variable Y with values in some finite product space yn and write =

(Yl, ..., YZ-1, YZ+1, ...Yn) for every i E ~1, ..., n~. . Then

In view of (18) Han’s inequality for discrete variables can be naturally
extended to arbitrary distributions in the following way. Let (on, An, 
(~Z 1 SZi, ~i 1.~4Z, ~Z 1 ~i) be some product probability space and Q be
some probability distribution on which is absolutely continuous with re-
spect to Pn. Let Y be the identity map on on, = (Yl, ..., Yi-1, YZ+1, ...Yn )
for every i E ~l, ..., n~ and denote by (resp. Q~z~) the distribution of



under Pn (resp. Q). Then, Han’s inequality can be written as

or equivalently as

Now, let X be some random variable taking its values in with distribution
pn and G = g (X) be some nonnegative and integrable random variable.
If we define Q to be the probability distribution with density g/E [G] with
respect to P’~, denoting by ]E(i) the expectation operator conditionally to

= (Xl, ..., X2-1, XZ+1, ...Xn) and by 03A6 the function t - t log t another
equivalent way of formulating (20) is

Inequality (21) is exactly what is called the tensorisation inequality for
entropy in [28] (see also [14] for more general tensorisation inequalities).
Then, for every positive measurable function G( i) of X( i), using log (x) 
z - 1 with x = [G], one has

Hence, if Z is some measurable function of X and for every i E ~1, ..., n~,
is some measurable function of X~Z~, applying the above inequality to

the variables G = eÀz and = e~‘Z~~~ one gets

where § denotes the function z -> exp (z) - z -1. Therefore, we derive from
(21), that

for any A such that E [eÀZ]  oo. This inequality and its symmetrized ver-
sion are the main tools used in [33] to evaluate the constants in Talagrand’s
inequalities for empirical processes (see Lemma 2.3 therein).



2.1.2. The Poissonian bound

It can be fruitfully applied to nonnegative functionals following ~16~ . .

THEOREM 2.2. - Let X1, ..., Xn be independent random variables and
define for every i E ~1, ..., n~ = (Xl, ..., XZ_1, ...Xn). Let Z be
some nonnegative and bounded measurable function of X = (Xl, ..., Xn).
Assume that for every i E ~1, ..., n~, there exists some measurable ,function
Z(i) such that

Assume furthermore that

Defining h as h (u) = (1 + u) log (1 + u) - u, for u ~ -l, , the following
inequalities hold:

Proof. - We know that (22) holds for any A. Since the function ~ is
convex with ~ (0) = 0, ~(-~u) 5 ’~~(-~) for any A and any u E [0,1]. Hence
it follows from (23) that for every A, ~(-A (Z - Z~i>~ ) ~ (Z - Z~i~~ ~(-A)
and therefore we derive from (22) and (C) that

We introduce Z = Z - E [Z] and define for any A, F(A) = E e~’Z . Setting
v = E ~Z~ , the preceding inequality becomes

which in turn implies



Now observe that v~ is a solution of the ordinary differential equation
(1 - e-À) f’ (A) - f (A) (-~). In order to show that ~ ~ we set

for every .~ ~ 0 and derive from (26) that

which yields

We derive from this inequality that g’ is nonpositive which means that g is
nonincreasing. Now, since Z is centered at expectation W’ (0) == ~ (0) = 0
and it comes from (27) that tends to 0 as A goes to 0. This shows that

g is nonnegative on (-00,0) and nonpositive on (0, oo) which in turn means
by (27) that ~ ~ v~ and we have proved that

Thus, by Markov’s inequality,

The proof can be completed by using the easy to check (and well

known) relations: sup 03BB>0[x03BB-v03C6 (À)] = vh (x/v) for every x > 0 and

sup03BB0 [-x03BB - v03C6 (A)] = vh (-x/v) for every 0  x  v. U

The above inequalities are exactly the classical Cramer-Chernoff upper
bounds for the Poisson distribution with mean E [Z] and in this sense this
Theorem establishes a comparison between the concentration around its
mean of a non negative functional Z satisfying the above assumptions and
that of the Poisson distribution with the same mean. Let us give some
further comments.

. This theorem can typically be applied to the supremum of sums of

nonnegative random variables. Indeed let Xl, ..., Xn be independent[0,1] -valued random variables and consider



with = sup1tN 03A3j~i Xj,t for all i  n. Then denoting by T
some random number such that Z = ~Z 1 X;,r , one obviously has

and therefore

It is easy to see on this example that (24) and (25) are in some sense
unimprovable. Indeed, if N = 1, and Xl, ..., X~ are Bernoulli trials
with parameter 0, then Z follows the binomial distribution B (n, () 1 n )
and its asymptotic distribution is actually a Poisson distribution with
mean 0.

. Inequality (25) readily implies the sub-Gaussian inequality

which holds for every x > 0. Indeed, (29) is trivial when x > E [Z]
and follows from (25) otherwise since, for every ~ E [0,1] one has
h (-~) > ~2/2.

Let us turn now to a somehow more subtle application of Theorem 2.2 to
combinatorial entropy. Surprisingly, Han’s inequality will be involved again
to show that the combinatorial entropy satisfies condition (C). .

2.1.3. Application to combinatorial entropies

Let F be some class of measurable functions defined on some set JY and

taking their values in ~1, ...,1~~. We define the combinatorial entropy of ~’
at point j; ~ ~ by

03B6(x) = logk|Tr (x)| ,

where Tr (x) = {(f (x1) , ..., f (xn)) , f E F} and |Tr (x)| denotes the cardi-
nality of T r (2;). It is quite remarkable that, given some independent vari-
ables, X1, ..., Xn, Z = ~ (X ) satisfies to the assumptions of our Theorem
2.2. Indeed, let Z~i~ - ~ (Xt2~) for every i. Obviously 0 ~ Z - Z~2~  1

for all i. On the other hand, given x E let us consider some random

variable Y with uniform distribution on the set Tr (:r). It comes from Han’s
inequality (see Proposition 2.1) that,



Now for every i, y{i) takes its values in Tr ~~~i>~ and therefore by (19) we
have hs (Y~i~~ ~ log ITr ~x~i~~ I. Hence

which means that

Thus condition (2.2) is satisfied and Theorem 2.2 applies to the combina-
torial entropy logk ~Tr (X)~, which, in particular implies that

This inequality will be of great importance for our study of statistical learn-
ing in pattern recognition in Section 4.

Of course Theorem 2.2 is designed for nonnegative functionals and does
not solve the problem of improving on Hoeffding type bounds for the supre-
mum of a centered empirical process.

2.2. Talagrand’s inequalities for empirical processes

In [39] (see Theorem 4.1 ), Talagrand obtained some striking concentra-
tion inequality for the supremum of an empirical process which is an infinite
dimensional analogue of Bernstein’s inequality. There exists several ways of
expressing his result. We choose the one which is the most convenient for
our needs.

THEOREM 2.3 (Talagrand’s inequality). 2014 Consider n independent and
identically distributed random variables ~1, ..., ~’n with values in some mea-
surable space E. Let ,~ be some countable family of real valued measur-
able functions on ~, such that ~~ f ~~~  b ~  oo for every f E .~. Let
Z = supf~ |03A3ni=1 f(03BEi) ] and v = E . Then

where K, ci and c2 are universal positive constants. Moreover the same
inequality holds when replacing Z by -Z. .

In order to use this inequality, it is desirable to get a more tractable
formulation of (31), involving



This can be done for centered empirical processes at the price of additional
technicalities related to classical symmetrization and contraction inequali-
ties as described in [29]. One indeed has (see [33] for more details)

In particular if every function f is centered at expectation, setting
Q2 - f2(~z)~ , the preceding inequality becomes

Plugging this inequality into (31) leads to

and therefore for every positive e

The same kind of inequality could be obtained for the left tail of Z.

It is indeed possible and useful for some applications (see Section 3
below) to have an idea of the value of the numerical constants involved in
the above inequality. This is done in [33] by following Ledoux’s approach to
concentration (see [28]).

THEOREM 2.4. - Consider n independent random variables ~1, ..., ~n
with values in some measurable space ~. Let .~’ be some countable family of
real valued measurable functions on ~, such that ~~ f (‘~  b  oo for every
f E 7. Let

Then, for any positive real numbers ~ and x,



where ~ and x (e) can be taken equal to x = 4 and x (e) = 2.5 + 32e-1. .
Moreover, one also has

where ",’ = 5.4 and x’ (e) = 2.5 + 43.2e-1. .

A very simple example of application of such concentration inequalities
is the study of chi-square statistics which will turn out to be at the heart
of Castellan’s work presented in Section 3.

2.2.1. A first application to chi-square statistics

One very remarkable feature of the concentration inequalities stated
above is that, despite of their generality, they turn out to be sharp when ap-
plied to the particular and apparently simple problem of getting non asymp-
totic exponential for chi-square statistics. Following [10], we denote by vn
the centered empirical measure Pn - P, given some finite set of bounded
functions we can indeed write

Let Z2 = n 03A3 I~m03BD2n [03C6I]. Applying Theorem 2.4 to the countable class of
functions

where ?~ denotes some countable and dense subset of the unit sphere Sm
in one derives from (33) that, for every positive numbers 6; and x,

Moreover by Cauchy-Schwarz inequality



Let us now turn to the case example of "classical" chi-square statistics,
which is of special interest by itself and also in view of the application to
histogram selection given in Section 3. Let us take m to be some finite
partition of [0,1] which elements are intervals and define for every interval
IEm 

,_

then, the resulting functional Z~ is the chi-square statistics

In this case, we derive from (36) that

where denotes the number of pieces of m. We also notice that vm x 1

and setting 8m = sup I Em P (~)- ~ , that

Therefore (35) becomes

For the left tail we get in the same way, for c E (0,1),

and it remains to bound E ~Z~ from below. But this can be done by using
again a concentration argument. The easiest one is probably the following
Poincaré type inequality due to Ledoux [28].

PROPOSITION 2.5. - Let ~1, ..., be independent random variables with
values in some measurable space (~, x) and ,~’ be some countable class of
real valued measurable functions on ~. Let

Let {~i, ..., ~n) be independent from ..., ~n) and with the same distribu-
tion. Then 

_ ,



Using the same kind of symmetrization and contraction arguments as
before, whenever ~~ f ~~~ ~ b one shows that

When applied to chi-square statistics this inequality combined with Propo-
sition 2.5 yields

which implies that

Hence, provided that

one derives that

and therefore the inequality on the left tail becomes

We do not know of any other way for deriving this inequality while on
the other hand there already exists some deviation inequality on the right
tail, obtained by Mason and Van Zwet. As compared to Mason and Van
Zwet’s inequality in [32], (38) is sharper but however not sharp enough for
our needs in Section 3 since for irregular partitions the linear term 
can become too large. To do better, the above argument needs to be sub-
stantially refined and this is precisely what we shall perform in the next
section.

3. Selecting the best histogram

We shall present in this section some of the results concerning the old
standing problem of selecting "the best partition" when constructing some
histogram, obtained by Castellan in [23] . Here A4n will denote some finite
collection of partitions of [0,1] into intervals (we restrict ourselves to [0,1]
for simplicity but Castellan’s results hold for more general situations) and



ç 1, ..., ~n are independent and identically distributed random variables with
distribution where p denotes the uniform distribution on [0,1]. We con-
sider the collection of histogram estimators ~s,.,.t, m E and we intend

to study penalized maximum likelihood selection criteria. More precisely let
for every density t

be the empirical criterion defining the maximum likelihood estimation pro-
cedure. Let, for every partition m

Then, 8m minimizes In over the model of densities which are piecewise
constants on the partition m and

Our purpose is to study the penalized selection procedure which consists in
retaining a partition m minimizing

over m E Mn. We recall that Akaike’s criterion corresponds to the choice
penn (m) = Dm/n, where Dm+1 denotes the number of pieces of m and that
Castellan’s results presented below will allow to correct this criterion. Let
us first explain the connection between the study of the penalized estimator
S = s- and the problem considered just above of controlling some chi-square
statistics. The key is that in this case (9) allows to control the Kullback-
Leibler information between s and s in the following way

K (s, s)  K (s, + vn (log 5 - log sm) + penn (m) - penn (m), , (41)

for every m E where

Now the main task is to bound vn (log s - log 8m) as sharply as possible in
order to determine what is the minimal value of penn (m) which is allowed
for deriving a risk bound from (41 ) . This will result from a uniform control
of vn with respect to m’ E Mn. We write



and notice that the first term is the most delicate to handle since it involves
the action of the empirical process on the estimator 8m’ which is of course
a random variable. This is precisely the control of this term which leads to
the introduction of chi-square statistics. Indeed, setting

for every densities f and g such that log ( f /g) E L2 (P), one derives that

and if we set ~ = P (7) ~ ]1/ for all 7 ~ ~ then,

Hence (41) becomes

At this stage it becomes clear that what we need is a uniform control of
Xn (m’) over m’ E Mn. The key idea for improving on (38) is to majorize
Xn (m’) only on some part of the probability space where Pn remains

close to P ( cp I) for every I E m’.

3.1. Some deepest analysis of chi-square statistics

This idea introduced in [12] in the context of subset selection within a
conveniently localized basis can be fruitfully applied here. More precisely,
Castellan proves in [23] the following inequality.

PROPOSITION 3.1.2014 Let m be some partition of [0, 1] with Dm + 1
pieces and x~ (m) be the chi-square statistics given by (37). Then for any
positive real numbers ~ and x,



where x = 4 and ~c (e) are the constants of Theorem 2.l, and S2", (e) =
(I) - P (I)~ ~ 2xeP (7) /r~ (e) , for every 7 e m}.

Proof. - Let 03BE = (e) and z be some positive number to be chosen
later. Setting cpl = P (I)- 2 lll for every 7 E m and denoting by Sm the unit
sphere in as before, we have on the one hand

and on the other hand, , by Cauchy-Schwarz inequality

with equality when aI = vn [pI] (n-1/2Xn (m)) -1 for all I E m. Hence,
defining Am to be the set of those elements a E Sm satisfying suplEm 
f /z, we have that on the event Om (e) n {Xn (m) ~ z}

Moreover the same identity holds when replacing Am by some countable
and dense subset of Am, so that applying (33) to the countable set of
functions 

, ,

we derive that for every positive x



Hence we get by (44) and (45),

If we now choose z = and take into account the definition of ~, we
get

REMARK 1. - It is well known that given some partition m of ~0,1~, ,
when n - +oo, Xn (m) converges in distribution to where Y is a

standard Gaussian vector in An easy exercise consists in deriving from
(11) a tail bound for the chi-square distribution with Dm degrees of freedom.
Indeed by Cauchy-Schwarz inequality E D",, and therefore

One can see that (43) is very close to (!,6), especially if one has in mind that
a reasonable conjecture about the constant x which comes from Theorem 2.l,
is that 03BA should be equal to 1 instead of 4.

We are now in a position to control uniformly a collection of square
roots of chi-square statistics (m), m E under the following mild
restriction on the collection of partitions Mn.

(Ho) : Let N be some integer such that N x n (log (n))-2 and mN
be a partition of [0, 1] the elements of which are intervals with equal length
(N + 1)-1. . We assume that every element of any partition m belonging to

is the union of pieces of mN.

Assume that (Ho) holds. Given ~ E (0,1), setting

one has

Therefore, given some arbitrary family of positive numbers pro-
vided that r~ x (~), we derive from (43) that 

"



This inequality is the required tool to evaluate the penalty function and
establish a risk bound for the corresponding penalized maximum likelihood
estimator.

3.2. A model selection result

Another advantage brought by the restriction to Q (r~) when assuming
that (Ho) holds, is that for every m E Mn, the ratios 8m/8m remain
bounded on this set, which implies that V~ (8m, is of the order of
K (s~.,z, s~.,.t ) More precisely, on the set SZ (r~), one has Pn (I ) > ( 1 - r~) P (I )
for every I E Mn and therefore

which implies by Lemma 5.3 (see the Appendix) that

Since log2 is piecewise constant on the partition m

and therefore, for every m E Mn

This allows to better understand the structure of the proof of Theorem 3.2
below. Indeed, provided that

one derives from (42) and (49) that on the set Q (~),

Now, by (5) K (s, s) = K (s, s;",) + K (sm, s’), hence, taking into account
that



one derives that on the set H (r~),

Neglecting the terms 03BDn (log and 03BDn (log we see that the penalty

penn (m) should be large enough to compensate ~2n (m) (1 + ~)2 /2n with
high probability. Since we have at our disposal the appropriate exponential
bound to control chi-square statistics uniformly over the family of partitions

it remains to control

The trouble is that there is no way to warrant that the ratios s,:,.t / s remain
bounded except by making some extra unpleasant preliminary assumption
on s. This makes delicate the control of vn [log (sm/s)] as a function of
K (s, sm) as one should expect. This is the reason why we shall rather pass
to the control of Hellinger loss rather than Kullback-Leibler loss.

Let us recall that the Hellinger distance h ( f, g) between two densities f
and g on [0, 1] is defined by

It is known that

and that a converse inequality exists whenever ~log ( f I g) ~~  oo . This

in some sense confirms that it is slightly easier (although very close by
essence) to control Hellinger risk as compared to Kullback-Leibler risk. The

following result is due to Castellan (it is in fact a particular case of Theorem
3. 2 . in ~23~ ) . .

THEOREM 3.2. - Let ~1, ..., ~n be some independent ~0,1~-valued ran-
dom variables with common distribution P = sp, where ~c denotes the

Lebesgue measure. Consider a finite family Mn of partitions of [0, 1] satis-
fying to assumption (HQ ) . Let, for every partition m



be respectively the histogram estimator and the histogram projection of s,
based on m. Consider some absolute constant ~ and some family of non-
negative weights such that

Let cl > 1/2 and c2 = 2 ~~ + (x = 4 works) and consider some penalty
function pen (.) :Mn - R+ such that

where Dm -I-1 denotes the number of elements of partition m. Let m mini-
mizing the penalized likelihood criterion

over m E Mn and define the penalized maximum likelihood estimator by
s = s. . If essinf ~s (x) , , x E ~0,1~ ~ > p > 0 is positive and f s (log s)2 
L  oo, then for some constant C (cl, p, L, ~),

Proof. - Let 03BE > 0 be given, e > 0 to be chosen later and

Hellinger distance will appear naturally in the above analysis of the Kullback-
Leibler risk through the control of vn [log ~sm /s~ ~ which can be performed
via Proposition 5.4 of the Appendix. Indeed, one has

which means that, except on a set of probability less than ,

the following inequality is valid: 
"



Let Q (77) be defined by (47). Setting for every m E A4n , ym = Xm + ~, since
(50) holds because of our choice of r~, it comes from (51) and (55) that on
the set Q (r~) and except on a set with probability less than one has
for every m E Mn

Equivalently

Now, by the triangle inequality,

Hence, using (53), we derive that on H and except on a set with proba-
bility less than the following inequality holds:

Now we can use the above uniform control of chi-square statistics and derive
from (48) that on the set Q (~7) and except on a set with probability less
than Ee-£

Plugging this inequality in (56) implies that on the set n (1]) and except on
a set with probability less than 2Ee-~,



Now we can notice that choosing e adequately, i.e. such that ci = (1 + e)5 /2
ensures that

Hence, except on a set of probability less than 2~e-~, the following inequal-
ity is available: 0

Integrating this inequality with respect to ç leads to

Since vn (log (s/ sm))is centered at expectation and the Hellinger distance is
bounded by 1, it follows from the above inequality that

It remains to bound the last term of the righthand side of the above in-
equality. By Cauchy-Schwarz inequality



since p n. Moreover, setting 6 = infIEmN P (I) it follows from
Bernstein’s inequality that

yielding, because of the restriction N + 1  n (log (n))-2 (see (Ho)),

This shows that, as a function of n, P tends to 0 faster than any
power of n. Collecting the above inequalities and plugging them into (57)
finishes the proof of the theorem. 0

Theorem 3.2 suggests to take a penalty function of the form:

where the weights zm satisfy (54) and, of course, the constant ci and c2 are
independent of the density s. The choice ci > 1/2 provides an upper bound
for the Hellinger risk of the penalized maximum likelihood estimator:

where the constant Ci does not depend on s whereas the constant C2 de-
pends on s (via p and L) and on the family of models (via ~) . Furthermore,
the constant Ci, which depends only on ci, converges to infinity when ci
tends to 1 /2. This suggests that on the one hand ci should be chosen sub-
stantially larger than 1/2 and on the other hand that one could get into
trouble when choosing ci  1 /2. Using further refinements of the above
method, it is proved in [23] that the special choice ci = 1 optimizes the risk
bound (58). Moreover, following Castellan in [23], we shall show below, as a
consequence of the exponential inequalities for chi-square statistics of Sec-
tion 2 (both on the left and the right tails), that one cannot dispense from
the condition ci > 1 /2, at least for the case example of regular histograms.

3.3. Choice of the weights {xm , m E 

The penalty function depends on the family Mn through the choice of
the weights Xm satisfying (54). A reasonable way of choosing those weights is
to make them depend on m only through the dimension Dm . More precisely,
we are interested in weights of the form



With such a definition the number of histogram models 8m having the
same dimension plays a fundamental role for bounding the series (54) and
therefore to decide what value of L (D) should be taken in order to get a
reasonable value for E. Let us consider two extreme examples.

. Case of regular histograms. Let J be the largest integer such
that 2J is not larger than n (log (n)) 2. Let MrJ be the collection of
regular partitions with 2j pieces with j ~ J. Then assumption (Ho)
is satisfied and since there is only one model per dimension, L (D)
can be taken as some arbitray positive constant 7y and

Consequently, all penalties of the form

with c > 1/2 are allowed, including that of Akaike, namely c = 1.
Since K (s, s~.,.~)-I-Dm/2 represents actually the order of the Kullback-
Leibler risk of the histogram estimator 8m (see ([23])), the meaning
of (58) is that, up to constant, s behaves like an oracle. This is not
exactly true in terms of the Kullback loss since we have bounded the
Hellinger risk instead of the Kullback-Leibler risk. However when the
log-ratios log remain uniformly bounded, then the Kullback
bias K (s, sm) is of the order of h2 (s, 8m) and (58) can be interpreted
as an oracle inequality for the Hellinger loss. It should be noticed that
the statement of the Theorem provides some flexibility concerning the
choice of the penalty function so that we could take as well

for some a E (0,1). As already mentionned, the choice c = 1 can
be shown to optimize the risk bound for the corresponding penalized
estimator and the structure of the proof made in ([23]) tends to in-
dicate that it would be desirable to choose a penalty function which
is slightly heavier than what is proposed in Akaike’s criterion. This
is indeed confirmed by simulations in [13], the gain being especially
spectacular for small or moderate values of the sample size n (we
mean less than 200).

. Case of irregular histograms. We consider here the family 
of all partitions built from a single regular partition m N with N + 1



pieces where N is less than n (log (~)) ~. Then the cardinality of the
family of partitions belonging to with a number of pieces equal
to D + 1 is bounded by C ~ / 1. Hence

and the choice L (D) = L + log (eN/D) implies that condition (54) holds
with E = (eL - l) This leads to a penalty function of the form

for large enough constants c and c’. The corresponding risk bound can be
written as:

where (D) denotes the set of partitions m with dimension Dm = D.
This means that, given some integer D, whenever s belongs to SD =

the Hellinger risk of s is bounded by ODin (1 + log (N/D)).
This shows that, because of the extra logarithmic factor, the penalized es-
timator fails to mimic the oracle in terms of Hellinger loss. One can wonder
whether this is due to a weakness of the method or not. The necessity of
this extra logarithmic factor is proved in [9] (see Proposition 2 therein)
where the minimax risk over the set SD is shown to be bounded from below
by D/n ( 1 + log (N/D) ), up to some constant. In this sense the above risk
bound is optimal.

3.4. Lower bound for the penalty function

One can also wonder whether the condition ci > 1/2 in Theorem 3.2
is necessary or not. We cannot answer this question in full generality. The
following result shows that, when there are only a few models per dimension,
taking penn (m) = cDm/n for some arbitrary constant c  1 /2 leads to a
disaster in the sense that, if the true s is uniform, the penalized maximum
likelihood selection criterion will choose models of large dimension with high
probability and the Hellinger risk will be bounded away from 0 when n goes
to infinity. The proof of this result heavily relies on the inequalities for the
right and also for the left tails of chi-square statistics established in Section
2 (namely (38) and (40)). The proof being quite similar to that of Theorem



3.2, we skip it and refer the interested reader to [23] (and also to ~11~) where
a similar result is proved in the Gaussian framework). .

THEOREM 3.3. - Let ~1, ..., ~.~ be some independent ~0,1)-valued ran-
dom variables with common distribution P = s  with s = Consider

some finite family of partitions Mn such that for each integer D, there ex-
ists only one partition m such that Dm = D. Moreover, let us assume that
~c (1) ~ (log (n))2 /n for every I E m and m E .

Assume that for some partition mN E with N + 1 pieces one has

with c  1 /2. Let m be the minimizer over Mn of the penalized criterion

Then, whatever the values of penn (m) for m ~ mN there exist positive
numbers No and L, depending only on c, such that, for all N > No,

Moreover, if s = sm,

where b (c) = (1 - 2c) (1 + 2c)2 /16.

4. Model selection and statistical learning

The purpose of this section is to provide general model selection the-
orems for bounded contrast functions. The proofs will heavily rely on the
concentration inequalities for empirical processes recalled in Section 2. First
we shall use the Hoeffding type inequalities to propose an other look at the
celebrated Vapnik structural minimization of the risk method (initiated in
[40]). Then, we shall present a new result, based on the Bernstein type in-
equalities of Section 2. We shall apply this result to improve on the risk
bounds derived from Vapnik’s method for the pattern recognition problem.
We shall also recover some of the results given in [7].



4.1. A first model selection theorem for bounded contrast func-
tions

Let us first see what can be derived from (9) by using only the following
boundedness assumption on the contrast function 1

Al There exists some absolute constant b > 0 such that, for every t belong-
ing to some set S, one has for some function a (t), a (t, .) x
a (t) +b.

In order to avoid any measurability problem, let us first assume that
each of the models is countable. Given some constant ~, let us consider
some preliminary collection of nonnegative weights such that

and let ~ > 0 be given. It follows from Mac Diarmid’s Inequality (see (17)
above) that for every m’ E Mn ,

and therefore, setting IE [supt~Sm’ (-03B3n(t))] == except on a set of

probability not larger than one has for every m’ E 

Hence, (9) implies that the following inequality holds, except on a set of
probability not larger than 

It is tempting to choose penn (m’) = + b /2n for every m’ E Mn
but we should not forget that Em, typically depends on the unknown s.
Thus, we are forced to consider some upper bound Em, of Em, which does
not depend on s. This upper bound can be either deterministic (we shall
discuss below the drawbacks of this strategy) or random and in such a case
we shall take benefit of the fact that it is enough to assume that E~.,.L~ > Em’



holds on a set with sufficiently high probability. More precisely, assuming
that for some constant K and for every m’ E Mn

holds, except on set of probability not larger than exp (-x",,~ - ~), we derive
from (59) and (60) that

holds except on a set of probability not larger than 2~e-~ . Thus, integrating
with respect to ~ leads to

and therefore, since (sm) is centered at expectation

Hence, we have proven the following result.

THEOREM 4.1. - Let ~1, ..., ~n be independent observations taking their
values in some measurable space ~ and with common distribution P depend-
ing on some unknown parameter s E S. Let q :S x ~ --~ R be some contrast

function satisfying assumption A1. Let be some at most count-

able collection of countable subsets of s and p~ > 0 be given. Consider some
absolute constant ~, some family of nonnegative weights such

that 

and some (possibly data-dependent) penalty function penn: : Mn --~ 

Let s be a pn-minimum penalized contrast estimator of s as defined by (.~).
Then, if for some nonnegative constant K, for every m E Mn and every
positive ~

holds with probability larger than 1-exp (-x?.,.z - 03BE), the following risk bound
holds for all s E S

where I is defined by (1) and L {s, S’,.,.L) = inft~Sm l(s,t). .



It is not that easy to discuss whether this result is sharp or not in the
generality where it is stated here. Nevertheless we shall see that, at the price
of making an extra assumption on the contrast function ~y, it is possible to
improve on (61) by weakening the constraint on the penalty function. This
will be the purpose of our next section.

4.1.1. Vapnik’s learning theory revisited

We would like here to explain how Vapnik’s structural minimization of
the risk method (as described in [40] and further developed in [41~ ) fits in the
above framework of penalized minimum contrast model selection. More pre-
cisely, we shall consider some pattern classification problem and show how
to recover (or refine in the spirit of Boucheron, Lugosi and Massart in [16])
some of Vapnik’s results from Theorem 4.1. The data ~1 = Yi),..., ~n =
(Xn Yn ) consist of independent, identically distributed copies of the random
variable pair (X, Y) taking values in Rd x {0,1}. Let the models 
being defined for every m E fl4n as

where Cm is some countable class of subsets of Let S be the set of
measurable functions taking their values in [0, 1]. In this case, the least
squares contrast function fulfills condition Al. Indeed, (x, y)) =

(~/ - ~ (~))~, , A 1 is fulfilled with b = 1 whenever t E S and y E [0,1]. For
every m E Mn , a pn-least squares estimator 8m minimizes over t E the

quantity

Each estimator 8m represents some possible classification rule and the pur-
pose of model selection is here to select what classification rule is the best

according to some risk minimization criterion. At this stage it should be
noticed that we have the choice here between two different definitions of
the statistical object of interest s. Indeed, we can take s to be the mini-
mizer of t --~ E [Y - t (X )~ 2 subject or not to the constraint that t takes its
values in ~0,1 ~. On the one hand the function defined for b E ~0,1 ~,
as 8(1) (x) = 6 if and only if I~ [Y = b ~ X = x~ > 1/2 is a minimizer of

E [Y - t (X )~ 2 under the constraint that t takes its values in ~0,1 ~ . Then
the loss function can be written as

On the other hand, if 8(2) denotes the minimizer of E [Y - t (X)]2 without
the constraint that t takes its values in {0,1}, then 8(2) (x) = E (Y X = x)



and l ~s~2~, t~ = E ~s~2~ (X) - t (X)~ 2 It turns out that the results presented
below are valid for both definitions of s simultaneously. In order to apply
Theorem 4.1, it remains to majorize E [SUPtESm (-1n (t))~. Let us introduce
the (random) Vapnik-Chervonenkis entropy (VC-entropy) of Cm

If we take some independent copy (~~, ..., ~’n) of ..., ~n) and consider the
corresponding copy of we can use the following standard symmetriza-
tion argument. By Jensen’s inequality

so that, given independent random signs (ê1, ..., independent of (~1, ..., 
one has,

Hence, using Lemma 5.2 (presented in the Appendix), we get

and by Jensen’s inequality

The trouble now is that E [Hm] is unknown. Two different strategies can be
followed to overcome this difficulty. First, one can assume each Cm to be a
VC-class with VC-dimension Vm, which provides a universal upper bound
for Hm of the form ([40]):

If A4n has cardinality not larger than n, one can take Xm = log (n) for each
m E Mn which leads to a penalty function of the form



and to the following risk bound for the corresponding penalized estimator
s, since then one can take E = 1:

This approach has two main drawbacks:

. the VC-dimension of a given collection of sets is generally very diffi-
cult to compute or even to evaluate (this is especially true for cases
of interest such as half algebraic subspaces of a given degree for in-
stance) ;

. even if the VC-dimension is computable (in the case of affine half
spaces of Rd for instance), inequality (63) is too pessimistic and it
would be desirable to define a penalty function from a quantity which
is much closer to E [Hm] than the right hand side of (63).

The second strategy consists (following ([16])) in substituting Hm to
E [Hm] by using again a concentration argument. Indeed, by (29), for any
positive one has E ~H.",) - ~/2 log (2) E + ~), on a set of
probability not less than 1 - exp (-x.",, - ~). Hence, since

we have on the same set,

which, by (62), yields

Taking Xm = log (n) as before leads to the following choice for the penalty
function 

~ ~

which satisfies

The corresponding risk bound can be written as



and therefore,

Note that if we take s = s(1), denoting by Lt the probability of missclassi6-
cation of the rule t, i.e. Lt = P [Y (X)], the risk bound (65) can also be
written as

which is may be a more standard way of expressing the performance of a
learning pattern recognition method. Of course, if we follow the first strategy
of penalization a similar bound can be derived from (64), namely

4.2. A more advanced selection theorem for bounded contrast

functions

In addition to the loss function l we shall need another way of measuring
the closeness between the elements of S which is directly connected to the
variance of the increments of ~n and therefore will play an important role
in the analysis of the fluctuations 

We shall use two assumptions on the contrast function q. The first one is
a boundedness assumption while the second one asserts that the functional
t --~ E ~~y (t, behaves quadratically around its minimum s with respect
to the " pseudo-distance" d, closely related to the variance of the contrast
function.

A2 There exists some pseudo-distance d and some absolute constant c such
that for every t E S and u E S Var [I (t, ~1 ) - ~y (u, d2 (u, t) and
d2 (s, t)  cl (s, t) where we recall that

In order to prove our main result, the following lemma will be useful.

We are now in a position to state the main new result of this paper.



THEOREM 4.2. - Let ~1, ..., ~n be independent observations taking their
values in some measurable space ~ and with common distribution P de-
pending on some unknown parameter s E s. Let 03B3 :S x 0396 ~ R satisfying to
assumptions A1 and A2. Let be some at most countable collec-
tion of countable subsets of S and p~ > 0 be given. For any positive number
a and any u E Sm, let us define

where d is the pseudo-distance given by A2. We assume that for any m E
there exists some continuous function mapping R+ onto 11~+ such

that (0) = 0, ~,.,.L (x) /x is nonincreasing and

where is the solution of the equation

Consider some constant ~, some family of nonnegative weights 
such that

and some (possibly depending on the data) penalty function penn: Mn -~
R+ . Let s be a pn-minimum penalized contrast estimator of s as defined by
). Then, given C > 1, there exists some positive constants Kl and K2
(depending on C and on the constants band c of assumptions A1 and A2)
such that if for some nonnegative constant K3, for every m E Mn and every
positive ~, 

...

holds with probability larger than 1- exp (-xr,.t - ~), the following risk bound
holds for all s E S

where L {s, = inft~Sm L (s, t) and C’ is a constant (depending on C, b, c
and K3 ).

Proof. - We first assume for sake of simplicity that pn = 0 and take
m E Mn. For any m’ E Mn, we consider some point in such that



Let ym~ > to be chosen later, define for any t E Sm,

and finally set

Taking these notations into account, we get from (9)

It remains to control the variables Vm, for all possible values of m’ in 
To do this, we use Talagrand’s inequality for empirical processes as stated
in the preceding section, noticing that

Hence, since by Assumption A2

and by Assumption Al

(33) implies that, for any x > 0 and appropriate constants r~l and K2,

Given ~ > 0, we apply (71) with x = + ~ and sum up the resulting in-

equalities over m’ E Mn . It follows that, on some event SZ~ with probability
larger than 1 - ~e~~ , one has for all m’ E Mn,

We now use assumption (66) to bound E ~V.m~). Indeed



and, since by (69) d (t, d (s, t) -~-d (s, 3d (s, t) for every t E 
we get wm, (t) > 9-ld2 (t, + Thus we derive from (66) and Lemma
5.1 that

Hence, using the monotonicity assumption on ~r,.t~ (x) /:r, since y~.,.t~ > 
we get by definition of a rn’

which achieves the control of the first term in the right hand side of (73).
For the second term, we note that from (69)

hence

and by Jensen’s inequality

Collecting these inequalities we get from (73):

Hence, (72) implies that on the event 52~,

for all m’ E M. So, if we define

so that on one has ~""~ for all m’ E A4 , we derive from (70) that



and therefore

Using repeatedly the elementary inequality (a + 2a2 + 2~32, we derive
that, on the one hand,

and, on the other hand, by Assumption A2,

Hence, on the following inequality is valid

which in turn implies because of the condition (67) on the penalty function
penn (.), that if we choose

one has on a set of probability larger than 1 - 2E exp (-~)

Integrating this inequality with respect to ç straightforwardly leads to the
required risk bound (68). . D

Remarks. The countability assumption on each model of the collection
is meant to overcome measurability difhculties in order to focus on the
essentials. Obviously it could be relaxed and the following assumption could
be substituted to countability



A3 For every m E Mn, there exists some countable subset of Sm such
that, for every u E S and any positive number r~

4.3. Application to bounded regression

We consider some regression frameworks, where the boundedness as-
sumption on the response variables appears as a natural preliminary
information. More precisely, if the response variables Yi are known to be-
long to some bounded interval a, a + then, to estimate the regression
function, it will be natural to consider only models which are included in
the set S of measurable functions taking their values in ja, a + B/&#x26;1. In this
case, the least squares contrast function fulfills conditions Al and A2. In-
deed, since -y (t, (x, y)) = (y - t (x))2, Al is fulfilled whenever t E Sand
y E a, a + B/6 . Moreover

Hence, since

one has

and therefore

E f~ (t, (X, Y)) - ~ (8, (X, Y))l2  2bE (t (X) - 8 (X))’. . (74)
This implies that A2 holds with c = 2b and d2 (t, s) = 2b - s ~~ 2 . We
first go back to the pattern recognition framework for which the response
variables belong to {0; 1}.

4.3.1. Pattern recognition: alternative penalty functions and risk bounds

Let us recall that one observes (Xl, Yl) , ... , (Xn Yn ) which are indepen-
dent copies of some pair (X, Y) taking values in Rd x ~0,1 ~ and that the
models defined for every m E Mn as



where Cm is some countable class of subsets of For every m E Mn, a
pn-least squares estimator 8m minimizes over t E the quantity

We consider the pattern recognition problem as a regression problem which
means that we set s (x) = E (Y X = x) and therefore the loss function
that we choose to consider is

The results that we intend to derive here will hold for this particular loss
function and this very definition of s (unlike the results of the preceding
section which were valid for two possible definitions of s). In order to ap-
ply Theorem 4.2, our main task is to compute some function ~?.,.L fulfilling
(66). We have to refine on the symmetrization arguments developed in the
preceding section. Given independent random signs (e1, ... , en ) , independent
from (~1, ..., ~n ), one has by the same symmetrization argument as before

Hence, recalling that

using Lemma 5.2 again and symmetry, and setting

we get

Then by Cauchy-Schwarz inequality,



Now, noticing by (74) that,

we can use (32) and derive from (75) that the following inequality holds:

But the latter inequality is equivalent to

which whenever 24 lE /n, implies that

Hence, setting ~?.,.t (x) = inequality (66) is satisfied with
am = 24 IE /n. We can now follow the same strategy as in Section
4.1 and define a proper random penalty function by using the concentration
property of H,n around its expectation. More precisely, we know that except
on a set of probability not larger than 1 - exp (-x~.,2 - ~), the following
inequality is valid

Hence, defining

for proper constants Ki and KZ (the choice K~ - 9 x 27 K1and K2 =
K2 + K1 log (2) works) and setting K3 = log (2) K1, we can apply Theorem
4.2. Typically, if A4n has cardinality less than n, we can take Xm = log (n)
and the risk bound for the corresponding selected classification rule s can
be written as

for some appropriate constant C". We readily see that this bound is (up to
constant! ) better than the one obtained in Section 4.1 since we have replaced
in the right hand side ~/E /n by E /n which can be much smaller.



4.3.2. Binary images

Following [26], our purpose is to study the particular regression frame-
work for which the variables Xi’s are uniformly distributed on ~0,1)2 and
s (x) = E [Y X = x] is of the form

where 8s is some measurable map from [0,1] to [0,1]. The function 8s should
be understood as the parametrization of a boundary fragment corresponding
to some portion s of a binary image in the plane and restoring this portion
of the image from the noisy data (X1,Y1),..., (Xn, Yn) means estimating s
or equivalently as. We assume the regression errors to be bounded, more
precisely we suppose that the variable’s take their values in some known
interval [a, a + f] which contains ~0,1~. Let us introduce some notation
which will turn out to be convenient to describe the list of models that we
wish to consider. Let Q be the set of measurable maps from [0,1] to [0,1].
For any f let us denote by xp the function defined on (0,1)2 by

From this definition we see that xas = s and more generally if we define
S = : f E ~}, for every t E S, we denote by 8t the element of Q such
that xat = t. It is natural to consider here models Sm of the form Sm =

1 E 8S",~, where denotes some collection of subsets of

Q. Denoting by ~~.~y the Lebesgue Li-norm on ~, one has for every f,g E
~ = or equivalently for every s,t E S =

lias - The application of Theorem 4.2 requires the computation of
some function ~~ fulfilling (66) and therefore to majorize E [Wm (cr)], where

This can be done using entropy with bracketing arguments. Indeed, let us
notice that if g belongs to some ball with radius 6 in IL~ [0, 1] , then for some
function f E IL~ [0,1], one has f - b  g  f + b and therefore, defining
f L = sup ( f - 6,0) and fu = inf ( f + b,1 )

with x fU ~~ 2  8. This means that, taking (74) into account, the L2
metric entropy with bracketing of the class of functions



for radius e (denoted by H[2] (e, Bm (u, ~))) is bounded by the metric

entropy for radius e2/2b of the lL1 ball centered at au with radius o~2 /2b in
8Sm . . Hence, defining Hm (6, p) as the supremum over g E 8Sm of the 1L~
metric entropy for radius 6 of the Li ball centered at g with radius p in
8Sm, we derive from some by now classical inequality (see [43]) that, for
some absolute constant K1

The point now is that, whenever 88m is part of a linear finite dimensional
subspace of Lo [0,1], Hm (5, p) is typically bounded by Dm [Bm + log (p/8)] 
for some appropriate constants Dm and Bm . If it is so then

which implies that for some absolute constant x2

Hence, whenever u > (1 + x2) ( 1 + Bm) Dm/n we have

which means that Theorem 4.2 can be applied with

To be more concrete, let us see what this gives when



and for each (r, J) E 88m is taken to be the set of piecewise polyno-
mials on the regular partition with J pieces on [0,1] with degree not larger
than r and which belong to g. Then, it is shown in [7] that

where Dm = (r + 1 ) J is the dimension of the underlying linear space of
piecewise polynomials. As a conclusion, if we choose xm = (r + 1) J, we can
take £ = 1 and, given C > 1, there exists some constant K depending only
on C and b such that, if we set

the following risk bound holds

where C’ depends on C and b. We recover here the result established in
[7]. Starting from this risk bound it is also possible to show that the above
penalized estimator s is adaptive in the minimax sense on some collection of
indicators of sets with smooth boundaries. We do not want to go further into
details here and the interested reader will find in [7] some precise statements
about this phenomenon as well as other examples that could be treated via
Theorem 4.2 such as the estimation of the support of a density.

5. Appendix

The following inequalities are more or less classical and well known. We
present some (short) proofs for the sake of completeness.

5.1. From increments to weighted processes

LEMMA 5.1. - Let (S, d) be some at most countable pseudo-metric space
and u E S. Assume that for some process Z indexed by S, the nonneg-
ative random variable [Z (t) - Z (u)] has finite expectation for
any positive number ~, where B (u, a) = ~t E S, d (t, u)  ~~. . Then, for any
function ~ on such that ~ (x) /x is nonincreasing on and satisfies to

one has for any positive number x > ~*



Proof. - Let us introduce for any integer j

with r > 1 to be chosen later. Then ~ 13 (u, x) , {G~ }~,o ~ is a partition of S
and therefore,

which in turn implies that

Taking expectation in the above inequality yields

Now by our monotonicity assumption, ~ (x), hence

and the result follows by choosing r = 1 + D

5.2. A sub-Gaussian inequality

We now turn to a bound which is useful for taking advantage of sym-
metrization arguments.



LEMMA 5.2. - Let ,,4 be some finite subset of Rn and ..., en) be

independent Rademacher variables. Let N denote the cardinality of ,A and
let R = Supa~A [03A3ni=1 a2i] 1/2, then

Proof. Setting Za = 03A3ni=1 ~iai and x = E [supa~A Za], we have by
Jensen’s inequality,

for any A E R+. Hence, since
E [exp (AZa)] = cosh (a;A) x exp ~Q’2’~2~2~

Therefore for all positive A we have

and maximizing the left hand side of this inequality with respect to A leads
to

which implies (76). D

5.3. Connecting moments of order 1 and 2 of log-likelihood ratios

The following Lemma is adapted from Lemma 1 of Barron and Sheu [6]
and can be found in [23].

LEMMA 5.3. - For all positive densities p and q with respect to some

measure 



Proo f - Let f = log (q/p) then

where 03C6 is the function defined by = ex - 1 2014 j; , for all x 6 R. Then,
since 

, ,

for all real number x, one derives that

which leads to the result. D

5.4. Large deviations of log-likelihood ratios

Let h denote the Hellinger distance.

PROPOSITION 5.4. - Let ~1, ..., be independent random variables with
common distribution P = sp. Then, for every positive density f and any
positive number x

Proof. - The result derives from the control of the Laplace transform
at point a = 1 /2. Indeed, from Markov’s inequality

which, since for a = 1/2,

leads to

The result immediately follows. 0
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