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Preface

The purpose of these lecture notes is to provide an introduction to the general the-
ory of empirical risk minimization with an emphasis on excess risk bounds and
oracle inequalities in penalized problems. In the recent years, there have been new
developments in this area motivated by the study of new classes of methods in ma-
chine learning such as large margin classification methods (boosting, kernel ma-
chines). The main probabilistic tools involved in the analysis of these problems are
concentration and deviation inequalities by Talagrand along with other methods of
empirical processes theory (symmetrization inequalities, contraction inequality for
Rademacher sums, entropy and generic chaining bounds). Sparse recovery based on
`1-type penalization and low rank matrix recovery based on the nuclear norm penal-
ization are other active areas of research, where the main problems can be stated in
the framework of penalized empirical risk minimization, and concentration inequal-
ities and empirical processes tools proved to be very useful.

My interest in empirical processes started in the late 70s and early 80s. It was
largely influenced by the work of Vapnik and Chervonenkis on Glivenko-Cantelli
problem and on empirical risk minimization in pattern recognition, and, especially,
by the results of Dudley on uniform central limit theorems. Talagrand’s concentra-
tion inequality proved in the 90s was a major result with deep consequences in the
theory of empirical processes and related areas of statistics, and it inspired many
new approaches in analysis of empirical risk minimization problems.

Over the last years, the work of many people have had a profound impact on my
own research and on my view of the subject of these notes. I was lucky to work
together with several of them and to have numerous conversations and email ex-
changes with many others. I am especially thankful to Peter Bartlett, Lucien Birgé,
Gilles Blanchard, Stephane Boucheron, Olivier Bousquet, Richard Dudley, Sara van
de Geer, Evarist Giné, Gabor Lugosi, Pascal Massart, David Mason, Shahar Mendel-
son, Dmitry Panchenko, Alexandre Tsybakov, Aad van der Vaart, Jon Wellner and
Joel Zinn.

I am thankful to the School of Mathematics, Georgia Institute of Technology and
to the Department of Mathematics and Statistics, University of New Mexico where
most of my work for the past years have taken place.
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Chapter 1
Introduction

We start with a brief overview of empirical risk minimization problems and of the
role of empirical and Rademacher processes in constructing distribution dependent
and data dependent excess risk bounds. We then discuss penalized empirical risk
minimization and oracle inequalities and conclude with sparse recovery and low
rank matrix recovery problems.

1.1 Abstract Empirical Risk Minimization

Let X ,X1, . . . ,Xn, . . . be i.i.d. random variables defined on a probability space
(Ω ,Σ ,P) and taking values in a measurable space (S,A ) with common distribu-
tion P. Let Pn denote the empirical measure based on the sample (X1, . . . ,Xn) of the
first n observations:

Pn := n−1
n

∑
j=1

δX j ,

where δx, x ∈ S is the Diracs’s measure. Let F be a class of measurable functions
f : S 7→ R. In what follows, the values of a function f ∈ F will be interpreted as
“losses” associated with certain “actions” and the expectation of f (X),

E f (X) =
∫

S
f dP = P f ,

will be viewed as the risk of a certain “decision rule”. We will be interested in the
problem of risk minimization

P f −→ min, f ∈F (1.1)

in the cases when the distribution P is unknown and has to be estimated based on
the data (X1, . . . ,Xn). Since the empirical measure Pn is a natural estimator of P, the
true risk can be estimated by the corresponding empirical risk,

1



2 1 Introduction

n−1
n

∑
j=1

f (X j) =
∫

S
f dPn = Pn f ,

and the risk minimization problem has to be replaced by the empirical risk mini-
mization:

Pn f −→ min, f ∈F . (1.2)

Many important methods of statistical estimation such as maximum likelihood
and more general M-estimation are versions of empirical risk minimization. The
general theory of empirical risk minimization has started with seminal paper of Vap-
nik and Chervonenkis [141] (see Vapnik [140] for more references) although some
important ideas go back to much earlier work on asymptotic theory of M-estimation.
Vapnik and Chervonenkis were motivated by applications of empirical risk mini-
mization in pattern recognition and learning theory that required the development
of the theory in a much more general framework than what was common in statisti-
cal literature. Their key idea was to relate the quality of the solution of empirical risk
minimization problem to the accuracy of approximation of the true distribution P by
the empirical distribution Pn uniformly over function classes representing losses of
decision rules. Because of this, they have studied general Glivenko-Cantelli prob-
lems about convergence of ‖Pn−P‖F to 0, where

‖Y‖F := sup
f∈F

|Y ( f )|

for Y : F 7→ R. Vapnik and Chervonenkis introduced a number of important char-
acteristics of complexity of function classes, such as VC-dimensions and random
entropies, that control the accuracy of empirical approximation. These results along
with the development of classical limit theorems in Banach spaces in the 60s and
70s led to the general theory of empirical processes that started with the pathbreak-
ing paper by Dudley [56] on central limit theorems for empirical measures (see well
known books by Dudley [57], Pollard [118], van der Vaart and Wellner [142]).

In the 90s, Talagrand studied isoperimetric inequalities for product measures and,
in particular, he proved a striking uniform version of Bernstein inequality describ-
ing concentration of ‖Pn −P‖F around its expectation (see Talagrand [132, 133]).
This was a real breakthrough in the theory of empirical processes and empirical risk
minimization. At about the same time, a concept of oracle inequalities has been de-
veloped in nonparametric statistics (see, e.g., Johnstone [72]). In modern statistics,
it is common to deal with a multitude of possible models that describe the same
data (for instance, a family of models for unknown regression functions of varying
complexity). An oracle inequality is a bound on the risk of a statistical estimator
that shows that the performance of the estimator is almost (often, up to numerical
constants) as good as it would be if the statistician had an access to an oracle that
knows what the best model for the target function is. It happened that concentration
inequalities provide rather natural probabilistic tools needed to develop oracle in-
equalities in a number of statistical problems. In particular, Birgé and Massart [23],
Barron, Birgé and Massart [12], and, more recently, Massart [102, 103] suggested a
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general approach to model selection in a variety of statistical problems such as den-
sity estimation, regression and classification that is based on penalized empirical
risk minimization. They used Talagrand’s concentration and deviation inequalities
in a systematic way to establish a number of oracle inequalities showing some form
of optimality of penalized empirical risk minimization as a model selection tool.

In the recent years, new important classes of algorithms in machine learning
have been introduced that are based on empirical risk minimization. In particular,
large margin classification algorithms, such as boosting and support vector machines
(SVM), can be viewed as empirical risk minimization over infinite dimensional
functional spaces with special convex loss functions. In an attempt to understand the
nature of these classification methods and to explain their superb generalization per-
formance, there has been another round of work on the abstract theory of empirical
risk minimization. One of the main ideas was to use the sup-norms or localized sup-
norms of the Rademacher processes indexed by function classes to develop a gen-
eral approach to measuring the complexities of these classes (see Koltchinskii [78],
Bartlett, Boucheron and Lugosi [14], Koltchinskii and Panchenko [88], Bousquet,
Koltchinskii and Panchenko [34], Bartlett, Bousquet and Mendelson [15], Lugosi
and Wegkamp [100], Bartlett and Mendelson [17]). This resulted in rather flexible
definitions of distribution dependent and data dependent complexities in an abstract
framework as well as more specialized complexities reflecting relevant parameters
of specific learning machines. Moreover, such complexities have been used as nat-
ural penalties in model selection methods. This approach provided a general expla-
nation of fast convergence rates in classification and other learning problems, the
phenomenon discovered and studied by several authors, in particular, by Mammen
and Tsybakov [101] and in an influential paper by Tsybakov [138].

1.2 Excess Risk: Distribution Dependent Bounds

Definition 1.1. Let

E ( f ) := EP( f ) := EP(F ; f ) := P f − inf
g∈F

Pg.

This quantity will be called the excess risk of f ∈F .

Let
f̂ = f̂n ∈ Argmin f∈F Pn f

be a solution of the empirical risk minimization problem (1.2). The function f̂n is
used as an approximation of the solution of the true risk minimization problem (1.1)
and its excess risk EP( f̂n) is a natural measure of accuracy of this approximation.

It is of interest to find tight upper bounds on the excess risk of f̂n that hold with
a high probability. Such bounds usually depend on certain ”geometric” properties
of the function class F and on various measures of its ”complexity” that determine
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the accuracy of approximation of the true risk P f by the empirical risk Pn f in a
neighborhood of a proper size of the minimal set of the true risk.

In fact, it is rather easy to describe a general approach to derivation of such
bounds in an abstract framework of empirical risk minimization discussed in these
notes. This approach does give a correct answer in many specific examples. To be
precise, define the δ -minimal set of the risk as

F (δ ) := FP(δ ) := { f : EP( f )≤ δ}.

Suppose, for simplicity, that the infimum of the risk P f is attained at f̄ ∈ F (the
argument can be easily modified if the infimum is not attained in the class). Denote
δ̂ := EP( f̂ ). Then f̂ , f̄ ∈F (δ̂ ) and Pn f̂ ≤ Pn f̄ . Therefore,

δ̂ = EP( f̂ ) = P( f̂ − f̄ )≤ Pn( f̂ − f̄ )+(P−Pn)( f̂ − f̄ ),

which implies
δ̂ ≤ sup

f ,g∈F (δ̂ )
|(Pn−P)( f −g)|.

Imagine there exists a nonrandom upper bound

Un(δ )≥ sup
f ,g∈F (δ )

|(Pn−P)( f −g)| (1.3)

that holds uniformly in δ with a high probability. Then, with the same probabil-
ity, the excess risk EP( f̂ ) will be bounded by the largest solution of the inequal-
ity δ ≤ Un(δ ). There are many different ways to construct upper bounds on the
sup-norms of empirical processes. A very general approach is based on Talagrand’s
concentration inequalities. Assume for simplicity that functions in the class F take
their values in the interval [0,1]. Based on the L2(P)-diameter DP(F ;δ ) of the δ -
minimal set F (δ ) and the function

φn(F ;δ ) := E sup
f ,g∈F (δ )

|(Pn−P)( f −g)|,

define

Ūn(δ ; t) := K
(

φn(F ;δ )+D(F ;δ )
√

t
n

+
t
n

)
.

Talagrand’s concentration inequality then implies that with some numerical constant
K > 0, for all t > 0,

P
{

sup
f ,g∈F (δ )

|(Pn−P)( f −g)| ≥ Ūn(δ ; t)
}
≤ e−t .

This observation provides an easy way to construct a function Un(δ ) such that (1.3)
holds with a high probability uniformly in δ (first, by defining such a function at a
discrete set of values of δ and then extending it to all the values by monotonicity).
By solving the inequality δ ≤Un(δ ), one can construct a bound δ̄n(F ) such that
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the probability P{EP( f̂n) ≥ δ̄n(F )} is small. Thus, constructing an upper bound
on the excess risk essentially reduces to solving a fixed point equation of the type
δ = Un(δ ). Such a fixed point method has been studied, for instance, in Massart
[102], Koltchinskii and Panchenko [88], Bartlett, Bousquet and Mendelson [15],
Koltchinskii [80] (and in several other papers of these authors).

In the case of P-Donsker classes F ,

φn(F ;δ )≤ E‖Pn−P‖F = O(n−1/2),

which implies that
δ̄n(F ) = O(n−1/2).

Moreover, if the diameter D(F ;δ ) of the δ -minimal set tends to 0 as δ → 0 (which
is typically the case if the risk minimization problem (1.1) has a unique solution),
then, by asymptotic equicontinuity, we have

lim
δ→0

limsup
n→∞

n1/2
φn(F ;δ ) = 0,

which allows one to conclude that

δ̄n(F ) = o(n−1/2).

It happens that the bound δ̄n(F ) is of asymptotically correct order as n→∞ in many
specific examples of risk minimization problem in statistics and learning theory.

The bounds of this type are distribution dependent (that is, they depend on the
unknown distribution P).

1.3 Rademacher Processes and Data Dependent Bounds on
Excess Risk

The next challenge is to construct data dependent upper confidence bounds on
the excess risk EP( f̂ ) of empirical risk minimizers that depend only on the sam-
ple (X1, . . . ,Xn), but do not depend explicitly on the unknown distribution P. Such
bounds can be used in model selection procedures. Their construction usually re-
quires the development of certain statistical estimates of the quantities involved
in the definition of the distribution dependent bound δ̄n(F ) based on the sample
(X1, . . . ,Xn). Namely, we have to estimate the expectation of the local sup-norm of
the empirical process φn(F ;δ ) and the diameter of the δ -minimal set.

A natural way to estimate the empirical process is to replace it by the Rademacher
process

Rn( f ) := n−1
n

∑
j=1

ε j f (X j), f ∈F ,
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where {ε j} are i.i.d. Rademacher random variables (that is, they are symmetric
Bernoulli random variables taking values +1 and −1 with probability 1/2 each)
that are also independent of the data (X1, . . . ,Xn). The process Rn( f ), f ∈ F de-
pends only on the data (and on the independent sequence of Rademacher random
variables that can be simulated). For each f ∈F , Rn( f ) is essentially the “correla-
tion coefficient” between the values of the function f at data points and independent
Rademacher noise. The fact that the sup-norm ‖Rn‖F of the Rademacher process
is ”large” means that there exists a function f ∈ F that fits the Rademacher noise
very well. This usually means that the class of functions is too complex for the pur-
poses of statistical estimation and performing empirical risk minimization over such
a class is likely to lead to overfitting. Thus, the size of sup-norms or local sup-norms
of the Rademacher process provides natural data dependent measures of complexity
of function classes used in statistical estimation. Symmetrization inequalities well
known in the theory of empirical processes show that the expected sup-norms of
Rademacher processes are within a constant from the corresponding sup-norms of
the empirical process. Moreover, using concentration inequalities, one can directly
relate the sup-norms of these two processes.

The δ -minimal sets (the level sets) of the true risk involved in the construction
of the bounds δ̄n(F ) can be estimated by the level sets of the empirical risk. This is
based on ratio type inequalities for the excess risk, that is, on bounding the following
probabilities

P
{

sup
f∈F ,EP( f )≥δ

∣∣∣∣EPn( f )
EP( f )

−1
∣∣∣∣≥ ε

}
.

This problem is closely related to the study of ratio type empirical processes (see
Giné, Koltchinskii and Wellner [63], Giné and Koltchinskii [64] and references
therein). Finally, the L2(P)-diameter of the δ -minimal sets of P can be estimated
by the L2(Pn)-diameter of the δ -minimal sets of Pn. Thus, we can estimate all the
distribution dependent parameters involved in the construction of δ̄n(F ) by their
empirical versions and, as a result, construct data-dependent upper bounds on the
excess risk EP( f̂ ) that hold with a guaranteed high probability. The proofs of these
facts heavily rely on Talagrand’s concentration inequalities for empirical processes.

1.4 Penalized Empirical Risk Minimization and Oracle
Inequalities

The data-dependent bounds on the excess risk can be used in general model selec-
tion techniques in abstract empirical risk minimization problems. In such problems,
there is a need to deal with minimizing the risk over a very large class of functions
F , and there is a specified family (“a sieve”) of subclasses {Fα ,α ∈ A} of varying
complexity that are used to approximate functions from F . Often, classes Fα cor-
respond to different statistical models. Instead of one empirical risk minimization
problem (1.2) one has to deal now with a family of problems
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Pn f −→ min, f ∈Fα , α ∈ A, (1.4)

that has a set of solutions { f̂n,α : α ∈ A}. In many cases, there is a natural way
to measure the quality of the solution of each of the problems (1.4). For instance, it
can be based on distribution dependent upper bounds δ̄n(α) = δ̄n(Fα) on the excess
risk EP(Fα ; f̂n,α) discussed above. The goal of model selection is to provide a data
driven (adaptive) choice α̂ = α̂(X1, . . . ,Xn) of model index α such that the empirical
risk minimization over the class Fα̂ results in an estimator f̂ = f̂n,α̂ with the nearly
“optimal” excess risk EP(F ; f̂ ). One of the most important approaches to model
selection is based on penalized empirical risk minimization, that is, on solving the
following problem

α̂ := argminα∈A

[
min
f∈Fα

Pn f + π̂n(α)
]
, (1.5)

where π̂n(α),α ∈ A are properly chosen complexity penalties. Often, π̂n(α) is de-
signed as a data dependent upper bound on δ̄n(α), the “desired accuracy” of empir-
ical risk minimization for the class Fα . This approach has been developed under
several different names (Vapnik-Chervonenkis structural risk minimization, method
of sieves, etc.). Sometimes, it is convenient to write penalized empirical risk mini-
mization problem in the following form

f̂ := argmin f∈F

[
Pn f +pen(n; f )

]
,

where pen(n; ·) is a real valued complexity penalty defined on F . Denoting, for
each α ∈ R,

Fα := { f ∈F : pen(n; f ) = α}

and defining π̂n(α) = α, the problem can be again rewritten as (1.5).
The bounds on the excess risk of f̂ = f̂n,α̂ of the following type (with some

constant C)

EP(F ; f̂ )≤C inf
α∈A

[
inf

f∈Fα

EP( f )+ δ̄n(α)
]

(1.6)

that hold with a high probability are often used to express the optimality properties
of model selection. The meaning of these inequalities can be explained as follows.
Imagine that the minimum of the true risk in the class F is attained in a subclass
Fα for some α = α(P). If there were an oracle that knew the model index α(P),
then with the help of the oracle one could achieve the excess risk at least as small as
δ̄n(α(P)). The model selection method for which the inequality (1.6) holds is not
using the help of the oracle. However, it follows from (1.6) that the excess risk of
the resulting estimator is upper bounded by Cδ̄n(α(P)) (which is within a constant
of the performance of the oracle).
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1.5 Concrete Empirical Risk Minimization Problems

Density estimation. The most popular method of statistical estimation, the maxi-
mum likelihood method, can be viewed as a special case of empirical risk minimiza-
tion. Let µ be a σ -finite measure on (S,A ) and let P be a statistical model, that is,
P is a family of probability densities with respect to µ. In particular, P can be a
parametric model with a parameter set Θ , P = {p(θ , ·) : θ ∈Θ}. A maximum like-
lihood estimator of unknown density p∗ ∈P based on i.i.d. observations X1, . . . ,Xn
sampled from p∗ is a solution of the following empirical risk minimization problem

n−1
n

∑
j=1

(
− log p(X j)

)
−→ min, p ∈P. (1.7)

Another popular approach to density estimation is based on a penalized empirical
risk minimization problem

−2
n

n

∑
j=1

p(X j)+‖p‖2
L2(µ) −→ min, p ∈P. (1.8)

This approach can be explained as follows. The best L2(µ)-approximation of the
density p∗ is obtained by solving

‖p− p∗‖2
L2(µ) =−2

∫
S

pp∗dµ +‖p‖2
L2(µ) +‖p∗‖2

L2(µ) −→ min, p ∈P.

The integral
∫

S pp∗dµ = Ep(X) can be estimated by n−1
∑

n
j=1 p(X j), leading to

problem (1.8). Of course, in the case of complex enough models P, there might be
a need in complexity penalization in (1.7) and (1.8).

Prediction problems. Empirical risk minimization is especially useful in a va-
riety of prediction problems. In these problems, the data consists of i.i.d. couples
(X1,Y1), . . .(Xn,Yn) in S×T with common distribution P. Assume that T ⊂R. Given
another couple (X ,Y ) sampled from P, the goal is to predict Y based on an obser-
vation of X . To formalize this problem, introduce a loss function ` : T ×R 7→ R+.
Given g : S 7→ R, denote (` • g)(x,y) := `(y,g(x)), which will be interpreted as a
loss suffered as a result of using g(x) to predict y. Then the risk associated with an
“action” g is defined as

P(`•g) = E`(Y,g(X)).

Given a set G of possible actions g, we want to minimize the risk:

P(`•g)−→ min, g ∈ G .

The risk can be estimated based on the data (X1,Y1), . . . ,(Xn,Yn), which leads to the
following empirical risk minimization problem:
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Pn(`•g) = n−1
n

∑
j=1

`(Yj,g(X j))−→ min, g ∈ G .

Introducing the notation f := `•g and setting F := {`•g : g ∈ G }, one can rewrite
the problems in the form (1.1), (1.2).

Regression and classification are two most common examples of prediction prob-
lems. In regression problems, the loss function is usually defined as `(y;u) =
φ(y− u), where φ is, most often, nonnegative, even and convex function with
φ(0) = 0. The empirical risk minimization becomes

n−1
n

∑
j=1

φ(Yj −g(X j))−→ min, g ∈ G .

The choice φ(u) = u2 is, by far, the most popular and it means fitting the regression
model using the least squares method.

In the case of binary classification problems, T := {−1,1} and it is natural to
consider a class G of binary functions (classifiers) g : S 7→ {−1,1} and to use the
binary loss `(y;u) = I(y 6= u). The risk of a classifier g with respect to the binary
loss

P(`•g) = P{Y 6= g(X)}

is just the probability of misclassification and, in learning theory, it is known as the
generalization error. A binary classifier that minimizes the generalization error over
all measurable binary functions is called the Bayes classifier and its generalization
error is called the Bayes risk. The corresponding empirical risk

Pn(`•g) = n−1
n

∑
j=1

I(Yj 6= g(X j))

is known as the training error. Minimizing the training error over G

n−1
n

∑
j=1

I(Yj 6= g(X j))−→ min, g ∈ G

is, usually, a computationally intractable problem (with an exception of very sim-
ple families of classifiers G ) since the functional to be minimized lacks convexity,
smoothness or any other form of regularity.

Large margin classification. Large margin classification methods are based on
the idea of considering real valued classifiers g : S 7→ R instead of binary classifiers
and replacing the binary loss by a convex “surrogate loss”. A real valued classifier g
can be easily transformed into binary: g 7→ sign(g). Define `(y,u) := φ(yu), where
φ : R 7→ R+ is a convex nonincreasing function such that φ(u) ≥ I(−∞,0](u),u ∈
R. The product Y g(X) is called the margin of classifier g on the training example
(X ,Y ). If Y g(X) ≥ 0, (X ,Y ) is correctly classified by g, otherwise the example is
misclassified. Given a convex set G of classifiers g : S 7→ R the risk minimization
problem becomes
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P(`•g) = Eφ(Y g(X))−→ min, g ∈ G

and its empirical version is

Pn(`•g) = n−1
n

∑
j=1

φ(Yjg(X j))−→ min, g ∈ G , (1.9)

which are convex optimization problems.
It is well known that, under very mild conditions on the “surrogate loss” φ (so

called classification calibration, see, e.g., [16]) the solution g∗ of the problem

P(`•g) = Eφ(Y g(X))−→ min, g : S 7→ R

possesses the property that sign(g∗) is the Bayes classifier. Thus, it becomes plau-
sible that the empirical risk minimization problem (1.9) with a large enough and
properly chosen convex function class G would have a solution ĝ such that the gen-
eralization error of the binary classifier sign(ĝ) is close enough to the Bayes risk.
Because of the nature of the loss function (heavy penalization for negative and even
small positive margins), the solution ĝ tends to be a classifier with most of the mar-
gins on the training data positive and large, which explains the name “large margin
classifiers”.

Among common choices of the surrogate loss function are φ(u) = e−u (the expo-
nential loss), φ(u) = log2(1+e−u) (the logit loss) and φ(u) = (1−u)∨0 (the hinge
loss).

A possible choice of class G is

G := conv(H ) :=
{ N

∑
j=1

λ jh j,N ≥ 1,λ j ≥ 0,
N

∑
j=1

λ jh j,h j ∈H

}
,

where H is a given base class of classifiers. Usually, H consists of binary classi-
fiers and it is a rather simple class such that the direct minimization of the training
error over H is computationally tractable. The problem (1.9) is then solved by a
version of gradient descent algorithm in a functional space. This leads to a family
of classification methods called boosting (also, voting methods, ensemble methods,
etc). Classifiers output by boosting are convex combinations of base classifiers and
the whole method is often interpreted in machine learning literature as a way to
combine simple base classifiers into more complex and powerful classifiers with a
much better generalization performance.

Another popular approach is based on penalized empirical risk minimization in
a reproducing kernel Hilbert space (RKHS) HK generated by a symmetric nonneg-
atively definite kernel K : S×S 7→ R. For instance, using the square of the norm as
a penalty results in the following problem:

n−1
n

∑
j=1

φ(Yjg(X j))+ ε‖g‖2
HK

−→ min, g ∈HK , (1.10)
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where ε > 0 is a regularization parameter. In the case of hinge loss φ(u) = (1−u)∨0
the method is called support vector machine (SVM). By the basic properties of
RKHS, a function g ∈HK can be represented as g(x) = 〈g,K(x, ·)〉HK . Because of
this, it is very easy to conclude that the solution ĝ of (1.10) must be in the linear
span of functions K(X1, ·), . . . ,K(Xn, ·). Thus, the problem (1.10) is essentially a
finite dimensional convex problem (in the case of hinge loss, it becomes a quadratic
programming problem).

1.6 Sparse Recovery Problems

Let H = {h1, . . . ,hN} be a given set of functions from S into R called a dictionary.
Given λ ∈ RN , denote fλ = ∑

N
j=1 λ jh j. Suppose that a function f∗ ∈ l.s.(H ) is

observed at random points X1, . . . ,Xn with common distribution Π ,

Yj = f∗(X j), j = 1, . . . ,n

being the observations. The goal is to find a representation of f∗ in the dictionary,
that is, to find λ ∈ RN such that

fλ (X j) = Yj, j = 1, . . . ,n. (1.11)

In the case when the functions in the dictionary are not linearly independent, such a
representation does not have to be unique. Moreover, if N > n, the system of linear
equations (1.11) is underdetermined and the set

L :=
{

λ ∈ RN : fλ (X j) = Yj, j = 1, . . . ,n
}

is a nontrivial affine subspace of RN . However, even in this case, the following
problem still makes sense:

‖λ‖`0 =
N

∑
j=1

I(λ j 6= 0)−→ min,λ ∈ L. (1.12)

In other words, the goal is to find the sparsest solution of the linear system (1.11).
In general, the sparse recovery problem (1.12) is not computationally tractable
since solving such a nonconvex optimization problem essentially requires search-
ing through all 2N coordinate subspaces of RN and then solving the corresponding
linear systems. However, the following problem

‖λ‖`1 =
N

∑
j=1

|λ j| −→ min,λ ∈ L. (1.13)
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is convex, and, moreover, it is a linear programming problem. It happens that for
some dictionaries H and distributions Π of design variables the solution of prob-
lem (1.13) is unique and coincides with the sparsest solution λ ∗ of problem (1.12)
(provided that ‖λ ∗‖`0 is sufficiently small). This fact is closely related to some prob-
lems in convex geometry concerning the neighborliness of convex polytopes.

More generally, one can study sparse recovery problems in the case when f∗ does
not necessarily belong to the linear span of the dictionary H and it is measured at
random locations X j with some errors. Given i.i.d. sample (X1,Y1), . . . ,(Xn,Yn) and a
loss function `, this naturally leads to the study of the following penalized empirical
risk minimization problem

λ̂
ε := argminλ∈RN

[
Pn(`• fλ )+ ε‖λ‖`1

]
(1.14)

which is an empirical version of the problem

λ
ε := argminλ∈RN

[
P(`• fλ )+ ε‖λ‖`1

]
, (1.15)

where ε > 0 is a regularization parameter. It is assumed that the loss function
`(y;u) is convex with respect to u which makes the optimization problems (1.14)
and (1.15) convex. This framework includes sparse recovery in both regression and
large margin classification contexts. In the case of regression with quadratic loss
`(y,u) = (y−u)2, this penalization method has been called LASSO in statistical lit-
erature. The sparse recovery algorithm (1.13) can be viewed as a version of (1.14)
with quadratic loss and with ε = 0.

Another popular method of sparse recovery, introduced recently by Candes and
Tao [44] and called the Dantzig selector, is based on solving the following linear
programming problem

λ̂
ε ∈ Argmin

λ∈Λ̂ ε‖λ‖`1 ,

where

Λ̂
ε :=

{
λ ∈ RN : max

1≤k≤N

∣∣∣∣n−1
n

∑
j=1

( fλ (X j)−Yj)hk(X j)
∣∣∣∣≤ ε/2

}
.

Note that the conditions defining the set Λ̂ ε are just necessary conditions of ex-
tremum in the LASSO-optimization problem

n−1
n

∑
j=1

(Yj − fλ (X j))2 + ε‖λ‖`1 −→ min, λ ∈ RN ,

so, the Dantzig selector is closely related to the LASSO.
We will also study some other types of penalties that can be used in sparse re-

covery problems such as, for instance, the entropy penalty ∑
N
j=1 λ j logλ j for sparse

recovery problems in the convex hull of the dictionary H .
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Our goal will be to establish oracle inequalities showing that the methods of this
type allow one to find a sparse approximation of the target function (when it exists).

1.7 Recovering Low Rank Matrices

Let A∈Mm1,m2(R)1 be an unknown m1×m2 matrix and X1, . . . ,Xn ∈Mm1,m2(R) be
given matrices. The goal is to recover A based on its measurements

Yj = 〈A,X j〉= tr(AX∗
j ), j = 1, . . . ,n. (1.16)

In the case when A is a large matrix, but its rank rank(A) is relatively small, it is of in-
terest to recover A based on a relatively small number of linear measurements (1.16)
with n of the order (m1∨m2)rank(A) (up to constants and logarithmic factors). This
noncommutative generalization of sparse recovery problems has been intensively
studied in the recent years, see [41, 45, 69, 68, 119] and references therein. As in
the case of sparse recovery, the main methods of low rank matrix recovery are based
on convex relaxation of a rank minimization problem

rank(S)−→ min, S ∈L , L :=
{

S : 〈S,X j〉= Yj, j = 1, . . . ,n
}

, (1.17)

which is not computationally tractable. The most popular algorithm is based on
nuclear norm minimization:

‖S‖1 −→ min, S ∈L , L =
{

S : 〈S,X j〉= Yj, j = 1, . . . ,n
}

. (1.18)

Of course, similar problems can be also considered under further constraints on the
set of matrices in question (for instance, when the matrices are Hermitian, nonneg-
atively definite, etc).

Matrix completion, in which Yj, j = 1, . . . ,n are noiseless observations of ran-
domly picked entries of the target matrix A, is a typical example of matrix recovery
problems that has been studied in a great detail. It can be viewed as a special case
of sampling from an orthonormal basis. Let Ei, i = 1, . . . ,m1m2 be an orthonor-
mal basis of Mm1,m2(C) with respect to the Hilbert–Schmidt inner product and let
X j, j = 1, . . . ,n be i.i.d. random variables sampled from a distribution Π on the
set {E1, . . . ,Em2}. Most often, Π is the uniform distribution that assigns probability

1
m1m2

to each basis matrix Ei. Note that

E|〈A,X〉|2 =
1

m1m2
‖A‖2

2, A ∈Mm1,m2(R).

In the case of matrix completion problems, {Ei : i = 1, . . . ,m1m2} is the matrix
completion basis

1 In this section, we are using the notations of linear algebra introduced in Section A.4.
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em1

i ⊗ em2
j : 1 ≤ i ≤ m1,1 ≤ j ≤ m2

}
,

where {em1
i : i = 1, . . . ,m1}, {em2

j : j = 1, . . . ,m2} are the canonical bases of Rm1 ,Rm2 ,

respectively. Clearly, the Fourier coefficients 〈A,em1
i ⊗em2

j 〉 coincide with the entries
of matrix A. We will discuss only the case when the matrices X1, . . . ,Xn are i.i.d. with
uniform distribution in the matrix completion basis, which corresponds to sampling
the entries of the target matrix with replacement (although it is even more natural to
study the sampling without replacement, and it is often done in the literature).

Another example of sampling from an orthonormal basis is related to quantum
state tomography, an important problem in quantum statistics (see [69, 68]). The
goal is to estimate the density matrix ρ ∈ Hm(C) of a quantum system, which is
a Hermitian nonnegatively definite matrix of trace 1. The estimation is based on
measurements of n observables X1, . . . ,Xn ∈ Hm(C) under the assumption that, for
each measurement, the system is prepared in state ρ. In the noiseless case, ρ has to
be recovered based on the outcomes of the measurements

Yj = 〈ρ,X j〉= tr(ρX j), j = 1, . . . ,n (1.19)

and the following version of (1.18) can be used:

‖S‖1 −→ min, S ∈S , 〈S,X j〉= Yj, j = 1, . . . ,n (1.20)

where
S =

{
S ∈Hm(C) : S ≥ 0, tr(S) = 1

}
is the set of all density matrices. As an example of an interesting design {X j}, let
m = 2k and consider the Pauli basis in the space of 2× 2 matrices M2(C): Wi :=

1√
2
σi, where

σ1 :=
(

0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
and σ4 :=

(
1 0
0 1

)
are the Pauli matrices (they are both Hermitian and unitary). The Pauli basis in
the space Mm(C) can be now defined by tensorizing the Pauli basis in M2(C) : it
consists of all tensor products Wi1 ⊗ ·· ·⊗Wik , (i1, . . . , ik) ∈ {1,2,3,4}k. As in the
case of matrix completion, X1, . . . ,Xn are i.i.d. random variables sampled from the
uniform distribution in the Pauli basis and the state ρ has to be recovered based on
the outcomes of n measurements (1.19). Such a measurement model for a k qubit
system is relatively standard in quantum information, in particular, in quantum state
and quantum process tomography (see Nielsen and Chuang [115], section 8.4.2).

One more example of a random design in matrix recovery problems is subgaus-
sian design (which is similar to the design of dictionaries in sparse recovery and
compressed sensing). Assume again that the matrix A ∈ Hm(C) to be recovered is
Hermitian and let X ,X1, . . . ,Xn be i.i.d. random matrices in Hm(C). Suppose that
〈A,X〉 is a subgaussian random variable for each A ∈Hm(C) (see Section 3.1). One
specific example is the Gaussian design, where X is a symmetric random matrix
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with real entries such that {Xi j : 1 ≤ i ≤ j ≤ m} are independent centered normal
random variables with EX2

ii = 1, i = 1, . . . ,m and EX2
i j = 1

2 , i < j. Another example
is the Rademacher design, where Xii = εii, i = 1, . . . ,m and Xi j = 1√

2
εi j, i < j,

{εi j : 1 ≤ i ≤ j ≤ m} being i.i.d. Rademacher random variables (that is, ran-
dom variables taking values +1 or −1 with probability 1/2 each). In both cases,
E|〈A,X〉|2 = ‖A‖2

2, A ∈Mm(C), which means that X is an isotropic random matrix,
and 〈A,X〉 is a subgaussian random variable with subgaussian parameter ‖A‖2 (up
to a constant).

In the case of matrix regression model

Yj = 〈A,X j〉+ξ j, j = 1, . . . ,n, (1.21)

where A ∈ Mm1,m2(R) is an unknown target matrix and ξ j, j = 1, . . . ,n are i.i.d.
mean zero random variables (random noise), one can replace the nuclear norm min-
imization algorithm (1.18) by the following version of penalized empirical risk min-
imization:

Âε := argminS∈Mm1,m2 (R)

[
n−1

n

∑
j=1

(
Yj −〈S,X j〉

)2
+ ε‖S‖1

]
,

where ε > 0 is a regularization parameter. Such problems have been studied in
[40, 121, 86] and they will be discussed in Chapter 9 (for some other penalization
methods, for instance, von Neumann entropy penalization in density matrix estima-
tion problem, see also [85]). The main goal will be to establish oracle inequalities
for the error of matrix estimators that show how it depends on the rank of the target
matrix A, or, more generally, on the rank of oracles approximating A.





Chapter 2
Empirical and Rademacher Processes

The empirical process is defined as

Zn := n1/2(Pn−P)

and it can be viewed as a random measure. However, more often, it has been viewed
as a stochastic process indexed by a function class F :

Zn( f ) = n1/2(Pn−P)( f ), f ∈F

(see Dudley [57] or van der Vaart and Wellner [142]).
The Rademacher process indexed by a class F was defined in Section 1.3 as

Rn( f ) := n−1
n

∑
i=1

εi f (Xi), f ∈F ,

{εi} being i.i.d. Rademacher random variables (that is, εi takes the values +1 and
−1 with probability 1/2 each) independent of {Xi}.

It should be mentioned that certain measurability assumptions are required in the
study of empirical and Rademacher processes. In particular, under these assump-
tions, such quantities as ‖Pn−P‖F are properly measurable random variables. We
refer to the books of Dudley [57], Chapter 5 and van der Vaart and Wellner [142],
Section 1.7 for precise formulations of these measurability assumptions. Some of
the bounds derived and used below hold even without the assumptions of this na-
ture, if the expectation is replaced by the outer expectation, as it is often done, for
instance, in [142]. Another option is to “define”

E‖Pn−P‖F := sup
{

E‖Pn−P‖G : G ⊂F ,G is finite
}

,

which provides a simple way to get around the measurability difficulties. Such an
approach has been frequently used by Talagrand (see, e.g., [134]). In what follows,

17
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it will be assumed that the measurability problems have been resolved in one of
these ways.

2.1 Symmetrization Inequalities

The following important inequality reveals close relationships between empirical
and Rademacher processes.

Theorem 2.1. For any class F of P-integrable functions and for any convex func-
tion Φ : R+ 7→ R+

EΦ

(
1
2
‖Rn‖Fc

)
≤ EΦ

(
‖Pn−P‖F

)
≤ EΦ

(
2‖Rn‖F

)
,

where Fc := { f −P f : f ∈F}. In particular,

1
2

E‖Rn‖Fc ≤ E‖Pn−P‖F ≤ 2E‖Rn‖F .

Proof. Assume that the random variables X1, . . .Xn are defined on a probability
space (Ω̄ , Σ̄ , P̄). We will also need two other probability spaces: (Ω̃ , Σ̃ , P̃) and
(Ωε ,Σε ,Pε). The main probability space on which all the random variables are de-
fined will be denoted (Ω ,Σ ,P) and it will be the product space

(Ω ,Σ ,P) = (Ω̄ , Σ̄ , P̄)× (Ω̃ , Σ̃ , P̃)× (Ωε ,Σε ,Pε).

The corresponding expectations will be denoted by Ē, Ẽ,Eε and E. Let (X̃1, . . . , X̃n)
be an independent copy of (X1, . . . ,Xn). Think of random variables X̃1, . . . , X̃n as
being defined on (Ω̃ , Σ̃ , P̃). Denote P̃n the empirical measure based on (X̃1, . . . , X̃n)
(it is an independent copy of Pn). Then ẼP̃n f = P f and, using Jensen’s inequality,

EΦ

(
‖Pn−P‖F

)
= ĒΦ

(
‖Pn− ẼP̃n‖F

)
= ĒΦ

(
‖Ẽ(Pn− P̃n)‖F

)
≤

ĒẼΦ

(
‖Pn− P̃n‖F

)
= ĒẼΦ

(∥∥∥∥n−1
n

∑
j=1

(δX j −δX̃ j
)
∥∥∥∥

F

)
.

Since X1, . . . ,Xn, X̃1, . . . , X̃n are i.i.d., the distribution of (X1, . . . ,Xn, X̃1, . . . , X̃n) is
invariant with respect to all permutations of the components. In particular, one can
switch any couple X j, X̃ j. Because of this,

ĒẼΦ

(∥∥∥∥n−1
n

∑
j=1

(δX j −δX̃ j
)
∥∥∥∥

F

)
= ĒẼΦ

(∥∥∥∥n−1
n

∑
j=1

σ j(δX j −δX̃ j
)
∥∥∥∥

F

)
,

for an arbitrary choice of σ j = +1 or σ j = −1. Define now i.i.d. Rademacher ran-
dom variables on (Ωε ,Σε ,Pε) (thus, independent of (X1, . . . ,Xn, X̃1, . . . , X̃n)). Then,
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we have

ĒẼΦ

(∥∥∥∥n−1
n

∑
j=1

(δX j −δX̃ j
)
∥∥∥∥

F

)
= Eε ĒẼΦ

(∥∥∥∥n−1
n

∑
j=1

ε j(δX j −δX̃ j
)
∥∥∥∥

F

)
and the proof can be completed as follows:

EΦ

(
‖Pn−P‖F

)
≤ Eε ĒẼΦ

(∥∥∥∥n−1
n

∑
j=1

ε j(δX j −δX̃ j
)
∥∥∥∥

F

)
≤

1
2

Eε ĒΦ

(
2
∥∥∥∥n−1

n

∑
j=1

ε jδX j

∥∥∥∥
F

)
+

1
2

Eε ẼΦ

(
2
∥∥∥∥n−1

n

∑
j=1

ε jδX̃ j

∥∥∥∥
F

)
= EΦ

(
2‖Rn‖F

)
.

The proof of the lower bound is similar.
ut

The upper bound is called the symmetrization inequality and the lower bound is
sometimes called the desymmetrization inequality. The desymmetrization inequality
is often used together with the following elementary lower bound (in the case of
Φ(u) = u)

E‖Rn‖Fc ≥ E‖Rn‖F − sup
f∈F

|P f | E|Rn(1)| ≥

≥ E‖Rn‖F − sup
f∈F

|P f | E1/2|n−1
n

∑
j=1

ε j|2 = E‖Rn‖F −
sup f∈F |P f |

√
n

.

2.2 Comparison Inequalities for Rademacher Sums

Given a set T ⊂Rn and i.i.d. Rademacher variables εi, i = 1,2, . . . , it is of interest to
know how the expected value of the sup-norm of Rademacher sums indexed by T

Rn(T ) := Esup
t∈T

∣∣∣∣ n

∑
i=1

tiεi

∣∣∣∣
depends on the geometry of the set T. The following beautiful comparison inequal-
ity for Rademacher sums is due to Talagrand and it is often used to control Rn(T )
for more complex sets T in terms of similar quantities for simpler sets.

Theorem 2.2. Let T ⊂ Rn and let ϕi : R 7→ R, i = 1, . . . ,n be functions such that
ϕi(0) = 0 and

|ϕi(u)−ϕi(v)| ≤ |u− v|, u,v ∈ R

(that is, ϕi are contractions). For all convex nondecreasing functions Φ : R+ 7→R+,

EΦ

(
1
2

sup
t∈T

∣∣∣∣ n

∑
i=1

ϕi(ti)εi

∣∣∣∣)≤ EΦ

(
sup
t∈T

∣∣∣∣ n

∑
i=1

tiεi

∣∣∣∣).
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Proof. First, we prove that for a nondecreasing convex function Φ : R 7→ R+ and
for an arbitrary A : T 7→ R

EΦ

(
sup
t∈T

[
A(t)+

n

∑
i=1

ϕi(ti)εi

])
≤ EΦ

(
sup
t∈T

[
A(t)+

n

∑
i=1

tiεi

])
. (2.1)

We start with the case n = 1. Then, the bound is equivalent to the following

EΦ

(
sup
t∈T

[t1 + εϕ(t2)]
)
≤ EΦ

(
sup
t∈T

[t1 + εt2]
)

for an arbitrary set T ⊂ R2 and an arbitrary contraction ϕ. One can rewrite it as

1
2

(
Φ

(
sup
t∈T

[t1 +ϕ(t2)]
)

+Φ

(
sup
t∈T

[t1−ϕ(t2)]
))

≤

1
2

(
Φ

(
sup
t∈T

[t1 + t2]
)

+Φ

(
sup
t∈T

[t1− t2]
))

.

If now (t1, t2) ∈ T denotes a point where supt∈T [t1 +ϕ(t2)] is attained and (s1,s2) ∈
T is a point where supt∈T [t1−ϕ(t2)] is attained, then it is enough to show that

Φ

(
t1 +ϕ(t2)

)
+Φ

(
s1−ϕ(s2)

)
≤ Φ

(
sup
t∈T

[t1 + t2]
)

+Φ

(
sup
t∈T

[t1− t2]
)

(if the suprema are not attained, one can easily modify the argument). Clearly, we
have the following conditions:

t1 +ϕ(t2)≥ s1 +ϕ(s2) and t1−ϕ(t2)≤ s1−ϕ(s2).

First consider the case when t2 ≥ 0,s2 ≥ 0 and t2 ≥ s2. In this case, we will prove
that

Φ

(
t1 +ϕ(t2)

)
+Φ

(
s1−ϕ(s2)

)
≤ Φ

(
t1 + t2

)
+Φ

(
s1− s2

)
, (2.2)

which would imply the bound. Indeed, for

a := t1 +ϕ(t2),b := t1 + t2,c := s1− s2,d := s1−ϕ(s2),

we have a ≤ b and c ≤ d since ϕ(t2)≤ t2, ϕ(s2)≤ s2 (by the assumption that ϕ is
a contraction and ϕ(0) = 0). We also have that

b−a = t2−ϕ(t2)≥ s2−ϕ(s2) = d− c,

because again ϕ is a contraction and t2 ≥ s2. Finally, we have

a = t1 +ϕ(t2)≥ s1 +ϕ(s2)≥ s1− s2 = c.
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Since the function Φ is nondecreasing and convex, its increment over the interval
[a,b] is larger than its increment over the interval [c,d] ([a,b] is longer than [c,d]
and a ≥ c), which is equivalent to (2.2).

If t2 ≥ 0,s2 ≥ 0 and s2 ≥ t2, it is enough to use the change of notations (t,s) 7→
(s, t) and to replace ϕ with −ϕ.

The case t2 ≤ 0,s2 ≤ 0 can be now handled by using the transformation (t1, t2) 7→
(t1,−t2) and changing the function ϕ accordingly.

We have to consider the case t2 ≥ 0,s2 ≤ 0 (the only remaining case t2 ≤ 0,s2 ≥ 0
would again follow by switching the names of t and s and replacing ϕ with −ϕ). In
this case, we have ϕ(t2) ≤ t2, −ϕ(s2) ≤ −s2, which, in view of monotonicity of
Φ , immediately implies

Φ

(
t1 +ϕ(t2)

)
+Φ

(
s1−ϕ(s2)

)
≤ Φ

(
t1 + t2

)
+Φ

(
s1− s2

)
.

This completes the proof of (2.1) in the case n = 1.
In the general case, we have

EΦ

(
sup
t∈T

[
A(t)+

n

∑
i=1

ϕi(ti)εi

])
=

Eε1,...,εn−1EεnΦ

(
sup
t∈T

[
A(t)+

n−1

∑
i=1

ϕi(ti)εi + εnϕ(tn)
])

.

The expectation Eεn (conditional on ε1, . . . ,εn−1) can be bounded using the result in
the case n = 1. This yields (after changing the order of integration)

EΦ

(
sup
t∈T

[
A(t)+

n

∑
i=1

ϕi(ti)εi

])
≤ EεnEε1,...,εn−1Φ

(
sup
t∈T

[
A(t)+εntn +

n−1

∑
i=1

ϕi(ti)εi

])
.

The proof of (2.1) can now be completed by an induction argument.
Finally, to prove the inequality of the theorem, it is enough to write

EΦ

(
1
2

sup
t∈T

∣∣∣∣ n

∑
i=1

ϕi(ti)εi

∣∣∣∣)=

EΦ

(
1
2

[(
sup
t∈T

n

∑
i=1

ϕi(ti)εi

)
+

+
(

sup
t∈T

n

∑
i=1

ϕi(ti)(−εi)
)

+

])
≤

1
2

[
EΦ

((
sup
t∈T

n

∑
i=1

ϕi(ti)εi

)
+

)
+EΦ

((
sup
t∈T

n

∑
i=1

ϕi(ti)(−εi)
)

+

)]
,

where a+ := a∨0. Applying the inequality (2.1) to the function u 7→Φ(u+), which
is convex and nondecreasing, completes the proof.

ut

We will frequently use a corollary of the above comparison inequality that pro-
vides upper bounds on the moments of the sup-norm of Rademacher process Rn on
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the class
ϕ ◦F := {ϕ ◦ f : f ∈F}

in terms of the corresponding moments of the sup-norm of Rn on F and Lipschitz
constant of function ϕ.

Theorem 2.3. Let ϕ : R 7→ R be a contraction satisfying the condition ϕ(0) = 0.
For all convex nondecreasing functions Φ : R+ 7→ R+,

EΦ

(
1
2
‖Rn‖ϕ◦F

)
≤ EΦ

(
‖Rn‖F

)
.

In particular,
E‖Rn‖ϕ◦F ≤ 2E‖Rn‖F .

The inequality of Theorem 2.3 will be called the contraction inequality for
Rademacher processes.

A simple rescaling of the class F allows one to use the contraction inequality in
the case of an arbitrary function ϕ satisfying the Lipschitz condition

|ϕ(u)−ϕ(v)| ≤ L|u− v|

on an arbitrary interval (a,b) that contains the ranges of all the functions in F . In
this case, the last bound of Theorem 2.3 takes the form

E‖Rn‖ϕ◦F ≤ 2LE‖Rn‖F .

This implies, for instance, that

E sup
f∈F

∣∣∣∣n−1
n

∑
i=1

εi f 2(Xi)
∣∣∣∣≤ 4UE sup

f∈F

∣∣∣∣n−1
n

∑
i=1

εi f (Xi)
∣∣∣∣ (2.3)

provided that the functions in the class F are uniformly bounded by a constant U.

2.3 Concentration Inequalities

A well known, simple and useful concentration inequality for functions

Z = g(X1, . . . ,Xn)

of independent random variables with values in arbitrary spaces is valid under so
called bounded difference condition on g : there exist constants c j, j = 1, . . . ,n such
that for all j = 1, . . . ,n and all x1,x2, . . . ,x j,x′j, . . . ,xn∣∣∣g(x1, . . . ,x j−1,x j,x j+1, . . . ,xn)−g(x1, . . . ,x j−1,x′j,x j+1, . . . ,xn)

∣∣∣≤ c j. (2.4)
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Theorem 2.4. Bounded difference inequality. Under the condition (2.4),

P{Z−EZ ≥ t} ≤ exp
{
− 2t2

∑
n
j=1 c2

j

}
and

P{Z−EZ ≤−t} ≤ exp
{
− 2t2

∑
n
j=1 c2

j

}
.

A standard proof of this inequality is based on bounding the exponential moment
Eeλ (Z−EZ), using the following martingale difference representation

Z−EZ =
n

∑
j=1

[
E(Z|X1, . . . ,X j)−E(Z|X1, . . . ,X j−1)

]
,

then using Markov inequality and optimizing the resulting bound with respect to
λ > 0.

In the case when Z = X1 + · · ·+Xn, the bounded difference inequality coincides
with Hoeffding inequality for sums of bounded independent random variables (see
Section A.2).

For a class F of functions uniformly bounded by a constant U, the bounded dif-
ference inequality immediately implies the following bounds for ‖Pn −P‖F , pro-
viding a uniform version of Hoeffding inequality.

Theorem 2.5. For all t > 0,

P
{
‖Pn−P‖F ≥ E‖Pn−P‖F +

tU√
n

}
≤ exp{−t2/2}

and
P
{
‖Pn−P‖F ≤ E‖Pn−P‖F − tU√

n

}
≤ exp{−t2/2}.

Developing uniform versions of Bernstein’s inequality (see Section A.2) hap-
pened to be a much harder problem that was solved in the famous papers by Tala-
grand [132, 133] on concentration inequalities for product measures and empirical
processes.

Theorem 2.6. Talagrand’s inequality. Let X1, . . . ,Xn be independent random vari-
ables in S. For any class of functions F on S that is uniformly bounded by a constant
U > 0 and for all t > 0

P

{∣∣∣∣∥∥∥ n

∑
i=1

f (Xi)
∥∥∥

F
−E
∥∥∥ n

∑
i=1

f (Xi)
∥∥∥

F

∣∣∣∣≥ t

}
≤ K exp

{
− 1

K
t
U

log
(

1+
tU
V

)}
,

where K is a universal constant and V is any number satisfying

V ≥ E sup
f∈F

n

∑
i=1

f 2(Xi).
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Using symmetrization inequality and contraction inequality for the square (2.3),
it is easy to show that in the case of i.i.d. random variables X1, . . . ,Xn with distribu-
tion P

E sup
f∈F

n

∑
i=1

f 2(Xi)≤ n sup
f∈F

P f 2 +8UE
∥∥∥∥ n

∑
i=1

εi f (Xi)
∥∥∥∥

F

. (2.5)

The right hand side of this bound is a common choice of the quantity V involved in
Talagrand’s inequality. Moreover, in the case when E f (X) = 0, the desymmetriza-
tion inequality yields

E
∥∥∥∥ n

∑
i=1

εi f (Xi)
∥∥∥∥

F

≤ 2E
∥∥∥∥ n

∑
i=1

f (Xi)
∥∥∥∥

F

.

As a result, one can use Talagrand’s inequality with

V = n sup
f∈F

P f 2 +16UE
∥∥∥∥ n

∑
i=1

f (Xi)
∥∥∥∥

and the size of
∥∥∥∑

n
i=1 f (Xi)

∥∥∥
F

is now controlled it terms of its expectation only.
This form of Talagrand’s inequality is especially convenient and there have been

considerable efforts to find explicit and sharp values of the constants in such inequal-
ities. In particular, we will frequently use the bounds proved by Bousquet [33] and
Klein [74] (in fact, Klein and Rio [75] provide an improved version of this inequal-
ity). Namely, for a class F of measurable functions from S into [0,1] (by a simple
rescaling [0,1] can be replaced by any bounded interval) the following bounds hold
for all t > 0 :

Bousquet bound

P
{
‖Pn−P‖F ≥ E‖Pn−P‖F +

√
2

t
n

(
σ2

P(F )+2E‖Pn−P‖F

)
+

t
3n

}
≤ e−t

Klein-Rio bound

P
{
‖Pn−P‖F ≤ E‖Pn−P‖F −

√
2

t
n

(
σ2

P(F )+2E‖Pn−P‖F

)
− t

n

}
≤ e−t .

Here
σ

2
P(F ) := sup

f∈F

(
P f 2− (P f )2

)
.

We will also need a version of Talagrand’s inequality for unbounded classes of
functions. Given a class F of measurable functions f : S 7→ R, denote by F an
envelope of F , that is, a measurable function such that | f (x)| ≤ F(x),x ∈ S, f ∈F .
The next bounds follow from Theorem 4 of Adamczak [1]: for all α ∈ (0,1] there
exists a constant K = K(α) such that

Adamczak bound
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P
{
‖Pn−P‖F ≥ K

[
E‖Pn−P‖F +σP(F )

√
t
n

+
∥∥∥ max

1≤ j≤n
F(X j)

∥∥∥
ψα

t1/α

n

]}
≤ e−t

and

P
{

E‖Pn−P‖F ≥ K
[
‖Pn−P‖F +σP(F )

√
t
n

+
∥∥∥ max

1≤ j≤n
F(X j)

∥∥∥
ψα

t1/α

n

]}
≤ e−t .

Concentration inequalities can be also applied to the Rademacher process which
can be viewed as an empirical process based on the sample (X1,ε1), . . . ,(Xn,εn) in
the space S×{−1,1} and indexed by the class of functions F̃ := { f̃ : f ∈ F},
where f̃ (x,u) := f (x)u, (x,u) ∈ S×{−1,1}.

2.4 Exponential Bounds for Sums of Independent Random
Matrices

In this section, we discuss very simple, but powerful noncommutative Bernstein
type inequalities that go back to Ahlswede and Winter [4]. The goal is to bound the
tail probability P{‖X1 + · · ·+Xn‖ ≥ t}, where X1, . . . ,Xn are independent Hermitian
random m×m matrices with EX j = 0 and ‖ · ‖ is the operator norm.1 The proofs of
such inequalities are based on a matrix extension of the classical proof of Bernstein’s
inequality for real valued random variables, but they also rely on important matrix
inequalities that have many applications in mathematical physics. In the case of
sums of i.i.d. random matrices it is enough to use the following well known Golden-
Thompson inequality (see, e.g., Simon [127], p. 94):

Proposition 2.1. For arbitrary Hermitian m×m matrices A,B

tr(eA+B)≤ tr(eAeB).

It is needed to control the matrix moment generating function

Etrexp{λ (X1 + · · ·+Xn)}.

This approach was used in the original paper by Ahlswede and Winter [4], but also in
[68], [119], [85]. However, it does not seem to provide the correct form of “variance
parameter” in the non i.i.d. case. We will use below another approach suggested by
Tropp [136] that is based on the following classical result by Lieb [98] (Theorem
6).

Proposition 2.2. For all Hermitian matrices A, the function

GA(S) := trexp{A+ logS}

1 for the notations used in this section, see Section A.4
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is concave on the cone of Hermitian positively definite matrices.

Given independent Hermitian random m×m matrices X1, . . . ,Xn with EX j = 0,
denote

σ
2 := n−1

∥∥∥E(X2
1 + · · ·+X2

n )
∥∥∥.

Theorem 2.7. 1. Suppose that, for some U > 0 and for all j = 1, . . . ,n, ‖X j‖ ≤U.
Then

P
{
‖X1 + · · ·+Xn‖ ≥ t

}
≤ 2mexp

{
− t2

2σ2n+2Ut/3

}
. (2.6)

2. Let α ≥ 1 and suppose that, for some U (α) > 0 and for all j = 1, . . . ,n,∥∥∥‖X j‖
∥∥∥

ψα

∨2E1/2‖X‖2 ≤U (α).

Then, there exists a constant K > 0 such that

P{‖X1 + · · ·+Xn‖ ≥ t} ≤ 2mexp
{
− 1

K
t2

nσ2 + tU (α) log1/α(U (α)/σ)

}
. (2.7)

Inequality (2.6) is a direct noncommutative extension of classical Bernstein’s
inequality for sums of independent random variables. It is due to Ahlswede and
Winter [4] (see also [68], [119], [136]). In inequality (2.7), the L∞-bound U on ‖X j‖
is repaced by a weaker ψα -norm. This inequality was proved in [85] (in the i.i.d.
case). Note that, when α → ∞, it coincides with (2.6) (up to constants).

Proof. Denote Yn := X1 + · · ·+ Xn and observe that ‖Yn‖ < t if and only if −tIm <
Yn < tIm. It follows that

P{‖Yn‖ ≥ t}= P{Yn 6≤ tIm}+P{Yn 6≥ −tIm}. (2.8)

The next bounds are based on a simple matrix algebra:

P{Yn 6≤ tIm}= P{eλYn 6≤ eλ tIm} ≤ P
{

tr
(

eλYn
)
≥ eλ t

}
≤ e−λ tEtr(eλYn). (2.9)

To bound the matrix moment generating function Etr(eλYn), observe that

Etr(eλYn) = EEntrexp{λYn−1 + logeλXn}= EEnGλYn−1(e
λXn).

where En denotes the conditional expectation given X1, . . . ,Xn−1. Using Lieb’s the-
orem (see Proposition 2.2), Jensen’s inequality for the expectation En and the inde-
pendence of random matrices X j, we get

Etr(eλYn)≤ EGλYn−1(EeλXn) = Etrexp{λYn−1 + logEeλXn}.

Using the same conditioning trick another time, we get
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Etr(eλYn)≤ Etrexp{λYn−1 + logEeλXn}=

EEn−1trexp{λYn−2 + logEeλXn + logeλXn−1}= EEnG
λYn−2+logEeλXn (eλXn−1)

and another application of Lieb’s theorem and Jensen’s inequality yields

Etr(eλYn)≤ Etrexp{λYn−2 + logEeλXn−1 + logEeλXn}.

Iterating this argument, we get

Etr(eλYn)≤ trexp{logEeλX1 + logEeλX2 + · · ·+ logEeλXn}. (2.10)

Next we have to bound EeλX for an arbitrary Hermitian random matrix with
EX = 0 and ‖X‖ ≤U. To this end, we use the Taylor expansion:

EeλX = Im +Eλ
2X2
[

1
2!

+
λX
3!

+
λ 2X2

4!
+ . . .

]
≤

Im +λ
2EX2

[
1
2!

+
λ‖X‖

3!
+

λ 2‖X‖2

4!
+ . . .

]
= Im +λ

2EX2
[

eλ‖X‖−1−λ‖X‖
λ 2‖X‖2

]
.

Under the assumption ‖X‖ ≤U, this yields

EeλX ≤ Im +λ
2EX2

[
eλU −1−λU

λ 2U2

]
.

Denoting φ(u) := eu−1−u
u2 , we get

EeλX ≤ exp{λ
2EX2

φ(λU)}.

We will use this bound for each random matrix X j and substitute the result in (2.10)
to get

Etr(eλYn)≤ trexp
{

λ
2E(X2

1 + · · ·+X2
n )φ(λU)

}
≤

mexp
{

λ
2‖E(X2

1 + · · ·+X2
n )‖φ(λU)

}
.

In view of (2.9), it remains to follow the usual proof of Bernstein-Bennett type
inequalities to obtain (2.6).

To prove (2.7), we bound EeλX in a slightly different way: for all τ > 0,

EeλX ≤ Im +λ
2EX2

[
eλ‖X‖−1−λ‖X‖

λ 2‖X‖2

]
≤

Im +λ
2EX2

[
eλτ −1−λτ

λ 2τ2

]
+ Imλ

2E‖X‖2
[

eλ‖X‖−1−λ‖X‖
λ 2‖X‖2

]
I(‖X‖ ≥ τ).

Take M := 2(log2)1/αU (α) and assume that λ ≤ 1/M. It follows that
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E‖X‖2
[

eλ‖X‖−1−λ‖X‖
λ 2‖X‖2

]
I(‖X‖ ≥ τ)≤ M2Ee‖X‖/MI(‖X‖ ≥ τ)≤

M2E1/2e2‖X‖/MP1/2{‖X‖ ≥ τ}.

Since, for α ≥ 1,

M = 2(log2)1/α

∥∥∥‖X‖
∥∥∥

ψα

≥ 2
∥∥∥‖X‖

∥∥∥
ψ1

(see Section A.1), we get Ee2‖X‖/M ≤ 2 and also

P{‖X‖ ≥ τ} ≤ exp
{
−2α log2

(
τ

M

)α}
.

Therefore, the following bound holds:

EeλX ≤ Im +λ
2EX2

[
eλτ −1−λτ

λ 2τ2

]
+21/2

λ
2M2 exp

{
−2α−1 log2

(
τ

M

)α}
Im.

Take now τ := M 21/α−1

(log2)1/α
log1/α M2

σ2 and suppose that λ satisfies the condition λτ ≤
1. This yields the following bound

EeλX ≤ Im +
C1

2
λ

2(EX2 +σ
2Im)≤ exp

{
C1

2
λ

2(EX2 +σ
2Im)

}
that holds with some constant C1 > 0. We use this bound for each random matrix
X j, j = 1, . . . ,n and deduce from (2.10) that, for some constants C1,C2 > 0 and for
all λ satisfying the condition

λ U (α)
(

log
U (α)

σ

)1/α

≤C2, (2.11)

we have
Etr(eλYn)≤ trexp

{C1

2
λ

2(EX2
1 + · · ·+EX2

n +nσ
2Im)

}
,

which further implies that

Etr(eλYn)≤ mexp{C1λ
2nσ

2)}.

Combining this bound with (2.8) and (2.9), we get

P{‖Yn‖ ≥ t} ≤ 2mexp
{
−λ t +C1λ

2nσ
2
}

.

The last bound can be now minimized with respect to all λ satisfying (2.11), which
yields that, for some constant K > 0,



2.4 Exponential Bounds for Sums of Independent Random Matrices 29

P{‖Yn‖ ≥ t} ≤ 2mexp
{
− 1

K
t2

nσ2 + tU (α) log1/α(U (α)/σ)

}
.

This proves inequality (2.7).
ut

The next bounds immediately follow from (2.6) and (2.7): for all t > 0, with
probability at least 1− e−t

∥∥∥∥X1 + · · ·+Xn

n

∥∥∥∥≤ 2
(

σ

√
t + log(2m)

n

∨
U

t + log(2m)
n

)
(2.12)

and, with some constant C > 0,∥∥∥∥X1 + · · ·+Xn

n

∥∥∥∥≤C
(

σ

√
t + log(2m)

n

∨
U (α)

(
log

U (α)

σ

)1/α t + log(2m)
n

)
. (2.13)

Note that the size m of the matrices has only logarithmic impact on the bounds.
It is easy to derive Bernstein type exponential inequalities for rectangular m1 ×

m2 random matrices from the inequalities of Theorem 2.7 for Hermitian matrices.
This is based on the following well known isomorphism trick (sometimes called
Paulsen dilation). Denote by Mm1,m2(R) the space of all m1 ×m2 matrices with
real entries and by Hm(C) the space of all Hermitian m×m matrices. Define the
following linear mapping

J : Mm1,m2(R) 7→Hm1+m2(C), where JS :=
(

O S
S∗ O

)
.

Clearly,

(JS)2 :=
(

SS∗ 0
0 S∗S

)
.

Therefore,
‖JS‖= ‖SS∗‖1/2∨‖S∗S‖1/2 = ‖S‖

and, for independent random matrices X1, . . . ,Xn in Mm1,m2(R) with EX j = 0, we
have

σ
2 := n−1

(
‖E(X1X∗

1 )+ · · ·+E(XnX∗
n )‖∨‖E(X∗

1 X1)+ · · ·+E(X∗
n Xn)‖

)
= n−1‖E((JX1)2 + · · ·+(JXn)2)‖.

The following statement immediately follows from Theorem 2.7 by applying it
to the Hermitian random matrices JX1, . . . ,JXn.

Corollary 2.1. 1. Suppose that, for some U > 0 and for all j = 1, . . . ,n, ‖X j‖ ≤U.
Then
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P
{
‖X1 + · · ·+Xn‖ ≥ t

}
≤ 2mexp

{
− t2

2σ2n+2Ut/3

}
. (2.14)

2. Let α ≥ 1 and suppose that for some U (α) > 0 and for all j = 1, . . . ,n,∥∥∥‖X j‖
∥∥∥

ψα

∨2E1/2‖X‖2 ≤U (α).

Then, there exists a constant K > 0 such that

P{‖X1 + · · ·+Xn‖≥ t}≤ 2mexp
{
− 1

K
t2

nσ2 + tU (α) log1/α(U (α)/σX )

}
. (2.15)

2.5 Further Comments

Initially, the theory of empirical processes dealt with asymptotic problems: uni-
form versions of laws of large numbers, central limit theorem and laws of iter-
ated logarithm. It started with the work by Vapnik and Chervonenkis (see [141]
and references therein) on Glivenko-Cantelli problem and by Dudley [57] on the
central limit theorem (extensions of Kolmogorov-Donsker theorems). Other early
references include Koltchinskii [77], Pollard [117] and Giné and Zinn [67]. Since
Talagrand [132, 133] developed his concentration inequalities, the focus of the the-
ory has shifted to the development of bounds on sup-norms of empirical processes
with applications to a variety of problems in statistics, learning theory, asymptotic
geometric analysis, etc (see also [131]).

Symmetrization inequalities of Section 2.1 were introduced to the theory of em-
pirical processes by Giné and Zinn [67] (an earlier form of Rademacher symmetriza-
tion was used by Koltchinskii [77]) and Pollard [117]).

In Section 2.2, we follow the proof of Talagrand’s comparison inequality for
Rademacher sums given by Ledoux and Talagrand [97], Theorem 4.12.

Talagrand’s concentration inequalities for product measures and empirical pro-
cesses were proved in [132, 133]. Another approach to their proof, the entropy
method based on logarithmic Sobolev inequalities, was introduced by Ledoux. It
is discussed in detail in [96] and [103]. The bounded difference inequality based on
the martingale method is well known and can be found in many books (e.g., [49],
[103]).

Noncommutative Bernstein’s inequality (2.6) was discovered by Ahlswede and
Winter [4]. This inequality and its extensions proved to be very useful in the recent
work on low rank matrix recovery (see Gross et al [69], Gross [68], Recht [119],
Koltchinskii [85]). Tropp [136] provides a detailed review of various inequalities of
this type.



Chapter 3
Bounding Expected Sup-Norms of Empirical
and Rademacher Processes

In what follows, we will use a number of bounds on expectation of suprema of
empirical and Rademacher processes. Because of symmetrization inequalities, the
problems of bounding expected suprema for these two stochastic processes are
equivalent. The bounds are usually based on various complexity measures of func-
tion classes (such as linear dimension, VC-dimension, shattering numbers, uniform
covering numbers, random covering numbers, bracketing numbers, generic chaining
complexities, etc). It would be of interest to develop the bounds with precise depen-
dence on such geometric parameters as the L2(P)-diameter of the class. Combining
the bounds on expected suprema with Talagrand’s concentration inequalities yields
exponential inequalities for the tail probabilities of sup-norms.

3.1 Gaussian and Subgaussian Processes, Metric Entropies and
Generic Chaining Complexities

Recall that a random variable Y is called subgaussian with parameter σ2, or Y ∈
SG(σ2), iff for all λ ∈ R

EeλY ≤ eλ 2σ2/2.

Normal random variable with mean 0 and variance σ2 belongs to SG(σ2). If ε is a
Rademacher r.v., then ε ∈ SG(1).

The next proposition gives two simple and important properties of subgaussian
random variables (see, e.g., [142], Section 2.2.1 for the proof of property (ii)).

Proposition 3.1. (i) If Y1, . . . ,Yn are independent random variables and Yj ∈ SG(σ2
j ),

then
Y1 + · · ·+Yn ∈ SG(σ2

1 + · · ·+σ
2
n ).

(ii) For arbitrary Y1, . . . ,YN , N ≥ 2 such that Yj ∈ SG(σ2
j ), j = 1, . . . ,N,

E max
1≤ j≤N

|Yj| ≤C max
1≤ j≤N

σ j
√

logN,

31
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where C is a numerical constant.

Let (T,d) be a pseudo-metric space and Y (t), t ∈ T be a stochastic process. It is
called subgaussian with respect to d iff, for all t,s ∈ T, Y (t)−Y (s) ∈ SG(d2(t,s)).

Denote D(T ) = D(T,d) the diameter of the space T. Let N(T,d,ε) be the ε-
covering number of (T,d), that is, the minimal number of balls of radius ε needed
to cover T. Let M(T,d,ε) be the ε-packing number of (T,d), i.e., the largest number
of points in T separated from each other by at least a distance of ε. Obviously,

N(T,d,ε)≤ M(T,d,ε)≤ N(T,d,ε/2), ε ≥ 0.

As always,
H(T,d,ε) = logN(T,d,ε)

is called the ε-entropy of (T,d).

Theorem 3.1. (Dudley’s entropy bounds). If Y (t), t ∈ T is a subgaussian process
with respect to d, then the following bounds hold with some numerical constant
C > 0 :

Esup
t∈T

Y (t)≤C
∫ D(T )

0
H1/2(T,d,ε)dε

and for all t0 ∈ T

Esup
t∈T

|Y (t)−Y (t0)| ≤C
∫ D(T )

0
H1/2(T,d,ε)dε.

The integral in the right hand side of the bound is often called Dudley’s entropy
integral.

For Gaussian processes, the following lower bound is also true (see [97], Section
3.3).

Theorem 3.2. (Sudakov’s entropy bound). If Y (t), t ∈ T is a Gaussian process and

d(t,s) := E1/2(X(t)−X(s))2, t,s ∈ T,

then the following bound holds with some numerical constant C > 0 :

Esup
t∈T

Y (t)≥C sup
ε>0

εH1/2(T,d,ε).

Note that, if Z is a standard normal vector in RN and T ⊂ RN , then Sudakov’s
entropy bound immediately implies that, with some numerical constant C′ > 0,

sup
ε>0

εH1/2(T,‖ · ‖`2 ,ε)≤C′Esup
t∈T

〈Z, t〉. (3.1)



3.1 Gaussian and Subgaussian Processes, Metric Entropies and Generic Chaining Complexities33

We will also need another inequality of a similar flavor that is often called dual
Sudakov’s inequality (see Pajor and Tomczak-Jaegermann [116]). Namely, let K ⊂
RN be a symmetric convex set (that is, u ∈ K implies −u ∈ K). Denote

‖t‖K := sup
u∈K

〈u, t〉.

Finally, denote BN
2 the unit ball in the space lN

2 (that is, in RN equipped with the
l2-norm). Then, the following bound holds with a numerical constant C′ > 0 :

sup
ε>0

εH1/2(BN
2 ,‖ · ‖K ,ε)≤C′Esup

t∈K
〈Z, t〉. (3.2)

Note that, for T = K, (3.1) provides an upper bound on the cardinality of minimal
coverings of the symmetric convex set K by the Euclidean balls of radius ε. On the
other hand, (3.2) is a bound on the cardinality of minimal coverings of the Euclidean
unit ball BN

2 by the translations of the convex set εK◦, K◦ being the polar set of K.
In both cases, the bounds are dimension free.

The proof of Theorem 3.1 is based on the well known chaining method (see, e.g.,
[97], Section 11.1) that also leads to more refined generic chaining bounds (see
Talagrand [134]). Talagrand’s generic chaining complexity of a metric space (T,d)
is defined as follows. An admissible sequence {∆n}n≥0 is an increasing sequence
of partitions of T (that is, each next partition is a refinement of the previous one)
such that card(∆0) = 1 and card(∆n)≤ 22n

, n≥ 1. Given t ∈ T, let ∆n(t) denote the
unique subset from ∆n that contains t. For a set A⊂ T, let D(A) denote its diameter.
Define the generic chaining complexity γ2(T ;d) as

γ2(T ;d) := inf
{∆n}n≥0

sup
t∈T

∑
n≥0

2n/2D(∆n(t)),

where the inf is taken over all admissible sequences of partitions.

Theorem 3.3. (Talagrand’s generic chaining bounds). If Y (t), t ∈ T is a centered
Gaussian process with

d(t,s) := E1/2(Y (t)−Y (s))2, t,s ∈ T,

then
K−1

γ2(T ;d)≤ Esup
t∈T

Y (t)≤ Kγ2(T ;d),

where K > 0 is a universal constant. The upper bound also holds for all subgaussian
processes with respect to d.

Of course, Talagrand’s generic chaining complexity is upper bounded by Dud-
ley’s entropy integral. In special cases, other upper bounds are also available that
might be sharper in specific applications. For instace, if T ⊂ H is the unit ball in a
Hilbert space H and d is the metric generated by an arbitrary norm in H, then, for
some constant C > 0,
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γ2(T ;d)≤C
(∫

∞

0
εH(T ;d;ε)dε

)1/2

. (3.3)

This follows from a more general result by Talagrand [134] that applies also to
Banach spaces with p-convex norms for p ≥ 2.

In addition to Gaussian processes, Rademacher sums provide another important
example of subgaussian processes. Given T ⊂ Rn, define

Y (t) :=
n

∑
i=1

εiti, t = (t1, . . . , tn) ∈ T,

where {εi} are i.i.d. Rademacher random variables. The stochastic process Y (t), t ∈
T is called the Rademacher sum indexed by T. It is a subgaussian process with
respect to the Euclidean distance in Rn :

d(t,s) =
( n

∑
i=1

(ti− si)2
)1/2

.

The following result by Talagrand is a version of Sudakov’s type lower bound
for Rademacher sums (see [97], Section 4.5).

Denote

R(T ) := Eε sup
t∈T

∣∣∣∣∣ n

∑
i=1

εiti

∣∣∣∣∣ .
Theorem 3.4. (Talagrand). There exists a universal constant L such that

R(T )≥ 1
L

δH1/2(T,d,δ ) (3.4)

whenever

R(T )sup
t∈T

‖t‖`∞
≤ δ 2

L
. (3.5)

3.2 Finite Classes of Functions

Suppose F is a finite class of measurable functions uniformly bounded by a con-
stant U > 0. Let N := card(F )≥ 2. Denote σ2 := sup f∈F P f 2.

Theorem 3.5. There exist universal constants K1,K2 such that

E‖Rn‖F ≤ K1U

√
logN

n

and

E‖Rn‖F ≤ K2

[
σ

√
logN

n

∨
U

logN
n

]
.
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Proof. Conditionally on X1, . . . ,Xn, the random variable

√
nRn( f ) =

1√
n

n

∑
j=1

ε j f (X j), f ∈F

is subgaussian with parameter ‖ f‖L2(Pn). Therefore, it follows from Proposition 3.1,
(ii) that

Eε‖Rn‖F ≤ K sup
f∈F

‖ f‖L2(Pn)

√
logN

n
.

The first bound now follows since sup f∈F ‖ f‖L2(Pn) ≤ U. To prove the second
bound, denote F 2 := { f 2 : f ∈F} and observe that

sup
f∈F

‖ f‖L2(Pn) ≤ sup
f∈F

‖ f‖L2(P) +
√
‖Pn−P‖F 2 ,

which implies

E sup
f∈F

‖ f‖L2(Pn) ≤ σ +
√

E‖Pn−P‖F 2 .

Using symmetrization and contraction inequalities, we get

E‖Pn−P‖F 2 ≤ 2E‖Rn‖F 2 ≤ 8UE‖Rn‖F .

Hence,

E‖Rn‖F ≤ KE sup
f∈F

‖ f‖L2(Pn)

√
logN

n
≤ K

(
σ +

√
8UE‖Rn‖F

)√
logN

n
.

The result now follows by bounding the solution with respect to E‖Rn‖F of the
above inequality.

ut

The same result can be also deduced from the following theorem (it is enough to
take q = logN).

Theorem 3.6. There exists a universal constants K such that for all q ≥ 2

E1/q‖Rn‖q
F ≤ E1/q‖Rn‖q

`q(F ) := E1/q
∑

f∈F

|Rn( f )|q ≤

K
[

σ
(q−1)1/2N1/q

n1/2

∨
U

(q−1)N2/q

n

]
.

Proof. We will need the following simple property of Rademacher sums: for all
q ≥ 2,

E1/q
∣∣∣∣ n

∑
i=1

αiεi

∣∣∣∣q ≤ (q−1)1/2
( n

∑
i=1

α
2
i

)1/2
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(see, e.g., de la Pena and Giné [48], p. 21). Using this inequality, we get

Eε‖Rn‖q
F ≤ ∑

f∈F

Eε |Rn( f )|q ≤ (q−1)q/2n−q/2
∑

f∈F

‖ f‖q
L2(Pn) ≤

(q−1)q/2n−q/2N
(

sup
f∈F

Pn f 2
)q/2

≤ (q−1)q/2n−q/2N
(

σ
2 +‖Pn−P‖F 2

)q/2

.

This easily implies

E1/q‖Rn‖q
F ≤ E1/q

∑
f∈F

|Rn( f )|q ≤

(q−1)1/2n−1/2N1/q21/2−1/q
(

σ +E1/q‖Pn−P‖q/2
F 2

)
. (3.6)

It remains to use symmetrization and contraction inequalities to get

E1/q‖Pn−P‖q/2
F 2 ≤ 2U1/2E1/q‖Rn‖q/2

F ≤ 2U1/2
√

E1/q‖Rn‖q
F ,

to substitute this bound into (3.6) and to solve the resulting inequality for E1/q‖Rn‖q
F

to complete the proof.
ut

3.3 Shattering Numbers and VC-classes of Sets

Let C be a class of subsets of S. Given a finite set F ⊂ S, denote

∆
C (F) := card{C ∩F},

where C ∩F :=
{

C∩F : C ∈ C
}

. Clearly,

∆
C (F)≤ 2card(F).

If ∆C (F) = 2card(F), it is said that F is shattered by C . The numbers ∆C (F) are
called the shattering numbers of the class C .

Define

mC (n) := sup
{

∆
C (F) : F ⊂ S,card(F)≤ n

}
.

Clearly, mC (n) ≤ 2n, n ≥ 1, and if, for some n, mC (n) < 2n, then mC (k) < 2k for
all k ≥ n.

Let
V (C ) := min{n ≥ 1 : mC (n) < 2n}.
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If mC (n) = 2n for all n ≥ 1, set V (C ) = ∞. The number V (C ) is called the Vapnik-
Chervonenkis dimension (or the VC-dimension) of class C . If V (C ) < +∞, then
C is called the Vapnik-Chervonenkis class (or VC-class). It means that no set F of
cardinality n ≥V (C ) is shattered by C .

Denote (
n
≤ k

)
:=
(

n
0

)
+ · · ·+

(
n
k

)
.

The following lemma (proved independently in somewhat different forms by
Sauer, Shelah, and also by Vapnik and Chervonenkis) is one of the main combi-
natorial facts related to VC-classes.

Theorem 3.7. (Sauer’s Lemma). Let F ⊂ S, card(F) = n. If

∆
C (F) >

(
n

≤ k−1

)
,

then there exists a subset F ′ ⊂ F, card(F ′) = k such that F ′ is shattered by C .

The Sauer’s Lemma immediately implies that, for a VC-class C ,

mC (n)≤
(

n
≤V (C )−1

)
,

which can be further bounded by
(

ne
V (C )−1

)V (C )−1

.

We will view P and Pn as functions defined on a class C of measurable sets
C 7→ P(C),C 7→ Pn(C) and the Rademacher process will be also indexed by sets:

Rn(C) := n−1
n

∑
j=1

ε jIC(X j).

For Y : C 7→ R, we still write ‖Y‖C := supC∈C |Y (C)|. Denote F := {IC : C ∈ C }.

Theorem 3.8. There exists a numerical constant K > 0 such that

E‖Pn−P‖C ≤ KE
√

log∆C (X1, . . . ,Xn)
n

≤ K

√
E log∆C (X1, . . . ,Xn)

n
.

The drawback of this result is that it does not take into account the “size” of
the sets in the class C . A better bound is possible in the case when, for all C ∈ C ,
P(C) is small. We will derive such an inequality in which the size of E‖Pn−P‖C is
controlled in terms of random shattering numbers ∆C (X1, . . . ,Xn) and of

‖P‖C = sup
C∈C

P(C)

(and which implies the inequality of Theorem 3.8).
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Theorem 3.9. There exists a numerical constant K > 0 such that

E‖Pn−P‖C ≤ K‖P‖1/2
C E

√
log∆C (X1, . . . ,Xn)

n

∨
K

E log∆C (X1, . . . ,Xn)
n

≤

K‖P‖1/2
C

√
E log∆C (X1, . . . ,Xn)

n

∨
K

E log∆C (X1, . . . ,Xn)
n

.

Proof. Let

T :=
{

(IC(X1), . . . , IC(Xn)) : C ∈ C

}
.

Clearly, card(T ) = ∆C (X1, . . . ,Xn) and

Eε‖Rn‖C = Eε sup
t∈T

∣∣∣∣n−1
n

∑
i=1

εiti

∣∣∣∣.
For all t ∈ T, n−1

∑
n
i=1 εiti is a subgaussian random variable with parameter n−1‖t‖`2 .

Therefore, by Proposition 3.1,

Eε sup
t∈T

∣∣∣∣n−1
n

∑
i=1

εiti

∣∣∣∣≤ Kn−1 sup
t∈T

‖t‖`2

√
log∆C (X1, . . . ,Xn).

Note that
n−1 sup

t∈T
‖t‖`2 = n−1/2(sup

C∈C
Pn(C))1/2.

Hence,

Eε‖Rn‖C ≤ Kn−1/2E‖Pn‖1/2
C

√
log∆C (X1, . . . ,Xn)≤

Kn−1/2E
√
‖Pn−P‖C +‖P‖C

√
log∆C (X1, . . . ,Xn)≤

Kn−1/2E
√
‖Pn−P‖C

√
log∆C (X1, . . . ,Xn)+

Kn−1/2
√
‖P‖C E

√
log∆C (X1, . . . ,Xn).

By symmetrization inequality,

E‖Pn−P‖C ≤ 2Kn−1/2E
√
‖Pn−P‖C

√
log∆C (X1, . . . ,Xn)+

2Kn−1/2
√
‖P‖C E

√
log∆C (X1, . . . ,Xn)≤

2Kn−1/2
√

E‖Pn−P‖C

√
E log∆C (X1, . . . ,Xn)+

2Kn−1/2
√
‖P‖C E

√
log∆C (X1, . . . ,Xn),
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where we also used Cauchy-Schwarz inequality. It remains to solve the resulting
inequality with respect to E‖Pn−P‖C (or just to upper bound its solution) to get the
result.

ut

In the case of VC-classes,

log∆
C (X1, . . . ,Xn)≤ logmC (n)≤ KV (C ) logn

with some numerical constant K > 0. Thus, Theorem 3.9 yields the bound

E‖Pn−P‖C ≤ K
(
‖P‖1/2

C

√
V (C ) logn

n

∨V (C ) logn
n

)
.

However, this bound is not sharp: the logarithmic factor involved in it can be elimi-
nated. To this end, the following bound on the covering numbers of a VC-class C is
needed. For an arbitrary probability measure Q on (S,A ), define the distance

dQ(C1,C2) = Q(C14C2), C1,C2 ∈ C .

Theorem 3.10. There exists a universal constant K > 0 such that for any VC-class
C ⊂A and for all probability measures Q on (S,A )

N(C ;dQ;ε)≤ KV (C )(4e)V (C )
(

1
ε

)V (C )−1

, ε ∈ (0,1).

This result is due to Haussler and it is an improvement of an earlier bound by
Dudley (the proof and precise references can be found, e.g., in van der Vaart and
Wellner [142]).

By Theorem 3.10, we get

N(C ;dPn ;ε)≤ KV (C )(4e)V (C )
(

1
ε

)V (C )−1

, ε ∈ (0,1).

Using this fact one can prove the following inequality:

E‖Pn−P‖C ≤ K
(
‖P‖1/2

C

√
log

K
‖P‖C

√
V (C )

n

∨V (C ) log K
‖P‖C

n

)
.

We are not giving its proof here. However, in the next section, we establish more
general results for VC-type classes of functions (see (3.17)) that do imply the above
bound.
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3.4 Upper Entropy Bounds

Let N(F ;L2(Pn);ε) denote the minimal number of L2(Pn)-balls of radius ε covering
F and let

σ
2
n := sup

f∈F
Pn f 2.

Also denote by γ2(F ;L2(Pn)) Talagrand’s generic chaining complexity of F with
respect to the L2(Pn)-distance.

Theorem 3.11. The following bound holds with a numerical constant C > 0 :

E‖Rn‖F ≤ C√
n

Eγ2(F ;L2(Pn)).

As a consequence,

E‖Rn‖F ≤ C√
n

E
∫ 2σn

0

√
logN(F ;L2(Pn);ε)dε

with some constant C > 0.

Proof. Conditionally on X1, . . . ,Xn, the process

√
nRn( f ) =

1√
n

n

∑
j=1

ε j f (X j), f ∈F

is subgaussian with respect to the distance of the space L2(Pn). Hence, it follows
from Theorem 3.3 that

Eε‖Rn‖F ≤Cn−1/2
γ2(F ;L2(Pn)). (3.7)

Taking expectation of both sides, yields the first inequality. The second inequality
follows by bounding Talagrand’s generic chaining complexity from above by Dud-
ley’s entropy integral. ut

Following Giné and Koltchinskii [64], we will derive from Theorem 3.11 sev-
eral bounds under more special conditions on the random entropy. Assume that the
functions in F are uniformly bounded by a constant U > 0 and let F ≤U denote a
measurable envelope of F , that is,

| f (x)| ≤ F(x),x ∈ S, f ∈F .

We will assume that σ2 is a number such that

sup
f∈F

P f 2 ≤ σ
2 ≤ ‖F‖2

L2(P)

Most often, we will use σ2 = sup f∈F P f 2.
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Let H : [0,∞) 7→ [0,∞) be a regularly varying function of exponent 0 ≤ α < 2,
strictly increasing for u ≥ 1/2 and such that H(u) = 0 for 0 ≤ u < 1/2.

Theorem 3.12. If, for all ε > 0 and n ≥ 1,

logN(F ,L2(Pn),ε)≤ H
(‖F‖L2(Pn)

ε

)
, (3.8)

then there exists a constant C > 0 that depends only on H and such that

E‖Rn‖F ≤C

[
σ√

n

√
H
(‖F‖L2(P)

σ

)∨U
n

H
(‖F‖L2(P)

σ

)]
. (3.9)

In particular, if, for some C1 > 0,

nσ
2 ≥C1U2H

(‖F‖L2(P)

σ

)
,

then

E‖Rn‖F ≤ Cσ√
n

√
H
(‖F‖L2(P)

σ

)
(3.10)

with a constant C > 0 that depends only on H and C1.

Proof. Without loss of generality, assume that U = 1 (otherwise the result follows
by a simple rescaling of the class F ). Given function H, we will use constants
CH > 0 and DH > 0 for which

sup
v≥1

∫
∞

v u−2
√

H(u)du

v−1
√

H(v)

∨
1 ≤CH ,

∫ 2

0

√
H(1/u)du =

∫
∞

1/2
u−2
√

H(u)du ≤ DH .

The bound of Theorem 3.11 implies that with some numerical constant C > 0 1

E‖Rn‖F ≤Cn−1/2E
∫ 2σn

0

√
logN(F ,L2(Pn),ε)dε

≤Cn−1/2E
∫ 2σn

0

√
H
(‖F‖L2(Pn)

ε

)
dε

≤Cn−1/2E
∫ 2σn

0

√
H
(

2‖F‖L2(P)

ε

)
dε I

(
‖F‖L2(Pn) ≤ 2‖F‖L2(P)

)
+

Cn−1/2E
∫ 2σn

0

√
H
(‖F‖L2(Pn)

ε

)
dε I

(
‖F‖L2(Pn) > 2‖F‖L2(P)

)
. (3.11)

It is very easy to bound the second term in the sum. First note that

1 the value of C might change from place to place
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∫ 2σn

0

√
H
(‖F‖L2(Pn)

ε

)
dε ≤ ‖F‖L2(Pn)

∫ 2

0

√
H(1/u)du ≤ DH‖F‖L2(Pn).

Then use Hölder’s inequality and Bernstein’s inequality to get

n−1/2E

∫ 2σn

0

√
H
(‖F‖L2(Pn)

ε

)
dεI
(
‖F‖L2(Pn) > 2‖F‖L2(P)

)≤
DHn−1/2‖F‖L2(P) exp

{
−9

8
n‖F‖2

L2(P)

}
≤ DH

2n
. (3.12)

Bounding the first term is slightly more complicated. Recall the notation

F 2 := { f 2 : f ∈F}.

Using symmetrization and contraction inequalities, we get

Eσ
2
n ≤ σ

2 +E‖Pn−P‖F 2 ≤ σ
2 +2E‖Rn‖F 2 ≤ σ

2 +8E‖Rn‖F =: B2. (3.13)

Since, for nonincreasing h, the function

u 7→
∫ u

0
h(t)dt

is concave, we have, by the properties of H, that

n−1/2E
∫ 2σn

0

√
H
(

2‖F‖L2(P)

ε

)
dε I(‖F‖L2(Pn) ≤ 2‖F‖L2(P))

≤ n−1/2E
∫ 2σn

0

√
H
(

2‖F‖L2(P)

ε

)
dε

≤ n−1/2
∫ 2(Eσ2

n )1/2

0

√
H
(

2‖F‖L2(P)

ε

)
dε

≤ n−1/2
∫ 2B

0

√
H
(

2‖F‖L2(P)

ε

)
dε

= 2‖F‖L2(P)n
−1/2

∫ B/‖F‖L2(P)

0

√
H
(

1
ε

)
dε

= 2n−1/2‖F‖L2(P)

∫ +∞

‖F‖L2(P)/B
u−2
√

H(u)du. (3.14)

In the case when B ≤ ‖F‖L2(P), this yields the bound
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n−1/2E
∫ 2σn

0

√
H
(

2‖F‖L2(P)

ε

)
dε I(‖F‖L2(Pn) ≤ 2‖F‖L2(P))

≤ 2CHn−1/2B

√
H
(‖F‖L2(P)

B

)
≤ 2CHn−1/2B

√
H
(‖F‖L2(P)

σ

)
.

In the case when B > ‖F‖L2(P), the bound becomes

n−1/2E
∫ 2σn

0

√
H
(

2‖F‖L2(P)

ε

)
dε I(‖F‖L2(Pn) ≤ 2‖F‖L2(P))

≤ 2n−1/2‖F‖L2(P)

∫ +∞

1/2
u−2
√

H(u)du

≤ 2
DH√
H(1)

n−1/2‖F‖L2(P)
√

H(1)≤ 2
DH√
H(1)

n−1/2B

√
H
(‖F‖L2(P)

σ

)
,

where we also used the assumption that

sup
f∈F

P f 2 ≤ σ
2 ≤ ‖F‖2

L2(P).

Thus, in both cases we have

n−1/2E
∫ 2σn

0

√
H
(

2‖F‖L2(P)

ε

)
dε I(‖F‖L2(Pn) ≤ 2‖F‖L2(P))

≤Cn−1/2B

√
H
(‖F‖L2(P)

σ

)
(3.15)

with a constant C depending only on H.
Now, we deduce from inequality (3.15) that

n−1/2E

∫ 2σn

0

√
H
(‖F‖L2(Pn)

ε

)
dεI
(
‖F‖L2(Pn) ≤ 2‖F‖L2(P)

)
≤Cn−1/2

σ

√
H
(‖F‖L2(P)

σ

)
+
√

8Cn−1/2
√

E‖Rn‖F

√
H
(‖F‖L2(P)

σ

)
.

We will use the last bound together with inequalities (3.11) and (3.12). Denote

E := E‖Rn‖F .

Then, we end up with the following inequality
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E ≤CDHn−1 +Cn−1/2
σ

√
H
(‖F‖L2(P)

σ

)
+
√

8Cn−1/2
√

E

√
H
(‖F‖L2(P)

σ

)
.

Solving it with respect to E completes the proof.
ut

The next bounds follow from Theorem 3.12 with σ2 := sup f∈F P f 2. If for some
A > 0,V > 0 and for all ε > 0,

N(F ;L2(Pn);ε)≤
(

A‖F‖L2(Pn)

ε

)V

, (3.16)

then with some universal constant C > 0 (for σ2 ≥ const n−1)

E‖Rn‖F ≤C
[√

V
n

σ

√
log

A‖F‖L2(P)

σ

∨VU
n

log
A‖F‖L2(P)

σ

]
. (3.17)

If for some A > 0,ρ ∈ (0,1) and for all ε > 0,

logN(F ;L2(Pn);ε)≤
(

A‖F‖L2(Pn)

ε

)2ρ

, (3.18)

then

E‖Rn‖F ≤C
[Aρ‖F‖ρ

L2(P)√
n

σ
1−ρ

∨ A2ρ/(ρ+1)‖F‖2ρ/(ρ+1)
L2(P) U (1−ρ)/(1+ρ)

n1/(1+ρ)

]
. (3.19)

A function class F is called VC-subgraph iff{
{(x, t) : 0 ≤ f (x)≤ t}∪{(x, t) : 0 ≥ f (x)≥ t} : f ∈F

}
is a VC-class. For a VC-subgraph class F , the following bound holds with some
constants A,V > 0 and for all probability measures Q on (S,A ) :

N(F ;L2(Q);ε)≤
(

A‖F‖L2(Q)

ε

)V

,ε > 0 (3.20)

(see, e.g., van der Vaart and Wellner [142], Theorem 2.6.7). Of course, this uniform
covering numbers condition does imply (3.16) and, as a consequence, (3.17).

We will call the function classes satisfying (3.16) VC-type classes.
If H is VC-type, then its convex hull conv(H ) satisfies (3.18) with ρ := V

V+2
(see van der Vaart and Wellner [142], Theorem 2.6.9). More precisely, the following
result holds.

Theorem 3.13. Let H be a class of measurable functions on (S,A ) with a mea-
surable envelope F and let Q be a probability measure on (S,A ). Suppose that
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F ∈ L2(Q) and

N(H ;L2(Q);ε)≤
(

A‖F‖L2(Q)

ε

)V

, ε ≤ ‖F‖L2(Q).

Then

logN(conv(H );L2(Q);ε)≤
(

B‖F‖L2(Q)

ε

)2V/(V+2)

, ε ≤ ‖F‖L2(Q)

for some constant B that depends on A and V.

So, one can use the bound (3.19) for F ⊂ conv(H ). Note that in this bound the
envelope F of the class H itself should be used rather than an envelope of a subset
F of its convex hull (which might be smaller than F).

3.5 Lower Entropy Bounds

In this section, lower bounds on E‖Rn‖F expressed in terms of entropy of the class
F will be proved. Again, we follow the paper by Giné and Koltchinskii [64]. In
what follows, the function H satisfies the conditions of Theorem 3.12. Denote σ2 =
sup f∈F P f 2.

Under the notations of Section 3.4, we introduce the following condition: with
some constant c > 0

logN(F ,L2(P),σ/2)≥ cH
(‖F‖L2(P)

σ

)
. (3.21)

Theorem 3.14. Suppose that F satisfies condition (3.8). There exist a universal
constant B > 0 and a constant C1 that depends only on H such that

E‖Rn‖F ≥ B
σ√

n

√
logN(F ,L2(P),σ/2) (3.22)

provided that

nσ
2 ≥C1U2H

(
6‖F‖L2(P)

σ

)
. (3.23)

Moreover, if in addition (3.21) holds, then, for some constants C2 depending only on
c, constant C3 depending only on H, and for all n such that (3.23) holds,

C2
σ√

n

√
H
(‖F‖L2(P)

σ

)
≤ E‖Rn‖F ≤C3

σ√
n

√
H
(‖F‖L2(P)

σ

)
. (3.24)

Proof. Without loss of generality, we can assume that U = 1, so, the functions in
the class F are bounded by 1. The general case would follow by a simple rescaling.
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First note that, under the assumptions of the theorem, inequality (3.10) holds, so,
we have with some constant C depending only on H

E‖Rn‖F ≤C
σ√

n

√
H
(‖F‖L2(P)

σ

)
.

This already proves the right hand side of inequality (3.24).
It follows from Theorem 3.4 that

Eε‖Rn‖F ≥ 1
8L

σ√
n

√
logN(F ,L2(Pn),σ/8), (3.25)

as soon as

Eε‖Rn‖F ≤ σ2

64L
. (3.26)

To use this result, we will derive a lower bound on the right hand side of (3.25) and
an upper bound on the left hand side of (3.26) that hold with a high probability. Let
us bound first the right hand side of (3.25).

Let
M := M(F ,L2(P),σ/2)

(recall that M(F ,L2(P),σ/2) denotes the σ/2-packing number of the class F ⊂
L2(P)). We apply the law of large numbers to M functions in a maximal σ/2-
separated subset of F and also to the envelope F. It implies that, for all ε > 0,
there exists n and ω such that

M(F ,L2(P),σ/2)≤ M(F ,L2(Pn(ω)),(1− ε)σ/2)≤
N(F ,L2(Pn(ω)),(1− ε)σ/4)

and
‖F‖L2(Pn(ω)) ≤ (1+ ε)‖F‖L2(P).

Take ε = 1/5. Then, by (3.8),

M(F ,L2(P),σ/2)≤ exp
{

H
(

6‖F‖L2(P)

σ

)}
. (3.27)

Let f1, . . . , fM be a maximal subset of F such that

P( fi− f j)2 ≥ σ
2/4 for all 1 ≤ i 6= j ≤ M.

In addition, we have

P( fi− f j)4 ≤ 4P( fi− f j)2 ≤ 16σ
2.

Bernstein’s inequality implies that
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P

{
max

1≤i6= j≤M

(
nP( fi− f j)2−

n

∑
k=1

( fi− f j)2(Xk)

)
>

8
3

t +
√

32tnσ2

}
≤ M2e−t .

Let t = δnσ2. Since P( fi− f j)2 ≥ σ2/4 and (3.27) holds, we get

P

{
min

1≤i6= j≤M

1
n

n

∑
k=1

( fi− f j)2(Xk)≤ σ
2
(

1/4−8δ/3−
√

32δ

)}

≤ exp
{

6H
(

3‖F‖L2(P)

σ

)
−δnσ

2
}

.

For δ = 1/(32 ·83), this yields

P
{

min
1≤i6= j≤M

Pn( fi− f j)2 ≤ σ2

16

}
≤ exp

{
H
(

6‖F‖L2(P)

σ

)
− nσ2

32 ·83

}
. (3.28)

Denote

E1 :=
{

ω : M(F ,L2(Pn),σ/4)≥ M
}

.

On this event,

N(F ,L2(Pn),σ/8)≥ M(F ,L2(Pn),σ/4)≥
M = M(F ,L2(P),σ/2)≥ N(F ,L2(P),σ/2)

and

P(E1)≥ 1− exp
{

H
(

6‖F‖L2(P)

σ

)
− nσ2

32 ·83

}
. (3.29)

Using symmetrization and contraction inequalities and condition (3.23), we have

E‖Pn−P‖F 2 ≤ 2E‖Rn‖F 2 ≤ 8E‖Rn‖F ≤C
σ√

n

√
H
(‖F‖L2(P)

σ

)
≤ 6σ

2 (3.30)

(with a proper choice of constant C1 in (3.23)). Next, Bousquet’s version of Tala-
grand’s inequality (see Section 2.3) yields the bound

P

{
‖Pn−P‖F 2 ≥ 6σ

2 +σ

√
26t
n

+
t

3n

}
≤ e−t .

We take t = 26nσ2. Then

P
{
‖Pn−P‖F 2 ≥ 41σ

2}≤ exp{−26nσ
2}.

Denote

E2 :=
{

ω : σ
2
n = sup

f∈F
Pn f 2 < 42σ

2
}

. (3.31)
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Then
P(E2) > 1− exp{−26nσ

2}. (3.32)

Also, by Bernstein’s inequality, the event

E3 = {ω : ‖F‖L2(Pn) ≤ 2‖F‖L2(P)} (3.33)

has probability

P(E3)≥ 1− exp
{
−9

4
n‖F‖2

L2(P)

}
. (3.34)

On the event E2 ∩E3, (3.7) and (3.23) yield that, with some constant C depending
only on H, the following bounds hold:2

Eε‖Rn‖F ≤ C√
n

∫ 2σn

0

√
H
(‖F‖L2(Pn)

ε

)
dε

≤ C√
n

∫ 2
√

42σ

0

√
H
(

2‖F‖L2(P)

ε

)
dε ≤ 2C√

n
‖F‖L2(P)

∫ 2
√

42σ/‖F‖L2(P)

0

√
H
(

1
ε

)
dε

=
2C√

n
‖F‖L2(P)

∫ +∞

(2
√

42)−1‖F‖L2(P)/σ

u−2
√

H(u)du.

Arguing as in the derivation of (3.15), the integral in the right hand side can be
bounded from above by

C
σ√

n

√
H
(‖F‖L2(P)

σ

)
with a constant C depending only on H. This leads to the following bound

Eε‖Rn‖F ≤C
σ√

n

√
H
(‖F‖L2(P)

σ

)
<

σ2

64L
(3.35)

(which again holds with a proper choice of constant C1 in (3.23)). It follows from
(3.25)-(3.35) that

E‖Rn‖F ≥ 1
8L

σ√
n

√
logN(F ,L2(P),σ/2)P(E1∩E2∩E3) (3.36)

and that
P(E1∩E2∩E3)≥

1− exp
{

H
(

6‖F‖L2(P)

σ

)
− nσ2

32 ·83

}
− exp{−26nσ

2}− exp{−9nσ
2/4}.

2 note that C might change its value from place to place
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This last probability is larger than 1/2 by condition (3.23) with a proper value of C1.
Thus, (3.36) implies inequality (3.22). The left hand side of inequality (3.24) now
follows from (3.22) and (3.21), completing the proof.

ut

3.6 Generic Chaining Complexities and Bounding Empirical
Processes Indexed by F 2.

Generic chaining complexities can be used to control the size of empirical pro-
cesses indexed by a function class F (see [134]). For instance, one can define the
complexity γ2(F ;L2(P)), that is, γ2(F ;d), where d is the L2(P)-distance. Another
useful distance is based on the ψ2-norm for random variables on the probability
space (S,A ,P) (see Section A.1). The generic chaining complexity that corresponds
to the ψ2-distance will be denoted by γ2(F ;ψ2). In particular, these complexities
were used to bound the sup-norm of the empirical process indexed by the class
F 2 := { f 2 : f ∈ F}. This is of importance in a variety of applications including
sparse recovery problems. The goal is to control this empirical process in terms
of complexity measures of the class F rather than the class F 2. A standard ap-
proach to this problem is to use the symmetrization inequality (to replace the empir-
ical process by the Rademacher process) followed by the comparison inequality for
Rademacher sums. However, for this approach, one has to deal with the uniformly
bounded class F (the Lipschitz constant in the comparison inequality would be in
this case 2sup f∈F ‖ f‖∞). In many interesting applications (for instance, in sparse
recovery) the quantity sup f∈F ‖ f‖∞ might be infinite, or very large. To overcome
this difficulty Klartag and Mendelson [73]) started developing another approach
based on generic chaining bounds for empirical processes. Quite recently, following
this path, Mendelson [110] proved the following deep result.

Theorem 3.15. Suppose that F is a symmetric class, that is, f ∈F implies − f ∈
F , and P f = 0, f ∈F . Then, for some universal constant K > 0,

E‖Pn−P‖F 2 ≤ K
[

sup
f∈F

‖ f‖ψ1

γ2(F ;ψ2)√
n

∨ γ2
2 (F ;ψ2)

n

]
.

We will discuss one more result in the same direction which provides a bound
on E‖Pn−P‖F 2 in terms of L∞(Pn) generic chaining complexity γ2(F ;L∞(Pn)) of
class F . Denote σ2 := sup f∈F P f 2 and

Γn,∞(F ) := Eγ
2
2 (F ;L∞(Pn)).

Theorem 3.16. There exists a universal constant K > 0 such that

E sup
f∈F

|Pn f 2−P f 2| ≤ K
[

σ

√
Γn,∞(F )

n

∨ Γn,∞(F )
n

]
. (3.37)
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Proof. We start with the first bound of Theorem 3.11 and apply it together with
symmetrization inequality to class F 2 to get that with some constant C > 0

E sup
f∈F

|Pn f 2−P f 2| ≤ C√
n

Eγ2(F 2;L2(Pn)). (3.38)

Next we have

‖ f 2−g2‖2
L2(Pn) = n−1

n

∑
j=1

| f 2(X j)−g2(X j)|2 =

n−1
n

∑
j=1

( f (X j)−g(X j))2( f (X j)+g(X j))2 ≤ 4 sup
f∈F

Pn f 2‖ f −g‖2
L∞(Pn),

which implies
‖ f 2−g2‖L2(Pn) ≤ 2σn‖ f −g‖L∞(Pn), (3.39)

where σ2
n = sup f∈F Pn f 2. It follows from (3.39) that

γ2(F 2;L2(Pn))≤ 2σnγ2(F ;L∞(Pn)).

and (3.38) implies that

E := E sup
f∈F

|Pn f 2−P f 2| ≤ 2C√
n

Eσnγ2(F ;L∞(Pn))≤

2C√
n

E1/2
σ

2
n

√
Γn,∞(F ).

Note also that

E1/2
σ

2
n = E1/2 sup

f∈F
Pn f 2 ≤ E1/2

(
sup
f∈F

|Pn f 2−P f 2|+σ
2
)
≤
√

E +σ .

Therefore, (3.40) implies that with some constant C > 0

E ≤ 2C√
n
(
√

E +σ)
√

Γn,∞(F ),

and bound (3.37) easily follows by solving the last inequality for E. ut

3.7 Function Classes in Hilbert Spaces

Suppose that L is a finite dimensional subspace of L2(P) with dim(L) = d. Denote

ψL(x) :=
1√
d

sup
f∈L,‖ f‖L2(P)≤1

| f (x)|.
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We will use the following Lp-version of Hoffmann-Jørgensen inequality: for all
independent mean zero random variables Yj, j = 1, . . . ,n with values in a Banach
space B and with E‖Yj‖p < +∞, for some p ≥ 1,

E1/p
∥∥∥∥ n

∑
j=1

Yj

∥∥∥∥p

≤ Kp

(
E
∥∥∥∥ n

∑
j=1

Yj

∥∥∥∥+E1/p
(

max
1≤i≤n

‖Yi‖
)p
)

, (3.40)

where Kp is a constant depending only on p (see Ledoux and Talagrand [97], Theo-
rem 6.20).

Proposition 3.2. Let F := { f ∈ L : ‖ f‖L2(P) ≤ r}. Then

E‖Rn‖F ≤ E1/2‖Rn‖2
F = r

√
d
n
.

Moreover, there exists a universal constant K such that whenever

E max
1≤i≤n

ψ
2
L(Xi)≤

n
K2 ,

we have

E‖Rn‖F ≥ 1
K

r

√
d
n
.

Proof. Let φ1, . . . ,φd be an orthonormal basis of L. Then

‖Rn‖F := sup
f∈L,‖ f‖L2(P)≤r

|Rn( f )|= sup
{∣∣∣∣Rn

( d

∑
j=1

α jφ j

)∣∣∣∣ :
d

∑
j=1

α
2
j ≤ r2

}
=

sup
{∣∣∣∣ d

∑
j=1

α jRn(φ j)
∣∣∣∣ :

d

∑
j=1

α
2
j ≤ r2

}
= r
( d

∑
j=1

R2
n(φ j)

)1/2

.

Therefore,

E‖Rn‖2
F = r2

d

∑
j=1

ER2
n(φ j),

and the first statement follows since

ER2
n(φ j) =

Pφ 2
j

n
, j = 1, . . . ,n.

The proof of the second statement follows from the first statement and inequality
(3.40), which immediately yields

r

√
d
n

= E1/2‖Rn‖2
F ≤ K2

(
E‖Rn‖F + r

√
d
n

1√
n

E1/2 max
1≤i≤n

ψ
2
L(Xi)

)
,

and the result follows by assuming that K = 2K2.
ut
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Let K be a symmetric nonnegatively definite square integrable kernel on S× S
and let HK be the corresponding reproducing kernel Hilbert space (RKHS), i.e.,
HK is the completion of the linear span of functions {K(x, ·) : x ∈ S} with respect
to the following inner product:〈

∑
i

αiK(xi, ·),∑
j

β jK(yi, ·)
〉

K
= ∑

i, j
αiβ jK(xi,y j).

The corresponding norm will be denoted by ‖ · ‖K . Let

F := { f ∈HK : ‖ f‖K ≤ 1 and ‖ f‖L2(P) ≤ r}

Finally, let AK denote the linear integral operator from L2(P) into L2(P) with kernel
K,

AK f (x) =
∫

S
K(x,y) f (y)P(dy),

let {λi} denote its eigenvalues arranged in decreasing order and {φi} denote the
corresponding L2(P)-orthonormal eigenfunctions.

The following result is due to Mendelson [109].

Proposition 3.3. There exist universal constants C1,C2 > 0 such that

C1

(
n−1

∞

∑
j=1

(λ j ∧ r2)
)1/2

≤ E1/2‖Rn‖2
F ≤C2

(
n−1

∞

∑
j=1

(λ j ∧ r2)
)1/2

.

In addition, there exists a universal constant C such that

E‖Rn‖F ≥ 1
C

(
n−1

∞

∑
j=1

(λ j ∧ r2)
)1/2

−
√

supx∈S K(x,x)
n

.

Proof. By the well known properties of RKHS,

F =
{

∞

∑
k=1

ckφk : c = (c1,c2, . . .) ∈ E1∩E2

}
,

where

E1 :=
{

c :
∞

∑
k=1

c2
k

λk
≤ 1
}

and E2 :=
{

c :
∞

∑
k=1

c2
k

r2 ≤ 1
}

.

In other words, the set E1 is the ellipsoid in `2 (with the center at the origin) with
”half-axes”

√
λk and E2 is the ellipsoid with ”half-axes” r (a ball of radius r). Let

E :=
{

c :
∞

∑
k=1

c2
k

λk ∧ r2 ≤ 1
}
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denote the ellipsoid with ”half-axes”
√

λk ∧ r. A straightforward argument shows
that E ⊂ E1∩E2 ⊂

√
2E . Hence,

sup
c∈E

∣∣∣∣Rn

(
∞

∑
k=1

ckφk

)∣∣∣∣≤ ‖Rn‖F ≤
√

2sup
c∈E

∣∣∣∣Rn

(
∞

∑
k=1

ckφk

)∣∣∣∣.
Also, we have

sup
c∈E

∣∣∣∣Rn

(
∞

∑
k=1

ckφk

)∣∣∣∣2 = sup
c∈E

∣∣∣∣ ∞

∑
k=1

ck√
λk ∧ r

(√
λk∧ r

)
Rn(φk)

∣∣∣∣2 =
∞

∑
k=1

(
λk∧ r2

)
R2

n(φk).

Hence,

Esup
c∈E

∣∣∣∣Rn

(
∞

∑
k=1

ckφk

)∣∣∣∣2 =
∞

∑
k=1

(
λk ∧ r2

)
ER2

n(φk).

Since Pφ 2
k = 1, ER2

n(φk) = 1
n , we get

Esup
c∈E

∣∣∣∣Rn

(
∞

∑
k=1

ckφk

)∣∣∣∣2 = n−1
∞

∑
k=1

(λk ∧ r2),

and the first bound follows.
The proof of the second bound is based on the observation that

sup
f∈F

| f (x)| ≤
√

sup
x∈S

K(x,x)

and on the same application of Hoffmann-Jørgensen inequality as in the previous
proposition.

ut

A similar result with the identical proof holds for data-dependent Rademacher
complexity Eε‖Rn‖F . In this case, let {λ

(n)
i } be the eigenvalues (arranged in de-

creasing order) of the random matrix
(

n−1K(Xi,X j)
)n

i, j=1
(equivalently, of the in-

tegral operator from L2(Pn) into L2(Pn) with kernel K).

Proposition 3.4. There exist universal constants C1,C2 > 0 such that

C1

(
n−1

n

∑
j=1

(λ (n)
j ∧ r2)

)1/2

≤ E1/2
ε ‖Rn‖2

F ≤C2

(
n−1

n

∑
j=1

(λ (n)
j ∧ r2)

)1/2

.

In addition, there exists a universal constant C such that

Eε‖Rn‖F ≥ 1
C

(
n−1

n

∑
j=1

(λ (n)
j ∧ r2)

)1/2

−
√

supx∈S K(x,x)
n

.
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3.8 Further Comments

The main reference to the generic chaining method is the book by Talagrand [134].
Shattering numbers and Vapnik-Chervonenkis classes have been discussed in many
books [49, 57, 142].

Special cases of the inequalities discussed in Section 3.4 can be found in Tala-
grand [131], Einmahl and Mason [58], Giné and Guillou [62], Mendelson [108],
Giné, Koltchinskii and Wellner [63]. Theorem 3.12 is given in Giné and Koltchin-
skii [64] (in a slightly more precise form). Lower bounds proved in Section 3.5 are
due to Giné and Koltchinskii [64].

A number of other enotropy bounds on suprema of empirical and Rademacher
processes (in particular, in terms of so called bracketing numbers) can be found
in Dudley [57] and van der Vaart and Wellner [142]. Recently, van der Vaart and
Wellner [143] proved new versions of bounds under uniform entropy conditions
(both for bounded anf for unbounded function classes).

Generic chaining complexities were used by Klartag and Mendelson [73] to
bound empirical processes indexed by the squares of functions. This method was
further developed in [112] and, especially, in [110]. Another approach is based on
L∞(Pn)-covering numbers and generic chaining complexities (see Theorem 3.16). It
goes back to Rudelson [122] and it was used in learning theory and sparse recovery
problems in [111, 18]. Similar idea was also used by Giné and Mason [66].



Chapter 4
Excess Risk Bounds

In this chapter, we develop distribution dependent and data dependent upper bounds
on the excess risk EP( f̂n) of an empirical risk minimizer

f̂n := argmin f∈F Pn f . (4.1)

We will assume that such a minimizer exists (a simple modification of the results
is possible if f̂n is an approximate solution of (4.1)). Our approach to this problem
has been already outlined in Chapter 1 and it is closely related to the recent work of
Massart [102], Koltchinskii and Panchenko [88], Bartlett, Bousquet and Mendelson
[15], Bousquet, Koltchinskii and Panchenko [34], Koltchinskii [80], Bartlett and
Mendelson [17].

4.1 Distribution Dependent Bounds and Ratio Bounds for Excess
Risk

To simplify the matter, assume that the functions in F take their values in [0,1].
Recall that the set

FP(δ ) :=
{

f ∈F : EP( f )≤ δ

}
is called the δ -minimal set of the risk P. In particular, FP(0) is its minimal set.

Define ρP : L2(P)×L2(P) 7→ [0,+∞) such that

ρ
2
P( f ,g)≥ P( f −g)2− (P( f −g))2, f ,g ∈ L2(P).

Usually, ρP is also a (pseudo)metric, such as

ρ
2
P( f ,g) = P( f −g)2 or ρ

2
P( f ,g) = P( f −g)2− (P( f −g))2.

Under the notations of Section 1.2,

55
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D(δ ) := DP(F ;δ ) := sup
f ,g∈F (δ )

ρP( f ,g)

is the ρP-diameter of the δ -minimal set. Also, denote

F ′(δ ) :=
{

f −g : f ,g ∈F (δ )
}

and
φn(δ ) := φn(F ;P;δ ) := E‖Pn−P‖F ′(δ ).

Let {δ j} j≥0 be a decreasing sequence of positive numbers with δ0 = 1 and let
{t j} j≥0 be a sequence of positive numbers. For δ ∈ (δ j+1,δ j], define

Un(δ ) := φn(δ j)+

√
2

t j

n
(D2(δ j)+2φn(δ j))+

t j

2n
. (4.2)

Finally, denote
δn(F ;P) := sup{δ ∈ (0,1] : δ ≤Un(δ )}.

It is easy to check that
δn(F ,P)≤Un(δn(F ,P)).

Obviously, the definitions of Un and δn(F ,P) depend on the choice of {δ j} and
{t j}.

We start with the following simple inequality that provides a distribution depen-
dent upper bound on the excess risk EP( f̂n).

Theorem 4.1. For all δ ≥ δn(F ;P),

P{E ( f̂n) > δ} ≤ ∑
δ j≥δ

e−t j .

Proof. It is enough to assume that δ > δn(F ;P) (otherwise, the result follows by
continuity). Denote δ̂ := E ( f̂n). If δ̂ ≥ δ ≥ ε > 0 and g ∈F (ε), we have

δ̂ = P f̂n− inf
g∈F

Pg ≤ P( f̂n−g)+ ε ≤

Pn( f̂n−g)+(P−Pn)( f −g)+ ε ≤ ‖Pn−P‖F ′(δ̂ ) + ε.

By letting ε → 0, this gives δ̂ ≤ ‖Pn−P‖F ′(δ̂ ). Denote

En, j :=
{
‖Pn−P‖F ′(δ j) ≤Un(δ j)

}
.

It follows from Bousquet’s version of Talagrand’s inequality (see Section 2.3) that
P(En, j)≥ 1− e−t j . Let

En :=
⋂

δ j≥δ

En, j.



4.1 Distribution Dependent Bounds and Ratio Bounds for Excess Risk 57

Then
P(En)≥ 1− ∑

δ j≥δ

e−t j .

On the event En, for all σ ≥ δ , ‖Pn−P‖F ′(σ) ≤Un(σ), which holds by the definition
of Un(δ ) and monotonicity of the function δ 7→ ‖Pn −P‖F ′(δ ). Thus, on the event
{δ̂ ≥ δ}

⋂
En, we have

δ̂ ≤ ‖Pn−P‖F ′(δ̂ ) ≤Un(δ̂ ),

which implies that δ ≤ δ̂ ≤ δn(F ;P), contradicting the assumption that δ >

δn(F ;P). Therefore, we must have {δ̂ ≥ δ} ⊂ Ec
n, and the result follows.

ut

We now turn to uniform bounds on the ratios of the excess empirical risk of a
function f ∈F to its true excess risk. The excess empirical risk is defined as

Ên( f ) := EPn( f ).

Given ψ : R+ 7→ R+, denote

ψ
[(δ ) := sup

σ≥δ

ψ(σ)
σ

and

ψ
](ε) := inf

{
δ > 0 : ψ

[(δ )≤ ε

}
.

These transformations will be called the [-transform and the ]-transform of ψ, re-
spectively. Some of their simple properties are summarized in Section A.3.

It happens that, with a high probability, the quantity

sup
f∈F ,E ( f )≥δ

∣∣∣∣ Ên( f )
E ( f )

−1
∣∣∣∣

can be bounded from above by the function δ 7→Vn(δ ) := U [
n(δ ).

Theorem 4.2. For all δ ≥ δn(F ;P),

P
{

sup
f∈F ,E ( f )≥δ

∣∣∣∣ Ên( f )
E ( f )

−1
∣∣∣∣> Vn(δ )

}
≤ ∑

δ j≥δ

e−t j .

Proof. Consider the event En defined in the proof of Theorem 4.1. For this event

P(En)≥ 1− ∑
δ j≥δ

e−t j ,

so, it is enough to prove that the inequality
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sup
f∈F ,E ( f )≥δ

∣∣∣∣ Ên( f )
E ( f )

−1
∣∣∣∣≤Vn(δ )

holds on the event En. To this end, note that on En, by the proof of Theorem 4.1,
f̂n ∈ F (δ ). For all f ∈ F such that σ := E ( f ) ≥ δ , for arbitrary ε ∈ (0,δ ) and
g ∈F (ε), the following bounds hold:

σ = E ( f )≤ P f −Pg+ ε ≤ Pn f −Png+(P−Pn)( f −g)+ ε ≤

Ên( f )+‖Pn−P‖F ′(σ) + ε ≤ Ên( f )+Un(σ)+ ε ≤ Ên( f )+Vn(δ )σ + ε,

which means that on the event En the condition E ( f )≥ δ implies that

Ên( f )≥
(

1−Vn(δ )
)
E ( f ).

Similarly, on En, the condition σ := E ( f )≥ δ implies that

Ên( f ) = Pn f −Pn f̂n ≤ P f −P f̂n +(Pn−P)( f − f̂n)≤

≤ E ( f )+Un(σ)≤ E ( f )+Vn(δ )σ =
(

1+Vn(δ )
)
E ( f ),

and the result follows.
ut

A convenient choice of sequence {δ j} is δ j := q− j, j ≥ 0 with some fixed q > 1.
If t j = t > 0, j ≥ 0, the corresponding functions Un(δ ) and Vn(δ ) will be denoted
by Un(δ ; t) and Vn(δ ; t), and δn(F ;P) will be denoted by δn(t).

The following corollary is obvious.

Corollary 4.1. For all t > 0 and for all δ ≥ δn(t),

P{E ( f̂n)≥ δ} ≤
(

logq
q
δ

)
e−t

and

P
{

sup
f∈F ,E ( f )≥δ

∣∣∣∣ Ên( f )
E ( f )

−1
∣∣∣∣> Vn(δ ; t)

}
≤
(

logq
q
δ

)
e−t .

It follows from the definition of δn(t) that δn(t)≥ t
n . Because of this, the proba-

bilities in Corollary 4.1 can be bounded from above by logq
n
t exp{−t} (which de-

pends neither on the class F , nor on P). Most often, the logarithmic factor in front
of the exponent does not create a problem: in typical applications, δn(t) is upper
bounded by δn + t

n , where δn is larger than log logn
n . Adding loglogn to t is enough

to eliminate the impact of the logarithm. However, if δn = O(n−1), the presence of
the logarithmic factor would result in a suboptimal bound. To tackle this difficulty,
we will use a slightly different choice of {δ j}, {t j}.

For q > 1 and t > 0, denote
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V t
n(σ) := 2q

[
φ

[
n(σ)+

√
(D2)[(σ)

√
t

nσ
+

t
nσ

]
, σ > 0.

Let
σ

t
n := σ

t
n(F ;P) := inf{σ : V t

n(σ)≤ 1}.

Theorem 4.3. For all t > 0

P{E ( f̂n) > σ
t
n} ≤Cqe−t

and for all σ ≥ σ t
n

P
{

sup
f∈F ,E ( f )≥σ

∣∣∣∣ Ên( f )
E ( f )

−1
∣∣∣∣> V t

n(σ)
}
≤Cqe−t ,

where
Cq :=

q
q−1

∨ e.

Proof. Let σ > σ t
n. Take δ j = q− j, j ≥ 0 and t j := t δ j

σ
for some t > 0,σ > 0. The

function Un(δ ), the quantity δn(F ,P), etc, now correspond to this choice of the
sequences {δ j}, {t j}. Then, it is easy to verify that for all δ ≥ σ

Un(δ )
δ

≤ 2q
[

sup
δ j≥σ

φn(δ j)
δ j

+ sup
δ j≥σ

D(δ j)√
δ j

√
tδ j

nσδ j
+

tδ j

nσδ j

]

≤ 2q
[

sup
δ≥σ

φn(δ )
δ

+ sup
δ≥σ

D(δ )√
δ

√
t

nσ
+

t
nσ

]
=

2q
[

φ
[
n(σ)+

√
(D2)[(σ)

√
t

nσ
+

t
nσ

]
= V t

n(σ). (4.3)

Since σ > σ t
n and the function V t

n is strictly decreasing, we have V t
n(σ) < 1 and, for

all δ > σ t
n,

Un(δ )≤V t
n(σ)δ < δ .

Therefore, σ t
n ≥ δn(F ;P). It follows from Theorem 4.1 that

P{E ( f̂n)≥ σ} ≤ ∑
δ j≥σ

e−t j .

The right hand side can be now bounded as follows:
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∑
δ j≥σ

e−t j = ∑
δ j≥σ

exp
{
−t

δ j

σ

}
≤ ∑

j≥0
e−tq j

=

e−t +
q

q−1

∞

∑
j=1

q− je−tq j
(q j −q j−1)≤ e−t +

1
q−1

∫
∞

1
e−txdx =

e−t +
1

q−1
1
t

e−t ≤ q
q−1

e−t , t ≥ 1. (4.4)

This implies the first bound for t ≥ 1 and it is trivial for t ≤ 1 because of the defini-
tion of the constant Cq.

To prove the second bound use Theorem 4.2 and note that, by (4.3), Vn(σ) ≤
V t

n(σ). The result follows from Theorem 4.2 and (4.4).
ut

The result of Lemma 4.1 below is due to Massart [102, 103] (we formulate it in
a slightly different form). Suppose that F is a class of measurable functions from S
into [0,1] and f∗ : S 7→ [0,1] is a measurable function such that with some numerical
constant D > 0

D(P f −P f∗)≥ ρ
2
P( f , f∗)≥ P( f − f∗)2− (P( f − f∗))2, (4.5)

where ρP is a (pseudo)metric. The assumptions of this type are frequently used
in model selection problems (see Section 6.3). They describe the link between the
excess risk (or the approximation error) P f −P∗ and the variance of the “excess
loss” f − f∗. This particular form of bound (4.5) is typical in regression problems
with L2-loss (see Section 5.1): the link function in this case is just the square. In
some other problems, such as classification under “low noise” assumption other
link functions are also used (see Section 5.3).

Assume, for simplicity, that the infimum of P f over F is attained at a function
f̄ ∈F (the result can be easily modified if this is not the case). Let

ωn(δ ) := ωn(F ; f̄ ;δ ) := E sup
f∈F ,ρ2

P( f , f̄ )≤δ

|(Pn−P)( f − f̄ )|.

Lemma 4.1. There exists a constant K > 0 such that for all ε ∈ (0,1] and for all
t > 0

σ
t
n(F ;P)≤ ε(inf

F
P f −P f∗)+

1
D

ω
]
n

(
ε

KD

)
+

KD
ε

t
n
.

Proof. Note that

φn(δ ) = E‖Pn−P‖F ′(δ ) ≤ 2E sup
f∈F (δ )

|(Pn−P)( f − f̄ )|.

For f ∈F (δ ),

ρP( f , f̄ )≤ ρP( f , f∗)+ρP( f̄ , f∗)≤
√

D(P f −P f∗)+
√

D(P f̄ −P f∗)≤
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≤
√

D(P f −P f̄ )+2
√

D(P f̄ −P f∗)≤
√

Dδ +2
√

D∆ ≤
√

2D(δ +4∆),

where
∆ := P f̄ −P f∗ = inf

F
P f −P f∗.

As a result, it follows that

D(δ )≤ 2
√

D(
√

δ +2
√

∆)≤
√

8D(δ +4∆)

and
φn(δ )≤ 2ωn

(
2D(δ +4∆)

)
.

We will now bound the functions φ [
n(σ) and (D2)[(σ) involved in the definition of

V t
n(σ) (see the proof of Theorem 4.3). Denote τ := ∆

σ
. Then

φ
[
n(σ) = sup

δ≥σ

φn(δ )
δ

≤ 2 sup
δ≥σ

ωn

(
2D(1+4τ)δ

)
δ

= 4D(1+4τ)ω[
n

(
2D(1+4τ)σ

)
and also

(D2)[(σ) = sup
δ≥σ

D2(δ )
δ

≤ sup
δ≥σ

8D(δ +4∆)
δ

≤ 8D(1+4τ).

Therefore,

V t
n(σ)≤ 2q

[
4D(1+4τ)ω[

n

(
2D(1+4τ)σ

)
+2

√
2D
√

1+4τ

√
t

nσ
+

t
nσ

]
.

Suppose that, for some ε ∈ (0,1], we have σ ≥ ε∆ implying that τ ≤ 1
ε
. Then we

can upper bound V t
n(σ) as follows:

V t
n(σ)≤ 2q

[
20D

ε
ω

[
n

(
2Dσ

)
+2

√
10

√
tD

nεσ
+

t
nσ

]
.

As soon as

σ ≥ 1
2D

ω
]
n

(
ε

KD

)∨ KDt
nε

with a sufficiently large K, the right hand side of the last bound can be made smaller
than 1. Thus, σ t

n is upper bounded either by ε∆ , or by the expression

1
2D

ω
]
n

(
ε

KD

)∨ KDt
nε

,

which implies the bound of the lemma.
ut
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Remark. By increasing the value of the constant K it is easy to upper bound the
quantity sup{σ : V t

n(σ)≤ 1/2} in exactly the same way.
The next statement follows immediately from Lemma 4.1 and Theorem 4.3.

Proposition 4.1. There exists a large enough constant K > 0 such that for all ε ∈
(0,1] and all t > 0

P
{

P f̂ −P f∗ ≥ (1+ ε)(inf
F

P f −P f∗)+
1
D

ω
]
n

(
ε

KD

)
+

KD
ε

t
n

}
≤Cqe−t .

Let us call ψ : R+ 7→ R+ a function of concave type if it is nondecreasing and
u 7→ ψ(u)

u is decreasing. If, in addition, for some γ ∈ (0,1), u 7→ ψ(u)
uγ is decreasing,

ψ will be called a function of strictly concave type (with exponent γ). In particular,
if ψ(u) := ϕ(uγ), or ψ(u) := ϕγ(u), where ϕ is a nondecreasing strictly concave
function with ϕ(0) = 0, then ψ is of concave type for γ = 1 and of strictly concave
type for γ < 1.

Proposition 4.2. Let δ j := q− j, j ≥ 0 for some q > 1. If ψ is a function of strictly
concave type with some exponent γ ∈ (0,1), then

∑
j:δ j≥δ

ψ(δ j)
δ j

≤ cγ,q
ψ(δ )

δ
,

where cγ,q is a constant depending only on q,γ.

Proof. Note that

∑
j:δ j≥δ

ψ(δ j)
δ j

= ∑
j:δ j≥δ

ψ(δ j)

δ
γ

j δ
1−γ

j

≤ ψ(δ )
δ γ ∑

j:δ j≥δ

1

δ
1−γ

j

=

=
ψ(δ )

δ
∑

j:δ j≥δ

(
δ

δ j

)1−γ

≤ ψ(δ )
δ

∑
j≥0

q− j(1−γ) = cγ,q
ψ(δ )

δ
,

which implies the bound.
ut

Assume that φn(δ ) ≤ φ̌n(δ ) and D(δ ) ≤ Ď(δ ), δ > 0, where φ̌n is a function
of strictly concave type with some exponent γ ∈ (0,1) and Ď is a concave type
function. Define

Ǔn(δ ; t) := Ǔn,t(δ ) := Ǩ
(

φ̌n(δ )+ Ď(δ )
√

t
n

+
t
n

)
with some numerical constant Ǩ. Then Ǔn(·; t) is also a function of strictly concave
type. In this case, it is natural to define

V̌n(δ ; t) := Ǔ [
n,t(δ ) =

Ǔn(δ ; t)
δ

and δ̌n(t) := Ǔ ]
n,t(1).
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Theorem 4.4. There exists a constant Ǩ in the definition of the function Ǔn(δ ; t)
such that for all t > 0

P{E ( f̂n)≥ δ̌n(t)} ≤ e−t

and for all δ ≥ δ̌n(t),

P
{

sup
f∈F ,E ( f )≥δ

∣∣∣∣ Ên( f )
E ( f )

−1
∣∣∣∣≥ V̌n(δ ; t)

}
≤ e−t .

Proof. It is similar to the proof of Theorem 4.2, but now our goal is to avoid using
the concentration inequality repeatedly for each value of δ j since this leads to a
logarithmic factor. The trick was previously used in Massart [102] and in the Ph.D.
dissertation of Bousquet (see also Bartlett, Bousquet and Mendelson [15]). Define

Gδ :=
⋃

σ≥δ

δ

σ

{
f −g : f ,g ∈F (σ)

}
.

Then the functions in Gδ are bounded by 1 and

σP(Gδ )≤ sup
σ≥δ

δ

σ
sup

f ,g∈F (σ)
σP( f −g)≤ δ sup

σ≥δ

Ď(σ)
σ

≤ Ď(δ ),

since Ď is of concave type. Also, since φ̌n is of strictly concave type, Proposition 4.2
yields

E‖Pn−P‖Gδ
= E sup

j:δ j≥δ

sup
σ∈(δ j+1,δ j ]

δ

σ
‖Pn−P‖F ′(σ) ≤

≤ q ∑
j:δ j≥δ

δ

δ j
E‖Pn−P‖F ′(δ j) ≤ qδ ∑

j:δ j≥δ

φ̌n(δ j)
δ j

≤ qcγ,qφ̌n(δ ).

Now, Talagrand’s concentration inequality implies that there exists an event E of
probability P(E) ≥ 1− e−t such that on this event ‖Pn−P‖Gδ

≤ Ǔn(δ ; t) (the con-
stant Ǩ in the definition of Ǔn(δ ; t) should be chosen properly). Then, on the event
E, for all σ ≥ δ ,

‖Pn−P‖F ′(σ) ≤
σ

δ
Ǔn(δ ; t)≤ V̌n(δ ; t)σ .

The rest repeats the proof of theorems 4.1 and 4.2.
ut

In the next theorem, we consider empirical risk minimization problems over
Donsker classes of functions under the assumption that, roughly speaking, the true
risk has unique minimum and, as a consequence, the δ -minimal sets F (δ ) shrink
to a set consisting of a single function as δ → 0. It will be shown that in such cases
the excess risk is of the order oP(n−1/2).
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Theorem 4.5. If F is a P-Donsker class and

DP(F ;δ )→ 0 as n → ∞,

then
EP( f̂n) = oP(n−1/2) as n → ∞.

Proof. If F is a P-Donsker class, then the sequence of empirical processes

Zn( f ) := n1/2(Pn f −P f ), f ∈F

is asymptotically equicontinuous, that is, for all ε > 0

lim
δ→0

limsup
n→∞

P
{

sup
ρP( f ,g)≤δ , f ,g∈F

∣∣∣Zn( f )−Zn(g)
∣∣∣≥ ε

}
= 0.

(see, e.g., van der Vaart and Wellner [142], Section 2.1.2). This also implies (in the
case of uniformly bounded classes, by an application of Talagrand’s concentration
inequality) that

lim
δ→0

limsup
n→∞

E sup
ρP( f ,g)≤δ , f ,g∈F

∣∣∣Zn( f )−Zn(g)
∣∣∣= 0.

Since DP(F ;δ )→ 0 as δ → 0, it follows that

lim
δ→0

limsup
n→∞

n1/2
φn(F ;P;δ ) = lim

δ→0
limsup

n→∞

n1/2E‖Pn−P‖F ′(δ ) ≤

lim
δ→0

limsup
n→∞

E sup
ρP( f ,g)≤D(F ;δ ), f ,g∈F

∣∣∣Zn( f )−Zn(g)
∣∣∣= 0. (4.6)

Without loss of generality, assume that D(δ ) ≥ δ (otherwise, in what follows, re-
place D(δ ) by D(δ )∨δ ). Let now {δ j} be a decreasing sequence such that δ0 = 1,

δ j → 0 as j → ∞ and D(δ j)≥ e−( j+1). Define

t j := t +2loglog
1

D(δ j)
≤ t +2log( j +1)

and

U t
n(δ ) := 2

[
φn(δ j)+D(δ j)

√
t j

n
+

t j

n

]
, δ ∈ (δ j+1,δ j], j ≥ 0.

Clearly, U t
n is an upper bound on the function Un (used in Theorem 4.1) provided

that Un is based on the same sequences {δ j},{t j}. Denote

δ
t
n := sup{δ ∈ (0,1] : δ ≤U t

n(δ )}.

Then δ t
n ≥ δn(F ;P) and also δ t

n ≥ t
n . It follows from Theorem 4.1 that
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P{EP( f̂n) > δ
t
n} ≤ ∑

δ j≥δ t
n

e−t j ≤ ∑
j≥0

e−t j ≤ ∑
j≥0

e−t−2log( j+1) = ∑
j≥1

j−2e−t ≤ 2e−t .

The definitions of δ t
n and U t

n easily imply that

δ
t
n ≤U t

n(δ
t
n)≤ 2

[
φn(1)+D(1)

√
t +2loglog(n/t)

n
+

t +2loglog(n/t)
n

]
,

which tends to 0 as n → ∞ since

φn(1)≤ 2E‖Pn−P‖F = O(n−1/2)→ 0

for a Donsker class F and D(1) < +∞. Denote by jn the number for which

δ
t
n ∈ (δ jn+1,δ jn ].

Then, clearly, jn → ∞ and δ jn → 0 as n → ∞. Now, we have

n1/2
δ

t
n ≤ n1/2U t

n(δ
t
n)≤ 2

[
n1/2

φn(δ jn)+

D(δ jn)
√

t +2loglog(1/D(δ jn))+
t +2loglog(n/t)

n1/2

]
,

and, in view of (4.6) and the assumption that D(δ )→ 0,δ → 0, it is easy to conclude
that, for all t > 0,

n1/2
δ

t
n → 0 as n → ∞.

It remains to show that there is a choice of t = τn → ∞ (slowly enough) such that

δ
τn
n = o(n−1/2).

The claim of the theorem now follows from the bound

P{EP( f̂n) > δ
τn
n } ≤ 2e−τn → 0 as n → ∞.

ut

There is another version of the proof that is based on Theorem 4.3.
The condition D(F ;δ ) → 0 as δ → 0 is quite natural when the true risk mini-

mization problem (1.1) has unique solution. In this case, such quantities as δn(F ;P)
often give correct (in a minimax sense) convergence rate for the excess risk in risk
minimization problems. However, if the minimum in (1.1) is not unique, the diam-
eter D(δ ) of the δ -minimal set is bounded away from 0. In such cases, δn(F ;P)

is bounded from below by c
√

1
n . At the same time, the optimal convergence rate of

the excess risk to 0 is often better than this (in fact, it can be close to n−1, e.g., in
classification problems).
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4.2 Rademacher Complexities and Data Dependent Bounds on
Excess Risk

In a variety of statistical problems, it is crucial to have data dependent upper and
lower confidence bounds on the sup-norm of the empirical process ‖Pn −P‖F for
a given function class F . This random variable is a natural measure of the accu-
racy of approximation of an unknown distribution P by its empirical distribution Pn.
However, ‖Pn−P‖F depends on the unknown distribution P and, hence, it can not
be used directly. It happens that it is easy to construct rather simple upper and lower
bounds on ‖Pn −P‖F in terms of the sup-norm of Rademacher process ‖Rn‖F .
The last random variable depends only on the data X1, . . . ,Xn and on random signs
ε1, . . . ,εn that are independent of X1, . . . ,Xn and are easy to simulate. Thus, ‖Rn‖F

can be used as a data dependent complexity measure of the class F that allows one
to estimate the accuracy of approximation of P by Pn based on the data. This boot-
strap type approach was introduced independently by Koltchinskii [78] and Bartlett,
Boucheron and Lugosi [14] and it was used to develop a general method of model
selection and complexity regularization in learning theory. It is based on the fol-
lowing simple bounds. Their proof is very elementary and relies only on the sym-
metrization and bounded difference inequalities.

Assume that the functions in the class F are uniformly bounded by a constant
U > 0.

Theorem 4.6. For all t > 0,

P
{
‖Pn−P‖F ≥ 2‖Rn‖F +

3tU√
n

}
≤ exp

{
− t2

2

}
and

P
{
‖Pn−P‖F ≤ 1

2
‖Rn‖F − 2tU√

n
− U

2
√

n

}
≤ exp

{
− t2

2

}
.

Proof. Denote
Zn := ‖Pn−P‖F −2‖Rn‖F .

Then, by symmetrization inequality, EZn ≤ 0 and applying bounded difference in-
equality to the random variable Zn easily yields

P
{

Zn ≥ EZn +
3tU√

n

}
≤ exp

{
− t2

2

}
,

which implies the first bound.
The second bound is proved similarly by considering the random variable

Zn := ‖Pn−P‖F − 1
2
‖Rn‖F − U

2
√

n

and using symmetrization and bounded difference inequalities.
ut
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Note that other versions of bootstrap, most notably, the classical Efron’s boot-
strap, can be also used in a similar way (see Fromont [59]).

The major drawback of Theorem 4.6 is that the error term does not take into
account the size of the variance of functions in the class F . In some sense, this is
a data dependent version of uniform Hoeffding inequality and what is often needed
is a data dependent version of uniform Bernstein type inequality. We provide such a
result below. It can be viewed as a statistical version of Talagrand’s concentration
inequality. Recently, Giné and Nickl [65] used some inequalities of similar nature
in adaptive density estimation.

Denote
σ

2
P(F ) := sup

f∈F
P f 2 and σ

2
n (F ) := sup

f∈F
Pn f 2.

Theorem 4.7. There exists a numerical constant K > 0 such that for all t ≥ 1 with
probability at least 1− e−t the following bounds hold:∣∣∣∣‖Rn‖F −E‖Rn‖F

∣∣∣∣≤ K
[√

t
n

(
σ2

n (F )+U‖Rn‖F

)
+

tU
n

]
, (4.7)

E‖Rn‖F ≤ K
[
‖Rn‖F +σn(F )

√
t
n

+
tU
n

]
, (4.8)

σ
2
P(F )≤ K

(
σ

2
n (F )+U‖Rn‖F +

tU
n

)
(4.9)

and

σ
2
n (F )≤ K

(
σ

2
P(F )+UE‖Rn‖F +

tU
n

)
. (4.10)

Also, for all t ≥ 1 with probability at least 1− e−t

E‖Pn−P‖F ≤ K
[
‖Rn‖F +σn(F )

√
t
n

+
tU
n

]
(4.11)

and ∣∣∣∣‖Pn−P‖F −E‖Pn−P‖F

∣∣∣∣≤ K
[√

t
n

(
σ2

n (F )+U‖Rn‖F

)
+

tU
n

]
. (4.12)

Proof. It is enough to consider the case when U = 1/2. The general case then fol-
lows by rescaling. Using Talagrand’s concentration inequality (to be specific, Klein-
Rio bound, see Section 2.3), we claim that on an event E of probability at least
1− e−t

E‖Rn‖F ≤ ‖Rn‖F +

√
2t
n

(
σ2

P(F )+2E‖Rn‖F

)
+

t
n
, (4.13)

which implies that
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E‖Rn‖F ≤ ‖Rn‖F +σP(F )

√
2t
n

+
t
n

+2

√
1
2

E‖Rn‖F
2t
n
≤

≤ ‖Rn‖F +σP(F )

√
2t
n

+
t
n

+
1
2

E‖Rn‖F +
2t
n

,

or

E‖Rn‖F ≤ 2‖Rn‖F +2
√

2σP(F )
√

t
n

+
6t
n

. (4.14)

We will now upper bound σ2
P(F ) in terms of σ2

n (F ). Denote F 2 := { f 2 :
f ∈F}. Again, we apply Talagrand’s concentration inequality (namely, Bousquet’s
bound, Section 2.3) and show that on an event F of probability at least 1− e−t

σ
2
P(F ) = sup

f∈F
P f 2 ≤ sup

f∈F
Pn f 2 +‖Pn−P‖F 2 ≤

≤ σ
2
n (F )+E‖Pn−P‖F 2 +

√
2t
n

(
σ2

P(F )+2E‖Pn−P‖F 2

)
+

t
3n

,

where we also used the fact that

sup
f∈F 2

VarP( f 2)≤ sup
f∈F

P f 4 < sup
f∈F

P f 2 = σ
2
P(F )

since the functions from F are uniformly bounded by U = 1/2. Using symmetriza-
tion inequality and then contraction inequality for Rademacher processes, we get

E‖Pn−P‖F 2 ≤ 2E‖Rn‖F 2 ≤ 8E‖Rn‖F .

Hence,

σ
2
P(F )≤ σ

2
n (F )+8E‖Rn‖F +σP(F )

√
2t
n

+2

√
8t
n

E‖Rn‖F +
t

3n
≤

≤ σ
2
n (F )+9E‖Rn‖F +σP(F )

√
2t
n

+
9t
n

,

where the inequality 2
√

ab≤ a+b, a,b≥ 0 was applied. Next we use bound (4.14)
on E‖Rn‖F to get

σ
2
P(F )≤ σ

2
n (F )+18‖Rn‖F +19σP(F )

√
2t
n

+
100t

n
.

As before, we bound the term 19σP(F )
√

2t
n = 2×19 σP(F )√

2

√
t
n using the inequality

2ab ≤ a2 +b2, which gives

σ
2
P(F )≤ 1

2
σ

2
P(F )+σ

2
n (F )+18‖Rn‖F +

500t
n

.
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As a result, the following bound holds on the event E ∩F :

σ
2
P(F )≤ 2σ

2
n (F )+36‖Rn‖F +

1000t
n

. (4.15)

It also implies that

σP(F )≤
√

2σn(F )+6
√
‖Rn‖F +32

√
t
n
.

We use this bound on σP(F ) in terms of σn(F ) to derive from (4.14) that

E‖Rn‖F ≤ 2‖Rn‖F +4σn(F )
√

t
n

+

+12
√

2
√
‖Rn‖F

√
t
n

+
100t

n
≤ 3‖Rn‖F +4σn(F )

√
t
n

+
172t

n
.

The last bound holds on the same event E ∩F of probability at least 1−2e−t . This
implies inequalities (4.8) and (4.9) of the theorem. Inequality (4.7) follows from Ta-
lagrand’s inequality, specifically, from combination of Klein-Rio inequality (4.13),
the following application of Bousquet’s inequality

‖Rn‖F ≤ E‖Rn‖F +

√
2t
n

(
σ2

P(F )+2E‖Rn‖F

)
+

t
3n

(4.16)

and bounds (4.8), (4.9) that have been already proved. The proof of the next inequal-
ity (4.10) is another application of symmetrization, contraction and Talagrand’s con-
centration and is similar to the proof of (4.9). The last two bounds follow from the
inequalities for the Rademacher process and symmetrization inequality.

Under the assumption t ≥ 1, the exponent in the expression for probability can
be written as e−t without a constant in front of it. The constant can be removed by
increasing the value of K.

ut

We will use the above tools to construct data dependent bounds on the excess
risk. As in the previous section, we assume that the functions in the class F are
uniformly bounded by 1. First we show that the δ -minimal sets of the risk can be
estimated by the δ -minimal sets of the empirical risk provided that δ is not too
small, which is a consequence of Theorem 4.2. Let

F̂n(δ ) := FPn(δ )

be the δ -minimal set of Pn.

Lemma 4.2. Let δ �n be a number such that δ �n ≥U ]
n

(
1
2

)
. There exists an event of

probability at least 1−∑δ j≥δ �n e−t j such that on this event, for all δ ≥ δ �n ,
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F (δ )⊂ F̂n(3δ/2) and F̂n(δ )⊂F (2δ ).

Proof. It easily follows from the definitions that δ �n ≥ δn(F ;P). Denote

En :=
⋂

δ j≥δ �n

En, j,

where En, j are the events defined in the proof of Theorem 4.1. Then

P(En)≥ 1− ∑
δ j≥δ �n

e−t j .

It follows from the proof of Theorem 4.2, that, on the event En, for all f ∈F with
E ( f )≥ δ �n ,

1
2
≤ Ên( f )

E ( f )
≤ 3

2
.

By the proof of Theorem 4.2, on the same event

‖Pn−P‖F ′(δ �n ) ≤Un(δ �n ).

Therefore, on the event En,

E ( f )≤ 2Ên( f )∨δ
�
n , f ∈F , (4.17)

which implies that, for all δ ≥ δ �n , F̂n(δ )⊂F (2δ ). On the other hand, on the same
event En, for all f ∈F , the assumption E ( f )≥ δ �n implies that Ên( f )≤ 3

2E ( f ) and
the assumption E ( f )≤ δ �n implies that

Ên( f )≤ E ( f )+‖Pn−P‖F ′(δ �n ) ≤ E ( f )+Un(δ �n )≤ δ
�
n +Vn(δ �n )δ �n ≤

3
2

δ
�
n .

Thus, for all f ∈F ,

Ên( f )≤ 3
2

(
E ( f )∨δ

�
n

)
, (4.18)

which implies that on the event En, for all δ ≥ δ �n , F (δ )⊂ F̂n(3δ/2).
ut

Now we are ready to define an empirical version of excess risk bounds. It will be
convenient to use the following definition of ρP :

ρ
2
P( f ,g) := P( f −g)2.

Given a decreasing sequence {δ j} of positive numbers with δ0 = 1 and a sequence
{t j} of real numbers, t j ≥ 1, define

Ūn(δ ) := K̄
(

φn(δ j)+D(δ j)

√
t j

n
+

t j

n

)
, δ ∈ (δ j+1,δ j], j ≥ 0,



4.2 Rademacher Complexities and Data Dependent Bounds on Excess Risk 71

where K̄ = 2. Comparing this with the definition (4.2) of the function Un, it is easy to
check that Un(δ )≤ Ūn(δ ),δ ∈ (0,1]. As a consequence, if we define δ̄n := Ū ]

n(1/2),
then δn(F ;P)≤ δ̄n.

Empirical versions of the functions D and φn are defined by the following rela-
tionships:

D̂n(δ ) := sup
f ,g∈F̂n(δ )

ρPn( f ,g) and φ̂n(δ ) := ‖Rn‖F̂ ′
n(δ ).

Also, let

Ûn(δ ) := K̂
(

φ̂n(ĉδ j)+ D̂n(ĉδ j)

√
t j

n
+

t j

n

)
, δ ∈ (δ j+1,δ j], j ≥ 0,

Ũn(δ ) := K̃
(

φn(c̃δ j)+D(c̃δ j)

√
t j

n
+

t j

n

)
, δ ∈ (δ j+1,δ j], j ≥ 0,

where 2 ≤ K̂ ≤ K̃, ĉ, c̃ ≥ 1 are numerical constants. Define

V̄n(δ ) := Ū [
n(δ ), V̂n(δ ) := Û [

n(δ ), Ṽn(δ ) := Ũ [
n(δ )

and
δ̂n := Û ]

n(1/2), δ̃n := Ũ ]
n(1/2).

The constants in the definitions of the functions Ūn and Ũn can be chosen in such
a way that for all δ Un(δ ) ≤ Ūn(δ ) ≤ Ũn(δ ), which yields the bound δn(F ;P) ≤
δ̄n ≤ δ̃n. Since the definitions of the functions Un,Ūn,Ũn differ only in the constants,
it is plausible that the quantities δn(F ;P), δ̄n, δ̃n are of the same order (in fact, it can
be checked in numerous examples).

We will prove that with a high probability, for all δ , Ūn(δ ) ≤ Ûn(δ ) ≤ Ũn(δ ),
so, Ûn provides a data-dependent upper bound on Ūn and Ũn provides a distribution
dependent upper bound on Ûn. This implies that, with a high probability, δ̄n ≤ δ̂n ≤
δ̃n, which provides a data dependent bound δ̂n on the excess risk EP( f̂n) which is of
correct size (up to a constant) in many cases.

Theorem 4.8. With the above notations,

P
{

δ̄n ≤ δ̂n ≤ δ̃n

}
≥ 1−3 ∑

δ j≥δ̄n

exp{−t j}.

Proof. The proof follows from the inequalities of Theorem 4.7 and Lemma 4.2 in
a rather straightforward way. Note that δ̄n ≥ U ]

n(1/2), so we can use it as δ �n in
Lemma 4.2. Denote H the event introduced in the proof of this lemma (it was called
En in the proof). Then

P(H)≥ 1− ∑
δ j≥δ̄n

e−t j

and, on the event H,
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F (δ )⊂ F̂n(3δ/2) and F̂n(δ )⊂F (2δ )

for all δ ≥ δ̄n.
First, the values of δ and t will be fixed. At the end, the resulting bounds will

be used for δ = δ j and t = t j. We will apply the inequalities of Theorem 4.7 to the
function class F ′(δ ). It easily follows from bound (4.11) that there exists an event
F = F(δ ) of probability at least 1− e−t such that, on the event H ∩F,

E‖Pn−P‖F ′(δ ) ≤ K
[
‖Rn‖F̂ ′

n(3/2δ ) + D̂n

(3
2

δ

)√ t
n

+
t
n

]
with a properly chosen K. Recalling the definition of Ūn and Ûn, the last bound
immediately implies that with a straightforward choice of numerical constants K̂, ĉ,
the inequality Ūn(δ )≤ Ûn(δ ). holds on the event H ∩F.

Quite similarly, using the inequalities of Theorem 4.7 (in particular, using bound
(4.10) to control the “empirical” diameter D̂(δ ) in terms of the “true” diameter
D(δ )) and also the desymmetrization inequality, it is easy to see that there exists an
event G = G(δ ) of probability at least 1−e−t such that the inequality Ûn(δ )≤ Ũn(δ )
holds on H ∩G with properly chosen numerical constants K̃, c̃ in the definition of
Ũn.

Using the resulting inequalities for δ = δ j ≥ δ̄n yields

P(E)≥ 1−3 ∑
δ j≥δ̄n

exp{−t j},

where

E :=
{
∀δ j ≥ δ̄n : Ūn(δ j)≤ Ûn(δ j)≤ Ũn(δ j)

}
⊃

⋃
j:δ j≥δ̄n

(H ∩F(δ j)∩G(δ j)).

By the definitions of Ūn,Ûn and Ũn, this also implies that, on the event E,

Ūn(δ )≤ Ûn(δ )≤ Ũn(δ )

for all δ ≥ δ̄n. By simple properties of ]-transform, we conclude that δ̄n ≤ δ̂n ≤ δ̃n
on the event E, which completes the proof.

ut

It is easily seen from the proof of Theorem 4.8 and from the definitions and
constructions of the events involved in this proof as well as in the proofs of Theorem
4.2 and Lemma 4.2 that on an event E of probability at least 1− p, where p =
3∑δ j≥δ̄n

e−t j , the following conditions hold:

(i) δ̄n ≤ δ̂n ≤ δ̃n;
(ii) E ( f̂ )≤ δ̄n;
(iii) for all f ∈F ,
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E ( f )≤ 2Ên( f )∨ δ̄n and Ên( f )≤ 3
2

(
E ( f )∨ δ̄n

)
;

(iv) for all δ ≥ δ̄n,
‖Pn−P‖F ′(δ ) ≤Un(δ ).

Sometimes it is convenient to deal with different triples (δ̄n, δ̂n, δ̃n) (defined in
terms of various complexity measures of the class F ) that still satisfy conditions
(i)-(iv) with a high probability. In fact, to satisfy conditions (ii)-(iv) it is enough to
choose δ̄n in such a way that

(v) δ̄n ≥U ]
n(1/2).

This is reflected in the following definition.

Definition 4.1. Suppose sequences {δ j}, {t j} and the corresponding function Un are
given. We will call δ̄n that depends on F and P an admissible distribution depen-
dent bound on the excess risk iff it satisfies condition (v), and, as a consequence,
also conditions (ii)-(iv). If (ii)-(iv) hold on an event E such that P(E)≥ 1− p, then
δ̄n will be called an admissible bound of confidence level 1− p. A triple (δ̄n, δ̂n, δ̃n),
such that δ̄n and δ̃n depend on F and P, δ̂n depends on F and X1, . . . ,Xn, and, for
some p ∈ (0,1), conditions (i)-(v) hold on an event E with P(E) ≥ 1− p, will be
called a triple bound on the excess risk of confidence level 1− p.

Such triple bounds will be used later in model selection methods based on penal-
ized empirical risk minimization.

4.3 Further Comments

Distribution dependent excess risk bounds of Section 4.1 are closely related to ratio
type empirical processes studied in the 80s by many authors (notably, by Alexander
[5]). This connection was emphasized by Giné and Koltchinskii [64] (see also Giné,
Koltchinskii and Wellner [63]). It was understood long ago that convergence rates
of statistical estimators based on empirical risk minimization could often be found
as solutions of certain fixed point equations defined in terms of proper complexi-
ties of underlying function classes and that such complexities are related to con-
tinuity moduli of empirical processes (see, e.g., van der Vaart and Wellner [142],
Section 3.2). Massart [102] and Koltchinskii and Panchenko [88] started defining
such fixed point based complexities in terms of continuity moduli of empirical and
Rademacher processes in a variety of problems of statistical learning theory. This
approach was developed further by Bartlett, Bousquet and Mendelson [15], Bous-
quet, Koltchinskii and Panchenko [34] and Koltchinskii [80]. In the last paper, the
data dependent Rademacher complexities were defined in terms of δ -minimal sets
of the true risk and the L2(Π)-diameters of these sets play an important role in
the analysis of the problem. We followed this approach here. Bartlett and Mendel-
son [17] introduced different definitions of localized Rademacher complexities that
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provided a way to distinguish between bounding excess risk of empirical risk min-
imizers and estimating the level sets of the true risk. Boucheron and Massart [32]
obtained concentration inequalities for the excess empirical risk in terms of fixed
point complexities.

The idea to use Rademacher processes (“Rademacher bootstrap”) in order to
construct data dependent excess risk bounds was introduced by Koltchinskii [78]
and Bartlett, Boucheron and Lugosi [14]. Koltchinskii and Panchenko [88] sug-
gested a localized version of such complexities (in the “zero error case”). This idea
was developed by Bartlett, Bousquet and Mendelson [15], Bousquet, Koltchinskii
and Panchenko [34] and Koltchinskii [80]. “The statistical version” of Talagrand’s
concentration inequality (Theorem 4.7) was essentially used (without stating it) in
Koltchinskii [80]. We follow the approach of this paper in our construction of data
dependent Rademacher complexities. This construction provides reasonable excess
risk bounds only when the L2(P)-diameters of the δ -minimal sets are small for small
values of δ . This is not the case when the true risk has multiple minima. Koltchinskii
[80] gives a simple example showing that, in the multiple minima case, the distribu-
tion dependent excess risk bounds developed in the previous section are not always
sharp. Moreover, there is a difficulty in estimation of the level sets of the risk (the
δ -minimal sets), which is of importance in constructing data dependent excess risk
bounds. Some more subtle geometric characteristics of the class F that can be used
in such cases to recover the correct convergence rates were suggested in Koltchin-
skii [80]. However, the extension of the theory of data dependent excess risk bounds
to the multiple minima case remains an open problem.

Recently, Hanneke [71] and Koltchinskii [84] used localized Rademacher com-
plexities in the development of active learning algorithms.

Boucheron, Bousquet and Lugosi [29] provide an excellent review of excess
risk bounds in empirical risk minimization and their role in classification problems.
Some further references can be found in this paper and in lecture notes by Massart
[103].



Chapter 5
Examples of Excess Risk Bounds in Prediction
Problems

Let (X ,Y ) be a random couple in S×T, T ⊂ R with distribution P. The distribution
of X will be denoted by Π . Assume that the random variable X is “observable”
and Y is to be predicted based on an observation of X . Let ` : T ×R 7→ R be a
loss function. Given a function g : S 7→ R, the quantity (` • g)(x,y) := `(y,g(x)) is
interpreted as a loss suffered when g(x) is used to predict y. The problem of optimal
prediction can be viewed as a risk minimization

E`(Y,g(X)) = P(`•g)−→ min, g : S 7→ R.

Since the distribution P and the risk function g 7→ P(` • g) are unknown, the risk
minimization problem is usually replaced by the empirical risk minimization

Pn(`•g) = n−1
n

∑
j=1

`(Yj,g(X j))−→ min, g ∈ G ,

where G is a given class of functions g : S 7→R and (X1,Y1), . . . ,(Xn,Yn) is a sample
of i.i.d. copies of (X ,Y ) (“training data”). Obviously, this can be viewed as a special
case of abstract empirical risk minimization problems discussed in Chapter 4. In
this case, the class F is the “loss class” F := {` • g : g ∈ G } and the goal of this
chapter is to derive excess risk bounds for concrete examples of loss functions and
function classes frequently used in statistics and learning theory.

Let µx denote a version of conditional distribution of Y given X = x. The follow-
ing representation of the risk holds under very mild regularity assumptions:

P(`•g) =
∫

S

∫
T

`(y;g(x))µx(dy)Π(dx).

Given a probability measure µ on T, let

uµ ∈ Argminu∈R̄

∫
T

`(y;u)µ(dy).

Denote

75
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g∗(x) := uµx = argminu∈R̄

∫
T

`(y;u)µx(dy).

Assume that the function g∗ is well defined and properly measurable. Then, for all g,
P(`•g)≥ P(`•g∗), which implies that g∗ is a point of global minimum of P(`•g).

Let
ĝn := argming∈G Pn(`•g)

be a solution of the corresponding empirical risk minimization problem (for sim-
plicity, assume its existence).

The following assumption on the loss function ` is often used in the analysis
of the problem: there exists a function D(u,µ) ≥ 0 such that for all measures µ =
µx, x ∈ S∫

T
(`(y,u)− `(y,uµ))2

µ(dy)≤ D(u,µ)
∫

T
(`(y,u)− `(y,uµ))µ(dy). (5.1)

In the case when the functions in the class G take their values in [−M/2,M/2] and

D(u,µx), |u| ≤ M/2,x ∈ S

is uniformly bounded by a constant D > 0, it immediately follows from (5.1) (just
by plugging in u = g(x), µ = µx and integrating with respect to Π ) that, for all
g ∈ G ,

P(`•g− `•g∗)2 ≤ DP(`•g− `•g∗). (5.2)

As a consequence, if g∗ ∈ G , then the L2(P)-diameter of the δ -minimal set of F is
bounded as follows:

D(F ;δ )≤ 2(Dδ )1/2.

Moreover, even if g∗ 6∈ G , the condition (4.5) might still hold for the loss class F
with f∗ = `•g∗, providing a link between the excess risk (approximation error) and
the variance of the “excess loss” and opening a way for Massart’s type penalization
methods (see sections 4.1, 6.3).

5.1 Regression with Quadratic Loss

We start with regression problems with bounded response and with quadratic loss.
To be specific, assume that Y takes values in T = [0,1] and `(y,u) := (y−u)2, y ∈
T,u ∈ R. The minimum of the risk

P(`•g) = E(Y −g(X))2

over the set of all measurable functions g : S 7→ R is attained at the regression func-
tion

g∗(x) := η(x) := E(Y |X = x).
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If G is a class of measurable functions from S into [0,1] such that g∗ ∈ G , then it is
easy to check that for all g ∈ G

EP(`•g) = ‖g−g∗‖2
L2(Π).

In general, the excess risk is given by

EP(`•g) = ‖g−g∗‖2
L2(Π)− inf

h∈G
‖h−g∗‖2

L2(Π).

The following lemma provides an easy way to bound the excess risk from below in
the case of a convex class G and ḡ := argming∈G ‖g−g∗‖2

L2(Π).

Lemma 5.1. If G is a convex class of functions, then

2EP(`•g)≥ ‖g− ḡ‖2
L2(Π).

Proof. The identity
u2 + v2

2
−
(

u+ v
2

)2

=
(u− v)2

4

implies that

(g−g∗)2 +(ḡ−g∗)2

2
=
(

g+ ḡ
2

−g∗

)2

+
(g− ḡ)2

4
.

Integrating the last indentity with respect to Π yields

‖g−g∗‖2
L2(Π) +‖ḡ−g∗‖2

L2(Π)

2
=
∥∥∥∥g+ ḡ

2
−g∗

∥∥∥∥2

L2(Π)
+
‖g− ḡ‖2

L2(Π)

4
.

Since G is convex and g, ḡ ∈ G , we have g+ḡ
2 ∈ G and∥∥∥∥g+ ḡ

2
−g∗

∥∥∥∥2

L2(Π)
≥ ‖ḡ−g∗‖2

L2(Π).

Therefore,

‖g−g∗‖2
L2(Π) +‖ḡ−g∗‖2

L2(Π)

2
≥ ‖ḡ−g∗‖2

L2(Π) +
‖g− ḡ‖2

L2(Π)

4
,

implying the claim.
ut

As before, we denote F := {`•g : g ∈ G }. It follows from Lemma 5.1 that

F (δ )⊂ {`•g : ‖g− ḡ‖2
L2(Π) ≤ 2δ}.

Also, for all functions g1,g2 ∈ G and all x ∈ S,y ∈ T,
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∣∣∣= ∣∣∣(y−g1(x))2− (y−g2(x))2

∣∣∣
= |g1(x)−g2(x)||2y−g1(x)−g2(x)| ≤ 2|g1(x)−g2(x)|,

which implies

P
(
`•g1− `•g2

)2
≤ 4‖g1−g2‖2

L2(Π).

Hence

D(δ )≤ 2sup
{
‖g1−g2‖L2(Π) : ‖g1− ḡ‖2

L2(Π)≤ 2δ ,‖g2− ḡ‖2
L2(Π)≤ 2δ

}
≤ 4

√
2
√

δ .

In addition, by symmetrization inequality,

φn(δ ) = E‖Pn−P‖F ′(δ ) ≤ 2E‖Rn‖F ′(δ ) ≤

2Esup
{∣∣∣Rn(`•g1− `•g2)

∣∣∣ : g1,g2 ∈ G ,‖g1− ḡ‖2
L2(Π)∨‖g2− ḡ‖2

L2(Π) ≤ 2δ

}
≤

4Esup
{∣∣∣Rn(`•g− `• ḡ)

∣∣∣ : g ∈ G ,‖g− ḡ‖2
L2(Π) ≤ 2δ

}
,

and since `(y, ·) is Lipschitz with constant 2 on the interval [0,1] one can use the
contraction inequality to get

φn(δ )≤ 16Esup{|Rn(g− ḡ)| : g ∈ G ,‖g− ḡ‖2
L2(Π) ≤ 2δ}=: ψn(δ ).

As a result, we get

φ
[
n(σ)≤ ψ

[
n(σ) and

√
(D2)[(σ)≤ 4

√
2.

This yields an upper bound on the quantity σ t
n involved in Theorem 4.3:

σ
t
n ≤ K

(
ψ

]
n

(
1

2q

)
+

t
n

)
,

and the following statement is a corollary of this theorem.

Theorem 5.1. Let G be a convex class of functions from S into [0,1] and let ĝ de-
notes the least squares estimator of the regression function

ĝ := argming∈G n−1
n

∑
j=1

(Yj −g(X j))2.

Then, there exist constants K > 0,C > 0 such that for all t > 0,

P
{
‖ĝ−g∗‖2

L2(Π) ≥ inf
g∈G

‖g−g∗‖2
L2(Π) +K

(
ψ

]
n

(
1

2q

)
+

t
n

)}
≤Ce−t .
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A slightly weaker result holds in the case when the class G is not necessarily
convex. It follows from Lemma 4.1. Note that the condition

4(P(`•g)−P(`•g∗)) = 4‖g−g∗‖2
L2(Π) =: ρ

2
P(`•g, `•g∗)≥ P(`•g− `•g∗)2

is satisfied for all functions g : S 7→ [0,1]. Also,

ωn(δ ) = E sup
4‖g−ḡ‖2

L2(Π)≤δ

∣∣∣(Pn−P)(`•g− `• ḡ)
∣∣∣≤ 1

2
ψn(δ/8)

(by symmetrization and contraction inequalities). Therefore, the following result
holds.

Theorem 5.2. Let G be a class of functions from S into [0,1] and let ĝ denote the
least squares estimator of the regression function. Then, there exist constants K >
0,C > 0 such that for all t > 0,

P
{
‖ĝ−g∗‖2

L2(Π) ≥ (1+ ε) inf
g∈G

‖g−g∗‖2
L2(Π) +

1
4

ψ
]
n

(
ε

K

)
+

Kt
nε

}
≤Ce−t .

Clearly, similar results hold (with different constants) if the functions in G take
their values in an arbitrary bounded interval.

Several more specific examples are discussed below.

• Example 1. Finite dimensional classes. Suppose that L ⊂ L2(Π) is a finite di-
mensional linear space with dim(L) = d < ∞ and let G ⊂ L be a convex class
of functions taking values in a bounded interval (for simplicity, [0,1]). It follows
from Proposition 3.2 that

ψn(δ )≤C

√
dδ

n
with some constant C > 0. Hence,

ψ
]
n

(
1

2q

)
≤ K

d
n
,

and Theorem 5.1 implies that

P
{
‖ĝ−g∗‖2

L2(Π) ≥ inf
g∈G

‖g−g∗‖2
L2(Π) +K

(
d
n

+
t
n

)}
≤Ce−t

with some constant K > 0.
• Example 2. Reproducing kernel Hilbert spaces (RKHS). Suppose G is the

unit ball in RKHS HK :

G := {h : ‖h‖HK ≤ 1}.

Denote {λk} the eigenvalues of the integral operator from L2(Π) into L2(Π) with
kernel K. Then Proposition 3.3 implies that
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ψn(δ )≤C
(

n−1
∞

∑
j=1

(λ j ∧δ )
)1/2

.

The function

δ 7→
(

n−1
∞

∑
j=1

(λ j ∧δ )
)1/2

=: γn(δ )

is strictly concave with γn(0) = 0, and, as a result,

γ
[
n(δ ) =

γn(δ )
δ

is strictly decreasing. By a simple computation, Theorem 5.1 yields

P
{
‖ĝ−g∗‖2

L2(Π) ≥ inf
g∈G

‖g−g∗‖2
L2(Π) +K

(
γ

]
n(1)+

t
n

)}
≤Ce−t

with some constant K > 0.
• Example 3. VC-subgraph classes. Suppose that G is a VC-subgraph class of

functions g : S 7→ [0,1] of VC-dimension V. Then the function ψn(δ ) can be
upper bounded using (3.17):

ψn(δ )≤C
[√

V δ

n
log

1
δ

∨V
n

log
1
δ

]
.

Therefore

ψ
]
n(ε)≤ CV

nε2 log
nε2

V
.

Theorem 5.2 implies

P
{
‖ĝ−g∗‖2

L2(Π) ≥ (1+ε) inf
g∈G

‖g−g∗‖2
L2(Π)+K

(
V

nε2 log
nε2

V
+

t
nε

)}
≤Ce−t .

• Example 4. Entropy conditions. In the case when the entropy of the class G
(random, uniform, bracketing, etc.) is bounded by O(ε−2ρ) for some ρ ∈ (0,1),
we typically have

ψ
]
n(ε) = O

(
n−1/(1+ρ)

)
.

For instance, if (3.18) holds, then it follows from (3.19) (with F ≡ U = 1 for
simplicity) that

ψn(δ )≤ K
(

Aρ

√
n

δ
(1−ρ)/2

∨ A2ρ/(ρ+1)

n1/(1+ρ)

)
.

Therefore,

ψ
]
n(ε)≤ CA2ρ/(1+ρ)

(nε2)1/(1+ρ) .



5.2 Empirical Risk Minimization with Convex Loss 81

In this case Theorem 5.2 gives the bound

P
{
‖ĝ−g∗‖2

L2(Π)≥ (1+ε) inf
g∈G

‖g−g∗‖2
L2(Π)+K

(
A2ρ/(1+ρ)

(nε2)1/(1+ρ) +
t

nε

)}
≤Ce−t .

• Example 5. Convex hulls. If

G := conv(H ) :=
{

∑
j

λ jh j : ∑
j
|λ j| ≤ 1,h j ∈H

}
is the symmetric convex hull of a given VC-type class H of measurable func-
tions from S into [0,1], then the condition of the previous example is satisfied
with ρ := V

V+2 . This yields

ψ
]
n(ε)≤

(
K(V )
nε2

) 1
2

2+V
1+V

and Theorem 5.1 yields

P
{
‖ĝ−g∗‖2

L2(Π) ≥ inf
g∈G

‖g−g∗‖2
L2(Π) +K

((
1
n

) 1
2

2+V
1+V

+
t
n

)}
≤Ce−t

with some constant K > 0 depending on V.

5.2 Empirical Risk Minimization with Convex Loss

A standard assumption on the loss function ` that makes the empirical risk mini-
mization problem computationally tractable is that `(y, ·) is a convex function for all
y ∈ T. Assuming, in addition, that G is a convex class of functions, the convexity
of the loss implies that the empirical risk G 3 g 7→ Pn(` • g) is a convex functional
and the empirical risk minimization is a convex minimization problem. We will call
the problems of this type convex risk minimization. The least squares and the L1-
regression as well as some of the methods of large margin classification (such as
boosting) are examples of convex risk minimization.

The convexity assumption also simplifies the analysis of empirical risk mini-
mization problems. In particular, it makes easier proving the existence of the mini-
mal point g∗, checking condition (5.1), etc. In this section, we extend the results for
L2-regression to this more general framework.

Assume the functions in G take their values in [−M/2,M/2]. We will need the
following assumptions on the loss function ` :

• ` satisfies the Lipschitz condition with some L > 0

∀y ∈ T ∀u,v ∈ [−M/2,M/2] |`(y,u)− `(y,v)| ≤ L|u− v|; (5.3)
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• the following assumption on convexity modulus of ` holds for some Λ > 0 :

∀y ∈ T ∀u,v ∈ [−M/2,M/2]
`(y,u)+ `(y,v)

2
−`

(
y;

u+ v
2

)
≥Λ |u−v|2. (5.4)

Note that, if g∗ is bounded by M/2, conditions (5.3) and (5.4) imply (5.1) with
D(u,µ) ≤ L2

2Λ
. To see this, it is enough to use (5.4) with v = uµ , µ = µx and to

integrate it with respect to µ. As a result, for the function

L(u) :=
∫

T
`(y,u)µ(dy),

whose minimum is attained at uµ , the following bound holds:

L(u)−L(uµ)
2

=
L(u)+L(uµ)

2
−L(uµ)≥

L(u)+L(uµ)
2

−L
(

u+uµ

2

)
≥Λ |u−uµ |2. (5.5)

On the other hand, the Lipschitz condition implies that∫
T
|`(y,u)− `(y,uµ)|2µ(dy)≤ L2|u−uµ |2, (5.6)

and (5.1) follows from (5.5) and (5.6). This nice and simple convexity argument has
been used repeatedly in the theory of excess risk bounds (see, for instance, Bartlett,
Jordan and McAuliffe [16]). We will also use it in the proof of Theorem 5.3.

Theorem 5.3. Suppose that G is a convex class of functions taking values in
[−M/2,M/2]. Assume that the minimum of P(` • g) over G is attained at ḡ ∈ G
and

ωn(δ ) := E sup
g∈G ,‖g−ḡ‖2

L2(Π)≤δ

|Rn(g− ḡ)|.

Denote
ĝ := argming∈G Pn(`•g).

Then there exist constants K > 0,C > 0,c > 0 such that

P
{

P(`• ĝ)≥ inf
g∈G

P(`•g)+K
(

Λω
]
n

(
cΛ

L

)
+

L2

Λ

t
n

)}
≤Ce−t , t > 0.

Proof. Note that by Lipschitz condition (5.3), for all g1,g2 ∈ G ,

P|`•g1− `•g2|2 ≤ L2‖g1−g2‖2
L2(Π).

On the other hand, by (5.4), for all g ∈ G ,x ∈ S,y ∈ T,
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`(y,g(x))+ `(y, ḡ(x))
2

≥ `

(
y;

g(x)+ ḡ(x)
2

)
+Λ |g(x)− ḡ(x)|2.

Integrating this inequality and observing that g+ḡ
2 ∈ G and hence

P
(

`•
(

g+ ḡ
2

))
≥ P(`• ḡ),

yields
P(`•g)+P(`• ḡ)

2
≥ P(`• ḡ)+ΛΠ |g− ḡ|2,

or
P(`•g)−P(`• ḡ)≥ 2ΛΠ |g− ḡ|2.

For the loss class F = {`•g : g ∈ G }, this gives the following upper bound on the
L2(P)-diameter of the δ -minimal set F (δ ) : D2(δ ) ≤ 2δ

Λ
. By symmetrization and

contraction inequalities, it is easy to bound

φn(δ ) = E‖Pn−P‖F ′(δ )

in terms of ωn(δ ) :

φn(δ )≤CLωn

(
δ

2Λ

)
.

By a simple computation, the quantity σ t
n used in Theorem 4.3 is bounded as fol-

lows:

σ
t
n ≤ K

(
Λω

]
n

(
cΛ

L

)
+

L2

Λ

t
n

)
.

Under the additional assumption that ` is uniformly bounded by 1 in T×[−M/2,M/2],
Theorem 4.3 implies the result. To get rid of the extra assumption, suppose that `
is uniformly bounded by D on T × [−M/2,M/2]. Then the result holds for the loss
function `/D. For this loss function, L and Λ are replaced by L/D and Λ/D, and
the expression

Λω
]
n

(
cΛ

L

)
+

L2

Λ

t
n

becomes

Λ/Dω
]
n

(
cΛ/D
L/D

)
+

L2/D2

Λ/D
t
n

=
1
D

(
Λω

]
n

(
cΛ

L

)
+

L2

Λ

t
n

)
,

so the result follows by rescaling.
ut

As an example, consider the case when G := Mconv(H ) for a base class H
of functions from S into [−1/2,1/2]. There are many powerful functional gradient
descent type algorithms (such as boosting) that provide an implementation of convex
empirical risk minimization over a convex hull or a linear span of a given base class.
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Assume that condition (3.16) holds for the class H with some V > 0, i.e., H is a
VC-type class. Define

πn(M,L,Λ ; t) := K
[

ΛMV/(V+1)
( L

Λ

∨
1
)(V+2)/(V+1)

n−
1
2

V+2
V+1 +

L2

Λ

t
n

]
with a numerical constant K. The next result is a slightly generalized version of a
theorem due to Bartlett, Jordan and McAuliffe [16].

Theorem 5.4. Under the conditions (5.3) and (5.4),

P
{

P(`• ĝn)≥ min
g∈G

P(`•g)+πn(M,L,Λ ; t)
}
≤Ce−t .

Proof. To apply Theorem 5.3, it is enough to bound the function ωn. Since G :=
Mconv(H ), where H is a VC-type class of functions from S into [−1/2,1/2],
condition (3.16) holds for H with envelope F ≡ 1 (see Theorem 3.13). Together
with (3.19), this gives

ωn(δ )≤C
[

Mρ

√
n

δ
(1−ρ)/2

∨M2ρ/(ρ+1)

n1/(1+ρ)

]
with ρ := V

V+2 . Hence,

ω
]
n(ε)≤C

M2ρ/(1+ρ)

n1/(1+ρ) ε
−2/(1+ρ)

for ε ≤ 1. If `(y, ·) is bounded by 1 in T × [−M/2,M/2], then Theorem 5.3 yields

P
{

P(`• ĝ)≥ min
g∈G

P(`•g)+πn(M,L,Λ ; t)
}
≤Ce−t .

To remove the assumption that ` is bounded by 1, one should use the same rescaling
argument as in the proof of Theorem 5.3.

ut

5.3 Binary Classification Problems

Binary classification is a prediction problem with T = {−1,1} and `(y,u) := I(y 6=
u), y,u ∈ {−1,1} (binary loss). It is a simple example of risk minimization with a
nonconvex loss function.

Measurable functions g : S 7→ {−1,1} are called classifiers. The risk of a classi-
fier g with respect to the binary loss

L(g) := P(`•g) = EI(Y 6= g(X)) = P{Y 6= g(X)}
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is called the generalization error. It is well known that the minimum of the general-
ization error over the set of all classifiers is attained at the classifier

g∗(x) = sign(η(x)),

where η(x) = E(Y |X = x) is the regression function. The function g∗ is called the
Bayes classifier. It is also well known that for all classifiers g

L(g)−L(g∗) =
∫
{x:g(x)6=g∗(x)}

|η(x)|Π(dx) (5.7)

(see, e.g., [49]).
Suppose there exists h ∈ (0,1] such that for all x ∈ S

|η(x)| ≥ h. (5.8)

The parameter h characterizes the level of noise in classification problems: for small
values of h, η(x) can get close to 0 and, in such cases, correct classification is harder
to achieve. The following condition provides a more flexible way to describe the
level of the noise:

Π{x : |η(x)| ≤ t} ≤Ctα (5.9)

for some α > 0. It is often referred to as “Tsybakov’s low noise assumption” or
“Tsybakov’s margin assumption” (sometimes, condition (5.8) is called “Massart’s
low noise assumption”).

Lemma 5.2. Under condition (5.8),

L(g)−L(g∗)≥ hΠ({x : g(x) 6= g∗(x)}).

Under condition (5.9),

L(g)−L(g∗)≥ cΠ
κ({x : g(x) 6= g∗(x)}),

where κ = 1+α

α
and c > 0 is a constant.

Proof. The first bound follows immediately from formula (5.7). To prove the second
bound, use the same formula to get

L(g)−L(g∗)≥ tΠ
{

x : g(x) 6= g∗(x), |η(x)|> t
}
≥

tΠ
{

x : g(x) 6= g∗(x)
}
− tΠ{x : |η(x)| ≤ t} ≥ tΠ

{
x : g(x) 6= g∗(x)

}
−Ct1+α .

It remains to substitute in the last bound the value of t that solves the equation

Π

{
x : g(x) 6= g∗(x)

}
= 2Ctα

to get the result.
ut
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Let G be a class of binary classifiers. Denote

ĝ := argming∈G Ln(g),

where

Ln(g) := n−1
n

∑
j=1

I(Yj 6= g(X j))

is the empirical risk with respect to the binary loss (the training error).
First we obtain upper bounds on the excess risk L(ĝ)− L(g∗) of ĝ in terms of

random shattering numbers

∆
G (X1, . . . ,Xn) := card

{
(g(X1), . . . ,g(Xn)) : g ∈ G

}
and parameter h involved in condition (5.8).

Theorem 5.5. Suppose condition (5.8) holds with some h ∈ (0,1]. If g∗ ∈ G , then

P
{

L(ĝ)−L(g∗)≥ K
(

E log∆G (X1, . . . ,Xn)
nh

+
t

nh

)}
≤Ce−t

with some constants K,C > 0. In the general case, when g∗ does not necessarily
belong to G , the following bound holds for all ε ∈ (0,1) :

P
{

L(ĝ)−L(g∗)≥ (1+ ε)
(

inf
g∈G

L(g)−L(g∗)
)

+

K
(

E log∆G (X1, . . . ,Xn)
nhε2 +

t
nhε

)}
≤Ce−t

Proof. Note that

|(`•g)(x,y)− (`•g∗)(x,y)|= I(g(x) 6= g∗(x)),

which implies∥∥∥`•g− `•g∗
∥∥∥2

L2(P)
= P|(`•g)− (`•g∗)|2 = Π{x : g(x) 6= g∗(x)}.

As always, denote F := {` • g : g ∈ G }. Under the assumption g∗ ∈ G , the first
inequality of Lemma 5.2 implies that

F (δ )=
{

`•g : E (`•g)= L(g)−L(g∗)≤ δ

}
⊂
{

`•g :
∥∥∥`•g−`•g∗

∥∥∥
L2(P)

≤
√

δ

h

}
,

so the L2(P)-diameter D(δ ) of the class F (δ ) satisfies D(δ )≤ 2
√

δ

h . Next we have
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φn(δ ) = E‖Pn−P‖F ′(δ ) ≤ 2E sup
g∈G ,Π({g6=g∗})≤δ/h

|(Pn−P)(`•g− `•g∗)|. (5.10)

Denote

D :=
{
{(x,y) : y 6= g(x)} : g ∈ G

}
and D∗ := {(x,y) : y 6= g∗(x)}.

It is easy to check that for

D1 := {(x,y) : y 6= g1(x)}, D2 := {(x,y) : y 6= g2(x)},

we have
Π({g1 6= g2}) = P(D14D2).

It follows from (5.10) that

φn(δ )≤ 2E sup
D∈D ,P(D4D∗)≤δ/h

|(Pn−P)(D\D∗)|+

2E sup
D∈D ,P(D4D∗)≤δ/h

|(Pn−P)(D∗ \D)|.

Theorem 3.9 yields

φn(δ )≤ K
[√

δ

h

√
E log∆D ((X1,Y1), . . . ,(Xn,Yn))

n

∨
E log∆D ((X1,Y1), . . . ,(Xn,Yn))

n

]
with some constant K > 0. Also, it is easy to observe that

∆
D ((X1,Y1), . . . ,(Xn,Yn)) = ∆

G (X1, . . . ,Xn)

which gives the bound

φn(δ )≤ K
[√

δ

h

√
E log∆G (X1, . . . ,Xn)

n

∨ E log∆G (X1, . . . ,Xn)
n

]
.

The bounds on φn(δ ) and D(δ ) provide a way to control the quantity σ t
n involved in

Theorem 4.3:

σ
t
n ≤ K

[
E log∆G (X1, . . . ,Xn)

nh
+

t
nh

]
with some constant K > 0, which implies the first bound of the theorem.

The proof of the second bound follows the same lines and it is based on Lemma
4.1.

ut
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The next theorem provides bounds on excess risk in terms of shattering numbers
under Tsybakov’s condition (5.9). We skip the proof which is similar to that of
Theorem 5.5.

Theorem 5.6. Suppose condition (5.9) holds with some α > 0. Let κ := 1+α

α
. If

g∗ ∈ G , then

P
{

L(ĝ)−L(g∗)≥K
((

E log∆G (X1, . . . ,Xn)
n

)κ/(2κ−1)

+
(

t
n

)κ/(2κ−1))}
≤Ce−t

with some constants K,C > 0.

We will also mention the following result in spirit of Tsybakov [138].

Theorem 5.7. Suppose, for some A > 0,ρ ∈ (0,1)

logN(G ;L2(Pn);ε)≤
(

A
ε

)2ρ

(5.11)

and condition (5.9) holds with some α > 0. Let κ := 1+α

α
. If g∗ ∈ G , then

P
{

L(ĝ)−L(g∗)≥ K
((

1
n

)κ/(2κ+ρ−1)

+
(

t
n

)κ/(2κ−1))}
≤Ce−t

with some constant K,C > 0 depending on A.

The proof is very similar to the proofs of the previous results except that now
(3.19) is used to bound the empirical process. One can also use other notions of
entropy such as entropy with bracketing and obtain very similar results.

We conclude this section with a theorem by Giné and Koltchinskii [64] that re-
fines an earlier result by Massart and Nedelec [104]. To formulate it, let

C :=
{
{g = 1} : g ∈ G

}
, C∗ := {g∗ = 1},

and define the following local version of Alexander’s capacity function of the class
C (see [5]):

τ(δ ) :=
Π

(⋃
C∈C ,Π(C4C∗)≤δ (C4C∗)

)
δ

.

Theorem 5.8. Suppose condition (5.8) holds with some h∈ (0,1]. Suppose also that
C is a VC-class of VC-dimension V. If g∗ ∈ G , then

P
{

L(ĝ)−L(g∗)≥ K
(

V
nh

logτ

(
V

nh2

)
+

t
nh

)}
≤Ce−t

with some constants K,C > 0. In the general case, when g∗ does not necessarily
belong to G , the following bound holds for all ε ∈ (0,1) :
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P
{

L(ĝ)−L(g∗)≥ (1+ ε)
(

inf
g∈G

L(g)−L(g∗)
)

+

K
(

V
nhε2 logτ

(
V

nh2ε2

)
+

t
nhε

)}
≤Ce−t .

Proof. We give only a sketch of the proof that relies on bound (3.17). For instance,
to prove the second inequality this bound is used to control

ωn(δ ) = E sup
g∈G ,‖`•g−`•ḡ‖2

L2(P)≤δ

|(Pn−P)(`•g− `• ḡ)|,

where ḡ is a minimal point of P(` • g) on G . To use (3.17) one has to find the
envelope

Fδ (x,y) := sup
g∈G ,‖`•g−`•ḡ‖2

L2(P)≤δ

|`•g(x,y)− `• ḡ(x,y)|.

Easy computations show that

‖Fδ‖L2(Π) = 2
√

δτ(δ )

and an application of (3.17) yields

ωn(δ )≤ K
[√

V δ

n
logτ(δ )

∨V
n

logτ(δ )
]

with some constant K. This implies that, for all ε ∈ (0,1),

ω
]
n(ε)≤ K

V
nε2 logτ

(
V

nε2

)
with some constant K > 0. Now we can use Lemma 4.1 to complete the proof of the
second bound of the theorem (condition (4.5) of this lemma holds with D = 1

h ).
ut

A straightforward upper bound on the capacity function τ(δ ) ≤ 1
δ

leads to the
result of Massart and Nedelec [104] in which the main part of the error term is
V
nh log

(
nh2

V

)
. However, it is easy to find examples in which the capacity τ(δ ) is uni-

formly bounded. For instance, suppose that S = [0,1]d , Π is the Lebesgue measure
on S, C is a VC-class of convex sets, C∗ ∈C and Π(C∗) > 0. Suppose also that with
some constant L > 0

L−1h(C,C∗)≤ Π(C4C∗)≤ Lh(C,C∗),C ∈ C ,

where h is the Hausdorff distance. Then the boundedness of τ easily follows. In such
cases, the main part of the error is of the order V

nh (without a logarithmic factor).



90 5 Examples of Excess Risk Bounds in Prediction Problems

5.4 Further Comments

The idea to control the variance of a loss in terms of its expectation has been ex-
tensively used by Massart [102] (and even in a much earlier work of Birgé and
Massart) as well as in the learning theory literature Mendelson [108], Bartlett, Jor-
dan and McAuliffe [16], Blanchard, Lugosi and Vayatis [26], Bartlett, Bousquet and
Mendelson [15].

L2(Π)-error bounds in regression problems with quadratic loss, given in Exam-
ples 1–5 of Section 5.1, are well known. In particular, the bound of Example 2
(regression in RKHS) goes back to Mendelson [109] and the bound of Example 5
(regression in convex hulls) to Blanchard, Lugosi and Vayatis [26].

Empirical risk minimization with convex loss was studied in detail by Blanchard,
Lugosi and Vayatis [26] and Bartlett, Jordan and McAuliffe [16]. In the last paper,
rather subtle bounds relating excess risks with respect to a “surrogate” convex loss
and with respect to the binary classification loss were also studied. Earlier, Zhang
[149] provided initial versions of such bounds.

Classification problems under condition (5.9) (“Tsybakov’s low noise assump-
tion”) have been intensively studied by Mammen and Tsybakov [101] and, espe-
cially, by Tsybakov [138]. Condition (5.8) was later suggested by Massart and used
in a number of papers (see, e.g., [104]). Koltchinskii [80] provided an interpretation
of assumptions of this type as special cases of conditions on the L2(Π)-diameters
of δ -minimal sets of the true risk (see Chapter 4).

In the recent years, the capacity function τ used in Theorem 5.8 (see also Giné
and Koltchinskii [64]) started playing an important role in the analysis of active
learning algorithms (see Hanneke [71] and Koltchinskii [84]).



Chapter 6
Penalized Empirical Risk Minimization and
Model Selection Problems

Let F be a class of measurable functions on (S,A ) and let {Fk : k≥ 1} be a family
of its subclasses Fk ⊂F ,k ≥ 1. The subclasses Fk will be used to approximate a
solution of the problem of risk minimization (1.1) over a large class F by a family
of solutions of “smaller” empirical risk minimization problems

f̂k := f̂n,k := argmin f∈Fk
Pn f .

For simplicity, we assume that the solutions { f̂n,k} exist.
In what follows, we call

EP(F ; f ) = P f − inf
f∈F

P f

the global excess risk of f ∈F . Given k ≥ 1, we call EP(Fk; f ) = P f − inf f∈Fk P f
the local excess risk of f ∈Fk.

Usually, the classes Fk,k ≥ 1 represent losses associated with certain statistical
models and the problem is to use the estimators { f̂n,k} to construct a function f̂ ∈F

(for instance, to choose one of the estimators f̂n,k) with a small value of the global
excess risk EP(F ; f̂ ). To be more precise, suppose that there exists an index k(P)
such that

inf
Fk(P)

P f = inf
F

P f .

In other words, the risk minimizer over the whole class F belongs to a subclass
Fk(P). A statistician does not know the distribution P and, hence, the index k(P) of
the correct model. Let δ̃n(k) be an upper bound on the local excess risk EP(Fk; f̂n,k)
of f̂n,k that provides an “optimal“, or just a ”desirable“ accuracy of solution of em-
pirical risk minimization problem on the class Fk. If there were an oracle who could
tell the statistician that, say, k(P) = 5 is the correct index of the model, then the risk
minimization problem could be solved with an accuracy at least δ̃n(5). The model
selection problem deals with constructing a data dependent index k̂ = k̂(X1, . . . ,Xn)
of the model such that the excess risk of f̂ := f̂n,k̂ is within a constant from δ̃n(k(P))

91
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with a high probability. More generally, in the case when the global minimum of the
risk P f , f ∈F is not attained in any of the classes Fk, one can still try to show that
with a high probability

EP(F ; f̂ )≤C inf
k

[
inf
Fk

P f −P f∗+ π̃n(k)
]
,

where
f∗ := argmin f∈F P f .

For simplicity, assume the existence of a function f∗ ∈F at which the global min-
imum of the risk P f , f ∈F is attained. The quantities π̃n(k) involved in the above
bound are ”ideal“ distribution dependent complexity penalties associated with risk
minimization over Fk and C is a constant (preferably, C = 1 or at least close to 1).
The inequalities that express such a property are often called oracle inequalities.

Among the most popular approaches to model selection are penalization meth-
ods, in which k̂ is defined as a solution of the following minimization problem

k̂ := argmink≥1

{
Pn f̂k + π̂n(k)

}
(6.1)

where π̂n(k) is a complexity penalty (generally, data dependent) associated with the
class (the model) Fk. In other words, instead of minimizing the empirical risk on
the whole class F we now minimize a penalized empirical risk.

We discuss below penalization strategies with the penalties based on data depen-
dent bounds on excess risk developed in the previous sections. Penalization methods
have been widely used in a variety of statistical problems, in particular, in nonpara-
metric regression. At the same time, there are difficulties in extending penalization
method of model selection to some other problems, such as nonparametric classifi-
cation.

To provide some motivation for the approach discussed below, note that ideally
one would want to find k̂ by minimizing the global excess risk EP(F ; f̂n,k) of the
solutions of ERM problems with respect to k. This is impossible without the help
of the oracle. Instead, data dependent upper confidence bounds on the excess risk
have to be developed. The following trivial representation (that plays the role of
”bias-variance decomposition“)

EP(F ; f̂n,k) = inf
Fk

P f −P f∗+EP(Fk; f̂n,k)

shows that a part of the problem is to come up with data dependent upper bounds
on the local excess risk EP(Fk; f̂n,k). This was precisely the question studied in the
previous sections. Another part of the problem is to bound infFk P f −P f∗ in terms
of infFk Pn f −Pn f∗, which is what will be done in Lemma 6.3 below. Combining
these two bounds provides an upper bound on the global excess risk that can be now
minimized with respect to k (the term Pn f∗ can be dropped since it does not depend
on k).
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Suppose that for each class Fk, the function Un(·) = Un,k(·) is given (it was de-
fined in Section 4.1 in terms of sequences {δ j} {t j} that, in this case, might also de-
pend on k). In what follows, we will assume that, for each k≥ 1, (δ̄n(k), δ̂n(k), δ̃n(k))
is a triple bound on the excess risk for the class Fk of confidence level 1− pk (see
Definition 4.1). Suppose p := ∑

∞
k=1 pk < 1. Then, there exists an event E of prob-

ability at least 1− p such that on this event the following properties hold for all
k ≥ 1 :

(i) U ]
n,k

(
1
2

)
≤ δ̄n(k)≤ δ̂n(k)≤ δ̃n(k);

(ii) E (Fk, f̂n,k)≤ δ̄n(k);
(iii) for all f ∈Fk,

EP(Fk, f )≤ 2EPn(Fk; f )∨ δ̄n(k)

and
EPn(Fk; f )≤ 3

2

(
EP(Fk; f )∨ δ̄n(k)

)
;

(iv) for all δ ≥ δ̄n(k), ‖Pn−P‖F ′
k(δ ) ≤Un,k(δ ).

In the next sections, we study several special cases of general penalized empirical
risk minimization problem in which it will be possible to prove oracle inequalities.

6.1 Penalization in Monotone Families Fk

In this section, we make a simplifying assumption that {Fk} is a monotone family,
that is, Fk ⊂Fk+1, k ≥ 1. Let F :=

⋃
j≥1 F j. Define

k̂ := argmink≥1

[
inf

f∈Fk
Pn f +4δ̂n(k)

]
and f̂ := f̂k̂. The next statement is akin to the result of Bartlett [13].

Theorem 6.1. The following oracle inequality holds with probability at least 1− p :

EP(F ; f̂ )≤ inf
j≥1

[
inf
F j

P f − inf
F

P f +9δ̃n( j)
]
.

Proof. We will consider the event E of probability at least 1− p on which properties
(i)–(iv) hold. Then, for all j ≥ k̂,

EP(F j; f̂ )≤ 2EPn(F j; f̂ )∨ δ̄n( j)≤ 2
[

inf
f∈Fk̂

Pn f − inf
f∈F j

Pn f
]
+ δ̄n( j)≤

2
[

inf
f∈Fk̂

Pn f +4δ̂n(k̂)− inf
f∈F j

Pn f −4δ̂n( j)
]
+9δ̂n( j),
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which is bounded by 9δ̃n( j) since, by the definition of k̂, the term in the bracket is
nonpositive and δ̂n( j)≤ δ̃n( j). This implies

P f̂ ≤ inf
f∈F j

P f +9δ̃n( j).

The next case is when j < k̂ and δ̂n( j)≥ δ̂n(k̂)/9. Then EP(Fk̂; f̂k̂)≤ δ̄n(k̂), and, as
a consequence,

P f̂ ≤ inf
f∈Fk̂

P f + δ̂n(k̂)≤ inf
f∈F j

P f +9δ̃n( j).

The last case to consider is when j < k̂ and δ̂n( j) < δ̂n(k̂)/9. In this case, the defi-
nition of k̂ implies that

inf
f∈F j

EPn(Fk̂; f ) = inf
f∈F j

Pn f − inf
f∈Fk̂

Pn f ≥ 4(δ̂n(k̂)− δ̂n( j))≥ 3δ̂n(k̂).

Hence,
3
2

(
inf

f∈F j
EP(Fk̂; f )∨ δ̄n(k̂)

)
≥ inf

f∈F j
EPn(Fk̂; f )≥ 3δ̂n(k̂),

which yields
3 inf

f∈F j
EP(Fk̂; f )+3δ̄n(k̂)≥ 6δ̂n(k̂).

Therefore
inf

f∈F j
EP(Fk̂; f )≥ δ̂n(k̂)≥ EP(Fk̂; f̂ ).

As a consequence,
P f̂ ≤ inf

f∈F j
P f ≤ inf

f∈F j
P f +9δ̃n( j).

This completes the proof.
ut

Example. Consider a regression problem with quadratic loss and with a bounded
response variable Y ∈ [0,1] (see Section 5.1). Let Gk, k ≥ 1 be convex classes of
functions g taking values in [0,1] such that Gk ⊂ Gk+1, k ≥ 1. Moreover, suppose
that for all k ≥ 1 Gk ⊂ Lk, where Lk is a finite dimensional space of dimension dk.
Let

ĝn,k := argming∈Gk
n−1

n

∑
j=1

(Yj −g(X j))2.

Take a nondecreasing sequence {tk} of positive numbers such that

∑
k≥1

e−tk = p ∈ (0,1).

Define
δ̄n(k) = δ̂n(k) = δ̃n(k) = K

dk + tk
n

, k ≥ 1.
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It is straightforward to see that, for a large enough constant K, (δ̄n(k), δ̂n(k), δ̃n(k))
is a triple bound of level 1− e−tk (see Example 1, Section 5.1). Hence, if we define

k̂ := argmink≥1

[
inf

g∈Gk
n−1

n

∑
j=1

(Yj −g(X j))2 +4K
dk + tk

n

]
with a sufficiently large constant K and set ĝ := ĝn,k̂, then it follows from Theorem
6.1 that with probability at least 1− p

‖ĝ−g∗‖2
L2(Π) ≤ inf

k≥1

[
inf

g∈Gk
‖g−g∗‖2

L2(Π) +9K
dk + tk

n

]
.

Clearly, one can also construct triple bounds and implement this penalization
method in more complicated situations (see examples 2-5 in Section 5.1) and for
other loss functions (for instance, for convex losses discussed in Section 5.2). More-
over, one can use a general construction of triple bounds in Theorem 4.8 that pro-
vides a universal approach to complexity penalization (which, however, is more of
theoretical interest).

Despite the fact that it is possible to prove nice and simple oracle inequalities
under the monotonicity assumption, this assumption might be restrictive and, in
what follows, we explore what can be done without it.

6.2 Penalization by Empirical Risk Minima

In this section, we study a simple penalization technique in spirit of the work of
Lugosi and Wegkamp [100] in which the infimum of empirical risk infFk Pn f is
explicitly involved in the penalty. It will be possible to prove rather natural oracle
inequalities for this penalization method. However, the drawback of this approach
is that, in most of the cases, it yields only suboptimal convergence rates.

Given triple bounds (δ̄n(k), δ̂n(k), δ̃n(k)) of level 1− pk for classes Fk, define
the following penalties:

π̂(k) := π̂n(k) := K̂
[

δ̂n(k)+
√

tk
n

inf
Fk

Pn f +
tk
n

]
and

π̃(k) := π̃n(k) := K̃
[

δ̃n(k)+
√

tk
n

inf
Fk

P f +
tk
n

]
,

where K̂, K̃ are sufficiently large numerical constants. Here π̃(k) represents a ”de-
sirable accuracy“ of risk minimization on the class Fk.

The index estimate k̂ is defined by minimizing the penalized empirical risk

k̂ := argmink≥1

{
Pn f̂k + π̂(k)

}
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and, as always, f̂ := f̂k̂.

The next theorem provides an upper confidence bound on the risk of f̂ and an
oracle inequality for the global excess risk EP(F ; f̂ ).

Theorem 6.2. There exists a choice of K̂, K̃ such that for any sequence {tk} of pos-
itive numbers, the following bounds hold:

P
{

P f̂ ≥ inf
k≥1

{
Pn f̂n,k + π̂(k)

}}
≤

∞

∑
k=1

(
pk + e−tk

)
and

P
{

EP(F ; f̂ )≥ inf
k≥1

{
inf

f∈Fk
P f − inf

f∈F
P f + π̃(k)

}}
≤

∞

∑
k=1

(
pk + e−tk

)
.

Remark. Note that, unless infFk P f = 0, π̃(k) = π̃n(k) can not be smaller than
const n−1/2. In many cases (see Chapter 5), the excess risk bound δ̃n(k) is smaller
than this, and the penalization method of this section is suboptimal.

Proof. The following lemma is the main tool used in the proof.

Lemma 6.1. Let F be a class measurable functions from S into [0,1]. If δ̄n is an
admissible distribution dependent bound of confidence level 1− p, p ∈ (0,1) (see
Definition 4.1), then the following inequality holds for all t > 0 :

P
{∣∣∣inf

F
Pn f − inf

F
P f
∣∣∣≥ 2δ̄n +

√
2t
n

inf
F

P f +
t
n

}
≤ p+ e−t .

If (δ̄n, δ̂n, δ̃n) is a triple bound of confidence level 1− p, then

P
{∣∣∣inf

F
Pn f − inf

F
P f
∣∣∣≥ 4δ̂n +2

√
2t
n

inf
F

Pn f +
8t
n

}
≤ p+ e−t .

Proof. Let E be the event where conditions (i)-(iv) of Definition 4.1 hold. Then
P(E)≥ 1− p. On the event E, E ( f̂n)≤ δ̄n and, for all ε < δ̄n and g ∈F (ε)∣∣∣inf

F
Pn f − inf

F
P f
∣∣∣= ∣∣∣Pn f̂n− inf

F
P f
∣∣∣≤

P f̂n− inf
F

P f + |(Pn−P)( f̂n−g)|+ |(Pn−P)(g)| ≤

≤ δ̄n +‖Pn−P‖F ′(δ̄n) + |(Pn−P)(g)|. (6.2)

Also, on the same event E,

‖Pn−P‖F ′(δ̄n) ≤Un(δ̄n(t))≤ V̄n(δ̄n)δ̄n ≤ δ̄n. (6.3)

By Bernstein’s inequality, with probability at least 1− e−t
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|(Pn−P)(g)| ≤
√

2
t
n

VarPg+
2t
3n

≤

√
2

t
n

(
inf
F

P f + ε

)
+

2t
3n

, (6.4)

since g takes values in [0,1], g ∈ F (ε), and VarPg ≤ Pg2 ≤ Pg ≤ infF P f + ε. It
follows from (6.2), (6.3) and (6.4) that, on the event

E(ε) := E
⋂{

|(Pn−P)(g)| ≤

√
2

t
n

(
inf
F

P f + ε

)
+

2t
3n

}
, (6.5)

the following inequality holds:

∣∣∣inf
F

Pn f − inf
F

P f
∣∣∣≤ 2δ̄n +

√
2

t
n

(
inf
F

P f + ε

)
+

t
n
. (6.6)

Since the events E(ε) are monotone in ε, let ε → 0 to get

P(E(0))≥ 1− p− e−t .

This yields the first bound of the lemma.
For the proof of the second bound, note that on the event E(0),∣∣∣inf

F
Pn f − inf

F
P f
∣∣∣≤√2

t
n
| inf

F
Pn f − inf

F
P f |+2δ̄n +

√
2

t
n

inf
F

Pn f +
t
n
. (6.7)

Thus, either

| inf
F

Pn f − inf
F

P f | ≤ 8t
n

, or
2t
n
≤ | infF Pn f − infF P f |

4
.

In the last case (6.7) implies that∣∣∣inf
F

Pn f − inf
F

P f
∣∣∣≤ 4δ̄n +2

√
2

t
n

inf
F

Pn f +
2t
n

.

The condition of the lemma allows us to replace (on the event E) δ̄n by δ̂n and to get
the following bound that holds with probability at least 1− p− e−t :∣∣∣inf

F
Pn f − inf

F
P f
∣∣∣≤ 4δ̂n +2

√
2

t
n

inf
F

Pn f +
8t
n

.

ut

Now, we return to the proof of the theorem. For each class Fk and t = tk, define
the event Ek(0) as in (6.5) with ε = 0. Clearly,

P(Ek(0))≥ 1− pk− e−tk .
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Let
F :=

⋂
k≥1

Ek(0).

Then

P(Fc)≤
∞

∑
k=1

(
pk + e−tk

)
.

We use the following consequence of Lemma 6.1 and the definition of the triple
bounds: on the event F for all k ≥ 1,

P f̂k− inf
f∈Fk

P f ≤ δ̄n(k)≤ δ̂n(k)≤ δ̃n(k)

and ∣∣∣inf
Fk

Pn f − inf
Fk

P f
∣∣∣≤ 2δ̄n(k)+

√
2tk
n

inf
Fk

P f +
tk
n

,

∣∣∣inf
Fk

Pn f − inf
Fk

P f
∣∣∣≤ 4δ̂n(k)+2

√
2tk
n

inf
Fk

Pn f +
8tk
n

.

Therefore,

P f̂ = P f̂k̂ ≤ inf
Fk̂

P f + δ̄n(k̂)≤ inf
Fk̂

Pn f +5δ̂n(k̂)+2

√
2tk̂
n

inf
Fk̂

Pn f +
8tk̂
n
≤

≤ inf
Fk̂

Pn f + π̂(k̂) = inf
k

[
inf
Fk

Pn f + π̂(k)
]
,

provided that the constant K̂ in the definition of π̂ was chosen properly. The first
bound of the theorem has been proved.

To prove the second bound, note that√
tk
n

inf
Fk

Pn f ≤
√

tk
n

inf
Fk

P f +
√

tk
n
| inf
Fk

Pn f − inf
Fk

P f | ≤√
tk
n

inf
Fk

P f +
tk
2n

+
1
2
| inf
Fk

Pn f − inf
Fk

P f |.

Therefore, on the event F, for all k,

π̂(k) = K̂
[

δ̂n(k)+
√

tk
n

inf
Fk

Pn f +
tk
n

]
≤ K̃

2

[
δ̃n(k)+

√
tk
n

inf
Fk

P f +
tk
n

]
= π̃(k)/2

and
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∣∣∣inf
Fk

Pn f − inf
Fk

P f
∣∣∣≤ 2δ̄n(k)+

√
2tk
n

inf
Fk

P f +
tk
n
≤

K̃
2

[
δ̃n(k)+

√
tk
n

inf
Fk

P f +
tk
n

]
= π̃(k)/2,

provided that the constant K̃ in the definition of π̃(k) is large enough. As a result,
on the event F,

P f̂ ≤ inf
k

[
inf
Fk

Pn f + π̂(k)
]
≤ inf

k

[
inf
Fk

P f + π̃(k)
]
,

proving the second bound.
ut

Example. As an example, we derive some of the results of Lugosi and Wegkamp
[100] (in a slightly modified form). Suppose that F is a class of measurable func-
tions on S taking values in {0,1} (binary functions). As before, let ∆F (X1, . . . ,Xn)
be the shattering number of the class F on the sample (X1, . . . ,Xn) :

∆
F (X1, . . . ,Xn) := card

({
( f (X1), . . . , f (Xn)) : f ∈F

})
.

Given a sequence {Fk}, Fk ⊂F of classes of binary functions, define the fol-
lowing complexity penalties

π̂(k) := K̂
[√

inf
f∈Fk

Pn f
log∆Fk(X1, . . . ,Xn)+ tk

n
+

log∆Fk(X1, . . . ,Xn)+ tk
n

]
and

π̃(k) := K̃
[√

inf
f∈Fk

P f
E log∆Fk(X1, . . . ,Xn)+ tk

n
+

E log∆Fk(X1, . . . ,Xn)+ tk
n

]
.

Let k̂ be a solution of the penalized empirical risk minimization problem

k̂ := argmink≥1

[
min
Fk

Pn f + π̂(k)
]
.

Denote f̂ := f̂n,k̂.

Theorem 6.3. There exists a choice of K̂, K̃ such that for all tk > 0,

P
{

EP(F ; f̂ )≥ inf
k≥1

{
inf

f∈Fk
P f − inf

f∈F
P f + π̃(k)

}}
≤

∞

∑
k=1

e−tk .

Note that penalization based on random shattering numbers is natural in classifi-
cation problems and the result of Theorem 6.3 can be easily stated in classification



100 6 Penalized Empirical Risk Minimization and Model Selection Problems

setting. The result follows from Theorem 6.2 and the next lemma that provides a
version of triple bound on excess risk for classes of binary functions.

Lemma 6.2. Given a class of binary functions F and t > 0, define

δ̄n := K̄
[√

inf
f∈F

P f
E log∆F (X1, . . . ,Xn)+ t

n
+

E log∆F (X1, . . . ,Xn)+ t
n

]
,

δ̂n := K̂
[√

inf
f∈F

Pn f
log∆F (X1, . . . ,Xn)+ t

n
+

log∆F (X1, . . . ,Xn)+ t
n

]
and

δ̃n := K̃
[√

inf
f∈F

P f
E log∆F (X1, . . . ,Xn)+ t

n
+

E log∆F (X1, . . . ,Xn)+ t
n

]
.

There exists a choice of constants K̄, K̂, K̃ such that (δ̄n, δ̂n, δ̃n) is a triple bound of
level 1− e−t for the class F .

Proof. The following upper bounds on the L2(P)-diameter of the δ -minimal set
F (δ ) and on the function φn(δ ) hold:

D2(F ;δ ) = sup
f ,g∈F (δ )

P( f −g)2 ≤ sup
f ,g∈F (δ )

(P f +Pg)≤ 2( inf
f∈F

P f +δ ).

By Theorem 3.9,

φn(δ )≤ K
[√

2
(

inf
f∈F

P f +δ

)
E log∆F (X1, . . . ,Xn)

n
+

E log∆F (X1, . . . ,Xn)
n

]
.

A straightforward computation implies the next bound on the quantity σ t
n from The-

orem 4.3:

σ
t
n ≤ δ̄n = K̄

[√
inf
f∈F

P f
E log∆F (X1, . . . ,Xn)+ t

n
+

E log∆F (X1, . . . ,Xn)+ t
n

]
,

provided that the constant K̄ is large enough. Moreover, with a proper choice of this
constant, δ̄n is an admissible bound of level 1− e−t .

The following deviation inequality for shattering numbers is due to Boucheron,
Lugosi and Massart [31]: with probability at least 1− e−t

log∆
F (X1, . . . ,Xn)≤ 2E log∆

F (X1, . . . ,Xn)+2t

and
E log∆

F (X1, . . . ,Xn)≤ 2log∆
F (X1, . . . ,Xn)+2t.
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Together with the first bound of Lemma 6.1, this easily implies that with probability
at least 1− 8e−t , δ̄n ≤ δ̂n ≤ δ̃n. First we prove that δ̄n ≤ δ̂n. To this end, we use
the first bound of Lemma 6.1 and the inequality 2ab ≤ a2 + b2 to show that with
probability at least 1−2e−t

inf
F

P f ≤ inf
F

Pn f +2δ̄n +2
√

t
2n

inf
F

P f +
t

3n
≤ inf

F
Pn f +2δ̄n +

infF P f
2

+
2t
n

.

Therefore,

inf
F

P f ≤ 2inf
F

Pn f +4δ̄n +
4t
n

.

We substitute this inequality into the definition of δ̄n and replace E log∆F (X1, . . . ,Xn)
by the upper bound 2log∆F (X1, . . . ,Xn) + 2t that holds with probability at least
1− e−t . It follows that, with some constant K,

δ̄n ≤ K
[√

inf
f∈F

Pn f
log∆F (X1, . . . ,Xn)+ t

n
+

log∆F (X1, . . . ,Xn)+ t
n

]
+

+2

√
δ̄n

2
K2 log∆F (X1, . . . ,Xn)+ t

2n
,

Again, using the inequality 2ab ≤ a2 + b2, we get the following bound that holds
with some constant K̂ and with probability at least 1−4e−t :

δ̄n ≤ K̂
[√

inf
f∈F

Pn f
log∆F (X1, . . . ,Xn)+ t

n
+

log∆F (X1, . . . ,Xn)+ t
n

]
=: δ̂n.

The proof of the second inequality δ̂n ≤ δ̃n is similar. By increasing the values of
the constants K̄, K̂, K̃, it is easy to eliminate the numerical factor in front of e−t and
to obtain a triple bound of level 1− e−t , as it was claimed.

ut

6.3 Linking Excess Risk and Variance in Penalization

In a variety of regression and classification problems, the following assumption
plays the crucial role: for all f ∈F ,

P f −P f∗ ≥ ϕ

(√
VarP( f − f∗)

)
, (6.8)

where ϕ is a convex nondecreasing function on [0,+∞) with ϕ(0) = 0. In Chapter
5, we have already dealt with several examples of this condition. For instance, in the
case of regression with quadratic loss `(y,u) = (y−u)2 and with bounded response
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Y ∈ [0,1], condition (6.8) is satisfied for the loss class F = {` • g : g ∈ G }, where
G is a class of functions from S into [0,1]. In this case, one can take ϕ(u) = u2/2,
so the function ϕ does not depend on the unknown distribution P (except that the
assumption Y ∈ [0,1] is already a restriction on the class of distributions P). On the
other hand, in classification problems, ϕ is related to the parameters of the noise
such as parameter α in Tsybakov’s low noise assumption (5.9) or parameter h in
Massart’s low noise assumption (5.8). So, in this case, ϕ does depend on P. The
function ϕ describes the relationship between the excess risk P f −P∗ and the vari-
ance VarP( f − f∗) of the “excess loss” f − f∗. In what follows, we will call ϕ the
link function. It happens that the link function is involved in a rather natural way
in the construction of complexity penalties that provide optimal convergence rates
in many problems. Since the link function is generally distribution dependent, the
development of adaptive penalization methods of model selection is a challenge, for
instance, in classification setting.

We will assume that with some γ > 0

ϕ(uv)≤ γϕ(u)ϕ(v), u,v ≥ 0. (6.9)

Denote by
ϕ
∗(v) := sup

u≥0
[uv−ϕ(u)]

the conjugate of ϕ. Then

uv ≤ ϕ(u)+ϕ
∗(v), u,v ≥ 0.

Let (δ̄n(k), δ̂n(k), δ̃n(k)) be a triple bound of level 1− pk for the class Fk,k ≥ 1.
For a fixed ε > 0, define the penalties as follows:

π̂(k) := A(ε)δ̂n(k)+ϕ
∗
(√2tk

εn

)
+

tk
n

and

π̃(k) :=
A(ε)

1+ γϕ(
√

ε)
δ̃n(k)+

2
1+ γϕ(

√
ε)

ϕ
∗
(√2tk

εn

)
+

2
1+ γϕ(

√
ε)

tk
n

,

where
A(ε) :=

5
2
− γϕ(

√
ε).

As before, k̂ is defined by

k̂ := argmink≥1

{
Pn f̂k + π̂(k)

}
and f̂ := f̂n,k̂.

Theorem 6.4. For any sequence {tk} of positive numbers,
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P
{

EP(F ; f̂ )≥C(ε) inf
k≥1

{
inf

f∈Fk
P f − inf

f∈F
P f + π̃(k)

}}
≤

∞

∑
k=1

(
pk + e−tk

)
,

where

C(ε) :=
1+ γϕ(

√
ε)

1− γϕ(
√

ε)
.

Proof. The following lemma is needed in the proof.

Lemma 6.3. Let G ⊂F and let (δ̄n, δ̂n, δ̃n) be a triple bound of level 1− p for the
class G . For all t > 0, there exists an event E with probability at least 1− p− e−t

such that on this event

inf
G

Pn f −Pn f∗ ≤ (1+ γϕ(
√

ε))(inf
G

P f −P f∗)+ϕ
∗
(√ 2t

εn

)
+

t
n

(6.10)

and

inf
G

P f −P f∗ ≤ (1− γϕ(
√

ε))−1
[

inf
G

Pn f −Pn f∗+
3
2

δ̄n +ϕ
∗
(√ 2t

εn

)
+

t
n

]
. (6.11)

In addition, if there exists δ̄ ε
n such that

δ̄n ≤ ε(inf
G

P f −P f∗)+ δ̄
ε
n ,

then

inf
G

P f −P f∗ ≤
(

1−ϕ(
√

ε)− 3
2

ε

)−1[
inf
G

Pn f −Pn f∗+

3
2

δ̄
ε
n +ϕ

∗
(√ 2t

εn

)
+

t
n

]
. (6.12)

Proof. We assume, for simplicity, that P f attains its minimum over G at some f̄ ∈G
(the proof can be easily modified if the minimum is not attained). Let E ′ be the event
from the Definition 4.1 of the triple bound and let

E :=
{
|(Pn−P)( f̄ − f∗)| ≤

√
2t
n

VarP( f̄ − f∗)+
t
n

}⋂
E ′.

It follows from Bernstein inequality and the definition of the triple bound that

P(E)≥ 1− p− e−t .

On the event E,

|(Pn−P)( f̄ − f∗)| ≤
√

2t
n

VarP( f̄ − f∗)+
t
n
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and

∀ f ∈ G Ên(G ; f ) = EPn(G ; f )≤ 3
2

(
EP(G ; f )∨ δ̄n

)
.

Also,
Var1/2

P ( f̄ − f∗)≤ ϕ
−1(P f̄ −P f∗).

Hence, on the event E,

|(P−Pn)( f̄ − f∗)| ≤ ϕ(
√

εϕ
−1(P f̄ −P f∗))+ϕ

∗
(√ 2t

εn

)
+

t
n
≤

≤ γϕ(
√

ε)(P f̄ −P f∗)+ϕ
∗
(√ 2t

εn

)
+

t
n
,

implying

Pn( f̄ − f∗)≤ (1+ γϕ(
√

ε))P( f̄ − f∗)+ϕ
∗
(√ 2t

εn

)
+

t
n

(6.13)

and

P( f̄ − f∗)≤ (1− γϕ(
√

ε))−1
[

Pn( f̄ − f∗)+ϕ
∗
(√ 2t

εn

)
+

t
n

]
. (6.14)

(6.13) immediately yields the first bound of the lemma.
Since, in addition, on the event E

Pn( f̄ − f∗) = Pn f̄ − inf
G

Pn f + inf
G

Pn f −Pn f∗ = Ên(G ; f̄ )+ inf
G

Pn f −Pn f∗ ≤

≤ inf
G

Pn f −Pn f∗+
3
2

(
EP(G ; f̄ )∨ δ̄n

)
,

and since EP(G ; f̄ ) = 0, we get

Pn( f̄ − f∗)≤ inf
G

Pn f −Pn f∗+
3
2

δ̄n.

Along with (6.14), this implies

inf
G

P f −P f∗ = P( f̄ − f∗)≤

(1− γϕ(
√

ε))−1
[

inf
G

Pn f −Pn f∗+
3
2

δ̄n +ϕ
∗
(√ 2t

εn

)
+

t
n

]
,

which is the second bound of the lemma.
Finally, to prove the third bound it is enough to substitute the bound on δ̄n into

(6.11) and to solve the resulting inequality with respect to infG P f −P f∗.
ut

Let Ek be the event defined in Lemma 6.3 for G = Fk and t = tk, so that
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P(Ek)≥ 1− pk− e−tk .

Let E :=
⋂

k≥1 Ek. Then

P(E)≥ 1− ∑
k≥1

(
pk + e−tk

)
.

On the event E, for all k ≥ 1

EP(Fk; f̂k) = P f̂k− inf
Fk

P f ≤ δ̄n(k)

and
δ̄n(k)≤ δ̂n(k)≤ δ̃n(k).

On the same event, first using bound (6.11) and then bound (6.10) of Lemma 6.3,
we get

EP(F ; f̂ ) = P f̂ − inf
F

P f = P f̂k̂−P f∗ =

P f̂k̂− inf
Fk̂

P f + inf
Fk̂

P f −P f∗ ≤ δ̄n(k̂)+ inf
Fk̂

P f −P f∗ ≤

(1− γϕ(
√

ε))−1
[
(1− γϕ(

√
ε))δ̄n(k̂)+ inf

Fk̂

Pn f −Pn f∗+

3
2

δ̄n(k̂)+ϕ
∗
(√2tk̂

εn

)
+

tk̂
n

]
≤

(1− γϕ(
√

ε))−1
{

inf
k

[
inf
Fk

Pn f +(5/2− γϕ(
√

ε))δ̂n(k)+

ϕ
∗
(√2tk

εn

)
+

tk
n

]
−Pn f∗

}
=

(1− γϕ(
√

ε))−1
{

inf
k

[
inf
Fk

Pn f + π̂(k)
]
−Pn f∗

}
≤

1+ γϕ(
√

ε)
1− γϕ(

√
ε)

inf
k

[
inf
Fk

P f − inf
F

P f +
5/2− γϕ(

√
ε)

1+ γϕ(
√

ε)
δ̃n(k)+

2
1+ γϕ(

√
ε)

ϕ
∗
(√2tk

εn

)
+

2
(1+ γϕ(

√
ε))

tk
n

]
=

1+ γϕ(
√

ε)
1− γϕ(

√
ε)

inf
k

[
inf
Fk

P f − inf
F

P f + π̃(k)
]
,

and the result follows.
ut

Remark 1. Suppose that, for each k, δ̄n(k) is an admissible excess risk bound for
the class Fk on an event Ek with P(Ek)≥ 1− pk (see Definition 4.1). It is easily seen
from the proof of Theorem 6.4 that the same oracle inequality holds for arbitrary
penalties π̂(k) and π̃(k) such that on the event Ek
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π̂(k)≥ A(ε)δ̄n(k)+ϕ
∗
(√2tk

εn

)
+

tk
n

and

π̃(k)≥ π̂(k)
1+ γϕ(

√
ε)

+
ϕ∗
(√

2tk
εn

)
1+ γϕ(

√
ε)

+
tk

(1+ γϕ(
√

ε))n
.

As it has been already mentioned, the dependence of the penalty on the link
function ϕ is the most troubling aspect of this approach since in such problems as
classification this function depends on the unknown parameters of the distribution
P (such as “low noise” constants α in (5.9) and h in (5.8), see Section 5.3). Because
of this, it is of importance to know that, using Remark 1, it is easy to construct a
version of the penalties that do not depend on ϕ directly. Suppose that the number
of classes Fk is finite, say, N. Take

tk := t + logN, k = 1, . . . ,N.

Define

k̂ := argmin1≤k≤N

[
min
f∈Fk

Pn f +
5
2

δ̂n(k)
]

and f̂ := f̂k̂. Note that we also have

k̂ := argmin1≤k≤N

[
min
f∈Fk

Pn f + π̂(k)
]
,

where

π̂(k) :=
5
2

δ̂n(k)+ϕ
∗
(√2tk

εn

)
+

tk
n

=
5
2

δ̂n(k)+ϕ
∗
(√2(t + logN)

εn

)
+

t + logN
n

,

since tk in the additional two terms of the definition of π̂(k) does not depend on k.
Denote

π̃(k) :=
5
2

δ̃n(k)+2ϕ
∗
(√2(t + logN)

εn

)
+2

t + logN
n

.

Then it follows from Theorem 6.4 and from Remark 1 that

P
{

EP(F ; f̂ )≥C(ε) inf
1≤k≤N

{
inf

f∈Fk
P f − inf

f∈F
P f + π̃(k)

}}
≤ e−t +

N

∑
k=1

pk. (6.15)

Example. Consider, for instance, model selection in binary classification prob-
lems (see Section 5.3). Suppose that condition (5.8) holds with some h > 0 and, as
a result, condition (6.8) holds with ϕ(u) = hu2,u ≥ 0, for f = `•g and f∗ = `•g∗,
where g is a binary classifier, g∗ is the Bayes classifier and `(y,u) = I(y 6= u) is the
binary loss. In this case, ϕ∗(v) = v2/(4h),v ≥ 0.

Let {Gk} be a family of classes of functions from S into {−1,1} (binary classi-
fiers). For any k, define
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ĝn,k := argming∈Gk
Ln(g) = argming∈Gk

n−1
n

∑
j=1

I(Yj 6= g(X j)).

Let Fk := {`•g : g ∈ Gk}. Denote (δ̄n(k), δ̂n(k), δ̃n(k)) the standard triple bound of
Theorem 4.8 for the class Fk of level 1− pk. Suppose that ∑

N
k=1 pk = p ∈ (0,1).

Define
k̂ := argmin1≤k≤N

[
inf

g∈Gk
Ln(g)+

5
2

δ̂n(k)
]

and ĝ := ĝn,k̂. Then it easily follows from bound (6.15) that with probability at least
1− p− e−t

L(ĝ)−L(g∗)≤C inf
1≤k≤N

[
inf

g∈Gk
L(g)−L(g∗)+ δ̃n(k)+

t + logN
nh

]
(we have fixed ε > 0 and the constant C depends on ε). It is also easy to deduce
from the proof of Theorem 5.5 that, for the standard choice of δ̄n(k),

δ̄n(k)≤C
[

inf
g∈Gk

L(g)−L(g∗)+
E log∆Gk(X1, . . . ,Xn)

nh
+

tk
nh

]
.

This leads to the following oracle inequality that holds with probability at least
1− p− e−t and with some constant C > 0 :

L(ĝ)−L(g∗)≤C inf
1≤k≤N

[
inf

g∈Gk
L(g)−L(g∗)+

E log∆Gk(X1, . . . ,Xn)
nh

]
+C

t + logN
nh

.

Thus, this penalization method is adaptive to the unknown noise parameter h.
We conclude this section with stating a result of Massart [102, 103] that can

be derived using the approach of Theorem 6.4. Suppose that {Fk} is a sequence of
function classes such that condition (4.5) holds for each class Fk with some constant
Dk ≥ 1, that is,

Dk(P f −P f∗)≥ ρ
2
P( f , f∗)≥ VarP( f − f∗).

We will assume that the sequence {Dk} is nondecreasing. Denote

δ̄
ε
n (k) := D−1

k ω
]
n

(
ε

KDk

)
+

KDktk
nε

.

If K is large enough, then Lemma 4.1 implies the following bound:

δ̄n(k) := σ
tk
n (Fk;P)≤ ε(inf

Fk
P f −P f∗)+ δ̄

ε
n (k).

Also, it follows from the proof of Theorem 4.3 that δ̄n(k) is an admissible excess
risk bound of level 1−Cqe−tk .

Suppose that for each k there exist a data dependent bound δ̂ ε
n (k) and a distribu-

tion dependent bound δ̃ ε
n (k) such that
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P
{

δ̄
ε
n (k)≤ δ̂

ε
n (k)≤ δ̃

ε
n (k)

}
≥ 1− pk, k ≥ 1.

Define the following penalties:

π̂
ε
n (k) := 3δ̂

ε
n (k)+

K̂Dktk
εn

and π̃
ε
n (k) := 3δ̃

ε
n (k)+

K̃Dktk
εn

with some numerical constants K̂, K̃. Let

k̂ := argmink≥1

[
min
f∈Fk

Pn f + π̂
ε
n (k)

]
and f̂ := f̂k̂.

Theorem 6.5. There exist numerical constants K̂, K̃,C such that for any sequence
{tk} of positive numbers,

P
{

P f̂ −P f∗ ≥
1+ ε

1− ε
inf
k≥1

{
inf

f∈Fk
P f −P f∗+ π̃

ε
n (k)

}}
≤

∞

∑
k=1

(
pk +(C +1)e−tk

)
.

To prove this result one has to extend theorem 6.4 to the case when condition
(6.8) holds for each function class Fk with a different link function ϕk and to use
this extension for ϕk(u) = u2/Dk and ϕ∗

k (v) = Dkv2/4.

6.4 Further Comments

Bartlett [13] suggested a simple and elegant derivation of oracle inequalities in the
case of monotone families. Theorem 6.1 is based on this approach. Penalization with
empirical risk minima was used by Lugosi and Wegkamp [100]. Section 6.3 is based
on the results of Koltchinskii [80]; Theorem 6.5 in this section is essentially due to
Massart [102]. Other useful references on oracle inequalities in penalized empirical
risk minimization are [26, 25, 29, 103, 7].

Birgé and Massart [24] introduced a concept of minimal penalties and advocated
an approach to the problem of calibration of data-dependent penalties based on so
called “slope heuristics”. So far, this approach has been mathematically justified for
several special models by Arlot and Massart [8] with a significant further progress
made in the dissertation by Saumard [125]. Concentration inequalities for empirical
excess risk obtained by Boucheron and Massart [32] are of importance in this line
of work.

Oracle inequalities in penalized empirical risk minimization for kernel machines
have been studied by Blanchard, Bousquet and Massart [25], Steinwart and Scovel
[130], Steinwart and Christmann [129]. Recently, Mendelson and Neeman [111] ob-
tained very subtle oracle inequalities in such problems based on a variety of methods
(including, generic chaining bounds).



Chapter 7
Linear Programming in Sparse Recovery

As it was pointed out in the Introduction, many important sparse recovery methods
are based on empirical risk minimization with convex loss and convex complexity
penalty. Some interesting algorithms, for instance, the Dantzig selector by Candes
and Tao [44] can be formulated as linear programs. In this chapter, we develop error
bounds for such algorithms that require certain geometric assumptions on the dictio-
nary. They are expressed in terms of restricted isometry constants and other related
characteristics that depend both on the dictionary and on the design distribution.
Based on these geometric characteristics, we describe the conditions of exact sparse
recovery in the noiseless case as well as sparsity oracle inequalities for the Dantzig
selector in regression problems with random noise. These results rely on comparison
inequalities and exponential bounds for empirical and Rademacher processes.

7.1 Sparse Recovery and Neighborliness of Convex Polytopes

Let H := {h1, . . . ,hN} be a given finite set of measurable functions from S into R.
In what follows, it will be called a dictionary. Given J ⊂ {1, . . . ,N}, we will write
d(J) := card(J). For λ = (λ1, . . . ,λN) ∈ RN , denote

fλ =
N

∑
j=1

λ jh j, Jλ = supp(λ ) :=
{

j : λ j 6= 0
}

and d(λ ) := d(Jλ ).

Suppose that a function f∗ ∈ l.s.(H ) = { fλ : λ ∈ RN} from the linear span of the
dictionary is observed (measured) at points X1, . . . ,Xn ∈ S. For simplicity, we first
assume that there is no noise in the observations:

Yj = f∗(X j), j = 1, . . . ,n.

The goal is to recover a representation of f∗ in the dictionary. We are mostly inter-
ested in the case when N > n (in fact, N can be much larger than n). Define

109
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L :=
{

λ ∈ RN : fλ (X j) = Yj, j = 1, . . . ,n
}

.

Then, L is an affine subspace of dimension at least N−n, so, the representation of
f∗ in the dictionary is not unique. In such cases, it is of interest to find the sparsest
representation, which means solving the problem

‖λ‖`0 =
N

∑
j=1

I(λ j 6= 0)−→ min, λ ∈ L. (7.1)

If we introduce the following n×N matrix A :=
(

h j(Xi) : 1 ≤ i ≤ n,1 ≤ j ≤ N
)

and denote Y the vector with components Y1, . . . ,Yn, then problem (7.1) can be also
rewritten as

‖λ‖`0 =
N

∑
j=1

I(λ j 6= 0)−→ min, Aλ = Y. (7.2)

When N is large, such problems are computationally intractable since the function
to be minimized is non-smooth and non-convex. Essentially, solving (7.2) would
require searching through all 2N coordinate subspaces of RN . Because of this, the
following convex relaxation of the problem is frequently used:

‖λ‖`1 =
N

∑
j=1

|λ j| −→ min, λ ∈ L, (7.3)

or, equivalently,

‖λ‖`1 =
N

∑
j=1

|λ j| −→ min, Aλ = Y. (7.4)

The last minimization problem is convex and, moreover, it is a linear programming
problem. However, the question is whether solving (7.3) has anything to do with
solving (7.1). Next result (due to Donoho [50]) gives an answer to this question by
reducing it to some interesting problems in the geometry of convex polytopes. To
formulate the result, define

P := AU`1 = conv
({

a1,−a1, . . . ,aN ,−aN

})
,

where U`1 := {λ ∈ RN : ‖λ‖`1 ≤ 1} is the unit ball in `1 and a1, . . . ,aN ∈ Rn are
columns of matrix A. Here and in what follows, UB denotes the closed unit ball of a
Banach space B centered at 0.

Clearly, P is a centrally symmetric convex polytope in Rn with at most 2N ver-
tices. Such a centrally symmetric polytope is called d-neighborly if any set of d +1
vertices that does not contain antipodal vertices (such as ak and −ak) spans a face
of P.

Theorem 7.1. Suppose that N > n. The following two statements are equivalent:
(i) The polytope P has 2N-vertices and is d-neighborly;
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(ii) Any solution λ of the system of linear equations Aλ = Y such that d(λ )≤ d is
the unique solution of problem (7.4).

The unit ball U`1 of `1 is a trivial example of an N-neighborly centrally symmet-
ric polytope. However, it is hard to find nontrivial constructive examples of such
polytopes with a ”high neighborliness”. Their existence is usually proved by a prob-
abilistic method, for instance, by choosing the design matrix A at random and show-
ing that the resulting random polytope P is d-neighborly for sufficiently large d with
a high probability. The problem has been studied for several classes of random ma-
trices (projections on an n-dimensional subspace picked at random from the Grass-
mannian of all n-dimensional subspaces; random matrices with i.i.d. Gaussian or
Bernoulli entries, etc) both in the case of centrally symmetric polytopes and without
the restriction of central symmetry, see Vershik and Sporyshev [144], Affentranger
and Schneider [3] and, in connection with sparse recovery, Donoho [50], Donoho
and Tanner [55]. The approach taken in these papers is based on rather subtle geo-
metric analysis of the properties of high-dimensional convex polytopes, in particu-
lar, on computation of their internal and external angles. This leads to rather sharp
estimates of the largest d for which the neighborliness still holds (in other words,
for which the phase transition occurs and the polytope starts losing faces). Here we
follow another approach that is close to Rudelson and Vershynin [123] and Mendel-
son, Pajor and Tomczak-Jaegermann [112]. This approach is more probabilistic, it
is much simpler and it addresses the sparse recovery problem more directly. On
the other hand, it does not give precise bounds on the maximal d for which sparse
recovery is possible (although it still provides correct answers up to constants).

7.2 Geometric Properties of the Dictionary

In what follows, we introduce several geometric characteristics of the dictionary H
that will be involved in error bounds for sparse recovery methods.

7.2.1 Cones of Dominant Coordinates

For J ⊂ {1, . . . ,N} and b ∈ [0,+∞], define the following cone consisting of vectors
whose “dominant coordinates” are in J :

Cb,J :=
{

u ∈ RN : ∑
j 6∈J
|u j| ≤ b ∑

j∈J
|u j|
}

.

Clearly, for b = +∞, Cb,J = RN . For b = 0, Cb,J is the linear subspace RJ of vectors
u ∈ RN with supp(u) ⊂ J. For b = 1, we will write CJ := C1,J . Such cones will be
called cones of dominant coordinates and some norms in RN will be compared on
these cones.
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Some useful geometric properties of the cones of dominant coordinates will be
summarized in the following lemma. It includes several well known facts (see Can-
des and Tao [44], proof of Theorem 1; Ledoux and Talagrand [97], p. 421; Mendel-
son, Pajor and Tomczak-Jaegermann [112], Lemma 3.3).

With a minor abuse of notations, we identify in what follows vectors u∈RN with
supp(u)⊂ J, where J ⊂ {1, . . . ,N}, with vectors u = (u j : j ∈ J) ∈ RJ .

Lemma 7.1. Let J ⊂ {1, . . . ,N} and let d := card(J).
(i) Take u∈Cb,J and denote J0 := J. For s≥ 1, J1 will denote the set of s coordinates
in {1, . . . ,N}\ J0 for which |u j|′s are the largest, J2 will be the set of s coordinates
in {1, . . . ,N}\ (J0∪ J1) for which |u j|′s are the largest, etc. (at the end, there might
be fewer than s coordinates left). Denote u(k) := (u j : j ∈ Jk). Then u = ∑k≥0 u(k)

and

∑
k≥2

‖u(k)‖`2 ≤
b√
s ∑

j∈J
|u j| ≤ b

√
d
s

(
∑
j∈J
|u j|2

)1/2

.

In addition,

‖u‖`2 ≤
(

b

√
d
s

+1
)(

∑
j∈J0∪J1

|u j|2
)1/2

.

(ii) Denote KJ := Cb,J ∩U`2 . There exists a set Md ⊂ U`2 such that d(u) ≤ d for
u ∈Md ,

card(Md)≤ 5d
(

N
≤ d

)
and

KJ ⊂ 2(2+b)conv(Md).

Proof. To prove (i), note that, for all j ∈ Jk+1,

|u j| ≤
1
s ∑

i∈Jk

|ui|,

implying that (
∑

j∈Jk+1

|u j|2
)1/2

≤ 1√
s ∑

j∈Jk

|u j|.

Add these inequalities for k = 1,2, . . . to get

∑
k≥2

‖u(k)‖`2 ≤
1√
s ∑

j 6∈J
|u j| ≤

b√
s ∑

j∈J
|u j| ≤

b

√
d
s

(
∑
j∈J
|u j|2

)1/2

≤ b

√
d
s

(
∑

j∈J∪J1

|u j|2
)1/2

.

Therefore, for u ∈CJ ,
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‖u‖`2 ≤
(

b

√
d
s

+1
)(

∑
j∈J0∪J1

|u j|2
)1/2

.

To prove (ii) note that

KJ ⊂ (2+b) conv
(⋃

BI : I ⊂ {1, . . . ,N},d(I)≤ d
)

,

where

BI :=
{

(ui : i ∈ I) : ∑
i∈I
|ui|2 ≤ 1

}
.

Indeed, it is enough to consider u∈KJ and to use statement (i) with s = d. Then, we
have u(0) ∈ BJ0 , u(1) ∈ BJ1 and

∑
k≥2

u(k) ∈ b conv
(⋃

BI : I ⊂ {1, . . . ,N},d(I)≤ d
)

.

It is easy to see that if B is the unit Euclidean ball in Rd and M is a 1/2-net of this
ball, then

B ⊂ 2 conv(M).

Here is a sketch of the proof of the last claim. For convex sets C1,C2 ⊂ RN , denote
by C1 +C2 their Minkowski sum

C1 +C2 = {x1 + x2 : x1 ∈C1,x2 ∈C2}.

It follows that

B ⊂ M +
1
2

B ⊂ conv(M)+
1
2

B ⊂ conv(M)+
1
2

conv(M)+
1
4

B ⊂ . . .

conv(M)+
1
2

conv(M)+
1
4

conv(M)+ · · · ⊂ 2conv(M).

For each I with d(I) = d, denote MI a minimal 1/2-net of BI . Then,

KJ ⊂ 2(2+b) conv
(⋃

MI : I ⊂ {1, . . . ,N},d(I)≤ d
)

=: 2(2+b) conv(Md).

By an easy combinatorial argument,

card(Md)≤ 5d
(

N
≤ d

)
,

so, the proof is complete.
ut
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7.2.2 Restricted Isometry Constants and Related Characteristics

Given a probability measure Π on S, denote

β
(b)(J;Π) := inf

{
β > 0 : ∑

j∈J
|λ j| ≤ β

∥∥∥∥ N

∑
j=1

λ jh j

∥∥∥∥
L1(Π)

, λ ∈Cb,J

}
and

β
(b)
2 (J;Π) := inf

{
β > 0 : ∑

j∈J
|λ j|2 ≤ β

2
∥∥∥∥ N

∑
j=1

λ jh j

∥∥∥∥2

L2(Π)
, λ ∈Cb,J

}
.

Let
β (J,Π) := β

(1)(J,Π), β2(J,Π) := β
(1)
2 (J,Π).

As soon as the distribution Π is fixed, we will often suppress Π in our notations
and write β (J),β2(J), etc. In the case when J = /0, we set β (b)(J) = β

(b)
2 (J) = 0.

Note that if J 6= /0 and h1, . . . ,hN are linearly independent in L1(Π) or in L2(Π),
then, for all b ∈ (0,+∞), β (b)(J) < +∞ or, respectively, β

(b)
2 (J) < +∞. In the case

of orthonormal dictionary, β
(b)
2 (J) = 1.

We will use several properties of β (b)(J) and β
(b)
2 (J) and their relationships with

other common characteristics of the dictionary.
Let κ(J) denote the minimal eigenvalue of the Gram matrix

(
〈hi,h j〉L2(Π)

)
i, j∈J

.

Also denote LJ the linear span of {h j : j ∈ J} and let

ρ(J) := sup
f∈LJ ,g∈LJc , f ,g 6=0

∣∣∣∣ 〈 f ,g〉L2(Π)

‖ f‖L2(Π)‖g‖L2(Π)

∣∣∣∣.
Thus, ρ(J) is the largest “correlation coefficient” (or the largest cosine of the angle)
between functions in the linear span of a subset {h j : j ∈ J} of the dictionary and
the linear span of its complement (compare ρ(J) with the notion of canonical cor-
relation in multivariate statistical analysis). In fact, we will rather need a somewhat
different quantity defined in terms of the cone Cb,J :

ρ
(b)(J) := sup

λ∈Cb,J

∣∣∣∣〈∑ j∈J λ jh j,∑ j 6∈J λ jh j

〉
L2(Π)

∣∣∣∣∥∥∥∥∑ j∈J λ jh j

∥∥∥∥
L2(Π)

∥∥∥∥∑ j 6∈J λ jh j

∥∥∥∥
L2(Π)

.

Clearly, ρ(b)(J)≤ ρ(J).

Proposition 7.1. The following bound holds:
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β
(b)
2 (J)≤ 1√

κ(J)(1− (ρ(b)(J))2)
. (7.5)

Proof. Indeed, let λ ∈Cb,J . The next inequality is obvious

∥∥∥∑
j∈J

λ jh j

∥∥∥
L2(Π)

≤ (1− (ρ(b)(J))2)−1/2
∥∥∥ N

∑
j=1

λ jh j

∥∥∥
L2(Π)

,

since for f = ∑ j∈J λ jh j and g = ∑ j 6∈J λ jh j, we have

‖ f +g‖2
L2(Π) = (1− cos2(α))‖ f‖2

L2(Π) +
(
‖ f‖L2(Π) cos(α)+‖g‖L2(Π)

)2

≥ (1− (ρ(b)(J))2)‖ f‖2
L2(Π),

where α is the angle between f and g. This yields(
∑
j∈J
|λ j|2

)1/2

≤ 1√
κ(J)

∥∥∥∑
j∈J

λ jh j

∥∥∥
L2(Π)

≤ 1√
κ(J)(1− (ρ(b)(J))2)

∥∥∥ N

∑
j=1

λ jh j

∥∥∥
L2(Π)

,

which implies (7.5).
ut

Lemma 7.1 can be used to provide upper bounds on β
(b)
2 (J). To formulate such

bounds, we first introduce so called restricted isometry constants.
For d = 1, . . . ,N, let δd(Π) be the smallest δ > 0 such that, for all λ ∈ RN with

d(λ )≤ d,

(1−δ )‖λ‖`2 ≤
∥∥∥∥ N

∑
j=1

λ jh j

∥∥∥∥
L2(Π)

≤ (1+δ )‖λ‖`2 .

If δd(Π) < 1, then d-dimensional subspaces spanned on subsets of the dictionary
and equipped with (a) the L2(Π)-norm and (b) the `2-norm on vectors of coefficients
are ”almost” isometric. For a given dictionary {h1, . . . ,hN}, the quantity δd(Π) will
be called the restricted isometry constant of dimension d with respect to the measure
Π . The dictionary satisfies a restricted isometry condition in L2(Π) if δd(Π) is
sufficiently small for a sufficiently large value of d (in sparse recovery, this value is
usually related to the underlying “sparsity” of the problem).

For I,J ⊂ {1, . . . ,N}, I∩ J = /0, denote

r(I;J) := sup
f∈LI ,g∈LJ , f ,g 6=0

∣∣∣∣ 〈 f ,g〉L2(Π)

‖ f‖L2(Π)‖g‖L2(Π)

∣∣∣∣.
Note that ρ(J) = r(J,Jc). Let

ρd := max
{

r(I,J) : I,J ⊂ {1, . . . ,N}, I∩ J = /0, card(I) = 2d, card(J) = d
}

.
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This quantity measures the correlation between linear spans of disjoint parts of the
dictionary of fixed “small cardinalities”, in this case, d and 2d.

Define
md := inf{‖ fu‖L2(Π) : u ∈ RN ,‖u‖`2 = 1,d(u)≤ d}

and
Md := sup{‖ fu‖L2(Π) : u ∈ RN ,‖u‖`2 = 1,d(u)≤ d}.

If md ≤ 1 ≤ Md ≤ 2, the restricted isometry constant can be written as

δd = (Md −1)∨ (1−md).

Lemma 7.2. Suppose J ⊂ {1, . . . ,N}, d(J) = d and ρd < m2d
bM2d

. Then

β
(b)
2 (J)≤ 1

m2d −bρdM2d
.

Proof. Denote PI the orthogonal projection on LI ⊂ L2(Π). Under the notations of
Lemma 7.1, for all u ∈CJ ,∥∥∥∥ N

∑
j=1

u jh j

∥∥∥∥
L2(Π)

≥
∥∥∥∥PJ0∪J1

N

∑
j=1

u jh j

∥∥∥∥
L2(Π)

≥∥∥∥∥ ∑
j∈J0∪J1

u jh j

∥∥∥∥
L2(Π)

−
∥∥∥∥PJ0∪J1 ∑

j 6∈J0∪J1

u jh j

∥∥∥∥
L2(Π)

≥∥∥∥∥ ∑
j∈J0∪J1

u jh j

∥∥∥∥
L2(Π)

− ∑
k≥2

∥∥∥∥PJ0∪J1 ∑
j∈Jk

u jh j

∥∥∥∥
L2(Π)

≥∥∥∥∥ ∑
j∈J0∪J1

u jh j

∥∥∥∥
L2(Π)

−ρd ∑
k≥2

∥∥∥∥∑
j∈Jk

u jh j

∥∥∥∥
L2(Π)

≥∥∥∥∥ ∑
j∈J0∪J1

u jh j

∥∥∥∥
L2(Π)

−ρdM2d ∑
k≥2

‖u(k)‖`2 ≥∥∥∥∥ ∑
j∈J0∪J1

u jh j

∥∥∥∥
L2(Π)

−bρdM2d

(
∑

j∈J∪J1

|u j|2
)
≥∥∥∥∥ ∑

j∈J0∪J1

u jh j

∥∥∥∥
L2(Π)

−bρd
M2d

m2d

∥∥∥∥ ∑
j∈J0∪J1

u jh j

∥∥∥∥
L2(Π)

=(
1−bρd

M2d

m2d

)∥∥∥∥ ∑
j∈J0∪J1

u jh j

∥∥∥∥
L2(Π)

.

On the other hand,(
∑
j∈J
|u j|2

)1/2

≤
(

∑
j∈J0∪J1

|u j|2
)1/2

≤ m−1
2d

∥∥∥∥ ∑
j∈J0∪J1

u jh j

∥∥∥∥
L2(Π)

,
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implying that(
∑
j∈J
|u j|2

)1/2

≤ m−1
2d

(
1−bρd

M2d

m2d

)−1∥∥∥∥ N

∑
j=1

u jh j

∥∥∥∥
L2(Π)

.

Therefore,

β2(J)≤ 1
m2d −bρdM2d

.

ut

It is easy to check that

ρd ≤
1
2

[(
1+δ3d

1−δ2d

)2

+
(

1+δ3d

1−δd

)2

−2
]∨ 1

2

[
2−
(

1−δ3d

1+δ2d

)2

−
(

1−δ3d

1+δd

)2]
.

Together with Lemma 7.2 this implies that β2(J) < +∞ for any set J such that
card(J)≤ d, provided that δ3d ≤ 1

8 (a sharper condition is also possible).
We will give a simple modification of Lemma 7.2 in spirit of [22].

Lemma 7.3. Suppose J ⊂ {1, . . . ,N}, d(J) = d and, for some s ≥ 1,

Ms

md+s
<

1
b

√
s
d

.

Then

β
(b)
2 (J)≤

√
s

√
smd+s−b

√
dMs

.

Proof. For all u ∈Cb,J ,(
∑
j∈J
|u j|2

)1/2

≤ 1
md+s

∥∥∥∥ ∑
j∈J∪J1

u jh j

∥∥∥∥
L2(Π)

≤

1
md+s

∥∥∥∥ N

∑
j=1

u jh j

∥∥∥∥
L2(Π)

+
1

md+s

∥∥∥∥ ∑
j 6∈J∪J1

u jh j

∥∥∥∥
L2(Π)

.

To bound the last norm in the right hand side, note that∥∥∥∥ ∑
j 6∈J∪J1

u jh j

∥∥∥∥
L2(Π)

≤ ∑
k≥2

∥∥∥∥∑
j∈Jk

u jh j

∥∥∥∥
L2(Π)

≤Ms ∑
k≥2

‖u(k)‖`2 ≤Ms

√
d
s

(
∑
j∈J
|u j|2

)1/2

.

This yields the bound(
∑
j∈J
|u j|2

)1/2

≤ 1
md+s

∥∥∥∥ N

∑
j=1

u jh j

∥∥∥∥
L2(Π)

+
Ms

md+s

√
d
s

(
∑
j∈J
|u j|2

)1/2

,
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which implies the result.
ut

7.2.3 Alignment Coefficients

In what follows, we will use several quantities that describe a way in which vectors
in RN , especially, sparse vectors, are “aligned” with the dictionary. We will use the
following definitions. Let D ⊂ RN be a convex set. For λ ∈ D, denote by TD(λ ) the
closure of the set

{v ∈ RN : ∃t > 0 λ + vt ∈ D}.

The set TD(λ ) will be called the tangent cone of convex set D at point λ . Let

H :=
(
〈hi,h j〉L2(Π)

)
i, j=1,...,N

be the Gram matrix of the dictionary in the space L2(Π). Whenever it is convenient,
H will be viewed as a linear transformation of RN .

For a vector w∈RN and b > 0, we will denote Cb,w := Cb,supp(w), which is a cone
of vectors whose “dominant” coordinates are in supp(w). Now define

a(b)
H (D,λ ,w) := sup

{
〈w,u〉`2 : u ∈ −TD(λ )∩Cb,w,‖ fu‖L2(Π) = 1

}
, b ∈ [0,+∞].

The quantities a(b)
H (D,λ ,w) for b ∈ [0,∞] will be called the alignment coefficients

of vector w, matrix H and convex set D at point λ ∈ D. In applications that follow,
we want the alignment coefficient to be either negative, or, if positive, then small
enough.

The geometry of the set D could have an impact on the alignment coefficients
for some vectors w that are of interest in sparse recovery problems. For instance,
if L is a convex function on D and λ ∈ D is its minimal point, then there exists a
subgradient w ∈ ∂L(λ ) of L at point λ such that, for all u ∈ TD(λ ), 〈w,u〉`2 ≥ 0
(that is, the vector −w belongs to the normal cone of D at point λ ; see Aubin and
Ekeland [9], Chapter 4, Section 2, Corollary 6). This implies that a(b)

H (D,λ ,w)≤ 0.
If D = RN , then TD(λ ) = RN , λ ∈ RN . In this case, we will write

a(b)
H (w) := a(b)

H (RN ,λ ,w) = sup
{
〈w,u〉`2 : u ∈Cb,w,‖ fu‖L2(Π) = 1

}
.

Despite the fact that the geometry of set D might be important, in many cases, we
are not taking it into account and replace a(b)

H (D,λ ,w) by its upper bound a(b)
H (w).

Note that
‖ fu‖2

L2(Π) = 〈Hu,u〉`2 = 〈H1/2u,H1/2u〉`2 .

We will frequently use the following form of alignment coefficient
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a(∞)
H (D,λ ,w) := sup

{
〈w,u〉`2 : u ∈ −TD(λ ),‖ fu‖L2(Π) = 1

}
,

or rather a simpler upper bound

a(∞)
H (w) = a(∞)

H (RN ,λ ,w) = sup
{
〈w,u〉`2 : ‖ fu‖L2(Π) = 1

}
.

The last quantity is a seminorm in RN and, for all b, we have

a(b)
H (w)≤ a(∞)

H (w) = sup
‖H1/2u‖`2 =1

〈w,u〉`2 =: ‖w‖H .

If H is nonsingular, we can further write

‖w‖H = sup
‖H1/2u‖`2 =1

〈H−1/2w,H1/2u〉`2 = ‖H−1/2w‖`2 .

Even when H is singular, we still have ‖w‖H ≤ ‖H−1/2w‖`2 , where, for w ∈
Im(H1/2) = H1/2RN , one defines

‖H−1/2w‖`2 := inf{‖v‖`2 : H1/2v = w}

(which means factorization of the space with respect to Ker(H1/2)) and, for w 6∈
Im(H1/2), the norm ‖H−1/2w‖`2 becomes infinite.

Note also that, for b = 0,

a(0)
H (w) = a(0)

H (RN ,λ ,w) = sup
{
〈w,u〉`2 : ‖ fu‖L2(Π) = 1,supp(u) = supp(w)

}
.

This also defines seminorms on subspaces of vectors w with a fixed support, say,

supp(w) = J. If HJ :=
(
〈hi,h j〉L2(Π)

)
i, j∈J

is the corresponding submatrix of the

Gram matrix H and HJ is nonsingular, then

a(0)
H (w) = ‖H−1/2

J w‖`2 ,

so, in this case, the alignment coefficient depends only on “small” submatrices of
the Gram matrix corresponding to the support of w (which is, usually, sparse).

When 0 < b < +∞, the definition of alignment coefficients involves cones of
dominant coordinates and their values are between the values in the two extreme
cases of b = 0 and b = ∞.

It is easy to bound the alignment coefficient in terms of geometric characteristics
of the dictionary introduced earlier in this section. For instance, if J = supp(w), then

‖w‖H ≤
‖w‖`2√

κ(J)(1−ρ2(J))
≤

‖w‖`∞

√
d(J)√

κ(J)(1−ρ2(J))
,
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where κ(J) is the minimal eigenvalue of the matrix HJ =
(
〈hi,h j〉L2(Π)

)
i, j∈J

and

ρ(J) is the “canonical correlation” defined above.
One can also upper bound the alignment coefficient in terms of the quantity

β2,b(w;Π) := β
(b)
2 (supp(w);Π).

Namely, the following bound is straightforward:

a(b)
H (w)≤ ‖w‖`2 β2,b(w;Π).

These upper bounds show that the size of the alignment coefficient is controlled
by the “sparsity” of the vector w as well as by some characteristics of the dictionary
(or its Gram matrix H). For orthonormal dictionaries and for dictionaries that are
close enough to being orthonormal (so that, for instance, κ(J) is bounded away
from 0 and ρ2(J) is bounded away from 1), the alignment coefficient is bounded
from above by a quantity of the order ‖w‖`∞

√
d(J). However, this is only an upper

bound and the alignment coefficient itself is a more flexible characteristic of rather
complicated geometric relationships between the vector w and the dictionary. Even
the quantity ‖H−1/2w‖`2 (a rough upper bound on the alignment coefficient not
taking into account the geometry of the cone of dominant coordinates), depends not
only on the sparsity of w, but also on the way in which this vector is aligned with the
eigenspaces of H. If w belongs to the linear span of the eigenspaces that correspond
to large eigenvalues of H, then ‖H−1/2w‖`2 can be of the order ‖w‖`2 .

Note that the geometry of the problem is the geometry of the Hilbert space
L2(Π), so it strongly depends on the unknown distribution Π of the design vari-
able.

7.3 Sparse Recovery in Noiseless Problems

Let Πn denote the empirical measure based on the points X1, . . . ,Xn (at the moment,
not necessarily random).

Proposition 7.2. Let λ̂ be a solution of (7.3). If λ ∗ ∈ L and β2(Jλ ∗ ;Πn) < +∞, then
λ̂ = λ ∗.

Proof. Since λ̂ ∈ L and λ ∗ ∈ L, we have

f
λ̂
(X j) = fλ ∗(X j), j = 1, . . . ,n

implying that ‖ f
λ̂
− fλ ∗‖L2(Πn) = 0. On the other hand, since λ̂ is a solution of (7.3),

we have ‖λ̂‖`1 ≤ ‖λ ∗‖`1 . This yields

∑
j 6∈Jλ∗

|λ̂ j| ≤ ∑
j∈Jλ∗

(|λ̂ j|− |λ ∗
j |)≤ ∑

j∈Jλ∗

|λ̂ j −λ
∗
j |.
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Therefore, λ̂ −λ ∗ ∈CJλ∗ and

‖λ̂ −λ
∗‖`1 ≤ 2 ∑

j∈Jλ∗

|λ̂ j −λ
∗
j | ≤ 2

√
d(λ ∗)

(
∑

j∈Jλ∗

|λ̂ j −λ
∗
j |2
)1/2

≤

2β2(Jλ ∗ ;Πn)
√

d(λ ∗)‖ f
λ̂
− fλ ∗‖L2(Πn) = 0,

implying the result.
ut

In particular, it means that as soon as the restricted isometry condition holds for
the empirical distribution Πn for a sufficiently large d with a sufficiently small δd . To
be more precise, it follows from the bounds of the previous section that the condition
δ3d(Πn)≤ 1/8 would suffice. Candes [38] gives sharper bounds. Then, the method
(7.3) provides a solution of the sparse recovery problem for any target vector λ ∗

such that f∗ = fλ ∗ and d(λ ∗)≤ d. The restricted isometry condition for Πn (which
can be also viewed as a condition on the design matrix A) has been also referred to
as the uniform uncertainty principle (UUP) (see, e.g., Candes and Tao [44]). It is
computationally hard to check UUP for a given large design matrix A. Moreover,
it is hard to construct n×N-matrices for which UUP holds. The main approach is
based on using random matrices of special type and proving that for such matrices
UUP holds for a sufficiently large d with a high probability. We will discuss below
a slightly different approach in which it is assumed that the design points X1, . . . ,Xn
are i.i.d. with common distribution Π . It will be proved directly (without checking
UUP for the random matrix A) that, under certain conditions, (7.3) does provide a
solution of sparse recovery problem with a high probability.

Recall the definitions of ψα -norms (see Appendix A.1) and, for C > 0,A ≥ 1,
define

ΛS :=
{

λ ∈ RN : Cβ (Jλ ;Π) max
1≤k≤N

‖hk(X)‖ψ1

√
A logN

n
≤ 1/4

}
.

We will interpret ΛS as a set of “sparse” vectors. Note that in the case when the
dictionary is L2(Π)-orthonormal, β (J;Π) ≤

√
card(J), so, indeed, ΛS consists of

vectors with a sufficiently small d(λ ) (that is, sparse).
In what follows we assume that A logN ≤ n.
Recall that

L =
{

λ ∈ RN : fλ (X j) = f∗(X j), j = 1, . . . ,n
}

.

Theorem 7.2. Suppose f∗ = fλ ∗ , λ ∗ ∈ RN . Let A ≥ 1. There exists a constant C in
the definition of the set ΛS such that with probability at least 1−N−A,

either L∩ΛS = /0, or L∩ΛS = {λ̂}.

In particular, if λ ∗ ∈ΛS, then with the same probability λ̂ = λ ∗.
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Proof. The following lemma is used in the proof.

Lemma 7.4. There exists a constant C > 0 such that for all A ≥ 1 with probability
at least 1−N−A

sup
‖u‖`1≤1

∣∣∣(Πn−Π)(| fu|)
∣∣∣≤C max

1≤k≤N
‖hk(X)‖ψ1

(√
A logN

n

∨ A logN
n

)
.

Proof. Let Rn( f ) be the Rademacher process. We will use symmetrization inequal-
ity and then contraction inequality for exponential moments (see sections 2.1, 2.2).
For t > 0, we get

Eexp
{

t sup
‖u‖`1≤1

∣∣∣(Πn−Π)(| fu|)
∣∣∣}≤ Eexp

{
2t sup

‖u‖`1≤1

∣∣∣Rn(| fu|)
∣∣∣}≤

Eexp
{

4t sup
‖u‖`1≤1

∣∣∣Rn( fu)
∣∣∣}.

Since the mapping u 7→ Rn( fu) is linear, the supremum of Rn( fu) over the set
{‖u‖`1 ≤ 1} (which is a convex polytope) is attained at one of its vertices, and
we get

Eexp
{

t sup
‖u‖`1≤1

∣∣∣(Πn−Π)(| fu|)
∣∣∣}≤ Eexp

{
4t max

1≤k≤N

∣∣∣Rn(hk)
∣∣∣}=

N max
1≤k≤N

E
[

exp
{

4tRn(hk)
}∨

exp
{
−4tRn(hk)

}]
≤

2N max
1≤k≤N

Eexp
{

4tRn(hk)
}
≤ 2N max

1≤k≤N

(
Eexp

{
4

t
n

εhk(X)
})n

.

To bound the last expectation and to complete the proof, follow the standard proof
of Bernstein’s inequality.

ut

Assume that L∩ΛS 6= /0 and let λ ∈ L∩ΛS. Arguing as in the proof of Proposition
7.2, we get that, for all λ ∈ L, λ̂ −λ ∈CJλ

and ‖ f
λ̂
− fλ‖L1(Πn) = 0. Therefore,

‖λ̂ −λ‖`1 ≤ ∑
j 6∈Jλ

|λ̂ j|+ ∑
j∈Jλ

|λ j − λ̂ j| ≤

2 ∑
j∈Jλ

|λ j − λ̂ j| ≤ 2β (Jλ )‖ f
λ̂
− fλ‖L1(Π). (7.6)

We will now upper bound ‖ f
λ̂
− fλ‖L1(Π) in terms of ‖λ̂ −λ‖`1 , which will imply

the result. First, note that
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‖ f
λ̂
− fλ‖L1(Π) = ‖ f

λ̂
− fλ‖L1(Πn) +(Π −Πn)(| fλ̂

− fλ |)≤

sup
‖u‖`1≤1

∣∣∣(Πn−Π)(| fu|)
∣∣∣‖λ̂ −λ‖`1 . (7.7)

By Lemma 7.4, with probability at least 1 − N−A (under the assumption that
A logN ≤ n)

sup
‖u‖`1≤1

∣∣∣(Πn−Π)(| fu|)
∣∣∣≤C max

1≤k≤N
‖hk‖ψ1

√
A logN

n
.

This yields the following bound that holds with probability at least 1−N−A:

‖ f
λ̂
− fλ‖L1(Π) ≤C max

1≤k≤N
‖hk‖ψ1

√
A logN

n
‖λ̂ −λ‖`1 . (7.8)

Together with (7.6), this implies

‖λ̂ −λ‖`1 ≤ 2Cβ (Jλ ) max
1≤k≤N

‖hk‖ψ1

√
A logN

n
‖λ̂ −λ‖`1 .

It follows that, for λ ∈ L∩ΛS, with probability at least 1−N−A,

‖λ̂ −λ‖`1 ≤
1
2
‖λ̂ −λ‖`1 ,

and, hence, λ̂ = λ .
ut

It is of interest to study the problem under the following condition on the dictio-
nary and on the distribution Π : for all λ ∈CJ∥∥∥∥ N

∑
j=1

λ jh j

∥∥∥∥
L1(Π)

≤
∥∥∥∥ N

∑
j=1

λ jh j

∥∥∥∥
L2(Π)

≤ B(J)
∥∥∥∥ N

∑
j=1

λ jh j

∥∥∥∥
L1(Π)

(7.9)

with some constant B(J) > 0. This inequality always holds with some B(J) > 0 since
any two norms on a finite dimensional space are equivalent. In fact, the first bound is
just Cauchy-Schwarz inequality. However, in general, the constant B(J) does depend
on J and we are interested in the situation when there is no such dependence (or, at
least, B(J) does not grow too fast as card(J)→ ∞).

Examples.

• Gaussian dictionary. It will be said that h1, . . . ,hN is a Gaussian dictionary with
respect to Π iff (h1(X), . . . ,hN(X)) has a normal distribution in RN , X having
distribution Π . In this case, condition (7.9) holds for all λ ∈ RN with B(J) = B
that does not depend on the dimension d(J). Moreover, all the Lp norms for
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p ≥ 1 and even ψ1- and ψ2-norms of ∑
N
j=1 λ jh j are equivalent up to numerical

constants.
• Gaussian orthonormal dictionary. In this special case of Gaussian dictionaries,

h1(X), . . . ,hN(X) are i.i.d. standard normal random variables.
• Rademacher (Bernoulli) dictionary. In this example h1(X), . . . ,hN(X) are i.i.d.

Rademacher random variables. Condition (7.9) holds for this dictionary with an
absolute constant B(J) = B. Moreover, as in the case of Gaussian dictionaries,
all the Orlicz norms between L1 and ψ2 are equivalent on the linear span of
the dictionary up to numerical constants. This fact follows from the classical
Khinchin inequality (see Bobkov and Houdre (1997) for a discussion of Khinchin
type inequalities and their connections with isoperimetric constants).

• ψα -dictionary. Let α ≥ 1. It will be said that h1, . . . ,hN is a ψα -dictionary with
respect to Π iff

‖ fλ‖ψα
≤ B‖ fλ‖L1(Π), λ ∈ RN

with an absolute constant B. Condition (7.9) obviously holds for ψα -dictionaries.
In particular, ψ2-dictionaries will be also called subgaussian dictionaries. Clearly,
this includes the examples of Gaussian and Rademacher dictionaries.

• Log-concave dictionary. Recall that a probability measure µ in RN is called
log-concave iff

µ(tA+(1− t)B)≥ (µ(A))t(µ(B))1−t

for all Borel sets A,B⊂RN and all t ∈ [0,1]. A log-concave measure µ is always
supported in an affine subspace of RN (that might coincide with the whole space).
Moreover, it has a density on its support that is a log-concave function (i.e., its
logarithm is concave). In particular, if K ⊂RN is a bounded convex set, then uni-
form distribution in K is log-concave. It will be said that a dictionary {h1, . . . ,hN}
is log-concave with respect to Π iff the random vector (h1(X), . . . ,hN(X)) has a
log-concave distribution, X having distribution Π . A well known result of Borell
[28] (see also Ledoux [96], Proposition 2.14) implies that log-concave dictionar-
ies satisfy the condition (7.9) with an absolute constant B(J) = B (that does not
depend on J). Moreover, the same result implies that for log-concave dictionaries

‖ fλ‖ψ1 ≤ B‖ fλ‖L1(Π), λ ∈ RN

with an absolute constant B. Thus, logconcave dictionaries are examples of ψ1-
dictionary.

Under the condition (7.9),

β (J)≤ B(J)β2(J)
√

d(J). (7.10)

If β2(J) is bounded (as in the case of orthonormal dictionaries), then β (J) is ”small”
for sets J of small cardinality d(J). In this case, the definition of the set of ”sparse
vectors” ΛS can be rewritten in terms of β2.



7.3 Sparse Recovery in Noiseless Problems 125

However, we will give below another version of this result slightly improving
the logarithmic factor in the definition of the set of sparse vectors ΛS and providing
bounds on the norms ‖ · ‖L2(Π) and ‖ · ‖`2 .

Denote

β2(d) := β2(d;Π) := max
{

β2(J) : J ⊂ {1, . . . ,N}, d(J)≤ 2d
}

.

Let

B(d) := max

{
B(J) : J ⊂ {1, . . . ,N}, d(J)≤ d

}
.

Finally, denote d̄ the largest d satisfying the conditions d ≤ N
e − 1, Ad log(N/d)

n ≤ 1,
and

CB(d)β2(d) sup
‖u‖`2≤1,d(u)≤d

‖ fu‖ψ1

√
Ad log(N/d)

n
≤ 1/4.

We will now use the following definition of the set of ”sparse” vectors:

ΛS,2 := {λ ∈ RN : d(λ )≤ d̄}.

Recall the notation (
n
≤ k

)
:=

k

∑
j=0

(
n
j

)
.

Suppose f∗ = fλ ∗ , λ ∗ ∈RN . Let A≥ 1. There exists a constant C in the definition
of the set ΛS such that with probability at least 1−N−A,

Theorem 7.3. Suppose that f∗ = fλ ∗ , λ ∗ ∈ RN and that condition (7.9) holds. Let
A ≥ 1. There exists a constant C in the definition of ΛS,2 such that, with probability
at least

1−5−d̄A
(

N
≤ d̄

)−A

,

either L∩ΛS,2 = /0, or L∩ΛS = {λ̂}.

In particular, if λ ∗ ∈ΛS,2, then with the same probability λ̂ = λ ∗.

Proof. We will use the following lemma.

Lemma 7.5. For J ⊂ {1, . . . ,N} with d(J) = d, let KJ := CJ ∩U`2 . There exists a
constant C > 0 such that, for all A ≥ 1 with probability at least

1−5−dA
(

N
≤ d

)−A

,

the following bound holds:
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sup
u∈KJ

∣∣∣∣(Πn−Π)(| fu|)
∣∣∣∣≤C sup

‖u‖`2≤1,d(u)≤d
‖ fu‖ψ1

(√
Ad log(N/d)

n

∨ Ad log(N/d)
n

)
.

Proof. It follows from statement (ii) of Lemma 7.1 with b = 1 that

KJ ⊂ 6 conv(Md),

where Md is a set of vectors u from the unit ball {u ∈ RN : ‖u‖`2 ≤ 1} such that
d(u)≤ d and

card(Md)≤ 5d
(

N
≤ d

)
.

Now, it is enough to repeat the proof of Lemma 7.4. In particular, we use sym-
metrization and contraction inequalities to reduce bounding the exponential moment
of

sup
u∈KJ

∣∣∣∣(Πn−Π)(| fu|)
∣∣∣∣

to bounding the exponential moment of supu∈Md
|Rn( fu)|, card(Md) playing now

the role of N. The bound on card(Md) implies that with some c > 0

log(card(Md))≤ cd log
N
d

,

and it is easy to complete the proof.
ut

We now follow the proof of Theorem 7.2 with straightforward modifications.
Assume that L∩ΛS,2 6= /0 and let λ ∈ L∩ΛS,2. Instead of (7.7), we use

‖ f
λ̂
− fλ‖L1(Π) = ‖ f

λ̂
− fλ‖L1(Πn) +(Π −Πn)(| fλ̂

− fλ |)≤

sup
‖u‖`2≤1,u∈CJ

λ

∣∣∣(Πn−Π)(| fu|)
∣∣∣‖λ̂ −λ‖`2 . (7.11)

To bound ‖λ̂ − λ‖`2 note that, as in the proof of Theorem 7.2, λ̂ − λ ∈ CJλ
and

apply Lemma 7.1 to u = λ̂ −λ , J = Jλ :

‖λ̂ −λ‖`2 ≤ 2
(

∑
j∈J0∪J1

|λ̂ j −λ j|2
)1/2

≤ 2β2(d(λ ))‖ f
λ̂
− fλ‖L2(Π). (7.12)

Use Lemma 7.5 to bound

sup
‖u‖`2≤1,u∈CJ

λ

∣∣∣(Πn−Π)(| fu|)
∣∣∣≤

C sup
‖u‖`2≤1,d(u)≤d(λ )

‖ fu‖ψ1

√
Ad(λ ) log(N/d(λ ))

n
, (7.13)
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which holds with probability at least 1−5−d(λ )A( N
≤d(λ )

)−A
. Then we use

‖λ̂ −λ‖`1 ≤ 2 ∑
j∈J
|λ̂ j −λ j| ≤ 2

√
d(λ )

(
∑

j∈J∪J1

|λ̂ j −λ j|2
)1/2

≤

2β2(d(λ ))
√

d(λ )‖ f
λ̂
− fλ‖L2(Π). (7.14)

It remains to substitute bounds (7.12) and (7.13) in (7.11), to use (7.9) and to solve
the resulting inequality with respect to ‖ f

λ̂
− fλ‖L2(Π). It follows that the last norm

is equal to 0. In view of (7.14), this implies that λ̂ = λ .
ut

Remark. Note that, in the case of L2(Π)-orthonormal logconcave dictionary,
Theorem 7.3 easily implies that λ̂ = λ ∗ with a high probability provided that

Ad(λ ∗) log(N/d(λ ∗))
n

≤ c

for a sufficiently small c. Recently, Adamczak, Litvak, Pajor and Tomczak-Jaegermann
[2] obtained sharp bounds on empirical restricted isometry constants δd(Πn) for
such dictionaries that imply bounds on d(λ ∗) for which sparse recovery is possible
with a little bit worse logarithmic factor than what follows from Theorem 7.3 (of
course, in this theorem we are not providing any control of δd(Πn)).

7.4 The Dantzig Selector

We now turn to the case when the target function f∗ is observed in an additive noise.
Moreover, it will not be assumed that f∗ belongs to the linear span of the dictionary,
but rather that it can be well approximated in the linear span. Consider the following
regression model with random design

Yj = f∗(X j)+ξ j, j = 1, . . . ,n,

where X ,X1, . . . ,Xn are i.i.d. random variables in a measurable space (S,A ) with
distribution Π and ξ ,ξ1, . . . ,ξn are i.i.d. random variables with Eξ = 0 independent
of (X1, . . . ,Xn). Candes and Tao [44] developed a method of sparse recovery based
on linear programming suitable in this more general framework. They called it the
Dantzig selector.

Given ε > 0, let

Λ̂ε :=
{

λ ∈ RN : max
1≤k≤N

∣∣∣∣n−1
n

∑
j=1

( fλ (X j)−Yj)hk(X j)
∣∣∣∣≤ ε

}
and define the Dantzig selector as
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λ̂ := λ̂
ε ∈ Argmin

λ∈Λ̂ε
‖λ‖`1 .

It is easy to reduce the computation of λ̂ ε to a linear program. The Dantzig selec-
tor is closely related to the `1-penalization method (called ”LASSO” in statistical
literature, see Tibshirani [135]) and defined as a solution of the following penalized
empirical risk minimization problem:

n−1
n

∑
j=1

( fλ (X j)−Yj)2 +2ε‖λ‖`1 =: Ln(λ )+2ε‖λ‖`1 −→ min . (7.15)

The set of constraints of the Dantzig selector can be written as

Λ̂ε =
{

λ :
∥∥∥∇Ln(λ )

∥∥∥
`∞

≤ ε

}
and the condition λ ∈ Λ̂ε is necessary for λ to be a solution of (7.15).

In [44], Candes and Tao studied the performance of the Dantzig selector in the
case of fixed design regression (nonrandom points X1, . . . ,Xn) under the assump-
tion that the design matrix A =

(
h j(Xi)

)
i=1,n; j=1,N

satisfies the uniform uncertainty

principle (UUP). They stated that UUP holds with a high probability for some
random design matrices such as the “Gaussian ensemble” and the “Bernoulli or
Rademacher ensemble” (using the terminology of the previous section, Gaussian
and Rademacher dictionaries).

We will prove several “sparsity oracle inequalities” for the Dantzig selector in
spirit of recent results of Bunea, Tsybakov and Wegkamp [36], van de Geer [61],
Koltchinskii [81] in the case of `1- or `p-penalized empirical risk minimization.
We follow the paper of Koltchinskii [82] that relies only on elementary empirical
and Rademacher processes methods (symmetrization and contraction inequalities
for Rademacher processes and Bernstein type exponential bounds), but does not use
more advanced techniques, such as concentration of measure and generic chaining.
It is also close to the approach of Section 7.3 and to recent papers by Rudelson
and Vershynin [123] and Mendelson, Pajor and Tomczak-Jaegermann [112]. As in
Section 7.3, our proofs of oracle inequalities in the random design case are more
direct, they are not based on a reduction to the fixed design case and checking UUP
for random matrices. The results also cover broader families of design distributions.
In particular, the assumption that the dictionary is L2(Π)-orthonormal is replaced
by the assumption that it satisfies the restricted isometry condition with respect to
Π .

In what follows, the values of ε > 0, A > 0 and C > 0 will be fixed and it will be
assumed that A logN

n ≤ 1. Consider the following set

Λ := Λε(A) :=
{

λ ∈ RN :
∣∣∣〈 fλ − f∗,hk〉L2(Π)

∣∣∣+
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C
(
‖( fλ − f∗)(X)hk(X)‖ψ1 +‖ξ hk(X)‖ψ1

)√A logN
n

≤ ε, k = 1, . . . ,N
}

,

consisting of vectors λ (”oracles”) such that fλ provides a good approximation of
f∗. In fact, λ ∈Λε(A) implies that

max
1≤k≤N

∣∣∣〈 fλ − f∗,hk〉L2(Π)

∣∣∣≤ ε. (7.16)

This means that fλ − f∗ is “almost orthogonal” to the linear span of the dictionary.
Thus, fλ is close to the projection of f∗ on the linear span. Condition (7.16) is
necessary for λ to be a minimal point of

λ 7→ ‖ fλ − f∗‖2
L2(Π) +2ε‖λ‖`1 ,

and minimizing the last function is a ”population version” of LASSO problem (7.15)
(λ ∈ Λ̂ε is a necessary condition for (7.15)). Of course, the condition

ε ≥ max
1≤k≤N

‖ξ hk(X)‖ψ1

√
A logN

n

is necessary for Λε(A) 6= /0. It will be clear from the proof of Theorem 7.4 below
that λ ∈Λε(A) implies λ ∈ Λ̂ε with a high probability.

The next theorems 7.4 and 7.5 show that if there exists a sufficiently sparse vector
λ in the set Λ̂ε of constraints of the Dantzig selector, then, with a high probability,
the Dantzig selector belongs to a small ball around λ in such norms as ‖ ·‖`1 ,‖ ·‖`2 .
At the same time, the function f

λ̂
belongs to a small ball around fλ with respect to

such norms as ‖ · ‖L1(Π) or ‖ · ‖L2(Π). The radius of this ball is determined by the
degree of sparsity of λ and by the properties of the dictionary characterized by such
quantities as β or β2 (see Section 7.2). Essentially, the results show that the Dantzig
selector is adaptive to unknown degree of sparsity of the problem, provided that the
dictionary is not too far from being orthonormal in L2(Π).

Recall the definition of the set of “sparse” vectors ΛS from the previous section.
Let

Λ̃ = Λ̃ε(A) := Λε(A)∩ΛS.

Theorem 7.4. There exists a constant C in the definitions of Λε(A),ΛS such that,
for A ≥ 1 with probability at least 1−N−A, the following bounds hold for all λ ∈
Λ̂ε ∩ΛS :

‖ f
λ̂
− fλ‖L1(Π) ≤ 16β (Jλ )ε

and
‖λ̂ −λ‖`1 ≤ 32β

2(Jλ )ε.

This implies that

‖ f
λ̂
− f∗‖L1(Π) ≤ inf

λ∈Λ̃ε (A)

[
‖ fλ − f∗‖L1(Π) +16β (Jλ )ε

]
.
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If, in addition f∗ = fλ ∗ ,λ
∗ ∈ RN , then also

‖λ̂ −λ
∗‖`1 ≤ inf

λ∈Λ̃ε (A)

[
‖λ −λ

∗‖`1 +32β
2(Jλ )ε

]
.

Proof. We use the following lemma based on Bernstein’s inequality for ψ1-random
variables (see Section A.2).

Lemma 7.6. Let η(k),η
(k)
1 , . . . ,η

(k)
n be i.i.d. random variables with Eη(k) = 0 and

‖η(k)‖ψ1 < +∞, k = 1, . . . ,N. There exists a numerical constant C > 0 such that, for
A ≥ 1 with probability at least 1−N−A for all k = 1, . . . ,N,∣∣∣∣n−1

n

∑
j=1

η
(k)
j

∣∣∣∣≤C‖η
(k)‖ψ1

(√
A logN

n

∨ A logN
n

)
.

For λ ∈ Λ̂ε ∩ΛS, we will upper bound the norms ‖λ̂ −λ‖`1 , ‖ f
λ̂
− fλ‖L1(Π) in

terms of each other and solve the resulting inequalities, which will yield the first
two bounds of the theorem. As in the proof of Proposition 7.2 and theorems 7.2,
7.3, λ ∈ Λ̂ε and the definition of λ̂ imply that λ̂ −λ ∈CJλ

and

‖λ̂ −λ‖`1 ≤ 2β (Jλ )‖ f
λ̂
− fλ‖L1(Π). (7.17)

It remains to upper bound ‖ f
λ̂
− fλ‖L1(Π) in terms of ‖λ̂ −λ‖`1 . To this end, note

that

‖ f
λ̂
− fλ‖L1(Π) = ‖ f

λ̂
− fλ‖L1(Πn) +(Π −Πn)(| fλ̂

− fλ |)≤

‖ f
λ̂
− fλ‖L1(Πn) + sup

‖u‖`1≤1

∣∣∣(Πn−Π)(| fu|)
∣∣∣‖λ̂ −λ‖`1 . (7.18)

The first term in the right hand side can be bounded as follows

‖ f
λ̂
− fλ‖2

L1(Πn) ≤ ‖ f
λ̂
− fλ‖2

L2(Πn) = 〈 f
λ̂
− fλ , f

λ̂
− fλ 〉L2(Πn) =

N

∑
k=1

(λ̂k−λk)〈 f
λ̂
− fλ ,hk〉L2(Πn) ≤ ‖λ̂ −λ‖`1 max

1≤k≤N

∣∣∣〈 f
λ̂
− fλ ,hk〉L2(Πn)

∣∣∣.
Both λ̂ ∈ Λ̂ and λ ∈ Λ̂ , implying that

max
1≤k≤N

∣∣∣〈 f
λ̂
− fλ ,hk〉L2(Πn)

∣∣∣≤
max

1≤k≤N

∣∣∣∣n−1
n

∑
j=1

( fλ (X j)−Yj)hk(X j)
∣∣∣∣+ max

1≤k≤N

∣∣∣∣n−1
n

∑
j=1

( f
λ̂
(X j)−Yj)hk(X j)

∣∣∣∣≤ 2ε.

Therefore,

‖ f
λ̂
− fλ‖L1(Πn) ≤

√
2ε‖λ̂ −λ‖`1 .
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Now we bound the second term in the right hand side of (7.18). Under the assump-
tion A logN ≤ n, Lemma 7.4 implies that with probability at least 1−N−A

sup
‖u‖`1≤1

∣∣∣(Πn−Π)(| fu|)
∣∣∣≤C max

1≤k≤N
‖hk‖ψ1

√
A logN

n
.

Hence, we conclude from (7.18) that

‖ f
λ̂
− fλ‖L1(Π) ≤

√
2ε‖λ̂ −λ‖`1 +C max

1≤k≤N
‖hk‖ψ1

√
A logN

n
‖λ̂ −λ‖`1 . (7.19)

Combining this with (7.17) yields

‖ f
λ̂
− fλ‖L1(Π) ≤

√
4εβ (Jλ )‖ f

λ̂
− fλ‖L1(Π) +

2C max
1≤k≤N

‖hk‖ψ1

√
A logN

n
β (Jλ )‖ f

λ̂
− fλ‖L1(Π).

By the definition of ΛS,

2C max
1≤k≤N

‖hk‖ψ1

√
A logN

n
β (Jλ )≤ 1/2,

so, we end up with

‖ f
λ̂
− fλ‖L1(Π) ≤ 2

√
4εβ (Jλ )‖ f

λ̂
− fλ‖L1(Π),

which implies the first bound of the theorem. The second bound holds because of
(7.17).

Observe that for all λ ∈Λ ,∣∣∣∣n−1
n

∑
j=1

( fλ (X j)−Yj)hk(X j)
∣∣∣∣≤ ∣∣∣〈 fλ − f∗,hk〉L2(Π)

∣∣∣+∣∣∣∣n−1
n

∑
j=1

[
( fλ (X j)− f∗(X j))hk(X j)−E( fλ (X)− f∗(X))hk(X)

]∣∣∣∣+ ∣∣∣∣n−1
n

∑
j=1

ξ jhk(X j)
∣∣∣∣.

Lemma 7.6 can be used to bound the second and the third terms: with probability at
least 1−2N−A

max
1≤k≤N

∣∣∣∣n−1
n

∑
j=1

( fλ (X j)−Yj)hk(X j)
∣∣∣∣≤ max

1≤k≤N

[∣∣∣〈 fλ − f∗,hk〉L2(Π)

∣∣∣+
C
(
‖( fλ − f∗)(X)hk(X)‖ψ1 +‖ξ hk(X)‖ψ1

)√A logN
n

]
≤ ε.
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This proves that for all λ ∈ Λ , with probability at least 1− 2N−A, we also have
λ ∈ Λ̂ .

For each of the remaining two bounds, let λ̄ be the vector for which the infimum
in the right hand side of the bound is attained. With probability at least 1− 2N−A,
λ̄ ∈ Λ̂ε ∩ΛS. Hence, it is enough to use the first two bounds of the theorem and the
triangle inequality to finish the proof.

ut
We will give another result about the Dantzig selector in which the properties of

the dictionary are characterized by the quantity β2 instead of β . Recall the definition
of the set of “sparse” vectors ΛS,2 from the previous section and related notations
(β2(d),B(d), etc) and define

Λ̃
2 = Λ̃

2
ε (A) := Λε(A)∩ΛS,2.

Theorem 7.5. Suppose condition (7.9) holds. There exists a constant C in the defi-
nitions of Λε(A),ΛS,2 such that, for A ≥ 1 with probability at least

1−5−d̄A
(

N
≤ d̄

)−A

,

the following bounds hold for all λ ∈ Λ̂ε ∩ΛS,2 :

‖ f
λ̂
− fλ‖L2(Π) ≤ 16B2(d(λ ))β2(d(λ ))

√
d(λ )ε

and
‖λ̂ −λ‖`2 ≤ 32B2(d(λ ))β 2

2 (d(λ ))
√

d(λ )ε.

Also, with probability at least 1−N−A,

‖ f
λ̂
− f∗‖L2(Π) ≤ inf

λ∈Λ̃ 2
ε (A)

[
‖ fλ − f∗‖L2(Π) +16B2(d(λ ))β2(d(λ ))

√
d(λ )ε

]
.

If f∗ = fλ ∗ ,λ
∗ ∈ RN , then

‖λ̂ −λ
∗‖`2 ≤ inf

λ∈Λ̃ 2
ε (A)

[
‖λ −λ

∗‖`2 +32B2(d(λ ))β 2
2 (d(λ ))

√
d(λ )ε

]
.

Proof. We follow the proof of Theorem 7.4. For λ ∈ Λ̂ε ∩ΛS,2, we use the following
bound instead of (7.18):

‖ f
λ̂
− fλ‖L1(Π) = ‖ f

λ̂
− fλ‖L1(Πn) +(Π −Πn)(| fλ̂

− fλ |)≤

‖ f
λ̂
− fλ‖L1(Πn) + sup

‖u‖`2≤1,u∈CJ
λ

∣∣∣(Πn−Π)(| fu|)
∣∣∣‖λ̂ −λ‖`2 . (7.20)

Again, we have λ̂ − λ ∈ CJλ
, and, using Lemma 7.1, we get for u = λ̂ − λ and

J = Jλ :
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‖λ̂ −λ‖`2 ≤ 2
(

∑
j∈J0∪J1

|λ̂ j −λ j|2
)1/2

≤ 2β2(d(λ ))‖ f
λ̂
− fλ‖L2(Π). (7.21)

Lemma 7.5 now yields

sup
‖u‖`2≤1,u∈CJ

λ

∣∣∣(Πn−Π)(| fu|)
∣∣∣≤

C sup
‖u‖`2≤1,d(u)≤d(λ )

‖ fu‖ψ1

√
Ad(λ ) log(N/d(λ ))

n
, (7.22)

which holds with probability at least

1−5−d(λ )A
(

N
≤ d(λ )

)−A

.

As in the proof of Theorem 7.4, we bound the first term in the right hand side of
(7.20):

‖ f
λ̂
− fλ‖L1(Πn) ≤

√
2ε‖λ̂ −λ‖`1 . (7.23)

In addition,

‖λ̂ −λ‖`1 ≤ 2 ∑
j∈J
|λ̂ j −λ j| ≤ 2

√
d(λ )

(
∑

j∈J∪J1

|λ̂ j −λ j|2
)1/2

≤

2β2(d(λ ))
√

d(λ )‖ f
λ̂
− fλ‖L2(Π). (7.24)

Substitute bounds (7.21), (7.22), (7.23) and (7.24) into (7.20), use (7.9) and solve
the resulting inequality with respect to ‖ f

λ̂
− fλ‖L2(Π). This gives the first bound of

the theorem.
The second bound follows from (7.21) and the remaining two bounds are proved

exactly as in Theorem 7.4. ut

In the fixed design case, the following result holds. Its proof is a simplified ver-
sion of the proofs of theorems 7.4, 7.5.

Theorem 7.6. Suppose X1, . . . ,Xn are nonrandom design points in S and let Πn be
the empirical measure based on X1, . . . ,Xn. Suppose also f∗ = fλ ∗ , λ ∗ ∈ RN . There
exists a constant C > 0 such that for all A ≥ 1 and for all

ε ≥C‖ξ‖ψ2 max
1≤k≤N

‖hk‖L2(Πn)

√
A logN

n
,

with probability at least 1−N−A the following bounds hold:
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(7.25)
‖ f

λ̂
− fλ ∗‖L2(Πn) ≤ 4β2(Jλ ∗ ,Πn)

√
d(λ ∗)ε,

‖λ̂ −λ
∗‖`1 ≤ 8β

2
2 (Jλ ∗ ,Πn)d(λ ∗)ε

and
‖λ̂ −λ

∗‖`2 ≤ 8β
2
2 (d(λ ∗),Πn)

√
d(λ ∗)ε.

Proof. As in the proof of Theorem 7.4,

‖ f
λ̂
− fλ ∗‖L2(Πn) ≤

√
2ε‖λ̂ −λ ∗‖`1 (7.26)

and
‖λ̂ −λ

∗‖`1 ≤ 2β2(Jλ ∗ ,Πn)
√

d(λ ∗)‖ f
λ̂
− fλ ∗‖L2(Πn). (7.27)

These bounds hold provided that λ ∗ ∈ Λ̂ε , or

max
1≤k≤N

∣∣∣∣n−1
n

∑
j=1

ξ jhk(X j)
∣∣∣∣≤ ε.

If ‖ξ‖ψ2 < +∞ and

ε ≥C‖ξ‖ψ2 max
1≤k≤N

‖hk‖L2(Πn)

√
A logN

n
,

then usual bounds for random variables in Orlicz spaces imply that λ ∗ ∈ Λ̂ε with
probability at least 1−N−A.

Combining (7.26) and (7.27) shows that with probability at least 1−N−A

‖ f
λ̂
− fλ ∗‖L2(Πn) ≤ 4β2(Jλ ∗ ,Πn)

√
d(λ ∗)ε

and
‖λ̂ −λ

∗‖`1 ≤ 8β
2
2 (Jλ ∗ ,Πn)d(λ ∗)ε.

Using Lemma 7.1 and arguing as in the proof of Theorem 7.5, we also get

‖λ̂ −λ
∗‖`2 ≤ 8β

2
2 (d(λ ∗),Πn)

√
d(λ ∗)ε.

ut

Bounding β2(J,Πn) in terms of restricted isometry constants (see Lemma 7.2),
essentially, allows one to recover Theorem 1 of Candes and Tao [44] that was the
first result about the Dantzig selector in the fixed design case. Instead of doing this,
we turn again to the case of random design regression and conclude this section with
the derivation of the results of Candes and Tao [44] in the random design case.

To simplify the matter, assume that the following conditions hold:

• The dictionary {h1, . . . ,hN} is L2(Π)-orthonormal and, for some numerical con-
stant B > 0,
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1
B
‖λ‖`2 ≤

∥∥∥ N

∑
j=1

λ jh j

∥∥∥
L1(Π)

≤ B‖λ‖`2

and
1
B
‖λ‖`2 ≤

∥∥∥ N

∑
j=1

λ jh j

∥∥∥
Lψ2 (Π)

≤ B‖λ‖`2 , λ ∈ RN .

This is the case, for instance, for Gaussian and Rademacher dictionaries.
• The noise {ξ j} is a sequence of i.i.d. normal random variables with mean 0 and

variance σ2.
• Finally, f∗ = fλ ∗ , λ ∗ ∈ RN .

The following corollary can be derived from the last bound of Theorem 7.5.

Corollary 7.1. There exist constants C,D with the following property. Let A≥ 1 and
suppose that

D

√
Ad(λ ∗) logN

n
≤ 1.

Then, for all ε satifying the condition

ε ≥ Dσ

√
A logN

n
,

the following bound holds with probability at least 1−N−A :

‖λ̂ −λ
∗‖2

`2
≤C

N

∑
j=1

(|λ ∗
j |2∧ ε

2) = C inf
J⊂{1,...,N}

[
∑
j 6∈J
|λ ∗

j |2 +d(J)ε2
]
. (7.28)

In particular, this implies that

‖λ̂ −λ
∗‖2

`2
≤Cd(λ ∗)ε2.

The proof of (7.28) is based on applying the last bound of Theorem 7.5 to the
oracle λ = λ̄ ∗ defined as follows:

λ̄
∗
j = λ

∗
j I(|λ ∗

j | ≥ ε/3), j = 1, . . . ,N.

7.5 Further Comments

Theoretical study of sparse recovery methods based on the `1-norm minimization
started with the work of Donoho [50, 51, 52, 53] who understood the connections of
these problems with convex geometry in high dimensional spaces. Rudelson and
Vershynin [123] followed by Mendelson, Pajor and Tomczak–Jaegermann [112]
used ideas and methods of high dimensional probability and asymptotic geomet-
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ric analysis (concentration of measure, generic chaining) in further development of
the theory of sparse recovery.

Geometric properties of the dictionaries discussed in Section 7.2 have been used
in many recent papers on sparse recovery as well as in other areas of analysis and
probability.

The Dantzig selector was introduced by Candes and Tao [44] who proved spar-
sity oracle inequalities for this estimator. In the same paper, they also introduced the
restricted isometry constants that have been frequently used to quantify the proper-
ties of the dictionary needed for sparse recovery.

Here we followed the approach to oracle inequalities for the Dantzig selector as
well as to the analysis of noiseless sparse recovery problems developed in [82].



Chapter 8
Convex Penalization in Sparse Recovery

We will discuss the role of penalized empirical risk minimization with convex penal-
ties in sparse recovery problems. This includes the `1-norm (LASSO) penalty as
well as strictly convex and smooth penalties, such as the negative entropy penalty
for sparse recovery in convex hulls. The goal is to show that, when the target func-
tion can be well approximated by a “sparse” linear combination of functions from
a given dictionary, then solutions of penalized empirical risk minimization prob-
lems with `1 and some other convex penalties are “approximately sparse” and they
approximate the target function with an error that depends on the “sparsity”. As
a result of this analysis, we derive sparsity oracle inequalities showing the depen-
dence of the excess risk of the empirical solution on the underlying sparsity of the
problem. These inequalities also involve various distribution dependent geometric
characteristics of the dictionary (such as restricted isometry constants and alignment
coefficients) and the error of sparse recovery crucially depends on the geometry of
the dictionary.

8.1 General Aspects of Convex Penalization

In this chapter we study an approach to sparse recovery based on penalized empirical
risk minimization of the following form:

λ̂
ε := argminλ∈D

[
Pn(`• fλ )+ ε

N

∑
j=1

ψ(λ j)
]
. (8.1)

We use the notations of Chapter 1, in particular, we denote

fλ :=
N

∑
j=1

λ jh j, λ ∈ RN ,

137
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where H := {h1, . . . ,hN} is a given finite dictionary of measurable functions from
S into [−1,1]. The cardinality of the dictionary is usually very large (often, larger
than the sample size n). We will assume in what follows that N ≥ (logn)γ for some
γ > 0 (this is needed only to avoid additional terms of the order log logn

n in several
inequalities).

We will also assume that ψ is a convex even function and ε ≥ 0 is a regularization
parameter, and that D ⊂ RN is a closed convex set.

The excess risk of f is defined as

E ( f ) := P(`• f )− inf
g:S 7→R

P(`•g) = P(`• f )−P(`• f∗),

where the infimum is taken over all measurable functions and it is assumed, for
simplicity, that it is attained at f∗ ∈ L2(Π). Moreover, it will be assumed in what
follows that f∗ is uniformly bounded by a constant M.

Definition 8.1. It will be said that ` : T ×R 7→ R+ is a loss function of quadratic
type iff the following assumptions are satisfied:

(i) for all y ∈ T, `(y, ·) is convex;

(ii) for all y∈ T, `(y, ·) is twice differentiable, `′′u is a uniformly bounded function
in T ×R and

sup
y∈T

`(y;0) < +∞, sup
y∈T

|`′u(y;0)|< +∞.

(iii) Moreover, denote

τ(R) :=
1
2

inf
y∈T

inf
|u|≤R

`′′u(y,u). (8.2)

Then it is assumed that τ(R) > 0,R > 0. Without loss of generality, it will be also
assumed that τ(R)≤ 1,R > 0 (otherwise, it can be replaced by a lower bound).

For losses of quadratic type, the following property is obvious:

τ(‖ f‖∞∨M)‖ f − f∗‖2
L2(Π) ≤ E ( f )≤C‖ f − f∗‖2

L2(Π),

where C := 1
2 supy∈T,u∈R `′′u(y,u).

There are many important examples of loss functions of quadratic type, most no-
tably, the quadratic loss `(y,u) := (y− u)2 in the case when T ⊂ R is a bounded
set. In this case, we can choose τ = 1. In regression problems with a bounded
response variable, one can also consider more general loss functions of the form
`(y,u) := φ(y− u), where φ is an even nonnegative convex twice continuously
differentiable function with φ ′′ uniformly bounded in R, φ(0) = 0 and φ ′′(u) >
0, u ∈ R. In binary classification setting (that is, when T = {−1,1}), one can
choose the loss `(y,u) = φ(yu) with φ being a nonnegative decreasing convex twice
continuously differentiable function such that φ ′′ is uniformly bounded in R and
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φ ′′(u) > 0, u ∈ R. The loss function φ(u) = log2(1 + e−u) (often called the logit
loss) is a typical example.

The condition that the second derivative `′′u is uniformly bounded in T ×R can be
often replaced by its uniform boundedness in T × [−a,a], where [−a,a] is a suitable
interval. This allows one to cover several other choices of the loss function, such as
the exponential loss `(y,u) := e−yu in binary classification.

Clearly, the conditions that the loss `, the penalty function ψ and the domain D
are convex make the optimization problem (8.1) convex and, at least in principle,
computationally tractable; numerous methods of convex optimization can be used
to solve it (see, e.g., Ben-Tal and Nemirovski [20]).

In the recent literature, there has been considerable attention to the problem of
sparse recovery using LASSO type penalties, which is a special case of problem
(8.1). In this case, D = RN , so this is a problem of sparse recovery in the linear
span l.s.(H ) of the dictionary, and ψ(u) = |u|, which means penalization with `1-
norm. It is also usually assumed that `(y,u) = (y−u)2 (the case of regression with
quadratic loss). In this setting, it has been shown that sparse recovery is possible
under some geometric assumptions on the dictionary. They are often expressed in
terms of the Gram matrix of the dictionary, which in the case of random design
models is the matrix

H :=
(
〈hi,h j〉L2(Π)

)
i, j=1,N

.

They take form of various conditions on the entries of this matrix (“coherence co-
efficients”), or on its submatrices (in spirit of “uniform uncertainty principle” or
“restricted isometry” conditions, see Section 7.2). The essence of these assump-
tions is to try to keep the dictionary not too far from being orthonormal in L2(Π)
which, in some sense, is an ideal case for sparse recovery (see, e.g., Donoho
[51, 52, 50, 53], Candes and Tao [44], Rudelson and Vershynin [123], Mendelson,
Pajor and Tomczak-Jaegermann [112], Bunea, Tsybakov and Wegkamp [36], van de
Geer [61], Koltchinskii [79, 81, 82], Bickel, Ritov and Tsybakov [22] among many
other papers that study both the random design and the fixed design problems).

We will study several special cases of problem (8.1). LASSO or `1-penalty is the
most common choice when D = RN , but it can be used in some other cases, too,
for instance, when D = U`1 (the unit ball of `1). This leads to a problem of sparse
recovery in the symmetric convex hull

convs(H ) :=
{

fλ : λ ∈U`1

}
,

which can be viewed as a version of convex aggregation problem. Note that empiri-
cal risk minimization with no penalty does not allow one to achieve sparse recovery
or even error rate faster than n−1/2 in this case (see Lecue and Mendelson [95] for
a counterexample). More generally, one can consider the case of D = U`p , the unit
ball in the space `p, with p ≥ 1 and with ψ(u) = |u|p (that is, the penalty becomes
‖λ‖p

`p
); the same penalty can be also used when D = RN . It was shown by Koltchin-

skii [81] that sparse recovery is still possible if p is close enough to 1 (say, of the
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order 1+1/ logN). Another interesting example is

D = Λ :=
{

λ ∈ RN : λ j ≥ 0,
N

∑
j=1

λ j = 1
}

,

that is, D is the simplex of all probability distributions in {1, . . . ,N}. This corre-
sponds to the sparse recovery problem in the convex hull of the dictionary

conv(H ) :=
{

fλ : λ ∈Λ

}
.

A possible choice of penalty in this case is

−H(λ ) =
N

∑
j=1

λ j logλ j,

where H(λ ) is the entropy of probability distribution λ ; this corresponds to the
choice ψ(u) = u logu. Such a problem was studied in Koltchinskii [83] and it will
be also discussed below. We will also show in Section 9.4 that sparse recovery in
convex hulls can be achieved by empirical risk minimization with no penalty (which
is not possible in the case of symmetric convex hulls).

We will follow the approach of [81, 83]. This approach is based on the analysis
of necessary conditions of extremum in problem (8.1). For simplicity, consider the
case of D = RN . In this case, for λ̂ ε to be a solution of (8.1), it is necessary that
0 ∈ ∂Ln,ε(λ̂ ε), where

Ln,ε(λ ) := Pn(`• fλ )+ ε

N

∑
j=1

ψ(λ j)

and ∂ denotes the subdifferential of convex functions. If ψ is smooth, this leads to
the equations

Pn(`′ • f
λ̂ ε )h j + εψ

′(λ̂ ε
j ) = 0, j = 1, . . . ,N. (8.3)

Define

Lε(λ ) := P(`• fλ )+ ε

N

∑
j=1

ψ(λ j)

and

∇Lε(λ ) :=
(

P(`′ • fλ )h j + εψ
′(λ j)

)
j=1,...,N

.

The vector ∇Lε(λ ) is the gradient and the subgradient of the convex function Lε(λ )
at point λ . It follows from (8.3) that

Pn(`′ • f
λ̂ ε )( f

λ̂ ε − fλ )+ ε

N

∑
j=1

ψ
′(λ̂ ε

j )(λ̂
ε
j −λ j) = 0
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and we also have

P(`′ • fλ )( f
λ̂ ε − fλ )+ ε

N

∑
j=1

ψ
′(λ j)(λ̂ ε

j −λ j) =
〈

∇Lε(λ ), λ̂ ε −λ

〉
`2

.

Subtracting the second equation from the first one yields the relationship

P(`′ • f
λ̂ ε − `′ • fλ )( f

λ̂ ε − fλ )+ ε

N

∑
j=1

(ψ ′(λ̂ ε
j )−ψ

′(λ j))(λ̂ ε
j −λ j) =〈

∇Lε(λ ),λ − λ̂
ε

〉
`2

+(P−Pn)(`′ • f
λ̂ ε )( f

λ̂ ε − fλ ).

If ` is a loss of quadratic type and, in addition, τ(+∞) > 0, then

P(`′ • f
λ̂ ε − `′ • fλ )( f

λ̂ ε − fλ )≥ c‖ f
λ̂ ε − fλ‖2

L2(Π)

with some constant c > 0 depending only on ` and the following inequality holds

c‖ f
λ̂ ε − fλ‖2

L2(Π) + ε

N

∑
j=1

(ψ ′(λ̂ ε
j )−ψ

′(λ j))(λ̂ ε
j −λ j)≤〈

∇Lε(λ ),λ − λ̂
ε

〉
`2

+(P−Pn)(`′ • f
λ̂ ε )( f

λ̂ ε − fλ ). (8.4)

Inequality (8.4) provides some information about “sparsity” of λ̂ ε in terms of “spar-
sity” of the oracle λ and it also provides tight bounds on ‖ f

λ̂ ε − fλ‖L2(Π). Indeed, if
J = Jλ = supp(λ ) and ψ ′(0) = 0 (which is the case, for instance, when ψ(u) = up

for some p > 1), then

N

∑
j=1

(ψ ′(λ̂ ε
j )−ψ

′(λ j))(λ̂ ε
j −λ j)≥ ∑

j 6∈J
ψ
′(λ̂ ε

j )λ̂
ε
j = ∑

j 6∈J
|ψ ′(λ̂ ε

j )||λ̂ ε
j |

(note that all the terms in the sum in the left hand side are nonnegative since ψ is
convex and ψ ′ is nondecreasing). Thus, the following bound holds

c‖ f
λ̂ ε − fλ‖2

L2(Π) + ε ∑
j 6∈J
|ψ ′(λ̂ ε

j )||λ̂ ε
j | ≤〈

∇Lε(λ ),λ − λ̂
ε

〉
`2

+(P−Pn)(`′ • f
λ̂ ε )( f

λ̂ ε − fλ ), (8.5)

in which the left hand side measures the L2-distance of f
λ̂ ε from the oracle fλ as

well as the degree of sparsity of the empirical solution λ̂ ε . This inequality will be
applied to sparse vectors λ (“oracles”) such that the term

〈
∇Lε(λ ),λ − λ̂ ε

〉
`2

is

either negative, or, if positive, then small enough. This is the case, for instance,
when the subgradient ∇Lε(λ ) is small in certain sense. In such cases, the left hand
side is controlled by the empirical process
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(P−Pn)(`′ • f
λ̂ ε )( f

λ̂ ε − fλ ).

It happens that its size, in turn, depends on the L2-distance ‖ f
λ̂ ε − fλ‖L2(Π) and on

the measure of “sparsity” of λ̂ ε , ∑ j 6∈J |ψ ′(λ̂ ε
j )||λ̂ ε

j |, which are precisely the quan-
tities involved in the left hand side of bound (8.5). Writing these bounds precisely
yields an inequality on these two quantities which can be solved to derive the ex-
plicit bounds. In the case of strictly convex smooth penalty function ψ (such as
ψ(u) = |u|p, p > 1 or ψ(u) = u logu), the same approach can be used also in the
case of “approximately sparse” oracles λ (since the function ψ ′ is strictly increasing
and smooth). A natural choice of oracle is

λ
ε := argminλ∈D

[
P(`• fλ )+ ε

N

∑
j=1

ψ(λ j)
]
, (8.6)

for which in the smooth case
〈

∇Lε(λ ε),λ ε − λ̂ ε

〉
`2
≤ 0 (if D = RN , we even have

∇Lε(λ ε) = 0). For this oracle, the bounds on ‖ f
λ̂ ε − fλ ε‖L2(Π) and on the degree of

sparsity of λ̂ ε do not depend on the properties of the dictionary, but only on ”approx-
imate sparsity” of λ ε . As a consequence, it is also possible to bound the ”random
error” |E ( f

λ̂ ε )−E ( fλ ε )| in terms of ”approximate sparsity” of λ ε . It happens that
bounding the ”approximation error” E ( fλ ε ) is a different problem with not entirely
the same geometric parameters responsible for the size of the error. The approxima-
tion error is much more sensitive to the properties of the dictionary, in particular, of
its Gram matrix H that depends on the unknown design distribution Π .

The case of `1-penalty is more complicated since the penalty is neither strictly
convex, nor smooth. In this case there is no special advantage in using λ ε as
an oracle since this vector is not necessarily sparse. It is rather approximately
sparse, but bound (8.4) does not provide a way to control the random L2-error
‖ f

λ̂ ε − fλ ε‖L2(Π) in terms of approximate sparsity of the oracle (note that in this
case ψ ′(λ ) = sign(λ )). A possible way to tackle the problem is to study a set of ora-
cles λ for which

〈
∇Lε(λ ),λ − λ̂ ε

〉
`2

is negative, or, if positive, then small enough.

This can be expressed in terms of certain quantities that describe a way in which
the subgradient ∇Lε(λ ) is aligned with the dictionary. Such quantities also emerge
rather naturally in attempts to control the approximation error E ( fλ ε ) in the case of
smooth strictly convex penalties.

In this chapter, we concentrate on the case when the domain D is bounded. In
[81], in the case of `p-penalization with p close to 1, upper and lower bounds on
‖λ̂ ε‖`1 in terms of ‖λ cε‖`1 for proper values of c have been proved (in the case
when the domain D is not necessarily bounded). Such bounds can be used to extend
oracle inequalities of the following sections to the case of unbounded domain. We
do not pursue this approach here, but in Chapter 9, we will obtain several results
for sparse recovery in unbounded domains as corollaries of more general statement
concerning low rank matrix recovery. This will be done when ` is the quadratic loss.
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8.2 `1-Penalization and Oracle Inequalities

The following penalized empirical risk minimization problem will be studied:

λ̂
ε := argminλ∈U`1

[
Pn(`• fλ )+ ε‖λ‖`1

]
, (8.7)

where ε ≥ 0 is a regularization parameter. As always, we denote λ ε a solution of
the ”true“ version of the problem:

λ
ε := argminλ∈U`1

[
P(`• fλ )+ ε‖λ‖`1

]
.

Let
Lε(λ ) := P(`• fλ )+ ε‖λ‖`1 .

For λ ∈ RN , let ∇Lε(λ ) ∈ ∂Lε(λ ) be the vector with components

P(`′ • fλ )h j + εs j(λ ), j = 1, . . . ,N

where s j = s j(λ ) = sign(λ j) (assume that sign(0) = 0). The vector ∇Lε(λ ) is a
subgradient of the function Lε at point λ . Note that ∂ |u|= {+1} for u > 0, ∂ |u|=
{−1} for u < 0 and ∂ |u|= [−1,1] for u = 0.

In the case of `1-penalization, we are going to compare the empirical solution λ̂ ε

with an oracle λ ∈U`1 that will be characterized by its ”sparsity” as well as by a
measure of “alignment” of the subgradient ∇Lε(λ ) ∈ ∂Lε(λ ) with the dictionary.

We will use the following versions of the alignment coefficient for vectors
∇Lε(λ ) and s(λ ) :

α+(ε,λ ) := a(∞)
H

(
U`1 ,λ ,∇Lε(λ )

)
∨0

and

α(λ ) := a(2)
H

(
U`1 ,λ ,s(λ )

)
∨0, α+(λ ) := a(∞)

H

(
U`1 ,λ ,s(λ )

)
∨0.

Clearly, α(λ )≤ α+(λ ) and it is easy to check that

α+(ε,λ )≤ ‖PL (`′ • fλ )‖L2(P) + εα+(λ ),

where L denotes the linear span of the dictionary {h1, . . . ,hN} in the space L2(P)
(with a minor abuse of notation, we view functions h j defined on S as functions
on S×T ) and PL denotes the orthogonal projection on L ⊂ L2(P). In the case of
quadratic type losses, the first term in the right hand side can be upper bounded as
follows:

‖PL (`′ • fλ )‖L2(P) = ‖PL (`′ • fλ − `′ • f∗)‖L2(P) ≤C‖ fλ − f∗‖L2(Π),
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where C depends only on `. Thus, the quantity ‖PL (`′ • fλ )‖L2(P) is upper bounded
by the L2-error of approximation of the target function f∗ in the linear span of the
dictionary. The second term α+(λ ) is based on the alignment coefficient of vector
s(λ ) with the dictionary. It depends on the sparsity of oracle λ as well as on the
geometry of the dictionary.

Theorem 8.1. There exist constants D > 0 and C > 0 depending only on ` such that,
for all λ̄ ∈U`1 , for J = supp(λ̄ ) and d := d(J) = card(J), for all A ≥ 1 and for all

ε ≥ D

√
d +A logN

n
, (8.8)

the following bound holds with probability at least 1−N−A :

‖ f
λ̂ ε − f

λ̄
‖2

L2(Π) + ε ∑
j 6∈J
|λ̂ ε

j | ≤C
[

d +A logN
n

∨
α

2
+(ε, λ̄ )

]
.

Moreover, with the same probability

‖ f
λ̂ ε − f

λ̄
‖2

L2(Π) + ε ∑
j 6∈J
|λ̂ ε

j | ≤C
[

d +A logN
n

∨∥∥∥PL (`′ • f
λ̄
)
∥∥∥2

L2(P)

∨
α

2(λ̄ )ε2
]
.

Note that, if we formally pass to the limit as n→∞ in the bounds of the theorem,
we get the following bounds for the true solution λ ε that hold for all ε > 0 :

‖ fλ ε − f
λ̄
‖2

L2(Π) + ε ∑
j 6∈J
|λ ε

j | ≤Cα
2
+(ε, λ̄ )

and

‖ fλ ε − f
λ̄
‖2

L2(Π) + ε ∑
j 6∈J
|λ ε

j | ≤C
[∥∥∥PL (`′ • f

λ̄
)
∥∥∥2

L2(P)

∨
α

2(λ̄ )ε2
]
.

These bounds can be proved directly by modifying and simplifying the proofs in the
empirical case given below. They show that the true penalized solution λ ε provides
an approximation of ”sparse“ oracle vectors λ̄ ∈U`1 that are, in some sense, well
aligned with the dictionary. In particular, the second bound shows that fλ ε is close
in the space L2(Π) to ”sparse“ oracles f

λ̄
such that the vector s(λ̄ ) is well aligned

with the dictionary and f
λ̄

is close to the target function f∗ in L2(Π). Moreover, λ ε

is ”approximately sparse“ in the sense that it is supported in supp(λ̄ ) up to a small
`1-error. The same properties hold for the empirical solution λ̂ ε with an additional
error term d+A logN

n that depends only on the degree of sparsity of λ̄ , but not on
the geometry of the dictionary. In some sense, the meaning of this result is that the
empirical solution λ̂ ε provides ”sparse recovery” if and only if the true solution
λ ε does (regardless of the properties of the dictionary). This is even more apparent
in the versions of these results for strictly convex penalties discussed in the next
section.
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No condition on the dictionary is needed for the bounds of the theorem to be true
(except uniform boundedness of functions h j). On the other hand, the assumption

on ε, ε ≥ D
√

d+A logN
n , essentially, relates the regularization parameter to the un-

known sparsity of the problem. To get around this difficulty, we will prove another

version of the theorem in which it is only assumed that ε ≥ D
√

A logN
n , but, on the

other hand, there is more dependence of the error bounds on the geometry of the
dictionary. At the same time, the error in this result is controlled not by d = card(J),
but rather by the dimension of a linear space L providing a reasonably good approx-
imation of the functions {h j : j ∈ J} (such a dimension could be much smaller than
card(J)). To formulate the result, some further notation will be needed.

Given a linear subspace L ⊂ L2(Π), denote

U(L) := sup
f∈L,‖ f‖L2(Π)=1

‖ f‖∞ +1.

If IL : (L,‖ · ‖L2(Π)) 7→ (L,‖ · ‖∞) is the identity operator, then U(L)−1 is the norm
of the operator IL. We will use this quantity only for finite dimensional subspaces.
In such case, for any L2(Π)-orthonormal basis φ1, . . . ,φd of L,

U(L)≤ max
1≤ j≤d

‖φ j‖∞

√
d +1,

where d := dim(L). In what follows, let PL be the orthogonal projector onto L and
L⊥ be the orthogonal complement of L. We are interested in subspaces L such that

• dim(L) and U(L) are not very large;
• functions {h j : j ∈ J} in the ”relevant” part of the dictionary can be approximated

well by the functions from L so that the quantity max j∈J ‖PL⊥h j‖L2(Π) is small.

Theorem 8.2. Suppose that

ε ≥ D

√
A logN

n
(8.9)

with a large enough constant D > 0 depending only on `. For all λ̄ ∈U`1 , for J =
supp(λ̄ ), for all subspaces L of L2(Π) with d := dim(L) and for all A ≥ 1, the
following bound holds with probability at least 1−N−A and with a constant C > 0
depending only on ` :

‖ f
λ̂ ε − f

λ̄
‖2

L2(Π) + ε ∑
j 6∈J
|λ̂ ε

j | ≤ (8.10)

C
[

d +A logN
n

∨
max

j∈J
‖PL⊥h j‖L2(Π)

√
A logN

n

∨U(L) logN
n

∨
α

2
+(ε; λ̄ )

]
.

Moreover, with the same probability
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‖ f
λ̂ ε − f

λ̄
‖2

L2(Π) + ε ∑
j 6∈J
|λ̂ ε

j | ≤ (8.11)

C
[

d +A logN
n

∨
max

j∈J
‖PL⊥h j‖L2(Π)

√
A logN

n

∨U(L) logN
n

∨
∥∥∥PL (`′ • f

λ̄
)
∥∥∥2

L2(P)

∨
α

2(λ̄ )ε2
]
.

The next two corollaries provide bounds on ‖λ̂ ε − λ̄‖`1 in terms of the quantity
β2,2(λ̄ ,Π) (see subsection 7.2.3); they follow in a straightforward way from the
proofs of the theorems.

Corollary 8.1. Under the assumptions and notations of Theorem 8.1, the following
bound holds with probability at least 1−N−A :

‖ f
λ̂ ε − f

λ̄
‖2

L2(Π)+ε‖λ̂
ε−λ̄‖`1 ≤C

[
d +A logN

n

∨∥∥∥PL (`′• f
λ̄
)
∥∥∥2

L2(P)

∨
β

2
2,2(λ̄ ,Π)dε

2
]
.

Corollary 8.2. Under the assumptions and notations of Theorem 8.2, the following
bound holds with probability at least 1−N−A :

‖ f
λ̂ ε − f

λ̄
‖2

L2(Π) + ε‖λ̂
ε − λ̄‖`1 ≤ (8.12)

C
[

d +A logN
n

∨
max

j∈J
‖PL⊥h j‖L2(Π)

√
A logN

n

∨U(L) logN
n

∨
∥∥∥PL (`′ • f

λ̄
)
∥∥∥2

L2(P)

∨
β

2
2,2(λ̄ ,Π)d(J

λ̄
)ε2
]
.

We now turn to the proof of Theorem 8.2.

Proof. Note that subgradients of convex function

λ 7→ Pn(`• fλ )+ ε‖λ‖`1 =: Ln,ε(λ )

are the vectors in RN with components

Pn(`′ • fλ )h j + εσ j, j = 1, . . . ,N

where σ j ∈ [−1,1], σ j = sign(λ j) if λ j 6= 0. It follows from necessary conditions
of extremum in problem (8.7) that there exist numbers ŝ j ∈ [−1,1] such that ŝ j =
sign(λ̂ ε

j ) when λ̂ ε
j 6= 0 and, for all u ∈ TU`1

(λ̂ ε),

N

∑
j=1

(
Pn(`′ • f

λ̂ ε )h ju j + ε ŝ ju j

)
≥ 0. (8.13)

Indeed, since λ̂ ε is a minimal point of Ln,ε in U`1 , there exists w ∈ ∂Ln,ε(λ̂ ε) such
that −w belongs to the normal cone NU`1

(λ̂ ε) of the convex set U`1 at point λ̂ ε
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(see Aubin and Ekeland [9], Chapter 4, Section 2, Corollary 6). This immediately
implies (8.13). Since λ̄ ∈U`1 , we have λ̄ − λ̂ ε ∈ TU`1

(λ̂ ε), and the next inequality
follows from (8.13).

Pn(`′ • f
λ̂ ε )( f

λ̂ ε − f
λ̄
)+ ε

N

∑
j=1

ŝ j(λ̂ j − λ̄ j)≤ 0. (8.14)

Recalling the definition s j = s j(λ̄ ) = sign(λ̄ j) and

∇Lε(λ̄ ) =
(

P(`′ • f
λ̄
)h j + εs j

)
j=1,...,N

,

we also have

P(`′ • f
λ̄
)( f

λ̂ ε − f
λ̄
)+ ε

N

∑
j=1

s j(λ̂ j − λ̄ j) =
〈

∇Lε(λ̄ ), λ̂ ε − λ̄

〉
`2

. (8.15)

Subtracting (8.15) from (8.14) yields by a simple algebra

Pn(`′ • f
λ̂ ε − `′ • f

λ̄
)( f

λ̂ ε − f
λ̄
)+ ε

N

∑
j=1

(ŝ j − s j)(λ̂ j − λ̄ j)≤〈
∇Lε(λ̄ ), λ̄ − λ̂

ε

〉
`2

+(P−Pn)(`′ • f
λ̄
)( f

λ̂ ε − f
λ̄
) (8.16)

and

P(`′ • f
λ̂ ε − `′ • f

λ̄
)( f

λ̂ ε − f
λ̄
)+ ε

N

∑
j=1

(ŝ j − s j)(λ̂ j − λ̄ j)≤〈
∇Lε(λ̄ ), λ̄ − λ̂

ε

〉
`2

+(P−Pn)(`′ • f
λ̂ ε )( f

λ̂ ε − f
λ̄
). (8.17)

We use inequalities (8.16) and (8.17) to control the “approximate sparsity” of
empirical solution λ̂ ε in terms of “sparsity” of the “oracle” λ̄ and to obtain bounds
on ‖ f

λ̂ ε − f
λ̄
‖L2(Π). As always, we use notations J := J

λ̄
:= supp(λ̄ ). By the con-

ditions on the loss (namely, the boundedness of its second derivative away from 0),
we have

P(`′ • f
λ̂ ε − `′ • f

λ̄
)( f

λ̂ ε − f
λ̄
)≥ c‖ f

λ̂ ε − f
λ̄
‖2

L2(Π),

where c = τ(1) (note that ‖ f
λ̄
‖∞ ≤ 1 and ‖ f

λ̂ ε‖∞ ≤ 1 ). Observe also that, for all j,

(ŝ j − s j)(λ̂ j − λ̄ j)≥ 0

(by monotonicity of subdifferential of convex function u 7→ |u|). For j 6∈ J, we have
λ̄ j = 0 and s j = 0. Therefore, (8.17) implies that
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c‖ f
λ̂ ε − f

λ̄
‖2

L2(Π) + ε ∑
j 6∈J
|λ̂ j| ≤〈

∇Lε(λ̄ ), λ̄ − λ̂
ε

〉
`2

+(P−Pn)(`′ • f
λ̂ ε )( f

λ̂ ε − f
λ̄
). (8.18)

Consider first the case when〈
∇Lε(λ̄ ), λ̄ − λ̂

ε

〉
`2
≥ (P−Pn)(`′ • f

λ̂ ε )( f
λ̂ ε − f

λ̄
). (8.19)

In this case, (8.18) implies that

c‖ f
λ̂ ε − f

λ̄
‖2

L2(Π) + ε ∑
j 6∈J
|λ̂ j| ≤ 2

〈
∇Lε(λ̄ ), λ̄ − λ̂

ε

〉
`2

, (8.20)

which, in view of the definition of α+(ε, λ̄ ), yields

c‖ f
λ̂ ε − f

λ̄
‖2

L2(Π) + ε ∑
j 6∈J
|λ̂ j| ≤ 2α+(ε, λ̄ )‖ f

λ̂ ε − f
λ̄
‖L2(Π). (8.21)

Therefore,

‖ f
λ̂ ε − f

λ̄
‖L2(Π) ≤

2
c

α+(ε, λ̄ ),

and, as a consequence, with some constant C > 0 depending only on `

‖ f
λ̂ ε − f

λ̄
‖2

L2(Π) + ε ∑
j 6∈J
|λ̂ j| ≤Cα

2
+(ε, λ̄ ). (8.22)

If 〈
∇Lε(λ̄ ), λ̄ − λ̂

ε

〉
`2

< (P−Pn)(`′ • f
λ̂ ε )( f

λ̂ ε − f
λ̄
), (8.23)

then (8.18) implies that

c‖ f
λ̂ ε − f

λ̄
‖2

L2(Π) + ε ∑
j 6∈J
|λ̂ j| ≤ 2(P−Pn)(`′ • f

λ̂ ε )( f
λ̂ ε − f

λ̄
). (8.24)

Denote

Λ(δ ;∆) :=
{

λ ∈U`1 : ‖ fλ − f
λ̄
‖L2(Π) ≤ δ , ∑

j 6∈J
|λ j| ≤ ∆

}
,

αn(δ ;∆) := sup
{
|(Pn−P)((`′ • fλ )( fλ − f

λ̄
))| : λ ∈Λ(δ ;∆)

}
.

To bound αn(δ ,∆), the following lemma will be used.

Lemma 8.1. Under the assumptions of Theorem 8.2, there exists a constant C that
depends only on ` such that with probability at least 1−N−A, for all

n−1/2 ≤ δ ≤ 1 and n−1/2 ≤ ∆ ≤ 1 (8.25)
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the following bound holds:

αn(δ ;∆)≤ βn(δ ;∆) := C
[

δ

√
d +A logN

n

∨
∆

√
A logN

n∨
max

j∈J
‖PL⊥h j‖L2(Π)

√
A logN

n

∨U(L) logN
n

∨ A logN
n

]
. (8.26)

Take
δ = ‖ f

λ̂ ε − fλ ε‖L2(Π) and ∆ = ∑
j 6∈J

λ̂
ε
j . (8.27)

If δ ≥ n−1/2,∆ ≥ n−1/2, then Lemma 8.1 and (8.24) imply the following bound:

cδ
2 + ε∆ ≤ 2βn(δ ,∆). (8.28)

If δ < n−1/2 or ∆ < n−1/2, then δ and ∆ should be replaced in the expression for
βn(δ ,∆) by n−1/2. With this change, bound (8.28) still holds and the proof goes
through with some simplifications. Thus, we will consider only the main case when
δ ≥ n−1/2,∆ ≥ n−1/2. In this case, the inequality (8.28) has to be solved to complete
the proof. It follows from this inequality (with a proper change of constant C) that

ε∆ ≤C∆

√
A logN

n
+C
[

δ

√
d +A logN

n

∨

max
j∈J

‖PL⊥h j‖L2(Π)

√
A logN

n

∨U(L) logN
n

∨ A logN
n

]
.

As soon as D in condition (8.9) is such that D ≥ 2C, we can write

ε∆ ≤C
[

δ

√
d +A logN

n

∨
max

j∈J
‖PL⊥h j‖L2(Π)

√
A logN

n

∨U(L) logN
n

∨ A logN
n

]
(again the value of constant C might have changed). Under the assumption (8.9) on
ε (assuming also that D ≥ 1), it is easy to derive that

∆ ≤∆(δ ) :=C
[

δ

ε

√
d +A logN

n

∨
max

j∈J
‖PL⊥h j‖L2(Π)

∨U(L) logN
nε

∨√A logN
n

]
.

Note that βn(δ ,∆) is nondecreasing in ∆ and replace ∆ in (8.28) by ∆(δ ) to get the
following bound:

δ
2 ≤C

[
δ

√
d +A logN

n

∨ δ

ε

√
d +A logN

n

√
A logN

n

∨U(L) logN
nε

√
A logN

n

∨

max
j∈J

‖PL⊥h j‖L2(Π)

√
A logN

n

∨U(L) logN
n

∨ A logN
n

]
.
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We skip the second term in the maximum and modify the third term because
1
ε

√
A logN

n ≤ 1. As a result, we get

δ
2 ≤C

[
δ

√
d +A logN

n

∨
max

j∈J
‖PL⊥h j‖L2(Π)

√
A logN

n

∨U(L) logN
n

∨ A logN
n

]
.

Solving the last inequality with respect to δ yields the following bound on δ 2 :

δ
2 ≤C

[
d +A logN

n

∨
max

j∈J
‖PL⊥h j‖L2(Π)

√
A logN

n

∨U(L) logN
n

]
. (8.29)

We substitute the last bound back into the expression for ∆(δ ) to get:

∆ ≤C
[

d +A logN
nε

∨
max

j∈J
‖PL⊥h j‖1/2

L2(Π)
1
ε

(
A logN

n

)1/4√d +A logN
n

∨
√

U(L) logN
nε

√
d +A logN

nε

∨
max

j∈J
‖PL⊥h j‖L2(Π)

∨U(L) logN
nε

∨√A logN
n

]
.

Using the inequality ab ≤ (a2 + b2)/2 and the condition 1
ε

√
A logN

n ≤ 1, we can
simplify the resulting bound as follows

∆ ≤C
[

d +A logN
nε

∨
max

j∈J
‖PL⊥h j‖L2(Π)

∨U(L) logN
nε

∨√A logN
n

]
(8.30)

with a proper change of C that depends only on `. Finally, bounds (8.29) and (8.30)
can be substituted in the expression for βn(δ ,∆). By a simple computation and in
view of Lemma 8.1, we get the following bound on αn(δ ,∆) that holds for δ ,∆
defined by (8.27) with probability at least 1−N−A :

αn(δ ,∆)≤C
[

d +A logN
n

+max
j∈J

‖PL⊥h j‖L2(Π)

√
A logN

n
+

U(L) logN
n

]
.

Combining this with (8.24) yields

c‖ f
λ̂ ε − f

λ̄
‖2

L2(Π) + ε ∑
j 6∈J
|λ̂ ε

j | ≤

C
[

d +A logN
n

+max
j∈J

‖PL⊥h j‖L2(Π)

√
A logN

n
+

U(L) logN
n

]
, (8.31)

which holds under condition (8.23).
Together with bound (8.22), that is true under the alternative condition (8.19),

this gives (8.10).
To prove bound (8.11), we again use (8.18), but this time we control the term
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∇Lε(λ̄ ), λ̄ − λ̂

ε

〉
somewhat differently. First note that〈

∇Lε(λ̄ ), λ̄ − λ̂
ε

〉
`2

=
〈
`′ • f

λ̄
, f

λ̄
− f

λ̂ ε

〉
L2(P)

+ ε〈s(λ̄ ), λ̄ − λ̂
ε〉`2 .

This implies that〈
∇Lε(λ̄ ), λ̄ − λ̂

ε

〉
`2
≤
∥∥∥PL (`′ • f

λ̄
)
∥∥∥

L2(P)
‖ f

λ̄
− f

λ̂ ε‖L2(Π) + ε ∑
j∈J

s j(λ̄ j − λ̂
ε
j )≤

1
2c

∥∥∥PL (`′ • f
λ̄
)
∥∥∥2

L2(P)
+

c
2
‖ f

λ̄
− f

λ̂ ε‖2
L2(Π) + ε ∑

j∈J
s j(λ̄ j − λ̂

ε
j ).

Combining this with bound (8.18) yields the following inequality

c
2
‖ f

λ̄
− f

λ̂ ε‖2
L2(Π) + ε ∑

j 6∈J
|λ̂ ε

j | ≤

ε ∑
j∈J

s j(λ̄ j − λ̂
ε
j )+

1
2c

∥∥∥PL (`′ • f
λ̄
)
∥∥∥2

L2(P)
+(P−Pn)(`′ • f

λ̂ ε )( f
λ̂ ε − f

λ̄
).

If

ε ∑
j∈J

s j(λ̄ j − λ̂
ε
j )≥

1
2c

∥∥∥PL (`′ • f
λ̄
)
∥∥∥2

L2(P)
+(P−Pn)(`′ • f

λ̂ ε )( f
λ̂ ε − f

λ̄
),

then c
2
‖ f

λ̄
− f

λ̂ ε‖2
L2(Π) + ε ∑

j 6∈J
|λ̂ ε

j | ≤ 2ε ∑
j∈J

s j(λ̄ j − λ̂
ε
j ),

which implies
∑
j 6∈J
|λ̂ ε

j | ≤ 2 ∑
j∈J
|λ̄ j − λ̂

ε
j |,

or λ̂ ε − λ̄ ∈C2,λ̄ . The definition of α(λ̄ ) then implies the bound

c
2
‖ f

λ̄
− f

λ̂ ε‖2
L2(Π) + ε ∑

j 6∈J
|λ̂ ε

j | ≤ 2εα(λ̄ )‖ f
λ̄
− f

λ̂ ε‖L2(Π).

Solving this inequality with respect to ‖ f
λ̄
− f

λ̂ ε‖L2(Π) proves (8.11) in this case.
If

ε ∑
j∈J

s j(λ̄ j − λ̂
ε
j )≤

1
2c

∥∥∥PL (`′ • f
λ̄
)
∥∥∥2

L2(P)
+(P−Pn)(`′ • f

λ̂ ε )( f
λ̂ ε − f

λ̄
)

and
1
2c

∥∥∥PL (`′ • f
λ̄
)
∥∥∥2

L2(P)
≥ (P−Pn)(`′ • f

λ̂ ε )( f
λ̂ ε − f

λ̄
),
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we get
c
2
‖ f

λ̄
− f

λ̂ ε‖2
L2(Π) + ε ∑

j 6∈J
|λ̂ ε

j | ≤
2
c

∥∥∥PL (`′ • f
λ̄
)
∥∥∥2

L2(P)
,

which also implies (8.11) with a proper choice of constant C in the bound.
Thus, it remains to consider the case when

ε ∑
j∈J

s j(λ̄ j − λ̂
ε
j )≤

1
2c

∥∥∥PL (`′ • f
λ̄
)
∥∥∥2

L2(P)
+(P−Pn)(`′ • f

λ̂ ε )( f
λ̂ ε − f

λ̄
)

and
1
2c

∥∥∥PL (`′ • f
λ̄
)
∥∥∥2

L2(P)
≤ (P−Pn)(`′ • f

λ̂ ε )( f
λ̂ ε − f

λ̄
),

which implies

c
2
‖ f

λ̄
− f

λ̂ ε‖2
L2(Π) + ε ∑

j 6∈J
|λ̂ ε

j | ≤ 4(P−Pn)(`′ • f
λ̂ ε )( f

λ̂ ε − f
λ̄
).

In this case, we repeat the argument based on Lemma 8.1 to show that with proba-
bility at least 1−N−A

c
2
‖ f

λ̂ ε − f
λ̄
‖2

L2(Π) + ε ∑
j 6∈J
|λ̂ ε

j | ≤

C
[

d +A logN
n

+max
j∈J

‖PL⊥h j‖L2(Π)

√
A logN

n
+

U(L) logN
n

]
,

which again implies (8.11). This completes the proof.
ut

We will now give the proof of Lemma 8.1.

Proof. First we use Talagrand’s concentration inequality to get that with probability
at least 1− e−t

αn(δ ;∆)≤ 2
[
Eαn(δ ;∆)+Cδ

√
t
n

+
Ct
n

]
. (8.32)

Next, symmetrization inequality followed by contraction inequality for Rademacher
sums yield:

Eαn(δ ;∆)≤ 2Esup
{
|Rn((`′ • fλ )( fλ − f

λ̄
))| : λ ∈Λ(δ ;∆)

}
≤

CEsup
{
|Rn( fλ − f

λ̄
)| : λ ∈Λ(δ ;∆)

}
(8.33)

with a constant C depending only on `. In contraction inequality part, we write

`′( fλ (·))( fλ (·)− f
λ̄
(·)) = `′( f

λ̄
(·)+u)u

∣∣∣
u= fλ (·)− f

λ̄
(·)
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and use the fact that the function

[−1,1] 3 u 7→ `′( f
λ̄
(·)+u)u

satisfies the Lipschitz condition with a constant depending only on `.
The following representation is straightforward:

fλ − f
λ̄

= PL( fλ − f
λ̄
)+ ∑

j∈J
(λ j − λ̄ j)PL⊥h j + ∑

j 6∈J
λ jPL⊥h j. (8.34)

For all λ ∈Λ(δ ,∆),

‖PL( fλ − f
λ̄
)‖L2(Π) ≤ ‖ fλ − f

λ̄
‖L2(Π) ≤ δ

and PL( fλ − f
λ̄
) ∈ L. Since L is a d-dimensional subspace,

Esup
{
|Rn(PL( fλ − f

λ̄
))| : λ ∈Λ(δ ;∆)

}
≤Cδ

√
d
n

(see Proposition 3.2). On the other hand, λ , λ̄ ∈U`1 , so, we have ∑ j∈J |λ j− λ̄ j| ≤ 2.
Hence,

Esup
{∣∣∣Rn

(
∑
j∈J

(λ j − λ̄ j)PL⊥h j

)∣∣∣ : λ ∈Λ(δ ;∆)
}
≤ 2Emax

j∈J
|Rn(PL⊥h j)|.

Note also that

‖PL⊥h j‖∞ ≤ ‖PLh j‖∞ +‖h j‖∞ ≤ (U(L)−1)‖PLh j‖L2(Π) +1

≤ (U(L)−1)‖h j‖L2(Π) +1 ≤U(L),

and Theorem 3.5 yields

Emax
j∈J

|Rn(PL⊥h j)| ≤C
[

max
j∈J

‖PL⊥h j‖L2(Π)

√
logN

n
+U(L)

logN
n

]
.

Similarly, for all λ ∈Λ(δ ,∆), ∑ j 6∈J |λ j| ≤ ∆ and

Esup
{∣∣∣Rn

(
∑
j 6∈J

λ jPL⊥h j

)∣∣∣ : λ ∈Λ(δ ;∆)
}
≤ ∆Emax

j 6∈J
|Rn(PL⊥h j)|.

Another application of Theorem 3.5, together with the fact that

‖PL⊥h j‖L2(Π) ≤ ‖h j‖L2(Π) ≤ 1,

results in the bound

Emax
j 6∈J

|Rn(PL⊥h j)| ≤C
[√

logN
n

+U(L)
logN

n

]
,
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Now we use representation (8.34) and bound (8.33). It easily follows that

Eαn(δ ,∆)≤C
[

δ

√
d
n

∨
∆

√
logN

n

∨
max

j∈J
‖PL⊥h j‖L2(Π)

√
logN

n

∨U(L) logN
n

]
. (8.35)

Substituting this bound into (8.32) shows that with probability 1− e−t

αn(δ ,∆)≤ β̃n(δ ,∆ , t) := C
[

δ

√
d
n

∨
∆

√
logN

n

∨
max

j∈J
‖PL⊥h j‖L2(Π)

√
logN

n

∨U(L) logN
n

∨
δ

√
t
n

∨ t
n

]
(8.36)

with a constant C > 0 depending only on `.
It remains to prove that, with a high probability, the above bounds hold uniformly

in δ ,∆ satisfying (8.25). Let δ j := 2− j and ∆ j := 2− j. We will replace t by t +
2log( j +1)+2log(k +1). By the union bound, with probability at least

1− ∑
j,k≥0

exp{−t−2log( j +1)−2log(k +1)}=

1−
(

∑
j≥0

( j +1)−2
)2

exp{−t} ≥ 1−4e−t ,

the following bound holds

αn(δ ;∆)≤ β̃n

(
δ j,∆k, t +2log j +2logk

)
,

for all δ and ∆ satisfying (8.25) and for all j,k such that

δ ∈ (δ j+1,δ j] and ∆ ∈ (∆k+1,∆k].

Using the fact that

2 log j ≤ 2loglog2

( 1
δ j

)
≤ 2loglog2

( 2
δ

)
and

2logk ≤ 2loglog2

( 2
∆

)
,

we get

β̃n

(
δ j,∆k, t +2log j +2logk

)
≤

β̃n

(
2δ ,2∆ , t +2loglog2

( 2
δ

)
+2loglog2

( 2
∆

))
=: β̄n(δ ;∆ ; t).
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As a result, with probability at least 1−4e−t , for all δ and ∆ satisfying (8.25),

αn(δ ;∆)≤ β̄n(δ ;∆ ; t).

Take now t = A logN+log4, so that 4e−t = N−A. With some constant C that depends
only on `,

β̄n(δ ;∆ ; t)≤C
[

δ

√
d
n

∨
δ

√
A logN

n

∨
δ

√√√√2loglog2

(
2
δ

)
n

∨

δ

√√√√2loglog2

(
2
∆

)
n

∨
∆

√
logN

n

∨
max

j∈J
‖PL⊥h j‖L2(Π)

√
logN

n

∨U(L) logN
n

∨
2loglog2

(
2
δ

)
n

∨ 2loglog2

(
2
∆

)
n

∨ A logN
n

]
.

For all δ and ∆ satisfying (8.25),

2 log log2

(
2
δ

)
n

≤C
log logn

n
and

2loglog2

(
2
∆

)
n

≤C
log logn

n
.

Assumptions on N,n, imply that A logN ≥ γ log logn. Thus, for all δ and ∆ satisfy-
ing (8.25),

αn(δ ,∆)≤ β̄n(δ ;∆ ; t)≤C
[

δ

√
d
n

∨
δ

√
A logN

n

∨
∆

√
logN

n

∨
max

j∈J
‖PL⊥h j‖L2(Π)

√
logN

n

∨U(L) logN
n

∨ A logN
n

]
. (8.37)

The last bound holds with probability at least 1−N−A proving the lemma.
ut

The proof of Theorem 8.1 is quite similar. The following lemma is used instead
of Lemma 8.1.

Lemma 8.2. Under the assumptions of Theorem 8.1, there exists a constant C that
depends only on ` such that with probability at least 1−N−A, for all

n−1/2 ≤ δ ≤ 1 and n−1/2 ≤ ∆ ≤ 1,

the following bound holds:

αn(δ ;∆)≤ βn(δ ;∆) :=

C
[

δ

√
d +A logN

n

∨
∆

√
d +A logN

n

∨ A logN
n

]
. (8.38)
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In theorems 8.1 and 8.2, we used a special version of subgradient ∇Lε(λ̄ ). More
generally, one can consider an arbitrary couple (λ̄ ,∇Lε(λ̄ )) where λ̄ ∈ U`1 and
∇Lε(λ̄ ) ∈ ∂Lε(λ̄ ). This couple can be viewed as “an oracle” in our problem. As
before,

∇Lε(λ̄ ) =
(
(P(`′ • f

λ̄
))h j + εs j

)
j=1,...,N

,

but now s j = s j(λ̄ ) are arbitrary numbers from [−1,1] satisfying the condition

s j = sign(λ̄ j), λ̄ j 6= 0.

The next results provide modifications of theorems 8.1 and 8.2 for such more
general ”oracles“.

Denote
α

(b)(λ ) := a(b)
H

(
U`1 ,λ ,s(λ )

)
∨0

for some fixed b > 0.

Theorem 8.3. There exist constants D > 0 and C > 0 depending only on ` with the
following property. Let λ̄ ∈U`1 and

∇Lε(λ̄ ) =
(
(P(`′ • f

λ̄
))h j + εs j

)
j=1,...,N

∈ ∂Lε(λ̄ ).

Let J ⊂ {1, . . . ,N}, J ⊃ supp(λ̄ ) with d := d(J) = card(J). Suppose that, for some
γ ∈ (0,1),

|s j| ≤ 1− γ, j 6∈ J.

Then, for all A ≥ 1 and for all

ε ≥ D

√
d +A logN

n
, (8.39)

the following bound holds with probability at least 1−N−A :

‖ f
λ̂ ε − f

λ̄
‖2

L2(Π) + εγ ∑
j 6∈J
|λ̂ ε

j | ≤C
[

d +A logN
n

∨
α

2
+(ε, λ̄ )

]
.

Moreover, with the same probability,

‖ f
λ̂ ε − f

λ̄
‖2

L2(Π) + εγ ∑
j 6∈J
|λ̂ ε

j | ≤

C
[

d +A logN
n

∨∥∥∥PL (`′ • f
λ̄
)
∥∥∥2

L2(P)

∨(
α

(2/γ)(λ̄ )
)2

ε
2
]
.

Theorem 8.4. Suppose that

ε ≥ D

√
A logN

n
(8.40)
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with a large enough constant D > 0 depending only on `. Let λ̄ ∈U`1 and

∇Lε(λ̄ ) =
(
(P(`′ • f

λ̄
))h j + εs j

)
j=1,...,N

∈ ∂Lε(λ̄ ).

Let J ⊂ {1, . . . ,N}, J ⊃ supp(λ̄ ). Suppose that, for some γ ∈ (0,1),

|s j| ≤ 1− γ, j 6∈ J.

Then, for all subspaces L of L2(Π) with d := dim(L) and for all A≥ 1, the following
bound holds with probability at least 1−N−A and with a constant C > 0 depending
only on ` :

‖ f
λ̂ ε − f

λ̄
‖2

L2(Π) + εγ ∑
j 6∈J
|λ̂ ε

j | ≤ (8.41)

C
[

d +A logN
n

∨
max

j∈J
‖PL⊥h j‖L2(Π)

√
A logN

n

∨U(L) logN
n

∨
α

2
+(ε; λ̄ )

]
.

Moreover, with the same probability

‖ f
λ̂ ε − f

λ̄
‖2

L2(Π) + εγ ∑
j 6∈J
|λ̂ ε

j | ≤ (8.42)

C
[

d +A logN
n

∨
max

j∈J
‖PL⊥h j‖L2(Π)

√
A logN

n

∨U(L) logN
n∨∥∥∥PL (`′ • f

λ̄
)
∥∥∥2

L2(P)

∨(
α

(2/γ)(λ̄ )
)2

ε
2
]
.

For some choices of vector λ̄ and of subgradient ∇Lε(λ̄ ), the alignment coeffi-
cient might be smaller than for the choice we used in theorems 8.1 and 8.2 resulting
in tighter bounds. An appealing choice would be λ̄ = λ ε ,

λ
ε = argminλ∈U`1

[
P(`• fλ )+ ε‖λ‖`1

]
,

since in this case it is possible to take ∇Lε(λ ε) ∈ ∂Lε(λ ε) such that

a(b)
H (U`1 ,λ

ε ,∇Lε(λ ε))≤ 0

(this follows from the necessary conditions of extremum). Therefore, with this
choice, we have α+(ε,λ ε) = 0, which means that for the oracle vector λ ε there
exists a version of subgradient that is ”well aligned“ with the dictionary.

We have the following corollaries in which both the L2-error ‖ f
λ̂ ε − fλ ε‖L2(Π)

and the degree of ”approximate sparsity” of the empirical solution λ̂ ε are controlled
by the ”sparsity“ of the ”oracle“ without any geometric assumptions on the dictio-
nary.
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Corollary 8.3. There exist constants D > 0 and C > 0 depending only on ` with the
following property. Let

∇Lε(λ ε) =
(
(P(`′ • fλ ε ))h j + εs j

)
j=1,...,N

∈ ∂Lε(λ ε)

be such that, for all u ∈ TU`1
(λ ε),

〈∇Lε(λ ε),u〉`2 ≥ 0.

Let J ⊂ {1, . . . ,N}, J ⊃ supp(λ̄ ) with d := d(J) = card(J). Suppose that, for some
γ ∈ (0,1),

|s j| ≤ 1− γ, j 6∈ J.

Then, for all A ≥ 1 and for all

ε ≥ D

√
d +A logN

n
, (8.43)

the following bound holds with probability at least 1−N−A :

‖ f
λ̂ ε − fλ ε‖2

L2(Π) + εγ ∑
j 6∈J
|λ̂ ε

j | ≤C
d +A logN

n
.

Corollary 8.4. Suppose that

ε ≥ D

√
A logN

n
(8.44)

with a large enough constant D > 0 depending only on `. Let

∇Lε(λ ε) =
(
(P(`′ • fλ ε ))h j + εs j

)
j=1,...,N

∈ ∂Lε(λ ε)

be such that, for all u ∈ TU`1
(λ ε),

〈∇Lε(λ ε),u〉`2 ≥ 0.

Let J ⊂ {1, . . . ,N}, J ⊃ supp(λ̄ ). Suppose that, for some γ ∈ (0,1),

|s j| ≤ 1− γ, j 6∈ J.

Then, for all subspaces L of L2(Π) with d := dim(L) and for all A≥ 1, the following
bound holds with probability at least 1−N−A and with a constant C > 0 depending
only on ` :
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‖ f
λ̂ ε − fλ ε‖2

L2(Π) + εγ ∑
j 6∈J
|λ̂ ε

j | ≤ (8.45)

C
[

d +A logN
n

∨
max

j∈J
‖PL⊥h j‖L2(Π)

√
A logN

n

∨U(L) logN
n

]
.

8.3 Entropy Penalization and Sparse Recovery in Convex Hulls:
Random Error Bounds

As before, it will be assumed that ` is a loss function of quadratic type (see Defini-
tion 8.1). Denote

Λ := {(λ1, . . . ,λN) : λ j ≥ 0, j = 1, . . . ,N,
N

∑
j=1

λ j = 1}.

The following penalized empirical risk minimization problem will be studied:

λ̂
ε := argminλ∈Λ

[
Pn(`• fλ )− εH(λ )

]
=

argminλ∈Λ

[
Pn(`• fλ )+ ε

N

∑
j=1

λ j logλ j

]
, (8.46)

where ε ≥ 0 is a regularization parameter and

H(λ ) =−
N

∑
j=1

λ j logλ j

is the entropy of λ . Since, for all y, `(y, ·) is convex, the empirical risk Pn(` • fλ )
is a convex function of λ . Since also the set Λ is convex and so is the function
λ 7→ −H(λ ), the problem (8.46) is a convex optimization problem.

It is natural to compare this problem with its distribution dependent version

λ
ε := argminλ∈Λ

[
P(`• fλ )− εH(λ )

]
=

argminλ∈Λ

[
P(`• fλ )+ ε

N

∑
j=1

λ j logλ j

]
. (8.47)

Note that the minimum of the penalty −H(λ ) is attained at the uniform distri-
bution λ j = N−1, j = 1, . . . ,N. Because of this, at the first glance, −H(λ ) penalizes
for ”sparsity” rather than for ”non-sparsity”. However, we will show that if λ ε is
“approximately sparse”, then λ̂ ε has a similar property with a high probability.
Moreover, the approximate sparsity of λ ε will allow us to control ‖ f

λ̂ ε − fλ ε‖L2(Π)

and K(λ̂ ε ,λ ε), where
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K(λ ,ν) := K(λ |ν)+K(ν |λ )

is the symmetrized Kullback-Leibler distance between λ and ν ,

K(λ |ν) :=
N

∑
j=1

λ j log
(

λ j

ν j

)
being the Kullback-Leibler divergence between λ ,ν .

In particular, it will follow from our results that for any set J ⊂ {1, . . . ,N} with
card(J) = d and such that

∑
j 6∈J

λ
ε
j ≤

√
logN

n
,

with a high probability,

‖ f
λ̂ ε − fλ ε‖2

L2(Π) + εK(λ̂ ε ;λ
ε)≤C

d + logN
n

.

This easily implies upper bounds on ”the random error” |E ( f
λ̂ ε )−E ( fλ ε )| in terms

of “approximate sparsity” of λ ε .
Some further geometric parameters (such as “the alignment coefficient” intro-

duced in subsection 7.2.3) provide a way to control “the approximation error”
E ( fλ ε ). As a result, if there exists a “sparse” vector λ ∈ Λ for which the excess
risk E ( fλ ) is small and λ is properly “aligned” with the dictionary, then λ ε is ap-
proximately sparse and its excess risk E ( fλ ε ) is controlled by sparsity of λ and its
“alignment” with the dictionary. Together with sparsity bounds on the random error
this yields oracle inequalities on the excess risk E ( f

λ̂ ε ) showing that this estima-
tion method provides certain degree of adaptation to the unknown “sparsity” of the
problem.

The first result in this direction is the following theorem that provides the bounds
on approximate sparsity of λ̂ ε in terms of approximate sparsity of λ ε as well as the
bounds on the L2-error of approximation of fλ ε by f

λ̂ ε and the Kullback-Leibler
error of approximation of λ ε by λ̂ ε .

Theorem 8.5. There exist constants D > 0 and C > 0 depending only on ` such that,
for all J ⊂ {1, . . . ,N} with d := d(J) = card(J), for all A ≥ 1 and for all

ε ≥ D

√
d +A logN

n
, (8.48)

the following bounds hold with probability at least 1−N−A :

∑
j 6∈J

λ̂
ε
j ≤C

[
∑
j 6∈J

λ
ε
j +

√
d +A logN

n

]
,
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∑
j 6∈J

λ
ε
j ≤C

[
∑
j 6∈J

λ̂
ε
j +

√
d +A logN

n

]
and

‖ f
λ̂ ε − fλ ε‖2

L2(Π) + εK(λ̂ ε ,λ ε)≤C
[

d +A logN
n

∨
∑
j 6∈J

λ
ε
j

√
d +A logN

n

]
.

Similarly to what was done in Section 8.2, we will also establish another version
of these bounds that hold for smaller values of ε (the quantity U(L) introduced in
Section 8.2 will be involved in these bounds).

Theorem 8.6. Suppose that

ε ≥ D

√
A logN

n
(8.49)

with a large enough constant D > 0 depending only on `. For all J ⊂ {1, . . . ,N}, for
all subspaces L of L2(Π) with d := dim(L) and for all A ≥ 1, the following bounds
hold with probability at least 1−N−A and with a constant C > 0 depending only on
` :

∑
j 6∈J

λ̂
ε
j ≤C

[
∑
j 6∈J

λ
ε
j +

d +A logN
nε

+max
j∈J

‖PL⊥h j‖L2(Π) +
U(L) logN

nε

]
, (8.50)

∑
j 6∈J

λ
ε
j ≤C

[
∑
j 6∈J

λ̂
ε
j +

d +A logN
nε

+max
j∈J

‖PL⊥h j‖L2(Π) +
U(L) logN

nε

]
(8.51)

and

‖ f
λ̂ ε − fλ ε‖2

L2(Π) + εK(λ̂ ε ,λ ε)≤C
[

d +A logN
n

∨
∑
j 6∈J

λ
ε
j

√
A logN

n

∨

max
j∈J

‖PL⊥h j‖L2(Π)

√
A logN

n

∨U(L) logN
n

]
. (8.52)

If, for some J,

∑
j 6∈J

λ
ε
j ≤

√
A logN

n

and, for some L with U(L) ≤ d, h j ∈ L, j ∈ J, then bound (8.52) simplifies and
becomes

‖ f
λ̂ ε − fλ ε‖2

L2(Π) + εK(λ̂ ε ,λ ε)≤C
Ad logN

n
.

In particular, it means that the sizes of the random errors ‖ f
λ̂ ε − fλ ε‖2

L2(Π) and

K(λ̂ ε ,λ ε) are controlled by the dimension d of the linear span L of the ”relevant
part” of the dictionary {h j : j ∈ J}. Note that d can be much smaller than card(J)
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in the case when the functions in the dictionary are not linearly independent (so, the
lack of ”orthogonality” of the dictionary might help to reduce the random error).

The proofs of theorems 8.5 and 8.6 are quite similar. We give only the proof of
Theorem 8.6.

Proof. We use the method described in Section 8.1. In the current case, necessary
conditions of minima in minimization problems defining λ ε and λ̂ ε can be written
as follows:

P(`′ • fλ ε )( f
λ̂ ε − fλ ε )+ ε

N

∑
j=1

(logλ
ε
j +1)(λ̂ ε

j −λ
ε
j )≥ 0 (8.53)

and

Pn(`′ • f
λ̂ ε )( f

λ̂ ε − fλ ε )+ ε

N

∑
j=1

(log λ̂
ε
j +1)(λ̂ ε

j −λ
ε
j )≤ 0. (8.54)

The inequality (8.53) follows from the fact that the directional derivative of the
penalized risk function (smooth and convex)

Λ 3 λ 7→ P(`• fλ )+ ε

N

∑
j=1

λ j logλ j

at the point of its minimum λ ε is nonnegative in the direction of any point of the
convex set Λ , in particular, in the direction of λ̂ ε . The same observation in the case
of penalized empirical risk leads to inequality (8.54). Subtract (8.53) from (8.54)
and replace P by Pn in (8.54) to get

P
(
(`′ • f

λ̂ ε )− (`′ • fλ ε )
)
( f

λ̂ ε − fλ ε )+ ε

N

∑
j=1

(
log λ̂

ε
j − logλ

ε
j

)
(λ̂ ε

j −λ
ε
j )

≤ (P−Pn)(`′ • f
λ̂ ε )( f

λ̂ ε − fλ ε ). (8.55)

It is easy to see that

N

∑
j=1

(
log λ̂

ε
j − logλ

ε
j

)
(λ̂ ε

j −λ
ε
j ) =

N

∑
j=1

(
log

λ̂ ε
j

λ ε
j

)
(λ̂ ε

j −λ
ε
j ) = K(λ̂ ε ,λ ε)

and rewrite bound (8.55) as

P
(
(`′ • f

λ̂ ε )− (`′ • fλ ε )
)
( f

λ̂ ε − fλ ε )+ εK(λ̂ ε ;λ
ε)

≤ (P−Pn)(`′ • f
λ̂ ε )( f

λ̂ ε − fλ ε ). (8.56)

We use the following simple inequality
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K(λ̂ ε ,λ ε) =
N

∑
j=1

(
log

λ̂ ε
j

λ ε
j

)
(λ̂ ε

j −λ
ε
j )≥

log2
2 ∑

j:λ̂ ε
j ≥2λ ε

j

λ̂
ε
j +

log2
2 ∑

j:λ ε
j ≥2λ̂ ε

j

λ
ε
j , (8.57)

which implies that for all J ⊂ {1, . . . ,N}

∑
j 6∈J

λ̂
ε
j ≤ 2 ∑

j 6∈J
λ

ε
j +

2
log2

K(λ̂ ε ,λ ε) (8.58)

and

∑
j 6∈J

λ
ε
j ≤ 2 ∑

j 6∈J
λ̂

ε
j +

2
log2

K(λ̂ ε ,λ ε). (8.59)

If K(λ̂ ε ,λ ε) is small, the last bounds show that ”sparsity patterns” of vectors λ̂ ε

and λ ε are closely related. Then, it follows from (8.56) that

ε ∑
j 6∈J

λ̂
ε
j ≤ 2ε ∑

j 6∈J
λ

ε
j +

2
log2

(P−Pn)(`′ • f
λ̂ ε )( f

λ̂ ε − fλ ε ). (8.60)

As in the previous section, for the loss functions of quadratic type, we have

P
(
(`′ • f

λ̂ ε )− (`′ • fλ ε )
)
( f

λ̂ ε − fλ ε )≥ c‖ f
λ̂ ε − fλ ε‖2

L2(Π),

where c = τ(1). Note that ‖ fλ ε‖∞ ≤ 1 and ‖ f
λ̂ ε‖∞ ≤ 1. Then, bound (8.56) yields

c‖ f
λ̂ ε − fλ ε‖2 + εK(λ̂ ε ,λ ε)≤ (P−Pn)(`′ • f

λ̂ ε )( f
λ̂ ε − fλ ε ). (8.61)

Following the methodology of Section 8.1, we have now to control the empirical
process (P−Pn)(`′ • f

λ̂ ε )( f
λ̂ ε − fλ ε ). To this end, let

Λ(δ ;∆) :=
{

λ ∈Λ : ‖ fλ − fλ ε‖L2(Π) ≤ δ , ∑
j 6∈J

λ j ≤ ∆

}
and

αn(δ ;∆) := sup
{
|(Pn−P)((`′ • fλ )( fλ − fλ ε ))| : λ ∈Λ(δ ;∆)

}
.

The following two lemmas are similar to lemmas 8.2 and 8.1 of the previous
section. Their proofs are also similar and we skip them.

Lemma 8.3. Under the assumptions of Theorem 8.5, there exists constant C that
depends only on ` such that with probability at least 1−N−A, for all

n−1/2 ≤ δ ≤ 1 and n−1/2 ≤ ∆ ≤ 1

the following bound holds:
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αn(δ ;∆)≤ βn(δ ;∆) := C
[

δ

√
d +A logN

n

∨
∆

√
d +A logN

n∨
∑
j 6∈J

λ
ε
j

√
d +A logN

n

∨ A logN
n

]
. (8.62)

Lemma 8.4. Under the assumptions of Theorem 8.6, there exists constant C that
depends only on ` such that with probability at least 1−N−A, for all

n−1/2 ≤ δ ≤ 1 and n−1/2 ≤ ∆ ≤ 1 (8.63)

the following bound holds:

αn(δ ;∆)≤ βn(δ ;∆) := C
[

δ

√
d +A logN

n

∨
∆

√
A logN

n∨
∑
j 6∈J

λ
ε
j

√
A logN

n

∨
max

j∈J
‖PL⊥h j‖L2(Π)

√
A logN

n

∨
U(L) logN

n

∨ A logN
n

]
. (8.64)

We now proceed exactly as in the proof of Theorem 8.2. Let

δ = ‖ f
λ̂ ε − fλ ε‖L2(Π) and ∆ = ∑

j 6∈J
λ̂

ε
j , (8.65)

and suppose δ ≥ n−1/2,∆ ≥ n−1/2 (the case δ < n−1/2 or ∆ < n−1/2 is even simpler).
Then, by Lemma 8.4 and bounds (8.61), (8.60), the following inequalities hold with
probability at least 1−N−A :

cδ
2 ≤ βn(δ ,∆) (8.66)

and
ε∆ ≤ 2ε ∑

j 6∈J
λ

ε
j +

2
log2

βn(δ ,∆), (8.67)

where βn(δ ,∆) is defined in (8.64). Thus, it remains to solve the inequalities (8.66),
(8.67) to complete the proof. First, rewrite (8.67) (with a possible change of constant
C) as

ε∆ ≤C∆

√
A logN

n
+C
[

ε ∑
j 6∈J

λ
ε
j

∨
δ

√
d +A logN

n

∨

∑
j 6∈J

λ
ε
j

√
A logN

n

∨
max

j∈J
‖PL⊥h j‖L2(Π)

√
A logN

n

∨U(L) logN
n

∨ A logN
n

]
.

If the constant D in condition (8.49) satisfies D ≥ 2C∨1, then the term
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∑
j 6∈J

λ
ε
j

√
A logN

n

in the maximum can be dropped since it is smaller than the first term ε ∑ j 6∈J λ ε
j , and

the bound can be easily rewritten as follows:

∆ ≤ ∆(δ ) := C
[
∑
j 6∈J

λ
ε
j

∨ δ

ε

√
d +A logN

n

∨
max

j∈J
‖PL⊥h j‖L2(Π)

∨
U(L) logN

nε

∨√A logN
n

]
.

Using the fact that βn(δ ,∆) is nondecreasing in ∆ , substituting ∆(δ ) instead of ∆

in (8.66) and dropping the smallest terms, we get

δ
2 ≤C

[
δ

√
d +A logN

n

∨
∑
j 6∈J

λ
ε
j

√
A logN

n

∨
max

j∈J
‖PL⊥h j‖L2(Π)

√
A logN

n

∨
U(L) logN

n

∨ A logN
n

]
.

Solving the inequality yields the following bound on δ 2 :

δ
2 ≤C

[
d +A logN

n

∨
∑
j 6∈J

λ
ε
j

√
A logN

n

∨
(8.68)

max
j∈J

‖PL⊥h j‖L2(Π)

√
A logN

n

∨U(L) logN
n

]
.

We substitute this into the expression for ∆(δ ) which results in the following bound
on ∆ :

∆ ≤C
[
∑
j 6∈J

λ
ε
j

∨ d +A logN
nε

∨(
∑
j 6∈J

λ
ε
j

)1/2 1
ε

(
A logN

n

)1/4√d +A logN
n

∨
√

U(L) logN
nε

√
d +A logN

n

∨
max

j∈J
‖PL⊥h j‖1/2

L2(Π)
1
ε

(
A logN

n

)1/4√d +A logN
n

∨
max

j∈J
‖PL⊥h j‖L2(Π)

∨U(L) logN
nε

∨√A logN
n

]
,

The inequality ab≤ (a2 +b2)/2 and the condition 1
ε

√
A logN

n ≤ 1, allows us to sim-
plify the last bound and to get
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∆ ≤C
[
∑
j 6∈J

λ
ε
j

∨ d +A logN
nε

∨
max

j∈J
‖PL⊥h j‖L2(Π)

∨
U(L) logN

nε

∨√A logN
n

]
(8.69)

with a constant C depending only on `. Substitute bounds (8.68) and (8.69) in the
expression for βn(δ ,∆). With a little further work and using Lemma 8.4, we get the
following bound on αn(δ ,∆) that holds for δ ,∆ defined by (8.65) with probability
at least 1−N−A :

αn(δ ,∆)≤C
[

d +A logN
n

+ ∑
j 6∈J

λ
ε
j

√
A logN

n

∨

max
j∈J

‖PL⊥h j‖L2(Π)

√
A logN

n

∨U(L) logN
n

]
.

This bound and (8.61) imply that

c‖ f
λ̂ ε − fλ ε‖2

L2(Π) + εK(λ̂ ε ,λ ε)≤C
[

d +A logN
n

+ ∑
j 6∈J

λ
ε
j

√
A logN

n

∨

max
j∈J

‖PL⊥h j‖L2(Π)

√
A logN

n

∨U(L) logN
n

]
, (8.70)

and (8.52) follows. Bound (8.50) is an immediate consequence of (8.69); bound
(8.51) follows from (8.59) and (8.70).

ut

From theorems 8.5, 8.6 and the properties of the loss function, we will easily
deduce the next result.

As in Section 8.2, let L be the linear span of the dictionary {h1, . . . ,hN} in the
space L2(P) and let PL be the orthogonal projector on L ⊂ L2(P). Define

gε := PL (`′ • fλ ε ).

Theorem 8.7. Under the conditions of Theorem 8.5, the following bound holds with
probability at least 1−N−A, with a constant C > 0 depending only on ` and with
d = card(J) :∣∣∣∣P(`• f

λ̂ ε )−P(`• fλ ε )
∣∣∣∣≤C

[
d +A logN

n

∨
∑
j 6∈J

λ
ε
j

√
d +A logN

n

]∨
C1/2‖gε‖L2(Π)

[
d +A logN

n

∨
∑
j 6∈J

λ
ε
j

√
d +A logN

n

]1/2

. (8.71)
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Similarly, under the conditions of Theorem 8.6, with probability at least 1−N−A

and with d = dim(L)∣∣∣∣P(`• f
λ̂ ε )−P(`• fλ ε )

∣∣∣∣≤
C
[

d +A logN
n

∨(
∑
j 6∈J

λ
ε
j

∨
max

j∈J
‖PL⊥h j‖L2(Π)

)√
A logN

n

∨U(L) logN
n

]∨
C1/2‖gε‖L2(Π)

[
d +A logN

n

∨(
∑
j 6∈J

λ
ε
j

∨
max

j∈J
‖PL⊥h j‖L2(Π)

)√
A logN

n

∨U(L) logN
n

]1/2

. (8.72)

Proof. For the losses of quadratic type,

(`• f
λ̂ ε )(x,y)− (`• fλ ε )(x,y) = (`′ • fλ ε )(x,y)( f

λ̂ ε − fλ ε )(x)+R(x,y),

where
|R(x,y)| ≤C( f

λ̂ ε − fλ ε )2(x).

Integrate with respect to P and get∣∣∣P(`• f
λ̂ ε )−P(`• fλ ε )−P(`′ • fλ ε )( f

λ̂ ε − fλ ε )
∣∣∣≤C‖ f

λ̂ ε − fλ ε‖2
L2(Π).

Since ∣∣∣P(`′ • fλ ε )( f
λ̂ ε − fλ ε )

∣∣∣= ∣∣∣〈`′ • fλ ε , f
λ̂ ε − fλ ε

〉
L2(P)

∣∣∣=∣∣∣〈PL (`′ • fλ ε ), f
λ̂ ε − fλ ε

〉
L2(P)

∣∣∣≤ ‖gε‖L2(P)‖ f
λ̂ ε − fλ ε‖L2(Π)

theorems 8.5 and 8.6 imply the result.
ut

Recall that f∗ is a function that minimizes the risk P(` • f ) and that f∗ is uni-
formly bounded by a constant M. It follows from necessary conditions of minimum
that

P(`′ • f∗)h j = 0, j = 1, . . . ,N,

or `′ • f∗ ∈L ⊥. For any function f̄ uniformly bounded by M and such that `′ • f̄ ∈
L ⊥ (for instance, for f∗), the following bounds hold

‖gε‖L2(Π) = ‖PL (`′ • fλ ε )‖L2(P) = ‖PL (`′ • fλ ε − `′ • f̄ )‖L2(P) ≤

‖(`′ • fλ ε − `′ • f̄ )‖L2(P) ≤C‖ fλ ε − f̄‖L2(Π)

since `′ is Lipschitz with respect to the second variable.
Since ` is the loss of quadratic type, we have, for all λ ∈Λ ,
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E ( fλ )≥ 1
2

τ(‖ f∗‖∞∨1)‖ fλ − f∗‖2
L2(Π) =: τ‖ fλ − f∗‖2

L2(Π). (8.73)

Note that
|E ( f

λ̂ ε )−E ( fλ ε )|= |P(`• f
λ̂ ε )−P(`• fλ ε )|.

Thus, Theorem 8.7 implies the following bound on the random error |E ( f
λ̂ ε )−

E ( fλ ε )| : under the conditions of Theorem 8.5, with probability at least 1−N−A

∣∣∣∣E ( f
λ̂ ε )−E ( fλ ε )

∣∣∣∣≤C
[

d +A logN
n

∨
∑
j 6∈J

λ
ε
j

√
d +A logN

n

]∨
C1/2

√
E ( fλ ε )

τ

[
d +A logN

n

∨
∑
j 6∈J

λ
ε
j

√
d +A logN

n

]1/2

, (8.74)

where d = d(J), and under the conditions of Theorem 8.6, with probability at least
1−N−A∣∣∣∣E ( f

λ̂ ε )−E ( fλ ε )
∣∣∣∣≤

C
[

d +A logN
n

∨(
∑
j 6∈J

λ
ε
j

∨
max

j∈J
‖PL⊥h j‖L2(Π)

)√
A logN

n

∨U(L) logN
n

]∨
C1/2

√
E ( fλ ε )

τ

[
d +A logN

n

∨(
∑
j 6∈J

λ
ε
j

∨
max

j∈J
‖PL⊥h j‖L2(Π)

)√
A logN

n

∨
U(L) logN

n

]1/2

, (8.75)

where d = dim(L).

8.4 Approximation Error Bounds, Alignment and Oracle
Inequalities

To consider the approximation error, we will use the definitions of alignment coef-
ficients from subsection 7.2.3. For λ ∈ RN , let sN

j (λ ) := log(eN2λ j), j ∈ supp(λ )
and sN

j (λ ) := 0, j 6∈ supp(λ ). Note that logλ j + 1 is the derivative of the func-
tion λ logλ involved in the definition of the penalty and, for j ∈ supp(λ ), sN

j (λ ) =
logλ j +1+2logN. Introduce the following vector

sN(λ ) := (sN
1 (λ ), . . . ,sN

N(λ )).

We will show that both the approximation error E ( fλ ε ) and the “approximate spar-
sity” of λ ε can be controlled in terms of the alignment coefficient of the vector
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sN(λ ) for an arbitrary “oracle” vector λ ∈ Λ . We will use the following version of
the alignment coefficient:

αN(λ ) := a(b)
H (Λ ,λ ,sN(λ ))∨0,

where
b := b(λ ) := 2‖sN(λ )‖`∞

.

Theorem 8.8. There exists a constant C > 0 that depends only on ` and on the
constant M such that ‖ f∗‖∞ ≤ M with the following property. For all ε > 0 and all
λ ∈Λ ,

E ( fλ ε )+ ε ∑
j 6∈supp(λ )

λ
ε
j ≤ 2E ( fλ )+C

(
α

2
N(λ )ε2 +

ε

N

)
. (8.76)

Proof. The definition of λ ε implies that, for all λ ∈Λ ,

E ( fλ ε )+ ε

N

∑
j=1

λ
ε
j log(N2

λ
ε
j )≤ E ( fλ )+ ε

N

∑
j=1

λ j log(N2
λ j)

By convexity of the function u 7→ u log(N2u) and the fact that its derivative is
log(eN2u),

E ( fλ ε )+ ε ∑
j 6∈Jλ

λ
ε
j log(N2

λ
ε
j )≤

E ( fλ )+ ε ∑
j∈Jλ

(
λ j log(N2

λ j)−λ
ε
j log(N2

λ
ε
j )
)
≤

E ( fλ )+ ε ∑
j∈Jλ

log(eN2
λ j)(λ j −λ

ε
j ). (8.77)

Note that
ε ∑

j 6∈Jλ

λ
ε
j = ε ∑

j 6∈Jλ

λ
ε
j log(N2

λ
ε
j )+

ε ∑
j 6∈Jλ ,λ ε

j ≤eN−2

λ
ε
j

(
1− log(N2

λ
ε
j )
)

+ ε ∑
j 6∈Jλ ,λ ε

j >eN−2

λ
ε
j

(
1− log(N2

λ
ε
j )
)
.

We have
ε ∑

j 6∈Jλ ,λ ε
j >eN−2

λ
ε
j

(
1− log(N2

λ
ε
j )
)
≤ 0.

Moreover, the function

(0,eN−2] 3 x 7→ x(1− log(N2x))

is nonnegative, its maximum is attained at x = N−2 and this maximum is equal to
N−2. Therefore, we have



170 8 Convex Penalization in Sparse Recovery

ε ∑
j 6∈Jλ ,λ ε

j ≤eN−2

λ
ε
j

(
1− log(N2

λ
ε
j )
)
≤ ε ∑

j 6∈Jλ ,λ ε
j ≤eN−2

N−2 ≤ εN−1.

It follows that
ε ∑

j 6∈Jλ

λ
ε
j ≤ ε ∑

j 6∈Jλ

λ
ε
j log(N2

λ
ε
j )+ εN−1.

Recalling (8.77), we get

E ( fλ ε )+ ε ∑
j 6∈Jλ

λ
ε
j ≤ E ( fλ )+ ε ∑

j∈Jλ

log(eN2
λ j)(λ j −λ

ε
j )+ εN−1.

If
E ( fλ )+ εN−1 ≥ ε ∑

j∈Jλ

log(eN2
λ j)(λ j −λ

ε
j ),

then
E ( fλ ε )+ ε ∑

j 6∈Jλ

λ
ε
j ≤ 2E ( fλ )+2εN−1,

and the bound of the theorem follows. Otherwise, we have

E ( fλ ε )+ ε ∑
j 6∈Jλ

λ
ε
j ≤ 2ε ∑

j∈Jλ

log(eN2
λ j)(λ j −λ

ε
j ),

which, in particular, implies that

∑
j 6∈Jλ

λ
ε
j ≤ 2‖sN(λ )‖`∞ ∑

j∈Jλ

|λ j −λ
ε
j |.

This means that λ −λ ε ∈Cb,λ . The definition of αN(λ ) implies in this case that

E ( fλ ε )+ ε ∑
j 6∈Jλ

λ
ε
j ≤ 2ε ∑

j∈Jλ

log(eN2
λ j)(λ j −λ

ε
j )≤ 2εαN(λ )‖ fλ − fλ ε‖L2(Π).

Since ` is a loss of quadratic type, we have

‖ fλ − fλ ε‖L2(Π) ≤ ‖ fλ − f∗‖L2(Π) +‖ fλ ε − f∗‖L2(Π) ≤
√

E ( fλ )
τ

+

√
E ( fλ ε )

τ

(see (8.73)). This yields

E ( fλ ε )+ ε ∑
j 6∈Jλ

λ
ε
j ≤ 2εαN(λ )

(√
E ( fλ )

τ
+

√
E ( fλ ε )

τ

)
.

Using the fact that

2εαN(λ )

√
E ( fλ ε )

τ
≤ 2

α2
N(λ )ε2

τ
+

1
2
E ( fλ ε )
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and

2εαN(λ )

√
E ( fλ )

τ
≤ 2

α2
N(λ )ε2

τ
+

1
2
E ( fλ ),

we get
1
2
E ( fλ ε )+ ε ∑

j 6∈Jλ

λ
ε
j ≤

1
2
E ( fλ )+4

α2
N(λ )ε2

τ
,

which completes the proof.
ut

Theorem 8.8 and random error bounds (8.74), (8.75) imply oracle inequalities
for the excess risk E ( f

λ̂ ε ). The next corollary is based on (8.75).

Corollary 8.5. Under the conditions and the notations of theorems 8.6, 8.8, for all
λ ∈ Λ with J = supp(λ ) and for all subspaces L of L2(Π) with d := dim(L), the
following bound holds with probability at least 1−N−A and with a constant C de-
pending on ` and on M :

E ( f
λ̂ ε )≤ 4E ( fλ )+C

(
d +A logN

n
+max

j∈J
‖PL⊥h j‖L2(Π)

√
A logN

n
+

U(L) logN
n

+α
2
N(λ )ε2 +

ε

N

)
.

Remark. Note that the constants in front of E ( fλ ) in the bounds of Theorem 8.8
and Corollary 8.5 can be replaced by 1 + δ ,δ > 0 at a price of C being dependent
on δ .

8.5 Further Comments

`1-penalization in linear regression problems is often called LASSO, the term intro-
duced by Tibshirani [135].

Sparsity oracle inequalities for this method have been studied by many authors, in
particular, Bickel, Ritov and Tsybakov [22], Bunea, Tsybakov and Wegkamp [36],
van de Geer [61], Koltchinskii [81]. In these papers, some form of restricted isom-
etry property or its generalizations have been used (which means strong geometric
assumptions on the dictionary viewed either as a subset of L2(Πn) in the fixed design
case, or as a subset of L2(Π) in the random design case). The version of sparsity
oracle inequalities presented here is close to what was considered in [81].

Other type of oracle inequalities for LASSO (under very mild assumptions on
the dictionary, but with ”slow“ error rates) were obtained by Bartlett, Mendelson
and Neeman [18] and by Massart and Meynet [105].

Extensions of LASSO and related methods of complexity penalization to sparse
recovery problems in high-dimensional additive modeling and multiple kernel learn-
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ing can be found in Koltchinskii and Yuan [92, 93], Meier, van de Geer and
Bühlmann [107].

There has been a considerable amount of work on entropy penalization in infor-
mation theory and statistics, for instance, in problems of aggregation of statistical es-
timators using exponential weighting and in PAC-Bayesian methods of learning the-
ory (see, e.g., McAllester [106], Catoni [46], Audibert [10], Zhang [148, 149, 150]
and references therein). Dalalyan and Tsybakov [47] studied PAC-Bayesian method
with special priors in sparse recovery problems.

The approach to sparse recovery in convex hulls based on entropy penalization
was suggested by Koltchinskii [83] and it was followed in this chapter. In [83],
this method was also used in density estimation problems. Earlier, Koltchinskii [81]
suggested to use ‖·‖p

`p
as complexity penalty, which is also a strictly convex function

for p > 1. It was shown that, when p = 1 + c
logN , the estimator based on penalized

empirical risk minimization with such a penalty satisfies random error bounds and
sparsity oracle inequalities of the same type as for entropy penalty. Koltchinskii
and Minsker [87] studied extensions of the entropy penalization method to sparse
recovery in infinite dictionaries.



Chapter 9
Low Rank Matrix Recovery: Nuclear Norm
Penalization

In this chapter, we discuss a problem of estimation of a large target matrix based
on a finite number of noisy measurements of linear functionals (often, random) of
this matrix. The underlying assumption is that the target matrix is of small rank and
the goal is to determine how the estimation error depends on the rank as well as on
other important parameters of the problem such as the number of measurements and
the variance of the noise. This problem can be viewed as a natural noncommutative
extension of sparse recovery problems discussed in the previous chapters. As a mat-
ter of fact, low rank recovery is equivalent to sparse recovery when all the matrices
in question are diagonal. There are several important instances of such problems, in
particular, matrix completion [41, 45, 68, 119], matrix regression [40, 121, 86] and
the problem of density matrix estimation in quantum state tomography [69, 68, 85].
We will study some of these problems using general empirical processes techniques
developed in the first several chapters. Noncommutative Bernstein type inequalities
established in Section 2.4 will play a very special role in our analysis. The main
results will be obtained for Hermitian matrices. So called “Paulsen dilation” (see
Section 2.4) can be then used to tackle the case of rectangular matrices. Throughout
the chapter, we use the notations introduced in Section A.4.

9.1 Geometric Parameters of Low Rank Recovery and Other
Preliminaries

In the results that follow, we will need matrix extensions of some of the geometric
parameters introduced in Section 7.2.

Given a subspace L ⊂ Cm, PL denotes the orthogonal projection onto L. We will
need the following linear mappings PL : Hm(C) 7→ Hm(C) and P⊥

L : Hm(C) 7→
Hm(C) :

PL(B) := B−PL⊥BPL⊥ , P⊥
L (B) = PL⊥BPL⊥ .

Note that, for all Hermitian matrices B, rank(PL(B))≤ 2dim(L).

173
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Given b ∈ [0,+∞], a subspace L ⊂ Cm and a closed convex subset D ⊂ Hm(C),
consider the following cone in the space Hm(C) :

K (D;L;b) :=
{

B ∈ l.s.(D) : ‖P⊥
L (B)‖1 ≤ b‖PL(B)‖1

}
.

Roughly, in the case when dim(L) is small, the cone K (D;L;b) consists of matrices
B for which “the low rank part” PL(B) is dominant and “the high rank part” P⊥

L (B)
is “small”. Note that, for b = 0, K (D;L;0) is a subspace of matrices of low rank
and, for b = +∞, K (D;L;+∞) coincides with the whole linear span of D.

Given a probability distribution Π in Hm(C), define

β
(b)
2 (D;L;Π) := inf

{
β > 0 : ‖PL(B)‖2 ≤ β‖B‖L2(Π), B ∈K (D;L;b)

}
.

Clearly, D1 ⊂ D2 implies that β
(b)
2 (D1;L;Π)≤ β

(b)
2 (D2;L;Π). We will write

β
(b)
2 (L;Π) := β

(b)
2 (Hm(C);L;Π).

As in Section 7.2, we will also introduce a matrix version of restricted isometry
constants. Namely, given r ≤ m, define

δr := δr(Π) :=

inf
{

δ > 0 : (1−δ )‖B‖2 ≤ ‖B‖L2(Π) ≤ (1+δ )‖B‖2,B ∈Hm(C), rank(B)≤ r
}

.

The quantity δr(Π) will be called the matrix restricted isometry constant of rank
r with respect to the distribution Π . A matrix restricted isometry condition holds
for Π if δr(Π) is “sufficiently small” for a certain value of r (in low rank recovery
problems, it usually depends on the rank of the target matrix).

Define also the following measure of “correlation” between two orthogonal (in
the Hilbert–Schmidt sense) matrices of small rank:

ρr := ρr(Π) := sup
{∣∣∣∣ 〈B1,B2〉L2(Π)

‖B1‖L2(Π)‖B2‖L2(Π)

∣∣∣∣ : B1,B2 ∈Hm(C),

rank(B1)≤ 2r, rank(B2)≤ r,〈B1,B2〉= 0
}

.

Finally, define

mr := mr(Π) := inf
{
‖B‖L2(Π) : B ∈Hm(C),‖B‖2 = 1, rank(B)≤ r

}
and

Mr := Mr(Π) := sup
{
‖B‖L2(Π) : B ∈Hm(C),‖B‖2 = 1, rank(B)≤ r

}
.

If mr ≤ 1 ≤ Mr ≤ 2, the matrix restricted isometry constant can be written as
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δr = (Mr −1)∨ (1−mr).

Also, a simple geometric argument shows that

ρr ≤
1
2

[(
1+δ3r

1−δ2r

)2

+
(

1+δ3r

1−δr

)2

−2
]∨ 1

2

[
2−
(

1−δ3r

1+δ2r

)2

−
(

1−δ3r

1+δr

)2]
.

The next statement is a matrix version of Lemma 7.2 and its proof is a rather
straightforward modification of the proof in the vector case.

Lemma 9.1. Let L⊂Cm be a subspace with dim(L) = r. Suppose that ρr < m2r
b
√

2M2r
.

Then, for all B ∈K (D;L;b),

‖PL(B)‖2 ≤
1

m2r −b
√

2ρrM2r
‖B‖L2(Π),

and, as a consequence,

β
(b)
2 (L;Π)≤ 1

m2r −b
√

2ρrM2r
.

Also, for all B ∈K (D;L;b),

‖B‖2 ≤
(2b2 +1)1/2

m2r −b
√

2ρrM2r
‖B‖L2(Π).

It follows from Lemma 9.1 that as soon as δ3r ≤ c for a sufficiently small c > 0,

β
(b)
2 (L;Π) is bounded from above by a constant C (depending on c) provided that

dim(L)≤ r.
To control the quantities mr and Mr, it is convenient to discretize the infimum

and the supremum in their definitions, that is, to consider

mε
r := mε

r (Π) := inf
{
‖B‖L2(Π) : B ∈S ε

r

}
and

Mε
r := Mε

r (Π) := sup
{
‖B‖L2(Π) : B ∈S ε

r

}
,

where S ε
r is a minimal proper ε-net for the set

Sr :=
{

B ∈Hm(C) : ‖B‖2 = 1, rank(B)≤ r
}

(that is, a set of points of Sr of the smallest possible cardinality such that any S∈Sr
is within distance ε from the set).

Lemma 9.2. For all ε < 2−1/2, the following bounds hold:

Mr(Π)≤ Mε
r (Π)

1−
√

2ε
(9.1)
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and

mr(Π)≥ mε
r (Π)−

√
2Mε

r (Π)ε
1−

√
2ε

. (9.2)

Proof. Note that, for all B1,B2 ∈Sr,

‖B1−B2‖L2(Π) ≤
√

2Mr(Π)‖B1−B2‖2. (9.3)

Indeed, since rank(B1−B2)≤ 2r, this matrix can be represented as B1−B2 = A1 +
A2, where A1,A2 ∈Hm(C), rank(A1)≤ r, rank(A2)≤ r and A1 ⊥ A2 with respect to
the Hilbert–Schmidt inner product (to obtain such a representation it is enough to
write down the spectral decomposition of B1−B2 and to split it into two orthogonal
parts of rank at most r). Therefore,

‖B1−B2‖L2(Π) ≤ ‖A1‖L2(Π) +‖A2‖L2(Π) ≤ Mr(Π)(‖A1‖2 +‖A2‖2)≤

Mr(Π)
√

2(‖A1‖2
2 +‖A2‖2

2)
1/2 = Mr(Π)

√
2‖A1 +A2‖2 =

√
2Mr(Π)‖B1−B2‖2.

It immediately follows from (9.3) that

Mr(Π)≤ Mε
r (Π)+ sup

B∈Sr ,B′∈S ε
r ,‖B−B′‖2≤ε

‖B−B′‖L2(Π) ≤ Mε
r (Π)+

√
2Mr(Π)ε,

which implies

Mr(Π)≤ Mε
r (Π)

1−
√

2ε
.

Similarly,

mr(Π)≥ mε
r (Π)−

√
2Mr(Π)ε ≥ mε

r (Π)−
√

2Mε
r (Π)ε

1−
√

2ε
.

ut

Clearly, as soon as
sup

B∈S ε
r

∣∣∣‖B‖2
L2(Π)−1

∣∣∣≤ λ ,

we have Mε
r ≤

√
1+λ and mε

r ≥
√

1−λ , and it follows from Lemma 9.2 that

Mr(Π)≤
√

1+λ

1−
√

2ε
(9.4)

and

mr(Π)≥
√

1−λ −
√

2(1+λ )ε
1−

√
2ε

. (9.5)

When both λ and ε are small enough, this guarantees that Mr(Π) and mr(Π) are
close to 1 and δr(Π) is small.
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Lemma 9.2 is usually combined with the following bound on the covering num-
bers of the set Sr of all matrices of rank r and of unit Hilbert–Schmidt norm (see
also Candes and Plan [40]).

Lemma 9.3. The following bound holds:

card(S ε
r )≤

(
18
ε

)(2m+1)r

.

Proof. Given two Hermitian matrices B, B̄ ∈Sr with spectral representations

B =
r

∑
j=1

λ j(e j ⊗ e j), B̄ =
r

∑
j=1

λ̄ j(ē j ⊗ ē j),

we have
‖B− B̄‖2 ≤ ‖λ − λ̄‖`2 +2 max

1≤ j≤r
|e j − ē j|, (9.6)

where λ , λ̄ ∈ Rr are the vectors of the eigenvalues of B, B̄, respectively. Indeed, we
have ∥∥∥∥ r

∑
j=1

λ j(e j ⊗ e j)−
r

∑
j=1

λ̄ j(ē j ⊗ ē j)
∥∥∥∥

2
≤
∥∥∥∥ r

∑
j=1

(λ j − λ̄ j)(e j ⊗ e j)
∥∥∥∥

2
+∥∥∥∥ r

∑
j=1

λ̄ j((e j − ē j)⊗ e j)
∥∥∥∥

2
+
∥∥∥∥ r

∑
j=1

λ̄ j(ē j ⊗ (e j − ē j))
∥∥∥∥

2
,

and it is easy to see that the first term in the right hand side is equal to ‖λ − λ̄‖`2
and the two remaining terms are both bounded by max1≤ j≤r |e j − ē j|. For instance,
we have ∥∥∥∥ r

∑
j=1

λ̄ j((e j − ē j)⊗ e j)
∥∥∥∥2

2
=

r

∑
j=1

λ̄
2
j ‖(e j − ē j)⊗ e j‖2

2 =

r

∑
j=1

λ̄
2
j |e j − ē j|2|e j|2 ≤

r

∑
j=1

λ̄
2
j max

1≤ j≤r
|e j − ē j|2 ≤ max

1≤ j≤r
|e j − ē j|2,

where we used the facts that the matrices (e j − ē j)⊗ e j are orthogonal and, for
B̄ ∈Sr, ∑

r
j=1 λ̄ 2

j = 1.
It remains to observe that there exists an ε/3-covering of the unit ball in Rr of

cardinality at most ( 9
ε
)r. On the other hand, there exists a proper ε/6-covering of

the set
U :=

{
(u1, . . . ,ur) : u j ∈ Cm, |u j|= 1

}
with respect to the metric

d((u1, . . . ,ur),(v1, . . . ,vr)) = max
1≤ j≤r

|u j − v j|
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that has cardinality at most ( 18
ε

)2mr. This also implies the existence of a proper ε/3-
covering of a subset V ⊂U,

V :=
{
(e1, . . . ,er) : e1, . . . ,er orthonormal in Cm

}
.

In view of (9.6), this implies the existence of an ε-covering of Sr of the desired
cardinality.

ut

9.2 Matrix Regression with Fixed Design

In this section, we study the following regression problem

Yj = 〈A,X j〉+ξ j, j = 1, . . . ,n, (9.7)

where X j ∈Hm(C), j = 1, . . . ,n are nonrandom Hermitian m×m matrices, ξ ,ξ j, j =
1, . . . ,n are i.i.d. mean zero random variables with σ2

ξ
:= Eξ 2 < +∞ (i.i.d. random

noise) and A is an unknown Hermitian target matrix to be estimated based on the
observations (X1,Y1), . . . ,(Xn,Yn). Assume that A ∈D⊂Hm(C), where D is a given
closed convex set of Hermitian matrices and consider the following nuclear norm
penalized least squares estimator:

Âε := argminS∈D

[
n−1

n

∑
j=1

(Yj −〈S,X j〉)2 + ε‖S‖1

]
, (9.8)

where ε > 0 is a regularization parameter. Our goal is to develop upper bounds on
the prediction error ‖Âε −A‖2

L2(Πn), where Πn is the empirical distribution based on
(X1, . . . ,Xn).

We will use the quantity β (b)(D;L;Πn) with b = 5 and with L := supp(S), where
S ∈Hm(C). For simplicity, denote

βn(S) := β
(5)(D; supp(S);Πn).

We will also use the following characteristics of the noise ξ j, j = 1, . . . ,n and of
the design matrices X j, j = 1, . . . ,n :

σ
2
ξ

:= Eξ
2, U (α)

ξ
:= ‖ξ‖ψα

∨ (2σξ ), α ≥ 1

and

σ
2
X := σ

2
X ,n :=

∥∥∥∥n−1
n

∑
j=1

X2
j

∥∥∥∥, UX := UX ,n := max
1≤ j≤n

‖X j‖.

The following theorem is the main result of this section.
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Theorem 9.1. Let α ≥ 1, t > 0 and suppose that

ε ≥ D
[

σξ σX

√
t + log(2m)

n

∨
U (α)

ξ
UX log1/α

(U (α)
ξ

UX

σξ σX

)
t + log(2m)

n

]
.

There exists a constant D > 0 in the above condition on ε such that with probability
at least 1− e−t

‖Âε −A‖2
L2(Πn) ≤ inf

S∈D

[
‖S−A‖2

L2(Πn) +2ε‖S‖1

]
(9.9)

and

‖Âε −A‖2
L2(Πn) ≤ inf

S∈D

[
‖S−A‖2

L2(Πn) + ε
2
βn(S)rank(S)

]
. (9.10)

It immediately follows from the bounds of the theorem that

‖Âε −A‖2
L2(Πn) ≤ ε

2
βn(A)rank(A)∧2ε‖A‖1.

If, for r = rank(A), δr(Πn) is sufficiently small (that is, Πn satisfies a “matrix re-
stricted isometry” condition), then βn(A) is bounded by a constant and the bound
becomes

‖Âε −A‖2
L2(Πn) ≤Cε

2rank(A)∧2ε‖A‖1.

Proof. The definition of the estimator Âε implies that, for all S ∈Hm(C),

‖Âε‖2
L2(Πn)−

〈
2
n

n

∑
j=1

YjX j, Âε

〉
+ ε‖Âε‖1 ≤

‖S‖2
L2(Πn)−

〈
2
n

n

∑
j=1

YjX j,S
〉

+ ε‖S‖1.

Also, note that E(YjX j) = 〈A,X j〉X j. This implies that

1
n

n

∑
j=1

(YjX j −E(YjX j)) =
1
n

n

∑
j=1

ξ jX j =: Ξ .

Therefore, we have

‖Âε‖2
L2(Πn)−2〈Âε ,A〉L2(Πn) ≤ ‖S‖2

L2(Πn)−2〈S,A〉L2(Πn)+

〈2Ξ , Âε −S〉+ ε(‖S‖1−‖Âε‖1),

which implies

‖Âε −A‖2
L2(Πn) ≤ ‖S−A‖2

L2(Πn) +2∆‖Âε −S‖1 + ε(‖S‖1−‖Âε‖1), (9.11)

where ∆ := ‖Ξ‖. Under the assumption ε ≥ 2∆ , this yields
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‖Âε −A‖2
L2(Πn) ≤ ‖S−A‖2

L2(Πn) + ε(‖Âε −S‖1 +‖S‖1−‖Âε‖1)≤

‖S−A‖2
L2(Πn) +2ε‖S‖1. (9.12)

It follows from Theorem 2.7 that, for some constant C > 0, with probability at least
1− e−t

∆ ≤C
[

σξ σX

√
t + log(2m)

n

∨
U (α)

ξ
UX log1/α

(U (α)
ξ

UX

σξ σX

)
t + log(2m)

n

]
. (9.13)

Thus, bound (9.9) follows from (9.12) provided that D ≥ 2C.
To prove the second bound, we use a necessary condition of extremum in problem

(9.8): there exists V̂ ∈ ∂‖Âε‖1 such that, for all S ∈ D,

2〈Âε , Âε −S〉L2(Πn)−
〈

2
n

n

∑
j=1

YjX j, Âε −S
〉

+ ε〈V̂ , Âε −S〉 ≤ 0. (9.14)

To see this, note that since Âε is a minimizer of the functional

Ln(S) := n−1
n

∑
j=1

(Yj −〈S,X j〉)2 + ε‖S‖1,

there exists B ∈ ∂Ln(Âε) such that −B belongs to the normal cone of convex set D
at the point Âε (see, e.g., Aubin and Ekeland [9], Chapter 4, Section 2, Corollary 6).
A simple computation of subdifferential of Ln shows that such a B has the following
representation:

B := 2
∫

Hm(C)
〈Âε ,H〉HΠn(dH)− 2

n

n

∑
j=1

YjX j + εV̂

for some V̂ ∈ ∂‖Âε‖1. Since −B belongs to the normal cone of D at Âε ,

〈B, Âε −S〉 ≤ 0,

and (9.14) holds. Consider an arbitrary S ∈ D of rank r with spectral representation
S = ∑

r
j=1 λ j(e j ⊗ e j) and with support L. Then, (9.14) easily implies that, for an

arbitrary V ∈ ∂‖S‖1,

2〈Âε −A, Âε −S〉L2(Πn) +ε〈V̂ −V, Âε −S〉 ≤ −ε〈V, Âε −S〉+ 〈2Ξ , Âε −S〉. (9.15)

It follows from monotonicity of subdifferential of convex function ‖ · ‖1 that

〈V̂ −V, Âε −S〉 ≥ 0.

On the other hand, a well known computation of subdifferential of the nuclear norm
(see Section A.4) implies that
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V :=
r

∑
j=1

sign(λ j)(e j ⊗ e j)+PL⊥WPL⊥ = sign(S)+PL⊥WPL⊥ ,

where W ∈ Hm(C) and ‖W‖ ≤ 1. Since L is the support of S, it follows from the
duality between nuclear and operator norms that there exists a matrix W such that
‖W‖ ≤ 1 and

〈PL⊥WPL⊥ , Âε −S〉= 〈PL⊥WPL⊥ , Âε〉= 〈W,PL⊥ Âε PL⊥〉= ‖PL⊥ Âε PL⊥‖1.

For such a choice of W, (9.15) implies that

2〈Âε −A, Âε −S〉L2(Πn) + ε‖PL⊥ Âε PL⊥‖1 ≤
−ε〈sign(S), Âε −S〉+ 〈2Ξ , Âε −S〉. (9.16)

We will also use the following simple identity:

2〈Âε −A, Âε −S〉L2(Πn) = ‖Âε −A‖2
L2(Πn) +‖Âε −S‖2

L2(Πn)−‖S−A‖2
L2(Πn). (9.17)

Note that if 〈Âε −A, Âε − S〉L2(Πn) ≤ 0, then (9.17) implies that ‖Âε −A‖2
L2(Πn) ≤

‖S−A‖2
L2(Πn), and (9.10) trivially holds. On the other hand, if

〈Âε −A, Âε −S〉L2(Πn) ≥ 0,

then it easily follows from (9.16) that

ε‖P⊥
L (Âε −S)‖1 ≤ ε‖PL(Âε −S)‖1 +2∆(‖PL(Âε −S)‖1 +‖P⊥

L (Âε −S)‖1).

As a result, under the condition ε ≥ 3∆ , we get that

‖P⊥
L (Âε −S)‖1 ≤ 5‖PL(Âε −S)‖1, (9.18)

or Âε −S ∈K (D,L,5). Therefore, recalling the definition of βn(S), we also have

‖PL(Âε −S)‖2 ≤ βn(S)‖Âε −S‖L2(Πn). (9.19)

Now, using the fact that

|〈sign(S), Âε −S〉|= |〈sign(S),PL(Âε −S)〉| ≤

‖sign(S)‖2‖PL(Âε −S)‖2 =
√

rank(S)‖PL(Âε −S)‖2,

we can deduce from (9.16), (9.17) and (9.19) that

‖Âε −A‖2
L2(Πn) +‖Âε −S‖2

L2(Πn) + ε‖PL⊥ Âε PL⊥‖1 ≤ (9.20)

‖S−A‖2
L2(Πn) + ε

√
rank(S)βn(S)‖Âε −S‖L2(Πn) + 〈2Ξ , Âε −S〉.

Finally, we have
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〈Ξ , Âε −S〉= 〈PL(Ξ), Âε −S〉+ 〈P⊥
L (Ξ), Âε −S〉 ≤ (9.21)

≤Λ‖PL(Âε −S)‖2 +Γ ‖P⊥
L (Aε −S)‖1,

where
Λ := ‖PL(Ξ)‖2, Γ := ‖P⊥

L (Ξ)‖.

Note that Γ ≤ ‖Ξ‖= 2∆ and

Λ
2 = ‖PLΞ‖2

2 +‖P⊥L ΞPL‖2
2 ≤

rank(S)‖PLΞ‖2 + rank(S)‖P⊥L ΞPL‖2 ≤ 2rank(S)∆ 2,

where we used the facts that rank(PLΞ) ≤ rank(S), rank(PL⊥ΞPL) ≤ rank(S) and
‖PLΞ‖ ≤ ‖Ξ‖,‖PL⊥ΞPL‖ ≤ ‖Ξ‖. As a consequence,

Λ ≤
√

2rank(S)∆ .

Now, we can deduce from (9.20) and (9.21) that

‖Âε −A‖2
L2(Πn) +‖Âε −S‖2

L2(Πn) + ε‖PL⊥ Âε PL⊥‖1 ≤

‖S−A‖2
L2(Πn) + ε

√
rank(S)βn(S)‖Âε −S‖L2(Πn)

+2∆‖PL⊥ Âε PL⊥‖1 +2
√

2rank(S)∆βn(S)‖Âε −S‖L2(Πn). (9.22)

If ε ≥ 3∆ (which, in view of (9.13), holds provided that D≥ 3C), then (9.22) implies
that

‖Âε −A‖2
L2(Πn) ≤ ‖S−A‖2

L2(Πn) + ε
2
β

2
n (S)rank(S),

and (9.10) follows.
ut

It is worth mentioning that Theorem 9.1 implies sparsity oracle inequalities in
the vector recovery problems discussed in the previous chapters. It is enough to
use this theorem in the case when D is the space of all diagonal m×m matrices
with real entries and the design matrices X j also belong to D. In this case, for all
S∈D, rank(S) is equal to the number of nonzero diagonal entries. Also, if e1, . . . ,em
denotes the canonical basis, L = LJ is the subspace spanned on {e j : j ∈ J} and Π

is a probability distribution in D, then the quantity β
(b)
2 (D;L;Π) coincides with

β
(b)
2 (J;Π) defined in Section 7.2. Note also that, for S ∈D, ‖S‖1 coincides with the

`1-norm of the vector of diagonal entries of S and the operator norm ‖S‖ coincides
with the `∞-norm of the same vector. The quantities σ2

X and UX become

σ
2
X =

∥∥∥∥n−1
n

∑
j=1

X2
j

∥∥∥∥
`∞

, UX := max
1≤ j≤n

‖X j‖`∞

(with an obvious interpretation of diagonal matrices X j as vectors of their diagonal
entries).
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Under the notations of chapters 7-8, it is easy to deduce from Theorem 9.1 a
corollary for the LASSO-estimator

λ̂
ε := argminλ∈Rm

[
n−1

n

∑
j=1

(Yj − fλ (X j))2 + ε‖λ‖1

]
(9.23)

of parameter λ∗ ∈ Rm in the following regression model with fixed design:

Yj = fλ∗(X j)+ξ j, j = 1, . . . ,n.

Here

fλ :=
m

∑
j=1

λ jh j, λ = (λ1, . . . ,λm) ∈ Rm,

h1, . . . ,hm : S 7→ R is a dictionary and X1, . . . ,Xn ∈ S are nonrandom design points.
In this case, denote

σ
2
X := max

1≤k≤m

∣∣∣∣n−1
n

∑
j=1

h2
k(X j)

∣∣∣∣, UX := max
1≤k≤m

max
1≤ j≤n

|hk(X j)|.

and
βn(λ ) := β

(5)
2 (Jλ ;Πn),

where Jλ := supp(λ ).

Corollary 9.1. Let α ≥ 1, t > 0 and suppose that

ε ≥ D
[

σξ σX

√
t + log(2m)

n

∨
U (α)

ξ
UX log1/α

(U (α)
ξ

UX

σξ σX

)
t + log(2m)

n

]
.

There exists a constant D > 0 in the above condition on ε such that with probability
at least 1− e−t

‖ f
λ̂ ε − fλ∗‖

2
L2(Πn) ≤ inf

λ∈Rm

[
‖ fλ − fλ∗‖

2
L2(Πn) +2ε‖λ‖`1

]
(9.24)

and

‖ f
λ̂ ε − fλ∗‖

2
L2(Πn) ≤ inf

λ∈Rm

[
‖λ −λ∗‖2

L2(Πn) + ε
2
βn(λ )card(Jλ )

]
. (9.25)

The case of matrix regression with rectangular m1×m2 matrices from Mm1,m2(R)
can be easily reduced to the Hermitian case using so called Paulsen dilation already
discussed in Section 2.4. In this case, we still deal with the regression model (9.7)
with fixed design matrices X1, . . . ,Xn ∈Mm1,m2(R) and we are interested in the nu-
clear norm penalized least squares estimator
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Âε := argminS∈Mm1,m2 (R)

[
n−1

n

∑
j=1

(Yj −〈S,X j〉)2 + ε‖S‖1

]
. (9.26)

Recall that J : Mm1,m2(R) 7→ Hm1+m2(C) is defined as follows (see also Section
2.4)

JS :=
(

O S
S∗ O

)
and let J̄ := 1√

2
J. Also observe that

〈J̄S1, J̄S2〉= 〈S1,S2〉,S1,S2 ∈Mm1,m2(R)

and, for a random matrix X in Mm1,m2(R) with distribution Π ,

‖A‖2
L2(Π) = E〈A,X〉2 = E〈J̄A, J̄X〉2 = ‖J̄A‖2

L2(Π◦J̄−1).

Moreover, ‖J̄S‖1 = ‖S‖1, S ∈Mm1,m2(R).
Consider a linear subspace D := J̄Mm1,m2(R)⊂Hm1+m2(C). Then, it is straight-

forward to see that

J̄Âε = argminS∈D

[
n−1

n

∑
j=1

(Yj −〈S, J̄X j〉)2 + ε‖S‖1

]
,

and, applying the bounds of Theorem 9.1 to J̄Âε , one can derive similar bounds for
Âε in the rectangular matrix case. We leave further details to the reader.

9.3 Matrix Regression with Subgaussian Design

We will study a matrix regression problem

Yj = f∗(X j)+ξ j, j = 1, . . . ,n, (9.27)

where {X j} are i.i.d. subgaussian Hermitian m×m matrices, {ξ j} are i.i.d. mean
zero random variables, {X j} and {ξ j} are independent. The goal is to estimate the
regression function f∗ : Hm(C) 7→ R. We are especially interested in the case when
f∗(·) can be well approximated by a linear oracle 〈S, ·〉, where S ∈Hm(C) is a Her-
mitian matrix of a small rank. We consider the following estimator based on penal-
ized empirical risk minimization with quadratic loss and with nuclear norm penalty:

Âε := argminS∈D

[
n−1

n

∑
j=1

(Yj −〈S,X j〉)2 + ε‖S‖1

]
, (9.28)
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where D⊂Hm(C) is a closed convex set that supposedly contains reasonably good
oracles and that can coincide with the whole space Hm(C), and ε > 0 is a regular-
ization parameter.

To be more specific, let X be a Hermitian random matrix with distribution Π such
that, for some constant τ > 0 and for all Hermitian matrices A ∈Hm(C), 〈A,X〉 is a
subgaussian random variable with parameter τ2‖A‖2

L2(Π). This property implies that
EX = 0 and, for some constant τ1 > 0,∥∥∥〈A,X〉

∥∥∥
ψ2
≤ τ1‖A‖L2(Π), A ∈Mm(C). (9.29)

We will also assume that, for some constant τ2 > 0 and for all u,v ∈ Cm with |u|=
|v|= 1,

E|〈Xu,v〉|2 = ‖v⊗u‖2
L2(Π) ≤ τ2. (9.30)

A Hermitian random matrix X satisfying these conditions will be called a subgaus-
sian matrix. If, in addition, X satisfies the following assumption (that is stronger
than (9.30))

‖A‖2
L2(Π) = E|〈A,X〉|2 = ‖A‖2

2, A ∈Mm(C), (9.31)

then X will be called an isotropic subgaussian matrix. As it was pointed out in
Section 1.7, this includes the following important examples:

• Gaussian matrices: X is a symmetric random matrix with real entries such that
{Xi j : 1 ≤ i ≤ j ≤ m} are independent centered normal random variables with
EX2

ii = 1, i = 1, . . . ,m and EX2
i j = 1

2 , i < j;
• Rademacher matrices: Xii = εii, i = 1, . . . ,m and Xi j = 1√

2
εi j, i < j, {εi j : 1 ≤

i ≤ j ≤ m} being i.i.d. Rademacher random variables.

Simple properties of Orlicz norms (see Section A.1) imply that for subgaussian
matrices

‖A‖Lp(Π) = E1/p
∣∣∣〈A,X〉

∣∣∣p ≤ cpτ1τ2‖A‖L2(Π)

and
‖A‖ψ1 :=

∥∥∥〈A,X〉
∥∥∥

ψ1
≤ cτ1τ2‖A‖L2(Π), A ∈Mm(C), p ≥ 1,

with some numerical constants cp > 0 and c > 0.
The following fact is well known (see, e.g., [124], Proposition 2.4).

Proposition 9.1. Let X be a subgaussian m×m matrix. There exists a constant B >
0 such that ∥∥∥‖X‖

∥∥∥
ψ2
≤ B

√
m.

Proof. Consider an ε-net M⊂ Sm−1 := {u∈Cm : |u|= 1} of the smallest cardinality.
Then, card(M)≤ (1+2/ε)2m and it is easy to check that

‖X‖= sup
u,v∈Sm−1

〈Xu,v〉 ≤ (1− ε)−2 max
u,v∈M

〈Xu,v〉.
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Let ε = 1/2. We will use standard bounds for Orlicz norms of a maximum (see
Section A.1) to get that, for some constants C1,C2,B > 0,∥∥∥‖X‖

∥∥∥
ψ2
≤ 4
∥∥∥max

u,v∈M
〈Xu,v〉

∥∥∥
ψ2
≤C1ψ

−1
2 (card2(M)) max

u,v∈M

∥∥∥〈Xu,v〉
∥∥∥

ψ2
≤

C2
√

logcard(M) max
u,v∈M

‖v⊗u‖L2(Π) ≤ B
√

m.

ut

Given S ∈ Hm(C), denote fS the linear functional fS(·) := 〈S, ·〉. Our goal is to
obtain oracle inequalities on the L2(Π) prediction error ‖ fÂε − f∗‖2

L2(Π) in terms of
the L2(Π)-approximation error ‖ fS− f∗‖2

L2(Π) of f∗ by low rank oracles S ∈ D.

One possible approach to this problem is to show that, in the case of i.i.d. sub-
gaussian design, the matrix restricted isometry property holds for the empirical dis-
tribution Πn with a high probability and then to use the oracle inequalities for fixed
design matrix regression proved in Section 9.2 (see Candes and Plan [40], where a
similar program was implemented). Below we develop a version of this approach in
the case when f∗ is a linear functional, f∗(·) = 〈A, ·〉, so, Theorem 9.1 can be applied
directly. We also do it only in the case of subgaussian isotropic design. We do not
derive an oracle inequality, just a bound on the Hilbert–Schmidt error ‖Âε −A‖2

2 in
terms of the rank of A. Later in this section, we develop a more direct approach to
oracle inequalities for the random design regression.

As in Section 9.2, denote σ2
ξ

:= Eξ 2, U (α)
ξ

:= ‖ξ‖ψα
∨ (2σξ ),α ≥ 1. We will

also use the following notations:

σ
2
X ,n =

∥∥∥∥n−1
n

∑
j=1

X2
j

∥∥∥∥, UX ,n := max
1≤ j≤n

‖X j‖.

Theorem 9.2. Suppose that X is an isotropic subgaussian matrix and X1, . . . ,Xn are
its i.i.d. copies. Let α ≥ 1, t > 0 and suppose that

ε ≥ D
[

σξ σX ,n

√
t + log(2m)

n

∨

U (α)
ξ

UX ,n log1/α

(U (α)
ξ

UX ,n

σξ σX ,n

)
t + log(2m)

n

]
. (9.32)

There exists a constant D > 0 in the above condition on ε and constants C > 0,ν >
0,β > 0,δ0 > 0 with the following property. For all δ ∈ (0,δ0) and for all

n ≥ νδ
−2 log(1/δ )m rank(A),

with probability at least 1− e−t − e−βnδ 2
,

‖Âε −A‖2
2 ≤C min

(
ε‖A‖1,ε

2 rank(A)
)
. (9.33)
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Moreover, there exists a constant D1 > 0 such that, for all t ∈ (0,n), the condition
(9.32) on ε holds with probability at least 1−2e−t provided that

ε ≥ D1

[
σξ

√
m(t + log(2m))

n

∨

U (α)
ξ

log1/α

(U (α)
ξ

σξ

)√
m(t + logn)(t + log(2m))

n

]
. (9.34)

Proof. We will use the bounds of Theorem 9.1 applying them to S = A. Denote
r := rank(A). To bound βn(A), we apply Lemma 9.1 for the empirical measure
Πn. The quantities M2r(Πn), m2r(Πn) and ρr(Πn) will be bounded in terms of the
restricted isometry constants δ3r(Πn). It is enough to show that δ3r(Πn) is small
enough (smaller than some δ0 ∈ (0,1)) to guarantee that βn(A) is bounded by a
constant. Moreover, it follows from the proof of Theorem 9.1 (see (9.18)) that
Âε −A ∈K (D,L,5) with L = supp(A), and, in this case, the last bound of Lemma
9.1 implies that ‖Âε −A‖2

2 ≤C1‖Â−A‖2
L2(Πn) for some constant C1. Thus, to prove

(9.33), it is enough to control δ3r(Πn).
We use lemmas 9.2 and 9.3 to derive the following result.

Lemma 9.4. Suppose that X is a subgaussian isotropic random matrix. There exist
constants ν > 0,γ > 0 such that for all 1 ≤ r ≤ m and all δ ∈ (0,1/2)

P
{

δr(Πn)≥ δ

}
≤ exp{−βnδ

2},

provided that n ≥ νδ−2 log(1/δ )mr.

Proof. Since X is isotropic subgaussian, for all B∈Hm(C) with ‖B‖2 = 1, ‖〈B,X〉2‖ψ1 ≤
c, for some constant c. Let ε ∈ (0,1/2) and λ ∈ (0,1). Using a version of Bern-
stein’s inequality for random variables with bounded ψ1-norms, the union bound
and Lemma 9.3, we get that with some constant c1 > 0

P
{

sup
B∈S ε

r

∣∣∣‖B‖2
L2(Πn)−1

∣∣∣≥ λ

}
≤

card(S ε
r ) sup

B∈S ε
r

P
{∣∣∣∣n−1

n

∑
j=1
〈B,X j〉2−E〈B,X〉2

∣∣∣∣≥ λ

}
≤

2card(S ε
r )exp

{
−c1(λ 2∧λ )n

}
≤ 2
(

18
ε

)(2m+1)r

exp
{
−c1(λ 2∧λ )n

}
.

Therefore, if

n ≥ 6log(18/ε)
c1λ 2 mr,

then, with probability at least 1− e−(c1/2)λ 2n,

sup
B∈S ε

r

|‖B‖2
L2(Πn)−1| ≤ λ .
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We can choose λ ,ε in such a way that
√

1+λ

1−
√

2ε
≤ 1+δ and

√
1−λ −

√
2(1+λ )ε
1−

√
2ε

≥ 1−δ

(note that, to satisfy these bounds, it is enough to choose λ and ε proportional to δ

with some numerical constants). Then, bounds (9.4) and (9.5) (that followed from
Lemma 9.2) imply that Mr(Πn) ≤ 1 + δ , mr(Πn) ≥ 1− δ and δr(Πn) ≤ δ , which
holds with probability at least 1− e−βnδ 2

for some constant β > 0. ut

It remains to prove the last statement of the Theorem. To this end, note that

σ
2
X ,n =

∥∥∥∥n−1
n

∑
j=1

X2
j

∥∥∥∥≤ E‖X‖2 +n−1
n

∑
j=1

(‖X j‖2−E‖X‖2).

For a subgaussian isotropic matrix X , we have

E‖X‖2 ≤ c1m,
∥∥∥‖X‖2

∥∥∥
ψ1
≤ c2m,

for some constants c1,c2 > 0. It easily follows from a version of Bernstein’s in-
equality for random variables with bounded ψ1-norms (see Section A.2) that, for
some constant c3 > 0 and with probability at least 1− e−t ,∣∣∣∣n−1

n

∑
j=1

(‖X j‖2−E‖X‖2)
∣∣∣∣≤ c3m

(√
t
n

∨ t
n

)
≤ c3m

provided that t ≤ n. Therefore, we also have that, for some c4 > 0, σ2
X ,n ≤ c4m. On

the other hand, it easily follows from the properties of Orlicz norms and the union
bound that for some c5 > 0

P
{

UX ,n ≥ c5
√

m(t + logn)
}
≤ nP

{
‖X‖ ≥ c5

√
m(t + logn)

}
≤ ne−(t+logn) = e−t .

Thus, with probability at least 1− e−t ,

UX ,n ≤ c5
√

m(t + logn).

Since in the bound (9.32) σX ,n,UX ,n can be replaced by upper bounds, it is easy to
complete the proof.

ut

Theorem 9.2 essentially shows that, in the case of subgaussian isotropic design,
the nuclear norm penalized least squares estimator Âε recovers the target matrix

with the Hilbert-Schmidt error ‖Âε −A‖2
2 of the order C

σ2
ξ

m rank(A)
n (with a proper

choice of regularization parameter ε).
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We now turn to a somewhat different approach to bounding the error of (9.28)
without a reduction to the fixed design case. We will obtain a general oracle inequal-
ity for a subgaussian (not necessarily isotropic) design.

Assume that ξ ∈ Lψ2(P) and denote

U (2)
ξ

:= ‖ξ‖ψ2 ∨ (2σξ ).

Recall the notation fA(·) := 〈A, ·〉. Let us view functions from L2(Π) as random
variables defined on the space Hm(C) with probability measure Π and let L ⊂
L2(Π) be a subspace of subgaussian random variables such that f∗ ∈ L , for all
A ∈Hm(C), 〈A, ·〉 ∈L , and, for some constant τ1 > 0,

‖ f‖ψ2 ≤ τ1‖ f‖L2(Π), f ∈L (9.35)

(compare with (9.29)). We assume also that condition (9.30) holds.
Recall the notation β (b)(D;L;Π) of Section 9.1 and define

β (S) := β
(5)(D; supp(S);Π).

Finally, denote

q(ε) := q(D;ε) := inf
S∈D

[
‖ fS− f∗‖2

L2(Π) + ε‖S‖1

]
.

Observe that
q(ε)≤ ‖ f∗‖2

L2(Π)

(take S = 0 in the expression after the infimum defining q(ε)). Note also that if, for
some S ∈ D,

‖S‖1 ≤
1
2

q(ε)
ε

,

then
q(ε)≤ 2‖ fS− f∗‖2

L2(Π). (9.36)

Indeed,

q(ε)
ε

≤
‖ fS− f∗‖2

L2(Π)

ε
+‖S‖1 ≤

‖ fS− f∗‖2
L2(Π)

ε
+

1
2

q(ε)
ε

,

implying (9.36).
Given t > 0 and ε > 0, denote

κ := log
(

logn∨ logm∨| logε|∨ log‖ f∗‖L2(Π)∨2
)
,

tn,m := (t +κ) logn+ log(2m).

Theorem 9.3. There exist constants c,C,D > 0 with the following property. Suppose
that t ≥ 1,
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ε ≥ D
[

σξ

√
m(t + log(2m))

n

∨
U (2)

ξ
log
(U (2)

ξ

σξ

)
m1/2(t + log(2m))

n

]
(9.37)

and tn,m ≤ cn. Then, the following bound holds with probability at least 1− e−t :

‖ fÂε − f∗‖2
L2(Π) ≤ inf

S∈D

[
2‖ fS− f∗‖2

L2(Π) +

C
(

β
2(S)rank(S)ε2 +

(
‖S‖2

1∨
q2(ε)

ε2

)
mtn,m

n
+n−1

)]
. (9.38)

Proof. Throughout the proof, C,c,c1, ... denote constants (typically, numerical or
dependent only on irrelevant parameters) whose values might be different in dif-
ferent parts of the proof. Recall the definitions and notations used in the proof of
Theorem 9.1, in particular, the definitions of Ξ and ∆ :

Ξ = n−1
n

∑
j=1

ξ jX j, ∆ = ‖Ξ‖.

Step 1. Bounding the norm ‖Âε‖1. We start with the following lemma:

Lemma 9.5. There exists a constant C > 0 such that, for all ε ≥ 4∆ , with probability
at least 1− e−n

‖Âε‖1 ≤C
q(ε)

ε
.

Proof. We argue exactly as in the proof of Theorem 9.1 to get the following version
of bound (9.11): for all S ∈ D,

‖ fÂε − f∗‖2
L2(Πn) + ε‖Âε‖1 ≤ ‖ fS− f∗‖2

L2(Πn) +2∆‖Âε −S‖1 + ε‖S‖1, (9.39)

which implies

‖ fÂε − f∗‖2
L2(Πn) + ε‖Âε‖1 ≤ (9.40)

‖ fS− f∗‖2
L2(Π) +(Πn−Π)( fS− f∗)2 +2∆‖Âε −S‖1 + ε‖S‖1.

Since ( fS− f∗)2 ∈ Lψ1(Π) and, moreover,

‖( fS− f∗)2‖ψ1 ≤ c‖ fS− f∗‖2
L2(Π)

for some constant c > 0, we can use a version of Bernstein’s inequality for Lψ1
random variables (see Section A.2) to get that, with some constant c1 > 0 and with
probability at least 1− e−t ,∣∣∣(Πn−Π)( fS− f∗)2

∣∣∣≤ c1‖ fS− f∗‖2
L2(Π)

(√
t
n

∨ t
n

)
. (9.41)
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As a consequence, for t ≤ n, we get from (9.40) that

ε‖Âε‖1 ≤ ‖ fS− f∗‖2
L2(Π)

(
1+ c1

√
t
n

)
+2∆(‖Âε‖1 +‖S‖1)+ ε‖S‖1.

As soon as ε ≥ 4∆ , this implies

ε

2
‖Âε‖1 ≤ ‖ fS− f∗‖2

L2(Π)

(
1+ c1

√
t
n

)
+

3
2

ε‖S‖1.

For t = n, we get

‖Âε‖1 ≤
2(1+ c1)

ε
‖ fS− f∗‖2

L2(Π) +3‖S‖1, (9.42)

which holds with probability at least 1− e−n and under the assumption ε ≥ 4∆ .
The bound of the lemma follows by applying (9.42) to the value of S for which the
infimum in the definition of q(ε) is attained. ut

Since q(ε)≤ ‖ f∗‖2
L2(Π), under the assumptions of Lemma 9.5, we have

‖Âε‖1 ≤
C
ε
‖ f∗‖2

L2(Π) (9.43)

(again with probability at least 1− e−n).
Next, observe that

‖ fÂε − f∗‖2
L2(Π) ≤ 2

(
‖ fÂε‖2

L2(Π) +‖ f∗‖2
L2(Π)

)
≤ (9.44)

c
(
‖Âε‖2

1E‖X‖2 +‖ f∗‖2
L2(Π)

)
≤ c1

(
m‖Âε‖2

1 +‖ f∗‖2
L2(Π)

)
≤

c1

(m‖ f∗‖4
L2(Π)

ε2 ∨‖ f∗‖2
L2(Π)

)
,

where we used bound (9.43) and Proposition 9.1. Now it is easy to see that it will
be enough to consider S ∈ D for which

‖ fS− f∗‖2
L2(Π) ≤ c1

(m‖ f∗‖4
L2(Π)

ε2 ∨‖ f∗‖2
L2(Π)

)
(otherwise bound (9.38) of the theorem trivially holds). This implies that, for some
c,

‖ fÂε − fS‖L2(Π) ≤ c
(m1/2‖ f∗‖2

L2(Π)

ε
∨‖ f∗‖L2(Π)

)
. (9.45)

Step 2. Reduction to the bounds on empirical processes. Arguing again as in the
proof of Theorem 9.1, we get the following version of bound (9.16):
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2〈 fÂε − f∗, fÂε − fS〉L2(Πn) + ε‖PL⊥ Âε PL⊥‖1 ≤
−ε〈sign(S), Âε −S〉+ 〈2Ξ , Âε −S〉. (9.46)

If 〈 fÂε − f∗, fÂε − fS〉L2(Πn) ≥ 0 and ε ≥ 2∆ , then (9.46) implies that Âε − S ∈
K (D,L,5), where L = supp(S) (see the proof of Theorem 9.1). Because of this,

‖PL(Âε −S)‖2 ≤ β (S)‖Âε −S‖L2(Π). (9.47)

Replacing in the left hand side of (9.46) Πn by Π and using the identity

2〈 fÂε − f∗, fÂε − fS〉L2(Π) =

‖ fÂε − f∗‖2
L2(Π) +‖ fÂε − fS‖2

L2(Π)−‖ fS− f∗‖2
L2(Π), (9.48)

we get

‖ fÂε − f∗‖2
L2(Π) +‖ fÂε − fS‖2

L2(Π) + ε‖PL⊥ Âε PL⊥‖1 ≤ (9.49)

‖ fS− f∗‖2
L2(Π)− ε〈sign(S), Âε −S〉+ 〈2Ξ , Âε −S〉+

2(Π −Πn)( fS− f∗)( fÂε − fS)+2(Π −Πn)( fÂε − fS)2.

This inequality will be used when 〈 fÂε − f∗, fÂε − fS〉L2(Πn) ≥ 0 (case A). Alterna-
tively, when 〈 fÂε − f∗, fÂε − fS〉L2(Πn) < 0 (case B), a simpler bound holds instead
of (9.49):

‖ fÂε − f∗‖2
L2(Π) +‖ fÂε − fS‖2

L2(Π) ≤ (9.50)

‖ fS− f∗‖2
L2(Π) +2(Π −Πn)( fS− f∗)( fÂε − fS)+2(Π −Πn)( fÂε − fS)2.

It remains to bound the empirical processes in the right hand sides of (9.49) and
(9.50) in each of these two cases:

〈2Ξ , Âε −S〉=
〈

2
n

n

∑
j=1

ξ jX j, Âε −S
〉

,

2(Π −Πn)( fÂε − fS)2 and 2(Π −Πn)( fS− f∗)( fÂε − fS).

Step 3. Bounding 〈Ξ , Âε −S〉. We use slightly modified bounds from the proof of
Theorem 9.1 to control 〈Ξ , Âε −S〉, which is needed only in case A:

〈Ξ , Âε −S〉= 〈PL(Ξ), Âε −S〉+ 〈P⊥
L (Ξ), Âε −S〉 ≤

≤Λ‖PL(Âε −S)‖2 +Γ ‖P⊥
L (Aε −S)‖1,

where
Λ := ‖PL(Ξ)‖2, Γ := ‖P⊥

L (Ξ)‖.

Using the fact that, in case A, Âε −S ∈K (D,L,5) and (9.47) holds, and arguing as
in the proof of Theorem 9.1, we get
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〈Ξ , Âε −S〉 ≤ ∆‖PL⊥ Âε PL⊥‖1 +
√

2rank(S)∆β (S)‖Âε −S‖L2(Π) ≤

∆‖PL⊥ Âε PL⊥‖1 +2rank(S)β 2(S)∆ 2 +
1
4
‖ fÂε − fS‖2

L2(Π). (9.51)

Since X is a subgaussian random matrix, we can use Proposition 9.1 to get that with
some constant c

σX := ‖E(X −EX)2‖1/2 ≤ ‖EX2‖1/2 ≤ E1/2‖X‖2 ≤ c
√

m

and U (2)
X :=

∥∥∥‖X‖
∥∥∥

ψ2
≤ c

√
m. It easily follows that

∥∥∥‖X‖|ξ |
∥∥∥

ψ1
≤ c1

∥∥∥‖X‖
∥∥∥

ψ2
‖ξ‖ψ2 ≤ c2

√
m‖ξ‖ψ2 .

Therefore, the second bound of Theorem 2.7 with α = 1 implies that, with proba-
bility at least 1− e−t ,

∆ ≤ ∆̄ := (9.52)

C
[

σξ

√
m(t + log(2m))

n

∨
U (2)

ξ
log
(U (2)

ξ

σξ

)
m1/2(t + log(2m))

n

]
,

which will be used in combination with bound (9.51).

Step 4. Bounding (Π −Πn)( fS− f∗)( fÂε − fS). Note that∣∣∣∣∣(Π −Πn)( fS− f∗)( fÂε − fS)
∣∣∣= |〈ϒ , Âε −S〉| ≤

‖ϒ‖‖Âε −S‖1 ≤ ‖ϒ‖(‖Âε‖1 +‖S‖1), (9.53)

where

ϒ := n−1
n

∑
j=1

[
( fS(X j)− f∗(X j))X j −E( fS(X j)− f∗(X j))X j

]
. (9.54)

Observe that with some constant c > 0∥∥∥E| fS(X)− f∗(X)|2X2
∥∥∥≤ E| fS(X)− f∗(X)|2‖X‖2 ≤

E1/2| fS(X)− f∗(X)|4E1/2‖X‖4 ≤ cm‖ fS− f∗‖2
L2(Π),

by the properties of subgaussian matrix X and “subgaussian subspace” L . Also,
with some c > 0,∥∥∥( fS(X)− f∗(X))‖X‖

∥∥∥
ψ1
≤ c

√
m‖ fS− f∗‖L2(Π).
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Therefore, we can use again exponential inequalities of Theorem 2.7 to bound ϒ as
follows: with probability at least 1− e−t and with some c > 0,

‖ϒ‖ ≤ c‖ fS− f∗‖L2(Π)

[√
m(t + log(2m))

n

∨ m1/2(t + log(2m))
n

]
. (9.55)

Under the assumption t + log(2m) ≤ n, we now deduce from (9.53), (9.55) and
Lemma 9.5 that, with probability at least 1−2e−t ,∣∣∣(Π−Πn)( fS− f∗)( fÂε − fS)

∣∣∣≤C
(

q(ε)
ε

∨
‖S‖1

)
‖ fS− f∗‖L2(Π)

√
m(t + log(2m))

n
.

This leads to the bound∣∣∣(Π −Πn)( fS− f∗)( fÂε − fS)
∣∣∣≤ 1

4
‖ fS− f∗‖2

L2(Π) +

C
(
‖S‖2

1∨
q2(ε)

ε2

)
m(t + log(2m))

n
(9.56)

which holds with some constant C > 0 and with the same probability.

Step 5. Bounding (Π −Πn)( fÂε − fS)2. Here we will use the following lemma.
Given δ > 0 and R > 0, denote

∆n(δ ,R) := sup
{∣∣∣∣n−1

n

∑
j=1
〈S1−S2,X j〉2−‖S1−S2‖2

L2(Π)

∣∣∣∣ :

S1,S2 ∈Hm(C),‖S1−S2‖L2(Π) ≤ δ ,‖S1‖1 ≤ R,‖S2‖1 ≤ R
}

.

Lemma 9.6. Suppose X1, . . . ,Xn are i.i.d. copies of a subgaussian matrix X satisfy-
ing conditions (9.29), (9.30). Let δ > 0 and R > 0. There exists a constant C > 0
such that, for all t > 0, with probability at least 1− e−t

∆n(δ ,R)≤C
[

δR
√

m
n

∨ R2m
n

∨
δ

2
√

t
n

∨ R2mt logn
n

]
. (9.57)

Moreover, if 0 < δ− < δ+, then, with some constant C > 0 and with probability at
least 1− e−t , for all δ ∈ [δ−,δ+],

∆n(δ ,R)≤C
[

δR
√

m
n

∨ R2m
n

∨
δ

2

√
t +κ

n

∨ R2m(t +κ) logn
n

]
, (9.58)

where

κ := 2loglog2

(
2δ+

δ−

)
.

Proof. Clearly, the following representation of the quantity ∆n(δ ,R) holds:
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∆n(δ ,R) := sup
f∈Fδ ,R

∣∣∣∣n−1
n

∑
j=1

( f 2(X j)−P f 2)
∣∣∣∣,

where

Fδ ,R := {〈S1−S2, ·〉 : S1,S2 ∈Hm(C),‖S1−S2‖L2(Π) ≤ δ ,‖S1‖1 ≤ R,‖S2‖1 ≤ R}.

To bound this empirical process, we use a powerful inequality of Mendelson (see
Theorem 3.15). It implies that

E∆n(δ ,R)≤ c
[

sup
f∈Fδ ,R

‖ f‖ψ1

γ2(Fδ ,R;ψ2)√
n

∨ γ2
2 (Fδ ,R;ψ2)

n

]
(9.59)

where c > 0 is a constant. By assumption (9.29), the ψ1 and ψ2-norms of functions
from the class Fδ ,R can be bounded by the L2(P)-norm (up to a constant). There-
fore,

sup
f∈Fδ ,R

‖ f‖ψ1 ≤ cδ . (9.60)

The next aim is to bound Talagrand’s generic chaining complexities. First note that

γ2(Fδ ,R;ψ2)≤ γ2(Fδ ,R;c‖ · ‖L2(Π)) (9.61)

for some c > 0 (again, by the bound on the ψ2-norm). Let WΠ ( f ), f ∈ L2(Π) denote
the isonormal Gaussian process, that is, a centered Gaussian process with covariance

EWΠ ( f )WΠ (g) =
∫

Hm(C)
f gdΠ .

We can also write
WΠ ( f ) =

∫
Hm(C)

f (x)WΠ (dx),

where WΠ (B) := WΠ (IB) for Borel subsets B⊂Hm(C). Clearly, by linearity of WΠ ,
WΠ (〈S, ·〉) = 〈S,G〉, where G is a random matrix with the entries

gi j :=
∫

Hm(C)
xi jWΠ (dx).

Note that G is a Gaussian matrix and, as a consequence, it is subgaussian. Moreover,
it satisfies condition (9.30) since, for u,v ∈ Cm with |u|= |v|= 1,

E|〈Gu,v〉|2 = E|WΠ (〈v⊗u, ·〉)|2 = ‖v⊗u‖2
L2(Π) ≤ τ2.

It follows from Talagrand’s generic chaining bound (see Theorem 3.3) that, for some
constant C > 0,

γ2(Fδ ,R;c‖ · ‖L2(Π))≤Cω(G;δ ,R), (9.62)

where
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ω(G;δ ,R) := E sup
‖S1−S2‖L2(Π)≤δ ,‖S1‖1≤R,‖S2‖1≤R

|WΠ (〈S1−S2, ·〉)|.

Bounds (9.59), (9.60), (9.61) and (9.62) imply that

E∆n(δ ,R)≤C
[

δ
ω(G;δ ,R)√

n

∨ ω2(G;δ ,R)
n

]
. (9.63)

Observe that, under the assumption ‖S1‖1 ≤ R,‖S2‖1 ≤ R,∣∣∣〈S1−S2,G〉
∣∣∣≤ ‖S1−S2‖1‖G‖ ≤ 2R‖G‖.

It follows from Proposition 9.1 that

ω(G;δ ,R)≤ 2RE‖G‖ ≤ cR
√

m.

The last bound can be substituted in (9.63) to give that, for some constant C > 0,

E∆n(δ ,R)≤C
[

δR
√

m
n

∨ R2m
n

]
(9.64)

To complete the proof, we use Adamczak’s version of Talagrand’s concentration
inequality for unbounded function classes (see Section 2.3). To apply this inequality,
one has to bound the uniform variance and the envelope of the function class F 2

δ ,R.
The uniform variance is bounded as follows: with some constant c > 0,

sup
f∈Fδ ,R

(P f 4)1/2 = sup
‖S1−S2‖L2(Π)≤δ ,‖S1‖1≤R,‖S2‖1≤R

E1/2〈S1−S2,X〉4 =

sup
‖ fS1− fS2‖L2(Π)≤δ ,‖S1‖1≤R,‖S2‖1≤R

‖ fS1 − fS2‖
2
L4(Π) ≤ cδ

2,

where we used the equivalence properties of the norms in Orlicz spaces. For the
envelope, we have the following bound:

sup
f∈Fδ ,R

f 2(X) = sup
‖S1−S2‖L2(Π)≤δ ,‖S1‖1≤R,‖S2‖1≤R

〈S1−S2,X〉2 ≤ 4R2‖X‖2

and∥∥∥max
1≤i≤n

sup
f∈Fδ ,R

f 2(Xi)
∥∥∥

ψ1
≤ c1R2

∥∥∥‖X‖2
∥∥∥

ψ1
logn≤ c2R2

∥∥∥‖X‖
∥∥∥2

ψ2
logn≤ c3R2m logn,

for some constants c1,c2,c3 > 0. Here we used well known inequalities for maxima
of random variables in Orlicz spaces (see Section A.1). Adamczak’s inequality now
yields that, with some constant C > 0 and with probability at least 1− e−t ,
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∆n(δ ,R)≤ 2E∆n(δ ,R)+Cδ
2
√

t
n

+C
R2mt logn

n
. (9.65)

It remains to combine (9.64) with (9.65) to get that with probability at least 1− e−t

∆n(δ ,R)≤C
[

δR
√

m
n

∨ R2m
n

∨
δ

2
√

t
n

∨ R2mt logn
n

]
. (9.66)

The second claim is proved by a standard discretization argument based on the union
bound and on the monotonicity of ∆n(δ ;R) and its upper bound with respect to δ

(see, e.g., Lemma 8.1 for a similar argument). ut

We will use the second bound of Lemma 9.6 to control (Π −Πn)( fÂε − fS)2. By
a simple algebra (in particular, using the inequality ab ≤ a2/8 + 2b2 and using the
fact that tn,m ≤ cn for a sufficiently small constant c), this bound implies that with
some sufficiently large constant C > 0

∆n(δ ,R)≤ 1
4

δ
2 +C

R2m(t +κ) logn
n

. (9.67)

Clearly, we also have∣∣∣(Π −Πn)( fÂε − fS)2
∣∣∣≤ ∆n

(
‖S‖1∨‖Âε‖1;‖ fÂε − fS‖L2(Π)

)
. (9.68)

Due to Lemma 9.5 and (9.45), we now use bound (9.67) for

R := C
(

q(ε)
ε

∨
‖S‖1

)
,

δ− = n−1/2 and

δ+ := c
(m1/2‖ f∗‖2

L2(Π)

ε
∨‖ f∗‖L2(Π)

)
∨n−1/2.

We get from bounds (9.67) and (9.68) that with some constant C > 0 and with
probability at least 1− e−t

∣∣∣(Π −Πn)( fÂε − fS)2
∣∣∣≤ 1

4
‖ fÂε − fS‖2

L2(Π) +

C
(
‖S‖2

1∨
q2(ε)

ε2

)
m(t +κ) logn

n
, (9.69)

where
κ = log

(
logn∨ logm∨| logε|∨ log‖ f∗‖L2(Π)∨2

)
.

Bound (9.69) holds provided that δ− ≤ ‖ fÂε − fS‖L2(Π) ≤ δ+. Note that we do have
‖ fÂε − fS‖L2(Π) ≤ δ+ because of (9.45). In the case when ‖ fÂε − fS‖L2(Π) ≤ δ−,
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the proof of (9.38) even simplifies, so, we consider only the main case when ‖ fÂε −
fS‖L2(Π) ≥ δ−.

Step 6. Conclusion. To complete the proof, it is enough to use bound (9.49) in
case A and bound (9.50) in case B in combination with the resulting bounds on
empirical processes obtained in steps 3–5 (namely, bounds (9.51), (9.52), (9.56)
and (9.69)). By a simple algebra, we get the following bound

‖ fÂε − f∗‖2
L2(Π) ≤ 2‖ fS− f∗‖2

L2(Π) +

C
(

β
2(S)rank(S)ε2 +

(
‖S‖2

1∨
q2(ε)

ε2

)
mtn,m

n
+n−1

)
(9.70)

that holds with probability at least 1− 4e−t . A simple adjustment of constant C
allows one to rewrite the probability bound as 1−e−t , which establishes (9.38). ut

The following corollary clarifies the meaning of bound (9.38) of Theorem 9.3
and explains the role of quantity q(ε) in this bound.

Corollary 9.2. Under the assumptions of Theorem 9.3, for all S ∈ D with ‖S‖1 ≥
q(ε)
2ε

, the following bound holds with probability at least 1− e−t :

‖ fÂε − f∗‖2
L2(Π) ≤ 2‖ fS− f∗‖2

L2(Π) +

C
(

β
2(S)rank(S)ε2 +

‖S‖2
1mtn,m +1

n

)
. (9.71)

On the other hand, for all S ∈ D with ‖S‖1 ≤ q(ε)
2ε

, with the same probability,

‖ fÂε − f∗‖2
L2(Π) ≤(

2+C
q(ε)
ε2

mtn,m

n

)
‖ fS− f∗‖2

L2(Π) +C
(

β
2(S)rank(S)ε2 +n−1

)
. (9.72)

If

C
q(ε)
ε2

mtn,m

n
≤ 1, (9.73)

this implies that

‖ fÂε − f∗‖2
L2(Π) ≤ 3‖ fS− f∗‖2

L2(Π) +C
(

β
2(S)rank(S)ε2 +n−1

)
. (9.74)

Proof. For all S ∈ D with ‖S‖1 ≥ q(ε)
2ε

, (9.38) immediately implies (9.71). Alterna-

tively, if ‖S‖1 ≤ q(ε)
2ε

, we have q(ε)≤ 2‖ fS− f∗‖2
L2(Π) (see (9.36)) and (9.38) implies

(9.72). ut

Remarks.

• Note that the leading constants 2 in oracle inequalities (9.38), (9.71) or 3 in (9.74)
can be replaced by 1+δ (with constant C becoming of the order 1

δ
).
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• Note also that, when ‖S‖1 ≤ q(ε)
2ε

and, as a consequence, q(ε)≤ 2‖ fS− f∗‖2
L2(Π),

condition (9.73) is satisfied provided that

ε ≥ D1‖ fS− f∗‖L2(Π)

√
mtn,m

n
(9.75)

for a sufficiently large constant D1 > 0. This yields the following coroolary.

Corollary 9.3. Suppose the assumptions of Theorem 9.3 hold. For all S ∈ D sat-
isfying condition (9.75) with sufficiently large constant D1 > 0, the following
bound holds with probability at least 1− e−t :

‖ fÂε − f∗‖2
L2(Π) ≤ 2‖ fS− f∗‖2

L2(Π) +

C
(

β
2(S)rank(S)ε2 +

‖S‖2
1mtn,m +1

n

)
. (9.76)

• In the case when the set D is bounded, the following version of Theorem 9.3
holds.

Theorem 9.4. Suppose that D⊂Hm(C) is a bounded closed convex set and

RD := sup
S∈D

‖S‖1.

There exist constants c,C,D > 0 with the following property. Suppose that t ≥ 1
and

ε ≥ D
[

σξ

√
m(t + log(2m))

n

∨
U (2)

ξ
log
(U (2)

ξ

σξ

)
m1/2(t + log(2m))

n

]
. (9.77)

Denote

κ := log log2(mRD) and tn,m := (t +κ) logn+ log(2m)

and suppose that tn,m ≤ cn. Then, the following bound holds with probability at
least 1− e−t :

‖ fÂε − f∗‖2
L2(Π) ≤ inf

S∈D

[
2‖ fS− f∗‖2

L2(Π) +

C
(

β
2(S)rank(S)ε2 +R2

D
mtn,m

n
+n−1

)]
. (9.78)

9.4 Other Types of Design in Matrix Regression

In this section, we study matrix regression problem (9.27) under somewhat different
assumptions on the design variables X1, . . . ,Xn. In particular, our goal is to cover



200 9 Low Rank Matrix Recovery: Nuclear Norm Penalization

an important case of sampling from an orthonormal basis, that is, the case when
X1, . . . ,Xn are i.i.d. random variables sampled from a distribution Π (most often,
uniform) in an orthonormal basis E1, . . . ,Em2 of Mm(C) that consists of Hermitian
matrices.

We will study nuclear norm penalized least squares estimator (9.28) with some
value of regularization parameter ε > 0 and establish oracle inequalities of the same
type as in Theorem 9.3. One of the challenges will be to replace the bound of Lemma
9.6 that relied on the assumption that X1, . . . ,Xn were i.i.d. subgaussian matrices
with another bound on empirical processes indexed by functions 〈S, ·〉2. To this end,
we use an approach based on L∞(Pn)-covering numbers that was developed in a
different context by Rudelson [122] and, in high-dimensional learning problems, by
Mendelson and Neeman [111] (see also [18], [94]). It is based on Theorem 3.16.

Assume that, for some constant UX > 0, ‖X‖ ≤ UX (the case when ‖X‖ has a
bounded ψ1-norm can be handled similarly). In this section, we also use the notation

σ
2
X = ‖EX2‖.

We will need below the quantity

γn := Γn,∞(F ) = Eγ
2
2 (F ;L∞(Pn)),

based on generic chaining complexities with respect to L∞(Πn)-distance, introduced
and used earlier in Theorem 3.16. It will be used for the class

F := {〈S, ·〉 : S ∈ l.s.(D), ‖S‖1 ≤ 1}.

It will be shown below (see Proposition 9.2) that in typical situations γn grows as a
power of logn. In particular, we will see that, for D = Hm(C),

γn ≤ KE max
1≤ j≤n

‖X j‖2
2 log2 n.

For t ≥ 1 and ε ≥ 0, denote

κ := log
(

logn∨ logUX ∨ logε ∨ log‖ f∗‖L∞(Π)∨2
)
,

tn,m := γn +U2
X (t +κ + log(2m)). (9.79)

We will also use a modified version of function q(ε) from the previous section.
Given t ≥ 1, it is defined as follows:

q(ε) := qt(D;ε) := inf
S∈D

[
‖ fS− f∗‖2

L2(Π) + ε‖S‖1 +‖ fS− f∗‖2
L∞(Π)

t
n

]
.

Clearly,

q(ε)≤ ‖ f∗‖2
L2(Π) +‖ f∗‖2

L∞(Π)
t
n
. (9.80)

Moreover, if for some S ∈ D,
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‖S‖1 ≤
1
2

q(ε)
ε

,

then
q(ε)≤ 2‖ fS− f∗‖2

L2(Π) +2‖ fS− f∗‖2
L∞(Πn)

t
n
. (9.81)

As in the previous section,

β (S) := β
(5)(D; supp(S);Π).

Assume that, for some α ≥ 1, ξ ∈ Lψα
(P) and denote

σ
2
ξ

:= Eξ
2, U (α)

ξ
:= ‖ξ‖ψα

∨ (2σξ ).

The following theorem is the main result of this section.

Theorem 9.5. There exist constants c,C,D > 0 with the following property. Suppose
that t ≥ 1, tn,m ≤ cn and also that

ε ≥ D
[

σξ σX

√
t + log(2m)

n

∨
U (α)

ξ
UX log1/α

(U (α)
ξ

σξ

UX

σX

)
t + log(2m)

n

]
. (9.82)

Then the following bound holds with probability at least 1− e−t :

‖ fÂε − f∗‖2
L2(Π) ≤ inf

S∈D

[
2‖ fS− f∗‖2

L2(Π) +C
(

β
2(S)rank(S)ε2 + (9.83)(

‖S‖2
1∨

q2(ε)
ε2

)
tn,m

n
+‖ fS− f∗‖2

L∞(Π)
t + log(2m)

n
+n−1

)]
.

Proof. We follow the proof of Theorem 9.3 with some modifications and use the
notations of this proof as well as the preceding proof of Theorem 9.1.

Step 1. Bounding the norm ‖Âε‖1. In this case, we need the following version of
Lemma 9.5.

Lemma 9.7. There exists a constant C > 0 such that, for all ε ≥ 4∆ on an event of
probability at least 1− e−t ,

‖Âε‖1 ≤C
q(ε)

ε
. (9.84)

Proof. We repeat the proof of Lemma 9.5 using instead of (9.41) the bound∣∣∣(Πn−Π)( fS− f∗)2
∣∣∣≤

c1

(
‖ fS− f∗‖L2(Π)‖ fS− f∗‖L∞(Π)

√
t
n

∨
‖ fS− f∗‖2

L∞(Π)
t
n

)
(9.85)

that easily follows from the usual Bernstein inequality and that holds with probabil-
ity at least 1− e−t . Repeating the argument that follows in the proof of Lemma 9.5,
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it is easy to conclude that, for ε ≥ 4∆ , bound (9.84) holds with some constant C > 0
and on an event of probability at least 1− e−t . ut

Note that, bounds (9.84) and (9.80) yield

‖Âε‖1 ≤
C
ε

(
‖ f∗‖2

L2(Π) +‖ f∗‖2
L∞(Π)

t
n

)
(9.86)

that holds with probability at least 1− e−t and with some C > 0. Using this bound
for t ≤ n and arguing as in the proof of Theorem 9.3, we get that with some constant
c1 > 0

‖ fÂε − f∗‖2
L2(Π) ≤ 2

(
‖ fÂε‖2

L2(Π) +‖ f∗‖2
L2(Π)

)
≤ (9.87)

2
(
‖Âε‖2

1E‖X‖2 +‖ f∗‖2
L2(Π)

)
≤ 2
(

U2
X‖Âε‖2

1 +‖ f∗‖2
L2(Π)

)
≤

c1

(U2
X‖ f∗‖4

L∞(Π)

ε2 ∨‖ f∗‖2
L2(Π)

)
.

Hence, it is enough to consider only the oracles S ∈ D for which

‖ fS− f∗‖2
L2(Π) ≤ c1

(U2
X‖ f∗‖4

L∞(Π)

ε2 ∨‖ f∗‖2
L2(Π)

)
,

otherwise, the bound of the theorem trivially holds. This implies that, for some c,

‖ fÂε − fS‖L2(Π) ≤ c
(UX‖ f∗‖2

L∞(Π)

ε
∨‖ f∗‖L2(Π)

)
. (9.88)

The last bound holds with probability at least 1− e−t and on the same event where
(9.86) holds.

Step 2. Reduction to the bounds on empirical processes. This step is the same as
in the proof of Theorem 9.3 and it results in bounds (9.49), (9.50) that have to be
used in cases A and B, respectively.

Step 3. Bounding 〈Ξ , Âε −S〉. The changes in this step are minor. We still derive
bound (9.51), but the bound on ∆ that follows from Theorem 2.7 is slightly different:
with probability at least 1− e−t ,

∆ ≤ ∆̄ := (9.89)

C
[

σξ σX

√
t + log(2m)

n

∨
U (α)

ξ
UX log1/α

(U (α)
ξ

σξ

UX

σX

)
t + log(2m)

n

]
.

This bound will be used in combination with (9.51).

Step 4. Bounding (Π −Πn)( fS− f∗)( fÂε − fS). The changes in this step are also
minor: the bound on ‖ϒ‖ becomes
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‖ϒ‖ ≤ cUX

[
‖ fS− f∗‖L2(Π)

√
t + log(2m)

n

∨
‖ fS− f∗‖L∞(Π)

t + log(2m)
n

]
(9.90)

and it holds with probability at least 1− e−t and with some c > 0. It follows from
(9.53), (9.90) and Lemma 9.7 that, with probability at least 1−2e−t ,∣∣∣(Π −Πn)( fS− f∗)( fÂε − fS)

∣∣∣≤
CUX

(
‖S‖1∨

q(ε)
ε

)(
‖ fS− f∗‖L2(Π)

√
m(t + log(2m))

n

∨
‖ fS− f∗‖L∞(Π)

t + log(2m)
n

)
.

As a result, we easily get the bound∣∣∣(Π −Πn)( fS− f∗)( fÂε − fS)
∣∣∣≤ 1

4
‖ fS− f∗‖2

L2(Π) + (9.91)

CU2
X

(
‖S‖2

1∨
q2(ε)

ε2

)
t + log(2m)

n
+

1
4
‖ fS− f∗‖2

L∞(Π)
t + log(2m)

n

which holds with some constant C > 0 and with the same probability.

Step 5. Bounding (Π −Πn)( fÂε − fS)2. We have to control (Π −Πn)( fÂε − fS)2

which would allow us to complete the proof of the theorem. Recall the notation

∆n(δ ,R) := sup
{∣∣∣∣n−1

n

∑
j=1
〈S1−S2,X j〉2−‖S1−S2‖2

L2(Π)

∣∣∣∣ :

S1,S2 ∈Hm(C),‖S1−S2‖L2(Π) ≤ δ ,‖S1‖1 ≤ R,‖S2‖1 ≤ R
}

.

We are now in a position to prove a version of Lemma 9.6.

Lemma 9.8. Let X1, . . . ,Xn be i.i.d. copies of a random Hermitian m×m matrix X .
Let δ > 0 and R > 0. There exists a constant C > 0 such that, for all t > 0, with
probability at least 1− e−t

∆n(δ ,R)≤C
[

δR
√

γn

n

∨ R2γn

n

∨
δRUX

√
t
n

∨ R2U2
X t

n

]
. (9.92)

Moreover, if 0 < δ− < δ+, then, with some constant C > 0 and with probability at
least 1− e−t , for all δ ∈ [δ−,δ+],

∆n(δ ,R)≤C
[

δR
√

γn

n

∨ R2γn

n

∨
δRUX

√
t +κ

n

∨ R2U2
X (t +κ)

n

]
. (9.93)

where
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κ := 2loglog2

(
2δ+

δ−

)
.

Proof. Applying bound (3.37) to the class

F := {〈S, ·〉 : S ∈ l.s.(D),‖S‖1 ≤ 1,‖S‖L2(Π) ≤ δ},

we get

E sup
‖S‖1≤1,‖S‖L2(Π)≤δ

∣∣∣(Πn−Π)〈S, ·〉2
∣∣∣≤C

[
δ

√
γn

n

∨ γn

n

]
.

This bound easily implies that

E∆n(δ ,R) = 4R2E∆n

(
δ

2R
;

1
2

)
≤ (9.94)

4R2E sup
‖S‖1≤1,‖S‖L2(Π)≤δ/(2R)

∣∣∣(Πn−Π)〈S, ·〉2
∣∣∣≤ 4C

[
δR
√

γn

n

∨ R2γn

n

]
.

The rest of the proof is based on repeating the concentration argument of Lemma
9.6 with minor modifications. ut

We are now ready to provide an upper bound on (Π −Πn)( fÂε − fS)2. In view of
Lemma 9.7 and (9.88), we will use Lemma 9.8 with δ− := n−1/2,

δ+ := c
(UX‖ f∗‖2

L∞(Π)

ε
∨‖ f∗‖L2(Π)

)
∨n−1/2

and

R := C
(
‖S‖1∨

q(ε)
ε

)
.

It follows from (9.88) that ‖ fÂε − fS‖L2(Π) ≤ δ+ and the second statement of Lemma
9.8 implies that with probability at least 1− e−t ,

(Π −Πn)( fÂε − fS)2 ≤ ∆n

(
‖ fÂε − fS‖L2(Π);R

)
≤

C
[
‖ fÂε − fS‖L2(Π)R

√
γn

n

∨ R2γn

n

∨
RUX‖ fÂε − fS‖L2(Π)

√
t +κ

n

∨ R2U2
X (t +κ)

n

]
provided that

‖ fÂε − fS‖L2(Π) ≥ δ− = n−1/2

(we are not going to consider the case when ‖ fÂε − fS‖L2(Π) is smaller than n−1/2,
but it only simplifies the proof). Therefore, we can easily conclude that, with some
C′ > 0,



9.4 Other Types of Design in Matrix Regression 205

(Π −Πn)( fÂε − fS)2 ≤ 1
8
‖ fÂε − fS‖2

L2(Π) +C′R2 U2
X (t +κ)+ γn

n
.

It remains to substitute in the last bound the expression for R.
Step 6. Conclusion. To complete the proof, it is enough to combine the bounds

of Steps 1-5 (as it was also done in the proof of Theorem 9.3). A simple inspection
of probability bounds involved in the above arguments shows that the bound of the
theorem holds with probability at least 1−5e−t , which can be rewritten as 1− e−t

with a proper adjustment of the constants. ut
Arguing as in the proofs of corollaries 9.2 and 9.3, one can show the following

statement.

Corollary 9.4. Suppose that all the notations and assumptions of Theorem 9.5, in-
cluding (9.82), hold. Then, for all S ∈ D, such that

ε ≥ D
[
‖ fS− f∗‖L2(Π)

∨
‖ fS− f∗‖L∞(Π)

√
t
n

]√
tn,m

n
,

with probability at least 1− e−t ,

‖ fÂε − f∗‖2
L2(Π) ≤ 2‖ fS− f∗‖2

L2(Π) +C
(

β
2(S)rank(S)ε2 + (9.95)

‖S‖2
1tn,m

n
+‖ fS− f∗‖2

L∞(Π)
t + log(2m)

n
+n−1

)
.

Note that in the case of sampling from an orthonormal basis E1, . . . ,Em2 (that
is, when Π is a probability distribution supported in the basis), the L∞(Π)-norm
involved in the bounds of Theorem 9.5 coincides with the `∞-norm:

‖ f‖L∞(Π) = max
1≤ j≤m2

| f (E j)|, f : Hm(C) 7→ R.

We now turn to the problem of bounding the quantity γn := Γn,∞(F ), where

F := {〈S, ·〉 : S ∈Hm(C),‖S‖1 ≤ 1}.

Proposition 9.2. With some numerical constant K > 0, the following bound holds:

Γn,∞(F )≤ K log2 n E max
1≤ j≤n

‖X j‖2
2.

Proof. In fact, we will even prove that

Γn,∞(G )≤ K log2 n E max
1≤ j≤n

‖X j‖2
2,

where G := {〈S, ·〉 : ‖S‖2 ≤ 1} ⊃F . Note that

max
1≤ j≤n

|〈S,X j〉|= sup
A∈K

〈S,A〉= ‖S‖K ,
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where K := conv
{

X j,−X j, j = 1, . . . ,n
}

. Since B2 = {S : ‖S‖2 ≤ 1} is the unit ball
in a Hilbert space, we can use bound (3.3) to control γ2(G ;L∞(Pn)) as follows:

γ2(G ;L∞(Pn)) = γ2(B2;‖ · ‖K )≤C
(∫

∞

0
εH(B2;‖ · ‖K ;ε)dε

)1/2

, (9.96)

where C > 0 is a constant. Note that | f (X j)| ≤ ‖X j‖2, f ∈ G , which implies{
( f (X1), . . . , f (Xn)) : f ∈ G

}
⊂ [−Vn,Vn]n,

where Vn := max1≤ j≤n ‖X j‖2. Bounding the `n
∞-covering numbers of the cube

[−Vn,Vn]n, we get

N(B2;‖ · ‖K ;ε) = N(G ;L∞(Pn);ε)≤
(

Vn

ε
+1
)n

, ε ≤Vn. (9.97)

This bound will be used for small values of ε, but, for larger values, we need a
bound with logarithmic dependence on n that can be derived from dual Sudakov’s
bound (3.2). Take an orthonormal basis E1, . . . ,EN , N = m(m + 1)/2 of the space
Hm(C) and use the isometry

Hm(C) 3 S 7→
(
〈S,E1〉, . . . ,〈S,EN〉

)
∈ `N

2

to identify the unit ball B2 in Hm(C) with the unit ball BN
2 in `N

2 . It follows from
dual Sudakov’s bound (3.2) that, conditionally on X1, . . . ,Xn,

εH1/2(B2;‖ · ‖K ;ε) = εH1/2(BN
2 ;‖ · ‖K ;ε)≤

C′EZ sup
t∈K

〈Z, t〉`N
2

= C′EZ max
1≤ j≤n

〈Z,X j〉`N
2
≤C1Vn

√
logn,

where Z is a standard normal vector in RN (= `N
2 ) and C1,C′ > 0 are numerical con-

stants (with a minor abuse of notation, we identify matrices in Hm(C) with vectors
in `N

2 in the above relationships). As a result, the following bound holds:

H(B2;‖ · ‖K ;ε)≤ C2
1

ε2 V 2
n logn. (9.98)

Let δn := n−1/2. We will use (9.97) for ε ≤ δnVn and (9.98) for ε ∈ (δnVn,Vn]. In
view of (9.96), we get the following bound:
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Γn,∞(G ) = Eγ
2
2 (G ;L∞(Pn))≤

C
(

nE
∫

δnVn

0
log
(

Vn

ε
+1
)

εdε +C2
1 logn EV 2

n

∫ Vn

δnVn

1
ε

dε

)
=

C
(

nEV 2
n

∫
δn

0
log
(

1
ε

+1
)

εdε +C2
1 logn EV 2

n log
1
δn

)
≤

K′
(

nδ
2
n log

1
δn

+ logn log
1
δn

)
EV 2

n ≤ K log2 n E max
1≤ j≤n

‖X j‖2
2

with some constant K > 0. ut

In the case when the set D is bounded with RD := supS∈D ‖S‖1, it is easy to derive
a version of Theorem 9.5 with control of the error in terms of RD. To this end, for
t ≥ 1, define

κ := log
(

logn∨ logUX ∨ logRD∨ log‖ f∗‖L2(Π)∨2
)
,

tn,m := γn +U2
X (t +κ + log(2m)). (9.99)

Theorem 9.6. There exist constants c,C,D > 0 with the following property. Sup-
pose that tn,m ≤ cn and also that (9.82) holds. Then the following bound holds with
probability at least 1− e−t :

‖ fÂε − f∗‖2
L2(Π) ≤ inf

S∈D

[
2‖ fS− f∗‖2

L2(Π) +C
(

β
2(S)rank(S)ε2 + (9.100)

R2
Dtn,m

n
+‖ fS− f∗‖2

L∞(Π)
t + log(2m)

n
+n−1

)]
.

Suppose now that f∗(·) := 〈A, ·〉 for some matrix A ∈ Hm(C), that D is a closed
convex subset of Hm(C) and that A∈D. In particular, it includes the case when D =
Hm(C). Then, one can use S = A as an oracle in Corollary 9.4 to get the following
result.

Corollary 9.5. Under the notations of Theorem 9.5 and under the conditions tn,m ≤
cn and (9.82), the following bound holds with probability at least 1− e−t :

‖Âε −A‖2
L2(Π) ≤C

(
β

2(A)rank(A)ε2 +
‖A‖2

1tn,m +1
n

)
. (9.101)

Next we turn to a couple of examples in which X ,X1, . . . ,Xn are i.i.d. random ma-
trices sampled from an orthonormal basis in the space Mm(C) of all m×m matrices
or in the space Hm(C) of m×m Hermitian matrices. We will not discuss similar
problems for rectangular matrices, but it has been already shown at the end of Sec-
tion 9.2 how these problems can be reduced to the Hermitian case using the Paulsen
dilation.

Matrix Completion. As a first example, consider an orthonormal basis {Ek j :
k ≤ j} of the space Hm(C), where
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Ekk := ek⊗ ek, k = 1, . . . ,m, and

Ek j :=
1
2
(ek⊗ e j + e j ⊗ ek)+

i
2
(ek⊗ e j − e j ⊗ ek) : 1 ≤ k < j ≤ m.

Note that, for all A ∈ Hm(C) and for all k ≤ j, 〈A,Ek j〉 = Ak j. Let Π denote the
probability distribution (non-uniform) that assigns probabilities m−2 to the matri-
ces Ekk corresponding to the diagonal entries and probabilities 2m−2 to the rest
of the matrices of the basis. Then, it is easy to check that, for all matrices B,
‖B‖2

L2(Π) = m−2‖B‖2
2, which implies that β (B) ≤ m. Sampling from the distribu-

tion Π is equivalent to sampling the entries of matrix A at random with replacement
(when an entry Ak j becomes known, A jk = Āk j is also known).

Note that

σ
2
X = ‖EX2‖= sup

v∈Cm,|v|=1
E〈X2v,v〉= sup

v∈Cm,|v|=1
E|Xv|2.

For X = Ekk, we have |Xv|2 = |〈v,ek〉|2, and, for X = Ek j,k < j,

|Xv|2 =
1
4

∣∣∣(1+ i)〈ek,v〉e j +(1− i)〈e j,v〉ek

∣∣∣2 =

|1+ i|2

4
|〈ek,v〉|2 +

|1− i|2

4
|〈e j,v〉|2 =

1
2
|〈ek,v〉|2 +

1
2
|〈e j,v〉|2.

This easily implies that σ2
X ≤ 2

m . We also have ‖X‖ ≤ 2, so, we can take UX = 2.

In the case of i.i.d. Gaussian noise with mean 0 and variance σ2
ξ
, condition (9.82)

with α = 2 can be written as

ε ≥ Dσξ

[√
t + log(2m)

mn

∨
log1/2 m

t + log(2m)
n

]
.

with a large enough constant D > 0. Assuming for simplicity that

m(t + log(2m)) logm
n

≤ 1, (9.102)

one can take

ε = Dσξ

√
t + log(2m)

mn
. (9.103)

With this choice of regularization parameter ε and under the assumption that A∈D,
Corollary 9.5 implies the following.

Corollary 9.6. Under the conditions tn,m ≤ cn, (9.102) and (9.103), the following
bound holds with probability at least 1− e−t :

‖Âε −A‖2
L2(Π) ≤C

(
σ

2
ξ

m rank(A)(t + log(2m))
n

+
‖A‖2

1tn,m

n
+n−1

)
. (9.104)
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Sampling from the Pauli basis. Another example is sampling from the Pauli
basis already discussed in Section 1.7. Recall that the Pauli basis in the space of
2×2 matrices M2(C) was defined as Wi := 1√

2
σi, i = 1,2,3,4, where

σ1 :=
(

0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
and σ4 :=

(
1 0
0 1

)
are the Pauli matrices.. Let m = 2k, k ≥ 1. The Pauli basis in the space Mm(C)
consists of all tensor products Wi1 ⊗·· ·⊗Wik , (i1, . . . , ik)∈ {1,2,3,4}k. Assume that
Π is the uniform distribution in this basis and X ,X1, . . . ,Xn are i.i.d. random matrices
sampled from Π . Then, we have ‖B‖2

L2(Π) = m−2‖B‖2
2, implying that β (B)≤ m. It

is also easy to see that ‖X‖ ≤ 2−k/2 = m−1/2. Therefore, one can take UX = m−1/2

and we have
σ

2
X ≤ E‖X‖2 ≤ m−1.

In condition (9.82), σX can be replaced by an upper bound, say, UX = m−1/2. In the
case of centered Gaussian noise, condition (9.82) can be rewritten as

ε ≥ Dσξ

[√
t + log(2m)

nm

∨ t + log(2m)
n
√

m

]
.

Under the assumption t + log(2m) ≤ n, one can use the value of regularization pa-
rameter

ε = Dσξ

√
t + log(2m)

nm
(9.105)

with a sufficiently large constant D.
As before, assume that D⊂Hm(C) is a closed convex subset that contains A.

Corollary 9.7. Under the conditions tn,m ≤ cn and (9.105), the following bound
holds with probability at least 1− e−t :

‖Âε −A‖2
L2(Π) ≤C

(
σ

2
ξ

m rank(A)(t + log(2m))
n

+
‖A‖2

1tn,m

n
+n−1

)
. (9.106)

An interesting special case is when D is the set of all density matrices, that is,
Hermitian nonnegatively definite matrices of trace 1. Such matrices describe the
states of a quantum system and Yj, j = 1, . . . ,n can be viewed as measurements
of observables X j, j = 1, . . . ,n, provided that the system has been prepared each
time in the same state. The problem of estimation of the unknown state (density
matrix) based on measurement (X1,Y1), . . . ,(Xn,Yn) is very basic in quantum state
tomography, see [115, 69, 68]. In this case, for all ε ≥ 0, the estimator Âε coincides
with the unpenalized least squares estimator Â,

Â := argminS∈Dn−1
n

∑
j=1

(
Yj −〈S,X j〉

)2
.
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Indeed, for all S ∈ D, ‖S‖1 = tr(S) = 1, so, the penalty term in the definition of Âε

is a constant on the set D. However, the bound of Corollary 9.7 and other bounds
of this type hold for the estimator Â. For instance, the oracle inequality of Theorem
9.6 takes in this case the following form

‖ fÂ− f∗‖2
L2(Π) ≤ 2‖ fS− f∗‖2

L2(Π) +

C
(

β
2(S)rank(S)ε2 +‖ fS− f∗‖2

L∞(Π)
tn,m

n
+

tn,m

n

)
and it holds for all density matrices S.

Another interesting special case is when D ⊂ Hm(C) is a closed convex set of
diagonal m×m matrices that can be identified with m-dimensional vectors, so that
D can be viewed as a convex subset of Rm. As we have already pointed out in
Section 9.2, this special case of low rank recovery is equivalent to the usual sparse
recovery discussed in chapters 7-8 and the results on nuclear norm penalized least
squares estimators, such as Theorem 9.5, easily imply oracle inequalities for the
LASSO. This reduction has been already discussed in Section 9.2, so, we will only
formulate here a corollary of Theorem 9.5. We will use the notations of chapters 7-8
and of Section 9.2. In particular, denote β (λ ) := β

(5)
2 (Jλ ;Π), where Jλ := supp(λ ).

We will also assume that the functions in the dictionary {h1, . . . ,hm} are uniformly
bounded and denote

σ
2
X := max

1≤k≤m
Πh2

k , UX := max
1≤k≤m

‖hk‖L∞(Π).

We will use the quantity tn,m defined by (9.79) with γn = Γn,∞(F ), where

F :=
{

fλ : λ ∈ l.s.(D),‖λ‖`1 ≤ 1
}

(which, in the case under consideration, is equivalent to the general definition used
in Theorem 9.5). We also use the notation

q(ε) := qt(D;ε) := inf
λ∈D

[
‖ fλ − f∗‖2

L2(Π) + ε‖λ‖`1 +‖ fλ − f∗‖2
L∞(Π)

t
n

]
.

Corollary 9.8. There exist constants c,C,D > 0 with the following property. Sup-
pose that tn,m ≤ cn and that

ε ≥ D
[

σξ σX

√
t + log(2m)

n

∨
U (α)

ξ
UX log1/α

(U (α)
ξ

σξ

UX

σX

)
t + log(2m)

n

]
. (9.107)

Then the following bound holds with probability at least 1− e−t :
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‖ f
λ̂ ε − f∗‖2

L2(Π) ≤ inf
λ∈D

[
2‖ fλ − f∗‖2

L2(Π) +C
(

β
2(λ )card(Jλ )ε2 + (9.108)(

‖λ‖2
`1
∨ q2(ε)

ε2

)
tn,m

n
+‖ fλ − f∗‖2

L∞(Π)
t + log(2m)

n
+n−1

)]
.

In the case when

D :=
{

(λ1, . . . ,λm) : λ j ≥ 0,
m

∑
j=1

λ j = 1
}

,

the estimators λ̂ ε ,ε ≥ 0 coincide with the least squares estimator over the convex
hull of the dictionary

λ̂ := argminλ∈Dn−1
n

∑
j=1

(Yj − fλ (X j))2,

so, the oracle inequality of Corollary 9.8 applies to the least squares estimator λ̂ .
The following proposition can be used to bound the quantity γn involved in the

definition of tn,m and in oracle inequality (9.108).

Proposition 9.3. There exists a constant K > 0 such that

γn ≤ KU2
X log3 n logm. (9.109)

Proof. The proof is based on a version of well known Maurey’s argument (see, for
instance, Lemma 2.6.11 in [142]). We will start with bounding the L∞(Πn)-covering
numbers of the convex hull of the dictionary

G := conv({h1, . . . ,hm}) =
{

fλ : λ j ≥ 0,
m

∑
j=1

λ j = 1
}

.

Any vector λ with λ j ≥ 0 and ∑
m
j=1 λ j = 1 can be viewed as a probability distri-

bution on the dictionary {h1, . . . ,hm}. Let ξ ,ξ1, . . . ,ξN be an i.i.d. sample from this
distribution (that is, ξ j takes value hk with probability λk) defined on a probabil-
ity space (Ω ′,Σ ′,P′). Clearly, E′ξ = fλ . We will apply symmetrization inequality
followed by Theorem 3.5 to an empirical process based on (ξ1, . . . ,ξN) to get

E′
∥∥∥N−1

N

∑
j=1

ξ j − fλ

∥∥∥
L∞(Πn)

≤CUX

√
logn

N
.

It follows that there exists ω ′ ∈ Ω ′ such that∥∥∥N−1
N

∑
j=1

ξ j(ω ′)− fλ

∥∥∥
L∞(Πn)

≤CUX

√
logn

N
.
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Note that the number of possible choices of (ξ1, . . . ,ξN), where ξ j ∈ {h1, . . . ,hm}, is

at most mN . Let N be the smallest number for which CUX

√
logn

N ≤ ε, which implies

N ≤C1U2
X

logn
ε2 . (9.110)

Then N(G ;L∞(Πn);ε)≤ mN . Note also that

F = { fλ : ‖λ‖`1 ≤ 1}= conv({0,h1,−h1, . . . ,hm,−hm}).

Hence, we have
N(F ;L∞(Πn);ε)≤ (2m+1)N . (9.111)

On the other hand, we have an obvious bound (see also the proof of Proposition 9.2)

N(F ;L∞(Pn);ε)≤
(

UX

ε
+1
)n

, ε ≤UX (9.112)

and we will use (9.111) for ε ≥ UX n−1/2 and (9.112) for ε ≤ UX n−1/2. We can
bound the generic chaining complexity γ2(F ;L∞(Πn)) in terms of Dudley’s entropy
integral, use (9.112) and (9.111) in the respective intervals of values of ε and also
use (9.110) to get

γ2(F ;L∞(Πn))≤C2

[∫ UX n−1/2

0

√
n log

(
UX

ε
+1
)

dε +

∫ UX

UX n−1/2

√
log(2m+1)UX

√
logn

dε

ε

]
=

C2

[√
nUX

∫ n−1/2

0

√
log
(

1
ε

+1
)

dε +UX
√

log(2m+1) logn log(n1/2)
]
≤

C3UX
√

logm log3/2 n. (9.113)

It immediately follows that

γn = Γn,∞(F ) = Eγ
2
2 (F ;L∞(Πn))≤ KU2

X log3 n logm.

ut

9.5 Further Comments

Nuclear norm minimization has been used for a while as a heuristic approach to low
rank matrix recovery. Theoretical understanding of this method in the case of noise-
less matrix completion started with the papers by Recht, Fazel and Parrilo [120]
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and Candes and Recht [41]. Generally speaking, matrix completion with no error is
impossible unless almost all the entries of the matrix are observed (it is enough to
consider a matrix with only one non-zero entry: for such a matrix, the probability
to miss the non-zero entry is close to 1 unless the number of the observed entries is
comparable with the total number of entries in the matrix). However, under a rea-
sonable assumption that the row and column spaces of the target matrix have “low
coherence”, these authors were able to prove that it is possible to recover the matrix
based on a much smaller number of measurements and that this number depends
on the rank of the target matrix. Candes and Tao [45] obtained the first tight bound
on the number of randomly sampled entries needed for precise matrix completion.
For an m×m matrix, this number is equal (up to a logarithmic factor) to mr, where
r is the rank of the matrix. The proof of this result was rather involved and relied
heavily on noncommutative probability and random matrix theory. Gross et al [69]
and Gross [68] developed a different approach to the analysis of low rank matrix
recovery problems based on a noncommutative version of Bernstein’s inequality de-
veloped earlier by Ahlswede and Winter [4]. Using this inequality, they simplified
the argument of Candes and Tao, improved the logarithmic factor in their bound
and extended the result to a broader class of matrix recovery problems based on
sampling of Fourier coefficients in a given basis in the space of matrices, including
important problems in quantum state tomography. Tropp [136] provided a review of
exponential inequalities for sums of independent random matrices and matrix val-
ued martingales extending the initial result of Ahlswede and Winter [4] (see also
[85] for a ψα -version of such exponential bounds).

Candes and Plan [40], Rohde and Tsybakov [121], Koltchinskii [85], Negahban
and Wainwright [113], Koltchinskii, Lounici and Tsybakov [86], Lecué and Gaiffas
[94] started developing error bounds in low rank matrix recovery in the presence
of noise. Our approach to the matrix regression with subgaussian isotropic design
in the first part of Section 9.3 (reduction to the fixed design case using a matrix
version of restricted isometry condition) is akin to the approach in [40] and the
proof of Theorem 9.1 in Section 9.2 resembles the proof of the main result in [86]. In
addition to the approach based on nuclear norm penalization, Rohde and Tsybakov
[121] obtained error bounds for some other methods of low rank recovery based
on the penalization with Schatten “p-norms” with p < 1 and studied a number of
examples including multi-task learning. Koltchinskii [85] obtained “low rank oracle
inequalities” for estimators of a density matrix (in quantum state tomography) based
on penalized least squares method with a complexity penalty based on von Neumann
entropy. Lecué and Gaiffas [94] studied a number of complexity penalties including
a matrix version of “elastic nets” for which they proved oracle inequalities with
“slow rates”. Koltchinskii, Lounici and Tsybakov [86] studied a modification of
nuclear norm penalized least squares method suitable in the case of random design
matrix regression problems with known design distribution (in the case of fixed
design regression, this method coincides with the penalized least squares).

Propositions 9.2 and 9.3 are similar to what has been already used in sparse and
low rank recovery (see Bartlett, Mendelson and Neeman [18] and Lecué and Gaiffas
[94]).
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The literature on low rank matrix recovery is vast, it keeps growing and it is not
our goal here to provide its comprehensive review. Some further references can be
found in the papers cited above.



Appendix A
Auxiliary Material

A.1 Orlicz Norms

We frequently use Orlicz norms ‖ · ‖ψ of random variables. Given a convex non-
decreasing function ψ : R+ 7→ R+ with ψ(0) = 0 and a random variable η on a
probability space (Ω ,Σ ,P), define

‖η‖ψ := inf
{

C > 0 : Eψ

(
|η |
C

)
≤ 1
}

(see Ledoux and Talagrand [97], van der Vaart and Wellner [142], de la Pena and
Giné [48]). If we want to emphasize the dependence of the Orlicz norms on the
probability measure, we write ‖ · ‖Lψ (P) (similarly, ‖ · ‖Lψ (P), ‖ · ‖Lψ (Π), etc).

If ψ(u) = up for some p≥ 1, then the ψ-norm coincides with the usual Lp-norm.
Some other useful choices of function ψ correspond to Orlicz norms in spaces of
random variables with subgaussian or subexponential tails. For α > 0, define

ψα(u) := euα −1, u ≥ 0.

Most often, ψ2- and ψ1-norms are used (the first one being the “subgaussian norm”
and the second one being the “subexponential norm”). Note that, for α < 1, the func-
tion ψα is not convex and, as a result, ‖ · ‖ψα

is not a norm. However, to overcome
this difficulty, it is enough to modify ψα in a neighborhood of 0. As it is common in
the literature, we ignore this minor inconvenience and use ‖ ·‖ψα

as a norm even for
α < 1. Moreover, usually, we need the ψα -norms for α ≥ 1. The following bounds
are well known (see [142], p. 95):

‖η‖ψα1
≤ (log2)α1/α2‖η‖ψα2

, 1 ≤ α1 ≤ α2

and, for all p ∈ (m−1,m], m = 2,3, . . . ‖η‖Lp ≤ m!‖η‖ψ1 .
It easily follows from the definition of ψα -norms that
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P{|η | ≥ t} ≤ 2exp
{
−
(

t
‖η‖ψα

)α}
.

Another well known fact is that for all convex nondecreasing functions ψ with
ψ(0) = 0 and such that ψ(u)ψ(v)≤ c1ψ(c2uv), u,v≥ 0 for some constants c1,c2 >
0, for all N ≥ 1 and for all random variables η1, . . . ,ηN∥∥∥ max

1≤k≤N
ηk

∥∥∥
ψ

≤ K max
1≤k≤N

‖ηk‖ψ ψ
−1(N),

where K is a constant depending on ψ (see, e.g., [142], Lemma 2.2.2).

A.2 Classical Exponential Inequalities

Let X1, . . . ,Xn be independent random variables with EX j = 0, j = 1, . . . ,n. We state
below several classical exponential bounds for the sum

Sn := X1 + · · ·+Xn.

Denote B2
n := EX2

1 + · · ·+EX2
n .

• Bernstein’s inequality. Suppose |X j| ≤U, j = 1, . . . ,n. Then,

P{Sn ≥ t} ≤ exp
{
− t2

2B2
n

(
1+ tU

3B2
n

)}.

• Bennett’s inequality. Suppose |X j| ≤U, j = 1, . . . ,n. Then,

P{Sn ≥ t} ≤ exp
{
− B2

n

U2 h
(

tU
B2

n

)}
,

where h(u) := (1+u) log(1+u)−u.
• Hoeffding’s inequality. Suppose a j < b j, j = 1, . . . ,n, X j ∈ [a j,b j], EX j = 0, j =

1, . . . ,n. Then,

P
{

Sn ≥ t
}
≤ exp

{
− 2t2

∑
n
j=1(b j −a j)2

}
, t ≥ 0.

• Bernstein’s type inequality for ψ1-random variables. Suppose ‖X j‖ψ1 ≤ V.
Then,

P{Sn ≥ t} ≤ exp
{
−c
(

t2

nV 2

∧ t
V

)}
with some universal constant c > 0.
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Bernstein’s inequality easily implies that, for all t > 0, with probability at least
1− e−t

|Sn| ≤C(Bn
√

t ∨Ut),

where C is a numerical constant. We frequently use this form of Bernstein’s inequal-
ity and other inequalities of similar type.

A.3 Properties of ]- and [-Transforms

Here we provide some properties of ]- and [-transforms introduced in Section 4.1
and used in the construction of excess risk bounds. The proofs of these properties
are rather elementary. We are mainly interested in ]-transform.

1. If ψ(u) = o(u) as u → ∞, then the function ψ] is defined on (0,+∞) and is a
nonincreasing function on this interval.

2. If ψ1 ≤ ψ2, then ψ
]
1 ≤ ψ

]
2. Moreover, if ψ1(δ )≤ ψ2(δ ) either for all δ ≥ ψ

]
2(ε),

or for all δ ≥ ψ
]
1(ε)− τ with an arbitrary τ > 0, then also ψ

]
1(ε)≤ ψ

]
2(ε).

3. For all a > 0,
(aψ)](ε) = ψ

](ε/a).

4. If ε = ε1 + · · ·+ εm, then

ψ
]
1(ε)

∨
. . .
∨

ψ
]
m(ε)≤ (ψ1 + · · ·+ψm)](ε)≤ ψ

]
1(ε1)

∨
. . .
∨

ψ
]
m(εm).

5. If ψ(u)≡ c, then
ψ

](ε) = c/ε.

6. If ψ(u) := uα with α ≤ 1, then

ψ
](ε) := ε

−1/(1−α).

7. For c > 0, denote ψc(δ ) := ψ(cδ ). Then

ψ
]
c(ε) =

1
c

ψ
](ε/c).

If ψ is nondecreasing and c ≥ 1, then

cψ
](u)≤ ψ

](u/c).

8. For c > 0, denote ψc(δ ) := ψ(δ + c). Then for all u > 0,ε ∈ (0,1]

ψ
]
c(u)≤ (ψ](εu/2)− c)∨ cε.

Recall the definitions of functions of concave type and strictly concave type from
Section 4.1.
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9. If ψ is of concave type, then ψ] is the inverse of the function

δ 7→ ψ(δ )
δ

.

In this case,
ψ

](cu)≥ ψ
](u)/c

for c ≤ 1 and
ψ

](cu)≤ ψ
](u)/c

for c ≥ 1.
10. If ψ is of strictly concave type with exponent γ, then for c ≤ 1

ψ
](cu)≤ ψ

](u)c−
1

1−γ .

A.4 Some Notations and Facts in Linear Algebra

Let L be a linear space. The following notations are frequently used: l.s.(B) for a
linear span of a subset B ⊂ L,

l.s.(B) :=
{ n

∑
j=1

λ jx j : n ≥ 1,λ j ∈ R,x j ∈ B
}

;

conv(B) for its convex hull,

conv(B) :=
{ n

∑
j=1

λ jx j : n ≥ 1,λ j ≥ 0,
n

∑
j=1

λ j = 1,x j ∈ B
}

;

and convs(B) for its symmetric convex hull,

convs(B) :=
{ n

∑
j=1

λ jx j : n ≥ 1,λ j ∈ R,
n

∑
j=1

|λ j| ≤ 1,x j ∈ B
}

.

For vectors u,v ∈ Cm or u,v ∈ Rm, 〈u,v〉 denotes the standard Euclidean inner
product of u and v; |u| denotes the corresponding norm of u. Notations ‖u‖`2 or
‖u‖`m

2
are also used for the same purpose.

For vectors u,v in Cm (or other real and complex Euclidean spaces), u⊗v denotes
their tensor product, that is, the linear transformation defined by

(u⊗ v)x = 〈v,x〉u.

Given a subspace L⊂Cm (more generally, a subspace of any Euclidean space), PL
denotes the orthogonal projection onto L and L⊥ denotes the orthogonal complement
of L.
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We use the notations Mm1,m2(R) and Mm1,m2(C) for the spaces of all m1 ×m2
matrices with real or complex entries, respectively. In the case when m1 = m2 = m,
we use the notations Mm(R) and Mm(C). The space of all Hermitian m×m matrices
is denoted by Hm(C). For A,B ∈ Hm(C), the notation A ≤ B means that B−A is
nonnegatively definite.

We denote by rank(A) the rank of a matrix A and by tr(A) the trace of a square
matrix A. Given A ∈Mm1,m2(C), A∗ denotes its adjoint matrix. We use the notations
〈·, ·〉 for the Hilbert–Schmidt inner product of two matrices of the same size,

〈A,B〉= tr(AB∗),

‖ · ‖ for the operator norm of matrices and ‖ · ‖p, p ≥ 1 for their Schatten p-norm:

‖A‖p :=
(

∑
k

σ
p
k (A)

)1/p

,

where {σk(A)} denote the singular values of the matrix A (usually, arranged in a
nonincreasing order). In particular, ‖ · ‖2 is the Hilbert–Schmidt or Frobenius norm
and ‖ · ‖1 is the nuclear norm. The notation ‖ · ‖ is reserved for the operator norm.
Given a probability distribution Π in Hm(C), we also associate with a matrix B ∈
Hm(C) the linear functional 〈B, ·〉 and define the L2(Π) norm of B as the L2(Π)-
norm of this functional:

‖B‖2
L2(Π) :=

∫
Hm(C)

〈B,x〉2
Π(dx).

We use the corresponding inner product 〈·, ·〉L2(Π) in the space of matrices.
For a matrix S ∈Hm(C) of rank r with spectral decomposition

S =
r

∑
j=1

λ j(e j ⊗ e j),

where e1, . . . ,er are the eigenvectors corresponding to the non-zero eigenvalues
λ1, . . . ,λr, define the support of S as supp(S) := l.s.({e1, . . . ,er}). Also, define

|S| :=
√

S2 =
r

∑
j=1

|λ j|(e j ⊗ e j)

and

sign(S) :=
r

∑
j=1

sign(λ j)(e j ⊗ e j).

It is well known that the subdifferential of the convex function Hm(C) 3 S 7→ ‖S‖1
has the following representation (see, e.g., [145]):

∂‖S‖1 =
{

sign(S)+PL⊥WPL⊥ : ‖W‖ ≤ 1
}

,
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where L := supp(S).
Some other facts of linear algebra used in Chapter 9 can be found in [21].
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65. Giné, E. and Nickl, R. (2008) Adaptive estimation of a distribution function and its density in
sup-norm loss by wavelet and spline projections. Bernoulli, to appear.
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function learning. In: Giné, E., Mason, D. and Wellner, J. High Dimensional Probability II,
443–459.

89. Koltchinskii, V. and Panchenko, D. (2002) Empirical margin distributions and bounding the
generalization error of combined classifiers. Annals of Statistics, 30, 1, 1–50.

90. Koltchinskii, V., Panchenko, D. and Lozano, F. (2003) Bounding the generalization error of
convex combinations of classifiers: balancing the dimensionality and the margins. Ann. Appl.
Probab., 13, 1, 213–252.

91. Koltchinskii, V. and Panchenko, D. (2005) Complexities of convex combinations and bound-
ing the generalization error in classification. Annals of Statistics, 33, 4, 1455–1496.

92. Koltchinskii, V. and Yuan, M. (2008) Sparse Recovery in Large Ensembles of Kernel Ma-
chines. In: 21st Annual Conference on Learning Theory COLT-2008, Helsinki, 229–238, Om-
nipress.

93. Koltchinskii, V. and Yuan, M. (2010) Sparsity in Multiple Kernel Learning, Annals of Statis-
tics, 38, 3660–3695.



References 225
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