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Abstract

We study some stability properties of algorithms which minimize (or almost-minimize)
empirical error over Donsker classes of functions. We show that, as the number n of
samples grows, the L2-diameter of the set of almost-minimizers of empirical error with
tolerance ξ(n) = o(n−

1

2 ) converges to zero in probability. Hence, even in the case of
multiple minimizers of expected error, as n increases it becomes less and less likely that
adding a sample (or a number of samples) to the training set will result in a large jump
to a new hypothesis. Moreover, under some assumptions on the entropy of the class, along
with an assumption of Komlos-Major-Tusnady type, we derive a power rate of decay for the
diameter of almost-minimizers. This rate, through an application of a uniform ratio limit
inequality, is shown to govern the closeness of the expected errors of the almost-minimizers.
In fact, under the above assumptions, the expected errors of almost-minimizers become
closer with a rate strictly faster than n−1/2.
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1. Introduction

Empirical risk minimization (ERM) algorithm has been studied in learning theory to a great
extent. Vapnik and Chervonenkis (1971, 1991) showed necessary and sufficient conditions
for its consistency. In recent developments, Bartlett and Mendelson (2004); Bartlett et al.
(2004); Koltchinskii (2003) proved sharp bounds on the performance of ERM. Tools from
empirical process theory have been successfully applied, and, in particular, it has been shown
that the localized Rademacher averages play an important role in studying the behavior of
the ERM algorithm.

In this paper we are not directly concerned with rates of performance of ERM. Rather,
we prove some properties of ERM algorithms, which, to our knowledge, do not appear in
the literature. The analysis of this paper has been motivated by the study of algorithmic
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stability: the behavior of a learning algorithm with respect to perturbations of the training
set. Algorithmic stability has been studied in the recent years as an alternative to the
classical (complexity-oriented) approach to deriving generalization bounds (Bousquet and
Elisseeff, 2002; Kutin and Niyogi, 2002; Mukherjee et al., 2004; Poggio et al., 2004; Rakhlin
et al., 2005). Motivation for studying algorithmic stability comes, in part, from the work of
Devroye and Wagner (1979). Their results indicate that for any algorithm, the performance
of the leave-one-out estimator of expected error is bounded by L1-stability of the algorithm,
i.e. by the average L1 distance between hypotheses on similar samples. This result can be
used to derive bounds on the performance of the leave-one-out estimate for algorithms such
as k-Nearest Neighbors. It is important to note that no class of finite complexity is searched
by algorithms like k-NN, and so the classical approach of using complexity of the hypothesis
space fails.

Further important results were proven by Bousquet and Elisseeff (2002), where a large
family of algorithms (Tikhonov regularization based methods) has been shown to possess
a strong L∞ stability with respect to changes of single samples of the training set, and
exponential bounds have been proven for the generalization error in terms of empirical error.
Tikhonov regularization based algorithms minimize the empirical error plus a stabilizer, and
are closely related to ERM. Though ERM is not, in general, L∞-stable, it is L1-stable over
certain classes of functions, as one of the results of this paper shows. To the best of our
knowledge, the outcomes of the present paper do not follow directly from results available
in the machine learning literature. In fact we had to turn to empirical process theory for
the mathematical tools necessary for studying stability of ERM.

Various assumptions on the function class, over which ERM is performed, have been
considered recently to obtain fast rates on the performance of ERM. The importance of
having a unique best function in the class has been shown by Lee et al. (1996): the difficult
learning problems seem to be the ones where two minimizers of the expected error exist and
are far apart. Although the present paper does not address the question of performance
rates, it does shed some light on the behavior of ERM when two (or more) minimizers of
expected error exist. Our results imply that, under a certain weak condition on the class, as
the expected performance of empirical minimizers approaches the best in the class, a jump
to a different part of the function class becomes less and less likely.

Some algorithmic implications of our results are straight-forward. For example, in the
context of on-line learning, when a point is added to the training set, with high probability
one has to search for empirical minimizers in a small L1-ball around the current hypothesis,
which can be a tractable problem. Moreover, it seems plausible that L1-stability can have
consequences for computational complexity of ERM. While it has been shown that ERM is
NP-hard even for simple function classes (see e.g. Ben-David et al., 2003), our results could
allow more optimistic average-case analysis.

Since ERM minimizes empirical error instead of expected error, it is reasonable to require
that the two quantities become close uniformly over the class, as the number of examples
grows. Hence, ERM is a sound strategy only if the function class is uniform Glivenko-
Cantelli, that is, it satisfies the uniform law of large numbers. In this paper we focus our
attention on more restricted family of function classes: Donsker classes (see e.g. Dudley,
1999). These are classes satisfying not only the law of large numbers, but also a version of
the central limit theorem. Though a more restricted family of classes, Donsker classes are
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still quite general. In particular, uniform Donsker and uniform Glivenko-Cantelli properties
are equivalent in the case of binary-valued functions (and also equivalent to finiteness of
VC dimension). The central limit theorem for Donsker classes states a form of convergence
of the empirical process to a Gaussian process with a specific covariance structure (see e.g.
Dudley, 1999; van der Vaart and Wellner, 1996). This structure is used in the proof of the
main result of the paper to control the correlation of the empirical errors of ERM minimizers
on similar samples.

The paper is organized as follows. In Section 2 we introduce the notation and background
results. Section 3 presents the main result of the paper, which is proven in the appendix
using tools from empirical process theory. In Section 4, we show L1-stability of ERM over
Donsker classes as an application of the main result of Section 3. In Section 5 we show
an improvement (in terms of the rates) of the main result under a suitable Komlos-Major-
Tusnady condition and an assumption on entropy growth. Section 6 combines the results
of Sections 4 and 5 and uses a uniform ratio limit theorem to obtain fast rates of decay on
the deviations of expected errors of almost-ERM solutions, thus establishing strong expected
error stability of ERM (see Mukherjee et al., 2004). Section 7 is a final summary of the
results of the paper. Most of the proofs are postponed to the Appendix.

2. Notation and Background Results

Let (Z,A) be a measurable space. Let P be a probability measure on (Z,A) and Z1, . . . , Zn

be independent copies of Z with distribution P . Let F be a class of functions from Z to R.
In the setting of learning theory, samples Z are input-output pairs (X,Y ) and for f ∈ F ,
f(Z) measures how well the relationship between X and Y is captured by f . The goal is
to minimize Pf = Ef(Z) where information about the unknown P is given only through
the finite sample S = (Z1, . . . , Zn). Define the empirical measure as Pn = 1

n

∑n
i=1 δZi

.

Definition 1 Given a sample S,

fS := argmin
f∈F

Pnf = argmin
f∈F

1

n

n
∑

i=1

f(Zi)

is a minimizer of the empirical risk (empirical error), if the minimum exists.

Since an exact minimizer of the empirical risk might not exist, as well as for algorithmic
reasons, we consider the set of almost-minimizers of empirical risk.

Definition 2 Given ξ ≥ 0 and S, define the set of almost empirical minimizers

Mξ
S = {f ∈ F : Pnf − inf

g∈F
Png ≤ ξ}

and define its diameter as

diamMξ
S = sup

f,g∈Mξ
S

‖f − g‖ .
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The ‖·‖ in the above definition is the seminorm on F induced by symmetric bilinear
product

〈

f, f ′
〉

= P (f − Pf)
(

f ′ − Pf ′
)

.

This is a natural measure of distance between functions, as will become apparent later,
because of the central role of the covariance structure of Brownian bridges in our proofs.
The results obtained for the seminorm ‖·‖ will be easily extended to the L2(P ) norm, thanks
to the close relation of these two notions of distance.

Definition 3 The empirical process νn indexed by F is defined as the map

f 7→ νn(f) =
√

n(Pn − P )f =
1√
n

n
∑

i=1

(f(Zi) − Pf).

Definition 4 A class F is called P -Donsker if

νn  ν

in ℓ∞(F), where the limit ν is a tight Borel measurable element in ℓ∞(F) and ” ” denotes
weak convergence, as defined on p. 17 of van der Vaart and Wellner (1996).

In fact, it follows that the limit process ν must be a zero-mean Gaussian process with
covariance function Eν(f)ν(f ′) = 〈f, f ′〉 (i.e. a Brownian bridge).

Various Donsker theorems provide sufficient conditions for a class being P -Donsker.
Here we mention a few known results ( see van der Vaart and Wellner 1996, Eqn. 2.1.7 and
van de Geer 2000, Thm. 6.3) in terms of entropy logN and entropy with bracketing logN[].

Proposition 5 If the envelope F of F is square integrable and

∫ ∞

0
sup
Q

√

logN (ǫ ‖F‖Q,2 ,F , L2(Q))dǫ < ∞,

then F is P -Donsker for every P , i.e. F is a universal Donsker class. Here the supremum
is taken over all finitely discrete probability measures.

Proposition 6 If
∫∞
0

√

logN[](ǫ,F , L2(P ))dǫ < ∞, then F is P -Donsker.

From the learning theory perspective, however, the most interesting theorems are prob-
ably those relating the Donsker property to the VC-dimension. For example, if F is a
{0, 1}-valued class, then F is universal Donsker if and only if its VC dimension is finite
(Thm. 10.1.4 of Dudley (1999) provides a more general result involving Pollard’s entropy
condition). As a corollary of their Proposition 3.1, Giné and Zinn (1991) show that under
the Pollard’s entropy condition, the {0, 1}-valued class F is in fact uniform Donsker. Fi-
nally, Rudelson and Vershynin extended these results to the real-valued case: a class F is
uniform Donsker if the square root of its VC dimension is integrable.
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3. Main Result

We now state the main result of this paper.

Theorem 7 Let F be a P-Donsker class. For any sequence ξ(n) = o(n−1/2),

diamMξ(n)
S

P ∗

−−→ 0.

The outer probability P ∗ above is due to measurability issues. Definitions and results
on various types of convergence, as well as ways to deal with measurability issues arising in
the proofs, are based on the rigorous book of van der Vaart and Wellner (1996).

The proof of Theorem 7 relies on the almost sure representation theorem (van der Vaart
and Wellner, 1996, Thm. 1.10.4). Here we state the theorem applied to νn and ν.

Proposition 8 Suppose F is P -Donsker. Let νn : Zn 7→ ℓ∞(F) be the empirical process.
There exist a probability space (Z ′,A′, P ′) and maps ν ′

n : Z ′ 7→ ℓ∞(F) such that

1. ν ′
n

au→ ν ′

2. E
∗f(ν ′

n) = E
∗f(νn) for every bounded f : ℓ∞(F) 7→ R for all n.

Lemma 9 is the main preliminary result used in the proof of Theorem 7 (and Theorem
13 in Section 5). We postpone its proof to Appendix A.

Lemma 9 Let νn : Zn 7→ ℓ∞(F) be the empirical process. Fix n and assume that there exist
a probability space (Z ′,A′, P ′) and a map ν ′

n : Z ′ 7→ ℓ∞(F) such that E
∗f(ν ′

n) = E
∗f(νn)

for every bounded f : ℓ∞(F) 7→ R. Let ν ′ be a P -Brownian bridge defined on (Z ′,A′, P ′).
Fix C > 0, ǫ = min(C3/128, C/4) and suppose δ ≥ ξ

√
n for a given ξ > 0. Then, if F is

P -Donsker, the following inequality holds

Pr∗
(

diamMξ
S > C

)

≤ N (ǫ,F , ‖·‖)2
(

128δ

C3
+ Pr∗

(

sup
F

∣

∣ν ′
n − ν ′

∣

∣ ≥ δ/2

))

We are now ready to prove the main result of this section.
Proof [Theorem 7] Lemma 1.9.3 in van der Vaart and Wellner (1996) shows that when the
limiting process is Borel measurable, almost uniform convergence implies convergence in
outer probability. Therefore, the first implication of Proposition 8 states that for any δ > 0

Pr∗
(

sup
F

|ν ′
n − ν ′| > δ

)

→ 0.

By Lemma 9,

Pr∗
(

diamMξ(n)
S > C

)

≤ N (ǫ,F , ‖·‖)2
(

128δ

C3
+ Pr∗

(

sup
F

∣

∣ν ′
n − ν ′

∣

∣ ≥ δ/2

))

for any C > 0, ǫ = min(C3/128, C/4), and any δ ≥ ξ(n)
√

n. Since ξ(n) = o(n−1/2), δ can

be chosen arbitrarily small, and so Pr∗
(

diamMξ(n)
S > C

)

→ 0.

The following corollary, whose proof is given in Appendix A, extends the above result
to L2 (and thus L1) diameters.

Corollary 10 The result of Theorem 7 holds if the diameter is defined with respect to the
L2(P ) norm.

5



Caponnetto and Rakhlin

4. Stability of almost-ERM

The main result of this section, Corollary 11, shows L2-stability of almost-ERM on Donsker
classes. It implies that, in probability, the L2 (and thus L1) distance between almost-
minimizers on similar training sets (with o(

√
n) changes) goes to zero when n tends to

infinity.
This result provides a partial answer to the questions raised in the machine learning

literature by Kutin and Niyogi (2002); Mukherjee et al. (2004): is it true that when one
point is added to the training set, the ERM algorithm is less and less likely to jump to a
far (in the L1 sense) hypothesis? In fact, since binary-valued function classes are uniform
Donsker if and only if the VC dimension is finite, Corollary 11 proves that almost-ERM
over binary VC classes possesses L1-stability. For the real-valued classes, uniform Glivenko-
Cantelli property is weaker than uniform Donsker property, and therefore it remains unclear
if almost-ERM over uGC but not uniform Donsker classes is stable in the L1 sense.

Use of L1-stability goes back to Devroye and Wagner (1979), who showed that this
stability is sufficient to bound the difference between the leave-one-out error and the ex-
pected error of a learning algorithm. In particular, Devroye and Wagner show that nearest-
neighbor rules possess L1-stability (see also Devroye et al., 1996). Our Corollary 11 implies
L1-stability of ERM (or almost-ERM) algorithms on Donsker classes.

In the following [n] denotes the set {1, 2, . . . , n} and A△ B is the symmetric difference
of sets A and B.

Corollary 11 Assume F is P -Donsker and uniformly bounded with envelope F ≡ 1. For
I ⊂ N, define S(I) = (Zi)i∈I . Let In ⊂ N such that Mn := |In △ [n]| = o(n1/2). Suppose

fn ∈ Mξ(n)
S([n]) and f ′

n ∈ Mξ′(n)
S(In) for some ξ(n) = o(n−1/2) and ξ′(n) = o(n−1/2) . Then

∥

∥fn − f ′
n

∥

∥

P ∗

−−→ 0.

The norm ‖·‖ can be replaced by L2(P ) or L1(P ) norm.

Proof It is enough to show that f ′
n ∈ Mξ′′(n)

S([n]) for some ξ′′(n) = o(n−1/2) and result follows
from the Theorem 7.

1

n

∑

i∈[n]

f ′
n(Zi) ≤

Mn

n
+

1

n

∑

i∈In

f ′
n(Zi)

≤ Mn

n
+

|In|
n

(

ξ′(n) + inf
g∈F

1

|In|
∑

i∈In

g(Zi)

)

≤ Mn

n
+

|In|
n

ξ′(n) +
1

n

∑

i∈In

fn(Zi)

≤ 2
Mn

n
+

|In|
n

ξ′(n) +
1

n

∑

i∈[n]

fn(Zi)

≤ 2
Mn

n
+

|In|
n

ξ′(n) + ξ(n) + inf
g∈F

1

n

∑

i∈[n]

g(Zi)
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Define

ξ′′(n) := 2
Mn

n
+

|In|
n

ξ′(n) + ξ(n).

Because Mn = o(n
1
2 ), it follows that ξ′′(n) = o(n−1/2). Corollary 10 implies convergence in

L2(P ), and, therefore, in L1(P ) norm.

5. Rates of Decay of diamMξ(n)
S

The statement of Lemma 9 reveals that the rate of the decay of the diameter diamMξ(n)
S is

related to the rate at which Pr∗ (supF |ν − νn| ≥ δ) → 0 for a fixed δ. A number of papers
studied this rate of convergence, and here we refer to the notion of Komlos-Major-Tusnady
class (KMT class), as defined by Koltchinskii (1994). Let ν ′

n : Zn 7→ ℓ∞(F) be the empirical
process defined on the probability space (Z ′,A′, P ′).

Definition 12 F is called a Komlos-Major-Tusnady class with respect to P and with the
rate of convergence τn (F ∈ KMT (P ; τn)) if F is P -pregaussian and for each n ≥ 1 there
is a version ν(n) of P -Brownian bridge defined on (Z ′,A′, P ′) such that for all t > 0,

Pr∗
(

sup
F

|ν(n) − ν ′
n| ≥ τn(t + K log n)

)

≤ Λe−θt

where K > 0, Λ > 0 and θ > 0 are constants, depending only on F .

Sufficient conditions for a class to be KMT (P ;n−α) have been investigated in the liter-
ature; some results of this type can be found in Koltchinskii (1994); Rio (1993) and Dudley
(2002), Section 9.5(B).

The following theorem shows that for KMT classes fulfilling a suitable entropy condition,
it is possible to give explicit rates of decay for the diameter of ERM almost-minimizers.

Theorem 13 Assume F is P -Donsker and F ∈ KMT (P ;n−α) for some α > 0. Assume

N (ǫ,F , ‖·‖) ≤
(

A
ǫ

)V
for some constants A,V > 0. Let ξ(n)

√
n = o(n−η), η > 0. Then

nγdiamMξ(n)
S

P ∗

−−→ 0

for any γ < 1
3(2V +1) min(α, η).

Proof The result of Lemma 9 is stated for a fixed n. We now choose C, ξ, and δ depending
on n as follows. Let C(n) = Bn−γ, where γ < 1

3(2V +1) min(α, η) and B > 0 is an arbitrary

constant. Let ξ = ξ(n). Let δ(n) = n−β, where β = 1
2(min(α, η) + 3(2V + 1)γ). When β is

defined this way, we have

min(α, γ) > β > 3(2V + 1)γ

because γ < 1
3(2V +1) min(α, η) by assumption. In particular, β < η and, hence, eventually

δ(n) > ξ(n)
√

(n) = o(n−η).
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Since C(n) decays to zero and ǫ(n) = min(C(n)3/128, C(n)/4), eventually ǫ(n) =
C(n)3/128 = n−3γB3/128.

Since F ∈ KMT (P ;n−α),

Pr∗
(

sup
F

|ν(n) − νn| ≥ n−α(t + K log n)

)

≤ Λe−θt

for any t > 0, choosing t = nαδ(n)/2 − K log n we obtain

Pr∗
(

sup
F

|ν(n) − νn| ≥ δ(n)/2

)

≤ Λe−θ(nα−β/2−K log n).

Lemma 9 then implies

Pr∗
(

diamMξ(n)
S > C(n)

)

≤ N (ǫ,F , ‖·‖)2
(

128δ

C(n)3
+ Pr∗

(

sup
F

∣

∣ν ′
n − ν ′

∣

∣ ≥ δ/2

))

≤
(

128A

B3
n3γ

)2V 128

B3
n−βn3γ +

(

128A

B3
n3γ

)2V

Λe−θ(nα−β/2−K log n)

=

(

128A

B3

)2V 128

B3
n3γ(2V +1)−β + Λ

(

128A

B3

)2V

nkθ+6γV e−
θ
2
nα−β

Since α > β > 3γ(2V + 1), both terms above go to zero, i.e.

Pr∗
(

nγdiamMξ(n)
S > B

)

→ 0 for any B > 0.

The entropy condition in Theorem 13 is clearly verified by VC-subgraph classes of di-
mension V . In fact, since L2 norm dominates ‖·‖ seminorm, upper bounds on L2 covering
numbers of VC-subgraph classes induce analogous bounds on ‖·‖ covering numbers. Corol-
lary 14 is a an application of Theorem 13 to this important family of classes. It follows in
a straight-forward way from the remark above.

Corollary 14 Assume F is a VC-subgraph class with VC-dimension V , and for some α > 0
F ∈ KMT (P, n−α). Let ξ(n)

√
n = o(n−η), η > 0. Then

nγdiamMξ(n)
S

P ∗

−−→ 0

for any γ < 1
3(2V +1) min(α, η).

6. Expected Error Stability of almost-ERM

In the previous section, we proved bounds on the rate of decay of the diameter of almost-
minimizers. In this section, we show that given such a bound, as well as some additional
conditions on the class, the differences between expected errors of almost-minimizers decay
faster than n−1/2. This implies a form of strong expected error stability for ERM.

The proof of Theorem 16 relies on the following ratio inequality of Pollard (1995).
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Proposition 15 Let G be a uniformly bounded function class with the envelope function
G ≡ 2. Assume N (γ,G) = supQ N (2γ,G, L1(Q)) < ∞ for 0 < γ ≤ 1 and Q ranging over
all discrete probability measures. Then

Pr∗
(

sup
G

|Pnf − Pf |
ǫ(Pn|f | + P |f |) + 5γ

> 26

)

≤ 32N (γ,G) exp(−nǫγ)

The next theorem gives explicit rates for expected error stability of ERM over VC-
subgraph classes fulfilling a KMT type condition.

Theorem 16 If F is a VC-subgraph class with VC-dimension V , F ∈ KMT (P ;n−α) and√
nξ(n) = o(n−η), then for any κ < min

(

1
6(2V +1) min(α, η), 1/2

)

n1/2+κ sup
f,f ′∈M

ξ(n)
S

|P (f − f ′)| P ∗

−−→ 0.

7. Conclusions

We presented some new results establishing stability properties of ERM over certain classes
of functions. This study was motivated by the question, raised by some recent papers,
of L1-stability of ERM under perturbations of a single sample (Mukherjee et al., 2004;
Kutin and Niyogi, 2002; Rakhlin et al., 2005). We gave a partially positive answer to this
question, proving that, in fact, ERM over Donsker classes fulfills L2-stability (and hence

also L1-stability) under perturbations of o(n
1
2 ) among the n samples of the training set.

This property follows directly from the main result of the paper which shows decay (in
probability) of the diameter of the set of solutions of almost-ERM with tolerance function

ξ(n) = o(n− 1
2 ). We stress that for classification problems (i.e. for binary-valued functions)

no generality is lost in assuming the Donsker property, since for ERM to be a sound algo-
rithm, the equivalent Glivenko-Cantelli property has to be assumed anyway. On the other
hand, in the real-valued case many complexity-based characterizations of Donsker property
are available in the literature.

In the perspective of possible algorithmic applications, we analyzed some additional
assumptions implying uniform rates on the decay of the L1 diameter of almost-minimizers.
It turned out that an explicit rate of this type can be given for VC-subgraph classes satisfying
a suitable Komlos-Major-Tusnady type condition. For this condition, many independent
characterizations are known.

Finally, using a suitable ratio inequality we showed how L1-stability results can induce
strong forms of expected error stability, providing a further insight into the behavior of the
Empirical Risk Minimization algorithm.
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Appendix A.

In this appendix we derive some results presented in Section 3. In particular, Lemma 9,
which was used in the proof of Theorem 7, and Corollary 10. Let us start with some
technical Lemmas.

Lemma 17 Let f0, f1 ∈ F , ‖f0 − f1‖ ≥ C/2, ‖f1‖ ≤ ‖f0‖. Let h : F → R be defined as

h(f ′) = 〈f ′,f0〉

‖f0‖
2 . Then for any ǫ ≤ C3

128

inf
B(f0,ǫ)

h − sup
B(f1,ǫ)

h ≥ C2

16
.

Proof

∆ := inf
B(f0,ǫ)

h − sup
B(f1,ǫ)

h

= h(f0) − h(f1) + inf{h(f ′ − f0) + h(f1 − f ′′)|f ′ ∈ B(f0, ǫ), f
′′ ∈ B(f1, ǫ)}

≥ h(f0) − h(f1) −
2ǫ

‖f0‖
≥ h(f0) − h(f1) −

8ǫ

C
,

since ‖f0‖ ≥ C/4.
Finally

2 〈f0 − f1, f0〉 = ‖f0 − f1‖2 − ‖f1‖2 + ‖f0‖2 ≥ ‖f0 − f1‖2 ≥ C2

4
,

then

h(f0) − h(f1) ≥
C2

8 ‖f0‖2 ≥ C2

8
,

10
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which proves that

∆ ≥ C2

8
− 8ǫ

C
≥ C2

16
.

The following Lemma is an adaptation of Lemma 2.3 of Kim and Pollard (1990).

Lemma 18 Let f0, f1, h be defined as in Lemma 17. Suppose ǫ ≤ C3

128 . Let νµ be a Gaussian
process on F with mean µ and covariance cov(νµ(f), νµ(f ′)) = 〈f, f ′〉.

Then for all δ > 0

Pr∗

(

| sup
B(f0,ǫ)

νµ − sup
B(f1,ǫ)

νµ| ≤ δ

)

≤ 64δ

C3
.

Proof Define the Gaussian process Y (·) = νµ(·) − h(·)νµ(f0). Since cov(Y (f ′), νµ(f0)) =
〈f ′, f0〉 − h(f ′) ‖f0‖2 = 0, νµ(f0) and Y (·) are independent.

We now reason conditionally with respect to Y (·). Define

Γi(z) = sup
B(fi,ǫ)

{Y (·) + h(·)z} with i = 0, 1.

Notice that

Pr∗

(

| sup
B(f0,ǫ)

νµ − sup
B(f1,ǫ)

νµ| ≤ δ|Y
)

= Pr∗ (|Γ0(νµ(f0)) − Γ1(νµ(f0))| ≤ δ) .

Moreover Γ0 and Γ1 are convex and

inf ∂−Γ0 − sup∂+Γ1 ≥ inf
B(f0,ǫ)

h − sup
B(f1,ǫ)

h ≥ C2

16
,

by Lemma 17. Then Γ0 = Γ1 in a single point z0 and

Pr∗ (|Γ0(νµ(f0)) − Γ1(νµ(f0))| ≤ δ) ≤ Pr∗ (νµ(f0) ∈ [z0 − ∆, z0 + ∆]) ,

with ∆ = 16δ/C2.
Furthermore,

Pr∗ (νµ(f0) ∈ [z0 − ∆, z0 + ∆]) ≤ 32δ

C2
√

2πvar(νµ(f0))
,

and var(νµ(f0)) = ‖f0‖2 ≥ C2/16, which completes the proof.

The reasoning in the proof of the next lemma goes as follows. We consider a finite cover
of F . Pick any two almost-minimizers which are far apart. They belong to two covering
balls with centers far apart. Because the two almost-minimizers belong to these balls, the

11
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infima of the empirical risks over these two balls are close. This is translated into the event
that the suprema of the shifted empirical process over these two balls are close. By looking
at the Gaussian limit process, we are able to exploit the covariance structure to show that
the suprema of the Gaussian process over balls with centers far apart are unlikely to be
close.

Proof [Lemma 9]

Consider the ǫ-covering {fi|i = 1, . . . ,N (ǫ,F , ‖·‖)}. Such a covering exists because
F is totally bounded in ‖·‖ norm (see page 89, van der Vaart and Wellner, 1996). For

any f, f ′ ∈ Mξ
S s.t. ‖f − f ′‖ > C, there exist k and l such that ‖f − fk‖ ≤ ǫ ≤ C/4,

‖f ′ − fl‖ ≤ ǫ ≤ C/4. By triangle inequality it follows that ‖fk − fl‖ ≥ C/2.

Moreover

inf
F

Pn ≤ inf
B(fk ,ǫ)

Pn ≤ Pnf ≤ inf
F

Pn + ξ

and

inf
F

Pn ≤ inf
B(fl,ǫ)

Pn ≤ Pnf ′ ≤ inf
F

Pn + ξ.

Therefore,
∣

∣

∣

∣

inf
B(fk,ǫ)

Pn − inf
B(fl,ǫ)

Pn

∣

∣

∣

∣

≤ ξ.

The last relation can be restated in terms of the empirical process νn:

∣

∣

∣

∣

∣

sup
B(fk ,ǫ)

{−νn −√
nP} − sup

B(fl,ǫ)
{−νn −√

nP}
∣

∣

∣

∣

∣

≤ ξ
√

n ≤ δ.

Pr∗
(

diamMξ
S > C

)

= Pr∗
(

∃f, f ′ ∈ Mξ
S ,
∥

∥f − f ′
∥

∥ > C
)

≤

Pr∗

(

∃l, k s.t. ‖fk − fl‖ ≥ C/2,

∣

∣

∣

∣

∣

sup
B(fk,ǫ)

{−νn −√
nP} − sup

B(fl,ǫ)
−{νn −√

nP}
∣

∣

∣

∣

∣

≤ δ

)

.

By union bound

Pr∗
(

diamMξ
S > C

)

≤
N (ǫ,F ,‖·‖)
∑

k,l=1
‖fk−fl‖≥C/2

Pr∗

(∣

∣

∣

∣

∣

sup
B(fk,ǫ)

{−νn −√
nP} − sup

B(fl,ǫ)
{−νn −√

nP}
∣

∣

∣

∣

∣

≤ δ

)

.

12
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We now want to bound the terms in the sum above. Assuming without loss of generality
that ‖fk‖ ≥ ‖fl‖, we obtain

Pr∗

(∣

∣

∣

∣

∣

sup
B(fk ,ǫ)

{−νn −√
nP} − sup

B(fl,ǫ)
{−νn −√

nP}
∣

∣

∣

∣

∣

≤ δ

)

= Pr∗

(∣

∣

∣

∣

∣

sup
B(fk,ǫ)

{−ν ′
n −√

nP} − sup
B(fl,ǫ)

{−ν ′
n −√

nP}
∣

∣

∣

∣

∣

≤ δ

)

= Pr∗

(∣

∣

∣

∣

∣

sup
B(fk,ǫ)

{−ν ′ −√
nP + ν ′ − ν ′

n} − sup
B(fl,ǫ)

{−ν ′ −√
nP + ν ′ − ν ′

n}
∣

∣

∣

∣

∣

≤ δ

)

≤ Pr∗

(∣

∣

∣

∣

∣

sup
B(fk,ǫ)

{−ν ′ −√
nP} − sup

B(fl,ǫ)
{−ν ′ −√

nP}
∣

∣

∣

∣

∣

≤ 2δ

)

+ Pr∗
(

sup
F

∣

∣ν ′
n − ν ′

∣

∣ ≥ δ/2

)

≤ 128δ

C3
+ Pr∗

(

sup
F

∣

∣ν ′
n − ν ′

∣

∣ ≥ δ/2

)

,

where the first inequality results from a union bound argument while the second one
results from Lemma 18 noticing that −ν ′ − √

nP is a Gaussian process with covariance
〈f, f ′〉 and mean −√

nP , and since by construction ǫ ≤ C3/128.
Finally, the claimed result follows from the two last relations.

We now prove, Corollary 10, the extension of Theorem 7 to L2 diameters. The proof
relies on the observation that a P -Donsker class is also Glivenko-Cantelli.
Proof [Corollary 10] Note that

∥

∥f − f ′
∥

∥

2

L2
=
∥

∥f − f ′
∥

∥

2
+
(

P (f − f ′)
)2

.

The expected errors of almost-minimizers over a Glivenko-Cantelli (and therefore over
Donsker) class are close because empirical averages uniformly converge to the expectations.

Pr∗
(

∃f, f ′ ∈ Mξ(n)
S s.t.

∥

∥f − f ′
∥

∥

L2
> C

)

≤ Pr∗
(

∃f, f ′ ∈ Mξ(n)
S s.t.

∣

∣Pf − Pf ′
∣

∣ > C/
√

2
)

+ Pr∗
(

diamMξ(n)
S > C/

√
2
)

.

The first term can be bounded as

Pr∗
(

∃f, f ′ ∈ Mξ(n)
S s.t.

∣

∣Pf − Pf ′
∣

∣ > C/
√

2
)

≤ Pr∗
(

∃f, f ′ ∈ F ,
∣

∣Pnf − Pnf ′
∣

∣ ≤ ξ(n),
∣

∣Pf − Pf ′
∣

∣ > C/
√

2
)

≤ Pr∗

(

sup
f,f ′∈F

|(Pn − P )(f − f ′)| > |C/
√

2 − ξ(n)|
)

which goes to 0 because the class {f − f ′|f, f ′ ∈ F} is Glivenko-Cantelli. The second term
goes to 0 by Theorem 7.

13
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Appendix B.

In this appendix we report the proof of Theorem 16 stated in Section 6. We first need to
derive a preliminary lemma.

Lemma 19 Let F be P-Donsker class with envelope function G ≡ 1. Assume N (γ,F) =
supQ N (γ,F , L1(Q)) < ∞ for 0 < γ ≤ 1 and Q ranging over all discrete probability mea-

sures. Let Mξ(n)
S be defined as above with ξ(n) = o(n−1/2) and assume that for some

sequence of positive numbers λ(n) = o(n1/2)

λ(n) sup
f,f ′∈M

ξ(n)
S

P |f − f ′| P ∗

−−→ 0. (1)

Suppose further that for some 1/2 < ρ < 1

λ(n)2ρ−1 − logN (
1

2
n−1/2λ(n)ρ−1,F) → +∞. (2)

Then

Pr∗





√
n sup

f,f ′∈M
ξ(n)
S

|P (f − f ′)| ≤ √
nξ(n) + 131λ(n)ρ−1



→ 0.

Proof Define G = {f − f ′ : f, f ′ ∈ F} and G′ = {|f − f ′| : f, f ′ ∈ F}. By Example 2.10.7
of van der Vaart and Wellner (1996), G = (F)+ (−F) and G′ = |G| ⊆ (G ∧ 0)∨ (−G ∧ 0) are
Donsker as well. Moreover, N (2γ,G) ≤ N (γ,F)2 and the envelope of G is G ≡ 2. Applying
Proposition 15 to the class G, we obtain

Pr∗

(

sup
f,f ′∈F

|Pn(f − f ′) − P (f − f ′)|
ǫ(Pn|f − f ′| + P |f − f ′|) + 5γ

> 26

)

≤ 32N (γ/2,F)2 exp(−nǫγ).

The inequality therefore holds if the sup is taken over a smaller (random) subclass Mξ(n)
S .

Pr∗



 sup
f,f ′∈M

ξ(n)
S

|P (f − f ′)| − ξ(n)

ǫ(Pn|f − f ′| + P |f − f ′|) + 5γ
> 26



 ≤ 32N (γ/2,F)2 exp(−nǫγ).

Since supx
A(x)
B(x) ≥ supx

A(x)
supx B(x) = supx A(x)

supx B(x) ,

Pr∗



 sup
f,f ′∈M

ξ(n)
S

(

|P (f − f ′)| − ξ(n)
)

> 26 sup
f,f ′∈M

ξ(n)
S

(

ǫ(Pn|f − f ′| + P |f − f ′|) + 5γ
)



 (3)

≤ 32N (γ/2,F)2 exp(−nǫγ).

By assumption,

λ(n) sup
f,f ′∈M

ξ(n)
S

P |f − f ′| P ∗

−−→ 0.

14
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Because G′ is Donsker and λ(n) = o(n1/2),

λ(n) sup
f,f ′∈M

ξ(n)
S

∣

∣Pn|f − f ′| − P |f − f ′|
∣

∣

P ∗

−−→ 0.

Thus,

λ(n) sup
f,f ′∈M

ξ(n)
S

Pn|f − f ′| + P |f − f ′| P ∗

−−→ 0.

Letting ǫ = ǫ(n) := n−1/2λ(n)ρ, this implies that for any δ > 0, there exist Nδ such that
for all n > Nδ,

Pr∗





√
n sup

f,f ′∈M
ξ(n)
S

26ǫ(n)
(

Pn|f − f ′| + P |f − f ′|
)

> λ(n)ρ−1



 < δ.

Now, choose γ = γ(n) := n−1/2λ(n)ρ−1 (note that since ρ < 1, eventually 0 < γ(n) < 1),
the last inequality can be rewritten in the following form

Pr∗





√
n sup

f,f ′∈M
ξ(n)
S

26
(

ǫ(n)
(

Pn|f − f ′| + P |f − f ′|
)

+ 5γ(n)
)

> 131λ(n)ρ−1



 < δ.

Combining the relation above with Eqn. 3,

Pr∗





√
n sup

f,f ′∈M
ξ(n)
S

|P (f − f ′)| ≤ √
nξ(n) + 131λ(n)ρ−1





≥ 1 − 32N
(

1

2
n−1/2λ(n)ρ−1,F

)2

exp(−λ(n)2ρ−1) − δ.

The result follows by the assumption on the entropy and by arbitrariness of δ.

We are now ready to prove Theorem 16.
Proof [Theorem 16] By Corollary 14,

nγdiamMξ(n)
S

P ∗

−−→ 0

for any γ < min
(

1
3(2V +1) min(α, η), 1/2

)

. Let λ(n) = nγ and note that λ(n) = o(
√

n),

which is a condition in Lemma 19. First, we show that a power decay of the ‖·‖ diameter
implies the same rate of decay of the L1 diameter, hence verifying condition (1) in Lemma
19. Proof of this fact is very similar to the proof of Corollary 10, except that C is replaced
by Cλ(n)−1.

Pr∗
(

∃f, f ′ ∈ Mξ(n)
S s.t.

∥

∥f − f ′
∥

∥

L2
> Cλ(n)−1

)

≤ Pr∗
(

∃f, f ′ ∈ Mξ(n)
S s.t.

∣

∣Pf − Pf ′
∣

∣ > Cλ(n)−1/
√

2
)

+ Pr∗
(

diamMξ(n)
S > Cλ(n)−1/

√
2
)

.
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The second term goes to zero since λ(n)diamMξ(n)
S

P ∗

−−→ 0. Moreover, since λ(n) = o(
√

n)
and G is Donsker, the first term can be bounded as

Pr∗
(

∃f, f ′ ∈ Mξ(n)
S s.t.

∣

∣Pf − Pf ′
∣

∣ > Cλ(n)−1/
√

2
)

≤ Pr∗
(

∃f, f ′ ∈ F ,
∣

∣Pnf − Pnf ′
∣

∣ ≤ ξ(n),
∣

∣Pf − Pf ′
∣

∣ > Cλ(n)−1/
√

2
)

≤ Pr∗

(

sup
f,f ′∈F

|P (f − f ′) − Pn(f − f ′)| >

∣

∣

∣

∣

C√
2
λ(n)−1 − ξ(n)

∣

∣

∣

∣

)

= Pr∗

(

λ(n) sup
g∈G

|Pg − Png| >

∣

∣

∣

∣

C√
2
− ξ(n)λ(n)

∣

∣

∣

∣

)

→ 0,

proving condition (1) in Lemma 19.

We now verify condition (2) in Lemma 19. Since F is a VC-subgraph class of dimension
V , its entropy numbers logN (ǫ,F) behave like V log A

ǫ (A is a constant), that is

logN
(

1

2
n−1/2λ(n)ρ−1,F

)

≤ const +
1

2
V log n + (1 − ρ)V log λ(n).

Condition (2) of Lemma 19 will therefore hold whenever λ(n) grows faster than (log n)
1

2ρ−1 ,
for any 1 > ρ > 1

2 . In our problem, λ(n) grows polynomially, so condition (2) is satisfied
for any fixed 1 > ρ > 1/2.

Hence, by Lemma 19

Pr∗





√
n sup

f,f ′∈M
ξ(n)
S

|P (f − f ′)| ≤ √
nξ(n) + 131nγ(ρ−1)



→ 0.

Choose any 0 < κ < γ/2 and multiply both sides of the inequality by nκ. We obtain

Pr∗



nκ√n sup
f,f ′∈M

ξ(n)
S

|P (f − f ′)| ≤ √
nξ(n)nκ + 131nγ(ρ−1)+κ



→ 0. (4)

Now fix a ρ such that 1/2 < ρ < 1 − κ/γ. Because 0 < κ < γ/2, there is always such a
choice of ρ. Furthermore, 1 > ρ > 1/2 so that the above convergence holds. Our choice of
ρ implies that γ(ρ − 1) + κ < 0 and so nγ(ρ−1)+κ → 0. Since κ < γ/2 < η,

√
nξ(n)nκ → 0.

Hence,

n1/2+κ sup
f,f ′∈M

ξ(n)
S

|P (f − f ′)| P ∗

−−→ 0

for any κ < min
(

1
6(2V +1) min(α, η), 1/2

)

.
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