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Preface

These notes provide extended versions of my lectures in the St Flour meeting of

1999. The general subject are semiparametric models for replicated experiments,

in particular the theory for functionals that are estimable at the rate equal to the

square root of the number of replications. We discuss bounds on the eÆciency of

estimators and tests, and methods of constructing eÆcient or ineÆcient estimators

and tests, with particular attention for maximum likelihood estimators. Further-

more, we discuss abstract empirical processes, which play an important role in the

analysis of the estimators.

The ten lectures have a certain overlap with material earlier published in the

books [41] and [42]. A number of proofs have been omitted, because they can be

found in these works. On the other hand, these notes are an attempt to give a

consistent and reasonably self-contained overview of (a part of) semiparametric

statistics, including digressions into empirical process theory, new examples, and a

number of more recent developments.

This area is certainly not complete. To illustrate this point, scattered through

the text we pose some problems whose solutions are presently unknown (to me).

Our list of references is restricted to the references that are directly relevant to

the lectures. In beginning 2000 the Mathematical Reviews gave 415 responses to a

query on semiparametric models, so our list does not do justice to the great amount

of work having been done. A general work covering the subject of semiparametric

models, but from a somewhat di�erent point of view with relatively little attention

for the subject of Lectures 5{10, is the book [3] by Bickel, Klaassen, Ritov and

Wellner. This book also has an extensive list of references.



Notation

We use the wiggly arrow  for weak convergence, also for nonmeasurable maps: if

Xn and X are maps de�ned on some probability spaces (
n;Un;Pn) with values

in a metric space D , then we say that Xn  X if E�f(Xn) ! Ef(X) for all

bounded, continuous functions f : D 7! R. Here the limit X is always assumed Borel

measurable, but the Xn may be arbitrary maps. The � in E�f(Xn) is for outer

expectation on (
n;Un;Pn).
Given a measure space (X ;A; P ) the set Lr(P ) (for r � 1) is the collection of

all measurable functions f :X 7! R with kfkrP;r: =
R
jf jr dP <1.

The wiggly inequality . means \less than equal up to a constant". The range

and kernel of an operator A are denoted by R(A) and N(A). The space of all bounded

functions z:T 7! R on a set T is denoted by `1(T ) and kzkT is the uniform norm.

The set UC(T; �) is the set of all �-uniformly continuous functions on T .



Lecture 1
Introduction, Tangent Sets

In this lecture we introduce basic notation, give a number of examples of semipara-

metric models, and de�ne the tangent set of a model.

1.1 Introduction

Throughout the presentation of the general theory we denote by X1; : : : ; Xn the ob-

servations. These are measurable maps on some underlying probability space that

we usually need not further specify, and take values in a measurable space (X ;A).
The observations are independent and identically distributed (i.i.d.), with a distri-

bution P on (X ;A). A model P is a collection of probability measures on the sample

space, to be considered the set of all possible values of P .

A semiparametric model is one that is neither a parametric model nor a non-

parametric model. This de�nition is not informative, but could be saved by giv-

ing precise de�nitions of parametric and nonparametric models. The nonparametric

model P is the set of all probability distributions on P. A parametric model is a

model that can be smoothly indexed by a Euclidean vector (\the parameter"). We

shall not attempt to make this de�nition more precise by specifying \smoothly",

but note that this should cover all classical statistical models, including exponential

families and the uniform distributions. The concept of a \nonparametric model" is

often also used in a more vague sense of a model that does not essentially restrict

the elements P 2 P. A model in which all P are assumed to have a second mo-

ment or a smooth density relative to Lebesgue measure is then also considered to

be \nonparametric".

Thus the \de�nition" says that a semiparametric model is an in�nite-

dimensional model that is essentially smaller than the set of all possible distri-

butions. Even this vague description is not universally accepted. For instance: the

nonparametric model is often considered to be semiparametric if it is parametrized

in an interesting way.

A few examples will give a better idea.

1.1 Example (Symmetric location). For a given � 2 R and a probability density

� on R that is symmetric about 0, let P�;� be the measure with density x 7! �(x��).
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Then consider the semiparametric model P consisting of all measures P�;� when �

ranges over R and � ranges over all Lebesgue densities that are absolutely continuous

with �nite Fisher information for location: I(�): =
R
(�0=�)2 � d� < 1. This model

arose naturally in the study of nonparametric testing theory (e.g. rank tests) and

was studied long before the general subject of semiparametric models had been

conceived. It turns out to be a very special model as regards the estimation of the

center of symmetry �. As we shall see there exist estimators for � in this model

(which cannot use the form of the unknown �) that are (asymptotically) of the

same quality as the best estimators specially designed to work for a particular � (for

instance as good as the sample mean in the case of normal � and as good as the

median for Laplace �).

1.2 Example (Partially linear regression). A classical regression model speci�es

that the conditional mean of a \response variable" Y given a covariate V is a

linear function �TV of the covariate, or a �xed transformation 	(�TV ) of it. A

nonparametric regression model would replace the linear function by an arbitrary

function, perhaps restricted by being \smooth". A typical semiparametric model

would mix these two extremes, for instance by specifying that the conditional mean

is of the form 	(�TV + �(W )) for � 2 R
d and � ranging over the class of all twice

di�erentiable functions on the domain of W , and a �xed function 	.

To describe the full model we could specify that the observation is X =

(Y; V;W ) and that (V;W ) has an arbitrary distribution. Next there are sev-

eral possibilities to complete the description by specifying the form of the con-

ditional distribution of Y given (V;W ). One possibility is to specify only that

E(Y jV;W ) = �TV + �(W ). This type of model is popular among econometricians.

A smaller model is obtained by postulating that Y = �TV +�(W )+e for e indepen-

dent of (V;W ) and of mean zero, leaving the rest of the distribution of e unspeci�ed,

assuming it to be normal or symmetric. Third, we can also create semiparametric

versions of the generalized linear model. For instance, the response Y could be a 0-1

variable and we could assume that P(Y = 1jV;W ) is of the form 	(�TV + �(W ))

for 	 the logistic distribution function.

1.3 Example (Cox). In the Cox model a typical observation is a pairX = (T; Z) of

a \survival time" T and a covariate Z. It is best described in terms of the conditional

hazard function of T given Z.

Recall that the hazard function � corresponding to a probability density f is the

function � = f=(1� F ), for F the distribution function corresponding to f . Simple

algebra shows that 1 � F = e�� and hence f = �e��, so that the relationship

between f and � is on-to-one.

In the Cox model the distribution of Z is arbitrary and the conditional hazard

function of T given Z is postulated to be of the form e�
TZ�(t) for � 2 R

d and �

being a completely unknown hazard function. The parameter � has an interesting

interpretation in terms of a ratio of hazards. For instance, if the ith coordinate Zi of

the covariate is a 0-1 variable then e�i is the ratio of the hazards of two individuals

whose covariates are Zi = 1 and Zi = 0, respectively, and whose covariates are

identical otherwise. This is one reason for the popularity of the model: the model

gives a better �t to data than a parametric model (obtained for instance by assuming

that the baseline hazard function is of Weibull form), but its parameters are still
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easy to interpret. A second reason for its popularity is that statistical procedures

for estimating the parameters take a simple form. They were originally found and

motivated by ad-hoc arguments. We shall use the model throughout these lectures

as an illustration and show how the standard estimators can be derived and analysed

by principles that apply equally well to other semiparametric models.

1.4 Example (Mixture models). Suppose that x 7! p�(xj z) is a probability den-

sity for every pair (�; z) 2 ��Z for a subset � of a Euclidean space and a measurable

space (Z; C). If the map (x; z) 7! p�(xj z) is jointly measurable, then

p�;�(x) =

Z
p�(xj z) d�(z)

de�nes a probability density for every probability measure � on (Z; C). This mixture

density reduces to the density p�(�j z) when � is degenerate at z. Hence the model

consisting of all mixture densities of this type is considerably bigger than the \orig-

inal model", which is parametric if z is Euclidean and the map (�; z) 7! p�(�j z) is
smooth.

A concrete example of a mixture model is the errors-in-variables model, which

is most easily described structurally, as follows. The observation is a pair X =

(X1; X2), where X1 = Z+ e and X2 = g�(Z)+f for a bivariate normal vector (e; f)

with mean zero and unknown covariance matrix, and a function g� that is known

up to a parameter �. Thus X2 is a (possibly nonlinear) regression on a variable Z

that is observed with error. The distribution of Z is unknown. The kernel p�(�j z) is
in this case a multivariate Gaussian density.

A particular example is the linear errors-in-variables model, for which � = (�; �)

and g�(z) = �+�z. This linear model has been studied before the 1980s, but not from

a semiparametric perspective. Semiparametric theory has led to new, more eÆcient

estimators of the regression parameters. Surprisingly, for most of the nonlinear cases

good estimators for � are still unknown, and in fact it is unknown if the parameter

� is estimable at
p
n rate in general. (See [35] and work in progress by the same

author.)

1.5 Example (Random censoring). A \time of death" T is observed only if death

occurs before the time C of a \censoring event" that is independent of T ; otherwise

C is observed. Thus, a typical observation X is a pair of a survival time and a 0-1

variable, and is distributed as (T ^ C; 1fT � Cg). If the distributions of T and

C are allowed to range over all distributions on [0;1], then the distribution of X

can be shown to take an arbitrary form on the sample space X = [0;1)� f0; 1g.
Therefore, this model is a nonparametric example. Because the interest is usually

in the distribution of T , which is a complicated function of the distribution of X

to which much of the semiparametric machinery applies, the model is usually also

considered semiparametric.

Our lectures aim at developing theory for the estimation and testing of func-

tionals  :P 7! B de�ned on a model P and taking values in some Banach space B

(most often R
d). An important examples is the functional  (P�;�) = � if the model

P = fP�;�: � 2 �; � 2 Hg is indexed by two \parameters" � and �. In this case,
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because apparently the prime interest is in �, we refer to � as a \nuisance parame-

ter". This will not stop us from also considering the estimation of �. Models with a

partitioned parameter (�; �), with � �nite-dimensional, are semiparametric models

in a strict sense. Begun, Hall, Huang and Wellner in [1] called them parametric-

nonparametric, having in mind that � would be an element of a nonparametric

model.

Our main interest in these lectures is in functionals  that allow an asymptotic

theory analogous to the theory for smooth parametric models. This comprises the

asymptotic normality of the maximum likelihood estimator, rooted in the work by

Fisher in the 1920s, the asymptotic chisquare distribution of the likelihood ratio

statistic, rooted in the work by Wilks in 1930s, and the lower bound theory rooted

in the work by Cram�er and Rao in the 1940s. The dates might suggest that we are

only setting out to a simple extension of \classical theory" of the �rst half of the 20th

century. There is some truth to this, but as we shall see, apart from necessitating

more mathematical sophistication (which word we mean to use in a positive sense),

the theory of semiparametric models turns out to be much richer than the classical

theory.

Unfortunately, not all problems have been solved. This is true for the problems

in the restricted realm of the preceding paragraph. It is even more true for the

general theory of semiparametric models, which also contains many so-called inverse

problems. In later lectures we shall indicate some of the important open questions,

to be solved in the next millennium.

In the following section we start by developing a notion of \information" for

estimating  (P ) given the model P, which extends the notion of Fisher information

for parametric models.

1.2 Tangent Spaces and Information

To estimate the parameter  (P ) given the model P is certainly harder than to

estimate this parameter given that P belongs to a submodel P0 � P. For every
smooth parametric submodel P0 = fP�: � 2 �g � P, we can calculate the Fisher

information for estimating  (P�). Then the \information" for estimating  (P ) in

the whole model is certainly not bigger than the in�mum of the informations over

all submodels. We shall simply de�ne the information for the whole model as this

in�mum. A submodel for which the in�mum is taken (if there is one) is called least

favourable or a \hardest" submodel.

In most situations it suÆces to consider one-dimensional submodels P0. These

should pass through the \true" distribution P of the observations, and be di�eren-

tiable at P in an appropriate way.
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1.6 De�nition. A di�erentiable path is a map t 7! Pt from a neighbourhood of

0 2 [0;1) to P such that, for some measurable function g:X 7! R,

(1:7)

Z hdP 1=2
t � dP 1=2

t
� 1

2
g dP 1=2

i2
! 0:

The function g is called the score function of the submodel fPt: t � 0g at t = 0.

The notation in the preceding display is due to Le Cam. The objects dP
1=2
t

can be formalized by introducing an Hilbert space of \square roots of measures".

Simpler and suÆcient for our purposes is to read the display as

Z hp1=2tt � p
1=2
t

t
� 1

2
g p

1=2
t

i2
d�t ! 0;

where, for each t, �t is an arbitrary measure relative to which P and Pt possess

densities pt and ptt. For instance, the measure �t = Pt + P , or a �xed �-�nite

dominating measure for P if it exists. The value of the integral does not depend on

the choice of �t.

In words we say that a di�erentiable path is a parametric submodel fPt: 0 �
t < "g that is di�erentiable in quadratic mean at t = 0 with score function g.

Letting t 7! Pt range over a collection of submodels, we obtain a collection of score

functions, which we call a tangent set of the model P at P , and denote by _PP .

1.8 Lemma. Every score function satis�es Pg = 0 and Pg2 <1.

Proof. For given, arbitrary tn # 0, let pn and p be densities of Ptn and P relative

to a �-�nite dominating measure �, for instance a convex combination of the count-

ably many measures Ptn + P . By (1.7) the sequence (
p
pn �

p
p)=tn converges in

quadratic mean (i.e. in L2(�)) to
1
2
g
p
p. This implies immediately that g 2 L2(P ).

Furthermore, it implies that the sequence
p
pn converges in quadratic mean to

p
p.

By the continuity of the inner product,

Pg =

Z
1
2
g
p
p 2
p
p d� = lim

Z �p
pn �

p
p
�

tn

�p
pn +

p
p
�
d�n:

The right side equals (1� 1)=tn = 0 for every n, because both probability densities

integrate to 1. Thus Pg = 0.

It follows that a tangent set can be identi�ed with a subset of L2(P ), up to

equivalence classes. The tangent set is often a linear space, in which case we speak

of a tangent space. Geometrically, we may visualize the model P, or rather the

corresponding set of \square roots of measures" dP 1=2, as a subset of the unit ball

of a Hilbert space (the space L2(�) if the model is dominated), and _PP , or rather
the set of all objects 1

2
g dP 1=2, as its tangent set. Note however that we have not

de�ned a tangent set to be equal to the set of all score functions g that correspond

to some di�erentiable submodel. For many purposes this \maximal tangent set" is

too big, so that we have given ourselves the exibility of calling any set of score
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functions a tangent set. The drawback will be that in any result obtained later on

we must specify which tangent set we are working with.

Usually, we construct the submodels t 7! Pt such that, for every x,

g(x) =
@

@t jt=0
log dPt(x):

This pointwise di�erentiability is not required by (1.7). Conversely, given this point-

wise di�erentiability we still need to be able to apply a convergence theorem for

integrals to obtain (1.7). The following lemma solves most examples.

1.9 Lemma. If pt is a probability density relative to a �xed measure � and t 7!p
pt(x) is continuously di�erentiable in a neighbourhood of 0 and t 7!

R
_p2t=pt d� is

�nite and continuous in this neighbourhood, then t 7! Pt is a di�erentiable path.

The di�erentiability (1.7) is the correct de�nition for de�ning information, be-

cause it ensures a type of local asymptotic normality, as shown by the following

lemma.

1.10 Lemma. If the path t 7! Pt in P satis�es (1.7), then

log

nY
i=1

dP1=
p
n

dP
(Xi) =

1p
n

nX
i=1

g(Xi)� 1
2
Pg2 + oP (1):

Proof. We adopt the notation of the preceding proof, but with tn = 1=
p
n. The

random variable Wni = 2
�p

pn=p(Xi)� 1
�
is with P -probability 1 well-de�ned. By

(1.7)

(1.11) var
� nX
i=1

Wni �
1p
n

nX
i=1

g(Xi)
�
� E

�p
nWni � g(Xi)

�2 ! 0;

E

nX
i=1

Wni = 2n
�Z p

pn
p
p d�� 1

�
= �n

Z �p
pn �

p
p
�2
d�! � 1

4
Pg2:

Therefore, combining the preceding pair of displayed equations, we �nd

(1:12)

nX
i=1

Wni =
1p
n

nX
i=1

g(Xi)� 1
4
Pg2 + oP (1):

Next, we express the log likelihood ratio in
Pn
i=1Wni through a Taylor expansion

of the logarithm. If we write log(1 + x) = x � 1
2
x2 + x2R(2x), then R(x) ! 0 as

x! 0, and

(1:13)

log

nY
i=1

pn

p
(Xi) = 2

nX
i=1

log
�
1 + 1

2
Wni

�

=

nX
i=1

Wni � 1
4

nX
i=1

W 2
ni +

1
2

nX
i=1

W 2
niR(Wni):
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As a consequence of the right side of (1.11), it is possible to write nW 2
ni = g2(Xi)+

Ani for random variables Ani such that EjAnij ! 0. The averages An converge in

mean and hence in probability to zero. Combination with the law of large numbers

yields
nX
i=1

W 2
ni = (g2)n +An

P! Pg2:

By the triangle inequality followed by Markov's inequality,

nP
�
jWnij > "

p
2
�
� nP

�
g2(Xi) > n"2

�
+ nP

�
jAnij > n"2

�
� "�2Pg2fg2 > n"2g+ "�2EjAnij ! 0:

The left side is an upper bound for P
�
max1�i�n jWnij > "

p
2
�
. Thus the sequence

max1�i�n jWnij converges to zero in probability. By the property of the function R,

the sequence max1�i�n
��R(Wni)

�� converges in probability to zero as well. The last

term on the right in (1.13) is bounded by max1�i�n
��R(Wni)

��Pn
i=1W

2
ni. Thus it is

oP (1)OP (1), and converges in probability to zero. Combine to obtain that

log

nY
i=1

pn

p
(Xi) =

nX
i=1

Wni � 1
4
Pg2 + oP (1):

Together with (1.12) this yields the theorem.

For de�ning the \information" for estimating  (P ), only those submodels t 7!
Pt along which the parameter t 7!  (Pt) is di�erentiable are of interest. A minimal

requirement is that the map t 7!  (Pt) be di�erentiable at t = 0, but we need more.

1.14 De�nition. A map  :P 7! B is di�erentiable at P relative to a given tangent

set _PP if there exists a continuous linear map _ P :L2(P ) 7! B such that for every

g 2 _PP and a submodel t 7! Pt with score function g,

 (Pt)�  (P )

t
! _ P g:

This de�nition requires that the derivative of the map t 7!  (Pt) exists in the

ordinary sense, and also that it has a special representation. (The map _ P is much

like a Hadamard derivative of  viewed as a map on the space of \square roots of

measures".) Our de�nition is also relative to the submodels t 7! Pt, but we speak

of \relative to _PP" for simplicity.

In the case that B = R
k the Riesz representation theorem for Hilbert spaces

allows us to write the derivative map _ P in the form of an inner product. Precisely,

there exists a �xed vector-valued, measurable function ~ P :X 7! R
k ,

_ P g = h ~ P ; giP =

Z
~ P g dP:

The function ~ P is not uniquely de�ned by the functional  and the model P, since
only inner products of ~ P with elements of the tangent set are speci�ed, and the

tangent set does not span all of L2(P ). However, it is always possible to �nd a

candidate ~ P whose coordinate functions are contained in lin _PP , the closure of the
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linear span of the tangent set. This function is unique, and is called the eÆcient

inuence function. It can be found as the projection of any other \inuence function"

onto the closed linear span of the tangent set. Here an inuence function will be any

measurable function _ P :X 7! R whose projection on lin _PP is the eÆcient inuence

function.

In the preceding set-up the tangent sets _PP are made to depend both on the

model P and the functional  . We do not always want to use the \maximal tangent

set", which is the set of all score functions of di�erentiable submodels t 7! Pt,

because the parameter  may not be di�erentiable relative to it. According to our

de�nition every subset of a tangent set a tangent set itself.

The maximal tangent set is a cone: if g 2 _PP and a � 0, then ag 2 _PP , because
the path t 7! Pat has score function ag when t 7! Pt has score function g. It is rarely

loss of generality to assume that the tangent set we work with is a cone as well.

1.15 Example (Parametric model). Consider a parametric model with parameter

� ranging over an open subset � of Rm given by densities p� with respect to some

measure �. Suppose that there exists a vector-valued measurable map _̀
� such that,

as h! 0, Z �
p
1=2
�+h � p

1=2
� � 1

2
hT _̀� p

1=2
�

�2
d� = o

�
khk2

�
:

Then a tangent set at P� is given by the linear space
�
hT _̀�:h 2 R

m
	
spanned by

the score functions for the coordinates of the parameter �.

If the Fisher information matrix I� = P� _̀� _̀
T
� is invertible, then every map

�: � 7! R
k that is di�erentiable in the ordinary sense as a map between Euclidean

spaces is di�erentiable as a map  (P�) = �(�) on the model relative to the given

tangent space. This follows because the submodel t 7! P�+th has score hT _̀� and

@

@t jt=0
�(� + th) = _��h = P�

��
_�� I

�1
�

_̀
�

�
hT _̀�

�
:

This equation shows that the function ~ P� = _�� I
�1
�

_̀
� is the eÆcient inuence

function.

1.16 Example (Nonparametric model). Suppose that P consists of all probabil-

ity laws on the sample space. Then a tangent set at P consists of all measurable

functions g satisfying
R
g dP = 0 and

R
g2 dP <1. Since a score function necessarily

has mean zero, this is the maximal tangent set.

It suÆces to exhibit suitable one-dimensional submodels. For a bounded func-

tion g, consider for instance the exponential family pt(x) = c(t) exp(tg(x)) p0(x) or,

alternatively, the model pt(x) =
�
1 + tg(x)

�
p0(x). Both models have the property

that, for every x,

g(x) =
@

@t jt=0
log pt(x):

By a direct calculation or by using Lemma 1.9, we see that both models also have

score function g at t = 0 in the L2-sense (1.7). For an unbounded function g,

these submodels are not necessarily well-de�ned. However, the models have the

common structure pt(x) = c(t) k
�
tg(x)

�
p0(x) for a nonnegative function k with

k(0) = k0(0) = 1. The function k(x) = 2(1 + e�2x)�1 is bounded and can be used

with any g.
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1.17 Example (Cox model). The density of an observation in the Cox model

takes the form

(t; z) 7! e�e
�T z�(t) �(t) e�

T z pZ(z):

Di�erentiating the logarithm of this expression with respect to � gives the score

function for �, with x = (t; z),

_̀
�;�(x) = z � ze�

T z�(t):

We can also insert appropriate parametric models s 7! �s and di�erentiate with

respect to s. If a is the derivative of log�s at s = 0, then the corresponding score

for the model for the observation is

B�;�a(x) = a(t)� e�
T z

Z
[0;t]

a d�:

Finally, scores for the density pZ are functions b(z). The tangent space contains the

linear span of all these functions. Note that the scores for � can be found as an

\operator" working on functions a.

Notes

Tangent spaces of statistical models as presented here were popularized as a general

theory by Pfanzagl in [28], except that Pfanzagl initially did not de�ne di�erentiable

paths through root-densities, which is an idea going back to Le Cam in the 1960s (see

[15], [16], [18]). The study of tangent spaces and information in in�nite-dimensional

models goes further back to Levit and Koshevnik and Levit (see [20] and [19]) in

the mid 1970s, who however considered mostly nonparametric models.

We are going to use the Cox model as an illustration throughout the ten lectures.

Cox introduced it in [7] and discussed the partial likelihood methods of estimation

in [8].



Lecture 2
Lower Bounds

In this lecture we state a number of theorems giving lower bounds on the asymptotic

performance of estimators and tests, and make these concrete for the estimation of

a parameter � in a strict semiparametric model. Some of the proofs are deferred to

Lecture 4.

2.1 Lower Bounds

A \lower bound theorem" in statistics is an assertion that something, estimation

or testing, cannot be done better than in some way. The best known bound is the

Cram�er-Rao bound for the case of independent sampling from a parametric model

fP�: � 2 � � Rg, which is taught in most introductory statistics courses.

2.1 Fact. If � 7! P� is di�erentiable at � with score function _̀
� and Tn =

Tn(X1; : : : ; Xn) is un unbiased estimator of �(�) for a di�erentiable function �:R 7!
R, then under regularity conditions var�(

p
nTn) � �0(�)2=I� for I� = var� _̀�(X1)

the \Fisher information" for �.

The Cram�er-Rao bound is the number �0(�)2=I�, which depends solely on the

functional � to be estimated and on the model fP�: � 2 Rg, through its Fisher

information. It turns out that this bound is often not sharp, in the sense that there

may not exist unbiased estimators Tn for which n�1 their variance is equal to the

bound. However, the bound is sharp in a certain asymptotic sense, as n!1. One

purpose of this lecture is to state the deep theorems that allow a precise formulation

of what it means to be \asymptotically sharp", in a semiparametric context.

To motivate the de�nition of \information" in our semiparametric set-up, as-

sume for simplicity that the parameter  (P ) is one-dimensional. The Fisher infor-

mation about t in a di�erentiable submodel t 7! Pt with score function g at t = 0 is

Pg2. Thus, the Cram�er-Rao bound for estimating the function t 7!  (Pt), evaluated

at t = 0, is �
d (Pt)=dt

�2
Pg2

=
h ~ P ; gi2P
hg; giP

:
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The supremum of this expression over all submodels, equivalently over all elements

of the tangent set, is a lower bound for estimating  (P ) given the model P, when the
\true measure" is P . This supremum can be expressed in the norm of the eÆcient

inuence function ~ P .

2.2 Lemma. Suppose that the functional  :P 7! R is di�erentiable at P relative

to the tangent set _PP . Then

sup
g2lin _PP

h ~ P ; gi2P
hg; giP

= P ~ 2
P :

Proof. This is a consequence of the Cauchy-Schwarz inequality (P ~ P g)
2 � P ~ 2

PPg
2

and the fact that, by de�nition, the eÆcient inuence function ~ P is contained in

the closure of lin _PP . We obtain equality by choosing g equal to ~ P .

Thus, the squared norm P ~ 2
P of the eÆcient inuence function plays the role of

a \smallest variance". Similar considerations (take linear combinations) show that

the \smallest covariance" for estimating a higher-dimensional parameter  :P 7! R
k

is given by the covariance matrix P ~ P ~ TP of the eÆcient inuence function. The

following example shows that the Cram�er-Rao parametric set-up is a special case.

2.3 Example (Parametric model). Consider a parametric model as in Exam-

ple 1.15. If the Fisher information matrix is invertible and the map � is di�erentiable,

then the eÆcient inuence function is given by

~ P� = �0�I
�1
�

_̀
�:

Thus the appropriate covariance matrix is P� ~ P�
~ TP� = �0�I

�1
� (�0�)

T . This is precisely

the Cram�er-Rao bound.

It is time to give a precise meaning to \smallest covariance". We shall state two

theorems regarding the estimation problem and one theorem regarding testing.

For every g in a given tangent set _PP , write Pt;g for a submodel with score

function g along which the functional  is di�erentiable.

As usual, an estimator Tn is a measurable function Tn(X1; : : : ; Xn) of the ob-

servations.

2.4 De�nition. A function `:Rk 7! [0;1) is subconvex if for all c > 0 the set�
y: `(y) � c

	
is convex, symmetric and closed.
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2.5 Theorem (LAM). Let the functional  :P 7! R
k be di�erentiable at P relative

to the tangent set _PP with eÆcient inuence function ~ P . If _PP is a convex cone,

then, for any estimator sequence fTng and subconvex function `:Rk 7! [0;1),

sup
I

lim inf
n!1

sup
g2I

EP
1=
p
n;g
`
�p
n(Tn �  (P1=

p
n;g)))

�
�
Z
` dN

�
0; P ~ P ~ TP

�
:

Here the �rst supremum is taken over all �nite subsets I of the tangent set.

The purpose of the theorem is to give a lower bound, depending only on the

model and the functional to be estimated, for the liminf of the risk EP `
�p
n(Tn �

 (P )
�
, for an arbitrary estimator Tn. A "best" estimator Tn can then be de�ned

as one that attains equality (of the limsup and for every P 2 P). The theorem is

more complicated than that and involves a supremum over the risk over shrinking

neighbourhoods of P . A slightly weaker assertion makes this clearer. Let k � k be the
variation norm.

2.6 Corollary.

inf
Æ>0

lim inf
n!1

sup
kQ�Pk<Æ

EQ`
�p
n(Tn �  (Q))

�
�
Z
` dN

�
0; P ~ P ~ TP

�
:

Without taking the (local) maximum risk the theorem would fail.

It is attractive that the LAM theorem applies to any estimator, even though

it may blur the distinction between two estimator sequences by evaluating only a

maximum risk. The next theorem avoids the maximum, but at the strong price of

restricting itself to regular estimator sequences. An estimator sequence Tn is regular

at P for estimating  (P ) (relative to _PP ) if there exists a probability measure L

such that p
n
�
Tn �  (P1=

p
n;g)

� P
1=
p
n;g

 L; every g 2 _PP :
It follows from the de�nition of weak convergence (or the portmanteau lemma), that

for a regular estimator sequence and bounded, continuous function ` the limiting

local maximum risk in the left side of the LAM theorem reduces to
R
` dL. Thus if `

is subconvex, this is bounded by
R
` dN

�
0; P ~ P ~ TP

�
for any such `. The convolution

theorem shows that this discrepancy between limit and lower bound always results

from L being more dispersed than the normal measure.
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2.7 Theorem (Convolution). Let the functional  :P 7! R
k be di�erentiable at P

relative to the tangent set _PP with eÆcient inuence function ~ P . Let Tn be regular

at P with limit distribution L.

(i) if _PP is a cone, then
R
yyT dL(y)� P ~ P ~ TP is nonnegative de�nite.

(ii) if _PP is a convex cone, then there exists a probability measure M such that

L = N
�
0; P ~ P ~ TP

�
�M .

Both theorems give the message that the normal distribution with mean zero

and covariance matrix P ~ P ~ TP is a best limiting distribution for an estimator se-

quence. We should not take this in a too absolute sense. For instance, shrinkage

estimators as �rst invented by Stein in the 1950s are not regular, and hence are not

in the realm of the convolution theorem, and are LAM for certain loss functions `,

because in fact better than the usual estimators (which are best regular and LAM),

but are not asymptotically normal. A second reason to be careful is that both the

LAM and convolution theorems need assumptions on the form of the tangent set.

Nevertheless, so far best regular estimator sequences have been considered \best"

in semiparametric theory. We adopt the same convention in the following de�nition.

2.8 De�nition. An estimator sequence is asymptotically eÆcient at P for estimat-

ing the di�erentiable parameter  (P ), if it is regular at P with limit distribution

L = N(0; P ~ P ~ TP ).

We note that our de�nition of asymptotic eÆciency is not absolute, because it is

relative to a given tangent set, and we permit a variety of tangent sets. In \practice"

one hunts for a pair of a tangent set and estimator sequence such that the tangent

set is \big enough" and the estimator sequence \eÆcient enough" so that the latter

is asymptotically eÆcient according to the preceding de�nition. Next one strongly

believes that this is all that need to be said about the problem.

The following lemma shows that eÆcient estimator sequences must be asymp-

totically approximable by an average of the eÆcient inuence function evaluated at

the observations. Because given a sequence y1; y2; : : : the di�erence of the averages

yn+1�yn is proportional to the additional term yn+1, the lemma explains the name

\inuence function" for ~ P .

2.9 Lemma. Let the functional  :P 7! R
k be di�erentiable at P relative to the

tangent cone _PP with eÆcient inuence function ~ P . A sequence of estimators Tn
is regular at P with limiting distribution N

�
0; P ~ P ~ TP

�
if and only if it satis�es

(2:10)
p
n
�
Tn �  (P )

�
=

1p
n

nX
i=1

~ P (Xi) + oP (1):

2.11 Example (Empirical distribution). The empirical distribution is an asymp-

totically eÆcient estimator if the underlying distribution P of the sample is com-

pletely unknown. To give a rigorous expression to this intuitively obvious statement,

�x a measurable function f :X 7! R with Pf2 <1, for instance an indicator func-

tion f = 1A, and consider Pnf = n�1
Pn
i=1f(Xi) as an estimator for the function

 (P ) = Pf .
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In Example 1.16 it is seen that the maximal tangent space for the nonparametric

model is equal to the set of all g 2 L2(P ) such that Pg = 0. For a general function f ,

the parameter  may not be di�erentiable relative to the maximal tangent set, but

it certainly is di�erentiable relative to the tangent space consisting of all bounded,

measurable functions g with Pg = 0. The closure of this tangent space is the maximal

tangent set and hence working with this smaller set does not change the eÆcient

inuence functions. For a bounded function g we can use the submodel de�ned by

dPt = (1 + tg) dP , for which  (Pt) = Pf + tPfg. Hence the derivative of  is the

map g 7! _ P g = Pfg and the eÆcient inuence function relative to the maximum

tangent set is the function ~ P = f � Pf . (The function f is an inuence function;

its projection onto the closed, linear span of _PP is f � Pf .)

The \optimal asymptotic variance" for estimating P 7! Pf is equal to P ~ 2
P =

P (f � Pf)2. The sequence of empirical estimators Pnf is asymptotically eÆcient,

because it satis�es (2.10), with the oP (1)-remainder term identically zero.

The problem of testing a null hypothesis H0: (P ) � 0 versus the alternative

H1: (P ) > 0 is closely connected to the problem of estimating the function  (P ). It

ought to be true that a test based on an asymptotically eÆcient estimator of  (P ) is,

in an appropriate sense, asymptotically optimal. For real-valued parameters  (P )

this optimality can be taken in the absolute sense of an asymptotically (locally)

uniformly most powerful test. For higher-dimensional parameters it is diÆcult to

de�ne a satisfactory notion of asymptotic optimality. We therefore �rst concentrate

on real-valued functionals  :P 7! R.

Given a model P and a measure P on the boundary of the hypotheses, i.e.

 (P ) = 0, we shall study the \local asymptotic power" in a neighbourhood of P .

For every score function g for which _ P g = P ~ P g > 0, the corresponding submodel

Pt;g belongs to the alternative hypothesis H1 for (at least) every suÆciently small,

positive t, since  (Pt;g) = tP ~ P g + o(t) if  (P ) = 0. Thus the measures Ph=
p
n;g

can be viewed as \local alternatives".

A test function �n is an estimator that takes is values in [0; 1]. The interpreta-

tion is that we reject the null hypothesis if the observed value of �n is 1, do not reject

if it is 0, and reject it with probability �n (performing an additional experiment) if

it is between 0 and 1. The following theorem shows that tests whose probabilities of

the �rst kind (rejecting H0 if it is true) are bounded above by some level � neces-

sarily have probabilities of the second kind (not rejecting H0 if it is false) bounded

below by a certain Gaussian integral. Let z� = ��1(1� �) be the upper �-quantile

of the standard normal distribution.

2.12 Theorem. Let the functional  :P 7! R be di�erentiable at P relative to the

tangent space _PP with eÆcient inuence function ~ P . Suppose that  (P ) = 0. Then

for every sequence of tests �n such that

sup
Q: (Q)�0

Qn�n � � 2 (0; 1);

and every g 2 _PP with P ~ P g > 0 and every h > 0,

lim sup
n!1

Pnh=
p
n;g�n � 1� �

�
z� � h

P ~ P g

(P ~ 2
P )

1=2

�
:
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It is reasonable to expect that a test based on an eÆcient estimator is eÆcient

as a test, and this is true, as we now show using the preceding theorem. Suppose

that the sequence of estimators Tn is asymptotically eÆcient for  (P ) at P and

that Sn is a consistent sequence of estimators of its asymptotic variance P ~ 2
P . Then

the test that rejects H0: (P ) = 0 for
p
nTn=Sn � ��1(1 � �) attains the upper

bound of the theorem. The critical value z� is chosen exactly so that the asymptotic

probability of an error of the �rst kind is �: PP (
p
nTn=Sn � z�)! �.

2.13 Lemma. Let the functional  :P 7! R be di�erentiable at P with  (P ) = 0.

Suppose that the sequence Tn is regular at P with a N(0; P ~ 2
P )-limit distribution.

Furthermore, suppose that S2
n

P! P ~ 2
P . Then, for every h � 0 and g 2 _PP ,

lim
n!1

Ph=
p
n;g

�pnTn
Sn

� z�

�
= 1� �

�
z� � h

P ~ P g

(P ~ 2
P )

1=2

�
:

Proof. By the eÆciency of Tn and the di�erentiability of  , the sequence
p
nTn

converges under Ph=
p
n;g to a normal distribution with mean hP ~ P g and variance

P ~ 2
P . Thus the lemma follows by simple algebra.

2.14 Example (Wilcoxon test). Suppose that the observations are two indepen-

dent random samples X1; : : : ; Xn and Y1; : : : ; Yn from distribution functions F and

G, respectively. To �t this two-sample problem in the present i.i.d. set-up, we pair

the two examples and think of (Xi; Yi) as a single observation from the product

measure F � G on R
2 . We wish to test the null hypothesis H0:

R
F dG � 1

2
ver-

sus the alternative H1:
R
F dG > 1

2
. The Wilcoxon test rejects H0 for large values

of
R
Fn dG n , where Fn and G n are the empirical distribution functions of the two

samples. This test is asymptotically eÆcient relative to the model in which F and

G are completely unknown. This gives a di�erent perspective on this test, which is

usually presented as being asymptotically optimal for testing a di�erence of loca-

tion in the logistic location-scale family. Actually, this �nding is an example of the

general principle that, in the situation that the underlying distribution of the obser-

vations is completely unknown, empirical-type statistics are asymptotically eÆcient

for whatever they naturally estimate or test. The present conclusion concerning the

Wilcoxon test extends to most other test statistics.

By the preceding lemma, the eÆciency of the test follows from the eÆciency of

the Wilcoxon statistic as an estimator for the function  (F �G) =
R
F dG. We do

not give the complete argument for this, but note that it could be derived from the

eÆciency of the Fn for F and of G n for G, which we noted in Example 2.11, either

by applying a preservation theorem of eÆciency, or by similar arguments.

All three theorems presented in this section give a special role to normal distri-

butions with covariance matrix P ~ P ~ TP . We have motivated the covariance matrix

by the Cram�er-Rao theorem, but the normality is a new element. That \normal limit

distributions are best" was proved for parametric models in the 1970s by H�ajek, and

is best explained from Le Cam's theory of limiting experiments. This theory shows

that the sequence of statistical experiments

(Pn1=
p
n;g: g 2 _PP )
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converges in the weak sense of Le Cam to a Gaussian location experiment, indexed

by the tangent set _PP . We do not discuss this convergence theory here, but do

present a fourth theorem that is more in its spirit.

2.15 Theorem. Suppose that Tn are estimators with values in a separable, Banach

space D such that, for every g 2 _PP and a probability measure Lg,

p
n
�
Tn �  (P1=

p
n;g)

�
 Lg; under P1=

p
n;g:

If  is di�erentiable at P , relative to _PP , then for any orthonormal sequence

g1; : : : ; gm in L2(P ) there exists a measurable map T :Rm � [0; 1] 7! D such that

T � _ P (g) is distributed as Lg if the law of T is calculated under the product of the

normal measure with mean
�
hg; g1iP ; : : : ; hg; gmiP

�
and covariance the identity and

the uniform measure on [0; 1].

The measurable map T in this theorem should be regarded as a randomized

estimator T = T (X;U) in a statistical experiment that consists of observing a vector

X = (X1; : : : ; Xm) of m independent normal variables, with means hgi; giP depend-

ing on an unknown parameter g and unit variance. The estimator is allowed to

depend also on an auxiliary uniform variable U that can be generated by the statis-

tician. (For many purposes it is not helpful to use randomization, but sometimes, as

with nonconvex loss functions, it may be.) The theorem shows that asymptotically

the problem of statistical inference about  (P1=
p
n;g) based on a sample of size n

from P1=
p
n;g, where g is unknown, is matched by the problem of estimating _ P (g)

based on X. Here we could restrict g =
P
i=1 aigi to the linear span of g1; : : : ; gm

and develop the parameter of interest _ P (g) =
Pm
i=1 ai

_ P (gi). Then we are to make

inference about a linear function
P
aidi based on a normalNm(a; I)-distributed vec-

tor, which is a well-studied problem with simple solutions. The preceding theorems

are merely speci�cations to particular problems (minimax estimation, equivariant

estimation, or uniformly most powerful testing) of this Gaussian approximation.

Using the preceding theorem we could obtain a load of other concrete statements

on asymptotic lower bounds, provided we can solve the particular question in the

Gaussian experiment. For instance, we can derive statements for tangent sets that

do not satisfy the convexity or linearity requirements of the preceding theorems;

we can consider loss functions that are not subconvex; or we can consider testing

of higher-dimensional functionals. The problem with testing a parameter of dimen-

sion 2 or higher is that no uniformly most powerful, unbiased test does exist and

hence an optimal test can only be de�ned through restricting the class of tests or

working with envelope power functions. Appropriate restriction through invariance

will of course lead to the same conclusion that tests best on best regular estimator

sequences are best invariant tests.

Rather than using �nitely many functions g1; : : : ; gm, we could have used an

in�nite sequence g1; g2; : : : (unless L2(P ) is �nite dimensional). The analogous result

will be true. However, the analysis of an in�nite-dimensional Gaussian experiment

will proceed by �nite-dimensional approximation, so not much is gained by this

formulation. We have a similar reservation against a representation of the Gaussian

experiment using a Brownian motion with drift (as in [22]). It is impossible to

perform direct calculations on risks of estimators which are measurable functions of
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Brownian motion and hence it will be necessary to approximate the experiment by

�nite-dimensional ones in any case.

Proofs of generalizations of the preceding theorems are given in Lecture 4.

2.2 EÆcient Score Functions

A function  (P ) of particular interest is the parameter � in a semiparametric model

fP�;�: � 2 �; � 2 Hg. Here � is an open subset of Rk and H is an arbitrary set,

typically of in�nite dimension. The information bound for the functional of interest

 (P�;�) = � can be conveniently expressed in an \eÆcient score function".

As submodels, we use paths of the form t 7! P�+ta;�t , for given paths t 7! �t
in the parameter set H. The score functions for such submodels (if they exist) will

typically have the form of a sum of \partial derivatives" with respect to � and �.

If _̀
�;� is the ordinary score function for � in the model where � is �xed, then we

expect
@

@t jt=0
log dP�+ta;�t = aT _̀�;� + g:

The function g has the interpretation of a score function for � when � is �xed,

and will run through an in�nite-dimensional set if we are concerned with a \true"

semiparametric model. We refer to this set as the tangent set for �, and denote it

by �
_PP�;� .
The parameter  (P�+ta;�t) = � + ta is certainly di�erentiable with respect to

t in the ordinary sense, but is, by de�nition, di�erentiable as a parameter on the

model if and only if there exists a function ~ �;� such that

a =
@

@t jt=0
 (P�+ta;�t) = h ~ �;�; aT _̀�;� + giP�;� ; a 2 R

k ; g 2 �
_PP�;� :

Setting a = 0, we see that ~ �;� must be orthogonal to the tangent set � _PP�;� for

the nuisance parameter. De�ne ��;� as the orthogonal projection onto the closure

of the linear span of � _PP�;� in L2(P�;�).

2.16 De�nition.

(i) The eÆcient score function for � is ~̀�;� = _̀
�;� ���;� _̀�;�.

(ii) The eÆcient information matrix for � is ~I�;� = P�;� ~̀�;� ~̀
T
�;�.
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2.17 Lemma. Suppose that for every a 2 R
k and every g 2 �

_PP�;� there exists a

path t 7! �t in H such that

(2:18)

Z hdP 1=2
�+ta;�t

� dP
1=2
�;�

t
� 1

2
(aT _̀�;� + g) dP

1=2
�;�

i2
! 0:

If ~I�;� is nonsingular, then the functional  (P�;�) = � is di�erentiable at P�;� relative

to the tangent set _PP�;� = lin _̀
�;� + �

_PP�;� with eÆcient inuence function ~ �;� =
~I�1�;� ~̀�;�.

Proof. The given set _PP�;� is a tangent set by assumption. The function  is

di�erentiable with respect to this tangent set since

h~I�1�;� ~̀�;�; aT _̀�;� + giP�;� = ~I�1�;�h~̀�;�; _̀T�;�iP�;�a = a:

The last equality follows, because the inner product of a function and its orthogonal

projection is equal to the square length of the projection. Thus, we may replace _̀
�;�

by ~̀
�;�.

Consequently, an estimator sequence is asymptotically eÆcient for estimating

� if
p
n(Tn � �) =

1p
n

nX
i=1

~I�1�;� ~̀�;�(Xi) + oP�;�(1):

This is very similar to the situation for eÆcient estimators in parametric models.

The only di�erence is that the ordinary score function _̀
�;� is replaced by the eÆcient

score function (and similarly for the informations). The intuitive explanation is that

a part of the score function for � can also be accounted for by score functions for

the nuisance parameter �. When the nuisance parameter is unknown, a part of the

information for � is \lost", and this corresponds to a \loss" of a part of the score

function.

2.19 Example (Symmetric location). Suppose that the model consists of all

densities x 7! �(x � �) with � 2 R and the \shape" � symmetric about 0 with

�nite Fisher information for location I�. Thus, the observations are sampled from a

density that is symmetric about �.

By the symmetry, the density can equivalently be written as �
�
jx��j

�
. It follows

that any score function for the nuisance parameter � is necessarily a function of

jx��j. This suggests a tangent set containing functions of the form a(�0=�)(x��)+
b
�
jx � �j

�
. It is not hard to show that all square-integrable functions of this type

with mean zero occur as score functions in the sense of (2.18).

A symmetric density has an asymmetric derivative and hence an asymmetric

score function for location. Therefore, for every b,

E�;�
�0

�
(X � �) b

�
jX � �j

�
= 0:

Thus, the projection of the �-score onto the set of nuisance scores is zero and hence

the eÆcient score function coincides with the ordinary score function. This means
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that there is no di�erence in information about � whether the form of the density

is known or not known, as long as it is known to be symmetric. This surprising fact

was discovered by Stein in 1956, and has been an important motivation in the early

work on semiparametric models.

Even more surprising is that the information calculation is not misleading.

There exist estimator sequences for � whose de�nition does not depend on � that

have asymptotic variance I�1� under any true �! We shall see this in Lecture 8.

2.20 Example (Regression). Let g� be a given set of functions indexed by a pa-

rameter � 2 R
k , and suppose that a typical observation (X;Y ) follows the regression

model
Y = g�(X) + e; E(ejX) = 0:

This model includes the logistic regression model, for g�(x) = 1=(1 + e��
T x). It is

also a version of the ordinary linear regression model. However, in this example we

do not assume that X and e are independent, but only the relations in the preceding

display, apart from qualitative smoothness conditions that ensure existence of score

functions, and the existence of moments. We shall write the formulas assuming that

(X; e) possesses a density �. Thus, the observation (X;Y ) has a density �
�
x; y �

g�(x)
�
, where � is (essentially) only restricted by the relations

R
e�(x; e) de � 0.

Since any perturbation �t of � within the model must satisfy this same relationR
e�t(x; e) de = 0, it is clear that score functions for the nuisance parameter � are

functions a
�
x; y � g�(x)

�
that satisfy

E
�
ea(X; e)jX) =

R
ea(X; e) �(X; e) deR

�(X; e) de
= 0:

By the same argument as for nonparametric models all square-integrable func-

tions of this type that have mean zero are score functions. Since the relation

E
�
ea(X; e)jX) = 0 is equivalent to the orthogonality in L2(�) of a(x; e) to all

functions of the form eh(x), it follows that the set of score functions for � is the

orthocomplement of the set eH, of all functions of the form (x; y) 7!
�
y�g�(x)

�
h(x)

within L2(P�;�), up to centering at mean zero.

Thus, we obtain the eÆcient score function for � by projecting the ordi-

nary score function _̀
�;�(x; y) = ��2=�(x; e) _g�(x) onto eH. The projection of an

arbitrary function b(x; e) onto the functions eH is a function eh0(x) such that

Eb(X; e)eh(X) = Eeh0(X)eh(X) for all measurable functions h. This can be solved

for h0 to �nd that the projection operator takes the form

�eHb(X; e) = e
E
�
b(X; e)ejX

�
E(e2jX)

:

This readily yields the eÆcient score function

~̀
�;�(X;Y ) = � e _g�(X)

E(e2jX)

R
�2(X; e)e deR
�(X; e) de

=

�
Y � g�(X)

�
_g�(X)

E(e2jX)
:

The eÆcient information takes the form ~I�;� = E
�
_g� _g

T
� (X)=E(e2jX)

�
.
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Notes

The study of the symmetric location model has a long history. That the scores for

the location parameter and the shape parameter were orthogonal was �rst noted by

Stein in [34]. Several authors subsequently worked on de�ning adaptive estimators.

A summary approach was given by Bickel in [2], which provided a starting point to

extensions to more general models.

The convolution and minimax theorems for parametric models are due to H�ajek,

see [10] and [11]. The semiparametric versions given here are, in a way, simple

extensions of these theorems. The role of convexity or linearity of tangent spaces for

these theorems was investigated in [36], which is also the basis of Theorem 2.15.

EÆcient score functions were presented by Begun, Hall, Huang and Wellner, in

[1], as an alternative to the (more general) presentations by Levit and Pfanzagl.



Lecture 3
Calculus of Scores

In this lecture we introduce a \calculus of scores", which is a useful way of �nding

eÆcient inuence functions in models that are parametrized.

3.1 Score and Information Operators

The method to �nd the eÆcient inuence function of a parameter given in the

preceding lecture is the most convenient method if the model can be naturally par-

titioned in the parameter of interest and a nuisance parameter. For many parameters

such a partition is impossible, or, at least, unnatural. Furthermore, even in semi-

parametric models it can be worthwhile to derive a more concrete description of the

tangent set for the nuisance parameter, in terms of a \score operator".

Consider �rst the situation that the model P = fP�: � 2 Hg is indexed by a

parameter � that is itself a probability measure on some measurable space. We are

interested in estimating a parameter of the type  (P�) = �(�) for a given function

�:H 7! R
k on the model H.

The model H gives rise to a tangent set _H� at �. If the map � 7! P� is di�eren-

tiable in an appropriate sense, then its derivative will map every score b 2 _H� into a

score g for the model P. To make this precise, we assume that a smooth parametric

submodel t 7! �t induces a smooth parametric submodel t 7! P�t , and that the score

functions b of the submodel t 7! �t and g of the submodel t 7! P�t are related by

g = A�b:

Then A� _H� is a tangent set for the model P at P�. Since A� turns scores for the

modelH into scores for the model P it is called a score operator. Ahead it is seen that

if � and P� are the distributions of an unobservable Y and an observable X = m(Y ),

respectively, then the score operator is a conditional expectation. More generally, it

can be viewed as a derivative of the map � 7! P�. We assume that A�, as a map

A�: lin _H� � L2(�) 7! L2(P�), is continuous and linear.

Next, assume that the function � 7! �(�) is di�erentiable with inuence function

~�� relative to the tangent set _H�. Then, by de�nition, the function  (P�) = �(�) is



3: Calculus of Scores 27

pathwise di�erentiable relative to the tangent set _PP� = A� _H� if and only if there

exists a vector-valued function ~ P� such that

h ~ P� ; A�biP� =
@

@t jt=0
 (P�t) =

@

@t jt=0
�(�t) = h~��; bi�; b 2 _H�:

This equation can be rewritten in terms of the adjoint score operator A��:L2(P�) 7!
lin _H�. By de�nition this satis�es hh;A�biP� = hA��h; bi� for every h 2 L2(P�) and

b 2 _H�. Note that we de�ne A�� to have range lin _H�, so that it is the adjoint of

A�: _H� 7! L2(P�). This is the adjoint of an extension A�:L2(�) 7! L2(P�) followed

by the orthogonal projection onto lin _H�.

3.1 Fact. Every continuous, linear map A: H 1 7! H 2 between two Hilbert spaces has

an adjoint map A�: H 2 7! H 1 , which is a continuous, linear map that satis�es and is

uniquely determined by the equations hA�h2; h1i1 = hh2; Ah1i2 for every hi 2 H i . If

A is considered the restriction to H 1 � ~H 1 of a continuous, linear map ~A: ~H 1 7! H 2

with domain a Hilbert space that contains H 1 isometrically, then A� = � ~A� for

�: ~H 1 7! H 1 the orthogonal projection of ~H 1 onto H 1 .

The preceding display is equivalent to

(3:2) A�� ~ P� = ~��:

We conclude that the function  (P�) = �(�) is di�erentiable relative to the tangent

set _PP� = A� _H� if and only if this equation can be solved for ~ P� ; equivalently, if

and only if ~�� is contained in the range of the adjoint A
�
�. Since A

�
� is not necessarily

onto lin _H�, not even when it is one-to-one, this is a condition!

For multivariate functionals equation (3.2) is to be understood coordinate-wise.

Two solutions ~ P� of (3.2) can di�er only by an element of the kernel N(A��) of A
�
�,

which is the orthocomplement R(A�)
? of the range of A�: lin _H� 7! L2(P�). Thus,

there is at most one solution ~ P� that is contained in R(A�) = linA� _H�, the closure

of the range of A�, as required.

If ~�� is contained in the smaller range of A��A�, then equation (3.2) can be

solved, of course, and the solution can be written in the attractive form

(3:3) ~ P� = A�(A
�
�A�)

� ~��:

Here A��A� is called the information operator, and (A��A�)
� is a \generalized in-

verse". (Here this will not mean more than that b = (A��A�)
� ~�� is a solution to

the equation A��A�b = ~��.) The following lemma shows that this attractive form is

available for any functional � if the range of the score operator is closed, a situation

which unfortunately fails often.

3.4 Fact. Let A: H 1 7! H 2 be a continuous linear map between two Hilbert spaces.

Then equivalent are:

(i) R(A) is closed.

(ii) R(A�) is closed.
(iii) R(A�A) is closed.
(iv) R(A�A) = R(A�).
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3.5 Fact. Let A: H 1 7! H 2 be a continuous linear map between two Hilbert spaces.

Then

(i) N(A) = R(A�)?.
(ii) N(A�) = R(A)?.
Furthermore, the map A�A: H 1 7! H 1 is one-to-one, onto and has a continuous

inverse if and only if A is one-to-one and R(A) is closed if and only if A�A is

one-to-one and onto.

So far we have assumed that the parameter � is a probability distribution, but

this is not necessary. Consider the more general situation of a model P = fP�: � 2
Hg indexed by a parameter � running through an arbitrary setH. Let H � be a subset

of a Hilbert space that indexes \directions" b in which � can be approximated within

H. Suppose that there exist continuous, linear operators A�: lin H � 7! L2(P�) and

_��: lin H � 7! R
k , and for every b 2 H � a path t 7! �t such that, as t # 0,

Z hdP 1=2
�t � dP

1=2
�

t
� 1

2
A�b dP

1=2
�

i2
! 0;

�(�t)� �(�)

t
! _��b:

By the Riesz representation theorem for Hilbert spaces, the \derivative" _�� has a

representation as an inner product _��b = h~��; biH� for an element ~�� 2 lin H k� . The

preceding discussion can be extended to this abstract set-up.

3.6 Theorem. The map  :P 7! R
k given by  (P�) = �(�) is di�erentiable at

P� relative to the tangent set A�H � if and only if each coordinate function of ~��
is contained in the range of A��:L2(P�) 7! lin H � . The eÆcient inuence function
~ P� satis�es (3.2). If each coordinate function of ~�� is contained in the range of

A��A�: linH � 7! lin H � , then it also satis�es (3.3).

Proof. By assumption, the set A�H � is a tangent set. The map  is di�erentiable

relative to this tangent set (and the corresponding submodels t 7! P�t) by the

argument leading up to (3.2).

The condition (3.2) is odd. By de�nition, the inuence function ~�� is contained

in the closed linear span of H � and the operator A�� maps L2(P�) into lin H � . There-

fore, the condition is certainly satis�ed if A�� is onto. There are two reasons why it

may fail to be onto. First, its range R(A��) may be a proper subspace of lin H � . Since

b ? R(A��) if and only if b 2 N(A�), this can happen only if A� is not one-to-one.

This means that two di�erent directions b may lead to the same score function A�b,

so that the information matrix for the corresponding two-dimensional submodel is

singular. A rough interpretation is that the parameter is not locally identi�able

and it is not surprising that we have a problem. Second, the range space R(A��)
may be dense, but not closed. Then for any ~�� there exist elements in R(A��) that
are arbitrarily close to ~��, but (3.2) may still fail. This is harder to understand,

but it happens quite often. The following theorem shows that failure has serious

consequences.
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3.7 Theorem. In the above setting, if ~�� =2 R(A��), then
(i) there exists no estimator sequence for �(�) that is regular at P�.

(ii)

sup
b2H�

h~��; bi2�
kA�bk2P�

=1:

Proof. We shall only give the proof of (ii). (See [38] for a proof of (i).) The proof of

(ii) can be carried out using the spectral decomposition of the information operator

and spectral calculus. (See for instance [33] for this background.) For simplicity of

notation, we drop the index � throughout the proof. The spectral decomposition

takes the form A�A =
R
� dP� for � 7! P� the spectral resolution of the nonnega-

tive, self-adjoint operator A�A. (In simple cases, the formal integral is a sum over

the (countable many, nonnegative) eigenvalues of A�A and the P� are orthogonal

projections on the corresponding eigenspaces. In general, the spectral resolution may

be continuous.) Next the operator

(A�A)1=2 =
Z p

�dP�

is a square root in that it is nonnegative, self-adjoint and has A�A as its square. The

adjoint A� can be expressed in this square root through the polar decomposition

A� = (A�A)1=2U , for U :L2(P ) 7! R((A�A)1=2) = N((A�A)1=2)? an operator whose

restriction to R(A) is an isometry and has R(A)? as its kernel. It follows that the

ranges of A� and (A�A)1=2 are identical.
The spectral calculus also gives a meaning to integrals of the type

R
f(�) dP�

for general functions f . Such expressions de�ne operators, which can be manipulated

with rules such as
R
f(�) dP�

R
g(�) dP� =

R
f(�)g(�) dP�.

Furthermore, to every b 2 H corresponds a spectral measure �b, which is a

measure on the interval [0; kA�Ak] containing the spectrum with the property that

h
R
f(�) dP�b; bi =

R
jf j2 d�b for every function f that is well-behaved on the spec-

trum of A�A.
We then obtain that

R(A�) = R
�
(A�A)1=2

�
=
n
b:

Z
��1 d�b(�) <1

o
:

Therefore, if ~� is not contained in the range of A�, then we must have at least one

of

�~�f0g > 0; or

Z
1�>0�

�1 d�~�(�) =1:

In the �rst case we evaluate the quotient in (ii) at b = Pf0g ~� =
R
f0g dP� ~�. For this

choice we have by spectral calculus that A�Ab =
R
� dP�Pf0g ~� =

R
1f0g(�)� dP� ~� =

0, whereas h~�; bi = �~�f0g > 0. This yields the quotient (> 0)2=0 in (ii). In

the case that the second possibility in the preceding display is valid we evaluate

the quotient in (ii) at the sequence bn =
R
1��1=n��1 dP� ~�. For this choice we

have by spectral calculus that A�Abn =
R
1��1=n dP� ~� ! ~�, whereas h~�; bni =R

1��1=n��1 d�~�(�)!1. Thus the quotient in (ii) is in�nite.
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3.1.1 Information Loss Models

Suppose that a typical observation is distributed as a measurable transformation

X = m(Y ) of an unobservable variable Y . Assume that the form of m is known and

that the distribution � of Y is known to belong to a class H. This yields a natural

parametrization of the distribution P� of X. A nice property of di�erentiability in

quadratic mean is that it is preserved under \censoring" mechanisms of this type:

if t 7! �t is a di�erentiable submodel of H, then the induced submodel t 7! P�t is

a di�erentiable submodel of fP�: � 2 Hg. Furthermore, the score function g = A�b

(at t = 0) for the induced model t 7! P�t can be obtained from the score function b

(at t = 0) of the model t 7! �t by taking a conditional expectation:

A�b(x) = E�
�
b(Y )jX = x

�
:

If we consider the scores b and g as the carriers of information about t in the variables

Y � �t and X � P�t , respectively, then the intuitive meaning of the conditional

expectation operator is clear. The information contained in the observation X is the

information contained in Y diluted (and reduced) through conditioning.

3.8 Lemma. Suppose that f�t: 0 < t < 1g is a collection of probability measures

on a measurable space (Y;B) such that for some measurable function b:Y 7! R

Z hd�1=2t � d�1=2

t
� 1

2
b d�1=2

i2
! 0:

For a measurable map m:Y 7! X let P� be the distribution of m(Y ) if Y has law �

and let A�b(x) be the conditional expectation of b(Y ) given m(Y ) = x. Then

Z hdP 1=2
�t � dP

1=2
�

t
� 1

2
A�b dP

1=2
�

i2
! 0:

Proof. For simplicity of notation we assume that the measures �t and � have den-

sities ht and h relative to a �xed probability measure �. (If this is not the case,

choose � = �t =
1
2
(�t + �) dependent on t and add t's throughout the following.)

Furthermore, we assume that b is uniformly bounded by M . (If this is not the case

truncate b at Mt !1 and add t's in the following.) Then �u2t ! 0 for

ut =
h
1=2
t � h1=2

t
� 1

2
bh1=2:

De�ne � to be the law of X = m(Y ) if Y is distributed according to �. Then

pt(x) = E�
�
ht(Y )jX = x

�
; and p(x) = E�

�
h(Y )jX = x

�
are densities of P�t and P� with respect to �. In case of the second one, this follows

from the equations

P�(A) =

Z
1A
�
m(y)

�
d�(y) = E�1A

�
m(Y )

�
h(Y )

= E�1A(X)E�
�
h(Y )jX

�
=

Z
A

p(x) d�(x):
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By a similar argument, we have, almost surely under P�,

A�b(X) p(X) = E�
�
b(Y )h(Y )jX

�
:

From the de�nition of ut we obtain that

ht = h+ tbh+ t2u2t + t(tutbh
1=2 + 2uth

1=2 + 1
4
tb2h):

Evaluating these functions at Y and taking conditional expectations with respect

to X, we �nd

pt = p+ t(A�b) p+ c+ d;

where c and d satisfy

c(X) = t2E�
�
u2t (Y )jX

�
;

jd(X)j2 = t2E�

��
tutbh

1=2 + 2uth
1=2 + 1

4
tb2h

�
(Y )jX

�2

. t2E�

��
uth

1=2(tM + 1) + tM2h
�
(Y )jX

�2

. t2
�
E�
�
u2t (Y )jX

�
(tM + 1)2 + t2M4p(X)

�
p(X);

by the Cauchy-Schwarz inequality. By a Taylor expansion (see Lemma 3.9), we

conclude that on the set A = fp > 0g

hp1=2t � p1=2

t
� 1

2
(A�b)p

1=2
i2
. E�

�
u2t (Y )jX

�
(tM + 1)2 + t2M4p(X)

+ E�
�
u2t (Y )jX

�
+
��� 1p

1�Mt
� 1

��2M2p(X):

The integral over the set A of this function relative to � converges to zero as t! 0.

Finally, the equation �
�
m�1(Ac)

�
= P�(A

c) = 0 implies that P�t(A
c) =

�t
�
m�1(Ac)

�
= o(t2), because �(tu2t1B) = �t(B) if �(B) = 0. Thus the integral

of the preceding display over the set Ac converges to zero as well.

3.9 Lemma. For any real numbers a; b; c; d with a > 0, b=a � " < 1, c � 0 and

a+ b+ c+ d � 0

���pa+ b+ c+ d�
p
a� 1

2

bp
a

���2 � 3d2

a(1� ")
+ 3c+

��� 1p
1� "

� 1
���2 b2
a
:

If we consider A� as an operator A�:L2(�) 7! L2(P�), then its adjoint

A��:L2(P�) 7! L2(�) is a conditional expectation operator also, reversing the roles

of X and Y ,

A��g(y) = E�
�
g(X)jY = y

�
:

This follows since, by the usual rules for conditional expectations,

EE
�
g(X)jY

�
b(Y ) = Eg(X)b(Y ) = Eg(X)E

�
b(Y )jX

�
:

In the \calculus of scores" of Theorem 3.6 the adjoint is understood to be the adjoint

of A�: H � 7! L2(P�) and hence to have range lin H � � L2(�). Then the conditional
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expectation in the preceding display needs to be followed by the orthogonal projec-

tion onto lin H � .

3.10 Example (Mixtures). Suppose that a typical observation X possesses a

conditional density p(xj z) given an unobservable variable Z = z. If the unobservable

Z possesses an unknown probability distribution �, then the observations are a

random sample from the mixture density

p�(x) =

Z
p(xj z) d�(z):

This is a missing data problem if we think of X as a function of the pair Y = (X;Z).

A score for the mixing distribution � in the model for Y is a function b(z). Thus, a

score space for the mixing distribution in the model for X consists of the functions

A�b(x) = E�
�
b(Z)jX = x

�
=

R
b(z) p(xj z) d�(z)R
p(xj z) d�(z) :

If the mixing distribution is completely unknown, which we assume, then the tangent

set _H� for � can be taken equal to the maximal tangent set fb 2 L2(�): �b = 0g.
In particular, consider the situation that the kernel p(xj z) belongs to an expo-

nential family, i.e. p(xj z) = c(z)d(x) exp
�
zTx

�
. Mixtures over exponential families

of this type give relatively large models. In fact, if the interior of the support of

� is nonempty, than the tangent set A� _H� is dense in the maximal tangent set

fg 2 L2(P�):P�g = 0g. We show this below.

This has as a consequence that empirical estimators Png, for a �xed squared-

integrable function g, are eÆcient estimators for the functional  (�) = P�g. For

instance, the sample mean is asymptotically eÆcient for estimating the mean of the

observations. This is somewhat surprising, because the mixture densities may still

possess very special properties. For instance, mixtures over the exponential scale

family p(xj z) = zezx1x>0 are monotone densities, and mixtures over the normal

location family are extremely smooth. In terms of entropy the second collection of

mixtures is almost �nite-dimensional and there exist estimators p�̂ that obtain a

rate of convergence in the Hellinger distance of the order log n=
p
n. Thus the set of

all exponential mixtures can be far from being equal to the nonparametric model.

The closure of the range of the operator A� is the orthocomplement of the

kernel N(A��) of its adjoint. Hence our claim is proved if this kernel is zero. The

equation

0 = A��g(z) = E
�
g(X)jZ = z

�
=

Z
g(x) p(xj z) dx

says exactly that g(X) is a zero-estimator under p(xj z). Since the adjoint is de�ned
on L2(�), the equation 0 = A��g should be taken to mean A��g(Z) = 0 almost surely

under �. In other words, the display is valid for every z in a set of �-measure 1. If

the support of � contains a limit point, then this set is rich enough to conclude that

g = 0, by the completeness of the exponential family.

The same argument shows also that the range of the score operator, equivalently

the range of its adjoint, is not closed in this example. This has as a consequence that

many functionals y 7! �(�) are not in the realm of the
p
n-theory of estimation. As

an example consider the functional �(�) = �(A) for a given set A. This has inuence
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function ~� = 1A � �(A), which is contained in the range of A�� if and only if there

exists a measurable function g such that

1A(z) =

Z
g(x)c(z)d(x)ez

Tx d�(x); �-a.e.:

The completeness of the exponential family shows that the A must have probability

0 or 1 under �. Functionals as these belong to the realm of inverse problems. Not

much is known about them today. The deconvolution problem (i.e. p(xj z) a location
family) has best been studied, with a characterization of rates for estimating the

mixing distribution function and its derivatives using Fourier inversion methods.

Even in this case very little is known concerning standard methods of estimation,

such as maximum likelihood.

If the support of � does not contain a limit point, then the preceding approach

to show that the tangent set is dense fails. However, we may reach almost the same

conclusion by using a di�erent type of scores. The paths �t = (1 � ta)� + ta�1 are

well-de�ned for 0 � at � 1, for any �xed a � 0 and �1, and lead to scores

@

@t jt=0
log p�t(x) = a

�p�1
p�

(x)� 1
�
:

This is certainly a score in a pointwise sense, and can be shown to be a score in the

L2-sense provided that it is in L2(P�). If g 2 L2(P�) has P�g = 0 and is orthogonal

to all scores of this type, then

0 = P�1g = P�g
�p�1
p�

� 1
�
; every �1:

If the set of distributions fP�: � 2 Hg is complete, then we can typically conclude

that g = 0 almost surely. Then the closed linear span of the tangent set is equal to the

nonparametric, maximal tangent set. Since this set of scores is also a convex cone,

Theorems 2.7 and 2.5 next show that nonparametric estimators are asymptotically

eÆcient.

3.2 Semiparametric Models

In a semiparametric model fP�;�: � 2 �; � 2 Hg, the pair (�; �) plays the role of the
single � in the preceding general discussion. The two parameters can be perturbed

independently, and the score operator can be expected to take the form

A�;�(a; b) = aT _̀�;� + B�;�b:

Here B�;�: H � 7! L2(P�;�) is the \score operator" for the nuisance parameter. The

domain of the operator A�;�:R
k � lin H � 7! L2(P�;�) is a Hilbert space relative to

the inner product
h(a; b); (�; �)i� = aT�+ hb; �iH� :

Thus this example �ts in the general set-up, with R
k � H � playing the role of the

earlier H � . We shall derive expressions for the eÆcient inuence functions of � and

�.
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3.11 Fact. Given a continuous, linear map A: H 1 7! H 2 between Hilbert spaces,

the operator A(A�A)�1A� (if it exists) is the orthogonal projection of H 1 onto the

range space of A.

The eÆcient inuence function for estimating � is expressed in the eÆcient score

function for � in Lemma 2.17, which is de�ned as the ordinary score function minus

its projection onto the score-space for �. Presently, the latter space is the range

of the operator B�;�. If the operator B��;�B�;� is continuously invertible (but in

many examples it is not), then the operator B�;�(B
�
�;�B�;�)

�1B��;� is the orthogonal
projection onto the nuisance score space, and

(3:12) ~̀
�;� =

�
I � B�;�(B

�
�;�B�;�)

�1B��;�) _̀�;�:

This means that b = �(B��;�B�;�)�1B��;� _̀�;� is a \least favourable direction" in H,

for estimating �. If � is one-dimensional, then the submodel t 7! P�+t;�t where �t
approaches � in this direction, has the least information for estimating t and score

function ~̀
�;�, at t = 0.

A function �(�) of the nuisance parameter can, despite the name, also be of

interest. The eÆcient inuence function for this parameter can be found from (3.2).

The adjoint of A�;�:R
k � H � 7! L2(P�;�), and the corresponding information oper-

ator A��;�A�;�:R
k � H � 7! R

k � lin H � are given by, with B��;�:L2(P�;� 7! lin H � the

adjoint of B�;�,

A��;�g =
�
P�;�g _̀�;�; B

�
�;�g

�
;

A��;�A�;�(a; b) =
�

I�;� P�;� _̀�;�B�;��
B��;� _̀

T
�;� B��;�B�;�

��
a

b

�
:

The diagonal elements in the matrix are the information operators for the parame-

ters � and �, respectively, the former being just the ordinary Fisher information ma-

trix I�;� for �. If � 7! �(�) is di�erentiable as before, then the function (�; �) 7! �(�)

is di�erentiable with inuence function (0; ~��). Thus, for a real parameter �(�),

equation (3.2) becomes

P�;� ~ P�;�
_̀
�;� = 0; B��;� ~ P�;� = ~��:

If ~I�;� is invertible and ~�� is contained in the range of B��;�B�;�, then the solution

~ P�;� of these equations is

B�;�(B
�
�;�B�;�)

� ~�� � hB�;�(B��;�B�;�)� ~��; _̀�;�iTP�;� ~I
�1
�;�

~̀
�;�:

The second part of this function is the part of the eÆcient score function for �(�)

that is \lost" due to the fact that � is unknown. Since it is orthogonal to the �rst

part, it adds a positive contribution to the variance.

3.13 Example (Cox model). We illustrate the general formulas by explicit calcu-

lations for the Cox model. This model is appropriate for this purpose, because the

information operator can be obtained in a simple form, whereas in other models not

much progress can be made beyond writing out formulas for the score operator and

its adjoint.
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For later reference we consider the Cox model under right censoring. In this

model we observe a random sample from the distribution of the variable X = (T ^
C; 1fT � Cg; Z), where, given Z, the variables T and C are independent, as in

the right censoring model, and (Z; T ) follows the Cox model. Thus, the density of

X = (Y;�; Z) is given by�
e�z�(y)e�e

�z�(y)
�
1� FCjZ(y�j z)

��Æ�
e�e

�z�(y)fCjZ(yj z)
�1�Æ

pZ(z):

We make a number of assumptions, whose main purpose is to simplify the formulas

and to ensure the existence of the inverse of the information operator. First, we

assume that the covariate Z is bounded, and that the true conditional distribution

of T given Z possesses a continuous Lebesgue density. Second, we assume that

there exists a �nite number � > 0 such that P(C � �) = P(C = �) > 0 and

P�0;�0(T > �) > 0. The latter condition is not unnatural: it is satis�ed if the

survival study is stopped at some time � at which a positive fraction of individuals

is still \at risk" (alive). Third, we assume that, for any measurable function h, the

probability that Z 6= h(Y ) is positive. The function � now matters only on [0; � ];

we shall identify � with its restriction to this interval.

The score function for � takes the form, with x = (y; Æ; z)

_̀
�;�(x) = Æz � ze�z�(y):

For any bounded, measurable function a: [0; � ] 7! R, the path de�ned by d�t =

(1 + ta) d� de�nes a submodel passing through � at t = 0. Its score function at

t = 0 takes the form

B�;�a(x) = Æa(y)� e�z
Z
[0;y]

a d�:

For unbounded functions a we could employ paths of the form d�t = �(ta) d� and

obtain a score of the same form. The score operator can be viewed as an operator

B�;�:L2(�) 7! L2(P�;�), so we can take H � = L2(�) or take H � equal to the subset

of all bounded functions in L2(�).

To �nd a formula for the adjoint B��;� of B�;�:L2(�) 7! L2(P�;�), we write

hB��;�g; ai = hg;B�;�aiP�;�

= EZ

Z
g(y; 1; z)

�
a(y)� e�z

Z y

0

a d�
�
e�ze�e

�z�(y)

�
1� FC(y�j z)

�
d�(y)

+ EZ

Z
g(y; 0; z)

�
�e�z

Z y

0

a d�
�
e�ze�e

�z�(y) dFC(yj z):

Next we use Fubini's theorem to change the order of integration in the two terms,

rewriting the right side as
R
a
�
� � �] d�. By de�nition the term appearing inside the

square brackets is then B��;�g. It is given by

B��;�g(y) = EZg(y; 1; z)e
�ze�e

�z�(y)
�
1� FC(y�j z)

�
� EZ

Z
g(s; 1; z)e2�z1y�se�e

�z�(s)
�
1� FC(s�j z)

�
d�(s)

� EZ

Z
g(y; 0; z)e2�ze�e

�z�(s)1y�s dFC(sj z):
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This is not the simple formula promised in the introduction, though it has the

bene�t of being obtainable by simple mechanical manipulations. Now, B��;�g for an
arbitrary function g is not really what interests us: rather we would like to obtain

formulas for the information operator B��;�B�;�g and for B��;� _̀�;�. For this we can
continue our mechanical work by combining the formulas obtained so far. This is

straightforward again, and for most examples this would be the end of the story.

The Cox model is special in that clever partial integrations can next simply the

formulas considerably.

We shall not pursue this approach, as it is tedious and not insightful. Rather

we obtain the desired formulas using a statistical principle: minus the mean of

the observed information is the Fisher information. A preciser formulation of this

principle is that, given probability densities x 7! ps;t(x) that depend smoothly on a

parameter (s; t) 2 R
2 , we have

Es;t

� @
@s

log ps;t

�� @
@t

log ps;t

�
= �Es;t

@2

@s@t
log ps;t:

We apply this to the submodels (s; t) 7! P�;�s;t for d�s;t = (1+ sa+ tb+ stab) d� =

(1 + sa) d�0;t at (s; t) = (0; 0). This gives

E�;�(B�;�a)(B�;�b) = �E�;�
@2

@s@t js;t=0
p�;�s;t

= �E�;�
@

@t jt=0
B�;�0;ta

= E�;�e
�Z

Z
[0;Y ]

ab d�

=

Z
b(s)E�;�e

�Z1s�Y a(s) d�(s):

By de�nition of the adjoint, the left side of this display is also equal to the inner

product of b and B��;�B�;�a in L2(�). Thus we read o� that the information operator

is the multiplication operator given by

B��;�B�;�a(s) =
�
E�;�e

�Z1s�Y
�
a(s):

The function B��;� _̀�;� can be obtained by a similar argument, using the submodel

(s; t) 7! P�+s;�t with d�t = (1 + tb)d�. It is given by

B��;� _̀�;�(s) = E�;�1s�Y Ze�Z :

It is remarkable that the information operator is already in its spectral form. It is a

theorem in Hilbert space theory that every self-adjoint operator can be written as a

multiplication operator, relative to an appropriate coordinate system. In the present

case the information operator already takes the form of a multiplication operator

relative to the original coordinate system.

It is easy to invert a multiplication operator. In the present situation, if (�;�)

is a pair of parameters that satis�es the assumptions we have made, the multiplier
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function y 7! E�;�1y�Y e�Z is bounded away from zero on [0; � ]. Thus the inverse of

the information operator exists as a continuous operator and is given by

(B��;�B�;�)
�1a(s) =

�
E�;�e

�Z1s�Y
��1

a(s):

The eÆcient score function takes the general form (3.12), which, with the functions

Li;�(y) = E1Y�yZie�Z , reduces to

~̀
�;�(x) = Æ

�
z � L1;�

L0;�
(y)
�
� e�z

Z
[0;y]

�
z � L1;�

L0;�
(t)
�
d�(t):

The eÆcient information for � can be computed from this as

~I�;� = Ee�Z
Z �

Z � L1;�

L0;�
(y)
�2
G�;�(yjZ) d�(y);

where G(yjZ) = P(Y � yjZ). This is strictly positive by the assumption that Z is

not almost surely equal to a function of Y .

The formula for ~I�;� can be obtained by direct (but tedious, if not diÆcult)

computations. Alternatively, we can use martingale theory. The process

Mt = 1T�t �
Z
[0;t]

1s�T e�Z d�(s)

is a martingale relative to the �ltration generated by (Z;C) and 1T�s for s � t,

with predictable quadratic variation process

hMti =
Z
[0;t]

1s�T e�Z d�(s):

(We have assumed that � is continuous.) The eÆcient score can be written as the

integral

~̀
�;�(X) =

Z
1t�C

�
Z � L1;�

L0;�

(t)
�
dMs:

Because the integrand is predictable, the integral can be viewed as both an ordinary

Stieltjes integral and a stochastic integral. By the second interpretation we have

that

E~̀2�;�(X) = E

Z
1s�C

�
Z � L1;�

L0;�
(t)
�2
dhMti:

This can be seen to reduce to the formula obtained previously.

Notes

This lecture is based on the papers [1] and [37].



Lecture 4
Gaussian Approximations

In this lecture we give proofs of the lower bound theorems stated in Lecture 2, in a

more general setting. For completeness we start by a crash course on contiguity.

4.1 Contiguity

Suppose we are given two probability measures P and Q on a measurable space

(
;U), with densities p and q relative to some measure �. We denote by dQ=dP the

ratio q=p, which is with P -probability one well-de�ned and not depending on �. In

fact, it is a density of the absolutely continuous part of Q relative to P . (Note that

we do no write dQa=dP and we do not assume that Q � P .) Let X: 
 7! D be

a measurable map in a metric space. Then (X; dQ=dP ) is a measurable map into

D � R, and it induces a law L on this space if we equip (
;U) with P . If Q � P ,

then this law determines the law of X under Q, because in this case

Q(X 2 B) = EP 1B(X)
dQ

dP
=

Z
B�R

v dL(x; v):

The validity of this formula depends essentially on the absolute continuity of Q with

respect to P , because a part of Q that is orthogonal with respect to P cannot be

recovered from any P -law.

Consider an asymptotic version of the problem. Let (
n;An) be measurable

spaces, each equipped with a pair of probability measures Pn and Qn. Under what

conditions can a Qn-limit law of random vectors Xn: 
n 7! R
k be obtained from

suitable Pn-limit laws? In view of the above it is necessary thatQn is \asymptotically

absolutely continuous" with respect to Pn in a suitable sense. The right concept is

contiguity.
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4.1 De�nition. The sequence Qn is contiguous with respect to the sequence Pn if

Pn(An)! 0 implies Qn(An)! 0 for every sequence of measurable sets An. This is

denoted Qn /Pn. The sequences Pn and Qn are mutually contiguous if both Pn /Qn
and Qn / Pn. This is denoted Pn / . Qn.

The name \contiguous" is standard, but perhaps conveys a wrong image. \Con-

tiguity" suggests sequences of probability measures living next to each other, while

the correct image is \on top of each other" (in the limit).

Before answering the question of interest, we give two characterizations of con-

tiguity in terms of the asymptotic behaviour of the likelihood ratios of Pn and Qn.

The likelihood ratios dQn=dPn and dPn=dQn are nonnegative and satisfy

EPn
dQn

dPn
� 1 and EQn

dPn

dQn
� 1:

Thus, the sequences of likelihood ratios dQn=dPn and dPn=dQn are uniformly tight

under Pn and Qn, respectively. By Prohorov's theorem, every subsequence has a

further weakly converging subsequence. The next lemma shows that the properties

of the limit points determine contiguity.

4.2 Lemma (Le Cam's �rst lemma). Let Pn and Qn be sequences of proba-

bility measures on measurable spaces (
n;An). Then the following statements are

equivalent:

(i) Qn / Pn;

(ii) if dPn=dQn
Qn
 U along a subsequence, then P(U > 0) = 1;

(iii) if dQn=dPn
Pn V along a subsequence, then EV = 1;

(iv) for any statistics Tn: 
n 7! R
k : if Tn

Pn! 0, then Tn
Qn! 0.

We do not include a proof of this lemma, but note that the lemma is easy if the

sequences Pn and Qn are constant. If (
n;Un) = (
;U), Pn = P and Qn = Q for

each n, then contiguity is equivalent to absolute continuity, and the lemma reduces

to the equivalence of the three statements

Q� P; Q
�dP
dQ

= 0
�
= 0; EP

dQ

dP
= 1:

The lemma shows that these equivalences persist if the three statements are replaced

by their asymptotic counterparts.

According to Lemma 1.10 the likelihood ratios of the measures Pn
1=
p
n
and Pn for

a given di�erentiable path t 7! Pt are asymptotically log-normally distributed with

mean �1
2
Pg2 and variance Pg2. This makes these sequences of measures mutually

contiguous.

4.3 Example (Asymptotic log normality). Let Pn and Qn be probability mea-

sures on arbitrary measurable spaces such that

dPn

dQn

Qn
 eN(�;�2):

Then Qn / Pn. Furthermore, Qn / . Pn if and only if � = �1
2
�2.
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Since the (log normal) variable on the right is positive, the �rst assertion is

immediate from (ii) of the theorem. The second follows from (iii) with the roles of

Pn and Qn switched, upon noting that E expN(�; �2) = 1 if and only if � = �1
2
�2.

The following theorem solves the problem of obtaining a Qn-limit law from a

Pn-limit law that we posed in the introduction. The result, a version of Le Cam's

third lemma, is in perfect analogy with the nonasymptotic situation.

4.4 Theorem. Let Pn and Qn be sequences of probability measures on measurable

spaces (
n;An), and let Xn: 
n 7! R
k be a sequence of maps. Suppose that Qn /Pn

and �
Xn;

dQn

dPn

�
Pn (X;V ):

Then L(B) = E1B(X)V de�nes a probability measure, and Xn
Qn
 L.

Proof. Since V � 0, it follows with the help of the monotone convergence theo-

rem that L de�nes a measure. By contiguity, EV = 1 and hence L is a probability

measure. It is immediate from the de�nition of L that
R
f dL = Ef(X)V for every

measurable indicator function f . Conclude, in steps, that the same is true for ev-

ery simple function f , any nonnegative measurable function, and every integrable

function.

If f is continuous and nonnegative, then so is the function (x; v) 7! f(x) v on

R
k � [0;1). Thus

lim inf EQn;�f(Xn) � lim inf

Z
�
f(Xn)

dQn

dPn
dPn � Ef(X)V;

by the portmanteau lemma. Apply the portmanteau lemma in the converse direction

to conclude the proof that Xn
Qn
 L.

4.5 Example (Le Cam's third lemma). The name Le Cam's third lemma is often

reserved for the following result. If�
Xn; log

dQn

dPn

�
Pn
 Nk+1

��
�

�1
2
�2

�
;

�
� �

�T �2

��
;

then

Xn
Qn
 Nk(�+ �;�):

In this situation the asymptotic covariance matrices of the sequence Xn are the

same under Pn and Qn, but the mean vectors di�er by the asymptotic covariance �

between Xn and the log likelihood ratios.

The statement is a special case of the preceding theorem. Let (X;W ) have the

given (k+1)-dimensional normal distribution. By the continuous mapping theorem,

the sequence (Xn; dQn=dPn) converges in distribution under Pn to (X; eW ). Since

W is N(� 1
2
�2; �2)-distributed, the sequences Pn and Qn are mutually contiguous.

According to the abstract version of Le Cam's third lemma, Xn
Qn
 L with L(B) =

E1B(X)eW . The characteristic function of L is
R
eit

T x dL(x) = Eeit
TX eW . This is
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the characteristic function of the given normal distribution at the vector (t;�i).
Thus

Z
eit

T x dL(x) = e
itT ��1

2
�2�1

2
(tT ;�i)

�
� �

�T �2

��
t

�i

�
= eit

T (�+�)�1
2
tT�t:

The right side is the characteristic function of the Nk(�+ �;�) distribution.

4.6 Example. Let t 7! Pt be a di�erentiable path with score function g and let

Tn = Tn(X1; : : : ; Xn) be statistics such that

p
n
�
Tn �  (P )

�
=

1p
n

nX
i=1

h(Xi) + oP (1);

for a function h with Ph = 0 and Ph2 < 1. Then the sequence
p
n
�
Tn �  (P )

�
converges in distribution to a normal measure with mean Pgh and variance Ph2

under Pn
1=
p
n
.

Consequently, if  is di�erentiable at P , then
p
n
�
Tn �  (P1=

p
n)
�
converges

in distribution to a normal measure with mean Pg(h � ~ P ) and variance Ph2. It

follows that Tn is a regular estimator sequence if only if h� ~ P is orthogonal to the

tangent set. In other words if and only if h is an inuence function of  .

4.2 Gaussian Representations

Let H be a subset of a Hilbert space with inner product h�; �i and norm k�k. For each
n 2 N and h 2 H, let Pn;h be a probability measure on a measurable space (Xn;An).
Consider the problem of estimating a \parameter" �n(h) given an \observation" Xn

with law Pn;h.

For ease of notation, let f�h:h 2 Hg be the \iso-Gaussian process" with zero

mean and covariance function E�h1�h2 = hh1; h2i. The sequence of experiments

(Xn;An; Pn;h:h 2 H) is called asymptotically (shift) normal if

log
dPn;h

dPn;0
= �n;h � 1

2
khk2;

for stochastic processes f�n;h:h 2 Hg such that

�n;h
0
 �h marginally:

Here h
 denotes weak convergence under Pn;h. This terminology arises from the

theory of limiting experiments due to Le Cam.

The sequence of parameters �n(h) is assumed to belong to a Banach space D .

We assume that it is asymptotically di�erentiable in the sense that

rn
�
�n(h)� �n(0)

�
! _�(h); for every h 2 H;
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for a continuous, linear map _�: lin H 7! D and certain linear maps rn: D 7! D

(\norming operators"). Any maps Tn:Xn 7! D are considered estimators of the

parameter.

4.7 Example (I.i.d. observations). To cover the situation of Lectures 1{3, let

Xn = X n, An = An and Pn;h = P1=
p
n;h for a di�erentiable path with score h.

Furthermore, let �n(h) =  (P1=
p
n;h). Then di�erentiability of  implies the asymp-

totic di�erentiability of �n relative to the norming rate rn =
p
n, with derivative

_� = _ P . The asymptotic normality of the experiments (Pn
1=
p
n;h

:h 2 _PP ) follows
from Lemma 1.10, where we may take H = _PP , contained in the Hilbert space

L2(P ). In all these de�nitions the measure P is �xed (and considered statistically

\known"), and h is an unknown parameter, known to belong to the tangent set.

4.8 Theorem (Gaussian Representation). Suppose that Tn:Xn 7! D are statistics

with values in a Banach space D such that, for every h 2 H and tight probability

measures Lh, p
n
�
Tn � �n(h)

� h
 Lh:

Assume that the parameters �n are asymptotically di�erentiable. Then for any or-

thonormal sequence h1; : : : ; hm in linH there exists a measurable map T :Rm �
[0; 1] 7! D such that T � _�(h) is distributed as Lh if the law of T is calculated under

the product of the normal measure with mean
�
hh; h1i; : : : ; hh; hmi

�
and covariance

the identity and the uniform measure on [0; 1].

Proof. By an easy calculation we see that the random variable ��aihi �
P
ai�hi

has second moment zero. Hence the process h 7! �n;h is linear, in an almost sure

sense. From this we conclude that the sequence �n;�aihi �
P
ai�n;hi converges to

zero in probability under Pn;0. Thus the sequence h 7! �n;h is asymptotically linear.

Next de�ne variables

Zn;h = rn
�
Tn � �n(h)

�
;

�n(h) = log
dPn;h

dPn;0
= �n;h � 1

2
khk2; for h =

P
aihi:

By assumption, the sequence Zn;0 and each sequence �n;h converge in distribution

in D and R , respectively. By Prohorov's theorem, there exists a subsequence of fng
such that �

Zn0;0;�n0;h1 ; : : : ;�n0;hk

� 0
 (Z;�h1; : : : ;�hk);

in D �R
k , where the random vector on the right can be de�ned on a suitable proba-

bility space and has marginal distributions L0 and the standard normal distribution

on R
k , respectively. In view of the asymptotic linearity of the processes h 7! �n;h

and the asymptotic di�erentiability of the sequence of parameters we obtain, for

every h 2 H, �
Zn0;h;�n0(h)

� 0
 
�
Z � _�(h);�h � 1

2
khk2

�
:
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Next we can apply Le Cam's third lemma to see that there exist variables Zh,

de�ned on some probability space, such that Zn0;h
a
 Zh, where

a
 denotes weak

convergence under Pn;h for h =
P
aihi, and Zh is distributed according to

(4:9) P(Zh 2 B) = E1B

�
Z �

X
ai _�(hi)

�
e
P

ai�hi
�1
2
kak2 :

By assumption the weak limit Zh is distributed according to Lh.

We are ready to construct an appropriate randomized estimator T . For ease

of notation let X0 and U be independent variables with a standard normal distri-

bution on R
k and the uniform distribution, respectively. Suppose that T is such

that
�
T (X0; U); X0

�
is distributed as (Z;�h1; : : : ;�hk

�
. Then, if X is normally dis-

tributed with mean vector �(h) =
�
hh; h1i; : : : ; hh; hmi

�
and covariance the identity

and independent of U , we have

Ph
�
T (X;U) 2 B) = Eh1B

�
T (X;U)) = E01B

�
T (X;U)

�
e�(h)

TX� 1
2
XTX

= Lh(B);

because (X;U) is distributed as (X0; U) under h = 0 and hence
�
T (X;U); X

�
is

distributed as (Z;�h1 ; : : : ;�hk

�
.

To conclude the proof it suÆces to construct T as in the preceding para-

graph. Because the second marginal distributions of the vectors
�
T (X0; U); X0

�
and

(Z;�h1; : : : ;�hk

�
are identical, it suÆces to construct T such that the conditional

distributions of the �rst marginal given the second marginal are identical. This is

the case if for each x0 the variable T (x0; U) is distributed according the conditional

law of Z given (�h1 ; : : : ;�hk) = x0. This is the problem of generating a variable

with an arbitrary distribution on a Polish space from a uniform variable. It is well-

known that this possible. One construction is to map the Polish space bimeasurably

onto the real line, and next use the quantile transformation to construct the induced

law.

The preceding theorem is restricted to �nite-dimensional models. As we re-

marked before an extension to in�nite-dimensional Hilbert spaces H is possible, but

maybe not very useful, because it is hard to analyse in�nite-dimensional Gaussian

experiments directly, without �nite-dimensional approximation. For completeness

we include an in�nite-dimensional version.

4.10 Theorem. Suppose that Tn:Xn 7! D are statistics with values in a Banach

space D such that, for every h 2 H and a tight probability measure Lh,

p
n
�
Tn � �n(h)

� h
 Lh:

Assume that the parameters �n are asymptotically di�erentiable. Then for any or-

thonormal sequence h1; h2; : : : ; in linH there exists a measurable map T :R1 �
[0; 1] 7! D such that T � _�(h) is distributed as Lh if the law of T is calculated under

the product of the normal measure with mean
�
hh; h1i; hh; h2i; : : :

�
and covariance

the identity and the uniform measure on [0; 1].
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The in�nite-dimensional normal measure in the theorem is simply the distribu-

tion of a sequence Z = (Z1; Z2; : : :) of independent normal variables Zi with means

hh; hii and unit variances. Actually, the Gaussian experiment could be represented in

many di�erent forms, the present one probably being the simplest one. For instance,

the theorem is also true if Z is replaced by f(Z) for an arbitrary bimeasurable map

f from R
1 onto a measurable space (e.g. the unit interval).

The preceding theorems show that estimator sequences in the sequence of ex-

periments (Pn;h:h 2 H) are asymptotically matched by an estimator in a Gaussian

experiment. The next step is to analyse the Gaussian experiment. In our abstract

set-up the \optimal" measure can be de�ned in terms of the adjoint _��: D � 7! linH of

the asymptotic derivative of the parameters �n, which maps the dual space of D into

the closed linear span of H. This is determined by the equation h _��b�; hi = b� _�(h).
The optimal Gaussian measure can be uniquely determined by its marginal

distributions: its induced laws under continuous, linear maps d�: D 7! R. It can be

represented as the distribution of a Borel measurable random element G in D such

that d�G is N
�
0; k _��d�k2

�
distributed, for any element d� from the dual space D � .

In the case that the Banach space D is in�nite-dimensional such a measure does not

necessarily exist, but the the theorem below shows that it does exist when we need

it: if there exist good estimator sequences.

4.11 Example. Consider the case of i.i.d. observations as considered in Lecture 2,

with _� = _ P , H = _ P equipped with the L2(P )-norm, and  taking values in

D = R
k . Then � is representable as a vector-valued inner product _ P (h) = Ph ~ P ,

D
� = R

k , and its adjoint is the map _��a = aT ~ P , because

P ( _��a)h = ha; _�hi = aTPh ~ P = P (aT ~ P )h:

It follows that the optimal limit measure is the distribution of a vector G such that

aTG is normally distributed with mean 0 and variance kaT ~ P k2 = P (aT ~ P )
2. This

agrees with the optimal normal measure found in Lecture 2.

In our present set-up we call a sequence of estimators Tn regular with respect

to the norming operators rn if

rn
�
Tn � �n(h)

� h
 L; for every h 2 H;

for a �xed, tight, Borel probability measure L on D .

4.12 Theorem (Convolution). Assume that the parameters �n are asymptotically

di�erentiable.

(i) If there exists a sequence of regular estimators for �n, then there exists a tight,

Borel measurable variable G in D such that

d�G � N
�
0; k _��d�k2

�
; for every d� 2 D

� :

(ii) The limit law L of every regular sequence of estimators can be represented

as the distribution of a sum G +W of independent, tight, Borel measurable

variables in D with G as distributed in (i).
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Proof. (a). Assume that H is a �nite-dimensional, linear space and let h1; : : : ; hm
be an orthonormal base. Then the assumptions of Theorem 4.8 are satis�ed and we

obtain that L is the distribution of T � _�(h) under every h. As shown in the proof

of this theorem (see (4.9)), this means that, for every a 2 R
k ,

L(B) = E1B

�
Z �

X
ai _�(hi)

�
e
P

ai�hi
�1
2
kak2 :

We average this equation over a with respect to a Nk(0; �
�1I) weight function.

Straightforward calculations yield

L(B) =

Z
E1B

�
Z �

P
�hi _�(hi)

1 + �
�
P
ai _�(hi)

(1 + �)1=2

�
c�(�) dNk

�
0; I

�
(a);

where c�(�) = (1+��1)k=2 exp
�
1
2
(1+�)�1

P
�2
hi

�
. Conclude that L can be written

as the law of the sum G�+W� of independent random elements G� and W�, where

G� = �
P
Ai _�(hi)=(1+�)

1=2 for a Nk(0; I)-distributed vector (A1; : : : ; Ak) andW�

is distributed according to

P(W� 2 B) = E1B

�
Z �

P
�hi _�(hi)

1 + �

�
c�(�):

As � # 0, we have G�  G =
P
Ai _�(hi). The variable d

�G =
P
Aid

� _�(hi) is
normally distributed with zero mean and variance

Ed�G2
� =

X�
d� _�(hi)

�2
= k _��d�k2:

By the converse part of Prohorov's theorem, the variables fG�: 0 < � < 1g are

uniformly tight. Combined with the tightness of L it follows that there exists, for

every " > 0, a compact K such that

1� " < L(K) =

Z
P(W� + g) dPG�(g); and P(G� 2 K) > 1� ":

This implies that for every � there exists g� 2 K such that P(W� + g� 2 K) >

1� 2" and hence P(W� 2 K �K) > 1� 2"). We conclude that set of the variables

fW�: 0 < � < 1g is uniformly tight.

If W�m  W for a sequence �m # 0, then (G�m ;W�m) (G;W ), where G and

W are independent and G +W is distributed according to L. This concludes the

proof of the theorem for �nite-dimensional H.

(b) Let H be arbitrary. For any �nite orthonormal set h1; : : : ; hk, the previous

argument yields tight independent processes Gk and Wk such that Gk + Wk is

distributed according to L and Gk is zero-mean Gaussian with

Ed�G2
k =

kX
i=1

h _��d�; hii2:

The set of all variables Gk and Wk so obtained is uniformly tight. Indeed, by tight-

ness of L, there exists for any given " > 0 a compact set K such that L(K) =R
P(Gk 2 K�x) dPWk(x) > 1�". Thus there exists x0 with P(Gk 2 K�x0) > 1�".

By symmetry, P(Gk 2 x0�K) > 1� ", whence P
�
Gk 2 1

2
(K �K)

�
> 1� 2". Next,
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the uniform tightness of L and the collection Gk imply the uniform tightness of the

collection Wk.

Direct the �nite-dimensional subspaces of H by inclusion, and construct vari-

ables (Gk;Wk) for every subspace. Every weak limit point (G;W ) of the net of laws

(Gk0 ;Wk0) satis�es the requirements of the theorem.

In the following minimax theorem we show that the maximum risk

sup
h

Eh�`
�
rn(Tn � �n(h))

�

of an estimator sequence can never asymptotically fall below E`(G). A little (asymp-

totic) measurability is the only requirement on Tn, but measurability can be restric-

tive, so we shall be careful about it. Let D 0 be a given subspace of D � that separates
points of D , and let �(D 0) be the weak topology induced on D by the maps b0: D 7! R

when b0 ranges over D 0 .

4.13 De�nition. A map `: D 7! R is called �(D 0)-subconvex if for every c > 0 the

set
�
y: `(y) � c

	
is �(D 0)-closed, convex, and symmetric.

4.14 Theorem (Minimax theorem). Assume that the parameters �n are asymp-

totically di�erentiable. Suppose a tight, Borel measurable Gaussian element G as

in (i) of the statement of the convolution theorem exists. Then for every estimator

sequence Tn such that d0Tn:Xn 7! R is measurable for every d0 2 D
0 and every

�(D 0)-subconvex function `: D 7! R,

sup
I�H

lim inf
n!1

sup
h2I

Eh�`
�
rn
�
Tn � �n(h)

��
� E`(G):

Here the �rst supremum is taken over all �nite subsets I of H.

Proof. In a general sense the proof is based on an analysis of the minimax risk in

the Gaussian representation provided by Theorem 4.8. The main work is to force

our estimator sequence to have limit laws, so that the theorem becomes applicable.

This is achieved by compacti�cation of the range space of Tn, so that limit laws exist

at least along subsequences and with limits concentrating on the compacti�cation,

by Prohorov's theorem. Because it will be necessary to extend the loss function to

the compacti�cation, the compacti�cation must be chosen dependent on the loss

function. Therefore the proof proceeds in several steps, building more complicated

loss functions from simple ones.

(a). Assume �rst that the loss function can be written in the special form

`(y) =
Pr
i=1 1Kc

i

�
d0i;1y; : : : ; d

0
i;pi
y
�
for compact, convex, symmetric subsets Ki � R

pi

and arbitrary elements d0i;j of D
0 . Fix an arbitrary orthonormal set h1; : : : ; hk in H,

and set

Zin;a =
�
d0i;1; : : : ; di;pi

�
Æ rn

�
Tn � �n(

P
aihi)

�
; 1 � i � r:

Considered as maps into the one-point compacti�cation of Rpi , the sequences Zin;a
are certainly asymptotically tight. The sequences are asymptotically measurable by

assumption.
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Direct the �nite subsets of H by inclusion. There exists a subnet
�
nI : I �

H; �nite
	
such that the left side of the statement of the theorem equals

minimax risk = lim
I
sup
h2I

Eh�`
�
rn
�
Tn � �n(h)

��
:

By the same arguments as in the proof of the convolution theorem there is a further

subnet fn0g � fnIg such that Zin0;a
a
 Zia in the one-point compacti�cations, for

every a 2 R
k and every i. Here the limiting processes satisfy, for each i,

(4:15)

Z
L(Zia) dNk(0; ��1I) � Gi� +W i

�;

for independent elements Gi� and W i
� such that

Gi� =
�
d0i;1; : : : ; di;pi

�
ÆG� =

�
d0i;1; : : : ; di;pi

�
Æ
P
Ai _�(hi)

(1 + �)1=2
;

for a Nk(0; I)-distributed vector (A1; : : : ; Ak). By the portmanteau theorem,

minimax risk � lim inf
n0

rX
i=1

Pa�(Zin0;a =2 Ki) �
rX
i=1

P(Zia =2 Ki):

Since this is true for every a, the left side is also bounded below by the average of

the right side, in particular the average under the Nk(0; �
�1I)-distribution. In view

of (4.15) we �nd that

minimax risk �
rX
i=1

P(Gi� +W i
� =2 Ki):

The right side becomes smaller if we replace the variables W i
� by 0. This follows

by Anderson's lemma, according to which, given a mean zero Gaussian vector and

a convex, symmetric set K, the probability P(G + a 2 K) is maximized over a at

a = 0, i.e. centering the Gaussian variable G+ a at zero. Thus the right side of the

preceding display is bounded below by

rX
i=1

P(Gi� =2 Ki) = E`(G�):

We �nish the proof for this special form of loss function by letting � # 0 followed by

taking the limit along �nite-dimensional subspaces of H.

(b). The theorem is \closed" under taking monotone limits on `: if the theorem

holds for every function `r and 0 � `r � ` with `r " ` almost surely under the law of

G, then the theorem holds for `. To see this, note that the minimax risk decreases by

replacing ` by `r. Thus it is bounded below by E`r(G) for every r, which increases

to E`(G) as r !1.

(c). An arbitrary subconvex ` can be approximated from below by a sequence

of functions `r of the type as in (a). To see this, note �rst that

0 � 2�r
22rX
i=1

1
�
y: `(y) > i2�r

	
" `(y); for every y:
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Each of the sets
�
y: `(y) > i=r

	
is convex, �(D 0)-closed, and symmetric. Thus, it

suÆces to approximate functions ` of the type 1Cc for a convex, �(D 0)-closed, and
symmetric set C.

By the Hahn-Banach theorem, any such set C can be written

C =
\
b02D0

�
y: jb0yj � cb0

	
:

Thus the complement of C intersected with the support S of the limit variable G

is the union of the sets
�
y 2 S: jb0yj > cb0

	
. These sets are relatively open in S

and S is separable. Since a separable set is Lindel�of, the possibly uncountable union

can be replaced by a countable subunion. Thus there exists a sequence d0i in D
0 and

numbers ci such that Cc \ S = [1i=1

�
y 2 S: jd0iyj > ci

	
. This implies that

1Cc\S = sup
r
1Kc

r

�
d01y; : : : ; d

0
ry
�
;

for the subsets of Rr de�ned by Kr = \ri=1

�
x 2 R

r : jxij � ci
	
.

4.16 Example. For D
0 = D

� , the �(D 0)-topology is the weak topology. Because

convex subsets in a Banach space are weakly closed if and only if they are closed for

the norm, a function which is subconvex relative to the norm is automatically �(D �)-
subconvex. The theorem is applicable to the combination of such loss functions and

estimator sequences Tn that are weakly measurable: d�Tn should be a measurable

map in R for every d� 2 D
� .

This will typically be the case if the Banach space is separable, when estimators

will usually be required to be Borel measurable.

4.17 Example (Skorohod space). The Skorohod space D[a; b], for a given interval

[a; b] � R , is a Banach space if equipped with the uniform norm. The dual space

consists of maps of the form

d�(z) =
Z
z(u) d�(u) +

1X
i=1

�i
�
z(ui)� z(ui�)

�
;

for a �nite signed measure � on [a; b], an arbitrary sequence ui in (a; b], and a

sequence �i with
P
j�ij < 1. (This is an extension of the representation theorem

for the dual space of the space of continuous functions on a compact due to Riesz,

obtained in [36], pages 81{85.) Each such d� is the pointwise limit of a sequence

of linear combinations of coordinate projections. Thus, the �-�eld generated by the

dual space equals the �-�eld generated by the coordinate projections.

It follows that an estimator sequence is D[a; b]�-measurable if and only if it is

a stochastic process. Since \�(D[a; b]�)-subconvex" is identical to \subconvex with

respect to the norm", the minimax theorem is valid for any sequence of stochastic

processes Tn and subconvex loss function `.

Examples of subconvex loss functions include

z 7! `0
�
kzk1

�
;

z 7!
Z
jzjp(t) d�(t);

for a nondecreasing, left-continuous function `0:R 7! R, a �nite Borel measure �,

and p � 1.
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4.18 Example (Bounded functions). On the space `1(F), functions of the type

z 7! `0

�z
q


F

�
;

for a nondecreasing, left-continuous function `0:R 7! R and an arbitrary map

q:F 7! R are subconvex with respect to the linear space spanned by the coordi-

nate projections z 7! z(f). Indeed, for any c there exists d such that�
z: `0

�z
q


F

�
� c

�
=

�
z:
z
q


F
� d

�
=
\
f2F

n
z:
��z(f)�� � d q(f)

o
:

Thus, the minimax theorem is valid for any estimator sequence Tn that is coordi-

natewise measurable and any loss function of this type.

For general loss functions that are subconvex with respect to the norm, the

preceding minimax theorem applies only under strong measurability conditions on

the estimator sequences. It is of interest that these measurability conditions are sat-

is�ed by sequences Tn such that Tn(f) is measurable for every f and such that the

sequence rn
�
Tn� �n(0)

�
is asymptotically tight under Pn;0. Indeed, such sequences

are asymptotically �(`1(F)�)-measurable. It follows that, given any subconvex loss

function, the minimax theorem may be used to designate optimal estimator se-

quences among the asymptotically tight sequences.

Finally, consider the testing problem. The Gaussian representation theorem

given previously was meant to be applied to the estimation problem, but we can

easily transform it into a theorem on tests by taking �n(h) � 0.

4.19 Theorem (Gaussian Representation). Let �n:Xn 7! [0; 1] be arbitrary

statistics such that, for every h 2 H and some function �:H 7! R,

Pn;h�n ! �(h):

Then for any orthonormal sequence h1; : : : ; hm in linH there exists a measurable

map �:Rm 7! [0; 1] such that Ph� = �(h) for every h 2 H, where Ph is the normal

measure with mean
�
hh; h1i; : : : ; hh; hmi

�
and covariance the identity.

Proof. Because the unit interval is compact we can extract a subsequence of �n that

converges in distribution under Pn;h to a limit law Lh. By contiguity arguments,

using Le Cam's third lemma as in the proofs of the preceding theorems, we can even

�nd a subsequence that works for all h in the linear span of h1; : : : ; hm. We next

apply Theorem 4.8 to the corresponding subsequence of �n � 0 and Tn = n�1=2�n
to �nd that there exist a randomized estimator T with values in [0; 1] that has law

Lh under the product of Ph and the uniform measure. Then �(x) = ET (x; U) has

the desired properties.

The message of the theorem is that every limiting power function is necessary

the power function of a test in the limiting Gaussian experiment. The assumption

that there exists a limiting power function is very weak, because by the compactness

of the unit interval we can always construct subsequences along which a limit exists.

An analysis of tests in the Gaussian experiment yields concrete bounds on, for

instance, the power of level � tests. Compare Theorem 2.12 in Lecture 2.
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4.20 Open Problem. The theorems as presented in this lecture apply to many

time series models. However, the semiparametric theory for such models, e.g. dis-

cretely observed di�usion processes, appears to be largely undeveloped.

Notes

This lecture is based on [36], [38] and Chapter 3.11 of [41]. It is strongly motivated

by ideas of Le Cam, in particular from his papers [15], [16] and [17], and earlier

results by [20] and [22] and [23].



Lecture 5
Empirical Processes and
Consistency of Z-Estimators

In this lecture and the next lecture we discuss empirical processes. Our main focus

is the application of empirical processes to the derivation of asymptotic properties of

estimators in semiparametric models. In this �rst lecture we discuss entropy num-

bers, Glivenko-Cantelli classes and their application to proving consistency of M -

and Z-estimators.

5.1 Empirical Measures and Entropy Numbers

Given i.i.d. random variables X1; : : : ; Xn with law P on a measurable space (X ;A)
and a measurable function f :X 7! R we let

Pnf =
1

n

nX
i=1

f(Xi);

Pf =

Z
f dP;

G nf =
1p
n

nX
i=1

�
f(Xi)� Pf

�
=
p
n(Pn � P )f;

kfkP;r =
�
P jf jr

�1=r
:

Given a class F of measurable functions f :X 7! R we view Pn as a map f 7! Pnf

on F . Of course, we can also think of Pn as the discrete uniform random measure on

the points X1; : : : ; Xn. We denote by F a measurable envelope function of the class

F : a function F :X 7! R such that
��f(x)�� � F (x) for every x 2 X and f 2 F . For a

function z:F 7! R the norm kzkF is the supremum norm: kzkF = supf2F
��z(f)��.

The law of large numbers asserts that Pnf ! Pf almost surely if Pf exists, and

the central limit theorem asserts that G nf is asymptotically normal if Pf2 < 1.

An important aim in empirical process theory is to make these statements uniform

in f ranging over a class F , in an appropriate sense. We shall also be concerned

with the behaviour of Pnf̂n and G n f̂n for f̂n a \random function", which is related

to uniformity.
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Uniformity over a class of functions depends on the size of a class. An appropri-

ate measure of size are entropy numbers, which come in two types: with or without

bracketing. Given two measurable functions l; u:X 7! R, the bracket [l; u] is the

collection of all functions f :X 7! R such that l � f � u. Let k � k be a norm on a

collection of functions. An "-bracket is a bracket [l; u] such that ku� lk < ". Here it

is required that both l and u are of �nite norm.

5.1 De�nition. The bracketing number N[]

�
";F ; k � k

�
is the smallest number of

"-brackets needed to cover F .

5.2 De�nition. The covering number N
�
";F ; k � k

�
is the smallest number of balls

of radius " needed to cover F .

The logarithms of bracketing or covering numbers are called entropies. An "-

bracket [l; u] is contained in a ball of radius "=2 around the midpoint 1
2
(l + u) of

the bracket. It follows that N
�
"=2;F ; k � k

�
� N[]

�
";F ; k � k

�
and hence bracketing

numbers are bigger than covering numbers (the factor 2 is of no importance in

the following). On the other hand, brackets give pointwise control over functions,

whereas for many norms knowing that some function is in a ball, even a very small

one, still leaves irregular behaviour on a set of small measure open. Such small sets

are important when the function is applied to random variables Xi. This observation

explains that typically conditions using covering numbers use many di�erent norms

simultaneously, whereas conditions using bracketing numbers use the \true" law P

only.

The best results using covering numbers are in terms of random covering num-

bers. For simplicity, we state the results in terms of the bigger uniform covering

numbers.

5.3 De�nition. The Lr-uniform covering numbers relative to the envelope function

F are the numbers supQN
�
"kFkQ;r;F ; k � kQ;r

�
, where the supremum is taken over

all discrete probability measures Q on (X;A) with kFkQ;r > 0.

A class F is, by de�nition, totally bounded if and only if N
�
";F ; k � k

�
< 1

for every " > 0. (Then its completion is compact.) This will be necessary for the

desired uniform law of large numbers or central limit theorem to hold, but it is by

far not enough. A more precise measure of the size of a class F is the rate at which

the covering or bracketing numbers increase as " # 0.

5.2 Glivenko-Cantelli Classes

The Glivenko-Cantelli theorem is the uniform version of the law of large numbers.

The classical Glivenko-Cantelli theorem concerns the uniformity in the convergence

of the empirical cumulative distribution function of real-valued random variables.

The abstract version is named after this.
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5.4 De�nition. A collection F of measurable functions f :X 7! R is P -Glivenko-

Cantelli if kPn � PkF ! 0 almost surely.

We note that the random distance kPn � PkF need not be measurable. By

\almost sure" convergence Zn ! Z of a sequence of possibly unmeasurable maps

with values in a metric space, we shall understand that there exist measurable maps

�n on the underlying probability space such that d(Zn; Z) � �n for each n and

�n ! 0 almost surely.

Two basic theorems on Glivenko-Cantelli classes are as follows.

5.5 Theorem. If N[]

�
";F ; k � kP;1

�
< 1 for every " > 0, then F is P -Glivenko-

Cantelli.

5.6 Theorem. If supQN
�
"kFkQ;1;F ; k � kQ;1

�
<1 for every " > 0, PF <1 and

F is suitably measurable, then F is P -Glivenko-Cantelli.

The condition that F be \suitably measurable" will recur, but what is suitable

will depend on the situation. In the present case it may be taken to mean that the

suprema  1
n

nX
i=1

eif(Xi)

F

are measurable, for every �xed vector (e1; : : : ; en) 2 f�1; 1gn, and every n 2 N.

A simple suÆcient condition for this is that the supremum be equal to the same

supremum but then computed over a countable class F , e.g. a subclass G � F .
The suitable measurability is necessary because the proof of the theorem is

based on a symmetrization and conditioning device, requiring an application of

Fubini's theorem. The second, uniform entropy theorem is much harder to prove

than the bracketing Glivenko-Cantelli theorem, which can be modelled after the

proof of the classical Glivenko-Cantelli theorem.

The condition of the �rst theorem implies that PF < 1: if we cover F with

�nitely many brackets, of for instance size 1, and next take the supremum of the

absolute values of all upper and lower bracketing functions, we obtain an integrable

envelope. Thus the di�erence between the two theorems resides solely in the use of

bracketing or covering numbers. The stronger bracketing numbers may be replaced

by the weaker covering numbers, but only at the cost of using uniform covering

numbers.

Upper bounds on the covering or bracketing numbers of many classes of func-

tions are known from the classical references on these subjects (1950/60s), from more

recent work in approximation theory, and from the combinatorial theory employed

by Vapnik and Chervonenkis.

Statistical problems, in particular in semiparametric modelling, generate many

new classes of functions, sometimes of a complicated nature, for which such esti-

mates are not known. Then we must either derive new estimates or can use stability

theorems that allow the construction of new Glivenko-Cantelli classes from known

Glivenko-Cantelli classes. The following theorem is in this spirit and can save much

work.
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For ease of terminology we call a collection of measurable functions f :X 7! R
k

Glivenko-Cantelli if each of the k collections of coordinate functions is Glivenko-

Cantelli.

5.7 Theorem. If F is a Glivenko-Cantelli class of functions f :X 7! R
k with inte-

grable envelope and �:Rk 7! R is continuous, then the class of functions �Æf :X 7! R

is Glivenko-Cantelli provided that it has an integrable envelope.

5.3 Consistency of M- and Z-estimators

Glivenko-Cantelli classes are useful to carry out proofs that M - or Z-estimators are

consistent. These are estimators de�ned to be a point of maximum or a zero of a

given stochastic process.

To remain within the theme of empirical processes, we restrict ourselves to

criterion functions that are averages over the observations. For every � in a metric

space � let m�:X 7! R be a measurable function. An M -estimator �̂n is a point

of maximum of the map � 7! Pnm�. The aim is to show that this converges in

probability to a point of maximum �0 of the map � 7! Pm�. The following theorem

states a stronger result.

5.8 Theorem. Suppose that the class of functions fm�: � 2 �g is P -Glivenko-

Cantelli and that there exists a point �0 2 � such that inf�:d(�;�0)>Æ Pm� < Pm�0

for every Æ > 0. Then Pnm�̂n
� Pnm�0 implies that d(�̂n; �0)! 0 almost surely.

Proof. By the property of �̂n, we have Pnm�̂n
� Pnm�0 = Pm�0 � o(1), almost

surely. Hence

Pm�0 � Pm
�̂n
� Pnm�̂n

� Pm
�̂n

+ o(1)

� sup
�

jPnm� � Pm�j+ o(1)! 0;

almost surely. By assumption there exists for every Æ > 0 a number � > 0 such that

Pm� < Pm�0 � � for every � with d(�; �0) > Æ. Thus, the event
�
d(�̂n; �0) � Æ

	
is

contained in the event
�
Pm�̂n

< Pm�0��
	
. The latter sequence of events decreases

to a zero event, in view of the preceding display.

This theorem is good enough for most purposes, but can be improved in two

important ways:

- As is clear from the proof, the double-sided convergence given by the Glivenko-

Cantelli property is used only to ensure a one-sided convergence, corresponding

to the fact that we maximize a criterion function. However, we like the simple

Glivenko-Cantelli condition over a more complicated one-sided condition. The

tricks that we present below often blur the di�erence.
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- If � is far from �0, then usually Pm� will be far from Pm�0 . The closeness

of the random criterion Pm� to the limit Pm� need therefore not be uniform

in � as it is required by the Glivenko-Cantelli property. We shall make use of

this in Lecture 8 when discussing rates of convergence. (It appears that any

type of relaxation of the Glivenko-Cantelli condition to make this point precise,

automatically results in a stronger statement concerning a rate of convergence.)

Thus we shall not formulate any re�nements here. Our interest will go in another

direction: application to semiparametric estimation problems. Before discussing a

concrete example, it is instructive to compare the present theorem to the one ob-

tained by Wald in the 1940s. (Wald had maximum likelihood estimators in mind,

but his proof applies equallly well to generalM -estimators.) Wald's main conditions

were compactness of the parameter set (or the possibility of compacti�cation) and

local domination. Taking the preceding remarks into account the present theorem

contains Wald's theorem, in view of the following lemma.

5.9 Lemma. Let � be a compact metric space, let the map � 7! m�(x) be contin-

uous for every x 2 X and suppose that every � has a neighbourhood B such that

sup�2B jm�j is dominated by an integrable function. Then the class fm�: � 2 �g
is Glivenko-Cantelli and inf�:d(�;�0)>Æ Pm� < Pm�0 for every Æ > 0 if and only if

� 7! Pm� possesses a unique global maximum at �0.

Proof. The compactness of � and the local domination of the functions m� imply

that the class fm�: � 2 �g possesses an integrable envelope function. The dominated

convergence and the assumed continuity of the maps � 7! m�(x) imply that the

map � 7! Pm� is continuous. Thus it attains its maximum on the compact set

f� 2 �: d(�; �0) � Æg for every given Æ > 0, and this is smaller than its value at �0,

by the assumption that �0 is a unique maximum.

To complete the proof we show that the L1(P )-bracketing numbers of the class

fm�: � 2 �g are �nite. If Bm is a decreasing sequence of neighbourhoods of a

�xed � such that \mBm = f�g and um and lm are de�ned as the supremum and

in�mum of the functions m� with � 2 Bm, then um � lm ! m� � m� = 0 as

m!1, by the continuity of the functions � 7! m�. By the dominated convergence

theorem P (um � lm) ! 0. We conclude that for every " > 0 and � 2 � there

exists a neighbourhood B such that P (uB � lB) < ", for uB and lB the supremum

and in�mum of the functions m� with � 2 B. The collection of neighbourhoods B

obtained this way by varying � over � has a �nite subcollection that covers �, by the

compactness of �. The corresponding brackets [lB; uB] cover the class fm�:2 �g.

The preceding theorem reduces the consistency proof of an M -estimator to

veri�cation of the good behaviour of the limit criterion function � 7! Pm� and a

Glivenko-Cantelli property. The same methods apply to Z-estimators.

For every � in a set � � R
k let  �:X 7! R

k be a measurable, vector-valued

function. A Z-estimator �̂n is a zero of the map � 7! Pn �. The aim is to show that

this converges in probability to a zero �0 of the map � 7! P �.
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5.10 Theorem. Suppose that the class of functions f �: � 2 �g is P -Glivenko-

Cantelli and that there exists a point �0 2 � such that inf�:d(�;�0)>Æ kP �k > 0 =

kP �0k for every Æ > 0. Then Pn �̂n = 0 implies that d(�̂n; �0)! 0 almost surely.

Proof. By the Glivenko-Cantelli property kP 
�̂
k = kPn �̂k + o(1) = o(1), almost

surely as n ! 1, by the property of �̂. Thus it is impossible that d(�̂; �0) > Æ

in�nitely often, for any Æ > 0.

Notwithstanding beautiful and simple results as the preceding theorems, it re-

mains an unfortunate fact that consistency proofs are not easily forced into a sin-

gle mould. Because consistency concerns the behaviour of estimators on the global

model, a di�erential analysis, such as possible for normality proofs, is impossible.

(Unless one is satis�ed with statements as: there exists some sequence of local max-

ima that converges to a true value, without worrying about the selection of such a

sequence or the behaviour of an arbitrary sequence of maxima. We are not.) Proving

consistency remains somewhat of an art, and is sometimes the hardest part of the

analysis of a maximum likelihood estimator. This is true in particular for semipara-

metric maximum likelihood estimators, because semiparametric likelihoods may be

ill-behaved. In the following three sections we discuss some useful tricks, each time

illustrated by an example of interest.

5.3.1 Trick 1: Errors-in-variables

Consider the errors-in-variables models p�;�(x; y) =
R
�(x � z)�

�
y � f�(z)

�
d�(z),

where � is the standard normal density. The regression function f� is assumed known

up to a parameter � 2 � � R
k . We wish to prove that the maximum likelihood

estimator (�̂; �̂) de�ned as the maximizer of
Qn
i=1p�;�(Xi; Yi) over all � 2 � and

probability distributions � on some interval Z � R is consistent.

To simplify we assume that � and Z are compact. In the case that the natural

parameter space for z is the real line, we could achieve this by extending the model to

all probability distributions on the extended real line R , de�ning �(x�z)�
�
y�f�(z)

�
to be zero for z = �1. Furthermore, we assume that (�; z) 7! f�(z) is continuous

on �� Z.
The set of all probability measures on Z is compact under the weak topology.

Furthermore, the map (�; �) 7! p�;�(x; y) is continuous for every (x; y). To anal-

yse the maximum likelihood estimator we might apply the preceding theorem with

the functions m�;� = log p�;�. These would form a Glivenko-Cantelli class by the

preceding lemma, except for the fact that we need to �nd an integrable envelope

function. These functions are bounded above, but their unboundedness from below

could prevent this from being true. Because we are interested in a point of max-

imum, unboundness from below should not cause problems. We could see this by

improving the preceding theorem, along the lines of the remarks following its proof.

A simpler approach is to apply the theorem not with the functions log p�;�, but with

the functions

m�;� = log
�p�;� + p�0;�0

2

�
:
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It is not true that the maximum likelihood estimator (�̂; �̂) maximizes Pnm�;� for

this choice of m�;�, but it is true that

Pnm�̂;�̂ = Pn log
�p�̂;�̂ + p�0;�0

2

�
� Pn

1
2

�
log p�̂;�̂ + log p�0;�0

�

� Pn log p�0;�0 :

In the �rst inequality we use the concavity of the logarithm, and in the second

the de�nition of (�̂; �̂). Thus Pm
�̂;�̂

� Pm�0;�0 and this is good enough for the

application of the theorem, because we also have that Pm�;� < Pm�0;�0 unless the

densities 1
2
(p�;� + p�0;�0) and p�0;�0 de�ne the same measure. Equivalently, unless

p�;� and p�0;�0 de�ne the same probability measure.

The last requirement concerns the identi�ability of the parameter (�0; �0). This

depends on the nature of the functions f� and is a nontrivial matter. For the case

of linear functions f� it was settled in the 1970s.

The functions p�;� and hence the functions m�;� are uniformly bounded above.

Furthermore, the functions m�;� are bounded below by the function log p�0;�0�log 2.
Hence the class of functionsm�;� has a P�0;�0 -integrable envelope if P�0;�0 log p�0;�0 >

�1. By Jensen's inequality

P�0;�0(� log p�0;�0) �
Z
P�0;�0(� log)

�
�(x� z)�

�
y � f�0(z)

�
d�0(z)

. E�0;�0
�
X2 + Y 2 + Z2 + f�0(Z)

2
�
:

The right side is �nite under reasonable assumptions on �0.

5.3.2 Trick 2: Cox model

In many semiparametric models \likelihoods" are de�ned through point masses. A

Wald-type proof of consistency is then ruled out by the lack of continuity of the

likelihood relative to a useful topology. A proof of consistency may then proceed by

an intermediate step using \likelihood equations", but still relying on the Glivenko-

Cantelli theorem at several points. We illustrate this for the Cox model, as described

in Lecture 3, Example 3.13. Other models have been treated by the same method,

albeit that the exact arguments usually are more complicated. We make the same

assumptions as in Lecture 3. In particular, C is smaller than some � with probability

one and satis�es P(C = �) > 0 and P(T > �) > 0.

The density of an observation in the Cox model takes the form

�
e�z�(y)e�e

�z�(y)
�
1� FCjZ(y�j z)

��Æ�
e�e

�z�(y)fCjZ(yj z)
�1�Æ

pZ(z):

To de�ne a maximum likelihood estimator for (�;�), we of course drop the terms in-

volving the distribution of (C;Z), which is assumed not to depend on the parameter

of interest. Unfortunately, the supremum of

nY
i=1

�
e�Zi�(Yi)e

�e�Zi�(Yi)
��i

�
e�e

�Zi�(Yi)
�1��i

over all parameters � and hazard functions � is in�nite. We can approximate this

supremum by choosing hazard functions that have very high, but very thin peaks
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around the values Yi with �i = 1. By making the peaks suÆciently thin we can

ensure that the values �(Yi) are arbitrarily close to zero and hence the value of the

preceding display will be determined by the factor
Qn
i=1�(Yi).

Thus we cannot de�ne a maximum likelihood estimator in this way. The way

out is to de�ne the likelihood instead by

nY
i=1

�
e�Zi�fYige�e

�Zi�(Yi)
��i

�
e�e

�Zi�(Yi)
�1��i

Next we maximize over all � 2 � and nondecreasing, cadlag functions �: [0;1) 7! R

with �(0) = 0. (This is a bit bigger than the set of cumulative hazard functions,

de�ned as �nite measures of the type d� = dF=(1�F�) for cumulative distributions
F , which are restricted to having jumps of size less than 1, but asymptotically this

will not make a di�erence.) Maximizing relative to � entails maximizing the jumps

�fYig at points Yi with �i = 1, meanwhile minimizing the cumulative masses �(Yi)

at Yi such that �i = 0. The best choice is among the discrete distributions � that

jump at the points Yi with �i = 1 only. This observation reduces the maximization

problem to a �nite-dimensional one (�nding the jump sizes), and the compactness

of the unit simplex implies that a solution exists, also jointly in � and �.

What we have called \likelihood" does not have the continuity property we

would require for a Wald type proof. Also the parameter space for � is not a-priori

compact. We get around this problem by using likelihood equations. For a bounded

function h we can de�ne by d�̂t = (1 + th) d�̂ a perturbation of �̂, de�ned for at

least every t in a neighbourhood of 0. The likelihood evaluated at (�̂; �̂t) viewed as

a function of t must be maximal at t = 0. Di�erentiating at t = 0 we obtain the

stationary equation

PnB�̂n;�̂nh = 0;

where B�;� is (the version of) the score operator given in Example 3.13. We can

rewrite this equation as

PnÆh(y) = Pne
�̂nz

Z
[0;y]

h d�̂n =

Z
Pne

�̂nzh(s)1s�y d�̂n(s):

In this notation Pn is the empirical measure of the observations Xi = (Yi;�; Zi),

and we write Pnf(x) instead of Pnf for clarity (we hope). Inverting the preceding

display (i.e. replacing h by h=M̂n;0), we �nd

�̂hn = Pn
Æh(y)

M̂n;0(y)
; M̂n;0(s) = Pne

�̂z1s�y:

If we knew that �̂n were consistent, then we could use this representation directly

to prove the consistency of �̂n. The Cox model, as usual, is much simpler here than

other models. In other situations we �nd a recursive expression for �̂n with both

�̂n and �̂n appearing on the right side, but the argument may proceed in the same

way.

The Wald argument is based on comparing the value of the likelihood at the

maximum likelihood estimator and at the true value of the parameter. In the present
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case this causes a problem, because the likelihood at the maximum likelihood es-

timator, a random discrete distribution, and at the true parameter are di�erent in

character. This is solved by comparing the likelihood at the maximum likelihood

estimator and at the random parameter (�0; ~�n) for ~�n de�ned by

~�nh = Pn
Æh(y)

M0(y)
; M0(s) = P0e

�0z1s�y:

The function ~�n is similar in structure to �̂n, but is also similar to �0: applying the

same algebra as previously to the equation P0B0h = 0 we see that

�0h = P0
Æh(y)

M0(y)
:

Under our assumptions M0(s) � M0(�) is bounded away from zero. Therefore, the

functions (y; Æ) 7! Æh(y)=M0(y) form a Glivenko-Cantelli class if h ranges over a

Glivenko-Cantelli class and hence ~�nh ! P0Æh(y)=M0(y) = �0h, uniformly in h

ranging over a Glivenko-Cantelli class.

The log likelihood evaluated at (�̂; �̂) is bigger than the log likelihood evaluated

at (�0; ~�). The point masses �fYig in the likelihood when evaluated at �̂ and ~� can

be reexpressed in the functions M̂n;0 and M0. Speci�cally we have that �̂=~�fYig =
M0=M̂n;0(Yi). This yields the equation

(5:11) (�̂ � �0)PnzÆ � Pn

�
e�̂z�̂(y)� e�0z ~�(y)

�
+ PnÆ log

M0

M̂n;0

(y) � 0:

In the next paragraphs we prove that this implies that for almost all ! in the

underlying probability space there exists �1 2 � such that along a subsequence

(�̂n; �̂n)! (�1;�1) and

(5:12) (�1 � �0)P0zÆ � P0

�
e�1z�1(y)� e�0z�0(y)

�
+ P0Æ log

M0

M1;0
(y) � 0;

for

M1;0(s) = P0e
�1z1s�y; �1h = P0

Æh(y)

M1;0(y)
:

The topology on � can be taken equal to the uniform norm on [0; � ]. Noting that

M0=M1;0 = d�1=d�0, we recognize (5.12) as the Kullback-Leibler divergence

P0 log(p�1;�1=p�0;�0), which is strictly negative by the identi�ability of (�0;�0),

unless (�1;�1) = (�0;�0). This would �nish the proof that (�̂n; �̂n) ! (�0;�0)

almost surely.

To deduce (5.12) from (5.11) we note �rst that the functions M̂n;0 are bounded

below by M̂n;0(�) = Pne
�̂z1y=� , which is asymptotically bounded away from zero un-

der our assumptions. Therefore the functions (Æ; y) 7! Æh(y)=M̂n;0(y) are contained

in a Glivenko-Cantelli class, almost surely, if h ranges over a Glivenko-Cantelli class.

It follows that �̂h = P0Æh(y)=M̂n;0(y)+ o(1), almost surely, uniformly in h running

through a Glivenko-Cantelli class.

Second, we note that Pne
�̂z1y=� �̂(�) � Pne

�̂z�̂(y) = PnÆ, by the likelihood

equation with h = 1 and hence �̂(�) is uniformly bounded above, eventually, almost

surely.
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By the compactness of �, the sequence �̂n converges to a limit �1, at least along

subsequences. Then M̂n;0(s) ! M1;0(s), uniformly in s, almost surely, and hence

�̂nh ! P0Æh(y)=M̂1;0(y) = �1h almost surely, uniformly in h running through a

Glivenko-Cantelli class with integrable envelope, still along a subsequence. It now

suÆces to take limits in (5.11). This is done in two steps. We �rst replace Pn by P0
adding a o(1)-term, which is permitted, because the classes of functions (z; Æ) 7! zÆ,

(y; z) 7! e�z�(y) and (y; Æ) 7! Æ logM0=M(y) with � 2 �, � ranging over a uniformly

bounded set of monotone, cadlag functions and M ranging over monotone, cadlag

functions that are bounded away from zero, is Glivenko-Cantelli. The second step is

to replace �̂n, �̂n, ~�n and M̂n;0 by their limits, which is justi�ed by the dominated

convergence theorem.

5.3.3 Trick 3: Mixture models

Our �rst trick already showed that for proving consistency of a maximum likelihood

estimator, it may be useful to apply a general result for M -estimators not to the

log density, but to a slightly modi�ed function. In models that depend linearly on a

parameter belonging to a convex set, there is an even better choice.

Given a kernel p(xj z) indexed by z 2 Z and a probability distribution � on Z,
let p�(x) =

R
p(xj z) d�(z). Consider proving the consistency of the maximum likeli-

hood estimator �̂, which maximizes � 7!
Qn
i=1p�(Xi) over the set of all probability

measures.

We can use the linearity of this model, by starting from the observation that

the likelihood is bigger at �̂ than at �t = t� + (1 � t)�̂ for every � and t 2 [0; 1].

Di�erentiating the inequality Pn log p�̂=p�t � 0 from the right at t = 0 we obtain

Pn
p�

p�̂
� 1:

We might try and use this equation for a consistency proof, but the quotients p�=p�̂
may lack integrability, and it is useful to make a second step. Let L: [0;1) 7! R be

a nondecreasing function such that t 7! L(1=t) is convex. Then

PnL
�p�̂
p�

�
= PnL

� 1

p�=p�̂

�
� L

� 1

Pnp�=p�̂

�
� L(1) = PnL

�p�0
p�0

�
:

Thus we may use Theorem 5.8 with the choice m� = L(p�=p�0). The choice

L(t) =
t� � 1

t� + 1
; � 2 (0; 1];

is attractive, because then L(t) = �L(1=t) is strictly concave. By Jensen's inequality

P�0L
� p�
p�0

�
� L

�
P�0

p�

p�0

�
� L(1):

Unless p� = p�0 almost surely under P�0 , the �rst inequality will be strict and hence

the left side will be strictly less than the right side.

If the set of functions x 7! p(xj z) where z ranges over Z is Glivenko-Cantelli,

then so is its convex hull, the set of all functions p�. The one-element class consisting

of the function 1=ph0 is Glivenko-Cantelli and hence so is the class of all functions
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p�=p�0 and the class of functions L(p�=p�0) when � ranges over all probability dis-

tributions on (Z; C), by two applications of Theorem 5.7.

We now obtain the consistency of �̂ for �0 if we can verify that P�0L
�
p�=p�0

�
is

strictly bounded away from its maximal value L(1) if � varies over the complement

of a ball of radius Æ around �0. This, of course, depends on the metric we choose for

the set of mixing distributions. If we choose a metric for which this set is compact,

then it suÆces to verify that the map � 7! p�(x) is continuous for P�0 -almost every

x, because then so is the map � 7! P�0L
�
p�=p�0

�
, by the dominated convergence

theorem. In many examples the weak topology is appropriate, possibly after �rst

compactifying Z. A semi-metric that always works is the induced Hellinger metric,

because, for � = 1=2,

P�0L
� p�
p�0

�
� �1

2
h2(p�; p�0):

5.4 Nuisance Parameters

We close this lecture by noting that the preceding theorems have easy extensions to

M - and Z-estimators de�ned in the presence of nuisance parameters. In the case of

M -estimators we might be given measurable functions m�;�:X 7! R indexed by a

parameter of interest � and a nuisance parameter �. Given an initial estimator �̂ for

�, we consider �̂ maximizing � 7! Pnm�;�̂. More generally, given an \estimator" �̂(�)

for � that may depend on �, we consider �̂ maximizing � 7! Pnm�;�̂(�). (The latter

criterion is sometimes called a pro�le criterion function.) Both cases are covered if

we allow a general random criterion function

m̂n;�(x) = m̂n;�(x;X1; : : : ; Xn):

We shall assume that asymptotically the randomness disappears: m̂n;� ! m� for

deterministic, measurable functions m�.

5.13 Theorem. Suppose that there exists a Glivenko-Cantelli class F of functions

with integrable envelope such that Pn
�
fm̂n;�: � 2 �g � F

�
! 1, suppose that

sup�2� jm̂n;� �m�j(x) P! 0 for all x, and that there exists a point �0 2 � such that

inf�:d(�;�0)>Æ Pm� < Pm�0 for every Æ > 0. Then Pnmn;�̂n
� Pnm̂n;�0 implies that

d(�̂n; �0)! 0 in probability.

Proof. For any random sequence ~� and every x, the sequence jmn;~� � m~�j(x) is
bounded by 2F (x) < 1, for F an envelope function of the class, and converges

in probability to zero. This implies that it converges to zero in mean and hence,

by Fubini's theorem and the dominated convergence theorem, EP jmn;~� �m~�j ! 0.

Consequently, the sequence P (mn;~� �m~�) converges to zero in probability.

Combining this with the Glivenko-Cantelli assumption we obtain that the se-

quence jPnm̂n;~�n
� Pm~�n

j converges to zero in probability.

The remainder of the proof is similar to the proof of Theorem 5.10.
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Notes

The proofs of most results on empirical processes given in this lecture and the

following ones can be found in the book [41]. This work also contains a reasonable

number of references to the huge literature on empirical processes. We do not refer

to this here, apart from mentioning that the Saint-Flours notes by Dudley [9] were a

major step in developing the abstract theory of empirical processes. Applications of

empirical processes to the analysis of M-estimators and Z-estimators were pioneered

by Pollard. See [29], [30].

Trick 1 I learned from [4], trick 2 (applied here to the Cox model for the �rst

time) from Susan Murphy (see [24]), and trick 3 from [27].



Lecture 6
Empirical Processes and
Normality of Z-Estimators

In this lecture we continue the discussion of empirical processes, now concentrating

on the central limit theorem and uniformity in convergence in distribution, and its

applications to deriving the asymptotic distribution of Z-estimators.

6.1 Weak Convergence in Metric Spaces

Let (
n;Un;Pn) be a sequence of probability spaces and, for each n, let Xn: 
n 7! D

be an arbitrary map from 
n into a metric space D .

6.1 De�nition. The sequence Xn converges in distribution to a Borel measure L

on D if and only if E�f(Xn) !
R
f dL for every bounded, continuous function

f : D 7! R.

Here the asterisk * denotes outer expectation, and is necessary because we have

not assumed that the maps Xn are Borel measurable. It is de�ned as

E�f(X) = inf
n
EU : U : 
 7! R;measurable; U � f(X);EU exists

o
:

If X is a Borel measurable map in D , de�ned on some probability space, with law L,

then we also write Xn  X instead of Xn  L. The limit is always assumed to be

Borel measurable. Even though the Xn and X are ordinary maps, we also refer to

them as \random elements", as they are de�ned on a probability space and hence

induce randomness on D .

In the following, we do not stress the measurability issues. However, we write

stars, when necessary, as a reminder that there are measurability issues that need

to be taken care of. Although 
n may depend on n, we do not let this show up in

the notation for E� and P�.
Next consider convergence in probability and almost surely.

6.2 De�nition. An arbitrary sequence of maps Xn: 
n 7! D converges in probabil-

ity to X if P�
�
d(Xn; X) > "

�
! 0 for all " > 0. This is denoted by Xn

P! X.
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6.3 De�nition. An arbitrary sequence of maps Xn: 
n 7! D converges almost

surely to X if there exists a sequence of (measurable) random variables �n such

that d(Xn; X) � �n and �n
as! 0 This is denoted by Xn

as�! X.

These de�nitions also do not require the Xn to be Borel measurable. In the

de�nition of \convergence of probability" we added a star, for \outer probability".

Similar to outer expectation, we de�ne outer probability by

P�(X 2 B) = inf
n
P(A):A 2 A; A � X�1(B)

o
:

The de�nition of \almost sure convergence" is unpleasantly complicated. This can-

not be avoided easily, because, even for Borel measurable maps Xn and X, the

distance d(Xn; X) need not be a random variable.

Most of the well-known properties and relationships of these modes of conver-

gence remain valid under the generalized de�nitions. We collect the most important

ones in the following theorem.

6.4 Theorem. For arbitrary maps Xn; Yn: 
n 7! D and every random element X

with values in D ,

(i) Xn
P! X implies Xn  X;

(ii) Xn
P! c for a constant c if and only if Xn  c;

(iii) if Xn  X, then �(Xn) �(X) for every map �: D 7! E that is continuous at

every point of a set D 0 such that P(X 2 D 0) = 1 and such that �(X) is Borel

measurable;

(iv) if Xn  X and d(Xn; Yn)
P! 0, then Yn  X;

(v) if Xn  X and Yn
P! c for a constant c, then (Xn; Yn) (X; c);

(vi) if Xn
P! X and Yn

P! Y , then (Xn; Yn)
P! (X;Y ).

The metric spaces we are mostly interested in are, besides the Euclidean spaces,

spaces of bounded functions equipped with the uniform norm. Given an arbitrary

set T let `1(T ) be the collection of all bounded functions z:T 7! R. This is a Banach

space under the uniform norm

kzkT = sup
t2T

��z(t)��:
Most of the random elements X with values in `1(T ) of interest to us are stochastic

processes in that their coordinate values Xt = �t ÆX, for �: `1(T ) 7! R the coor-

dinate projection z 7! z(t), are random variables. However, many of them are not

Borel measurable in `1(T ) and hence the preceding extensions of the usual de�-

nitions are useful. Earlier extensions based on the �-�eld generated by the closed

balls, initiated by Dudley and expounded by Pollard, are special cases of the present

approach, which is due to Ho�mann-J�rgensen.

We use the space `1(T ) for de�ning \uniform weak convergence" of stochastic

processes, such as the empirical processes. The next theorem gives a characterization

of weak convergence in this space by �nite approximation. It is required that, for any

" > 0, the index set T can be partitioned into �nitely many sets T1; : : : ; Tk such that

(asymptotically) the variation of the sample paths t 7! Xn;t is less than " on every

one of the sets Ti, with large probability. Then the behaviour of the process can
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be described, within a small error margin, by the behaviour of the marginal vectors�
Xn;t1 ; : : : ; Xn;tk

�
for arbitrary �xed points ti 2 Ti. If these marginals converge,

then the processes converge.

6.5 Theorem. A sequence of arbitrary maps Xn: 
n 7! `1(T ) converges weakly

to a tight random element if and only if both of the following conditions hold:

(i) the sequence
�
Xn;t1 ; : : : ; Xn;tk

�
converges in distribution in R

k for every �nite

set of points t1; : : : ; tk in T ;

(ii) for every "; � > 0 there exists a partition of T into �nitely many sets T1; : : : ; Tk
such that

lim sup
n!1

P�
�
sup
i

sup
s;t2Ti

��Xn;s �Xn;t

�� � "

�
� �:

Proof. We only give the proof of the more constructive part, the suÆciency of

(i)-(ii). For each natural number m, partition T into sets Tm1 ; : : : ; T
m
km

as in (ii)

corresponding to " = � = 2�m. Since the probabilities in (ii) decrease if the partition
is re�ned, we can assume without loss of generality that the partitions are successive

re�nements as m increases. For �xed m de�ne a semimetric �m on T by �m(s; t) = 0

when s and t belong to the same partioning set Tmj , and by �m(s; t) = 1 otherwise.

Every �m-ball of radius 0 < " < 1 coincides with a partitioning set. In particular, T

is totally bounded for �m, and the �m-diameter of a set Tmj is zero. By the nesting

of the partitions, �1 � �2 � � � �. De�ne �(s; t) =
P1
m=1 2

�m�m(s; t). Then � is a

semimetric such that the �-diameter of Tmj is smaller than
P

k>m 2�k = 2�m, and
hence T is totally bounded for �. Let T0 be the countable �-dense subset constructed

by choosing an arbitrary point tmj from every Tmj .

By assumption (i) and Kolmogorov's consistency theorem we can con-

struct a stochastic process fXt: t 2 T0g on some probability space such that�
Xn;t1 ; : : : ; Xn;tk

�
 
�
Xt1 ; : : : ; Xtk

�
for every �nite set of points t1; : : : ; tk in T0.

By the portmanteau lemma and assumption (ii), for every �nite set S � T0,

P

�
sup
j

sup
s;t2Tmj
s;t2S

jXs �Xtj > 2�m
�
� 2�m:

By the monotone convergence theorem this remains true if S is replaced by T0. If

�(s; t) < 2�m, then �m(s; t) < 1 and hence s and t belong to the same partitioning

set Tmj . Consequently, the event in the preceding display with S = T0 contains the

event in the following display, and

P

�
sup

�(s;t)<2�m

s;t2T0

jXs �Xtj > 2�m
�
� 2�m:

This sums to a �nite number over m 2 N . Hence, by the Borel-Cantelli lemma,

for almost all !,
��Xs(!) � Xt(!)

�� � 2�m for all �(s; t) < 2�m and all suÆciently

large m. This implies that almost all sample paths of fXt: t 2 T0g are contained in

UC(T0; �). Extend the process by continuity to a process fXt: t 2 Tg with almost

all sample paths in UC(T; �).

De�ne �m:T 7! T as the map that maps every partioning set Tmj onto the point

tmj 2 Tmj . Then, by the uniform continuity of X, and the fact that the �-diameter
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of Tmj is smaller than 2�m, X Æ�m  X in `1(T ) as m!1 (even almost surely).

The processes
�
Xn Æ �m(t): t 2 T

	
are essentially km-dimensional vectors. By (i),

Xn Æ �m  X Æ �m in `1(T ) as n!1, for every �xed m. Consequently, for every

Lipschitz function f : `1(T ) 7! [0; 1], E�f(Xn Æ �m) ! Ef(X) as n ! 1, followed

by m!1. Conclude that, for every " > 0,��E�f(Xn)� Ef(X)
�� � ��E�f(Xn)� E�f(Xn Æ �m)

��+ o(1)

� kfklip"+ P�
�
kXn �Xn Æ �mkT > "

�
+ o(1):

For " = 2�m this is bounded by kfklip2�m+2�m+ o(1), by the construction of the

partitions. The proof is complete.

In the course of the proof of the preceding theorem a semimetric � is constructed

such that the weak limit X has uniformly �-continuous sample paths, and such that

(T; �) is totally bounded. This is surprising: even though we are discussing stochastic

processes with values in the very large space `1(T ), the limit is concentrated on

a much smaller space of continuous functions. Actually, this is a consequence of

imposing the condition (ii), which can be shown to be equivalent to asymptotic

tightness. (A sequence Xn is called asymptotically tight if for every " > 0 there

exists a compact set K � D such that lim inf P(d(Xn; K) < �) � 1 � " for every

� > 0.) It can be shown, more generally, that every tight random element X in

`1(T ) necessarily concentrates on UC(T; �) for some semimetric � (depending on

X) that makes T totally bounded.

In view of this connection between the partitioning condition (ii), continuity

and tightness, we sometimes refer to this condition as the condition of asymptotic

tightness or asymptotic equi-continuity. One consequence of this is that a tight ran-

dom element X is completely determined by its values on a countable set (taken

dense in (T; �)), and hence its distribution is determined by the distributions of all

its �nite-dimensional projections.

The existence of a semi-metric that induces continuity will enable us to use em-

pirical process theory in the analysis of Z-estimators. Thus we record the existence

of the semimetric for later reference. We also note that, for a Gaussian limit process,

this can always be taken equal to the \intrinsic" standard deviation semimetric. This

will help a good deal to make our results on Z-estimators more concrete.

6.6 Lemma. Under the conditions (i){(ii) of the preceding theorem there exists a

semimetric � on T for which T is totally bounded, and such that the weak limit of

the sequence Xn can be constructed to have almost all sample paths in UC(T; �).

Furthermore, if the weak limit X is zero-mean Gaussian, then this semimetric can

be taken equal to �(s; t) = sd(Xs �Xt).

Proof. A semimetric � is constructed explicitly in the proof of the preceding theo-

rem. It suÆces to prove the statement concerning Gaussian limits X.

Let � be the semimetric obtained in the proof of the theorem and let �2 be the

standard deviation semimetric. Since every uniformly �-continuous function has a

unique continuous extension to the �-completion of T , which is compact, it is no

loss of generality to assume that T is �-compact. Furthermore, assume that every

sample path of X is �-continuous.
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An arbitrary sequence tn in T has a �-converging subsequence tn0 ! t. By

the �-continuity of the sample paths, Xtn0 ! Xt almost surely. Since every Xt is

Gaussian, this implies convergence of means and variances, whence �2(tn0 ; t)
2 =

E(Xtn0 �Xt)
2 ! 0. Thus tn0 ! t also for �2 and hence T is �2-compact.

Suppose that a sample path t 7! Xt(!) is not �2-continuous. Then there exists

an " > 0 and a t 2 T such that �2(tn; t) ! 0, but
��Xtn(!) � Xt(!)

�� � " for

every n. By the �-compactness and continuity, there exists a subsequence such that

�(tn0 ; s) ! 0 and Xtn0 (!) ! Xs(!) for some s. By the argument of the preceding

paragraph, �2(tn0 ; s) ! 0, so that �2(s; t) = 0 and
��Xs(!)� Xt(!)

�� � ". Conclude

that the path t 7! Xt(!) can only fail to be �2-continuous for ! for which there exist

s; t 2 T with �2(s; t) = 0, but Xs(!) 6= Xt(!). Let N be the set of ! for which there

do exist such s; t. Take a countable, �-dense subset A of f(s; t) 2 T�T : �2(s; t) = 0g.
Since t 7! Xt(!) is �-continuous, N is also the set of all ! such that there exist

(s; t) 2 A with Xs(!) 6= Xt(!). From the de�nition of �2, it is clear that for every

�xed (s; t), the set of ! such that Xs(!) 6= Xt(!) is a nullset. Conclude that N is a

null set. Hence, almost all paths of X are �2-continuous.

6.2 Donsker Classes

Given a random sample X1; : : : ; Xn from a probability distribution P on a mea-

surable space (X ;A), let again G n be the empirical process G nf =
p
n(Pnf � Pf)

indexed by a given class F of measurable functions. Under the assumptions that the

class possesses a �nite envelope F and that kPkF is �nite (in particular if PF <1)

the sample paths f 7! G nf are contained in the space `1(F).

6.7 De�nition. A class F of functions is P -Donsker if the sequence of empirical

processes converges in distribution to a tight limit process in the space `1(F).

The convergence of the process in `1(F) implies the convergence of the

marginals
�
G nf1; : : : ; G nfk

�
for given any �nite set elements fi 2 F , by the con-

tinuous mapping theorem. This is possible only if Pf2i < 1 for every i and

then the limit distribution is multivariate normal with mean zero and covariances

P (fi�Pfi)(fj�Pfj) by the multivariate central limit theorem. Thus if F is Donsker,

then G n  G for a tight Gaussian random element in `1(F) with mean zero and

covariance function

EG P f G P g = Pfg � PfPg:

This is known as a P -Brownian bridge. In view of the results of the preceding section

this is also determined by:

- G is a Gaussian process;

- EG f = 0, cov(G f; G g) = Pfg � PfPg;

- the sample paths of G can be constructed to be uniformly continuous relative

to the semimetric �(f; g) = sd(G f � G g).

- F is totally bounded under �.
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The L2(P )-metric is slightly stronger than the metric �, because

�2(f; g) = P
�
(f � Pf)� (g � Pg)

�2 � P (f � g)2:

Thus the sample paths are also uniformly continuous relative to the L2(P )-

semimetric. It is not hard to see that F will also be totally bounded relative to

the L2(P )-semimetric as soon as kPkF < 1. Thus there is not much loss in re-

placing � by the L2(P )-metric and for this reason we shall work with the simpler

L2(P )-metric from now on.

Just as for the Glivenko-Cantelli theorem, there are two basic theorems that

imply that a class of functions is Donsker, using bracketing or covering numbers. It

is required that the numbers

N[]

�
";F ; L2(P )

�
or sup

Q

N
�
"kFkQ;r;F ; L2(Q)

�

do not grow too fast as " # 0. The rate of growth is elegantly measured through the

bracketing integral and the uniform entropy integral de�ned as

J[]
�
Æ;F ; L2(P )

�
=

Z Æ

0

q
logN[ ]

�
";F ; L2(P )

�
d";

J
�
Æ;F ; L2) =

Z Æ

0

r
log sup

Q

N
�
"kFkQ;2;F ; L2(Q)

�
d":

The convergence of these integrals depends only on the size of the integrands as

" # 0. Because
R 1
0
"�r d" converges for r < 1 and diverges for r � 1, convergence of

the integrals roughly requires that the entropies grow at slower order than (1=")2.

6.8 Theorem (Donsker theorem). Every class F of measurable functions with

J[]
�
1;F ; L2(P )

�
<1 is P -Donsker.

6.9 Theorem (Donsker theorem). Every suitably measurable class F of measur-

able functions with J(1;F ; L2) <1 and P �F 2 <1 is P -Donsker.

The condition that the class F be \suitably measurable" is satis�ed in most

examples, but cannot be omitted. We do not give a general de�nition here, but note

that it suÆces that there exists a countable collection G of functions such that each

f is the pointwise limit of a sequence gm in G. We shall call a class with this property

separable.

As remarked in the preceding lecture, many estimates of the bracketing or

uniform entropy are available in the literature and can be used to derive concrete

Donsker classes. Alternatively, new Donsker classes can be constructed out of known

Donsker classes. The following theorem is in this spirit and will be useful.

For ease of terminology we call a collection of measurable functions f :X 7! R
k

Donsker if each of the k collections of coordinate functions is Donsker.
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6.10 Theorem. If F is a Donsker class of functions f :X 7! R
k with square-

integrable envelope, and �:Rk 7! R is Lipschitz, then the class of functions

� Æ f :X 7! R is Donsker provided that it has a square-integrable envelope.

Our result on Z-estimators should cover the classical results, which are obtained

by Taylor expansions. This concerns classes of functions  �:X 7! R
k , where � ranges

over a bounded subset of Rk and the dependence � 7!  � is \smooth". The following

lemma gives a bound on the entropy of such a class, which shows that these classes

are very easily Donsker.

6.11 Lemma (Parametric class). Let F = ff�: � 2 �g be a collection of measur-

able functions indexed by a bounded subset � � R
d . Suppose that there exists a

measurable function m such that��f�1(x)� f�2(x)
�� � m(x)k�1 � �2k; every �1; �2:

If P jmjr < 1, then there exists a constant K, depending on � and d only, such

that the bracketing numbers satisfy

N[]

�
"kmkP;r;F ; Lr(P )

�
� K

�diam�

"

�d
; every 0 < " < diam�:

Proof. We use brackets of the type [f� � "m; f� + "m] for � ranging over a suitably

chosen subset of �. These brackets have Lr(P )-size 2"kmkP;r. If � ranges over a grid
of meshwidth " over �, then the brackets cover F , since, by the Lipschitz condition,
f�1 � "m � f�2 � f�1 + "m if k�1 � �2k � ". Thus, we need as many brackets as we

need balls of radius "=2 to cover �.

The size of � in every �xed dimension is at most diam�. We can cover �

with fewer than (diam�=")d cubes of size ". The circumscribed balls have radius

a multiple of " and also cover �. If we replace the centers of these balls by their

projections into �, then the balls of twice the radius still cover �.

6.3 Maximal Inequalities

We do not include the proofs of the two Donsker theorems here, but we do include

the basic maximal inequalities, on which the proofs rest. These are bounds on the

distribution of the supremum variables kG nkF . For our main purpose inequalities

on the L1-norm of these variables are suÆcient. We use these inequalities in the

next section to treat empirical processes indexed by random functions. Actually,

the Theorem 6.15 obtained there can easily be turned into a proof of the Donsker

theorems.

6.12 Lemma. For any class F of measurable functions f :X 7! R such that Pf2 <

Æ2 for every f , we have, with a(Æ) = Æ=
p
LogN[](Æ;F ; L2(P )),

E�PkG nkF . J[]
�
Æ;F ; L2(P )

�
+
p
nP �F

�
F >

p
na(Æ)

	
:
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6.13 Corollary. For any class F of measurable functions with envelope function

F ,

E�P
G nF . J[]

�
kFkP;2;F ; L2(P )

�
:

Proof. Since F is contained in the single bracket [�F; F ], the bracketing number

N[]

�
Æ;F ; L2(P )

�
can be taken equal to 1 for Æ = 2kFkP;2. Then the constant a(Æ) as

de�ned in the preceding lemma reduces to a multiple of kFkP;2, and
p
nP �F

�
F >p

na(Æ)
	
is bounded above by a multiple of kFkP;2, by Markov's inequality.

6.14 Lemma. For any suitably measurable class F of measurable functions f :X 7!
R, we have, with �2n = supf2F Pnf

2=PnF
2,

E�P kG nkF . E
�
J(�n;F ; L2)kFkPn;2

�
. J(1;F ; L2)kFkP;2:

6.4 Random Functions

In Lecture 10 we shall use the preceding theorems directly to ensure that certain

stochastic processes appearing in the asymptotic analysis of Z-estimators converge in

distribution. However, our main use for Donsker classes in these lectures is indirect:

they give a tool to show study averages of \random functions". Here by \random

functions" we mean measurable functions x 7! f̂n(x;X1; : : : ; Xn) that, for every

�xed x, are functions of the observations. We write f̂n for f̂n(�;X1; : : : ; Xn) and use

the notations Pnf̂n and P f̂n as abbreviations for the expectations of the functions

x 7! f̂n(x;X1; : : : ; Xn) with X1; : : : ; Xn �xed. Thus

G n f̂n =
1p
n

� nX
i=1

f̂n(Xi;X1; : : : ; Xn)� P f̂n

�
;

P f̂n =

Z
f̂n(x;X1; : : : ; Xn) dP (x):

Note that G n f̂n is not centered at mean zero, although it could be considered cen-

tered in a wide sense.

Obviously, the central limit theorem does not apply to a sequence of the form

G n f̂n. However, if the functions f̂n are suÆciently stable, then its result is still true.
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6.15 Theorem. If there exists a P -Donsker class F such that Pn(f̂n 2 F) ! 1

and P (f̂n � f0)
2 ! 0 in probability, for some f0 2 L2(P ), then G n(f̂n � f0)! 0 in

probability.

Proof. Assume without of loss of generality that f0 is contained in F . De�ne a

function g: `1(F) � F 7! R by g(z; f) = z(f) � z(f0). The set F is a semimetric

space relative to the L2(P )-metric. The function g is continuous with respect to the

product semimetric at every point (z; f) such that f 7! z(f) is continuous. Indeed,

if (zn; fn) ! (z; f) in the space `1(F) � F , then zn ! z uniformly and hence

zn(fn) = z(fn) + o(1)! z(f) if z is continuous at f .

By assumption, f̂n
P! f0 as maps in the metric space F . Since F is Donsker,

G n  G P in the space `1(F), and it follows that (G n ; f̂n) (G P ; f0) in the space

`1(F) � F . By Lemma 6.6, almost all sample paths of G P are continuous on F .
Thus the function g is continuous at almost every point (G P ; f0). By the continuous

mapping theorem, G n (f̂n � f0) = g(G n ; f̂n)  g(G P ; f0) = 0. The lemma follows,

since convergence in distribution and convergence in probability are the same for a

degenerate limit.

Employing a �xed Donsker class in the preceding lemma gives a useful, relatively

simple condition for getting rid of randomness in the function f̂n. The lemma covers

many examples. However, other methods may give better results. Sometimes it is

possible to study G n (f̂n � f0) by direct methods, such as computing means and

variances. In other situations it is good to know that what is really needed is not

that the functions f̂n remain within a �xed class, as n!1, but that the complexity

of the set of functions f̂n does not increase too much with n. We can make this precise

through a formulation using entropy conditions. On the one hand this gives more

exibility. On the other hand, nice results such as Theorem 6.10, which allow a

calculus to create new Donsker classes, become unavailable.

In the next theorem we require that the realizations of the random functions f̂n
belong to classes Fn that may change with n. We assume that these classes possess

envelope functions Fn that satisfy the Lindeberg condition

PF 2
n = O(1);

PF 2
nfFn > "

p
ng ! 0; every " > 0:

Then the result of the preceding theorem remains true provided the entropy integrals

of the classes behave well.

6.16 Theorem. Let Fn be classes of measurable functions such that Pn(f̂n 2
Fn)! 1 and such that either

(i) J[]
�
Æn;Fn; L2(P )

�
! 0 or

(ii) J(Æn;Fn; L2)! 0, for every Æn # 0,
and with envelope functions that satisfy the Lindeberg condition. In the case of

(ii) also assume that the classes are suitably measurable. If P (f̂n � f0)
2 ! 0 in

probability for some f0 2 L2(P ), then G n(f̂n � f0)! 0.

Proof. Without loss of generality assume that f0 = 0. Otherwise, replace Fn by

Fn � f0 and f̂n by f̂n � f0.
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First assume that (i) holds. Let Gn(Æ) be the set of functions ff 2 Fn:Pf2 � Æ2g
By assumption we have that Pn

�
f̂n 2 Gn(Æ)

�
! 1 as n ! 1, for every Æ > 0. On

the event ff̂n 2 Gn(Æ)g we have jG n f̂nj � supg2Gn(Æ) jG ngj. By Lemma 6.12

E� sup
g2Gn(Æ)

jG ngj . J[]
�
Æ;Gn(Æ); L2(P )

�
+
PF 2

n1
�
Fn > an(Æ)

p
n
	

an(Æ)
;

where an(Æ) is the number given in Lemma 6.12 evaluated for the class of functions

Gn(Æ). The �rst term on the right increases if we replace Gn(Æ) by Fn and hence

converges to zero as Æ ! 0. Since J[]
�
Æn;Fn; L2(P )

�
! 0 for every Æn # 0, we must

have that J[]
�
Æ;Fn; L2(P )

�
= O(1) for every Æ > 0 and hence

Æ

q
logN[]

�
Æ;Fn; L2(P )

�
� J[]

�
Æ;Fn; L2(P )

�
= O(1):

Therefore, an(Æ) is bounded away from zero, for every �xed Æ as n!1. Conclude

that PF 2
n1
�
Fn > an(Æ)

p
n
	
! 0 as n!1 followed by Æ ! 0. The proof under (i)

is complete.

Next assume that (ii) holds. The class Gn(Æ), de�ned as before, has envelope

function 1 + Fn and hence, by Lemma 6.14,

(6:17) E� sup
g2Gn(Æ)

jG ngj . E�
h
J
�
�n(Æ);Gn(Æ); L2

�p
Pn(1 + Fn)2

i
;

for J the uniform entropy integral of Gn(Æ) relative to the envelope function 1 + Fn
and

�2n(Æ) =
kPnf2kGn(Æ)
Pn(1 + Fn)2

� kPnf2kGn(Æ) ^ 1:

The covering numbers of Gn(Æ) are bounded by by the covering numbers of Fn and

hence the uniform entropy integral of Gn(Æ) is bounded by the uniform entropy

integral of Fn if we compute them relative to the same envelope function. If for Fn
we replace the envelope 1+Fn by the natural envelop Fn, then the uniform entropy

integral increases. Thus we can further bound the right side of (6.17) by

h
E�J2

�
�n(Æ);Fn; L2

�
E�Pn(1 + Fn)

2
i1=2

.
h
J2(1;Fn)P�

�
�n(Æ) � "

�
+ J2(";Fn; L2)

i1=2�
P (1 + Fn)

2
�1=2

:

We conclude that the theorem is proved if we can show that �n(Æ)! 0 in probability

as n!1, followed by Æ ! 0.

Fix � > 0. The class of functions Hn(Æ; �) =
�
f21Fn��

p
n: f 2 Gn(Æ)

	
has

envelope function �
p
nFn. Hence by Lemma 6.14

(6:18) E�kG nkHn(Æ;�) . J
�
1;Hn(Æ; �); L2

�
k�
p
nFnkP;2:

Because
Q(f21Fn��

p
n � g21Fn��

p
n)

2 � Q(f � g)2(2�
p
n)2;

we have

N
�
"k�

p
nFnkQ;2;Hn(Æ; �); L2(Q)

�
� N

�
1
2
"kFnkQ;2;Fn; L2(Q)

�
:
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Inserting this in the right side of (6.18) we see that the left side of (6.18) is bounded

by J(1;Fn; L2)�
p
nkFnkP;2. We conclude that E�kPn � PkHn(Æ;�) ! 0 as n ! 1

followed by � ! 0.

For any �xed � > 0 the class of functions Hn(Æ; �) =
�
f21Fn>�

p
n: f 2 Gn(Æ)

	
satis�es

E�kPn � PkHn(Æ;�)
� 2PF 2

n1Fn>�
p
n ! 0:

Combined with the result of the preceding paragraph this yields E�kPn�PkGn(Æ)2 !
0, as n !1, for every Æ > 0. Because also kPkGn(Æ)2 � Æ2 by the de�nition of the

class Gn(Æ), we conclude that kPnkGn(Æ)2 ! 0 as n ! 1 followed by Æ > 0. This

concludes the proof.

6.5 Asymptotic Normality of Z-Estimators

In the preceding lecture we showed that a Z-estimator �̂, de�ned as a zero of a

random criterion function � 7! Pn �, is typically consistent for a zero of the limiting

criterion function � 7! P �. The asymptotic distribution of the di�erence �̂ � �

depends on the uctuations of the random criterion function Pn � around its limit

P �. Empirical processes are what we need to study such uctuations.

We start with a simple theorem. For every � in a set � � R
k let  �:X 7! R

k

be a measurable, vector-valued function.

6.19 Theorem. Suppose that the class of functions f �: � 2 �g is P -Donsker, that
the map � 7! P � is di�erentiable at �0 with nonsingular derivative V , and that the

map � 7!  � is continuous in L2(P ) at �0. Then any �̂n such that Pn �̂n = 0 and

such that �̂n
P! �0 for a zero �0 of � 7! P � satis�es

p
n(�̂n � �0) = �V �1�0

G n �0 + oP (1):

Proof. The consistency of �̂n and the Donsker condition on the functions  � imply

that

(6:20) G n �̂n � G n �0
P! 0:

By the de�nitions of �̂n and �0, we can rewrite G n �̂n as
p
nP ( �0 �  

�̂n
) + oP (1).

Combining this with the Delta-method and the di�erentiability of the map � 7! P �,

we �nd that

p
nV�0(�0 � �̂n) +

p
n oP

�
k�̂n � �0k

�
= G n �0 + oP (1):

In particular, by the invertibility of the matrix V�0 ,

p
nk�̂n � �0k � kV �1�0

k
p
n
V�0(�̂n � �0)

 = OP (1) + oP
�p
nk�̂n � �0k

�
:
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This implies that �̂n is
p
n-consistent: the left side is bounded in probability. Insert-

ing this in the previous display, we obtain that
p
nV�0(�̂n � �0) = �G n �0 + oP (1).

We conclude the proof by taking the inverse V �1�0
left and right. Since matrix mul-

tiplication is a continuous map, the inverse of the remainder term still converges to

zero in probability.

This theorem as stated covers most (or all?) of the popular examples of Z-

estimators, the condition that the functions  � form a Donsker class being not at

all very restrictive. The Donsker class condition is used to ensure (6.20) and can be

relaxed to

G n( �̂n �  �0) = oP
�
1 +

p
nk�̂n � �0k

�
without changing the remainder of the proof. Of course, this or (6.20) does not really

require that the class f �: k� � �0k < Æg is Donsker for any �xed Æ, but concerns a

limiting property of these classes as Æ ! 0. Potentially, the Donsker condition could

be relaxed to a condition that directly involves entropy numbers.

Such a relaxation does not appear to be worth the trouble in the situation of the

preceding theorem, but is potentially of use in situations with nuisance parameters

or criterion functions that change with n.

6.6 Nuisance parameters

An important method of estimation for semiparametric models, but also in general,

is Z-estimation in the presence of nuisance parameters. We are given measurable

functions  �;�:X 7! R
k indexed by a parameter of interest � 2 R

k and a nuisance

parameter � belonging to some metric space. Given an initial estimator �̂ for �, we

consider the (near) solution �̂ of the equation Pn �;�̂ = 0.

6.21 Theorem. Suppose that the class of functions
�
 �;�: k� � �0k < Æ; d(�; �0) <

Æ
	
is Donsker for some Æ > 0, that the maps � 7! P �;� are di�erentiable at �0,

uniformly in � in a neighbourhood of �0 with nonsingular derivative matrices V�0;�
such that V�0;� ! V�0;�0 , and assume that the map (�; �) 7!  �;� is continuous in

L2(P ) at (�0; �0). If
p
nPn �̂n;�̂n = oP (1) and (�̂n; �̂n)

P! (�0; �0) for a point (�0; �0)

satisfying P �0;�0 = 0, then

p
n(�̂n � �0) = �V �1�0;�0

p
nP �0;�̂n � V �1�0;�0

G n �0;�0(Xi)

+ oP
�
1 +

p
nkP �0;�̂nk

�
:

Proof. The proof closely follows the proof of the theorem without nuisance param-

eters. The consistency of (�̂n; �̂n) and the Donsker condition imply that

(6:22) G n �̂n;�̂n � G n �0;�0
P! 0:
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Because (�̂n; �̂n) and (�0; �0) are zeros of the random criterion function and its limit,

we can rewrite this as

(6:23):
�G n �̂0;�̂0 =

p
nP ( �̂n;�̂n �  �0;�0) + oP (1)

=
p
n(P ( 

�̂n;�̂n
�  �0;�̂n) +

p
nP �0;�̂n + oP (1):

By the uniform di�erentiability of the map � 7! P � and the uniform nonsingularity

of its derivative, we �nd that there exists c > 0 such that for all (�; �) in a suÆciently

small neighbourhood of (�0; �0)P ( �;� �  �0;�0)
 � ck� � �0k:

Combined with the preceding display this shows that with probability tending to

one,

ck�̂ � �0k �
G n �̂0;�̂0

+p
nkP �0;�̂nk = OP

�
1 +

p
nkP �0;�̂nk

�
:

We now linearize the �rst term on the far right of (6.23) in �̂ � �0 and �nish the

proof as before.

Under the conditions of this theorem, the limiting distribution of the sequencep
n(�̂n � �0) depends on the estimator �̂n through the \drift" term

p
nP �0;�̂n . In

general, this gives a contribution to the limiting distribution, and �̂n must be chosen

with care. If �̂n is
p
n-consistent and the map � 7! P �0;� is di�erentiable, then the

drift term can be analyzed using the Delta-method.

It may happen that the drift term is zero. If the parameters � and � are \orthog-

onal" in this sense, then the auxiliary estimators �̂n may converge at an arbitrarily

slow rate and a�ect the limit distribution of �̂n only through their limiting value �0.

In semiparametric situations it is quite common to set up the estimating equations

such that the drift term gives a zero contribution. Then the advantage of using a

random value �̂n over a �xed value could be a gain in eÆciency: we choose �̂n to

converge to a value �0 such that the asymptotic covariance matrix

V �1�0;�0
P �0;�0 

T
�0;�0

V T�0;�0

is \small".

This theorem and discussion is valid whether (�; �) completely parametrizes a

model, or not. In the �rst case, we would write a true distribution P�0;�0 rather than

as P . The asymptotic covariance matrix in the preceding display would then be at

least equal to the inverse of the eÆcient information matrix. It would be equal to

this if  �;� is proportional to the the eÆcient score function for �.

6.24 Example (Regression). Let a typical observation be a pair X = (Y; Z) whose

distribution is described structurally by the equation Y = f�(Z)+e for (Z; e) having

a distribution � such that E�(ejZ) = 0.

Consider the estimation equation de�ned by

 �;�(x) =
�
y � f�(z)

�
w�;�(z);
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for given weight functions w�;�. We have

P�0;�0 �0;� = E�0;�0
�
E�0;�0

�
Y � f�0(Z)

�
jZ
�
w�0;�(Z) = 0:

Thus the drift term in the preceding theorem vanishes. To obtain an eÆcient esti-

mator we must choose the weight function equal to w�;�(z) = _g�(z)=E�(e
2jZ = z)

and use estimators for � such that w�;�̂ is consistent for this weight function, but

(almost) any choice of the weight function will work to obtain an asymptotically

normal estimator. One explanation for the fact that these estimating equations are

unbiased is that the functions belong to the orthocomplement of the tangent set.

In a number of models, such as the regression model in the preceding example,

setting up good estimating equations is easy. In general, calculation of the tangent set

of a model, or rather its orthocomplement can be of help. First, if some function  �;�
is orthogonal to the tangent set due to the nuisance parameters, its mean P�;� �;�̂
should be fairly insensitive to the estimator �̂, because by de�nition a nuisance score

gives the change in the underlying distribution if perturbing the nuisance parameter.

One attempt to make this idea formal is to write

(6:25) P�;� �;�̂ = (P�;� � P�;�̂)( �;�̂ �  �;�)� P�;�

hp�;�̂ � p�;h

p�;�
� B�;�h

i
 �;�;

where B�;�h can be any �-score if  �;� is orthogonal to the nuisance tangent space. If

B�;�h can approximate (p�;�̂ � p�;h)=p�;�, then we might hope that the right side of

the display is of the order OP (d(�̂; �)
2), for the metric d giving the approximation.

Then the drift term will give no contribution to the limit distribution if d(�̂; �) =

oP (n
�1=4). This informal argument can be useful, but it should not be concluded

that a n�1=4-rate for the nuisance parameter is \minimal" in some sense. Special

properties of the model, as in the regression example, may make the drift term zero

for any �̂. The point is that P �;�̂ is an integrated quantity and it is far to crude to

analyse it by a Taylor expansion, replacing the integrand by its absolute value after

subtracting the beginning of the expansion.

Nevertheless, we can formalize the expansion, for instance, as follows. Given

some semiparametric model P = fP�;�: � 2 �; � 2 Hg with H a metric space,

suppose that, for some nonnegative numbers �; �; ,

P�;�k �;�̂ �  �;�k2 = OP
�
d(�̂; �)2�

�
inf

g2lin �
_PP�;�

P�;�

hp�;�̂ � p�;�

p�;�
� g

i2
= OP

�
d(�̂; �)2�+2

�

P�;�

hp�;�̂ � p�;�

p�;�

i2
= OP

�
d(�̂; �)2�

�
:

Then P�;� �;�̂ = OP
�
d(�̂; �)Æ

�
for Æ = (a _ ) + �.

If the underlying measure P = P�;� belongs to a semiparametric model, then

it is worth while to adapt the conditions of Theorem 6.21 somewhat and to use

the di�erentiability of the model in �. This leads to the following theorem, which

we shall apply in the next lectures to construct eÆcient estimators or analyse the

maximum likelihood estimator. We now make the disappearance of the bias term

part of the conditions.



6: Empirical Processes and Normality of Z-Estimators 77

Let  �;�:X 7! R be measurable functions and and let �̂n be estimators such

that

(6.26) P�̂n;� �̂n;�̂n = oP
�
n�1=2 + k�̂n � �k

�
;

(6.27) P�;�
 �̂n;�̂n �  �;�

2 P! 0; P�̂n;�

 �̂n;�̂n
2 = OP (1):

The second condition (6.27) merely requires that the \plug-in" estimator  �;�̂n is a

consistent estimator for the \true" estimating function  �;�. If P�;� �;� = 0, as we

shall require, then the �rst condition (6.26) can be understood as requiring that the

\bias" of the plug-in estimator, due to estimating the nuisance parameter, converges

to zero faster than 1=
p
n. Note that the derivative of � 7! P�;� �;�̂ should converge

to the derivative of � 7! P�;� �;�, which is zero, and hence, informally the condition

(6.26) must be equivalent to

(6:28):
p
nP�;� �;�̂n

P! 0;

6.29 Theorem. Suppose that the model fP�;�: � 2 �g is di�erentiable in quadratic

mean with respect to � at (�; �). Let the matrix P�;� �;� _̀�;� be nonsingular. Assume

that (6.26) and (6.27) hold. Furthermore, suppose that there exists a Donsker class

with square-integrable envelope function that contains every function  
�̂n;�̂n

with

probability tending to 1. Then a zero �̂n of � 7! Pn �;�̂n that is consistent for �

satis�es that
p
n(�̂n � �) is asymptotically normal with mean zero and covariance

matrix

(P�;� �;� _̀
T
�;�)

�1P �;� T�;�(P�;� _̀�;� 
T
�;�)

�1:

Proof. Let Gn(�
0; �0) =

p
n(Pn � P�;�) �0;�0 be the empirical process indexed by

the functions  �0;�0 . By the assumption that the functions  
�̂;�̂

are contained in a

Donsker class, together with (6.27),

Gn(�̂n; �̂n) = Gn(�; �) + oP (1):

(Cf. Theorem 6.15.) By the de�ning relationship of �̂n and the \no-bias" condition

(6.26), this is equivalent to

p
n(P�̂n;� � P�;�) �̂n;�̂n = Gn(�; �) + oP

�
1 +

p
nk�̂n � �0k

�
:

The remainder of the proof consists of showing that the left side is asymptotically

equivalent to
�
V + oP (1)

�p
n(�̂n � �) for V = P�;� �;� _̀

T
�;�, from which the theorem

follows. The di�erence of the left side of the preceding display and V
p
n(�̂n��) can

be written as the sum of three terms:

p
n

Z
 
�̂n;�̂n

(p
1=2

�̂n;�
+ p

1=2
�;� )

�
(p

1=2

�̂n;�
� p

1=2
�;� )� 1

2
(�̂n � �)T _̀�;� p

1=2
�;�

�
d�

+

Z
 �̂n;�̂n (p

1=2

�̂n;�
� p

1=2
�;� )

1
2
_̀T
�;� p

1=2
�;� d�

p
n(�̂n � �)

�
Z
( �̂n;�̂n �  �;�) _̀

T
�;� p�;� d�

p
n(�̂n � �):
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The �rst and third term can easily be seen to be oP
�p
nk�̂n � �k

�
by applying

the Cauchy-Schwarz inequality together with the di�erentiability of the model and

(6.27). The square of the norm of the integral in the middle term can for every

sequence of constants mn !1 be bounded by a multiple of

m2
n

Z
k 

�̂n;�̂n
k p1=2�;� jp

1=2

�̂n;�
� p

1=2
�;� j d�2

+

Z
k �̂n;�̂nk

2(p�̂n;� + p�;�) d�

Z
k _̀�;�k>mn

k _̀�;�k2 p�;� d�:

In view of (6.27), the di�erentiability of the model in � and the Cauchy-Schwarz

inequality, the �rst term converges to zero in probability provided mn ! 1 suÆ-

ciently slowly to ensure that mnk�̂n � �k P! 0. (Such a sequence exists. If Zn
P! 0,

then there exists a sequence "n # 0 such that P
�
jZnj > "n

�
! 0. Then "

�1=2
n Zn

P! 0.)

In view of the last part of (6.27), the second term converges to zero in probability

for every mn !1. This concludes the proof of the theorem.

In the preceding theorems we have assumed that the realizations of the functions

 
�̂;�̂

are contained in a �xed Donsker class, with high probability. This condition is

overly strong. As we pointed out in Lecture 6, what is needed is that the entropy of

these collections of realizations is asymptotically stable and not too big. Hence the

condition can be replaced by the condition that there exist classes Fn of functions

satisfying the conditions of Theorem 6.16 such that  
�̂;�̂

is contained in Fn with

probability tending to one. One further extension is to permit  �;� to change with

n itself.

Notes

See the notes to Lecture 5. The general topic of Section 6.4 is taken from [42], but

the main result here is new.



Lecture 7
EÆcient Score and
One-step Estimators

In this lecture we consider the construction of eÆcient estimators in semiparametric

models using the eÆcient score equation or the related one-step method. We apply

it to the linear errors-in-variables model and the symmetric location model.

7.1 EÆcient Score Estimators

The most important method to estimate the parameter in a parametric model is the

method of maximum likelihood, and it can usually be reduced to solving the score

equations
Pn
i=1

_̀
�(Xi) = 0, if necessary in a neighbourhood of an initial estimate.

A natural generalization to estimating the parameter � in a semiparametric model

fP�;�: � 2 �; � 2 Hg is to solve � from the eÆcient score equations

(7:1)

nX
i=1

~̀
�;�̂n(Xi) = 0:

Here we use (a version of) the eÆcient score function instead of the ordinary score

function, and we substitute an estimator �̂n for the unknown nuisance parameter.

Alternatively, it may be more workable to �nd an \estimator" �̂n(�) for � acting as

if � is known already and next solve � from the \pro�le eÆcient score equations"

nX
i=1

~̀
�;�̂n(�)(Xi) = 0:

A solution �̂n also satis�es the eÆcient score equation (7.1) if we set �̂n = �̂n(�̂n).

This choice of �̂n may beat the purpose of �nding an estimator �̂n, but this remark

does indicate that to prove something about �̂n it is not necessary to consider the

pro�le eÆcient score equation. Hence we concentrate on solutions of (7.1).

We can derive the asymptotic normality of �̂n from Theorem 6.29. Here

P�;� ~ �;� _̀
T
�;� is the eÆcient information matrix ~I�;� and hence the asymptotic co-

variance matrix in this theorem reduces to ~I�1�;� .
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7.2 Theorem. Suppose that conditions of Theorem 6.29 are satis�ed with  �;� =
~̀
�;�. Then a consistent sequence of zeros �̂n of � 7! Pn

~̀
�;�̂n is asymptotically eÆcient

for  (P�;�) = � at (�; �).

We remark again that the condition that the functions ~̀�;� are contained in a

�xed Donsker class can be relaxed along the lines of Theorem 6.16.

7.2 One-step Estimators

Theorem 7.2 applies to many examples, but its conditions are not the minimal ones

to ensure existence of asymptotically eÆcient estimators. There are may ways in

which its conditions can be relaxed, all leading to estimators that are less natural

but have better properties, in theory. We shall immediately go to the most extreme

modi�cation, which can be shown to work whenever there is anything that works.

Suppose that we are given a sequence of initial estimators ~�n that is
p
n-

consistent for �. We can assume without loss of generality that the estimators are

discretized on a grid of mesh width n�1=2, which will simplify the constructions and

proof. Then the one-step estimator is de�ned as

�̂n = ~�n �
� nX
i=1

^̀
n;~�n;i

^̀T
n;~�n;i

(Xi)
��1 nX

i=1

^̀
n;~�n;i

(Xi);

where ^̀
n;�;i is an estimator for ~̀�;�. The estimator �̂n can be considered a one-step

iteration of the Newton-Raphson algorithm for solving an approximation to the

equation
P

~̀
�;�(Xi) = 0 with respect to �, starting at the initial guess ~�n. For the

bene�t of the simple proof, we have made the estimators ^̀n;�;i for the eÆcient score

function dependent on the index i. In fact, we shall use only two di�erent values for
^̀
n;�;i, one for the �rst half of the sample, and another for the second half. Given

estimators ^̀n;� = ^̀
n;�(�;X1; : : : ; Xn) de�ne, with m = bn=2c,

^̀
n;�;i =

�
^̀
m;�(�;X1; : : : ; Xm) if i > m
^̀
n�m;�(�;Xm+1; : : : ; Xn) if i � m.

Thus, for Xi belonging to the �rst half of the sample, we use an estimator ^̀
n;�;i

based on the second half of the sample, and vice versa. This sample-splitting trick

is convenient in the proof, because the estimator \of �" used in ^̀
n;�;i is always

independent of Xi, simultaneously for Xi running through each of the two halves of

the sample. The trick is not recommended in practice.

The conditions of the preceding theorem can now be relaxed in two ways: we

can drop the Donsker condition and we need an analogue of the \no-bias" condition

(6.26) only for deterministic sequences �n. We assume that, for every deterministic

sequence �n = � + O(n�1=2),

(7.3)
p
nP�n;�

^̀
n;�n

P! 0; P�n;�
^̀
n;�n � ~̀

�n;�

2 P! 0:

(7.4)

Z  ~̀�n;�dP 1=2
�n;�

� ~̀
�;�dP

1=2
�;�

2 ! 0:
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7.5 Theorem. Suppose that the model fP�;�: � 2 �g is di�erentiable in quadratic

mean with respect to � at (�; �), let the eÆcient information matrix ~I�;� be non-

singular. Assume that (7.3) and (7.4) hold. Then the sequence �̂n is asymptotically

eÆcient at (�; �).

Proof. Fix a deterministic sequence of vectors �n = � + O(n�1=2). By the sample-

splitting, the �rst half of the sum
P

^̀
n;�n;i(Xi) is a sum of conditionally independent

terms, given the second half of the sample. Thus,

E�n;�

�p
mPm

�
^̀
n;�n;i � ~̀

�n;�

�
jXm+1; : : : ; Xn

�
=
p
mP�n;�

^̀
n;�n;i;

var�n;�

�p
mPm

�
^̀
n;�n;i � ~̀

�n;�

�
jXm+1; : : : ; Xn

�
� P�n;�

^̀
n;�n;i� ~̀

�n;�

2:
Both expressions converge to zero in probability by assumption (7.3). We conclude

that the sum inside the conditional expectations converges conditionally, and hence

also unconditionally, to zero in probability. By symmetry, the same is true for the

second half of the sample, whence
p
nPn

�
^̀
n;�n;i � ~̀

�n;�

�
P! 0:

We have proved this for the probability under (�n; �), but by contiguity the conver-

gence is also under (�; �).

Combining the preceding display with the result of Lemma 7.6, we �nd that
p
nPn

�
^̀
n;�n;i � ~̀

�;�

�
+ ~I�;�

p
n(�n � �) P! 0:

In view of the discretised nature of ~�n, this remains true if the deterministic sequence

�n is replaced by ~�n. This follows, because, for a given M , on the event fkpn~�n �
�k � Mg the estimator ~�n can take on only �nitely many values, with the total

number of di�erent values being bounded independent of n. Thus an expression of

the type Gn(~�n) can be bounded above by sup�n Gn(�n) for the supremum ranging

over a �nite number of points. If each of the sequences Gn(�n) converges to zero in

probability, then Gn(~�n) converges to zero in probability on the event fk
p
n~�n��k �

Mg. Finally, by the assumed
p
n-consistently of ~�n, we can �x M such that the

probability of this event is arbitrarily close to 1.

Next we study the estimator for the information matrix. For any vector h 2 R
k ,

the triangle inequality yields

����
q
Pm(hT ^̀n;�n;i)

2 �
q
Pm(hT ~̀�n;�)

2

����
2

� Pm(h
T ^̀
n;�n;i � hT ~̀�n;�)

2:

By (7.3), the conditional expectation under (�n; �) of the right side given

Xm+1; : : : ; Xn converges in probability to zero. A similar statement is valid for

the second half of the observations. Combining this with (7.4) and the law of large

numbers, we see that
Pn

^̀
n;�n;i

^̀T
n;�n;i

P! ~I�;�:

In view of the discretised nature of ~�n, this remains true if the deterministic sequence

�n is replaced by ~�n.

The theorem follows upon combining the results of the last two paragraphs with

the de�nition of �̂n.
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7.6 Lemma. Suppose that the model fP�;�: � 2 �g is di�erentiable in quadratic

mean with respect to � at (�; �), let the eÆcient information matrix ~I�;� be nonsin-

gular, and assume that (7.4) holds. Then, for any �n = � +O(n�1=2),

p
nPn

�
~̀
�n;� � ~̀

�;�

�
+
p
n~I�;�(�n � �) P! 0:

Proof. By the de�nition of the eÆcient score function as an orthogonal projection,

P�;� ~̀�;� _̀
T
�;� =

~I�;�. We shall use this identity several times in the following proof.

The lemma follows from adding the two assertions

(7:7)

p
nPn

�
~̀
�n;�

�
1�

p
1=2
�n;�

p
1=2
�;�

��
+ 1

2
~I�;�

p
n(�n � �) P! 0

p
nPn

�
~̀
�n;�

p
1=2
�n;�

p
1=2
�;�

� ~̀
�;�

�
+ 1

2
~I�;�

p
n(�n � �) P! 0:

For the second assertion we note that the variance of the variable on the left side

under (�; �) converges to zero by (7.4). Furthermore, the mean of this variable is

equal to

p
n

Z
~̀
�n;�p

1=2
�n;�

p
1=2
�;� d� =

p
n

Z
~̀
�n;�p

1=2
�n;�

(p
1=2
�;� � p

1=2
�n;�

) d�:

This is asymptotically equivalent to � 1
2

p
n~I�;�(�n� �) by (7.4), the di�erentiability

of the model and the continuity of the inner product.

We prove the �rst assertion in (7.7) also by computing moments, but this time

under the measures obtained by letting X1; : : : ; Xn be an i.i.d. sample from the

probability measure with density qn = cnp
1=2
�n;�

p
1=2
�;� , where cn is the norming constant.

By the di�erentiability of the model we have

c�1n =

Z
p
1=2
�n;�

p
1=2
�;� d� = 1� 1

2

Z
(p

1=2
�n;�

� p
1=2
�;� )

2 d�

= 1� 1
2
(�n � �)T I�;�(�n � �) + o(n�1):

From an expansion of the log likelihood ratio of the n-fold product measure Qnn
corresponding to qn and the n-fold product P

n
�;�, we see that these product measures

are contiguous. Thus it suÆces to prove convergence in probability to zero under

Qnn. We have

Qnn

���pnPn
�
~̀
�n;�

�
1�

p
1=2
�n;�

p
1=2
�;�

��
+
p
n1
2
Pn

~̀
�n;�

_̀T
�;�(�n � �)

���

� cn

Z
j~̀�n;�p

1=2
�n;�

j
p
n
���(p1=2�n;�

� p
1=2
�;� )� 1

2
(�n � �)T _̀�;�p

1=2
�;�

��� d�! 0;
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by the di�erentiability of the model, (7.4) and the fact that cn ! 1. Finally, it

suÆces to show that the sequence Pn ~̀�n;�
_̀T
�;� converges in probability to ~I�;� under

Qnn. For this we �rst note that

EQn
Pn

~̀
�n;�

_̀T
�;� = cn

Z
~̀
�n;�p

1=2
�n;�

_̀T
�;�p

1=2
�;� d�! ~I�;�;

varQn
Pn

~̀
�n;�1k~̀�;�k�M

_̀T
�;�1k _̀�;�k�M � cnM

2 1

n

Z
k~̀�n;�kp

1=2
�n;�

k _̀�;�kp1=2�;� d�! 0;

for every �xed M . We also have that

EQn
Pn

~̀
�n;�1k~̀�;�k>M

_̀T
�;�1k _̀�;�k>M ! 0;

as n ! 1, followed by M ! 1. The proof is complete upon combining the last

two displays.

The theorems reduce the problem of eÆcient estimation of � to estimation of

the eÆcient score function. At �rst sight we have made the problem harder. The

estimator of the eÆcient score function must satisfy a \no-bias" and a consistency

condition. The consistency is usually easy to arrange, but the no-bias condition,

such as (7.3), is connected to the structure and the size of the model, as the bias

must converge to zero at a rate faster than 1=
p
n. It may happen that the bias

is identically zero and then we only need to produce a consistent estimator of the

eÆcient score function. In general, we can at best hope that the bias is a second

order term, just as in our discussion of general estimating equations in Lecture 6.

The good news is that if an eÆcient estimator sequence exists, then it can

always be constructed by the one-step method. In that sense the no-bias condition

is necessary.

7.8 Theorem. Suppose that the model fP�;�: � 2 �g is di�erentiable in quadratic

mean with respect to � at (�; �), let the eÆcient information matrix ~I�;� be nonsin-

gular, and assume that (7.4) holds. Then the existence of an asymptotically eÆcient

sequence of estimators of  (P�;�) = � implies the existence of a sequence of estima-

tors ^̀n;� satisfying (7.3).

Proof. An eÆcient estimator sequence Tn must be asymptotically linear in the

eÆcient inuence function. By Lemma 7.6 and the continuity of � 7! ~I�;� this

implies that, for every �n = � + O(n�1=2),
p
n(Tn � �n) = G n

~ �n;� + oP (1);

where ~ �;� = I�1�;� ~̀�;�. For simplicity we assume that this expansion is actually true

in the stronger sense that, for every �n = � +O(n�1=2),

E�n;�
�p
n(Tn � �n)� G n

~ �n;�
�2 ! 0:

The general case can be handled by a truncation argument, which turns convergence

in probability in convergence in second mean. (See [14].) Furthermore, to simplify

notation we assume that Tn is permutation symmetric in its arguments.
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In view of H�ajek's projection lemma (which gives the orthogonal projection

onto the space of all sums
Pn
i=1f(Xi)), our assumption implies that

E�n;�

h nX
i=1

E�n;�
�p
n(Tn � �n)jXi

�
� E�n;�

p
n(Tn � �n)� G n

~ �n;�)
i2
! 0;

which can be rewritten as

E�n;�

h
E�n;�

�
n(Tn � �n)jX1

�
� E�n;�n(Tn � �n)� ~ �n;�(X1)

i2
! 0:

Rather than estimate ~ �;� we can therefore \estimate" the function x 7! E�;�
�
n(Tn�

�)jX1 = x
�
and its expectation. Given kn independent copies Yj1; : : : ; Yjn of the

sample X1; : : : ; Xn, de�ne

Jn(x) =
1

kn

knX
j=1

n
�
Tn(x; Yj2; : : : ; Yjn)� Tn(Yj1; : : : ; Yjn)

�
:

Then E�n;�
�
Jn(X1)jX1) is identical to E�n;�

�
n(Tn��n)jX1

�
�E�n;�n(Tn��n) and

hence

E�n;�

h
Jn(X1)� E�n;�

�
n(Tn � �n)jX1

�
+ E�n;�n(Tn � �n)

i2

=
1

kn
E�n;�n

2
�
Tn(X1; Yj2; : : : ; Yjn)� Tn(Yj1; : : : ; Yjn)

�2
.

n

kn
;

because nE�n;�(Tn� �n)2 is bounded. This converges to zero for e.g. kn = n2. Then

the estimator Jn is based on mn = knn = n3 observations. We de�ne an estimator

based on m observations, for every m 2 N , by ~Jm = Jbm1=3c. A sequence ~�m =

�+O(m�1=2) yields a sequence �n = �+O(n�3=2) on our original scale and hence is

covered by the previous calculations. We conclude that, for every �n = �+O(n�1=2),

E�n;�

Z
( ~Jn � ~ �n;�)

2(x) p�n;�(x) d�(x)! 0:

Thus the sequence ~Jn is consistent as desired. To �nd a sequence of estimators that

is both consistent and has small bias, we replace ~Jn by, with m = bn=2c,
^̀
n;�(x) = ~Jmn

(x)

+ Tn�mn
(Xmn+1; : : : ; Xn)� � � 1

n�mn

nX
i=mn+1

~Jmn
(Xi):

By assumption this is equivalent to

~Jmn
(x) +

1

n�mn

nX
i=mn+1

( ~ �n;� � ~Jmn
)(Xi) + oP (n

�1=2)

~Jmn
(x)�

Z
~Jmn

p�n;� d�+ oP (n
�1=2);

by comparing conditional means and variances given X1; : : : ; Xmn
, and where the

oP (n
�1=2)-term does not depend on x. Thus the estimator ^̀

n;� is both consistent

and has small bias.
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7.3 Symmetric location

Suppose that we observe a random sample from a density �(x��) that is symmetric

about �. In Example 2.19 it was seen that the eÆcient score function for � is the

ordinary score function,

~̀
�;�(x) = ��

0

�
(x� �):

We can apply Theorem 7.5 to construct an asymptotically eÆcient estimator se-

quence for � under the minimal condition that the density � has �nite Fisher infor-

mation for location.

First, as an initial estimator ~�n, we may use a discretized Z-estimator, solv-

ing Pn (x � �) = 0 for a well-behaved, symmetric function  . For instance, the

score function of the logistic density. The
p
n-consistency can be established by the

techniques of Lectures 4 and 5.

Second, it suÆces to construct estimators ^̀n;� that satisfy (7.3). By symmetry,

the variables Ti = jXi � �j are, for a �xed �, sampled from the density g(s) =

2�(s)1fs > 0g. We use these variables to construct an estimator k̂n for the function

g0=g, and next we set

^̀
n;�(x;X1; : : : ; Xn) = �k̂n

�
jx� �j;T1; : : : ; Tn

�
sign(x� �):

Since this function is skew-symmetric about the point �, the bias condition in (7.3)

is satis�ed, with a bias of zero. Since the eÆcient score function can be written in

the form
~̀
�;�(x) = �g

0

g

�
jx� �j

�
sign(x� �);

the consistency condition in (7.3) reduces to consistency of k̂n for the function g0=g
in that

(7:9)

Z �
k̂n �

g0

g

�2
(s) g(s) ds P! 0:

Estimators k̂n can be constructed by several methods, a simple one being the kernel

method of density estimation. For a �xed twice continuously di�erentiable probabil-

ity density ! with compact support, a bandwidth parameter �n, and further positive

tuning parameters �n, �n and n, set

(7:10)

ĝn(s) =
1

�n

nX
i=1

!
�s� Ti

�n

�
;

k̂n(s) =
ĝ0n
ĝn

(s)1B̂n(s);

B̂n =
�
s: jĝ0n(s)j � �n; ĝn(s) � �n; s � n

	
:

Then (7.3) is satis�ed provided �n " 1, �n # 0, n # 0 and �n # 0 at appropriate

speeds. The proof consists of the usual manipulations of kernel estimators. (See [42],

page 398, for a precise statement, or one of the many papers on this model.)

This particular construction shows that eÆcient estimators for � exist under

minimal conditions. It is not necessarily recommended for use in practice. However,

any good initial estimator ~�n and any method of density or curve estimation may be

substituted, and will lead to a reasonable estimator for �, which will be theoretically

eÆcient under some regularity conditions.
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7.11 Open Problem. It may be veri�ed that the preceding construction generalize

to higher dimensions. The problem of estimating � from a sample of observations

from a density �(x� �) on R
d such that � has �nite Fisher information and �(x) =

�(�x) is adaptive for any d � 1. Theoretically, one can estimate � as well knowing

� as not knowing �. However, in practice this appears to be nonsense. If d = 10,

for instance, it cannot make sense to try and estimate � nonparametrically from

n = 1000 observations and the preceding construction will presumably yield bad

estimators. The problem is to develop a theory for this phenomenon, maybe using

minimax bounds. Note that the problem of estimating � for d = 10 is by itself not

diÆcult. For instance, we could use an M -estimator and this will be asymptotically

normal in the usual way and the asymptotics will be reliable for n � 30. See [32]

and [31] for further questions regarding the asymptotic information bounds.

7.4 Errors-in-Variables

Let the observations be a random sample of pairs (Xi; Yi) with the same distribution

as
X = Z + e

Y = �+ �Z + f;

for a bivariate normal vector (e; f) with mean zero and covariance matrix � and

a random variable Z with distribution �, independent of (e; f). Thus Y is a linear

regression on a variable Z which is observed with error. The parameter of interest is

� = (�; �;�) and the nuisance parameter is �. To make the parameters identi�able

one can put restrictions on either � or �. It suÆces that � is not normal (where

a degenerate distribution is considered normal with variance zero); alternatively it

can be assumed that � is known up to a scalar.

Given (�;�) the statistic  �(X;Y ) = (1; �)��1(X;Y � �)T is suÆcient (and

complete) for �. This suggests to de�ne estimators for (�; �;�) as the solution of

the \conditional score equation" Pn
~̀
�;�̂ = 0, for

~̀
�;�(X;Y ) = _̀

�;�(X;Y )� E�

�
_̀
�;�(X;Y )j �(X;Y )

�
:

This estimating equation has the attractive property of being unbiased in the nui-

sance parameter, in that

P�;� ~̀�;�0 = 0; every �; �; �0:

Therefore, the \no-bias" condition is trivially satis�ed, and the estimator �̂ need only

be consistent for � (in the sense of (6.27)). One possibility for �̂ is the maximum

likelihood estimator, which was shown to be consistent in Lecture 5 in the case that

� is known. This proof can be extended to the case that � is unknown.

As the notation suggests, the function ~̀
�;� is equal to the eÆcient score function

for �. We can prove this by showing that the closed linear span of the set of nuisance
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scores contains all measurable, square-integrable functions of  �(x; y), because then

projecting on the nuisance scores is identical to taking the conditional expectation.

The submodel t 7! P�;t�1+(1�t)� is well-de�ned for every 0 � t � 1 and every

�1 2 H. Its score function is the function

p�;�1=p�;� � 1

As is clear from the factorization theorem or direct calculation, it is a function of

the suÆcient statistic  �(X;Y ). If some function b
�
 �(x; y)

�
is orthogonal to all

scores of this type and has mean zero, then, for every �1,

E�;�1b
�
 �(X;Y )

�
= E�;�b

�
 �(X;Y )

��p�;�1
p�;�

� 1
�
= 0:

Consequently, b = 0 almost surely by the completeness of  �(X;Y ). We conclude

that the closure of the linear span of the nuisance tangent space contains all mea-

surable, square-integrable functions of  �(x; y).

The eÆcient score function can be written in the form

~̀
�;�(x; y) = Q�(x; y) + P�(x; y)E

�
Zj �(X;Y )

�
for polynomials Q� and P� of orders 2 and 1, respectively. The main work is now to

show that the class of all functions of this type, when � ranges over a large class of

distributions, is Donsker. Because we already know that �̂ is consistent for the weak

topology, it is enough to show this for � ranging over a weak neighbourhood of the

true mixing distribution. The following lemma is the main part of the veri�cation.

7.12 Lemma. For every 0 < � � 1 and every probability distribution �0 on R

and compact K � (0;1), there exists an open neighbourhood U of �0 in the weak

topology such that the class F of all functions

(x; y) 7! (a0 + a1x+ a2y)

R
z ez(b0+b1x+b2y) e�cz

2

d�(z)R
ez(b0+b1x+b2y) e�cz2 d�(z)

;

with � ranging over U , c ranging over K and a and b ranging over compacta in R
3 ,

satis�es

logN[]

�
";F ; L2(P )

�
� C

�1
"

�V �
P
�
1 + jxj+ jyj

�5+2�+4=V+Æ
�V=2

;

for every V � 1=�, every measure P on R
2 and Æ > 0, and a constant C depending

only on �, �0, U , V , the compacta, and Æ.

Proof. We only give a sketch of the main steps. See Lemma 7.3 in [25] for the

details. First consider the functions

t 7! gc;�(t) =

R
zezt

2

e�cz
2

d�(z)R
ezte�cz2 d�(z)

:

By some clever applications of Jensen's and other inequalities it can be proved that

there exists a weak neighbourhood U of �0 such that, for � 2 U and c 2 K,��gc;�(t)�� � C(1 + jtj);
��g0c;�(t)�� � C(1 + jtj)2:
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The classical bounds of Kolmogorov give estimates on the covering numbers

N(";Fj; k � k) of the classes Fj of all functions f : [j; j + 1] 7! R such that

kfk1 _ kf 0k1 �Mj for some constant Mj . In the present situation we apply these

boundeds with Fj the restrictions of the functions gc;� to the intervals [j; j+1] and

with Mj = (1 + jjj)2.
Given an "j -net fj;1; : : : ; fj;Nj

over Fj we can construct brackets for the func-

tions f :R 7! R by �rst forming brackets [fj;i� "j ; fj;i+ "j ] on each interval [j; j+1)

and next glueing these brackets together in every possible combination. Naturally,

we choose "j big enough so that for all but �nitely many intervals we need to use only

one bracket, because otherwise the number of brackets would be in�nite. We can

optimize the numbers "j andMj such that resulting brackets on R are "-brackets rel-

ative to the L2(Q)-norm and such that they are almost a minimal set of "-brackets,

for Q the measure constructed below.

For �xed (a; b) the functions fa;b;c;� are essentially the functions gc;�, because

fa;b;c;�(x; y) = (a0 + a1x+ a2y)gc;�(b0 + b1x+ b2y):

A bracket [l; u] for the functions gc;� yields a bracket for the functions fa;b;c;� of the

formh
(a0 + a1x+ a2y)

+l(b0 + b1x+ b2y)� (a0 + a1x+ a2y)
�u(b0 + b1x+ b2y);

(a0 + a1x+ a2y)
+u(b0 + b1x+ b2y)� (a0 + a1x+ a2y)

+l(b0 + b1x+ b2y)
i
:

Its size in L2(P ) is equal to the size of [l; u] in L2(Q) for the measure Q de�ned by

Q(B) =

Z
1B(b0 + b1x+ b2y)(a0 + a1x+ a2y)

2 dP (x; y):

Thus we can construct the desired brackets for the functions fa;b;c;� as c and � vary,

for any �xed value (a; b).

For �xed (x; y) the dependence (a; b) 7! fa;b;c;�(x; y) is Lipschitz of order � =

�=2 with Lipschitz constant h(x; y) = (1 + jxj + jyj)2+2�. Now construct brackets

over the class of all fa;b;c;� by �rst choosing an "1=�=khkP;2-net over the set of all
(a; b), next for every (ai; bi) in this net choose a minimal number of brackets l; u] over

the class of all fai;bi;c;� and �nally form the brackets
�
l� "h=khkP;2; u+ "h=khkP;2].

Because we need only of the order (1=")6=� points (ai; bi) this last step hardly

increases the entropy.

Notes

Theorem 7.6 is due to [14]. The semiparametric one-step method has a long history,

starting with special constructions in the symmetric location model.



Lecture 8
Rates of Convergence

In this lecture we apply maximal inequalities for empirical processes to obtain rates

of convergence of minimum contrast estimators, in particular in semiparametric

models. These rates are of interest by themselves, but will also be needed to prove

the asymptotic normality of semiparametric likelihood estimators in certain models.

8.1 A General Result

The set-up is the same as the one in Lecture 5 on consistency. Let � be a metric

space and for each � 2 �, let m�:X 7! R be a measurable function. Suppose that we

are interested in the maximizer �̂ of � 7! Pnm�. We may expect that this converges

in probability to the maximizer �0 of the limiting criterion function � 7! Pm�. It

is useful to picture the random criterion function Pnm� as the sum of its limit and

the scaled empirical process

Pnm� = Pm� +
1p
n
G nm�:

Because Pm� is maximal at �0 we could picture the function � 7! Pm� as an

inverse parabola with its top at �0. Without the second, random term on the right,

the estimator �̂ would always choose the top of the parabola, but the uctuations

may pull the maximum of Pnm� away from �0. It is the size of the uctuations that

determines how far. If Pm� � �d(�; �0)2 and sup
�
G nm�: d(�; �0) � Æ

	
� �n(Æ),

then d(�̂; �0) will probably be approximately equal to the value Æ that balances the

positive and negative parts of

�Æ2 + 1p
n
�n(Æ):

In other words, we expect that d(�̂; �0) � Æn for �n(Æn) �
p
nÆ2n. The following

theorem makes this precise.

As for the consistency results, we do not need �̂ to maximize Pnm�. We only

need that Pnm�̂ � Pnm�0 .
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8.1 Theorem. Suppose that, for all suÆciently small d(�; �0) all suÆciently small

Æ > 0 and a function �n such that �n(cÆ) � c��n(Æ) for all c > 1, and some � < 2,

P (m� �m�0) � �d2(�; �0);
E� sup

d(�;�0)<Æ

��G n (m� �m�0)
�� � �n(Æ):

Then Pnm�̂ � Pnm�0 and �̂n
P! �0 together imply that d(�̂n; �0) = OP (Æn) for every

Æn satisfying �n(Æn) �
p
nÆ2n.

Proof. For each n, the parameter space (minus the point �0) can be partitioned into

the \shells" Sj;n = f�: 2j�1Æn < d(�; �0) � 2jÆng with j ranging over the integers.

If d(�̂n; �0) is larger than 2MÆn for a given integer M , then �̂n is in one of the shells

Sj;n with j � M . In that case the supremum of the map � 7! Pnm� � Pnm�0 over

this shell is nonnegative by the property of �̂n. Conclude that, for every � > 0,

P�
�
d(�̂n; �0) > 2MÆn

�
�

X
j�M

2jÆn��

P�
�
sup
�2Sj;n

�
Pnm� � Pnm�0

�
� 0

�

+ P�
�
2d(�̂n; �0) � �

�
:

Because the sequence �̂n is consistent for �0, the second probability on the right

converges to 0 as n!1 for every � > 0. Choose � > 0 small enough that the �rst

condition of the theorem holds for every d(�; �0) � � and the second for every Æ � �.

Then for every j involved in the sum, we have, for every � 2 Sj;n,

Pm� � Pm�0 � �d2(�; �0) . �22j�2Æ2n:

Therefore, the series may be bounded by

X
j�M

2jÆn��

P�
�G n (m� �m�0)


Sj;n

�
p
n22j�2Æ2n

�
.
X
j�M

�n(2
jÆn)p

nÆ2n2
2j

.
X
j�M

2j��2j;

by Markov's inequality, the de�nition of Æn, and the fact that �n(cÆ) � c��n(Æ) for

every c > 1. This expression converges to zero for every M =Mn !1.

The �rst condition of the theorem can be expected to hold if �0 is a point of

maximum of � 7! Pm� and this function is twice di�erentiable. More generally, we

can see it as simply de�ning the type of metric that we can work with. For instance,

if m� is a log likelihood under parameter � and P = P�0 , then P�0(m� �m�0) is the

Kullback-Leibler divergence and we can either use this directly (inspection of the

proof of the theorem, shows that it is not really necessary that d is a metric), or a

metric whose square dominates this, such as the Hellinger distance. It is well known

that for any pair of probability densities p and q,

(8:2) P log(q=p) � �h2(P;Q) = �
Z �p

p�p
q)2 d�:
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Thus the Hellinger distance is a natural distance when considering rates of conver-

gence of maximum likelihood estimators.

The latter observation also points out a severe limitation of the theorem: the

choice of metrics with which it works is limited. For instance, in a semiparametric

model with parameter (�; �) we might wish to prove that the maximum likelihood

estimator, or some other contrast estimator, possesses a
p
n-rate of convergence.

This will very rarely follow with the help of the preceding theorem, because the

theorem will give a rate for the joint estimator (�̂; �̂), rather than for �̂ only. The

joint rate will typically be determined by the rate of �̂ and this will typically be

slower than
p
n.

Even a natural rate on the nuisance parameter �̂ may not be derivable from the

theorem, if \natural" refers to a particular, natural distance, which does not combine

well with the distance imposed by the theorem. As a consequence, unfortunately,

the applicability of the theorem to semiparametric models is limited.

The second condition of the theorem requires a maximal inequality for the

modulus of the empirical process. Here the inequalities of Lecture 6 may work if the

size of the functions m� �m�0 is comparable to the size of the envelope function of

the class of all such functions with d(�; �0) < Æ. This is not always the case. The

following maximal inequalities directly take the size of the functions m� �m�0 into

account.

8.3 Lemma. Let F be a class of measurable functions with kfk1 �M , and Pf2 <

Æ2 for every f 2 F . Then

E�PkG nkF . J[ ]
�
Æ;F ; L2(P )

��
1 +

MJ[ ]
�
Æ;F ; L2(P )

�
Æ2
p
n

�
:

The preceding lemma is suÆcient for many examples. However, sometimes the

assumption that the class is uniformly bounded is restrictive. This can be remedied

by computing the size of the brackets relative to a larger norm. Speci�cally, consider

kfkP;B =

q
2P (ejf j � 1� jf j):

The subscript \B" is for Bernstein, as this \norm" is essential in an exponential

inequality for sums due to Bernstein, which plays a major role in the proofs of

maximal inequalities. Actually, the quantity k � kP;B is not a norm, as it does not

satisfy the triangle inequality. However, we can use k � kP;B as a measure of the size

of a function and hence as a measure of the size of a bracket [l; u] by applying it to

the function u� l. We can de�ne an entropy integral relative to it accordingly.
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8.4 Lemma. Let F be a class of measurable functions with Pf2 < Æ2 for every

f 2 F . Then

E�PkG nkF . J[ ]
�
Æ;F ; k � kP;B

��
1 +

J[ ]
�
Æ;F ; k � kP;B

�
Æ2
p
n

�
:

8.2 Nuisance Parameters

In this section we consider the same problem of �nding an upper bound on the

rate of convergence of a minimum contrast estimator �̂, but now in the presence of

an estimated nuisance parameter. Using the \wrong", estimated contrast function

should bring the rate of convergence down, but only if the estimation of the nuisance

parameter is the harder part of the problem. The following theorem implements this

idea.

The theorem is of interest not only because it takes care of problems with

nuisance parameters of the type as considered before, but also of certain penalized

minimum contrast estimators, in which the smoothing parameter of the penalty can

be thought of as an estimated nuisance parameter.

Consider \estimators" �̂n contained in a metric space �n satisfying, for a given

\estimators" �̂n contained in a metric space Hn,

Pnm�̂n;�̂n
� Pnm�0;�̂n

for given measurable functions x 7! m�;�(x). This is valid, for example, for �̂n equal

to the maximizer of the function � 7! Pnm�;�̂n over �n, if this set contains �0.

Assume that the following conditions are satis�ed for every � 2 �n, every

� 2 Hn and every Æ > 0.

(8.5) P
�
m�;� �m�0;�

�
. �d2�(�; �0) + d2(�; �0);

(8.6) E� sup
d�(�;�0)<Æ;d(�;�0)<Æ

�2�n;�2Hn

��G n (m�;� �m�0;�)
�� . �n(Æ):

Here d2�(�; �0) may be thought of as the square of a distance, but the following

theorem is true for arbitrary functions � 7! d2�(�; �0). Usually d� does not depend

on �, but in this form the following theorem is exible enough to apply to penalized

minimum contrast estimators, where the smoothing parameter can be included in

�.
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8.7 Theorem. Suppose that (8.6) is valid, for all suÆciently small Æ > 0 and a

function �n such that �n(cÆ) � c��n(Æ) for all c > 1, and some � < 2, and for

sets �n � Hn that contain (�̂; �̂) with probability tending to 1. Then d�̂(�̂; �0) =

O�P
�
Æn+d(�̂; �0)

�
for any sequence of positive numbers Æn such that �n(Æn) �

p
nÆ2n

for every n.

Proof. For each n 2 N , j 2 Z and M > 0 de�ne a set

Sn;j;M =
n
(�; �) 2 �n �Hn: 2

j�1Æn < d�(�; �0) � 2jÆn; d(�; �0) � 2�Md�(�; �0)
o
:

Then the intersection of the events �̂ 2 �n; �̂ 2 Hn and d�̂(�̂; �0) � 2M
�
Æn+d(�̂; �0)

�
is contained in the union of the events

�
(�̂; �̂) 2 Sn;j;M

	
over j � M . By the

de�nition of �̂, the variable sup(�;�)2Sn;j;M Pn(m�;� �m�0;�) is nonnegative on the

event
�
(�̂; �̂) 2 Sn;j;M

	
. Conclude that, for every Æ > 0,

P�
�
d�̂(�̂; �0) � 2M

�
Æn + d(�̂; �0)

�
; �̂ 2 �n; �̂ 2 Hn

�

�
X
j�M

P�
�

sup
(�;�)2Sj;n;M

Pn

�
m�;� �m�0;�

�
� 0

�
:

For every j involved in the sum, we have, for every (�; �) 2 Sj;n;M and every suÆ-

ciently large M ,

P
�
m�;� �m�0;�

�
. �d2�(�; �0) + d2(�; �0)

. �(1� 2�2M ) d2�(�; �0) . �22j�2Æ2n:

We now �nish the proof as the proof of Theorem 8.1.

For d� = d not depending on � condition (8.5) is implied by the conditions

P
�
m�0;� �m�0;�0

�
& �d2(�; �0);

P
�
m�;� �m�0;�0

�
. �d2(�; �0):

These two conditions are the natural requirement that the criterion function (�; �) 7!
Pm�;� behaves quadratically (relative to a distance) around the point of maximum

(�0; �0).

8.3 Cox Regression with Current Status Data

Let us apply the Theorem 8.1 to one example, which illustrates the potential and

diÆculties, and for which we shall need the rate of convergence in the next lecture

as input to proving asymptotic normality of the maximum likelihood estimator. It is

again the Cox model, but this time with a type of censoring that changes everything.
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Suppose that we observe a random sample from the distribution of X =

(C;�; Z), where � = 1fT � Cg, that the \survival time" T and the observa-

tion time C are independent given Z, and that T follows a Cox model. The density

of X relative to the product of FC;Z and counting measure on f0; 1g is given by

p�;�(x) =
�
1� exp(�e�T z�(c))

�Æ�
exp(�e�T z�(c))

�1�Æ
:

We de�ne this as the likelihood for one observation x and are interested in the

estimator (�̂n; �̂n) obtained by maximizing the full likelihood. Here we restrict the

parameter � to a compact � � R
k and restrict the parameter � to the set of all

cumulative hazard functions with �(�) �M for a �xed large constant M and � the

\end of the study" (the end point of the distribution of C).

We make the following assumptions. The observation time C possesses a

Lebesgue density which is continuous and positive on an interval [�; � ] and van-

ishes outside this interval. The true parameter �0 is continuously di�erentiable on

this interval, satis�es 0 < �0(��) � �0(�) < M , and is continuously di�erentiable

on [�; � ]. The covariate vector Z is bounded and E cov(ZjC) > 0. The true param-

eter �0 is an inner point of the parameter set and the eÆcient information for � is

positive. (We make the latter condition concrete in the next lecture.)

8.8 Lemma. Under the conditions listed previously, �̂n is consistent and k�̂n �
�0kP0;2 = OP

�
n�1=3

�
.

Actually, we shall show that �̂n also possesses a rate of convergence of at least

n�1=3. However, in the next lecture we shall see that the true rate is n�1=2. It is a
good illustration of what cannot be achieved with the preceding rate theorem.

Remembering Trick 1 of Lecture 5 we apply Theorem 8.1 not with m� equal

to the log likelihood (as would be the straightforward thing to do), but with the

functions

m�;� = log (p�;� + p0)=2;

where the 0 denote the \true" parameter (�0;�0). The densities p�;� are bounded

above by 1, and under our assumptions the density p0 is bounded away from zero.

It follows that the functions m�;�(x) are uniformly bounded in (�;�) and x, which

is of some help.

In Lemma 8.9 below we explicitly bound the bracketing numbers of the class

of functions m�;�, from which we infer that these are �nite. Therefore, the class

of functions m�;� forms a Glivenko-Cantelli class. The parameter set � is compact

by assumption and the parameter set for � is compact for the weak topology, also

partly because of our assumptions. If the parameter (�0;�0) were identi�able, we

could conclude by Theorem 5.8 that (�̂n;�n) is consistent. However, under our

assumptions the parameter is not fully identi�able: the parameter �0 is identi�able

only on the interval (�; �). We can still conclude that �̂ P! �0 and that �̂(t) P! �0(t)

for every � < t < � . (The convergence of �̂ at the points � and � does not appear

to be guaranteed.)

By (8.2) the Kullback-Leibler divergence P0(m�;� �m0) is dominated by the

square Hellinger distance between (p�;�+p0)=2 and p0, and this in turn is equivalent

to the square Hellinger distance between p�;� and p0. By a lucky coincidence this
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distance translates easily in natural distances on � and �. By Lemma 8.10 below,

we have

P0(m�;� �m0) . �k� � �0k2 � k�� �0k22:
Thus we can take minus the right side as the square distance in Theorem 8.1. We only

need to bound the modulus of the empirical process for this distance. By Lemma 8.9

below, the bracketing entropy of the class of functions m�;� is of the order (1=").

By Lemma 8.3 we can choose the function �n in Theorem 8.1 equal to

�n(Æ) =
p
Æ
�
1 +

p
Æ

Æ2
p
n

�
:

This leads to a convergence rate of n�1=3 for both k�̂ � �0k and k�̂� �0k2.
We �nish with the technical work in the form of two lemmas.

8.9 Lemma. Under the conditions listed previously, there exists a constant C such

that, for every " > 0,

logN[]

�
"; fm�;�; (�;�)g; L2(P0)

�
� C

�1
"

�
:

Proof. First consider the class of functions m�;� for a �xed �. These functions

depend on � monotonely if considered separately for Æ = 0 and Æ = 1, Thus a

bracket �1 � � � �2 for � leads, by substitution, readily to a bracket for m�;�.

Furthermore, since this dependence is Lipschitz, there exists a constant D such that

Z �
m�;�1 �m�;�2

�2
dFC;Z � D

Z �

�

�
�1(c)� �2(c)

�2
dc:

Thus, brackets for � of L2-size " translate into brackets for m�;� of L2(P�;�)-size

proportional to ". It is well known that the set of all monotone functions �:R 7!
[0;M ] possesses a bracketing entropy of the order 1=". Therefore, we can cover the

set of all � by expC(1=") brackets of size ".

Next, we allow � to vary freely as well. The partial derivative @=@�m�;�(x) is

uniformly bounded in (�;�; x). Therefore, if m�;� is contained in a bracket [l; u],

then m�0;� is contained in the bracket [l� "; u+ "] for every �0 with k�0� �k . ". If
the bracket [l; u] is of size ", then the bracket [l�"; u+"] is of size 2". It follows that
we can construct a set of brackets for the functions m�;� by �rst selecting an "-net

�1; : : : ; �p over �, then apply the procedure of the �rst paragraph to �nd brackets for

the functions m�i;� for each i, and �nally enlarging this bracket. The total number

of brackets will be of the order (1=")k exp c(1=").
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8.10 Lemma. Under the conditions listed previously there exist constants C; " > 0

such that, for all � and all k� � �0k < ",

Z �
p
1=2
�;� � p

1=2
�0;�0

�2
d� � C

Z �

�

(�� �0)
2(c) dc+ Ck� � �0k2:

Proof. The left side of the lemma can be rewritten asZ
(p�;� � p�0;�0)

2�
p
1=2
�;� + p

1=2
�0;�0

�2 d�:

Since p0 is bounded away from zero, and the densities p�;� are uniformly bounded,

the denominator can be bounded above and below by positive constants. Thus the

Hellinger distance (in the display) is equivalent to the L2-distance between the

densities, which can be rewritten

2

Z h
e�e

�T z�(c) � e�e
�T
0

z
�0(c)

i2
dFY;Z(c; z):

Let g(t) be the function exp(�e�T z�(c)) evaluated at �t = t� + (1� t)�0 and �t =

t� + (1 � t)�0, for �xed (c; z). Then the integrand is equal to
�
g(1)� g(0)

�
2, and

hence, by the mean value theorem, there exists 0 � t = t(c; z) � 1 such that the

preceding display is equal to

P0

�
e��t(c)e

�T
t
z

e�
T
t z
h
(�� �0)(c)

�
1 + t(� � �0)

T z
�
+ (� � �0)

T z�0(c)
i�2

:

Here the multiplicative factor e��t(c)e
�T
t
z

e�
T
t z is bounded away from zero. By drop-

ping this term we obtain, up to a constant, a lower bound for the left side of the

lemma.

The remainder of the proof is best understood in terms of semiparametric in-

formation. We adopt the notation of the information calculations given in the next

lecture. Since the function Q�0;�0 is bounded away from zero and in�nity, we may

add a factor Q2
�0;�0

, and obtain the lower bound, up to a constant,

P0

��
1 + t(� � �0)

T z
�
B�0;�0(�� �0)(x) + (� � �0)

T _̀
�0;�0(x)

�2
:

Here B�0;�0 is the score operator for the model, which we derive in the next lecture.

The function h =
�
1 + t(� � �0)

T z
�
is uniformly close to 1 if � is close to �0.

Furthermore, for any function g and vector a,

�
P0(B�0;�0g)a

T _̀
�0;�0

�2
=
�
P0(B�0;�0g)a

T ( _̀�0;�0 � ~̀
0)
�2

� P0
�
B�0;�0g

�2
aT (I0 � ~I0)a;

by the Cauchy-Schwarz inequality. Since the eÆcient information ~I0 is positive-

de�nite by assumption, the term aT (I0 � ~I0)a on the right can be written aT I0ac

for a constant 0 < c < 1. The lemma now follows by application of Lemma 8.11

ahead.
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8.11 Lemma. Let h, g1 and g2 be measurable functions such that c1 � h � c2 and

(Pg1g2)
2 � cPg21Pg

2
2 for a constant c < 1 and constants c1 < 1 < c2 close to 1.

Then

P (hg1 + g2)
2 � C(Pg21 + Pg22);

for a constant C depending on c, c1 and c2 that approaches 1 �
p
c as c1 " 1 and

c2 # 1.

Proof. We may �rst use the ineqalities

(hg1 + g2)
2 � c1hg

2
1 + 2hg1g2 + c�12 hg22

= h(g1 + g2)
2 + (c1 � 1)hg21 + (1� c�12 )hg22

� c1(g
2
1 + 2g1g2 + g22) + (c1 � 1)c2g

2
1 + (c�12 � 1)g22:

Next, we integrate this with respect to P , and use the inequality for Pg1g2 on the

second term to see that the left side of the lemma is bounded below by

c1(Pg
2
1 � 2

q
cPg21Pg

2
2 + Pg22) + (c1 � 1)c2Pg

2
1 + (c�12 � 1)c2Pg

2
2:

Finally, we apply the inequality 2xy � x2 + y2 on the second term.

Notes

Rates of convergence have been a hot topic in the 1990s. Here we have only said

enough in order to be able to treat the Cox model with current status censoring

in Lecture 9. The papers [5] and [6] are important contributions and contain good

references. Another source of references is the book [41], which also gives an overview.



Lecture 9
Maximum and Pro�le Likelihood

In this lecture we study likelihood methods for semiparametric models. This concerns

both ordinary likelihoods indexed by in�nite-dimensional parameters and empirical

likelihoods.

9.1 Examples

\Likelihood" is the key unifying element in classical statistics and hence it is worth

while to seek a theory of likelihood for semiparametric models. This will be the

subject of our last two lectures. Unfortunately, what we shall have to say is not

completely satisfying. As known today likelihood theory for semiparametric models

falls short of the beautiful and simple theory for parametric models.

A �rst problem is that it is not obvious what we should de�ne to be the \likeli-

hood" of a given semiparametric model, in general. It is obvious that the likelihood

has something to do with a density of the observations, viewed as function of the

parameter. Apart from the fact that we also need to choose particular versions of

these densities, we encounter the further, major problem that many semiparametric

models are not dominated, or are de�ned in terms of densities that maximize to

in�nity.

The good news is that given a concrete example it is usually not diÆcult to

choose a \likelihood", albeit that often other, slightly di�erent choices would be just

as reasonable. Sometimes a likelihood can be taken equal to a density with respect

to a dominating measure, for other models we use an \empirical likelihood", but

mixtures of these situations occur as well, and sometimes it is fruitful to incorporate

a \penalty" in the likelihood, yielding a \penalized likelihood estimator", maximize

the likelihood over a set of parameters that changes with n, yielding a \sieved like-

lihood estimator", or group the data in some way before writing down a likelihood.

To bring out this di�erence with the \classical", parametric maximum likelihood

estimators, some authors use the phrase \nonparametric maximum likelihood esti-

mators" (NPMLE). We prefer to speak simply of \maximum likelihood estimators",

accepting the risk of being charged that nothing new is happening here. (In fact, it

would be nice if nothing new needed to happen.) After all, in each of the models we

are thinking of there is only one likelihood. We shall not give an abstract de�nition



9: Maximum and Pro�le Likelihood 99

of \likelihood", but shall describe \likelihoods that work" for a number of examples

to set the stage. We denote the likelihood for the parameter P given one observation

x by lik(P )(x) or lik(�; �) if P = P�;�.

Given a measure P , write Pfxg for the measure of the one-point set fxg.
The function x 7! Pfxg may be considered the density of P , or its absolutely

continuous part, with respect to counting measure. The empirical likelihood of a

sample X1; : : : ; Xn is the function,

P 7!
nY
i=1

PfXig:

Given a model P, a maximum likelihood estimator could be de�ned as the distribu-

tion P̂ that maximizes the empirical likelihood over P. Such an estimator may or

may not exist.

9.1 Example (Empirical distribution). Let P be the set of all probability distri-

butions on the measurable space (X ;A) (in which one-point sets are measurable).

Then, for n �xed di�erent values x1; : : : ; xn, the vector
�
Pfx1g; : : : ; Pfxng

�
ranges

over all vectors p � 0 such that
P
pi � 1 when P ranges over P. To maximize

p 7!
Q
i pi, it is clearly best to choose p maximal:

P
i pi = 1. Then, by symme-

try, the maximizer must be p = (1=n; : : : ; 1=n). Thus, the empirical distribution

Pn = n�1
P
ÆXi

maximizes the empirical likelihood over the nonparametric model,

whence it is referred to as the nonparametric maximum likelihood estimator.

If there are ties in the observations, this argument must be adapted, but the

result is the same.

The empirical likelihood is appropriate for the nonparametric model. For in-

stance, in the case of a Euclidean space, even if the model would be restricted to

distributions with a continuous Lebesgue density p, then we still could not use the

map p 7!
Qn
i=1p(Xi) as a likelihood. The supremum of this \likelihood" is in�nite,

for we could choose p to have an arbitrarily high, very thin peak at some observation.

9.2 Open Problem. Suppose we use p 7!
Qn
i=1p(Xi) as a likelihood, restricted to

a H�older ball of densities p: [0; 1] 7! R, e.g. all densities which are twice continu-

ously di�erentiable with second derivative bounded by 1 and which are themselves

bounded by some �xed number. Is it true that
R
h(x) p̂(x) dx is an asymptotically

eÆcient estimator for  (P ) =
R
h(x) p(x) dx for every reasonable function h?

9.3 Example (Cox model). We already discussed the problem of �nding a likeli-

hood for the Cox model in Lecture 5. There we settled on using the function

lik(�;�)(y; Æ; x) =
�
e�z�fyge�e�z�(y)

�Æ�
e�e

�z�(y)
�1�Æ

:

We also agreed to maximize this over all � and over all nondecreasing, cadlag func-

tions � with �(0) = 0. This is close, but not quite an empirical likelihood. Further-

more, we have enlarged the parameter set slightly, by not restricting the jumps of

� to be at most 1. At the end of this lecture, when discussing pro�le likelihood, we

reveal the reason for the latter.
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9.4 Example (Mixtures). Mixture models usually are based on well-behaved para-

metric families of densities, and then lead to well-behaved likelihoods equal to the

ordinary density. Thus for a given kernel p�(�j z) and p�;� the corresponding mixture

density we simply set

lik(�; �)(x) = p�;�(x):

Surprisingly little is known about the behaviour of such likelihoods. For example,

it is known for only a handful of examples that the �-component of the maximum

likelihood estimator (�̂; �̂) is asymptotically eÆcient for estimating �, as we would

certainly expect.

9.5 Open Problem. Just to show how little is known. Suppose that X1; : : : ; Xn

are sampled from a normal location mixture p�(x) =
R
�(x� z) dz and let �̂ be the

maximum likelihood estimator for �. Then
R
z d�̂(z) = Xn (as can be ascertained by

manipulation of likelihood equations) and hence
R
z d�̂(z) is asymptotically eÆcient

for estimating the mean of �, if this exists. Is the analogous statement true for the

higher moments
R
zk d�̂(z)?

9.6 Example (Penalized logistic regression). In this model we observe a random

sample from the distribution of X = (V;W; Y ), for a 0-1 variable Y that follows the

logistic regression model

P�;�(Y = 1jV;W ) = 	
�
�V + �(W )

�
;

where 	(u) = 1=(1+e�u) is the logistic distribution function. Thus, the usual linear
regression of (V;W ) has been replaced by the partial linear regression �V + �(W ),

where � ranges over a large set of \smooth functions". For instance, � is restricted

to the Sobolev class of functions on [0; 1] whose (k � 1)st derivative exists and is

absolutely continuous with J(�) <1, where

J2(�) =

Z 1

0

�
�(k)(w)

�2
dw:

Here k � 1 is a �xed integer and �(k) is the kth derivative of � with respect to z.

The density of an observation is given by

p�;�(x) = 	
�
�v + �(w)

�y�
1�	(�v + �(w)

�1�y
fV;W (v; w):

We cannot use this directly for de�ning a likelihood. The resulting maximizer �̂

would be such that �̂(wi) = 1 for every wi with yi = 1 and �̂(wi) = �1 when

yi = 0, or, at least we could construct a sequence of �nite, smooth �m approaching

this extreme choice. The problem is that qualitative smoothness assumptions such

as J(�) <1 do not restrict � on a �nite set of points w1; : : : ; wn in any way.

To remedy this situation we could restrict the maximization to a smaller set of

�, which we could allow to grow as n!1. For instance, the set of all � such that

J(�) �Mn for Mn " 1 at a slow rate, or a sequence of spline approximations.

An alternative is to use a penalized likelihood, of the form

(�; �) 7! Pn log p�;� � �̂2nJ
2(�):
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Here �̂n is a \smoothing parameter" that determines the importance of the penalty

J2(�). A large value of �̂n will lead to smooth maximizers �̂, while for small values

the maximizer will be more like the unrestricted maximum likelihood estimator.

Intermediate values are best, and are often chosen by a data-dependent scheme,

such as cross validation.

9.2 Asymptotic Normality

There are two ways of proving of asymptotic normality of the maximum likelihood

estimator in parametric models: one based on maximization and one based on the

likelihood equations. We like the �rst proof better, but it appears to be hard to gen-

eralize it to general semiparametric models, with its di�erent types of likelihoods

and possibly hard to estimate nuisance parameters. The proof based on the likeli-

hood equations is easier to adapt to semiparametric models. If we are interested in

the behaviour of the maximum likelihood estimator for � in a semiparametric model

with parameter (�; �), then we have two possibilities. The �rst is to set up a system

of likelihood equations for both parameters � and � and infer the joint asymptotic

normality of the maximum likelihood estimators. We shall discuss this method in

the last lecture, Lecture 10.

The second possibility is to treat � as a nuisance parameter in the likelihood

equation for �. In fact, if �̂ would satisfy the eÆcient score equation discussed in

Lecture 7, then we have already proved its asymptotic normality and eÆciency,

under some conditions.

Sometimes the analysis is this easy, but not in general. Perhaps unexpectedly,

the eÆcient score function may not be a \proper" score function and the maximum

likelihood estimator may not satisfy the eÆcient score equation. This is becasue,

by de�nition, the eÆcient score function is a projection (and L2-approximation),

and nothing guarantees that this projection is the derivative of the log likelihood

along some submodel. If there exists a \least favourable" path t 7! �t(�̂; �̂) such that

�0(�̂; �̂) = �̂, and, for every x,

~̀̂
�;�̂(x) =

@

@t jt=0
log lik

�
�̂ + t; �t(�̂; �̂)

�
(x);

then the maximum likelihood estimator satis�es the eÆcient score equation; if not,

then this is not clear. The existence of an exact least favourable submodel appears to

be particularly uncertain at the maximum likelihood estimator (�̂; �̂), as this tends

to be on the \boundary" of the parameter set.

A method around this diÆculty is to replace the eÆcient score equation by

an approximation. First, it suÆces that (�̂; �̂) satis�es the eÆcient score equation

approximately, for Theorem 7.2 goes through for every consistent estimator sequence

�̂ such that
p
nPn ~̀̂�;�̂ = oP (1). Second, this theorem is based on the more general

Theorem 6.29, which yields asymptotic normality of estimators satisfying a more

general estimating equation Pn �;�̂ � 0, and actually uses the special property of
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an eÆcient score function only to reduce the asymptotic variance to the inverse

eÆcient inuence function. As long as we can show that the maximum likelihood

estimator �̂ satis�es an equation Pn �̂;�̂ � 0 for functions  �;� that, if evaluated at

the true parameter (�; �), give the eÆcient score function, then we still can conclude

that �̂ is asymptotically eÆcient.

This motivates us to introduce approximately least favourable subprovided

models.

9.7 De�nition. An approximately least favourable subprovided models is a collec-

tion of maps t 7! �t(�; �) from a neighbourhood of 0 2 R
k to the parameter set for

� with �0(�; �) = � (for every (�; �)) such that

 �;�(x) =
@

@t jt=0
log lik

�
� + t; �t(�; �)

�
(x);

exists (for every x) and is equal to the eÆcient score function at (�; �) = (�0; �0).

Thus, the path t 7! �t(�; �) must pass through � at t = 0, and at the true

parameter (�0; �0) the submodel is truly least favourable in that its score is the

eÆcient score for �. We need such a submodel for every �xed (�; �), or at least for

the true value (�0; �0) and every possible value of (�̂; �̂).

If (�̂; �̂) maximizes the likelihood, then the function

t 7! Pn log lik
�
� + t; �t(�̂; �̂)

�

is maximal at t = 0 and hence (�̂; �̂) satis�es the stationary equation Pn �̂;�̂ = 0.

Now Theorem 6.29 yields the asymptotic eÆciency of �̂n. The main assumptions are

that the entropies of the classes of realizations of the functions  �̂;�̂ are stable and

not too big, and the no-bias and consistency conditions (6.26) and (6.27).

Two obvious questions arise:

- Does an approximately least favourable submodel always exist?

- If it exists can it be chosen to satisfy the \regularity" conditions, such as (6.26)?

We discussed the nature of (6.26) in Lecture 6 and have nothing to add to it. We

do not have a satisfying answer to the �rst question either. In many examples such

submodels exist, but we have already mentioned some examples where the question

of asymptotic normality of the maximum likelihood estimator is still open. To give

some insight in the diÆculties we discuss one example in some detail below. More in

general, we note that we can often use our insight in the calculus of scores developed

in the preceding lectures. Assume, for instance, that the information operator B�0B0,

evaluated at the true parameter (�0;�0) is continuously invertible. Then the eÆcient

score function is given by

~̀
0 = _̀

0 � B0(B
�
0B0)

�1B�0 _̀0:

A score function B�;�h would presumably arise from some path t 7! �t(�)(h) in the

H-space. Then a potential least favourable path is given by

�t(�; �) = �t(�)(�h0); h0 = (B�0B0)
�1B�0 _̀0:
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This, of course, is only possible if h0 is a valid direction for perturbation of � in the

H-space. It may be necessary to recenter h0 �rst, and we may have to ascertain that

h0 is a nice function, e.g. bounded, or continuous, to make the path well-de�ned.

9.8 Example (Cox model). A convenient approximately least favourable sub-

model in the Cox model is de�ned by

d�t(�;�) =
�
1� th0

�
d�;

where h0 = L1;�0=L0;�0 is the least favourable direction in the �-space at the true

parameter (�0;�0). (See Example 3.13.) This is a valid cumulative hazard function,

at least for t � 0, if h0 is a bounded function, and this is true for instance if Z

ranges over a bounded interval.

Substituting this submodel in Cox likelihood and di�erentiating with respect

to t gives

 �;�(x) =
@

@t t=0
lik
�
� + t;�t(�; �)

�
(x) = _̀

�;� � B�;�h0(x):

This is not the eÆcient score function at every choice (�;�), but it is the eÆcient

score function for (�;�) = (�0;�0), which is enough. The regularity conditions of

Theorem 6.29 can be veri�ed. Let us restrict ourselves to the most interesting one,

the no-bias condition (6.28). We have

P�0;�0 �0;�̂ = P�0;�0(
_̀
�0;�̂

�B�0;�̂h0)

= P�0;�0
�
( _̀�0;�̂ � B�0;�̂h0)� ( _̀�0;�0 � B�0;�0h0)

�

= �P�0;�0
�
ze�0z(�̂� �0)(y)� e�0z

Z
[0;y]

h0 d(�̂� �0)
�

= �
Z
(L1;�0 � L0;�0h0) d(�̂� �0):

The right side vanishes by the de�nition of the least favourable direction h0. There-

fore, the \no bias" condition is satis�ed in the strongest possible sense. (We could

have inferred this immediately from the linearity of the score functions in � (even

though the likelihood is not linear in �)). Again, the Cox model is as nice as it can

be; in other cases we do �nd a remainder term, and need to establish some rate of

convergence.

9.3 Cox Regression with Current Status Data

We take up the example for which we computed rates of convergence in Lecture 8.

Thus we observe a random sample from the density

p�;�(x) =
�
1� exp(�e�T z�(c))

�Æ�
exp(�e�T z�(c))

�1�Æ
:
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We de�ne this density as the likelihood for one observation x = (c; Æ; z). We make

the same assumptions as in Lecture 8, but add the assumption that the function

h�0;�0 given by (9.9) ahead has a version which is di�erentiable with a bounded

derivative on [�; � ].

The score function for � takes the form

_̀
�;�(x) = z�(c)Q�;�(x);

for the function Q�;� given by

Q�;�(x) = e�
T z
h
Æ

e�e
�T z�(c)

1� e�e�
T z�(c)

� (1� Æ)
i
:

For every nondecreasing, nonnegative function h and positive number t, the sub-

model �t = � + th is well de�ned. Inserting this in the log likelihood and di�eren-

tiating with respect to t at t = 0, we obtain a score function for � of the form

B�;�h(x) = h(c)Q�;�(x):

The linear span of these score functions contains B�;�h for all bounded functions

h of bounded variation. In view of the similar structure of the scores for � and �,

projecting _̀
�;� onto the closed linear span of the nuisance scores is a weighted least

squares problem with weight function Q�;�. The solution is given by the vector-

valued function

(9:9) h�;�(c) = �(c)
E�;�

�
ZQ2

�;�(X)jC = c
�

E�;�
�
Q2
�;�(X)jC = c

� :
The eÆcient score function for � takes the form

~̀
�;�(x) =

�
z�(c)� h�;�(c)

�
Q�;�(x):

Formally, this function is the derivative at t = 0 of the log likelihood evaluated

at (� + t;� � tTh�;�). However, the second coordinate of the latter path may not

de�ne a nondecreasing, nonnegative function for every t in a neighbourhood of 0 and

hence cannot be used to obtain a stationary equation for the maximum likelihood

estimator. This is true in particular, for discrete cumulative hazard functions �, for

which � + th is nondecreasing for both t < 0 and t > 0 only if h vanishes between

the jumps of �.

This suggests that the maximum likelihood estimator does not satisfy the eÆ-

cient score equation. To prove the asymptotic normality of �̂, we replace this equation

by an approximation, obtained from an approximately least favourable submodel.

Our second guess on a least favourable submodel is to use �t(�;�) = � �
th�0;�0 Æ ��10 Æ �. This alleviates the problem of di�erent supports of � and its

perturbation. Indeed, if the function h�0;�0 Æ ��10 is Lipschitz, then for any a � b

and C the Lipschitz constant,

�t(�;�)(a)� �t(�;�)(b) �
�
�(a)� �(b)

�
(1� tC):

Hence the function �t(�;�) is nondecreasing for suÆciently small jtj.
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However, it is not clear that the range of �t(�;�) is inside [0;M ], whereas we

have decided to maximize only over functions with range inside this interval. (It

would have been better at this point to drop that restriction, to maximize over all

nondecreasing functions, and next to prove that the maximizers remain uniformly

bounded with high probability. However, we imposed the restriction to [0;M ] pre-

cisely, because we do not know if the last is true. Now we have to pay for it.) This

motivates a third guess of a least favourable submodel. We take it to be, with � a

suitably chosen function,

�t(�;�) = �� t� Æ �h�0;�0 Æ ��10 Æ �:

If � is Lipschitz, then �t(�;�) is nondecreasing, by the same argument as before.

If y � t�(y)h�0;�0 Æ ��10 (y) is contained in [0;M ] for all y in the range of �, then

�t(�;�) takes its values in [0;M ]. We achieve this if 0 � �(y) � c
�
y ^ (M � y)

�
for every 0 � y � M , Under our assumptions we can choose � in such a way that

this holds and, moreover, � is the identity on the range [�0(s);�(�)] of �0 (which

is strictly contained in [0;M ]).

Inserting
�
�+t;�t(�;�)

�
into the log likelihood, and di�erentiating with respect

to t at t = 0, yields the score function

 �;�(x) =
�
z�(c)� �

�
�(c)

�
(h�0;�0 Æ ��10 )

�
�(c)

��
Q�;�(x):

When evaluated at (�0;�0) this reduces to the eÆcient score function ~̀
�0;�0(x) pro-

vided �(�0) = 1, whence the submodel is approximately least favourable. To prove

the asymptotic eÆciency of �̂n it suÆces to verify the conditions of Theorem 6.29.

To verify the no-bias condition (6.28) we can use the decomposition (6.25) in

combination with the inequalities

jp�0;� � p�0;�0 j(x) . j�� �0j(c);�� �0;� �  �0;�0 j(x) . j�� �0j(c);��p�0;� � p�0;�0 �B�0;�0(�� �0)p�0;�0
��(x) . j�� �0j2(c):

For every �xed x, the expressions on the left depend on � only through the scalar

�(y). For this reason these inequalities follow from ordinary Taylor expansions and

uniform bounds on the �rst and second derivatives. By writing the bias as in (6.25),

we now easily obtain that

jP�0;�0 �0;�̂j .
Z �

�

j�̂� �0j2(c) dc:

The right side was shown to be of the order OP (n
�2=3) in Lecture 8, and this is

better than the oP (n
�1=2) that is needed for asymptotic eÆciency of �̂.

The functions  �;� can be written in the form

 �;�(x) =  (z; e�
T z;�(c); Æ);

for a function  that is Lipschitz in its �rst three coordinates, for Æ 2 f0; 1g �xed.
(Note that � 7! �Q�;� is Lipschitz, as � 7! h�0;�0 Æ ��10 (�)=� = (h�0;�0=�0) Æ
��10 (�).) The functions z 7! z, z 7! exp �T z, c 7! �(c) and Æ 7! Æ form Donsker

classes when � and � range freely. Hence the functions x 7! �(c)Q�;�(x) form a

Donsker class, by Theorem 6.10.
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9.10 Open Problem. Find the limit distribution (if any) of the sequence n1=3(�̂�
�)(t).

9.4 Pro�le Likelihood

Given a partitioned parameter (�; �) and a likelihood lik(�; �)(x) the pro�le likelihood

for � is de�ned as the function

� 7! proik(�): = sup
�

nY
i=1

lik(�; �)(Xi):

The supremum is taken over all possible values of �, or given a sieve all values in

the sieve at \time" n. It is rarely possible to compute a pro�le likelihood explicitly,

but its numerical evaluation is often feasible.

The pro�le likelihood can be used as a computational device, because its point

of maximum is exactly the �rst coordinate of the maximum likelihood estimator

(�̂; �̂). We are simply computing the maximum of the likelihood over (�; �) in two

steps.

However, the importance of the pro�le likelihood goes far beyond computa-

tional issues. Pro�le likelihood functions can be used in the same way as (ordinary)

likelihood functions of parametric models. Besides de�ning the maximum likelihood

estimator �̂, the curvature of the log pro�le likelihood at �̂ can be used as an esti-

mate of minus the inverse of the asymptotic covariance matrix of �̂. Furthermore, the

quotient proik(�̂)= proik(�0) between the maximum value and the value at a �xed

point �0 is the likelihood ratio statistic for testing the (composite) null hypothesis

H0: � = �0. In this section we study these quantities more closely.

It is well known that for parametric models with log likelihood `�(x) = log lik(�)

the likelihood ratio statistic 2nPn(`�̂ � `�0) is under some assumptions and under

the null hypothesis H0: � = �0 asymptotically chisquared distributed with degrees of

freedom equal to the dimension of the parameter. Furthermore, it is well known that

the observed information �Pn �̀̂� is, under some conditions, a consistent estimator of

the Fisher information I� = P� _̀� _̀
T
� = �P� �̀�. Under some (more) conditions we can

prove analogous results for semiparametric models, but with the pro�le likelihood

function for � replacing the ordinary likelihood.

At the basis of these results is an asymptotic expansion of the (pro�le) likelihood

function as follows. For any random sequence ~�n
P! �0,

(9:11)
log proikn(

~�n) = log proikn(�0) + (~�n � �0)
T

nX
i=1

~̀
�0;�0(Xi)

� 1
2
n(~�n � �0)

T ~I�0;�0(
~�n � �0) + oP�

0
;�
0

�p
nk~�n � �0k+ 1

�2
:
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If the maximum likelihood estimator is asymptotically eÆcient, then it possesses

the asymptotic expansion

(9:12)
p
n(�̂n � �0) =

1p
n

nX
i=1

~I�1�0;�0
~̀
�0;�0(Xi) + oP�

0
;�
0

(1):

Taking this into account we see that the parabolic approximation to the log pro�le

likelihood given by equation (9.11) is centered, to the �rst order, at �̂n. In other

words, it is possible to expand the log pro�le likelihood function around �̂n, in the

form

(9:13)
log proikn(

~�n) = log proikn(�̂n)� 1
2
n(~�n � �̂n)

T ~I�0;�0(
~�n � �̂n)

+oP�
0
;�
0

�p
nk~�n � �0k+ 1

�2
:

Actually (9.12){(9.13) are a consequence of (9.11), as we prove below. The expansion

(9.11) is �rmly believed to be true in some generality. We shall not give precise

conditions for its validity here, but note that such conditions have been given in

terms of the existence of approximately least favourable paths, much in the spirit

of our treatment of maximum likelihood estimators earlier in this lecture.

The asymptotic expansions (9.11) and (9.13) justify using a semiparametric

pro�le likelihood as an ordinary likelihood, at least asymptotically. In particular, we

present three corollaries. We assume that the true parameter �0 is interior to the

parameter set.

9.14 Corollary. If (9.11) holds, ~I�0;�0 is invertible, and �̂n is consistent, then

(9.12){(9.13) hold. In particular, the maximum likelihood estimator �̂ is asymp-

totically eÆcient at (�0; �0).

9.15 Corollary. If (9.11) holds, ~I�0;�0 is invertible, and �̂n is consistent, then under

the null hypothesis H0: � = �0, then the sequence 2 log
�
proikn(�̂n)= proikn(�0)

�
is

asymptotically chi-squared distributed with d degrees of freedom.

9.16 Corollary. If (9.11) holds and �̂n is consistent, then, for all sequences

vn
P! v 2 R

d and hn
P! 0 such that (

p
nhn)

�1 = OP (1),

�2 log proikn(�̂n + hnvn)� log proikn(�̂n)

nh2n

P! vT ~I0v:

Proofs. The second and third corollaries are immediate consequences of (9.11){

(9.13). Relation (9.13) follows from (9.11){(9.12) and some algebra. We shall derive

(9.12) from (9.11). Set �n = n�1=2
Pn
i=1

~̀
�0;�0(Xi) and ĥ =

p
n(�̂ � �0).

Applying (9.11) with the choices ~� = �̂ and ~� = �0 + n�1=2 ~I�1�0;�0�n, we �nd

log proikn(�̂)

= log proikn(�0) + ĥT�n � 1
2
ĥT ~I�0;�0 ĥ+ oP

�
kĥk+ 1

�2
;

log proikn(�0 + n�1=2 ~I�1�0;�0�n)

= log proikn(�0) + �T
n
~I�1�0;�0�n � 1

2
�T
n
~I�1�0;�0�n + oP (1):
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By the de�nition of �̂, the expression on the left (and hence on the right) in the �rst

equation is larger than the expression on the left in the second equation. It follows

that

ĥT�n � 1
2
ĥT ~I�0;�0 ĥ� 1

2
�T
n
~I�1�0;�0�n � �oP

�
kĥk+ 1

�2
:

The left side of this inequality is equal to

�1
2
(ĥ� ~I�1�0;�0�n)

T ~I0(ĥ� ~I�1�0;�0�n) � �ckĥ� ~I�1�0;�0�nk2;

for a positive constant c, by the nonsingularity of ~I�0;�0 . Conclude that

kĥ� ~I�1�0;�0�nk = oP
�
kĥk+ 1

�
:

This implies �rst that kĥk = OP (1), and next, by reinsertion, that kĥ� ~I�1�0;�0�nk =
oP (1). This completes the proof of (9.12).

9.17 Example (Cox model). Consider again the Cox model of Example 3.13. In

Lecture 5 we noted that the second component of the maximum likelihood estimator

(�̂; �̂), relative to the likelihood chosen there, will be a step function with steps only

at the Yi such that �i = 0. It follows that the pro�le likelihood function takes the

form

� 7! sup
�1;:::;�n�0

nY
i=1

�
e�Zi�i

��i

e
�e�Zi

P
j:Yj�Yi

�j�j

:

In this (very special) case the supremum can be explicitly computed. Finding the

maximizers over (�1; : : : ; �n) is equivalent to maximizing

nX
i=1

�i log�i �
nX
i=1

X
j:Yj�Yi

e�Zi�j�j :

Interchanging the sums and next taking the partial derivative relative to �k for a k

such that �k = 1, yields the stationary equation

1

�k
=

X
i:Yi�Yk

e�Zi :

Upon inserting this in the likelihood we �nd the pro�le likelihood for �

� 7!
nY
i=1

� e�ZiP
j:Yj�Yi e

�Zj

��i

e
�
P

n

i=1
�i :

This expression is known as the Cox partial likelihood. Cox's original motivation for

this criterion function is that the terms in the product are the conditional probabil-

ities that the ith subject dies at time Yi given that one of the subjects at risk dies

at that time.

The Cox partial log likelihood is a sum over the observations, but the terms in

the sum are dependent. Direct study of such a sum therefore is nontrivial at �rst

sight. Initially the Cox partial likelihood estimator was studied along the classical

lines: characterizing �̂ as the solution of the derivative of the partial likelihood and

next using Taylor series arguments on this partial score equation. The diÆculty is
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then to show that the partial score and its derivative are asymptotically normal or

satisfy a law of large numbers. Later it turned out that martingale arguments can

both justify this derivation and facilitate the calculation of means and variances.

Elegant as this arguments are, they are restricted to a special case such as the Cox

model. In the �nal lecture we shall show how the asymptotic normality of the Cox

estimators can be derived within a framework that applies to general semiparametric

models. Alternatively, the asymptotic normality of �̂ follows along the lines of the

present lecture.

Notes

The treatment of the Cox model with current status data follows [12], who also

presents a general set-up. Our de�nition of approximately least favourable submodels

is based on [40] and [26]. The latter paper discusses the pro�le likelihood function and

summarizes other work on the likelihood ratio statistic and the observed information.

For an analysis of the sieved or penalized logistic regression model see [13] and [21].



Lecture 10
In�nite-dimensional Z-Estimators

In this lecture we consider in�nite-dimensional systems of estimating equations and

show that solutions are asymptotically normal if the system is appropriately di�er-

entiable, extending the results on �nite-dimensional Z-estimators to in�nite dimen-

sions. Next we show that this method can be applied to proving asymptotic normality

of maximum likelihood estimators in semiparametric models, with as example, again,

the Cox model.

10.1 General Result

A system of estimating equations for a parameter must be of the same dimension

as the parameter. For an in�nite-dimensional parameter we need in�nitely many

estimating equations. It turns out that such a system can be analyzed much in the

same way as a �nite-dimensional system, provided that we substitute functional

analysis for multivariate calculus. The system is linearized in the estimators by a

Taylor expansion around the true parameter, and the limit distribution involves the

inverse of the derivative applied to the system of equations. Whereas in the �nite-

dimensional situation the use of empirical processes can be avoided through higher

order Taylor expansions, now empirical processes appear indispensable. But we do

not mind that, of course, having established already all the tools we need.

For each � in a subset � of a Banach space and each h in an arbitrary set

H, let  �;h:X 7! R be a measurable function. Denote by  �(x) the vector-valued

function f �;h(x):h 2 Hg and let Pn � and P � be the corresponding vector-valued
empirical and \true" means. We are interested in zeros �̂ of the map � 7! Pn �.

Equivalently, in random elements �̂ with values in � such that

Pn �;h = 0; every h 2 H:

We expect that the sequence �̂n converges in probability to a zero of the map

� 7! P �. In applications where �̂ is a maximum likelihood or another contrast

estimator, we usually already know this from applying a standard method to the

contrast function. It may also be possible to establish consistency from the fact

that �̂ is a zero only. In any case, the consistency issue does not yield structurally

di�erent questions from before and we omit further discussion.
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We assume that the maps h 7!  �(x) and h 7! P �;h are uniformly bounded,

so that the maps � 7! Pn � and � 7! P � map � into `1(H). This may seem a

bit special, but even when considering maps � 7!  �(x) with values in a general

Banach space, we can always force this in the present form by choosing the right

index set H. The advantage of the present special form is that we set the theorems

immediately within the context of empirical processes.

The following theorem establishes the asymptotic normality of
p
n(�̂ � �) and

should be compared to Theorem 6.19. Recall that Fr�echet di�erentiability is ordinary

di�erentiability. Thus the map � 7! P � is Fr�echet di�erentiable at �0 if there exists

a continuous, linear map V : lin � 7! `1(H) such that, as � 7! �0,P � � P �0 � V (� � �0)

H = o

�
k� � �0k

�
:

In our setting we do not assume that the domain of the map � 7! P � contains

�0 as an interior point, but allow � to be arbitrary. The sequence � 7! �0 in the

preceding display is restricted to �.

10.1 Theorem. Suppose that the class of functions f �;h: � 2 �; h 2 Hg is P -

Donsker, that the map � 7! P � is Fr�echet di�erentiable at �0 with derivative

V : lin � 7! `1(H) that is one-to-one and has a continuous inverse V �1: R(V ) 7!
lin �. Furthermore, assume that the maps � 7!  �;h are continuous in L2(P ) at �0,

uniformly in h 2 H. Then any zero �̂n of � 7! Pn � that converges in probability to

a zero �0 of � 7! P � satis�es

V
p
n(�̂ � �0) = G n �0 + oP (1):

Proof. The �rst step is to prove that G n( �̂n �  �0)
P! 0 in `1(H). Equip the set

H�� with the semi-metric

�
�
(h; �); (h0; �0)

�
=

q
P ( �;h �  �0;h0)2;

and de�ne a map �: `1(H � �) � � 7! `1(H) by �(z; �) = z(�; �) � z(�; �0). By
assumption we have that �

�
(h; �); (h; �0)

�
! 0, uniformly in h 2 H, as �! �0. Thus

if z 2 `1(H��) is �-uniformly continuous, then jz(h; �)� z(h; �0)j ! 0, uniformly

in h 2 H, if �! �0. Consequently, for such z and for (zn; �n) 7! (z; �0) an arbitrary

sequence in `1(H��)��,

�(zn; �n)� �(z; �0)

H =

zn(h; �n)� zn(h; �0)kH
� 2kzn � zkH�� +

z(h; �n)� z(h; �0)

H ! 0:

We conclude that the map � is continuous at every point (z; �0) such z is �-

uniformly continuous at �0. Almost all sample paths of a Brownian bridge are uni-

formly continuous relative to the L2(P )-norm and therefore almost all sample paths

(�; h) 7! Z(�; h) of the process Z(�; �) = G  �;h are uniformly continuous relative to

�. By assumption we have that Zn  Z and that �̂n
P! �0. Hence (Zn; �̂n) (Z; �0)

and by the continuous mapping theorem we conclude that �(Zn; �̂n) �(Z; �0) = 0.

This is equivalent to the claim that G n( �̂n �  �0)
P! 0 in `1(H).
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Using the fact that �̂ and �0 are zeros we can rewrite the claim as

�
p
nP ( 

�̂n
�  �0) = G n �0 + oP (1):

The right side converges in distribution in `1(H), by the Donsker assumption. Hence

its norm is OP (1). The left side can be written as

�
p
n
�
V (�̂n � �0) + oP (k�̂n � �0k)

�
by the assumption of Fr�echet di�erentiability. Because V has a continuous inverse

on its range, there exists a constant c > 0 such that kV (���0)k � ck���0k for every
� 2 �.We use this and the preceding displays to conclude that

p
nk�̂n��0k = OP (1).

Next we insert this in the preceding display to see that the display is equivalent to

�Vpn(�̂n � �0) + oP (1).

We can invert the assertion of the preceding theorem to see that
p
n(�̂n � �0)

is asymptotically distributed as V �1G  �0 provided we use the correct (continuous)

extension of the inverse operator V �1 to a domain that contains the support of

the Brownian bridge G  �0 . Because continuous, linear transformations of Gaussian

processes are Gaussian we obtain that the sequence
p
n(�̂n � �0) is asymptotically

normal. In many situations, though, the limit distribution is easier found by per-

forming the inversion of the relation for a �nite n. We shall see an example of this

in the following treatment of maximum likelihood estimators.

An important condition in the theorem is the continuous invertibility of the

derivative V . Since a linear map between Euclidean spaces is automatically contin-

uous, in the �nite-dimensional set-up this condition reduces to the derivative being

one-to-one. For in�nite-dimensional systems of estimating equations, the continuity

is far from automatic and may be the condition that is hardest to verify. Since it

refers to the `1(H)-norm, we have some control over it while setting up the system

of estimating equations and choosing the set of functions H. A bigger set H makes

V �1 more readily continuous, but makes the di�erentiability of the map � 7! P �
and the Donsker condition more stringent.

10.2 Maximum Likelihood

Consider a semiparametric model, indexed by a �nite-dimensional parameter � of

interest and a nuisance parameter �, assumed to be contained in some Banach space.

We wish to apply the preceding theorem to derive the asymptotic distribution of

the pair (�̂; �̂) of maximum likelihood estimators. (Thus � of the theorem becomes

(�; �) in this section.) This approach gives an alternative to the one of Lecture 9

based on the eÆcient score equation. A limitation of the present approach is that

both �̂ and �̂ must converge at
p
n-rate. It is not clear that a model can always

appropriately be parametrized such that this is the case, while it is certainly not

always the case for the natural parametrization. An advantage is that we obtain the

joint asymptotic distribution of �̂ and �̂.
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The system of estimating equations that we are looking for will consist of sta-

tionary equations resulting from varying either the parameter � or the nuisance

parameter �. Suppose that our maximum likelihood estimator (�̂; �̂) maximizes the

function

(�; �) 7!
Y

lik(�; �)(Xi);

for lik(�; �)(x) being the \likelihood" given one observation x.

The parameter � can be varied in the usual way, and the resulting stationary

equation takes the form

Pn
_̀
�̂;�̂

= 0:

This is the usual maximum likelihood equation, except that we evaluate the score

function at the joint estimator (�̂; �̂), rather than at the single value �̂. A precise

condition for this equation to be valid is that the partial derivative of log lik(�; �)(x)

with respect to � exists and is equal to _̀
�;�(x), for every x, (at least for � = �̂ and

at � = �̂).

Varying the nuisance parameter � is conceptually more diÆcult. Typically, we

can use a selection of the submodels t 7! �t used for de�ning the tangent set and

the information in the model. If scores for � take the form of an \operator" B�;�
working on a set of indices h, then a typical likelihood equation will take the form

PnB�̂;�̂h = P�̂;�̂B�̂;�̂h:

Here we have made it explicit in our notation that a score function always has mean

zero, by writing the score function as x 7! B�;�h(x) � P�;�B�;�h rather than as

x 7! B�;�h(x). The preceding display will be valid if, for every (�; �), there exists

some path t 7! �t(�; �) such that �0(�; �) = � and, for every x,

B�;�h(x)� P�;�B�;�h =
@

@t jt=0
log lik

�
� + t; �t(�; �)

�
:

Assume that this is the case for every h in some index set H, and suppose that the

latter is chosen in such a way that the map h 7! B�;�h(x)� P�;�B�;�h is uniformly

bounded on H, for every x and every (�; �).

Our total set of estimating equations may be thought of as indexed by the

set f1; : : : ; kg [ H. We can summarize the estimating equations in a random map

	n:R
k �H 7! R

k � `1(H) given by 	n = (	n1;	n2) with

	n1(�; �) = Pn
_̀
�;�;

	n2(�; �)h = PnB�;�h� P�;�B�;�h; h 2 H:

The expectation of these maps under the parameter (�0; �0) is the deterministic map

	 = (	1;	2) given by

	1(�; �) = P�0;�0
_̀
�;�;

	2(�; �)h = P�0;�0B�;�h� P�;�B�;�h; h 2 H:

By construction, the maximum likelihood estimators (�̂n; �̂n) and the \true" param-

eter (�0; �0) are zeros of these maps,

	n(�̂n; �̂n) = 0 = 	(�0; �0):
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Under some conditions, Theorem 10.1 gives the asymptotic distribution of the se-

quence
p
n(�̂� �0; �̂� �0) as a function of the derivative _	0 of 	 at (�0; �0) and the

limit process of
p
n(	n � 	)(�0; �0), a pair of a Gaussian vector and a Brownian

bridge process.

We would like to make this limit process more concrete and ascertain that the

maximum likelihood estimator is asymptotically eÆcient. Then we need to relate

the derivative of 	 to the score and information operators of the model. Consider

the case that � is a measure on a measurable space (Z; C). Then the directions h can
often be taken equal to bounded functions h:Z 7! R, corresponding to the paths

d�t = (1+ th) d� if � is a completely unknown measure, or d�t =
�
1+ t(h� �h)

�
d�

if the total mass of each � is �xed to one. In the remainder of the discussion, we

assume the second. Now the derivative map _	0 typically takes the form

(� � �0; � � �0) 7!
�

_	11
_	12

_	21
_	22

� �
� � �0
� � �0

�
;

where

(10:2)

_	11(� � �0) = �P�0;�0 _̀�0;�0 _̀T�0;�0(� � �0);

_	12(� � �0) = �
Z
B��0;�0

_̀
�0;�0 d(� � �0);

_	21(� � �0)h = �P�0;�0(B�0;�0h) _̀T�0;�0 (� � �0);

_	22(� � �0)h = �
Z
B��0;�0B�0;�0h d(� � �0):

For instance, to �nd the last identity in an informal manner, consider a path �t in

the direction of g, so that d�t � d�0 = tg d�0 + o(t). Then by the de�nition of a

derivative

	2(�0; �t)�	2(�0; �0) � _	22

�
�t � �0

�
+ o(t):

On the other hand, by the de�nition of 	, for every h,

	2(�0; �t)h�	2(�0; �0)h = �(P�0;�t � P�0;�0)B�0;�th

� �tP�0;�0(B�0;�0g)(B�0;�0h) + o(t)

= �
Z
(B��0;�0B�0;�0h) tg d�0 + o(t)

� �
Z
(B��0;�0B�0;�0h) d(�t � �0) + o(t):

On comparing the preceding pair of displays, we obtain the last line of (10.2). These

arguments are purely heuristic, and this form of the derivative must be established

for every example. For instance, within the context of Theorem 10.1, we may need

to apply _	0 to � that are not absolutely continuous with respect to �0. Then the

validity of (10.2) already depends on the version that is used to de�ne the adjoint

operator B��0;�0 . By de�nition, an adjoint is an operator between L2-spaces and

hence maps equivalence classes into equivalence classes.
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The continuous invertibility of _	0 can be veri�ed by ascertaining the continuous

invertibility of the two operators _	11 and _V = _	22 � _	21
_	�111

_	12. In that case we

have

_	�10 =

�
_	�111 + _	�111

_	12
_V �1 _	21

_	�111 � _	�111 	12
_V �1

� _V �1 _	21
_	�111

_V �1

�
:

The operator _	11 is the Fisher information matrix for � when � is known. If this

would not be invertible, then there would be no hope of �nding asymptotically

normal estimators for �. The operator _V has the form

_V (� � �0)h = �
Z
(B��0;�0B�0;�0 +K)h d(� � �0);

where the operator K is de�ned as

Kh = �
�
P�0;�0(B�0;�0h)

_̀T
�0;�0

�
I�1�0;�0B

�
�0;�0

_̀
�0;�0 :

The operator _V : lin H 7! `1(H) is certainly continuously invertible if there exists a
positive number � such that, for all � 2 lin H

sup
h2H

�� _V (� � �0)h
�� � "k� � �0k:

In the case that � is identi�ed with the map h 7! �h in `1(H), the norm on the

right is given by suph2H
��(� � �0)h

��. Then the display is certainly satis�ed if, for

some " > 0, n
(B��0;�0B�0;�0 +K)h:h 2 H

o
� �H:

This condition has a nice interpretation if H is equal to the unit ball of a Ba-

nach space D of functions. Then the preceding display is implied by the operator

B��0;�0B�0;�0 +K: D 7! D being continuously invertible. The �rst part of this opera-

tor is the information operator for the nuisance parameter. Typically, this would be

continuously invertible if the nuisance parameter is regularly estimable at a
p
n-rate

(relatively to the norm used) when � is known. The following lemma guarantees that

the same is then true for the operator B��0;�0B�0;�0 +K if the eÆcient information

matrix for � is nonsingular, i.e. the parameters � and � are not locally confounded.

10.3 Lemma. Let H be the unit ball in a Banach space D contained in `1(Z).
If ~I�0;�0 is nonsingular, B��0;�0B�0;�0 : D 7! D is continuous, onto and continuously

invertible and B��0;�0
_̀
�0;�0 2 D , then B��0;�0B�0;�0 + K: D 7! D is continuous, onto

and continuously invertible.

Proof. Abbreviate the index (�0; �0) to 0. The operator K is compact, because

it has a �nite-dimensional range. Therefore, by Lemma 10.4 below, the operator

B�0B0 +K is continuously invertible provided that it is one-to-one.

Suppose that (B�0B0 +K)h = 0 for some h 2 D . By de�nition Kh = aT0 B
�
o
_̀
0

for for a0 = �I�10 P0(B0h) _̀0. By assumption there exists a path t 7! �t with score

function B0h = B0h � P0B0h at t = 0. Then the submodel indexed by t 7! (�0 +

ta0; �t) has score function a
T
0
_̀
0 +B0h at t = 0, and information

aT0 I0a0 + P0(B0h)
2 + 2aT0 P0

_̀
0(B0h) = P0(B0h)

2 + aT0 I0a0:
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Since the eÆcient information matrix is nonsingular, this information must be

strictly positive, unless a0 = 0. On the other hand,

0 = �0h(B
�
0B0 +K)h = P0(B0h)

2 � aT0 P0(B0h) _̀0:

This expression is at least the right side of the preceding display and would be

positive if a0 6= 0. Thus a0 = 0, whence Kh = 0. Reinserting this in the equation

(B�0B0 +K)h = 0, we �nd that B�0B0h = 0 and hence h = 0.

The proof of the preceding lemma is based on the Fredholm theory of linear

operators. An operator K: D 7! D is compact if it maps the unit ball into a totally

bounded set. The following lemma shows that for certain operators continuous in-

vertibility is a consequence of their being one-to-one, as is true for matrix operators

on Euclidean space. It is also useful to prove the invertibility of the information

operator itself.

10.4 Lemma. Let D be a Banach space, let the operator A: D 7! D be continuous,

onto and continuously invertible and let K: D 7! D be a compact operator. Then

R(A + K) is closed and has codimension equal to the dimension of N(A + K). In

particular, if A+K is one-to-one, then A+K is onto and continuously invertible.

The asymptotic covariance matrix of the sequence
p
n(�̂n��0) can be computed

from the expression for _	0 and the covariance function of the limiting process of the

sequence
p
n	n(�0; �0). However, it is easier to use an asymptotic representation ofp

n(�̂n��0) as a sum. For a continuously invertible information operatorB��0;�0B�0;�0
this can be obtained as follows.

In view of (10.2), the assertion of Theorem 10.1 can be rewritten as the system

of equations, with a subscript 0 denoting (�0; �0),

�I0(�̂n � �0)� (�̂n � �0)B
�
0
_̀
0 = �(Pn � P0) _̀0 + oP (1=

p
n);

�P0(B0h) _̀
T
0 (�̂n � �0)� (�̂n � �0)B

�
0B0h = �(Pn � P0)B0h+ oP (1=

p
n):

The oP (1=
p
n)-term in the second line is valid for every h 2 H (uniformly in h).

If we can also choose h = (B�0B0)
�1B�0 _̀0, and subtract the �rst equation from the

second, then we arrive at

~I�0;�0
p
n(�̂n � �0) =

p
n(Pn � P0)~̀�0;�0 + oP (1):

Here ~̀
�0;�0 is the eÆcient score function for �, as given by equation (3.12), and

~I�0;�0 is the eÆcient information matrix. The representation shows that the sequencep
n(�̂n��0) is asymptotically linear in the eÆcient inuence function for estimating

�. Hence the maximum likelihood estimator �̂ is asymptotically eÆcient.

10.5 Example (Cox model). We come back to the Cox model one more time. We

recall that the scores and the information operator are given by

_̀
�;�(x) = Æz � ze�z�(y)

B�;�h(x) = Æh(y)� e�z
Z
[0;y]

h d�

B��;�B�;�h(y) = h(y) E�;�1Y�ye�Z

B��;� _̀�;� = E�;�1Y�yZe�Z :
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As in the preceding discussion we set up estimating equations Pn
_̀
�;� = 0 and

PnB�;�h = 0. Here we let h range over the unit ball of the space BV[0; � ] of functions

h: [0; � ] 7! R of bounded variation (with norm the supremum of the uniform norm

and the variation norm). The expectations of these equations are given by the maps

	1(�;�) = P0 _̀�;� and 	2(�;�)h = P0B�;�h.

We can now directly verify the validity of formula (10.2). for the derivative

of the map 	 = (	1;	2) The map 	 is already linear in �. With G0(yjZ), the
distribution function of Y given Z, it can be written as

	1(�;�) = EZe�0Z
Z
G0(yjZ) d�0(y)� EZe�Z

Z
�(y) dG0(yjZ);

	2(�;�)h = Ee�0Z
Z
h(y)G0(yjZ) d�0(y)� Ee�Z

Z Z
[0;y]

h d� dG0(yjZ):

The map 	:R � `1(H) 7! R � `1(H) is linear and continuous in �, and its partial

derivatives with respect to � can be found by di�erentiation under the expectation

and are continuous in a neighbourhood of (�0;�0). Several applications of Fubini's

theorem show that indeed the derivative takes the form (10.2).

The operator B�0B0, initially introduced as acting on L2(�), can also be viewed

as an operator of the space BV[0; � ] into itself. It is continuously invertible if the

function y 7! E�0;�01Y�ye
�0Z is bounded away from zero on [0; � ], which is part of

our assumptions. In Lecture 3 we already computed the eÆcient information and

noted its positivity (under the assumption that Z is not almost surely equal to a

function of h(Y )). Thus, we can conclude that the map _	0 is continuously invertible

by Lemma 10.3.

The class H is a universal Donsker class and hence the �rst parts Æh(y) of the

functions B�;�h form a Donsker class. The functions of the form
R
[0;y]

h d� with h

ranging over H and � ranging over a collection of measures of uniformly bounded

variation are functions of uniformly bounded variation and hence also belong to a

Donsker class. Thus the functions B�;�h form a Donsker class by Theorem 6.10.

The other conditions of Theorem 10.1 are satis�ed too. We �nish our lectures

with the conclusion that the maximum likelihood estimator in the Cox model, alias

the partial likelihood estimator, is asymptotically eÆcient.

We are not the �rst to conclude this, but we still feel that this is a worthy

conclusion of the lectures, remembering that the present approach also applies to

other models.

Notes

This lecture has its roots in [39].
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