EMPIRICAL PROCESSES WORKING GROUP
Winter and Spring Quarters, 2009
Books and papers on empirical rocesses (and semiparametric models):
Basic Empirical Process Literature:
-
Dudley, R. M. (1978).
Central limit theorems for empirical measures.
Annals of Probability 6, 899 929.
Correction: Ann. Probability 7, 909 - 911.
-
Dudley, R. M. (1984).
A course on empirical processes;
École d'Été de Probabilités de Saint-Flour XII-1982.
Lecture Notes in Mathematics 1097, 2 - 141.
Springer-Verlag, New York.
-
Giné, E. and Zinn, J. (1984).
Some limit theorems for empirical processes.
Annals of Probability 12, 929 - 989.
-
Dudley, R. M. (1987).
Universal Donsker classes and metric entropy.
Ann. Probability 15, 1306-1326.
-
Pollard, D. (1984).
Convergence of Stochastic Processes.
Springer-Verlag, New York.
-
Pollard, D. (1990).
Empirical Processes: Theory and Applications.
NSF-CBMS Regional Conference Series in Probability and
Statistics, Volume 2,
Society for Industrial and Applied Mathematics, Philadelphia.
Institute of Mathematical Statistics and American
Statistical Association, Hayward.
-
Giné, E., and Zinn, J. (1986).
Lectures on the central limit theorem for empirical processes.
Lecture Notes in Mathematics 1221, 50 -113.
Springer-Verlag, New York.
-
Shorack, G. R. and Wellner, J. A. (1986).
Empirical Processes with Applications to Statistics,
Wiley, New York.
-
Van der Vaart, A. W., and Wellner, J. A. (1996).
Weak Convergence and Empirical Processes,
Springer-Verlag, New York.
Applications of Empirical Processes in Statistics
Basic M- and Z- Estimator Theorems:
-
Huber, P. J. (1967).
The behavior of maximum likelihood estimates under
nonstandard conditions.
Proc. Fifth Berkeley Symp. Math. Statist. Prob. 1,
221 - 233. Univ. California Press.
-
Pollard, D. (1985).
New ways to prove central limit theorems.
Econometric Theory 1, 295 - 314.
-
Pakes, A. and Pollard, D. (1989).
Simulation and the asymptotics of optimization estimators.
Econometrica 57, 1027 - 1057.
-
Kim, J. and Pollard, D. (1990).
Cube root asymptotics.
Ann. Statist. 18, 191 - 219.
-
Nolan, D. (1991).
The excess-mass ellipsoid.
J. Mult. Anal. 39, 348 - 371.
-
Huang, J. (1993).
Central limit theorems for M-estimates.
Technical Report 251, Department of Statistics,
University of Washington.
Infinite-Dimensional M- and Z- Estimator Theorems:
- Gill, R. D. (1989).
Non- and semi-parametric maximum likelihood estimators and the
von-Mises method - I.
Scan. J. Statist. 16, 97 - 128.
- Gill, R. D. and Van der Vaart, A. W. (1993).
Non- and semi-parametric maximum likelihood estimators and the
von-Mises method - II.
Scan. J. Statist. 20, 271 - 288.
-
Van der Vaart, A. W. (1995a).
Efficiency of infinite dimensional M-estimators.
Statistica Neerl. 49, 9 - 30.
Bootstrapping M- and Z- Estimators:
-
Arcones, M. A. and Giné, E. (1992).
On the bootstrap of M - estimators and other statistical functionals.
Exploring the Limits of Bootstrap, 14 - 47.
Wiley, New York. R. LePage and L. Billard, editors.
-
Wellner, J. A. and Zhan, Y. (1996).
Bootstrapping infinite-dimensional Z- estimators.
Submitted to Bernoulli.
-
Zhan, Y. (1996).
Bootstrapping Functional M-estimators.
Unpublished Ph.D. dissertation, University of Washington.
Rates of Convergence in Nonparametric Estimation via
Empirical Processes:
-
Birgé, L. and Massart, P. (1993).
Rates of convergence for minimum contrast estimators.
Probability Theory and Related Fields 97, 113 - 150.
-
Shen, X., and Wong, W. H. (1994).
Convergence rate of sieve estimates.
Ann. Statist. 22, 580-615.
-
Van de Geer, S. (1993).
Hellinger-consistency of certain nonparametric maximum likelhood
estimators.
Ann. Statist. 21, 14 - 44.
-
Wong, W. H., and Shen, X. (1995).
Probability inequalities for likelihood ratios and convergence
rates of sieve MLE's.
Ann. Statist. 23, 339 - 363.
Recent Literature Using Empirical Process Methods
in Semiparametric and NonparametricModels:
-
Emond, M. J. and Self, S. (1993).
An efficient estimator for the generalized semilinear model.
J. Amer. Statist. Assoc. 92, 1033-1040.
-
Gilbert, P. (1996).
Semiparametric biased sampling models.
Submitted to Ann. Statist.
-
Geskus, R. and Groeneboom, P. (1997).
Asymptotically optimal estimation
of smooth functionals for interval censoring, case 2.
Technical Report, Delft University.
Submitted to Ann. Statist.
-
Huang, J. (1996).
Efficient estimation for the Cox model with interval censoring.
Ann. Statist. 24, 540-568.
-
Mammen, E. and Van de Geer, S. (1997).
Penalized quasi-likelihood estimation in partial linear models.
Ann. Statist. 25, 1014-1035.
-
Murphy, S. A. (1995).
Asymptotic theory for the frailty model.
Ann. Statist. 23, 182-198.
-
Murphy, S. A. and Van der Vaart, A.W. (1995).
Semiparametric likelihood ratio inference.
Ann. Statist. 25, 1471 - 1509.
-
Parner, E. (1998).
Asymptotic theory for the correlated gamma-frailty model.
Ann. Statist. 26, 183 - 214.
-
Van der Vaart, A. W. (1994).
Maximum likelihood estimation with partially censored data.
Ann. Statist. 22, 1896 - 1916.
-
Van der Vaart, A. W. (1996).
Efficient maximum likelihood estimation in semiparametric mixture
models.
Ann. Statist. 24, 862-878.
-
Van der Vaart, A. W. (2000).
Semiparametric Statistics.
Lectures on Probability Theory.,
Ecole d'Ete de Probailites de St. Flour XX??- 1999, Ed.
P. Bernard. Springer, Berlin; to appear.
-
Wellner, J. A. and Zhang, Y. (1998).
Large sample theory for an estimator of the mean of a counting process
with panel count data. Technical Report No. 327, Department of Statistics,
University of Washington.
Submitted to Ann. Statist.