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Abstract

“We review semiparametric models and various methods of inference — efficient and
inefficient — for such models.”
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1. Introduction.

Definitions and examples of semiparametric models, information bounds and estimation
methods are discussed in sections 1, 2, and 3 respectively. An elaboration of these topics may
be found in Bickel, Klaassen, Ritov, and Wellner (1993) [henceforth BKRW (1993)]. Section
4 presents extensions to testing, and section 5 discusses non - i.i.d. cases and robustness
issues.

1.1. What is a Semiparametric Model?

Models of random phenomena are basic for statistics. We use the term model in most of
this article to mean a set P of probability distributions for the i.i.d. observed data. In
the case of classical parametric models the collection P is parametrized by a subset © of
a finite-dimensional Euclidean space, R* say, and we write P = {P) : 0 € ©}. At the
other extreme, a nonparametric model P is one consisting of all probability measures on the
sample space for the observations (which we often denote by M) or a large subset of M with
only qualitative smoothness or moment constraints: P = M, C M. Thus semiparametric
models are intermediate between parametric and nonparametric models: they are larger
than parametric models, but smaller than nonparametric models. More technical definitions
of the term “semiparametric model” are possible and sometimes useful; see Section 2.2 for
another definition in terms of the tangent space of the model.

Frequently semiparametric models have a (smooth) parametrization in terms of a finite
- dimensional parameter # € © C R* and an infinite - dimensional parameter G € G where
G is some space of functions:

P:{ngi 0 e 0o, GEQ}

One way of obtaining natural semiparametric models of this type is via relaxation of one (or
more) hypotheses in a classical parametric model. This is illustrated in the following list of
examples.

1.2. Selected Examples.

A wide variety of semiparametric models have been suggested for applied problems in
astronomy, biostatistics, demography, econometrics, epidemiology, genetics, psychology, and
spectroscopy. [Searching in the on-line version of the Current Index to Statistics produces 4
citations with the topic “semiparametric” in 1985, and 44 and 34 citations in 1992 and 1993
respectively.] The following list of examples illustrates some of the scope of semiparametric
models. As in our book (BKRW, 1993), we use X to denote a typical observation, and
random vectors Y, Z, W e, ... to describe the structure of X, even though they are not all



observed. The parameters 6, n, and v will always be finite-dimensional parameters, while F,
G, 7, and r will denote infinite-dimensional parameters (unknown functions).

Example 1. (Symmetric Location). Let X = 6 + € where ¢ ~ G € G, where G, denotes
the collection of all distributions on R with a density g with respect to Lebesgue measure A
which is symmetric about 0. Thus the model P is given by

dPg}G

7) = {PO,G . d)\

() =g(x—0), 0 € R, G € G}.

The classical normal location-scale model Py C P is the submodel with € ~ N(0, n?).

Example 2. (Regression). Suppose we observe X = (Y, Z) ~ Py where
Y =u(Z,0)+0(Z,0)e,

where € and Z are independent, the functions p and o are known — up to the finite-
dimensional parameter 6, and ¢ ~ G € G, the collection of all absolutely continuous
distributions on R. With m a oc—finite measure, the model becomes

dPG,G o Yy— ,u(z, 9) m

P={Pga: (2, 0)

The classical (homoscedastic) linear regression model with normal errors Py C P is the
submodel with € ~ N(0,1), 8 = (v,n) € R™ x R", 0(Z,0) = n, and u(Z,0) = v' Z.
Example 3. (Projection Pursuit Regression with Arbitrary Errors). If we relax the assumption
of a parametric regression model in Example 2, replacing p(Z, 0) by r(v*Z) wherer : R — R
is some (smooth but unknown) function in a class of functions R, then

Y =r(v'Z) +e,
where € ~ GG and r € R, and so the model becomes:

. dPV,T,G

— Pur .
P={Pyrc d\ x m

(y,2) = gly —r(WT2))h(z), ve R™, r € R, G € G}.

The parameter v is no longer identifiable in this model as presently formulated, but typically
v/|v| is identifiable (under reasonable assumptions on the distribution H of 7).

Example 4. (Partially Linear Logistic regression). Suppose that X = (Y, Z) where
conditionally on Z = (Z,%Z2) the 0 — 1 random variable Y ~Bernoulli(p(Z)) with
p(Z) = exp(r(Z))/(1+exp(r(Z))) and r(Z) = 67 Z, + 7(Z,) for 7 in some class of (smooth)
functions.

Example 5. (Errors in Variables Regression). Suppose that X = (Y, Z), with Z = Z’ + € and
Y = a+ 2"+ § where (9, ¢€) is bivariate normal with mean zero and unknown covariance
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matrix, and the distribution H of Z’ is completely unknown. This models the situation of a
linear regression with normal errors in which the covariate Z’ is observed with error.

Example 6. (Paired Exponential Mixture). Suppose that conditionally on a positive random
variable Z with completely unknown distribution G, the components of X = (X, Xy) are
independent and exponentially distributed with parameters Z and 67 respectively.

Example 7. (Transformation Regression). Suppose that X = (Y, Z) where 7(Y) = 077 + ¢
for some unknown (smooth) function 7 and Z and € independent with distributions known
or in specified parametric families.

Example 8. (Cox’s Proportional Hazards Model). Suppose that X = (Y,Z) where
conditionally on Z the (survival time) Y has cumulative hazard function exp(67Z)A(y).
Assuming that A has hazard rate A(y) = A'(y) = g(y)/(1 — G(y)) and that the distribution
H of Z is known with density h, this model can be expressed as

Dx W 2) = ¢’ *(1 - G(y)) ™™ g(y)h(z), 6 € R™, g € G}.

Example 9. (Additive Hazards Model). Now suppose that X = (Y, Z) where conditionally
on Z the (survival time) Y has hazard (rate) function A(y) + 67 Z.

Example 10. (Known Marginals Model). Suppose that X = (Y, Z) € R? has joint distribution
function F' with known marginal distributions: F'(y,00) = Gy(y) for ally € R and F(o0, 2) =
Hy(z) for all z € R where Gy and Hj are known univariate distributions. This is the limiting
case of a three-sample missing data model with some joint data (with both Y and Z observed)
and some marginal data on each axis in the case when the size of the marginal data samples
is much larger than the sample size of the joint data.

Example 11. (Copula Models). Suppose that the distribution of X = (Y, Z) is of the form
Co(G(y), H(2)) where {Cy : 0 € O} is a parametric family of distribution functions on the
unit square [0, 1] x [0, 1] with uniform marginal distributions (a family of copulas), and one
or both of G, H are unknown univariate distribution functions. This yields a bivariate model
with parametric dependence structure but arbitrary marginal distributions.

Example 12. (Gamma Frailty Model). Suppose that we observe X = (Y, Z) where the
cumulative hazard function of Y conditionally on (Z,W) is of the form W exp(6*Z)A(y)
and where W has a Gamma(n,n) distribution. This can be viewed as the proportional
hazards model with unobserved covariate log W'.

These examples are listed here as representatives of various classes of models which
have arisen in semiparametric contexts including group models, regression models, mixture
models, and transformation models. Asymptotic information bounds for most of these
examples and many others are treated in BKRW (1993), Chapter 4. While efficient
estimators have been constructed for the parametric part 6 in many of these models, for other
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models the problem of constructing efficient estimators (or even reasonable y/n—consistent
estimators in some cases) still remains as an unsolved problem.

1.3. What is Semiparametric Inference?

We think of semiparametric inference as being simply statistical inference (estimation,
testing, confidence intervals or sets) in the context of some semiparametric model. The
estimators or tests or procedures under consideration may be (asymptotically) efficient or
inefficient, but presumably they have at least some minimal validity (such as consistency) for
the semiparametric model under consideration in order to be deemed truly semiparametric.

Often the parameter of interest in a statistical problem involving a semiparametric model
is the finite - dimensional parameter # € © C RF involved in defining the model or some
other natural finite-dimensional functional, while the nuisance parameter is the infinite-
dimensional parameter G € G. However this distinction is not rigid — and one can easily
imagine situations in which G or some function thereof would be the “parameter of interest”.

One way of defining a semiparametric estimator would be to say that it is an estimator
which has desirable (asymptotic) properties (such as consistency or /n- consistency) as an
estimator of a parameter of interest in some semiparametric model. In contrast to this,
a robust estimator is one which has good efficiency properties under some parametric or
semiparametric model, and desirable stability or continuity properties in some neighborhood
of this model. Procedures, are called adaptive if they attain the same efficiency or information
bound as if the infinite - dimensional part of a semiparametric model were known, or
at least known up to a finite-dimensional parameter. Often both robust estimators and
adaptive estimators are subclasses of a larger class of semiparametric estimators. For further
discussion of robust estimators in the context of semiparametric models, see Section 5.2.

In the past few years the term semiparametric inference has also been applied to
inference methods for nonparametric models which have been derived by consideration of
some appropriate semiparametric submodel; see e.g. Olkin and Spiegelman (1987), Faraway
(1990), or Roeder (1992). This is a somewhat broader interpretation of the term than we
have in mind here.

1.4. Organizational Schemes and Approaches.

The examples considered above are in the subclass of models for independent and identically
distributed (or i.i.d ) data: in each case it is implicity assumed in the discussion above that
the observations Xi,..., X, are i.i.d. with distribution P € P. Of course there are many
models for dependent data which could exhibit the key feature discussed above — namely
of being neither parametric nor nonparametric. In view of the large potential variety of
semiparametric models involved, it becomes clear that some thought about organizational
schemes might be useful.



Here we will briefly consider approaches based on families of models, estimation principles,
and information bounds.

Families of Models: For the moment, we will restrict attention to the small subclass of models
for i.i.d. data. Within this class of models, two basic methods of generating semiparametric
models stand out: group models emerge from a basic core model typically involving a
completely unknown distribution GG or density g together with a group of transformations
on the underlying sample space which is parameterized by a finite-dimensional parameter.
Example 1.B is a simple example of a model of this type. On the other hand, transformation
models can often be viewed as arising via an infinite dimensional group of transformations on
the sample space of some parametric family; Examples 1.2.7, 8, 11, and 12 are semiparametric
models of this type. In addition to any one of these basic types of semiparametric model,
complications can be added in the form of regression by the addition of covariates, biased
sampling, or missing data. The latter type of model includes models obtained via mixing
and censoring. In our book BKRW (1993), the sections in Chapter 4 are organized roughly
along these lines with special attention to regression models and mixture models.

Information calculations are often similar for models of similar type and estimation
methods also have similarities in comparable models. Therefore, there clearly are advantages
in studying families of models instead of individual models in isolation.

For an extensive discussion of semiparametric models in econometrics, the reader is
referred to Powell (1994).

Estimation Principles or Methods: In classical (parametric) models, many estimation methods
have been studied; to name a few: maximum likelihood, least squares, moment estimators,
minimum distance estimators. In robustness studies M—, L—, and R— estimators have
been treated. In contrast, there is no general approach yet to the construction of efficient
estimators or even of just good estimators in semiparametric models. Variants of MLE,
including sieved MLE, penalized MLE, and estimating equations have been suggested and
studied in connection with various classes of models. The issues are identifiability of
the parameters to be estimated and desirable properties of proposed estimators, including
consistency, y/n—consistency, efficiency, robustness, etc.

Information Bounds: Organizational approaches to semiparametric models based on
information bounds offer several advantages: often it is somewhat easier to establish
information lower bounds for estimation than to construct good estimators, and in any case
in order to construct efficient estimators, one must know what efficiency means — i.e. what
are the available (information) lower bounds? Since the calculation of information bounds
for large families of models are similar, it becomes possible to treat large classes of models
quite generally, and this is the approach we have taken in Chapter 4 of BKRW. Because this
approach offers considerable insight into the structure of efficient and even \/n—consistent
estimators, we will review information bounds for semiparametric models in the next section
— before talking about the construction of estimators.



2. Informations Bounds: Orthogonality and
Projections.

In efficient estimation one needs a bound on the performance of any estimator as well as
a particular estimator attaining this bound. Then both the bound and the estimator are
efficient. If one of these is missing, one hardly has obtained anything. An estimator without a
bound might be very inefficient, and one is insecure at least about its performance. Therefore
in this section we will discuss bounds on the performance of estimators and we will focus on
asymptotic bounds, in particular the so-called Héjek - Le Cam convolution theorem.

2.1. Basic Parametric Theory.

Consider a model for i.i.d. random variables Xi,..., X, with a finite - dimensional
(Euclidean) parameter # € © C R*. Fix 6, and let 6, be a local sequence in the open
parameter set O, i.e. 6, = 0+ O(n~'/?) as the sample size n tends to infinity. The model is
locally asymptotically normal at 6y if the log likelihood ratio of the 6,, and 6, under 6, has a
stochastic expansion which is quadratic in v/n(6,, — 6y) with the quadratic term nonrandom
and the linear term asymptotically normal. Local Asymptotic Normality (LAN) uniform
in 0y can be shown to hold for regular parametric models. In these models, the square
roots s(x, ) of the densities of one observation with respect to a dominating measure p are
continuously Fréchet differentiable in Lo(p). In terms of the Fréchet derivative $(z,6y), the
score function is defined by

. S(l’, 90)
2.1 =2 1
(2.1) I(z,60) 5@, 6o) [5(x,00)>0]

and the Fisher information matrix by
(2.2) 1(00) = Eyli" (X, 0).

In regular parametric models 7(6) is assumed to be nonsingular.

A sequence of estimators T,, of § is called regular if the limit behavior of {\/n(T,, — 6,)}
under {6, } is independent of the local sequence {6,,}. In Hajek (1970) it has been shown that
under LAN the limit distribution of such a regular estimator is the convolution of a normal
distribution with covariance matrix I71(6y) and another distribution. By Anderson’s lemma,
it is clear that optimal asymptotic behavior of the estimator sequence {T,} is obtained if
this last distribution is degenerate; i.e. if under 6,

(2.3) V(T = 0,) —a N(0, 17 (6)).

The Héjek - Le Cam convolution theorem also shows that (2.3) happens if and only if {7},}
is asymptotically linear in the efficient influence function

(2.4) [(x,0) = I"Y0)i(x, 0),
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i.e. if under 6,

(2.5) NG <Tn — 6, — ié'f(xi, 9@) —, 0.

Since uniform LAN implies for local sequences {6, } and {6, }

n

(2:6) V{8 = 3 (108 - T0%80) | =, 0,

=1

it follows by a contiguity argument that (2.5) yields regularity of {7},}.

Nevertheless, a clear drawback of the convolution theorem is that competition between
estimators is restricted to just regular estimators. The Local Asymptotic Minimax (LAM)
theorem does not rule out any estimator. It states that for any bowl-shaped loss function
[(-)

(2.7) lim liminfinf sup  Eyl(v/n(T, — 0)) > El(Z),

M—o0 =00 Tn\/nlg—o|<M
where Z is N(0,17(6y)) and where the infimum is taken over all estimators T, of 0; cf. Héjek
(1972). Because of the “infsup”, it is called a minimax theorem. Of course, the “inf” may
be left out in the left hand side of (2.7), and then (2.7) still states that no estimator performs
better than an estimator which is efficient in the sense of (2.5). See also section 2 of Fabian
and Hannan (1982).

Both the convolution theorem and the local asymptotic minimax theorem fit into the
framework of Le Cam’s theory of limits of experiments. Here the limit experiment is
observing a normal random vector X with mean I(6y)t and known covariance matrix 1(6p).
The parameter to estimate is ¢, and corresponds to y/n(f, — 6y). The best (equivariant)
estimator of ¢ is I71(0)X; indeed, I7(6) X —t is N(0,171(6y)) distributed.

Of course, all these results may be formulated also for estimating ¢(6) instead of 6 itself
where ¢ : R¥ — R™ is a differentiable function. If ¢(0) denotes the total differential matrix,
then the efficient influence function becomes

(2.8) I(x,0) = 4(0)1*(0)i(,0)
and (2.5) and (2.7) are still valid with 7=*(6) replaced by the information bound
(2.9) q(60) 1" (60)d" (6o).

Here the limit experiment still is observing a normal random vector X with mean [(6y)t
and known covariance matrix I(6y), but the parameter of interest now is ¢(6p)t. The best
estimator is ¢(6p)I~'(fy) X, which is normal with mean ¢(6y)t and covariance matrix (2.9).

The convolution theorem as well as the local asymptotic minimax theorem may be viewed
as asymptotic versions of the classical (Fréchet -) Cramér - Rao inequality, also called the
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information inequality. Indeed, in the above setting it states that unbiased estimators T,, of
q(0) have a covariance matrix which in the ordering of positive semidefinite matrices equals
at least n~! times the information bound (2.9).

Consider the estimation problem with 6 = (67,01)7 split into 0, the parameter of
interest, and 0y, the nuisance parameter, or if preferred, the limit problem with ¢t = (¢, ¢1)7,
t; the parameter of interest and ¢5 the nuisance parameter. The phenomena in this situation
are basic to semiparametrics and will have their analogues in semiparametric models, where
the nuisance parameter 5 is not Euclidean anymore. To study this situation, we introduce
the notation

Ly o ~1 e
.10 o= (1 =) o= )
where the matrices are split up in a way compatible with the splitting of #. The information
bound (2.9) for the present situation becomes I'', which by block matrix manipulations can
be seen to be equal to I'' = (I} — I1o155 1), Similarly, it can be seen that, with the
notation I(x,6y) = [ = (iT,1F)7, the efficient influence function from (2.8) may be rewritten
as
(2.11) [ = (I, — Lol ) My — Dolytls).
Note that the components of these random vectors live in the linear space of random variables
with mean 0 and finite variance under 6,. With covariance as inner product in this Hilbert
space LY(Py) (Py corresponds to 6), the projection of L=10 (X, 00) onto the linear span [12]
of the components of [, equals o '

o (11][l2]) = Laly'ls.

Here, the left hand side is a vector of projections, namely the projections of the components
of I;. Consequently, (2.11) may be rewritten as

(2.12) I = (Bp, iU with  1F =1y — Ho(ia][la));
[7 is called the efficient score function for ;. Similarly, it can be seen that
(2.13) o(I[[11]) = (Eghif) ™",

i.e. the projection on the span of I; of the efficient influence function for estimating 6; in the
presence of the nuisance parameter 65 equals the efficient influence function for estimating
0, when 05 is known; cf. (2.4).

To conclude this discussion of parametric models, note that orthogonality of I, and Iy
implies that [ = [; and hence

(2.14) I = (Eoly 1)1y = To(1][14]).

In this case the bounds for estimation of 8; are the same for #, unknown and 65 known. In
other words, estimation of #, is asymptotically as difficult when 65 is unknown as when 6,
is known.
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2.2. Bounds for Semiparametric Models.

Now consider estimation of a Fuclidean parameter v in a semiparametric model. Such a
model contains many parametric submodels with parameter § = (67,01)7 and 0, = v.
Define the efficient score function for v at Py (with v = 1) as in (2.12) with [l5] replaced
by the closed linear span P, of the components of all possible choices of . If {T,} is a
sequence of estimators of v which is regular at F, for any parametric submodel, then the
limit distribution of \/n(T,, — 1) is the convolution of some distribution and the normal
distribution with mean 0 and covariance matrix

(2.15) (Bolil™y=' with  IF =1y — (L] P2).
Moreover, {T,,} is efficient if it is asymptotically linear as in (2.5) with
(2.16) [ = (BEoliliT)~'1.

This is a generalization of the Hajek - Le Cam convolution theorem to semiparametric
models. A natural idea in constructing an information bound in a semiparametric model for
estimation of a one-dimensional parameter v is to consider the parametric bounds

{Eoly — To(ia]))?}
and maximize these over [ly]. Since [I,] C P,, this yields (2.15) , provided the components
of IIy(1|P2) can be written as the L(Py)—limits of sequences of 5’s.

In some semiparametric models [ is orthogonal to P, and consequently ¥ = [; in (2.15).
In such a situation it is possible, at least in principle, to estimate v asymptotically as well
not knowing the non-Euclidean nuisance parameter as when it is known. In this case, an
efficient estimator is called adaptive since it adapts to the unknown nuisance parameter.
This phenomenon was noticed by Stein (1956) first.

Consider estimation of a Euclidean parameter v on a parametric, semlparametrlc or even
nonparametric model P with tangent space P, i.e. v: P — R™ and P is the closed linear
span in LY(F) of all score functions of (one-dimensional) regular parametric submodels of
P. This parameter v is called pathwise differentiable at P, if there exists a v € P such
that for any one-dimensional regular parametric submodel {P, : n € R} with score function

h € P C LY(Py) (roughly h = (8/9n)logdP,/du)

(2.17) v(Fy) = v(Ro) + (@, o + o(|n]),

where (-, -)o is the inner product, i.e. covariance, in LY(FP). In parametric models it can be

seen that o equals the efficient influence function [ from (2.4) or (2.8). It can be proved also
that in semiparametric models 7 = [ from (2.16).
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Let v, by an extension of v defined on a larger model P.. Often, 7, is quite easy to
compute for appropriately large (nonparametric) P, and (2.17) together with the same
relation for v, yields . — 7 1 P; in other words

(2.18) v = My (2|P).

Therefore, this yields another method to determine efficient influence functions, which for
parametric models reduces to (2.13).

Often P, will be a nonparametric extension of the semiparametric model. Here it
makes sense to use a technical definition of the distinction between semiparametric and
nonparametric models, thus completing the discussion in section 1.1. Nonparametric models
P have maximal tangent spaces P = L9(P,). On the other hand, semiparametric models
P have tangent spaces P which are not finite - dimensional and are also proper subspaces
of LY(Py). For example, in the case of the symmetric location model of Example 1.2.1, at
any Py € P with finite Fisher information for location, the tangent space P is the span of
the usual score for location in sampling from ¢ (translated by #) and all the even functions
(about 0) in LY(Fy) - which is a proper subspace of LY(F).

All of the development in this section has been restricted to differentiable functions or
parameters in semiparametric models based on i.i.d. data. For an important characterization
of pathwise differentiability of implicitly defined functions v of the form v(FPy o) = ¢(G) for
a pathwise differentiable function ¢ in terms of the score operator for GG, see Van der Vaart
(1991a). For a brief discussion of extensions beyond i.i.d, LAN, and differentiable functions,
see section 5.

3. Estimation Methods.

3.1. Efficient Estimates and Achieving Information Bounds.

The asymptotic information bounds derived for parametric models are achievable in the
sense that for any regular model there are regular efficient estimators (Le Cam, 1986). On
the other hand with semiparametric models the information bounds, even for the Euclidean
parameter, are not necessarily achievable. The main difficulty is finding a good enough initial
estimator of the parameters. Ritov and Bickel (1990) presented two models in which the
information is strictly positive (and even infinite) but no y/n—consistent estimator exists.
Actually there is no algebraic rate that is attainable on compacts.

It is true, as Ritov and Bickel (1990) show, that the information bound for a Euclidean
parameter can be achieved if the semiparametric model is a union of nested smooth finite-
dimensional parametric models. This is the situation for which the BIC model selection
criterion is appropriate. This suggests, that if we consider less restrictive semiparametric
models smoothly parametrized by Euclidean and abstract parameters, but of “small entropy”
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then again the information bounds for the Euclidean parameters should be achievable. This
is the case in the examples of non-achievement of the bounds given by Ritov and Bickel
(1990): the phenomenon vanishes when the non-Euclidean part of the parameter indexing
the model is assumed sufficiently smooth.

Many authors have given constructions of efficient estimators in specific models, with
the classical first cases being those treated by Stein (1956). Van Eeden (1970) was the first
to explicitly construct adaptive estimators of location for Example 1.2.1 under the extra
assumption that g be strongly unimodal. Her work was based on the adaptive rank test of
Héjek (1962). Fully adaptive location estimators were given by Stone (1975), and by Beran
(1978), ((1974) under an extra regularity condition). Bickel (1982) described a general
approach to construction of adaptive estimators of finite-dimensional parameters. See also
Fabian and Hannan (1982).

A general scheme for construction of efficient estimators has been described by Klaassen
(1987), Schick (1986, 1987 and 1993), and BKRW (pp. 394-413). The general scheme
involves, implicitly or explicitly, the following stages:

A. First one should have an estimator 0~n of  which is n'/?2—consistent.

B. Then one should have an estimator 1;(.1‘, 0; X1, ..., X,) of the efficient influence function
such that \/n [ (x,0)dPy () = op, (1) and [(¢(x,0) —(z,0))*dPyc(x) = op, (1)

C. The efficient estimator is then constructed as 6, plus an average of ¢ over the
observations, essentially as a one-step Newton-Raphson approximation.

In some cases some technical modifications, such as data splitting, i.e., using different
parts of the data for the construction of 6, v (this is originally due to Héjek (1962)), and
truncation of the estimators to a grid (this is originally due to Le Cam (1956)) is needed for
proof of the efficiency of the estimator.

In many cases more direct methods have proved effective. In particular, non-parametric
maximum likelihood estimates and some variants, including profile likelihood methods (see
Severini and Wong (1992) and Huang (1994a), (1994b)) have been proved to be efficient
in many cases. An important example is the maximum partial likelihood estimator in the
Cox proportional hazards model. Many of these results depend on the efficiency of the
generalized maximum likelihood estimators of the distribution function such as the empirical
distribution and the product limit estimator; see Gill (1989), Gill and Van der Vaart (1993),
and Van der Vaart (1994a). For a class of “smooth” semiparametric models, Huang (1994a)
has recently used empirical process methods to show that maximum likelihood estimators
are asymptotically efficient, and has applied this result to the proportional hazards model,
Example 1.2.8, with interval censored data. Huang (1994b) applies the same method to a
proportional odds regression model. For a further example of the use of modern empirical
process methods to the study of MLE’s in a semiparametric model setting, see Van der Vaart

(1994b).
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3.2. Inefficient Estimates.

As seen in the preceeding discussion of efficient estimators, a crucial first step is often to
obtain a consistent or y/n—consistent preliminary estimator. Often such estimators will be
of importance in their own right because of computational or robustness issues.

The variety of approaches to construction of preliminary estimators is staggeringly large,
but certainly includes moment estimates, minimum distance estimators, estimates based on
estimating equations, pseudo-likelihood (of several types ... since this terminology is used
in several different ways), and nonparametric “principle of substitution” estimators. For
an extensive discussion with connections to the econometric literature and applications, see
Newey and McFadden (1994).

4. Testing and Confidence Intervals.

Unfortunately a general theory of hypothesis testing for semiparametric models does not yet
exist. Nevertheless, some of the general principles from regular parametric models do carry
over in many cases. Here we briefly discuss what is known (to us) concerning testing in
semiparametric models.

4.1. Testing a Parametric Component within a Semiparametric

Model.

Consider testing
(4.1) H:0=46, Versus K :0+#46,

in the context of a semiparametric model
(4.2) P = {Pg@ 0eB, Ge Q}

Different solutions for this testing problem have been given in different specific
semiparametric models. For example, Hajek (1962) and Hajek and Siddk (1967), Section
VII.1.6, constructed asymptotically efficient tests of (4.1) in the context of Example 1.2.2 and
Example 1.2.1 respectively and Cox (1972) suggested tests of (4.1) in the context of Example
1.2.8 based on partial likelihood. Unfortunately, however, there does not yet exist a suitable
general theory for semiparametric models of appropriate analogues of the trinity of tests
(Wald, likelihood ratio, and score or Rao statistics) which are known to be asymptotically
equivalent (and efficient in a certain sense) for local alternatives in the context of classical
regular parametric models. Of course the most obvious asymptotic tests would indeed be
based on Wald - type statistics of the form

(4.3) W, = n(6, — 60)"1,,(6, — )
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where 6, is an asymptotically efficient estimator of 6 and I, is a consistent estimator of
I1(0) = I(Pp|0,P), or at least of I(6y) = I(Fp,|0,P); here I(Py, |0, P) denotes the
information matrix at Py, ¢ for estimation of § within the model P as defined by (2.15),
namely Folil;7. This last question, construction of consistent estimators of I(f), or even
I(6y) for fixed 6y, has not yet been satisfactorily resolved in general, even though methods
for such constructions are clear in particular cases. To obtain robustness of validity of such
a test, the approach taken by Lin and Wei (1989) for the Cox model, Example 1.2.8, is often
sensible and fruitful. In the present testing context, this entails study of the asymptotic
properties of the estimator 6, under consideration in (4.3) off the model P, and then use
of an appropriate “sandwich estimator” of its asymptotic variance in (4.3) rather than the
simpler estimator I,, based on validity of the model.

Analogues of the Rao (or score) tests are also frequently available. Again the main
additional problem (beyond those arising in estimation) is construction of consistent
estimators of (). If I,, is such a consistent estimator, then a reasonable test might be
based on

(4.4) R, = S*(00)T171S%(6,)
where

1
(4.5) S*(6y) = fzze (X;; 60, Gr)

where I5 = IIo(lg|P5) as in (2.15) and G,, is some (consistent) estimator of G. Again, there
is no general theory available yet, but only success stories in particular instances such as
Example 1.2.8.

Analogues of the classical likelihood ratio statistics are still less - well understood,
although profile likelihood methods perform well in particular cases such as Examples 1.2.7,
8, and 12. See also Rotnitzky and Jewell (1990).

4.2. Testing a Nonparametric Component within a Semiparametric
Model.

Now consider testing
(4.6) H:G =G, versus K : G # Gy

for some fixed Gy € G in the context of a semiparametric model (4.2). Still less is known
generally for this problem than for the problem in the previous section, but particular
examples have received considerable attention. For example Cox, Koh, Wahba, and Yandell
(1988) consider testing H : 7 = 0 versus K : 1 > 0 in the regression model

Y =077 +nr(Zy) + €

15



where 7 € R, a collection of smooth functions and € ~ N(0,0?) is independent of Z =
(Zy,Z5). They found the locally most powerful test of H versus K. See Simon and Smith
(1991) for related problems.

4.3. Testing Goodness-of-Fit of a Semiparametric Model.

Now let P be a given semiparametric model, and consider testing
(4.7) H:PecP Versus K:PePe

Perhaps the best known example of this is the case when the semiparametric model P is
given by Example 1.2.1. Thus the testing problem is that of testing symmetry about an
(unknown!) point of symmetry. This problem itself has a large literature; see e.g. Gupta
(1967), Gastwirth (1971), and Boos (1982). [The easier problem of testing symmetry about
a known point has a still larger literature.]

Another example with a rapidly growing literature is that of testing (4.7) when P
is the Cox proportional hazards model, Example 1.2.8; see e.g. Gill and Schumacher
(1987), Horowitz and Neumann (1992), Nagelkerke, Osting, and Hart (1984), and Therneau,
Grambsch, and Fleming (1990).

For a general approach to problems of this type, see Bickel and Ritov (1992).

5. Extensions.

The theory sketched in sections 2 and 3 is in the process of being extended in several
directions. Here we focus on going beyond i.i.d. and on robustness.

5.1. Beyond i.i.d., LAN, and Differentiable Functions.

Dropping the i.i.d. assumption is in principle straightforward whenever Local Asymptotic
Normality (LAN) continues to hold. In fact, this was accomplished for models with finite-
dimensional parameter spaces by Héjek (1970), (1972): Héjek’s convolution and asymptotic
minimax theorems are not restricted to the i.i.d. case, but are in force for any model with
finite-dimensional parameter space for which LAN holds.

For models in which the parameter space can be taken to be a (pre-)Hilbert space H and
the differentiable parameters to be estimated take values in a Banach space, generalizations
of Hajek’s theorem under a LAN assumption have been given by Levit (1978), Millar (1983),
Van der Vaart and Wellner (1989), (1995), and Bickel (1993). These lower bound results cover
a wide range of independent but non-identically distributed models, continuous state Markov
models, and models for stationary ergodic processes; see Millar (1983), Bickel (1993), and
Greenwood and Wefelmeyer (1989 - 1993) for many examples. The “calculus” for computing
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asymptotic information bounds in these models exists, but it is still relatively difficult to
use, and its utility, which has been clearly demonstrated for the i.i.d. case, remains to be
established in the context of this larger class of models.

A particular class of non i.i.d. models are time series models. Most of these are
constructed as follows: the present observation X; is a location - scale transformation of
the present innovation ¢;, where the location and scale parameters depend as well on a
Euclidean parameter as on the past and possibly on exogeneous variables. The unknown
distributions of the innovations and the exogeneous variables are the infinite-dimensional
parameters in this semiparametric model. More explicitly,

Xt = ,ut<6) + Ut(9>€t7

where €1, ..., €, are i.i.d., ;;(0) and 04(0) depend on the past. Time series models fitting into
this framework are ARMA, ARCH, GARCH, TAR, EXPAR, etc., but also linear regressin fits
in (Example 1.2.2 with 71, ..., Z, not necessarily i.i.d.). Under quite general conditions LAN
has been shown to hold and adaptive estimators have been constructed by Drost, Klaassen,
and Werker (1994b); adaptivity has been discussed in this context by Drost, Klaassen, and
Werker (1994a). With o4(f) = 1 efficient estimators have been obtained by Jeganathan
(1994) and Koul and Schick (1995).

Going beyond LAN in Le Cam’s general theory has been successfully accomplished in
only a few cases, the most notable being models satisfying a generalization of LAN known as
“Local Asymptotic Mixed Normality” (LAMN); see Jeganathan (1980), (1982), and Le Cam
and Yang (1990), Section 5.6. Still further extensions can be found in Jeganathan (1994)
and Phillips (1988) in connection with multiple (co-integrated) time series models. To the
best of our knowledge none of these results have been extended to honestly semiparametric
contexts. Also see the examples in Van der Vaart (1991b), section 8.

Going beyond differentiable parameters is an extremely active area in nonparametric and
semiparametric estimation theory at present, but there is little general theory bridging the
gap between the differentiable/regular cases and the non-differentiable/irregular cases. For
some examples of the non-differentiable cases, see Birgé (1983), Millar (1983), Stone (1982),
(1985), (1986), and Donoho and Liu (1991a, 1991b).

5.2. Robust Estimation and Semiparametric Models.

Suppose we postulate a semiparametric model for data that we treat as an i.i.d. sample, but
we suspect that the data has been contaminated by gross errors of some type. It is reasonable
to look for estimators that are relatively efficient under the semiparametric model, but are
robust against departures from this model.

Various ad hoc robust estimators have been suggested in the literature. Jones (1991),
Sasieni (1993a), (1993b), among others, discussed different robust modifications of the partial
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likelihood estimator for the Cox model. Thus Jones (1991) considers the family of estimators
defined by estimating equations of the form: W(t|q, Z) = [3 q.(s) S(Z;(s) — Z(s))dN;(s)
where Z(-) is some predictable function which depends on the covariate X;(s) as well as on
all the history up to time s. Different choices of ¢ and Z generate different estimators with
different robustness and efficiency tradeoffs.

There are essentially three points of view in the systematic asymptotic analysis of robust
estimators in the parametric context:

A. The parametric model is extended to a semiparametric model incorporating gross errors
in which the original parameter remains identifiable. An example of this is the original
Huber extension of the Gaussian location model (Huber, 1964), in which the contamination
is assumed symmetric and hence the center of symmetry is the parameter to estimate. In
such a case, the usual semiparametric information bound relative to the larger model, applies
to robust estimators. In that sense, the adaptive estimator of location, constructed carefully,
is the solution of Huber’s problem, rather than Huber’s minimax M estimator. In this sense,
robust estimation is simply efficient estimation in particular semiparametric models.

B. The parameter to be estimated is extended uniquely to a nonparametric model. This is
to some extent the approach of Bickel and Lehmann (1975-79) and Millar (1979). In this
case there is no robustness problem since we need only use the asymptotically unique regular
estimator of whatever parameter we have chosen, whether defined by properties as in Bickel
and Lehmann (1975-79), or by minimizing an appropriate distance between a specified model
and the true completely unknown P as in Millar (1979).

C. The parametric model is extended to a semiparametric (contamination) neighborhood
of itself depending on n (for example contamination of the order O(n~%/2)), so that the
parameter is asymptotically identifiable. The key point is that the contamination contributes
bias which is of the same order as the standard deviation for an estimator which is regular
under the parametric model. This point of view was formally espoused by Huber Carol
(1970), Jaeckel (1971) and further developed by Bickel (1979) and Rieder (1978). However,
its solution and underpinnings when the semiparametric neighborhood is arbitrary O(n=1/2)
contamination are in Hampel (1974) and Hampel et al. (1986). The key notion of the
influence function and the basic methods for finding optimal estimators subject to bounds
on the influence function are introduced there.

Within the semiparametric context only approach C leads to new points of view.
Shen (1990), (1995) considers contamination neighborhoods of semiparametric models, thus
pursuing this approach. Following Shen (1990) we may consider asymptotically linear
estimators that are regular under the semiparametric models and have bounded influence
functions. Let @, be such an estimator of 6 and let Po.gem = {(1 —en™V2) Py +en ' /2H :
H € M}; recall that M consists of all probability measures. Let ¢ be the influence function
of 6,. Then it is clear that the asymptotic variance of \/ﬁ(én —0) is [YTdPy g while its
asymptotic bias is at most €||¢)||s. This leads Shen (1990), (1995) to analysis of the following
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problem. Find ¢ that minimizes [ |[¢)||*dPy ¢ among all influence functions ¢ that satisfy
[¥]|oe < C, [9dPyc =0, [ITdPyq = J and ¢ L Py (the last three conditions are needed
to ensure the regularity of the estimator, see (4.20) of Klaassen (1987) and Propositions 2.4.2
and 3.3.1 of BKRW (1993)). Shen proved that if there is a solution, it is essentially unique.
It is not difficult to see that the robust influence function must be of the form he(Aly + a)
where he(x) = min{|z|, C}z/|z|, A is a matrix and a € P,. Unfortunately, finding A and
a(-) is typically complicated since they both depend on (0, G). In some models it can be
verified that a = 0 is the solution. This is the case in the symmetric location model and
some two sample problems. More generally it is possible to calculate when we can “condition
G out”. Shen (1990), (1995) applies this notion to exponential family mixture models and
heteroscedastic regression models.

Beran (1981) considered approach C for parametric models when the contamination
is so restricted that robust and efficient estimation essentially coincide provided one
truncates mildly. His approach was adapted to semiparametric models by Wu (1990).
Here it is assumed that the true distribution belongs to a y/n—Hellinger neighborhood
of a semiparametric model {Pss}. The parameter to be estimated is §(P) defined by
infg dy (P, P) = infe g du(Psq, P) where dy(-,-) is the Hellinger distance. In particular
0(Ppc) = 6. Wu (1990) found the same phenomenon in the semiparametric case as Beran
(1981) did in the parametric. His particular examples were transformation models and
exponential mixture models.
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