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Abstract

I would like to thank Michael Kosorok for his stimulating and thought-
provoking review of semiparametric methods, empirical processes, and some
of the challenges for research and graduate education. His section 3 goes
quite a way toward updating the (2006) review of semiparametric methods
given in WKR, and his section gives some of the recent progress in empirical
process techniques. Since I agree with most if not all of the points made in
his review, I will confine my remarks here to pointing out some possible fur-
ther issues and avenues for future research, mostly related to my own current
interests.
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Section 2. I concur with Kosorok’s point that much work remains concern-
ing the behavior and interpretation of semi-parametric and other model-
based methods under model miss-specification. The norm in publication has
been to propose and study procedures under an assumed model, but it would
be much more illuminating in many cases to propose estimators assuming
models, but then study them in general, when the model fails, or at least
when the model fails in directions that are important for scientific applica-
tions. In many cases semiparametric models are of relevance and interest
as a way of defining stable and interpretable parameters to estimate, not
necessarily in their own right.

Section 3. Another useful reference for students and researchers might
be Aad van der Vaart’s St. Flour Lectures on Semiparametric Statistics,
van der Vaart (2002). In these notes van der Vaart also presents a lot of
interesting material on the use of empirical process techniques in connection
with properties of estimators for semiparametric models. Van der Vaart also
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points out a number of challenging open problems: see pages 382, 419, 434,
435, 441.

One area of research intersecting both semiparametric models and em-
pirical processes that Kosorok mentions only obliquely in connection with
the work of Huang (1996) and Banerjee and Wellner (2001,2005) is that of
shape-constrained inference. The theory of nonparametric shape constrained
inference remains under active development, and offers a wide range of very
appealing statistical problems and challenges together with very many inter-
esting applications. This area has strong connections with semiparametric
and nonparametric mixture models, latent variable models, and random ef-
fects models. Some of the recent developments include study of univariate
and multivariate log-concave densities as potentially useful surrogates for
parametric Gaussian models; see e.g. Duembgen and Rufibach (2009), Bal-
abdaoui et al. (2009), Cule et al. (2007), Koenker and Mizera (2008), Walther
(2001) and Seregin and Wellner (2009).

Sections 4–5. As noted by Kosorok, empirical process theory provides a
valuable set of tools and techniques for dealing with asymptotic theory in
many statistical problems, parametric, semiparametric, nonparametric, or
the high-dimensional data and model selection problems discussed in Sec-
tion 5. As useful as it has been, the “entry price” has remained high and
somewhat forbidding for many students and researchers. One of the themes
of my research with Aad van der Vaart, both in the writing of van der Vaart
and Wellner (1996) and since, has been the development “preservation the-
orems” at the level of Glivenko-Cantelli and Donsker theorems — results
which give ways of deducing further results “easily” without further entropy
calculations. There seems to be considerable scope for further development
in this direction.

In connection with models involving multiple rates, it seems worthwhile
to note the interesting recent work of Radchenko (2008).

One of the many research directions in semiparametric models and em-
pirical processes which I find particularly fascinating involves the interplay
between classical sampling theory, empirical process theory, and semipara-
metric models with two-phase designs. The basic problems concerning em-
pirical process theory were clearly delineated by Lin (2000). There are many
central limit theorems for simple averages of data derived via finite sampling
designs of various types: see, e.g. Rosén (1997), Hájek (1960) and Särndal
et al. (1992). But the availability of uniform central limit theorems for
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the empirical processes based on such sampling designs is still quite lim-
ited. Breslow and Wellner (2007) pointed out that the asymptotic theory
for general empirical processes based on sampling without replacement from
an i.i.d. superpopulation (and two-stage versions thereof) follows from the
bootstrap central limit theory for exchangeably weighted bootstrapping as
established by Praestgaard and Wellner (1993), but it is not at all clear how
to extend this to more general sampling schemes.

Of the several directions not mentioned at all by Kosorok, the large
current research area involving empirical processes of dependent data seem to
me to one that should be mentioned at least in passing. The reader interested
in getting a start in this direction should see the collection Dehling et al.
(2002) and the valuable review paper therein, Dehling and Philipp (2002).

Section 6. I agree with Kosorok that the implementation of methods
for semiparametric methods and development of new algorithms has lagged
painfully and rather awkwardly behind the theory, and that these difficul-
ties need serious attention if the promise of many of the new methods is
to be realized in practice. Concerning computational problems connected
with tuning parameters as mentioned in Kosorok’s second point: one of the
great attractions of shape constrained methods, at least in low-dimensional
problems, is that no (or relatively few) tuning parameters are required. On
the other hand, I suspect that this is an area which is ripe for further devel-
opment of efficient algorithms via more interaction with optimization theory
and convex analysis. From the theoretical perspective, empirical process the-
ory can help with justifying and validating the complex procedures which
do involve data-based choices of the tuning parameters; see e.g. Giné and
Mason (2008) and Dony and Mason (2008).

Section 7. I am happy to learn of the successes elsewhere concerning mod-
ernization and updating of the graduate curriculum at the Universities of
Wisconsin and North Carolina. Here at the University of Washington (the
“other UW”), I have taken a more gradual approach by including a selection
of empirical process topics and methods in the graduate statistical theory
sequence, by offering special topics courses on empirical process theory ap-
proximately every second year, and arranging working groups in alternate
years. I cannot say that this has accomplished a major revision of the grad-
uate curriculum, so I look forward to learning more about how the graduate
curriculum is changing and evolving at UNC.
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Among the books that I find myself using frequently when I have taught
courses on these topics, I would include Dudley (1999), de la Peña and Giné
(1999) and Ledoux and Talagrand (1991).

In conclusion, it seems to me that the challenges faced by modern sta-
tistical theory in dealing with real problems will increasingly involve high-
dimensional data, or high-dimensional models, or both. The tools of empir-
ical process theory and the perspectives gained from research in semipara-
metric models seem likely to continue to play an important role in dealing
with these challenges. Thanks again to Michael Kosorok for a stimulating
review and reminder of the many challenges that remain, especially with
regard to computation and education.
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