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This is a discussion of the Forum Lectures by Evarist Giné on the subject
of Empirical Processes and Applications presented at the European Meeting of
Statisticians held in Bath, England, September 13 - 18, 1992.

The discussion includes short sketches of developments in probability theory
(Gaussian process theory, weak convergence theory, and probability in Banach
spaces), empirical process theory, and applications thereof in statistics. I
comment briefly on the formulation of central limit theorems for empirical
processes in terms of the presence or absence of a Gaussian hypothesis,
expand on Professor Giné’s discussion of the bootstrap, and briefly explain
my recent results for exchangeably weighted bootstraps obtained jointly with
Jens Praestgaard. The discussion closes with some problems.
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1. Introduction. First, let me congratulate Professor Giné on his lucid and
enthusiastic lectures. He has done a wonderful job of conveying the feel and
excitement connected with recent developments in empirical process theory and the
application of this theory in statistics. His simple and elegant presentation of the
inequalities clearly shows their power for obtaining the basics of the theory.

There has been tremendous progress over the past 15 years on empirical process
theory – and in its applications to problems in statistics. As I tried to argue in
my recent review article [Wellner (1992)] the time lag between the introduction of
problems and their solution using modern empirical process techniques seems to be
decreasing rapidly.

This progress in empirical process theory has gone hand in hand with considerable
progress in some of the related areas of probability theory. Three general areas in
particular are:

• Gaussian process theory

• weak convergence theory

• probability in Banach spaces.

In the area of Gaussian process theory, major developments include: (a)
Exponential bounds resulting from the Borell inequalities; (b) Introduction and use
of “majorizing measures” to characterize continuity of Gaussian processes; and (c)
Systematic development of Gaussian comparison theorems. Major contributions have
been made by Dudley, Marcus and Shepp, Fernique, Borell, Pisier, Sudakov, and
Talagrand; see Ledoux and Talagrand (1991), chapters 3 and 11 for much of this.

In the area of weak convergence theory, it was recognized early on by Chibisov
(1965) that even the classical empirical process is not Borel-measurable in the
nonseparable metric space (D[0, 1], ‖ · ‖∞). Dudley (1966) suggested one solution to
deal with this difficulty, and a useful summary of solutions via separable metrizations
is given in Billingsley (1968). However the current modern approach via outer
measures did not become clear until the work of Hoffmann-Jørgensen (1984) and
Dudley (1985).

Finally, developments in the area of probability in Banach spaces has had a
profound impact on empirical process theory. Major developments include the
Hoffmann-Jørgensen inequalities and the isoperimetric methods exposited in the
recent book by Ledoux and Talagrand (1991). Important contributions have been
made by Dudley, Giné, Kuelbs, Ledoux, Pisier, Talagrand, and Zinn among many
others.

On the empirical process side of the fence, progress has has also been rapid,
building on the probability tools, and in turn providing further problems for the
theory. Here’s a very brief thumbnail sketch of developments in the theory of (general)
empirical processes:
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• Vapnik and Chervonenkis (1971): Glivenko - Cantelli theorems for sets.

• Dudley (1978): General central limit theorems for empirical processes indexed
by sets: VC-classes and sets with smooth boundaries.

• Kolcinskii (1981) and Pollard (1982): Central limit theorems for classes of
square integrable functions satisfying uniform entropy conditions.

• Giné and Zinn (1984): Systematic use of Gaussianization and the multiplier
inequality begins. [We will elaborate on this below.]

• Alexander (1984): Exponential bounds for suprema of empirical processes
indexed by classes of sets and by uniformly bounded classes of functions.

• Massart (1986): Rates of convergence for Pollard’s uniform entropy central limit
theorem; more exponential bounds.

• Ossiander (1987): General central limit theorem for classes functions satisfying
an entropy with bracketing condition.

• Talagrand (1987): Study of measurability issues for the Glivenko - Cantelli
theorems.

• Dudley (1987): Study of Universal Donsker classes of functions and entropy
bounds for convex hulls of polynomial classes.

• Giné and Zinn (1990): Bootstrap CLT for the general empirical process.

• Giné and Zinn (1991); Sheehy and Wellner (1992): Study of Uniform Donsker
classes of functions: exponential bounds for such classes and applications to
model - based bootstrapping.

This progress in empirical process theory has enabled a large number of new
applications in statistics. Statistical problems have, in turn, continue to generate new
and challeging problems for empirical process theory. Here is a short list of selected
areas of application in statistics, chosen with a view toward potential for further
development and application: [I have not given detailed references in an effort to save
space; but see Wellner (1992) for a (nearly) complete list.]

• M - estimators: Huber, Pollard, Arcones and Giné

• Infinite-dimensional M - estimators: Gill, van der Vaart, Murphy.

• The Delta-method: Gill, Dudley.

• Rates of convergence: van de Geer, Birgé and Massart, Wong and Shen.

• Smoothing: Pollard, Yukich, Nolan.
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• Nonstandard asymptotics: Kim and Pollard, Nolan, Groeneboom, Donoho.

See Wellner (1992) for a more complete review.

2. Donsker theorems: PreGaussianity as hypothesis or conclusion.
In considering the Donsker theorems in Professor Giné’s lectures, it is useful to
distinguish those theorems which involve a Gaussian hypothesis in contrast to
those which include existence of a tight P−Brownian bridge process as one of the
conclusions. For example, theorems 2 and 3(b) include the hypothesis that the class
F is P−preGaussian. On the other hand, Pollard’s (1982) corollary of theorem 3(b)
and Ossiander’s (1987) theorem 4(ii) include P−preGaussianity of F as a part of
their conclusions. Hypothesizing preGaussianity of F provides an interesting way of
exploring conditions and of obtaining sharp theorems – but with an additional (often
difficult) hypothesis to check in order to apply the result. For most applications
in statistics, I find the latter type of Donsker theorems, with preGaussianity as a
conclusion, more convenient and easier to apply.

Of course preGaussianity as a first step in the proof of a Donsker theorem can
be extremely illuminating, and can indeed lead to sufficient conditions: one nice
example of this is Marcus (1981) in which necessary and sufficient conditions for weak
convergence of the empirical characteristic function are found based on preGaussian
considerations.

3. Multiplier Inequalities, Empirical Processes, and Bootstrap
Empirical Processes In this section our goal is to expand upon Professor Giné’s
treatment of the multiplier inequality, and to explain its role and consequences in
empirical process theory.

The basic multiplier inequality (Proposition 6 of Giné’s lectures) was apparently
first discovered (independently) by Pisier and Fernique in 1977 or 1978. It first
appeared in Giné and Zinn (1984) (also see Giné and Zinn (1986)) where it was used
with Gaussian multipliers; see also Giné and Zinn (1986). Alexander (1985), solving a
problem posed by Hoffmann-Jørgensen, shows that no “universal multiplier moment”
exists: there is no function ψ : R2 → R so that Y Z satisfies the central limit theorem,
whenever EY Z = 0, Eψ(|Y |, ‖Z‖) <∞ and Z satisfies the central limit theorem, for
independent real and Banach space valued random elements Y and Z. Proposition 6
continues to hold for mean zero multipliers {ξi} without the assumption of symmetry
at the price of a factor of 2

√
2 multiplying the right side. For empirical process theory,

the processes Yi = δXi
− P usually, but the multipliers ξi can be Gaussian, centered

Poisson, symmetrized Poisson, centered exponential, centered Gamma(4, 1), and so
forth.

The following (unconditional) multiplier central limit Theorem is implicit in Giné
and Zinn (1984) and is stated explicitly in Giné and Zinn (1986); also see proposition
10.4, page 279 in Ledoux and Talagrand (1991).
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Theorem 3.1. (Unconditional multiplier CLT). Let F be a class of measurable
functions. Let ξ1, . . . , ξn be i.i.d. random variables with mean zero, variance c2 > 0
and Λ2,1(ξ1) <∞, independent from X1, . . . , Xn. Then the following are equivalent:

A. F is Donsker: Gn ⇒ GP in l∞(F)

B. n−1/2∑n
i=1 ξi(δXi

− P ) ⇒ cGP in l∞(F).

Ledoux & Talagrand (1986) show that the L2,1-hypothesis on the multipliers ξi
cannot be relaxed in the sense that for every ξ with Λ2,1(ξ) = ∞ there exists a Banach
space valued Y that satisfies the central limit theorem, but ξY does not satisfy the
central limit theorem. Ledoux and Talagrand (1986) and Ledoux and Talagrand
(1991), Proposition 10.4 on page 279, give a different proof of the basic multiplier
inequality.

The following almost sure conditional multiplier central limit theorem is due to
Ledoux, Talagrand (and Zinn) (1988). It apparently originated simply from a desire to
better understand the nature of the multiplier CLT. The original proof of Ledoux and
Talagrand (1988) used martingale difference methods orginating in Yurinskii (1974);
another proof based on isoperimetric methods is given by Ledoux and Talagrand
(1991), Theorem 10.14 on page 293.

Theorem 3.2. (Almost sure conditional multiplier CLT). Let F be a class of
measurable functions with ‖Pf‖F < ∞. Let ξ1, . . . , ξn be i.i.d. random variables
with mean zero, variance c2 > 0 and Λ2,1(ξ1) < ∞, independent from X1, . . . , Xn.
Then the following are equivalent:

A. F is Donsker and P (F 2) <∞: Gn ⇒ GP in l∞(F)

B. n−1/2∑n
i=1 ξi(δXi(ω) − P ) ⇒ cGP almost surely in l∞(F).

The following “in probability” conditional multiplier central limit theorem is
implicit in Giné and Zinn (1990).

Theorem 3.3. (“In probability” conditional multiplier CLT). Let F be a class of
measurable functions with ‖Pf‖F <∞. Let ξ1, . . . , ξn be i.i.d. random variables with
mean zero, variance c2 > 0 and Λ2,1(ξ1) < ∞, independent from X1, . . . , Xn. Then
the following are equivalent:

A. F is Donsker: Gn ⇒ GP in l∞(F)

B. Zω
n ≡ n−1/2∑n

i=1 ξi(δXi(ω) − P ) ⇒ cGP in probability in l∞(F); i.e.
dBL∗(Zω

n , cGP ) →p 0 where dBL∗ denotes the dual bounded Lipschitz metric.
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In view of these last two theorems, the bootstrap central limit theorems of Giné
and Zinn (1990) (theorem 7 of Giné’s lectures) seems quite natural when we realize
that the bootstrap empirical processes is just a multiplier process with Multinomial
weights: Let P ω

n be the empirical measure of the Xi’s as above, let

X̂1, . . . , X̂n

be a “bootstrap sample” from P ω
n , and let N̂n ∼ Poisson(n) be independent of the

Xi’s and of the X̂i’s. The bootstrap empirical process Ĝn is

Ĝn =
√
n(P̂n − P ω

n ) =
√
n

(
1

n

n∑
i=1

δX̂i
− P ω

n

)

=
√
n

(
1

n

n∑
i=1

M̂niδXi(ω) − P ω
n

)
=

1√
n

n∑
i=1

(M̂ni − 1) δXi(ω)

where

M̂n ∼Multn(n, (
1

n
, . . . ,

1

n
)) is independent of the Xi’s.

We can write

M̂k =
k∑

j=1

1j =
k∑

j=1

(11j, . . . , 1nj)

where

(11j, . . . , 1nj) ∼Multn

(
1,
(

1

n
, . . . ,

1

n

))
are i.i.d., j = 1, . . . , k, k = 1, 2, . . . . Note that if we “Poissonize” M̂n by forming
M̂ N̂n

, the result is:

M̂ N̂n
∼ (ξ1, . . . , ξn)

where ξ1, . . . , ξn are i.i.d. Poisson(1). This fact is exploited by Klaassen and Wellner
(1992) to give alternative proofs of the Giné and Zinn (1990) bootstrap central limit
theorems based on the multiplier CLT’s 2.2 and 2.3.

Now we turn to alternative bootstrap methods based on exchangeable weights
instead of the multinomial weights used in Efron’s bootstrap. A key element
of the proof is the following multiplier inequality for exchangeable weights given
in Praestgaard and Wellner (1993). It shows that the expectation of the norm
of an “exchangeably weighted” bootstrap empirical process can be bounded by
the expectation of a “randomly permuted” sum – with a random permutation R
playing the role of the Rademacher random variables in the unconditional multiplier
inequality, lemma 2.1.

Lemma 3.1. (Exchangeable Multiplier Inequality). Let W ≡ (W1, · · · ,Wn) be a
nonnegative, exchangeable random vector with Λ2,1(W1) < ∞, and let R denote
a random permutation uniformly distributed on Πn, the set of permutations of

6



{1, · · · , n}. Let Y1, · · · , Yn be random elements of l∞(F) so that (W,R) and
(Y1, · · · , Yn) are independent (in fact defined on a product probability space). Let
‖ · ‖ denote a pseudonorm on l∞(F). Then for any n0 < n

E∗‖ 1√
n

n∑
j=1

WjYj‖ ≤ n0√
n
E(max

j≤n
Wj)

1

n
E∗

n∑
j=1

‖Yj‖

+ Λ2,1(W1) max
n0<k≤n

E∗‖ 1√
k

k∑
j=n0+1

YR(j)‖

where in the second line the expectation is with respect to both Y1, · · · , Yn and R.

In most of our applications of lemma 2.1 the Yj’s are deterministic.
This version of the multiplier inequality plays a key role, together with

Hoeffding’s (1963) inequality relating sampling without replacement to sampling with
replacement, in the the proof of the following “exchangeably weighted bootstrap
central limit theorem”. In fact the following theorem, obtained in joint work with
Aad van der Vaart, is a slight generalization of the exchangeable bootstrap central
limit theorem of Praestgaard and Wellner (1993). It is formulated to include the
important case of sampling without replacement. To do this requires introduction of
a new norming sequence rn and hypotheses on the weights {Wni} as follows:

A1. {Wni} are nonnegative and exchangeable.

A2.
∑n

i=1Wni = n.

A3. supn ‖rnWn1‖2,1 <∞.

A4. limn→∞ supt≥ε
√

n t
2 Pr(|rnWn1| > t) = 0 for every ε > 0.

A5. r2
n

n

∑n
i=1(Wni − 1)2 →p c

2 > 0.

The sampling without replacement weights {Wni} defined by

Wni ≡
n

m

n∑
j=1

1{Rj = i}, i = 1, . . . , n ,

where R = (R1, . . . , Rn) is a random permutation of {1, . . . , n}, satisfy these
conditions with rn = (m/n)/(1− (m/n)) and c = 1 if sup(m/n) < 1.

In this setting we redefine the bootstrap empirical process to be

ĜW
n ≡ rn

√
n(P̂W

n − P ω
n ) =

rn√
n

n∑
i=1

(Wni − 1)δXi(ω) .

The following theorem shows that these conditions suffice for conditional weak
convergence of the bootstrap process.
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Theorem 3.4. (“Exchangeably weighted” bootstrap CLT). Suppose that F is a
Donsker class, and, for each n, W = (Wn1, . . . ,Wnn) is a vector of weights satisfying
conditions A1 - A5 for a sequence rn with r2

n = o(n). Then, under measurability,

ĜW
n ⇒ cGP in probability in l∞(F);

as n→∞. If P ∗‖f − Pf‖2
F <∞ then the convergence is also outer almost surely.

The proof follows the same pattern as the proof of the main result in Praestgaard
and Wellner (1993); in fact the main modification needed is in the proof of finite-
dimensional convergence. A complete proof will be given in van der Vaart and Wellner
(1994).

Here is the corollary for sampling without replacement. Write

P̃m,n =
1

m

m∑
i=1

δXRi
, Q̃n−m,n =

1

n−m

n∑
i=m+1

δXRi
.

Corollary 3.1. (Bootstrap Without Replacement). Let F be a Donsker class. If
m ∧ (n−m) →∞, then, subject to measurability,√

nm

n−m
(P̃m,n − Pn) =

√
m(n−m)

n
(P̃m,n − Q̃n−m,n) ⇒ GP

given X1, X2, . . . in probability. Here GP is a tight P−Brownian bridge process. If
in addition F possesses an envelope function F with P ∗F 2 < ∞, then the weak
convergence also holds given almost every sequence X1, X2, . . ..

Proof of corollary 2.1. First note that√
nm

n−m
(P̃m,n − Pn) =

rn√
n

n∑
i=1

(Wni − 1)δXi

for the bootstrap without replacement weights {Wni}.
Suppose first that lim supn λn ≡ lim supn(m/n) < 1. The the result follows from

the preceding theorem by checking that the sampling without replacement weights
{Wni} satisfy A1 - A5 with the choice r2

n ≡ (m/n)/(1 − (m/n)) and with c = 1. In
fact the hypothesis A5 holds with exact equality.

If lim supn λn ≤ 1, but lim infn λn > 0, then we can argue the same way, but using
instead the identity

−
√
n(n−m)

m
(Q̃n−m,n − Pn) =

√
m(n−m)

n
(P̃m,n − Q̃n−m,n);

Thus we have the desired conclusion in probability if either lim infn λn > 0 or
lim supn λn < 1. But for any given subsequence {n′} there exists a further subsequence
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{n′′} such that λn′′ converges to some number in [0, 1], and for this subsequence one
of the preceding arguments yields the convergence of the process to GP along this
further subseqence. 2

This theorem for “bootstrap sampling without replacement” is closely related
to some nice results of Romano and Politis (1992) concerning validity of the
“sampling without replacement bootstrap” for a general real-valued statistic Tn with
τn(Tn − θ) →d Z; their results are focussed on the case m/n → 0. It is also closely
related to results for two-sample permutation test obtained in Praestgaard (1992).
The main difference is that in Praestgaard (1992) it is important to study the two-
sample permutation empirical process under fixed alternatives P 6= Q, whereas the
above theorem corresponds to the null hypothesis P = Q in Praestgaard’s two-sample
setting.

The main point to be made here is that the multiplier inequalities, and the
multiplier central limit theorems based thereon, are very useful for a variety of
statistical problems.

4. Problems. Here are a few selected problems connected with empirical
process theory and the application of this theory to statistics. Problem 4 below is
from Pyke (1992), to which we refer for further problems in connection with “product
processes”. Not all of the problems are directly connected to Professor Giné’s lectures

1. Suppose that (S,S) is an arbitrary sample space. Is there always a class of
functions F satisfying: (i) F is P−Donsker; (ii) F is a determining class (i.e.∫
fdP =

∫
fdQ for all f ∈ F implies P = Q?

2. Is there an analogue of the Hoffmann-Jørgensen inequality for U−processes?

3. Is there a P−uniform version of the Giné-Zinn bootstrap theorem?

4. Give conditions on r = rn →∞ and Cr ⊂ Sr so that

‖Pn − P‖∗Crn
→a.s. 0 .

5. When does the bootstrap “work” for dependent data? When does the bootstrap
“work” for U-processes?

6. In what sense(s) is Pn optimal as an estimator of P? What are the appropriate
extensions of the classical results of Dvoretzky, Kiefer, and Wolfowitz (1956),
Kiefer and Wolfowitz (1958)?

7. Suppose that (X1, Y1), . . . , (Xn, Yn), . . . are i.i.d. as H on X ×Y with empirical
measure Hn, and marginal empirical measures Pn and Qn on X and Y
respectively. What are the natural bootstrap and permutation central limit
theorems for the independence empirical process

√
n(Hn − Pn ·Qn)?
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