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Gaussian white noise models have become increasingly popular as a
canonical type of model in which to address certain statistical problems.
We briefly review some statistical problems formulated in terms of Gaus-
sian "white noise", and pursue a particular group of problems connected
with the estimation of monotone functions. These new results are related
to the recent development of likelihood ratio tests for monotone functions
studied by [2]. We conclude with some open problems connected with
multivariate interval censoring.

1. Introduction. This paper briefly reviews some of the recent research in-
volving white noise models, and then develops some new results for statistical infer-
ence about monotone functions in the presence of white noise. The themes developed
here differ substantially from the talk (on Semiparametric Models with Sum Tan-
gent Spaces) which I presented at the Rochester meeting held in the Fall of 1999
in honor of Jack Hall's 70th birthday. The subject of that talk was more directly
connected with my joint work with Jack in the late 70's and early 80's on semipara-
metric models. But one thing I learned from Jack Hall during my time at Rochester
was not to become too fixed on any one problem or point of view, and that often a
research problem can only be thoroughly understood by coming at it from several
different perspectives or standpoints.

Jack Hall had an enormous impact on my development as a young statistician.
Jack's continued interest in research and enthusiasm for good problems has been
an inspiration.

In Section 2, we briefly review a slice of the past and current research work
on "white noise models". In Section 3, we present some results on estimation of a
monotone function observed "in white noise", and study a canonical version of the
problem which arises repeatedly in the asymptotic distribution theory for nonpara-
metric estimators of monotone functions. Section 3 carries through an analogous
estimation problem in which some additional knowledge of the monotone function
is available, namely its value at one point. This arises naturally when addressing
the problem of finding a likelihood ratio test of the hypothesis H : f(to) = θo where
/ is monotone. The resulting likelihood ratio test statistic is introduced and studied
in Section 5. Section 6 raises some further questions and problems. In particular we
pose a problem concerning estimation of a monotone function of two variables sub-
ject to white noise on the plane (Brownian sheet) with a connection to multivariate
interval censoring.
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2. Gaussian white noise models; some recent results. The following type
of "white noise model" has been widely used as a unifying context and testing
ground for nonparametric statistics: suppose that we observe X(t) for t £ K C Md

where, symbolically,

(2.1) dX(t) = f(t)dt + σdW(t)

here / is an "unknown function" in some class T of functions defined on the subset
K of Rd, W is standard Brownian motion (or Brownian sheet when d > 1), and σ >
0 is the standard deviation parameter controlling the relationship of the "noise",
σdW(t), to the "signal", f(t).

This type of model apparently goes back at least to [27]. A rigorous study of
various problems got underway in the mid-1970's and early 1980's with the work
of Kutoyants [28], Ibragimov and Khasminskii [21], and Ingster [24]. See [23] and
[22], pages 199-213, and the discussion on page 393 for these and other references.

Pinsker [31] found the L2—minimax constant for a Sobolev class of functions T.
Pinsker's result has been extended to other norms and problems by Korostelev [25],
Donoho [9], and Korostelev and Nussbaum [26].

More recently such white noise models have been used as test problems for adap-
tive estimation (see e.g. [29] and [13]), adaptive testing (as in [35]), and model
selection (see e.g. [4]).

A variety of inverse problems formulated in terms of the white noise model (2.1)
have been studied: see e.g. [10] and [8]. Testing of quantitative hypotheses (such as
monotonicity of /) has been considered in a white noise framework by Dϋmbgen
and Spokoiny [12].

Various authors have emphasized the unifications possible by reducing complex
problems to a white noise model of the form (2.1); see e.g. [11], [10], [5], [30], and
[6].

From this brief review, it is clear that the literature on "white noise models"
is vast and growing rapidly. We will not attempt to give a complete review here.
Rather, we will develop some results concerning the estimation of a monotone func-
tion / in white noise. Here, as in many other statistical problems, there axe two
distinct roles for the Gaussian model:

• As a "continuous-time" model of interest in its own right.

• As a "canonical limiting-problem" appearing in connection with many other
discrete-time models involving nonparametric estimation of a monotone func-
tion: e.g. [32], [7], and [15].

In the second version, the "canonical limiting problem", the unknown function / is
replaced by a "canonical monotone function," namely fCan(t) = 2ί. We will consider
both versions of the problem in sections 3 and 4; a connection between the two will
appear in subsection 3.3.

Estimation of a convex function / in Gaussian white noise is considered from the
perspective of the "canonical limiting problem" in [17] where the "canonical convex
function" is fcan = 12ί2; see [18] for a study of the asymptotic distribution theory
of nonparametric estimators of a convex function.
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3. Monotone function estimation in Gaussian white noise: general
monotone / .

3.1. General Monotone f on [—c,c]. Consider the problem of estimating a
monotone function / on the interval [—c, c] in Gaussian white noise:

(3.1) dX{t) = f(t)dt + σdW(t) t s [~c,c].

Let Pf denote the law of the process X on C[—c, c] when / is the mean (or intensity
of drift) function; we denote the "true mean function" by /o Then by the Cameron-
Martin-Girsanov theorem (see e.g. [33], page 81), the Radon-Nikodym derivative
(likelihood ratio) dPf/dPo is given by

(3.2) ^ = exp ( | ° f(t)dX(t) - § I ' f(t)d?j .

Thus the maximum likelihood estimator fc of / maximizes

(3.3) Γ f(t)dX(t) - § f f(t)dt
J—c J—c

over the class of monotone functions / : [—c, c] —> R; equivalently, fc = f minimizes

(3.4) φ(f) = \ Γ f(t)dt - Γ f(t)dX(t)
J—c J—c

over the class of monotone functions /. Note that these are the first two terms of
the "heuristic least squares problem" of minimizing

(3.5) \ f°_ (/(ί) - X{t))2 dt=ί£ (/(ί) - (/0(ί) + σW(t)))2 dt_ ( ) £
over the class of monotone functions. (As usual with Gaussian problems, maximum
likelihood and least squares are equivalent.)

However, the problem of minimizing (3.4) over all monotone functions / on
[—c, c] is not well-defined, since this set of functions is not compact. A more sensible
formulation of the problem is to look at the problem of minimizing (3.4), under the
side restriction

(3.6) sup \f(t)\<K,
t£[-c,c]

ensuring that the minimization problem is well-defined for each c, since the set of
functions that we allow is compact if we use (for example) the topology, induced
by the supremum distance on the set of monotone functions on [—c, c].

THEOREM 3.1. Suppose that the monotone function f : [—c,c] -> R satisfies

(3-7) | | / | | c < K

where || | | c denotes the supremum norm for functions on [—c,c], and where K > 0
is a constant.
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Let F be an integral of f (so that F' = f), and suppose that the two (Lagrange)
parameters λi and λ 2 ? given by

(3.8) A i = / d{F(u)-X(u)}
J{u:f(u) = -K}

and

(3.9) A2 = - / d{F(u)-X(u)},
J{u:f(u)=K}

are non-negative. (Alternatively, take λi and λ2 to be the solution of (3.10) and
(3.12) below: then

and

λ i = l {icfj{u)d{p -x){u)

= \{jcf ΐ{u)d{p~x){u)- f
if these are non-negative.) Then f minimizes (3.4) over all monotone functions
f : [—c,c] —> M, such that \\f\\c < K, if the following conditions are satisfied:

(3.10) -K{\x + λ2) - Γ /(«) d{F(u) - X(u)} = 0,
J—C

(3.11) X2+ f d{F{u) - X(u)} > 0, for all t € (-c, c],
h

and

(3.12) λx - λ2 = Γ d{F(w)) - JT(u)}.
J—C

Proof. For monotone functions / : [—c,c] ->> M, define 0(/) by (3.4), and let the
function ^λi,λ2 ^ e defined by

V>λllλ2(/) = ΦU) + Xi{-K - f(-c)} + λ2{/(c) - K}

where we define /(—c) by /(—c) = l im n ^_ c /(u). Then we have, for λi and λ2,
defined by (3.8) and (3.9),

Ψ\IMU) = Φ(f)

To see this, note that, by the definitions of λi and A2, λi can only be different from
zero if /(—c) = —if, and likewise λ2 can only be different from zero if /(c) = K. But
(3.10) to (3.12) are exactly the Fenchel conditions for minimizing 'φx-^^if) over all
monotone functions /. Hence we get, for all monotone functions / on [—c, c] such
that I/I < K:

Φ(f) = ΨxuxΛf) <ΨχuχΛf) < Φ(f)
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Hence / minimizes φ(f) over all such functions / .

Now we show that (3.10) to (3.12) are in fact the Fenchel conditions. If we

perturb the solution / by a monotone function h we find that / satisfies

(3.13) 0 < —V;

= ί h(u)f(u)du- f h(u)dX(u)-λ1h(-c) + λ2h(c).
J—C J—C

If the functions / + eh are monotone for |e| < eo for some e0 > 0, then (3.13)
holds with equality. Now we get (3.10) by choosing h = f (and noting that equality
then holds in (3.13)); (3.12) follows by choosing h — l[-c,c]ί &nd (3.11) follows by
choosing h = l[t,φ t > —c. •

Of course Theorem 3.1 holds both when the true drift function /o involved in the
process X is the "canonical drift function" fcan{t) = 2ί, and also in the family of
cases in which X is given by X(t) = Xa^σ{t) — σW(t) + at2 for some a > 0. In these
latter special cases we will extend the processes Fα,σ,c characterized by Theorem
3.1 on the interval [—c, c], to the whole line R.

3.2. Extension of the solution for f0 from [—c,c] to R. Let X(t) = Xa,σ(t) —
σW(t) + at2 where W(t) is standard two-sided Brownian motion starting from 0.
Suppose now that we have "observed" Xα ? σ on the whole line M, and use Xa,σ to
estimate the true monotone function f(t) = 2at. Thus we are taking f(t) = 2at =
afcan(t) for t e ffi, where fcan(t) = 2t is called the "canonical" monotone function.
As we will see in the following subsection, the resulting slope process determines
the limiting behavior of the estimator fσ derived in Section 3.1 as σ \ 0.

THEOREM 3.2. (Canonical Solution Extended to R.) For each a > 0, σ > 0?

there exists an almost surely uniquely defined random continuous function F = Fa^σ

satisfying the following conditions:
(i) The function F is everywhere below the function X = Xa,σ-

(3.14) F(t) < X{t), for each t <E R.

(ii) F has a monotone derivative f.

(in) The function F satisfies

(3.15) ί{X(t)-F(t)}df(t) = O.
JR

In fact, F is the greatest convex minorant of X, and in particular /i,i(0) = i^?i(0)
is the random variable which describes the limiting distribution in a wide variety
of monotone estimation problems; see [15], [16], and [20] where the distribution
of §(0) = /i,i(0) is computed. Theorem 3.2 can be proved (but more easily) by
the same methods used to prove Theorem 2.1 in [17]. The basic idea is that when
c -¥ oo (and K = Kc -¥ oo, the effects of the constraints at the endpoints ±c
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wash out, and the resulting characterizing equations come from (3.10) - (3.12) with
λx = \2 = 0 and c — oo.

Note that condition (iii), in the presence of (i), means that the (increasing)
function Ff = f cannot change (i.e. increase) in a region where ̂ i) is satisfied with
strict inequality; i.e. F(t) = X(t) at the points t of increase of /. ^

Now we describe the scaling properties of the processes Fα > σ and fa,σ- We take
Xi5i to be the standard (or canonical) version of the family of processes {Xa,σ

 : & >
0,σ > 0}. Similarly, the canonial drift function is fcan{t) = 2ί (so that its integral
in Fcan(t) =t2). Let Fa^σ be the greatest convex minorant process corresponding to
Xo?σ, let Fi5i be the greatest convex minorant process corresponding to Xi,i, and
let fa,σ and /i5i Ξ § be the corresponding slope (left derivative) processes obtained
by taking the left derivative of Fa^σ and F^i respectively.

PROPOSITION 3.1. (Scaling of the processes Xa,σ and the envelope processes

Kσ )

(3.16) Xa,σ(t) I σ(σ/α)1/3χ1 1((α / σ)2/3 ί )

as processes for ί e l , and hence also

(3.17) Fa,σ(t) £

and

(3.18) /o,σ(ί) £ σ(alσYlzh

as processes for t € M..

COROLLARY 3.1. For the greatest convex minorant and slope processes Faσ and

/α,σ at t = 0,

(3.19) (Fα,σ(0),/O,σ(0)) = (σ(σ/α)1/3fΊ,i(0),σ(α/σ)1/3Λ,i(0)) •

COROLLARY 3.2. (Finite interval scaling.)

(3.20) σ-4/

and hence observation of {Xn(t) : t € [—c, c]} is equivalent to observation of
{ I α , σ ( ί ) : ί G [ - l , l ] } , i / c = ( α / σ ) 2 / 3 .

Remark: Note that this makes some intuitive sense; σ represents the "noise level"
or standard deviation of the noise and the variance of our "estimators" /α,σ(0),
should converge to zero as σ -> 0. Similarly, a = twice the slope of the function 2at
at zero; the function gets easier to estimate at this point as the slope goes to zero,
and the proposition makes this precise. Note that the scaling in (3.19) is consistent
with the finite-sample convergence results of [19] with the identification σ = n~1//2.
Proofs. Starting with the proof of Proposition 3.1, we will find constants fei, k2 so
that

(3.21) k1Xa,σ(k2t)=X1A(t).
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Since a^2W{au) 2 W(u) for e a c h a > 0 ?

(3.22) Xα,σ(ί) 2 α ί2 + σ a

Now by (3.22)

(3.23) k1Xayσ(k2t) = k1a(k2t)
2 +

(3.24) = *2 + W(t)

if we choose fci, fc2, α so that

(3.25) αfcifc| = 1, α*2 = 1, and σcT1/2fci = 1.

This yields a — l/fe, and hence (from the last equality in the last display)

σkιkl/2 = 1.

This in turn implies that

-fc2

3/2 = l or fc2 = (σ/α)2/3.

This yields fei = (l/σ)(α/σ)1/3. Expressing (3.21) as

XaA^t) = K1X1,1(t/k2)

with fcfx = σ(σ/a)1^3 and l/fc2 = (α/σ)2/3 yields the first claim of the proposition.
The second claim follows from immediately from (3.16) and the definitions of Fa,σ

and i*isi.
Corollary 3.1 follows from (3.19) and straightforward differentiation.
To prove Corollary 3.2, note that (3.16) is equivalent to

σ-\alσγ/*Xas({σlaγ'H) = Xltl(t).

Hence observation of Xι i on the interval [—c, c] is equivalent to observation of

σ-4/3αi/3Xα?σ(*) for t e [-1,1] if c = (α/σ)2/3. D

3.3. Small σ Limits for the general monotone f problem. Now suppose that we
observe Xσ(t) = σW(t) + F0(t) for t G [—1,1], and use the maximum likelihood
estimator fσ of /o characterized by Theorem 3.1. Our goal here is to show that
when /ό(£o) > 0 we have

rσ(fσ(to) - /o(*o)) ->d Z as σ -> 0

for some normalizing function rσ and non-degenerate limiting variable Z. In fact
the right choice of rσ is r σ = σ~2//3 and the limiting variable Z is determined by
the slope process #1,1 = § characterized by Theorem 3.2.
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THEOREM 3.3. Suppose that we observe {Xσ(t) : t G [-1,1]}. Suppose that
to G (-1,1), /ό(*o) > 0? o,nά fΌ is continuous at t0. Then for any K > 0 the MLE
fσ satisfies:

(3.26) σ-2'3{fσ{to + σ2Ή) - / 0 ( ί 0 )) ^ d a^3S

in the sense of convergence of all finite-dimensional distributions for t G [-K, K]

where a= |/ό(ίo) In particular,

(3.27) σ- 2 / 3 (/ σ ( ί 0 ) - /o(ίo)) ->* (§/ό(*o))1/3 S(0).

Theorem 3.3 is perhaps a bit more understandable if we reformulate the result in
terms of the case of a sequence σ = σn = 1/y/n. Then for observation of Xn{t) =
F0(t) + n-i^Wit) for ί G [-1,1], Theorem 3.3 can be restated as follows:

THEOREM 3.4. Suppose that we observe {Xn(t) : t G [—1,1]}. Suppose that
to G (—1,1), fό(to) > 0? and /Q is continuous at to- Then for any K > 0 the MLE
fn = fσn satisfies:

(3.28) n^Unito +n-1Ή) - fo(to)) ^a

in the sense of convergence of all finite-dimensional distributions for t G [-K, K]
where a= |/ό(^o) In particular,

(3.29) n ^ / n ί ί o ) - /o(ίo)) -><i (|/ό(*o))1 / 3 §(0).

Proof. We will sketch the proof of Theorem 3.4; the proof of Theorem 3.3 is com-
pletely analogous. The first step basically consists of reduction to the case ίo = 0
and /o(ίo) = 0. Consider the new processes

Xn(t) = Xn(t0 +1) - Xn(t0) - ί/o(ίo)

= n-^2(W(to + t) - W(to)) + Fo(to + t) - Fo(ίβ) - */o(ίo)

for t £ [—1 — ίo, 1 — to] so t h a t

dXn{i) =d n-χ'2dW(t) + /o(ίo +1) - /o(ίo) = n-^2dW(t) + fo(t)

where /0(0) = 0.
Now define a local process Xι^c{t), t € [n^3(-l - ί o ) , n 1 / 3 ( l - t0)] = [an,βn],

by

- F0(t0) - n

= n2'3 (^(W(t0 + n-Wt) - W(to)) + n

= W(t) + yό(tn)t2 by Brownian scaling

=» W(t) + \fo{to)t2 in l°°[-K,K]

= W(t) + at2
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where \tn - to\ < n ' 1 ^ and α Ξ |/ό(^o)
Now the greatest convex minorant Fn of Xn on [—1,1] corresponds to the greatest

convex minorant F^c of Xι£c on [αn, βn] and the relationship between F^c and Fn

is simply

- Fn(t0)) - n

by Proposition 3.1. The corresponding slope process is

->* fa,i(t) i a

where the last convergence in law is in the sense of all finite-dimensional distribu-
tions for the process indexed by t G [-K, K}. •

4. Monotone function estimation in Gaussian white noise: constrained
estimation. Now we want to consider the problem of estimating / in the model
(3.1), with the additional knowledge that f(to) = θ0, a fixed number. This opti-
mization arises naturally in connection with likelihood ratio tests of the hypothesis
/(f0) = 0O. Without loss of generality we may suppose that to = 0. Furthermore,
note that the problem of minimizing (3.5) over the class of monotone functions g
with g(0) — θo (together with restrictions at the endpoints ±c to make the problem
well-defined) separates naturally into the two problems:
(R) minimize

(4.1) φR{f) = \ Γ f(t)dt - Γ f(t)dX(t)
Jo Jo

subject to /(0) = #o and / monotone; and
(L) minimize

(4.2) φL(f) = \ f f(t)dt - f f(t)dX(t)
J—c J—c

subject to /(0) = θo and / monotone. These two problems are really identical, so
it suffices to deal with the problem to the right of zero, problem (R).

4.1. General Monotone f on [—c,c] with /(0) = 0. Now we consider the con-
strained problem (with constraint at 0 and at ±c). To this end, we first reformulate
the problem as an isotonic regression problem. We focus on the problem to the right
of 0; the corresponding problem to the left of zero is analogous.

THEOREM 4.1. Suppose that the monotone function /o : [0, c] —^ R satisfies

(4-3) ll/olU < K
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where || | | c denotes the supremum norm for functions on [0,c], and where K > 0.
Suppose that the two (Lagrange) parameters λi and λ2? given by

(4.4) λx= [ d{F0(u)-X(u)},
J{u:fo(u)=θo}

and

(4.5) λ2 = - / d{F0(u) - X(u)}
Jίu:fo(u)=K}

are non-negative. (Alternatively, take λi and λ2 to be the solution of (4-6) cmd (4-8)
below: then

{f°fo(u)d(Fo - X)(u) -Kf'd(F0 - X)(u)

and

λ 2 =

if these are non-negative.) Then f0 minimizes (4-1) over monotone functions f :
[0,c] -¥ R, such that \\f\\c < K and /(0) = θ$, if the following conditions are
satisfied:

(4.6) 0oλi - K\2 - Γ fo(u) d{F0(u) - X(u)} = 0,
./o

(4.7) λ2 + / d{F0(u) - X{u)} > 0, for all t G (0, c],
Jt

and

(4.8) λi - λ2 = Γ d{F0(u)) - X(u)} .

Proof. For monotone functions / : [0,c] ->• B, let φiι{f) be defined by (4.1), and
let the function V%,A2 be defined by

Ψ^xΛf) = Φn(f) + λi{0o - /(0)} + λ2{/(c) - K}

where we define /(0) by /(0) = lim^o f(u) Then we have, for λi and λ2, denned
by (4.4) and (4.5),

ΦxuxΛfo) = Φ(fo)-

To see this, note that, by the definitions of λi and λ2, λi can only be different from
zero if /o(O) = ΘQ, and likewise λ2 can only be different from zero if /0(c) = K.
But (4.6) to (4.8) are exactly the Fenchel conditions for minimizing ψ^^if) over
all monotone functions /. Hence we get, for all monotone functions / on [0, c] such
that I/I < K and /(0) > θ0:

Φ(fo) = ΦxuxΛfo) < ΦxuxΛf) < ΦUY
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Hence fo minimizes ΦR{J) over all such functions /.

Now we show that (4.6) to (4.8) are in fact the FencheJ. conditions. If we perturb

the solution / 0 by a monotone function ft, we find that /o satisfies

(4.9) O < ^ Λ l ) λ 2 ( / o + 6/ι)|e = o

= ί h(u)fo(u)du- f h(u)dX{u) - λi/ι(0) + λ2h(c).
Jo Jo

If the functions / 0 4- eh are monotone for |e| < e0 Jbr some e0 > 0, then (4.9) holds
with equality. Now we get (4.6) by choosing h = fo (and noting that equality then
holds in (4.9)); (4.8) follows by choosing h = l[0 | Cj; and (4.7) follows by choosing
h = 1 M , t > 0. ' O

4.2. Extension of the solution fo from [—c,c] to R. Now suppose that fo(t) =
fcan{t) = 2ί, and we let c ->• oo (and K = Kc = 5c -+ oo, λ2 ->> 0): Then the
conditions (4.6) - (4.8) of Theorem 4.1 become:

(4.10) 0oλi - Γ ΐo{u) d{F0(u) - X(u)} = 0,

(4.11) / d{F0{u) - X(u)} > 0, for all t G (0, oo),
Jt

and

(4.12) λ 1 = Γ d{F0(u))-X(u)}.
Jo

Replacing (4.12) in (4.10) we find that

Γ fo(u) d{F0(u) - X(u)} = θ0 Γ d(F0(u) - X(u)).
Jo Jo

This can be viewed as exactly the condition obtained by Banerjee [1] in a particular
finite n situation; see also [2].

Let X(t) = Xi,i(t) = W(t) + t2 where W(t) is standard two-sided Brownian
motion starting from 0. For constrained estimation of a monotone function / in
Gaussian white noise, the following theorem is basic.

Now consider estimation of a monotone function / in Gaussian white noise sub-
ject to the constraint that /(0) = #o By piecing together the solutions on the right
and left as characterized in Section 4.1, we obtain the following result.

THEOREM 4.2. There exists an almost surely uniquely defined random function
Fo = FΘ0 satisfying the following conditions:
(i) The function Fo is everywhere below the function X:

(4.13) F0(t) <X(t), for each teR.
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(ii) Fo has a monotone left derivative fo satisfying /o(O) = #o
(Hi) The function Fo satisfies

(4.14) / fo(t)d(Fo - X)(t) =θ0 [ d(F0 - X)(t).
JR JR

In fact, Fo also has a greatest convex minorant interpretation: For positive values
of £, F0(t) is the greatest convex minorant of the process {X(t) : t > 0} subject
to having slope always greater than or equal to θo] similarly, for t < 0, Fo(t) is
the greatest convex minorant of the process {X(t) : t < 0} subject to having
slope always less than or equal to #o Thus Fo is continuous on the two sets (0, oo)
and (—oo,0), has a jump discontinuity at 0, but will always have left derivative
/0(0) = θo at 0. Note that F and Fo will be equal (and have equal derivatives) on
the complement of a (random!) neighborhood of 0. Thus in forming the likelihood
ratio, the only contribution will come from the interval containing 0 where the
functions F and Fo differ.

When #o = 0> we obtain the following important corollary:

COROLLARY 4.1. There exists an almost surely uniquely defined random func-
tion FQ satisfying the following conditions:
(i) The function Fo is everywhere below the function X:

(4.15) F0(t) <X(t), for each teR.

(ii) Fo has a monotone left derivative fo satisfying /o(0) = 0.
(Hi) The function Fo satisfies

(4.16) [{X(t)-Fo(t)}dfo(t)=0.
JR

Clearly FQ characterized by Corollary 4.1 also has a greatest convex minorant in-
terpretation: For positive values of t, Fo (t) is the greatest convex minorant of the
process {X(t) : t > 0} subject to having slope always greater than or equal
to 0; similarly, for t < 0, Fo(t) is the greatest convex minorant of the process
{X(t) : t < 0} subject to having slope always less than or equal to 0. Thus Fo is
continuous on the two sets (0, oo^ and (—oo, 0), has a jump discontinuity at 0, but
will always have left derivative /o(O) = 0 at 0. Note that F and Fo will be equal
(and have equal derivatives) on the complement of a (random!) neighborhood of
0. Thus in forming the likelihood ratio, the onlyj:ontribution will come from the
interval containing 0 where the functions F and Fo differ.

Theorem 4.2 can be proved by the same methods used to prove Theorem 2.1 in
[17]. The basic idea is that when c -ϊ oo (and K = Kc -+ oo, the effects of the
constraints at the endpoint c washes out, and the resulting characterizing equations
come from (4.6) - (4.8) with λ2 = 0 and c = oo.

Figures 1-3 illustrate Theorems 3.2 and 4.2.
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FIG. 1. The Greatest Convex Minorant F = F1Λ and W(t) + ί2.

-2

FIG. 2. The one-sided convex minorants FL and F R and W(t) -\-t2.
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5. The Likelihood Ratio Statistic. We now consider the consequence of
Theorems 3.2 and 4.2 for the likelihood ratio test of Ho : /(0) = 0 versus Hi :
/(0) Φ 0.

Recall that by the Cameron-Martin-Girsanov theorem (see e.g. [33], page 81),
the Radon-Nikodym derivative of Pf with respect to Po considered as laws of the
process {X(t) = W(t) + F(t) : t € [~c,c]}, is given by

(5.1)

THEOREM 5.1. For testing the null hypothesis Ho : /(0) = 0 versus the alterna-
tive Hi : /(0) φ 0, based on observation of the process {X(t) : t G R}, the likelihood
ratio statistic is

(5.2)

where D =

21ogλ= /{/*(*)-/*(*)}* =

: f(t) φ fo(t)}.

c<denote the class of monotone fur||tions on [-c, c] with
K, andflφlg' ) be the corresponding^φclass of ) satisfying /(0) = 0.
Then by (5.1) and Theorems 3.1 and 4.1 it follows immediately that

21ogλ, = 2lig
dPQ\

)dP0
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UodX + \ f / }

(5.3) = 2 Γ (fc - fc,0)dX - Γ \£(t) - %0(t)}dt.
J-c J—c

Now consider taking the limit across (5.3) as c -» oo (and Kc = 5c -> CXD). Then,
with 21ogλ = linic-̂ oo 21ogλc, we find that

(5.4) 21ogλ = 2 / (/- fo)dX - [ [f*(t) - %(t)]dt
JD JD

where the functions / and /o are characterized in Theorem 3.2 and Corollary 4.1
respectively. But from part (iii) of Theorem 3.2 and Corollary 4.1,

(5.5) ί(X-F)df = 0 and f {X - Fo)dTo = 0.
JR JR

Hence, via integration by parts,

/ ( / - fo)dX = / (/- fo)dX = - f Xd(T- fo)
JR JD JD

= - f Fdf+ [ FodTo by (5.5)
JD JD

= / fdF — / fodFo by integration by parts
JD JD

(5.6) = f ?{t)dt- ί fl{t)dt.
JD JD

Substitution of (5.6) in (5.4) yields the claim:

= [\f*{t)-%(t)]dt.
JD

The importance of Theorem 5.1 is that the limiting distributions of likelihood
ratio statistics for tests concerning nonparametric estimation of monotone functions
will be exactly the distribution of B given in (5.2). For example, consider estimation
of a distribution function F based on current status (or case 1 interval censored)
data. Suppose that {X^Ti) , i = 1... ,n, are i.i.d., where for each pair X{ and T{

are independent, X{ ~ F and Ti ~ G where F and G are distribution functions on
[0, oo). For each pair we observe Y{ = (T<, A{) where Δ< = \{Xi < TJ. The goal is
to make inference about the monotone (increasing) function F. The nonparametric
maximum likelihood estimator F n of F is well known; see e.g. [19] where it is shown
that if F and G have a densities / and g at to with f(to) > 0, g(to) > 0, then
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We are interested here in likelihood ratio tests of Ho : F(t0) = 0o versus Hi :
F(t0) φ 0o for to e (0, oo) and 0O e (0,1) fixed.

The log-likelihood ratio statistic for testing Ho : F(t0) = 0O versus Hi : F(to) φ

0o is

21ogλn = 2nPn JΔlog]|(T) 4- (1 - Δ)log^j|(T) J(5.7)

where F n and ϊ£ are the unconstrained and constrained maximum likelihood esti-
mators of F respectively.

THEOREM 5.2. Under the null hypothesis Ho, if F and G are differentiable at
to with strictly positive densities f(to) and g(to) respectively, then

(5.8) 21ogλn^(ίID>

where B is given in (5.2).

Theorem 5.2 is proved in [2]. Note that Theorem 5.2 says that 21ogλn is asymptot-
ically distribution free. This means that we can use the asymptotic distribution to
obtain asymptotically valid confidence intervals for F(to) by inverting the likelihood
ratio test: letting 21ogλn(0) denote the test statistic for testing Ho : F(to) = 0,
and letting sa be the upper αth percentage point of the distribution of 5, an ap-
proximate 1 — α confidence interval for F(to) is given by

{ 0 : 2 1 o g λ n ( 0 ) < s α } .

These confidence bounds are explored in more detail in [1] and [3].

6. Some Open Problems. Questions:
1. Can we determine the distribution of D analytically using the methods of [14],
[15], and [16]? The distribution has been estimated via Monte-Carlo methods in [2],
but it would be very desirable to compute this distribution analytically.
2. Can we get asymptotically valid confidence bands for the whole monotone func-
tion / in the white-noise setting?
3. Does a limit theorem like that in Theorem 5.1 hold for the other problems listed
as examples in [20]?
4. Does this approach to likelihood ratio tests and confidence intervals extend to
the setting of convex functions treated in [17] and [18]?

A Bivariate Problem:
Suppose that we want to estimate a bivariate monotone function / in Gaussian
white noise:

(6.1) dX{t) = f{t)dtιdt2 + σdW(t), t <E [-c, c] x [-c, c].

Here "monotonicity" of / will be meant in the sense that

Δ 2(/)U,t] = /(ti, ί 2 ) - f(tU82) - /(βi,t2) + f(sl982) > 0

for all 5 = (si,52)?ί = (£1^2) € [—c,c] x [—c,c], and W can be taken to be a
(quadruple) Brownian sheet (i.e four independent Brownian sheets, one on each
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of the four natural orthants contained in [—c,c] x [—c,c]. It seems that a natural

candidate for a "canonical monotone function" in this setting is the function 4M 2 ,

so that

X(t) = t\t\ + W(t).

• What is the MLE of / (under some suitable constraints guaranteeing compactness)

based on observation of X(t), t G \-c,c) x [-c,c]Ί

• What is the MLE of / based on observation of X(t), t G M2?

This "white-noise model" is one that arises in connection with estimation of a

bivariate distribution function based on bivariate interval censored data; see e.g.

[34].
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