
GLIVENKO–CANTELLI THEOREMS

Let X1, X2, . . . be independent identically dis-
tributed (i.i.d.) random variables with com-
mon distribution function F, F(x) = P(X �
x) for −∞ < x < ∞, and let Fn denote the
empirical distribution function of the first
nX ’s (see EMPIRICAL DISTRIBUTION FUNCTION

(EDF) STATISTICS) defined for −∞ < x < ∞
by

nFn(x) = [number of i � n with Xi � x]

=
n∑

i=1

1(−∞,x](Xi).

For fixed x, nFn(x) has a binomial distribu-
tion∗ with parameters n and F(x), and hence,
using the weak law of large numbers∗ for (3),
and the classical de Moivre–Laplace central
limit theorem∗ for (4),

EFn(x) = F(x), (1)

var(Fn(x)) = F(x)(1 − F(x))/n, (2)

Fn(x) →
p

F(x) as n → ∞, (3)

n1/2(Fn(x) − F(x)) →
d

N(0, F(x)(1 − F(x)))

as n → ∞; (4)

where E denotes expected value, ‘‘var’’ de-
notes the variance, ‘‘→

p
’’ denotes convergence

in probability, and ‘‘→
d

’’ denotes convergence

in law or in distribution (see CONVERGENCE

OF SEQUENCES OF RANDOM VARIABLES).
The property of Fn that concerns us here

strengthens (3) in two important ways: to
uniform convergence (in x), and to conver-
gence with probability 1 (w.p. 1) or almost
sure convergence.

Theorem 1 [1,8].

P
(

lim
n→∞ sup

−∞<x<∞
|Fn(x) − F(x)| = 0

)
= 1,

or, equivalently,

lim
n→∞ ||Fn − F|| ≡ lim

n→∞ sup
x

|Fn(x) − F(x)|

= 0 w.p. 1.
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Theorem 1 was proved by Glivenko [8] for
continuous distributions F, and by Cantelli
[1] for general F (see, e.g., Loève [13] for a
proof). It asserts that the empirical distribu-
tion function Fn estimates F to any desired
degree of precision uniformly in x for suffi-
ciently large sample size n. The true distri-
bution function F can be ‘‘rediscovered from
the data’’; or the empirical distribution func-
tion Fn ‘‘looks like’’ the true distribution F for
large n. The Glivenko–Cantelli theorem has
been called the ‘‘central statistical theorem’’
by Loève [13] and the ‘‘fundamental statisti-
cal theorem’’ by Renyi [15].

The Glivenko–Cantelli theorem is of con-
stant use in establishing the consistency of
many different statistical tests and estimates.
Two examples illustrate these types of appli-
cations.

Example 1. Consistency of the Kolmo-
gorov Test. Consider testing the simple null
hypotheses H0 : F = F0, where F0 is com-
pletely specified. Kolmogorov [11] suggested
that H0 be rejected when

Dn ≡ sup
x

|Fn(x) − F0(x)| ≡ ||Fn − F0||

is large; see KOLMOGOROV–SMIRNOV-TYPE

TESTS OF FIT. When F0 is the true distribu-
tion function, the Glivenko–Cantelli theorem
asserts that

PF0

(
lim

n→∞ Dn = 0
)

= 1. (5)

Kolmogorov [11] showed in fact that the dis-
tribution of Dn does not depend on F0 if F0 is
continuous, and that

lim
n→∞ PF0 (n1/2Dn � λ)

= 2
∞∑

k=1

(−1)k+1 exp(−2k2λ2) ≡ K(λ)

for all 0 � λ < ∞. Thus if K(λα) = α and
PF0 (n1/2Dn � λn,α) ≡ α, 0 < α < 1, then

lim
n→∞ λn,α = λα. (6)

If, however, some F �= F0 is the true distribu-
tion function, the Glivenko–Cantelli theorem
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implies that

PF

(
lim

n→∞ Dn = d
)

= 1, (7)

where d ≡ supx |F(x) − F0(x)| = ||F − F0|| >

0. Hence when F �= F0 is true, (6) and (7)
imply that

lim
n→∞ PF(n1/2Dn � λn,α) = 1. (8)

In other words, the probability of rejecting
the null hypothesis F = F0 when F �= F0 is
the true distribution increases to 1 as the
sample size becomes large. The Kolmogorov
test is consistent.

Example 2. Consistency of the Mann–
Whitney Estimator of P(X �� Y) in a Two-
Sample Problem. Suppose that Y1, Y2, . . .
are i.i.d. with common distribution function
G, independent of the X ’s above, and let
Gn denote the empirical distribution func-
tion of the first nY ’s. Consider estimating
P(X � Y) = ∫

FdG based on the first mX ’s
and first nY ’s. The Mann–Whitney estimator
of this probability is

Wmn ≡ 1
mn

m∑
i=1

n∑
j=1

1[Xi�Yj] =
∫
FmdGn.

To show that Wmn → P(X � Y) = ∫
FdG w.p.

1, add and subtract
∫

FdGn and integrate the
second term by parts to obtain

∣∣∣∣
∫
FmdGn −

∫
FdG

∣∣∣∣
=

∣∣∣∣
∫

(Fm − F)dGn +
∫

Fd(Gn − G)
∣∣∣∣

� ||Fm − F|| +
∣∣∣∣
∫

(Gn − G)dF
∣∣∣∣

� ||Fm − F|| + ||Gn − G||
→ 0 + 0 = 0 w.p. 1

as m → ∞, n → ∞, by the Glivenko–Cantelli
theorem. Thus Wmn is a (strongly) con-
sistent estimator of P(X � Y). (See also
MANN–WHITNEY–WILCOXON STATISTIC for
further information concerning Wmn. Another
proof of the consistency of Wmn is based on
the fact that Wmn is a U-statistic∗ and hence
a reverse martingale∗.)

Before leaving the classical case, two impor-
tant related results should be mentioned: an
exponential inequality for the random vari-
able ||Fn − F||, and a law of the iterated
logarithm∗.

The inequality of Dvoretzky et al. [4]
asserts that

P(||Fn − F|| � λ) � C exp(−2nλ2) (9)

for all λ > 0 where C is an absolute con-
stant. [C = 58 works; the smallest C for which
(9) holds is still unknown.] The factor of 2
appearing in this inequality is best possible;
note that the lead term in the distribution
K(λ) is 2 exp(−2λ2). For example,

P(||Fn − F|| � 0.04) � 0.10

if n � 1
2 · 625 · log(580) ∼= 1989.

The iterated logarithm law of Smirnov [17]
and Chung [2] gives a rate of convergence
for the Glivenko–Cantelli theorem: it asserts
that

lim sup
n→∞

n1/2||Fn − F||
(2 log log n)1/2

= sup
x

[F(x){1 − F(x)}]1/2 � 1
2 w.p. 1. (10)

Thus

||Fn − F|| = O(n−1/2(log log n)1/2) w.p. 1;

the supremum distance between Fn and F
goes to zero only a little more slowly than
n−1/2 w.p. 1.

Since 1960 the Glivenko–Cantelli theorem
has been extended and generalized in sev-
eral directions: to random vectors and to
observations X with values in more gen-
eral metric spaces; to empirical probabil-
ity measures indexed by families of sets;
to observations that may be dependent or
nonidentically distributed; and to metrics
other than the supremum metric. Here we
briefly summarize some of this work. More
detailed information and further references
can be found in the survey by Gaenssler and
Stute [7].

Let X1, X2, . . . be i.i.d. random variables
with values in a (measurable) space (X, B )
and common probability measure P on X;
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for many important applications in statistics
(X, B ) = (Rk, B k), k-dimensional Euclidean
space with its usual Borel sigma field. The
empirical measure Pn of the first nX ’s is the
probability measure that puts mass 1/n at
each of X1, . . . , Xn:

Pn = (δX1 + · · · + δXn )/n, (11)

where δx(A) = 1 if x ∈ A; 0 if x /∈ A, for A ∈ B .
Many of the generalizations referred to

above assert that, in some sense, ‘‘Pn looks
like P’’ for large n. It has become common
practice to refer to any such theorem as a
‘‘Glivenko–Cantelli theorem.’’

For (X, d) a separable metric space, the
convergence of Pn to P was first investigated
by Fortet and Mourier [6] and Varadara-
jan [22], who proved that β(Pn, P) → 0 w.p. 1,
where β is the dual-bounded-Lipschitz metric
(see Dudley [3]) and Pn → P weakly w.p. 1,
respectively.

Let C ⊂ B be some specified subclass of
sets and set

Dn(C , P) = sup
C∈C

|Pn(C) − P(C)|. (12)

A number of results assert that Dn(C , P) → 0
w.p. 1 for specific spaces X and classes of sets
C . For example, when X = Rk and C = all
intervals in Rk, or all half-spaces in Rk, or all
closed balls in Rk, then Dn(C , P) → 0 for any
probability measure P [5,6,10]. For a general
class of sets C , however, some restriction on
P may be necessary: If X = Rk and C = all
convex sets in Rk, then Dn(C , P) → 0 w.p. 1
if Pc(∂C) = 0 for all C ∈ C where Pc is the
nonatomic part of P [14]. For a discussion of
more results of this type and further refer-
ences, see Gaenssler and Stute [7].

In the just stated results the classes
C were formed by subsets of Rk which
have a common geometric structure; the
methods of proof of the corresponding
Glivenko–Cantelli theorems rely heavily on
this fact. For arbitrary sample spaces (X, B )
where geometrical arguments are not avail-
able, the most appealing approach to obtain
Glivenko–Cantelli theorems for classes C ⊂
B was given by Vapnik and Chervo-
nenkis [21]. Based on combinatorial argu-
ments they showed that given a class C ⊂ B

such that for some finite n, ‘‘C does not cut

all subsets of any E ⊂ X with card(E) = n’’
[i.e., for any E ⊂ X with card(E) = n there is
a subset of E which is not of the form E ∩ C
for some C ∈ C ], then (under some measur-
ability assumptions) Dn(C , P) → 0 w.p. 1 for
any probability measure P.

Dependent Observations. When X = R1,
C = {(−∞, x] : x ∈ R1}, and

Fn(x) = Pn(−∞, x],

Tucker [20] generalized the classical
Glivenko–Cantelli theorem to strictly sta-
tionary∗ sequences:

||Fn − Fω|| → 0 w.p. 1, (13)

where Fω is a (possibly random) distribu-
tion function; when the X ’s are also ergodic∗,
Fω is simply the common one-dimensional
marginal law of the X ’s. Tucker’s Glivenko–
Cantelli theorem applies to sequences of ran-
dom variables satisfying a wide range of
mixing conditions; it has been generalized
to higher-dimensional spaces and more gen-
eral index sets by Stute and Schumann [19]
(see also Steele [18] and Kazakos and Gray
[9]).

Nonidentically Distributed Observations. If
the X ’s are independent but not identically
distributed, there is no common probability
measure P to be recovered from the data.
Nevertheless, letting Pi denote the probabil-
ity law of Xi, i = 1, 2, . . ., we still have

EPn(C) = n−1(P1 + · · · + Pn)(C)

≡ Pn(C).

Thus it is still reasonable to expect that the
empirical measure Pn ‘‘looks like’’ the average
measure Pn. When X = R1, C = {(−∞, x]; x ∈
R

1}, Fn(x) = Pn(−∞, x], and Fn(x) = Pn(−∞,
x], Koul [12] and Shorack [16] have shown
that

||Fn − Fn|| ≡ sup
x

|Fn(x) − Fn(x)| → 0 w.p. 1

always. When (X, d) is a separable metric
space, Wellner [23] has shown that if {Pn} is
tight, then β(Pn, Pn) → 0 and ρ(Pn, Pn) → 0
w.p. 1, where β and ρ are the dual-bounded
Lipschitz and Prohorov metrics, respectively.
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