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Abstract In this paper we discuss estimation in semiparametric regression models with interval
censoring, with emphasis on estimation of the regression parameter θ. The first section surveys some
of the existing literature concerning these models and the various existing approaches to estimation,
including a selected subset of the enormous literature on the binary choice model used in econometrics.
In section 2 we calculate efficient score functions and information bounds for the regression parameter
θ in the linear regression model with interval censoring, the binary choice model, and the Cox model
with interval censoring. Profile likelihood approaches to maximum likelihood estimates are discussed and
reviewed in section 3, and profile likelihod is used in section 4 to discuss maximum likelihood estimation
for the linear regression model with interval censoring, and some of the remaining problems.
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1. Regression Models with Interval Censoring. In this paper, we consider estimation in two
important regression models, the linear regression model and the Cox’s proportional hazard model, with
interval censored data. These two models will be studied in a semiparametric context: the error distribution
of the linear regression model, and the baseline hazard function of the proportional hazard model, will be
assumed completely unknown (subject, perhaps, to regularity conditions).

Regression analysis concerns the relationship between two random vectors T ∈ Rk and Z ∈ Rd, where
T is a vector of response variables and Z is a vector of explanatory variables. We will only consider a
one dimensional response variable, T ∈ R. In many applications, for example, in biomedical studies or in
reliability studies, the response variable T is usually not fully observable. Instead, there is an additional
random variable Y ∈ R, and only some kind of functional of T and Y are observable. This additional random
variable Y will be called a censoring variable.

Suppose that the observable random vector is:

X = (δ, Y, Z) ≡ (1{T≤Y }, Y, Z),(1.1)

where 1S is the indicator function of the event S, that is, 1S is equal to 1 if S is true, otherwise it equals to
0. So the only information about T is from the censoring variable Y , and whether T is greater or less than
Y . This type of observation is called “case 1” interval censored data, or current status data.

Interval censored data arises naturally in some applications. For example, it arises in animal
tumorigenicity experiments, see, e.g., Finkelstein and Wolfe (1985), and Finkelstein (1986). The goal of
such studies is to analyze the effect of a suspected carcinogen on the time to tumor onset. However, the
onset time cannot be observed. Rather, animals die or are sacrificed at certain times, and are examined for
the presence or absence of a tumor. If the tumor is irreversible and nonlethal, the observed times of death
or sacrifice yield interval censored observations.

Closely related models are of interest in studies of AIDS; see for example, Shiboski and Jewell (1992).
Notice the difference between interval censoring and the usual right censoring. In a right censorship model,

the observed data is (min(T, Y ), 1{T≤Y }, Z). There is probability P{T ≤ Y } of observing the survival time
exactly. But with interval censoring, we are not able to observe the exact value of the survival time at all,
just 1{T≤Y }. It is therefore expected that statistical inference with interval censored data is more difficult.

There has been a tremendous amount of research on the proportional hazards model under right censoring
in the last twenty years since Cox’s (1972) milestone work; see e.g. Andersen and Gill (1982), and the recent
books by Fleming and Harrington (1991) and Andersen, Borgan, Keiding, and Gill (1993). However, we are
not aware of any systematic treatment of the proportional hazards model under interval censoring.

To set up the semiparametric regression model under interval censoring, suppose (T, Y, Z) is distributed
as Qθ,F , where Qθ,F is a probability measure indexed by a finite dimensional parameter θ ∈ Θ ⊂ Rd and an
infinite dimensional parameter F belonging to some class of functions F . θ is usually called the regression
parameter, which measures the influence of the explanatory variable Z on the response variable T . It is
the parameter of primary interest. In many situations, F is a distribution function or a transformation of
a distribution function, such as a cumulative hazard function. It is the secondary or “nuisance” parameter.
Let Q be the collection of all the Qθ,F ’s, that is,

Q = {Qθ,F : θ ∈ Θ, F ∈ F} .(1.2)

The collection Q is called a model.
Let Pθ,F be the induced law of X ≡ (δ, Y, Z) on {0, 1} ×R×Rd, i.e., for any measurable subsets A ∈ R,

and B ∈ Rd,

Pθ,F (δ = 1, Y ∈ A,Z ∈ B) =
∫

y∈A,z∈B

1{t≤y}dQθ,F (t, y, z).(1.3)

We let
P = {Pθ,F : θ ∈ Θ, F ∈ F}(1.4)
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denote the induced model for the observation (of a sample of size one).

1.1. The linear regression model under interval censoring In a linear regression model, T equals
the sum of a linear combination of the covariate vector Z and a random error term,

T = Z ′θ + ε,(1.5)

where θ ∈ Rd, and ε has an unspecified distribution function F with density f . Then the underlying model
is

Q = {Qθ,F : θ ∈ Rd, F is a distribution function}

is determined by the (1.5). There is tremendous amount of literature on the estimation of this model when
(T,Z) is fully observable. In survival analysis, T is usually taken to be a log failure time, and the model is
called the “accelerated failure time” model. Estimation of θ under right censoring has been considered by
Buckley and James (1979), Ritov (1990), Tsiatis (1990), and Ying (1993), among many other authors.

Under interval censoring, we only observe X defined in (1.1), i.e. , X = (δ, Y, Z). Consequently, the linear
regression model under interval censoring is P as obtained from Q via (1.3) and (1.4).

Little has been done for the estimation of a linear regression model under interval censoring. One
exception is Rabinowitz, Tsiatis, and Aragon (1993). Their approach is based on score statistics motivated
as follows: if F and E(Z|Y − Z ′θ) were known, then the estimated conditional covariance between δ and Z
is

1
n

n∑
i=1

[δi − F (Yi − Z ′iθ)][Zi − E(Z|Yi − Z ′iθ)],

which has mean zero when θ = θ0, where θ0 is the “true” regression parameter. Hence it could be used as a
score function for hypothesis testing and estimation. For the unknown F and E(Z|Yi − Z ′iθ), they propose
to estimate them via appropriately partitioning and binning of the data. They proved that the estimated
score statistics are asymptotically normal at θ = θ0. Furthermore, they proved that if an estimator defined
by the estimated score is

√
n-consistent, then it is asymptotically normal.

However, in applying their approach, one has to subjectively choose the partitioning parameter (similar
to the bandwidth in density estimation) in the first place. Moreover, it appears that these authors did not
give justification for their estimators being

√
n-consistent.

1.2. The binary choice model Suppose that, in the linear regression model under interval censoring,
the censoring variable Y is degenerate; i.e., P{Y = 0} = 1. Then the observed variable is X = (δ =
1{T≤0}, Z). In this case, the “case I” interval censoring regression model reduces to what is known as the
binary choice model in the econometrics literature. The binary choice model has been studied by many
authors. For example, see Manski (1975, 1985), Cosslett (1983), Han (1987), Horowitz (1992), Klein and
Spady (1993), and Sherman (1993).

Although the structure of the linear regression model and the binary choice model is completely similar,
there is a fundamental difference between these two models. In the binary choice model, the parameter θ
is not identifiable (and hence not consistently estimable) unless there is some constraint on the parameter
space, i.e., the length of θ is known or a component of θ is known. No such restrictions are needed when Y
is not degenerate.

Manski (1975, 1985) proposed and studied the “maximum score estimator” defined by maximization of
the object function

n∑
i=1

[1{Ti>0,Z′
iθ>0} + 1{Ti≤0,Z′

iθ≤0}].
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This is equivalent to the minimization of

n∑
i=1

|sgn(Ti)− sgn(Z ′iθ|| =
n∑

i=1

|(2δi − 1)− sgn(Z ′iθ)| .(1.6)

Kim and Pollard (1990) obtained the limiting distribution for the maximum score estimator under some
conditions. Interestingly, and somewhat disappointingly, the convergence rate of the maximum score
estimator is n1/3 instead of the usual rate

√
n.

Cosslett (1983) proposed “distribution free maximum likelihood” estimators for the regression parameter
θ and the error distribution F . Assuming that the error ε is independent of Z, it can be deduced that the
log-likelihood function is, up to an additive constant,

ln(θ, F ) =
n∑

i=1

{δi logF (−Z ′iθ) + (1− δi) log(1− F (−Z ′iθ)).

Then Cosslett’s “distribution free maximum likelihood” estimator of θ is obtained as follows: for any fixed θ,
let Fn(·; θ) be the maximizer of ln(θ, F ) with respect to F , then the estimator of θ is any θ̂n that maximizes
ln(θ;Fn(·; θ)). He proved that his estimators are consistent. But the asymptotic distribution of θ̂n is still
an open problem. In most of the statistics literature, Cosslett’s “distribution free maximum likelihood”
estimator would usually be called a maximum profile likelihood estimator; see e.g. Andersen, Borgan,
Keiding, and Gill (1993), page 482, or Severini and Wong (1992). Maximum profile likelihood estimation
is frequently a useful approach in dealing with semiparametric models. For example, for the proportional
hazards model under right censoring it yields Cox’s (1972) partial likelihood estimator. We will use this
terminology in the following.

Cosslett (1987) calculated the information for θ. He showed that when the covariate Z and the random
error ε are independent, then the information for θ (properly constrained) is positive. This suggests that it
is possible to construct an estimator of θ with the

√
n-convergence rate. Actually, we conjecture that the

maximum profile likelihood estimator for the binary choice model is asymptotically efficient. However, when
Z and ε are correlated, then the information for θ is zero, see, e.g., Chamberlain (1986). The implication of
this is that it is impossible to construct

√
n−consistent estimator in this situation.

Han (1987), in studying a more general regression model with the binary choice model as a special case,
proposed the maximum rank correlation estimator defined as the θ that maximize the following U-processes
of order two:

ψH
n (θ) =

1
n(n− 1)

∑
i 6=j

δi(1− δj)1{Z′
iθ<Z′

jθ}.(1.7)

Under appropriate conditions, he also proved that his estimator is consistent. With the independence
assumption of Z and ε, Sherman (1993) proved that Han’s maximum rank correlation estimator is

√
n-

consistent and satisfies a central limit theorem, but not efficient.
Yet another estimator based on rank consideration was introduced by C. Cavanagh, see Sherman (1991).

This estimator maximizes the following U-processes of order three:

1
n · (n− 1) · (n− 2)

∑
(i,j,k)

δi(1− δj)1{Z′
iθ<Z′

kθ}.

Here (i, j, k) ranges over the odered triples of distinct integers from the set {1, 2, . . . , n}. Sherman (1991)
provided sufficient conditions for Cavanagh’s estimator to be consistent and asymptotically normal.

To improve the convergence rate of Manski’s maximum score estimator, Horowitz (1992) proposed the
smoothed maximum score estimator, i.e., replace sgn(Z ′θ) in (1.6) by a smooth function K(Z ′θ/σn), where
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K is a twice differentiable function satisfies some other conditions, it is analogous to a cumulative distribution
function; and where σn is an appropriately chosen bandwidth, depending on the sample size n. He showed
that

nα(θ̃ − θ0) →d N(b, V ),

where 2/5 ≤ α < 1/2 depending on smoothness of the distributions of ε and Z ′θ0, and where b is the
asymptotic bias which can be estimated consistently. The advantage of Horowitz’s (1992) (also Manski’s)
estimator is that it does not assume the independence between ε and the covariate Z. Hence it is applicable
when ε and Z are dependent.

Klein and Spady (1993) considered the estimator by maximizing∑
i=1

n(τ̂i/2{δi log F̂ (−Z ′iθ)2 + (1− δi) log(1− F̂ (−Z ′iθ))2},

where F̂ (Z ′θ) is a kernel estimator of the probability P (δ = 1|Z ′θ), and τ̂i, i = 1, . . . , n are some trimming
factors depending on the data and some preliminary consistent estimator for θ0. They proved that, under
the independence assumption of Z and ε and other regularity conditions, their estimator is asymptotically
efficient.

However, in either Horowitz (1992) or Klein and Spady (1993), the estimation procedures involve choices
of a kernel function K and a bandwidth. So there is a question of which kernel to choose and how to decide
the bandwidth in the first place. This is a rather delicate matter in practice. It is well known that different
kernels and bandwidths may give quite different estimators for the underlying density; see, e.g., Silverman
(1986), chapter 2, pages 15-19; and chapter 3. Hence the sensitivity of the estimators with respect to the
choices of kernel and the bandwidth with moderate to moderately large sample size need to be carefully
studied.

Since the binary choice model and the linear regression model under interval censoring have very similar
structure, the methods developed for estimation of the binary choice model can be applied to the regression
model under interval censoring. For the case of extending Manski’s estimator or Han’s estimator to the
regression model under interval censoring, see Huang (1993b).

1.3. The Cox model under interval censoring The proportional hazards model, or the Cox
model (Cox, 1972), is probably the most widely used model in the analysis of failure time data. It has been
extensively studied for the case of right censored data; see Andersen and Gill (1982), Fleming and Harrington
(1991), and Andersen, Borgan, Gill, and Keiding (1993). However, there has been little rigorous theoretical
study of the Cox model when the failure time is interval censored.

The Cox proportional hazard model assumes the hazard function λ(t|z) of T given Z is related to the
baseline hazard function λ(t) in the following way.

λ(t|z) = eθzλ(t).

Under this specification, we have the following relationships for the cumulative hazard functions and the
survival functions.

Λ(t|z) = eθzΛ(t),

F (t | z) = F (t)exp(θz).

The semiparametric statistical model determined by one of the above relationships is

Q =
{
Qθ,Λ : θ ∈ Rd,Λ is a cumulative hazard function

}
.
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With interval censoring of the Cox model, we do not observe (T,Z) ∼ Qθ,Λ ∈ Q, but instead we observe
only X = (δ, Y, Z) = (1{T≤Y }, Y, Z) ∼ Pθ,Λ ∈ P. Here we will suppose that (Y, Z) have a joint distribution
(possibly unknown), but that the conditional distribution of T given (Y,Z) depends only on Z as specified
above. The goal, as before, is to estimate the regression parameter θ and the cumulative hazard function Λ
based on a sample of interval censored data X1, . . . , Xn.

Finkelstein and Wolfe (1985) proposed a semiparametric model which, instead of parametrizing the
conditional probability density of the failure time T given the covariate Z in standard way, assumes a
parametric form of the conditional probability of Z given T . They suggested using EM algorithm and the
Newton-Raphson algorithm to obtain the estimates of the regression parameters and the baseline survival
function. Finkelstein (1986) considered the Cox model with interval censoring. She proposed to use Newton-
Raphson iteration to compute the maximum likelihood estimates of the regression parameter and the baseline
cumulative hazard function. However, in both papers, the authors did not consider the properties of the
computational procedure and the asymptotic properties of the estimators.

In the case of right censoring, there is a nice counting process martingale associated with the Cox model,
and estimation of the regression parameter θ via partial likelihood is much easier than in the accelerated
failure time model. However, with interval censored data, there are no obvious martingales associated with
the Cox model, nor does partial likelihood work as simply. Moreover, the approaches developed in the binary
choice model are not applicable here, because of the very different structure the model. Until very recently,
there has been virtually no theory available for the Cox model with interval censoring. Huang (1993c)
has succeeded in proving that the maximum likelihood estimator of the regression parameter θ is, in fact,
consistent, asymptotically normal, and efficient. For further brief comments, see section 4.

1.4. Other types of interval censoring Besides the “case 1” interval censored data (or current
status data) mentioned above, there are other types of interval censoring.

“Case 2” interval censoring. For “case 2” interval censored data, we only know that T has
occurred either within some random time interval, or before the left end point of the time interval, or after
the right end point of the time interval. More precisely, there are two censoring variables U and V , the
observed is:

(δ, γ, U, V, Z) = (1{T≤U}, 1{U<T≤V }, U, V, Z).

Finkelstein (1986) used Newton-Raphson algorithm to compute the maximum likelihood estimators of
the regression parameter and the cumulative hazard function in the Cox model under this censoring scheme.
But virtually no theoretical results are available for regression models under “case 2” interval censoring.
However, in nonparametric setting, i.e. , when the observed i.i.d. samples are (δi, γi, Ui, Vi), i = 1, . . . , n,
Groeneboom and Wellner (1992) considered nonparametric maximum likelihood estimator (NPMLE) of the
distribution function F of T . They showed that the NPMLE of F is characterized by the greatest convex
minorant of a self-induced cumulative sum diagram, and they proved that the NPMLE is consistent. But
the distribution theory of the NPMLE has not been completely resolved.

A general interval censoring scheme. In some clinical trials, a patient may go through a
sequence of examinations. Let

Yi = (Yi,1, Yi,2, · · · , Yi,ni
)

denote the ith patient’s ordered examination times. Y ′i,js may be monotonically transformed so that it
may range from −∞ to ∞. The failure time Ti (or transformed in the same manner as Y ′i,js) of the ith
patient is only known to be bracketed between a pair of examination times (Yi,L, Yi,U ), where Yi,L is the last
examination time preceding Ti, and Yi,U is the first examination time following Ti. Adopt the convention
that Yi,0 = −∞, and Yi,ni+1 = ∞, we will have L = ji, U = ji + 1 for some 0 ≤ ji ≤ ni. Let Zi be the
covariate vector of the ith patient. Then the effective observations are

(Yi,L, Yi,U , Zi), , i = 1, . . . , n.
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Rabinowitz, Tsiatis, and Aragon (1993b) considered analysis of a linear regression model under this interval
censoring scheme. They proposed a class of score statistics that can be used in estimation and confidence
procedure. Their approach is similar to Rabinowitz, Tsiatis, and Aragon (1993). They also provided some
heuristics justifying their approach.

2. Efficient Scores and Information Bounds. In this section, we calculate efficient score functions
and information bounds for the regression parameter θ in the three models discussed in section 1.

As illustrated in Bickel, Klaassen, Ritov, and Wellner (1993), it is of considerable importance to calculate
the information bound in any semiparametric model. The information calculation serves four purposes: (a)
to see if it is possible at all to obtain

√
n−consistent estimators; (b) to see how difficult it is to estimate

the parameter; (c) to suggest estimation procedures that would lead to regular estimation in the sense that
the estimators have

√
n-convergence rate. (d) to suggest estimation procedures that would lead to efficient

estimation, i.e., estimators with asymptotic variance equal to the lower bound based on the information
calculation. In the regression model under interval censoring, we expect that there is severe loss of information
because we can not measure the response variable T exactly at all, and in fact, it is not clear in the first place
whether regular estimators for the regression parameter can be obtained. Hence the information calculation
seems to be particularly imperative.

Here are the calculations for the linear regression model (1.5) with interval censoring. First we calculate
the density of the data (for a sample of size one): by the assumption that (Y, Z) is independent of ε = T−Z ′θ,
P{δ = 1|Y, Z} = F (Y −Z ′θ). Hence the density of (δ, Y, Z) with respect to the product of counting measure
on {0, 1} and Lebesgue measure on R2 is

pθ,F (δ, y, z) = [F (y − z′θ)]δ[1− F (y − z′θ)]1−δg(z, y), for δ ∈ {0, 1}, (y, z) ∈ R2.

Since g(z, y) does not involve F or θ, it can be treated as known and will not be considered in the following.
The log-likelihood function is, up to an additive constant,

l(θ, F ) = log pθ,F (δ, Y, Z) = δ logF (Y − Z ′θ) + (1− δ) log(1− F (Y − Z ′θ)).

Then the information bound for θ can be calculated from the efficient score of θ derived from the log-
likelihood function. The following is the result concerning the efficient score and the information bound for
θ in model (1.5).

Theorem 2.1. (Linear regression with interval censoring). Let h(s) = E(Z|Y − Z ′θ = s). Suppose that
lims→∞ f(s) = 0 and h(s) is bounded. Then the efficient score for θ is

l∗θ(x) = f(y − z′θ)[z − E(Z|Y − Z ′θ = y − z′θ)]
[

1− δ

1− F (y − z′θ)
− δ

F (y − z′θ)

]
.(2.8)

Moreover, the information for θ is I(θ), where

I(θ) = E

{
f(Y − Z ′θ)2

F (Y − Z ′θ)(1− F (Y − Z ′θ))
[Z − E(Z|Y − Z ′θ)]⊗2

}
.(2.9)

To see how much information is lost under interval censoring, we calculated I(θ), and Iuc(θ), the
information without censoring, for a simple normal model where ε and Z are independent one-dimensional
normal random variables; ε ∼ N(0, σ2

ε ) and Z ∼ N(0, σ2
Z). Furthermore, assume that the censoring variable
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Y is independent of Z and ε (and hence also independent of (T,Z)) and Y ∼ N(0, σ2
Y ). With this model, it

is straightforward to calculate that

E(Z|Y − Zθ) = − θσ2
Z

σ2
Y + θ2σ2

Z

(Y − θZ) ,

and

Z − E(Z|Y − Zθ) =
σ2

Y

σ2
Y + θ2σ2

Z

Z − θσ2
Z

σ2
Y + θ2σ2

Z

Y .

Furthermore, note that Z − E(Z|Y − Zθ) and Y − θZ are independent. Hence the information for θ given
in (2.9) splits into the product of two terms:

I(θ) = E
f2

FF
(Y − θZ) · E(Z − E(Z|Y − θZ))2

= E
f2

FF
(Y − θZ) · σ2

Y σ
2
Z

σ2
Y + θ2σ2

Z

where f is the N(0, σ2
ε ) density and Y − θZ ∼ N(0, σ2

Y + θ2σ2
Z). Hence I(θ) can be computed numerically.

Furthermore, it is straightforward to calculate that the information for θ without censoring is Iuc(θ) =
Var(Z)If where If ≡ Ef (f ′/f)2. In particular, for the simple normal model here, Iuc(θ) = σ2

Z/σ
2
ε .

It is interesting to note that if the error distribution F is given by

F (x) =
1
2
(1 + sin(x))1[−π/2,π/2](x) + 1(π/2,∞)(x) ,

then −f ′(x)/f(x) = tan(x) and If = ∞, but f2(x)/(F (x)F (x)) = 1 for all x, and hence, in the situation of
Y and Z independent and normally distributed as above, I(θ) = σ2

Y σ
2
Z/(σ

2
Y + θ2σ2

Z) is finite. Similarly, for
the error distribution F given by

F (x) =
1
2
(1− sgn(x) sin(−x2/2))1[−

√
π,
√

π](x) + 1(
√

π,∞)(x) ,

then −f ′(x)/f(x) = −sgn(x){1/|x|+ |x| tan(−x2/2)} and If = ∞, but f2(x)/(F (x)F (x)) = x2 for |x| ≤
√
π,

and hence, in the situation of Y and Z independent and normally distributed as above, I(θ) = σ2
Y σ

2
Z/σ

2
ε is

finite and does not depend on θ.
The following table was computed under the assumption that σ2

ε = σ2
Y = σ2

Z = 1.
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Table 1: Comparison of information with and without censoring

Error density θ 0.0 0.2 0.4 0.6 0.8 1.0 1.5 2.0

Normal
I(θ) 0.4805 0.4581 0.4004 0.3283 0.2588 0.2002 0.1047 0.0577

Iuc(θ) 1 1 1 1 1 1 1 1

Logistic
I(θ) .2066 .1975 .1740 .1444 .1155 .0908 .0495 .0282

Iuc(θ) 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3

cos(x)/2
I(θ) 1.0 .9615 .8621 .7353 .6098 .5000 .3077 .2000

Iuc(θ) ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

|x| cos(−x2/2)/2
I(θ) 1. 1. 1. 1. 1. 1. 1. 1.

Iuc(θ) ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Now we present information calculations for the regression parameter θ in the binary choice model
discussed in section 1. This is really a special case of the linear regression model, except for the identifiability
problem mentioned previously in section 1: since Y = 0 with probability 1, θ is unidentifiable without some
restriction. A convenient restriction which makes the connection with the calculation for the linear regression
model is to suppose that the first component of θ ∈ Rd is a fixed (known) value, e.g. θ1 = −1; then we
relabel the remaining d− 1 components of θ as simply θ (so that θ = (−1, θ) where the θ appearing on the
right side is in Rd−1. Then, if Z = (Z1, Z2) where Z1 ∈ R and Z2 ∈ Rd−1, −θ′Z = Z1 − θ′Z2, and the
density of the observation (of a sample of size one) becomes

pθ,F (δ, y, z) = [F (z1 − z′2θ)]
δ[1− F (z1 − z′2θ)]

1−δg(z), for δ ∈ {0, 1}, z ∈ Rd.

Since g(z) does not involve F or θ, it can be treated as known and will not be considered in the following.
Here is the efficient score function and the information for θ in this model.

Theorem 2.2. (The binary choice model). Let h(s) = E(Z2|Z1−Z ′2θ = s). Suppose that lims→∞ f(s) = 0
and h(s) is bounded. Then the efficient score for θ is

l∗θ(x) = f(z1 − z′2θ)[z2 − E(Z2|Z1 − Z ′2θ = z1 − z′2θ)]
[

1− δ

1− F (z1 − z′2θ)
− δ

F (z1 − z′2θ)

]
.(2.10)

Moreover, the information for θ is I(θ), where

I(θ) = E

{
f(Z1 − Z ′2θ)

2

F (Z1 − Z ′2θ)(1− F (Z1 − Z ′2θ))
[Z2 − E(Z2|Z1 − Z ′2θ)]

⊗2

}
.(2.11)

Now we calculate the information for the regression parameter in Cox model under interval censoring.
The complete data is X0 = (T, Y, Z), where T is the failure time, Y is the censoring time, Z ∈ Rd is the

covariate. Suppose that given Z, T and Y are independent. The Cox proportional hazard model assumes
the hazard function λ(t|z) of T given Z is related to the baseline hazard function λ(t) in the following way.

λ(t|z) = ez′θλ(t).

Under this model, we have the following relationships for the cumulative hazard functions and the survival
functions.

Λ(t|z) = ez′θΛ(t), F (t | z) = F (t)exp(z′θ).

With interval censoring, we only observe

X = (δ = 1{T<Y }, Y, Z) ∈ {0, 1} × R+ × R.
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The problem is to estimate the parameter θ and the baseline hazard function. To obtain some insight into the
difficulty of this estimation problem, we first compute the information contained for the regression parameter
θ.

The probability density function of X is

pθ,F (x) = pθ,F (y, δ, z)
= F (y|z)δF (y|z)1−δg(y|z)h(z)
= [1− F (y)exp(z′θ)]δF (y)(1−δ) exp(z′θ)g(y|z)h(z).

Since g and h do not involve θ and F , and enter the density as factors of products, the information for θ
(and for F ) are the same whether g and h are known or unknown. So we assume that they are known in the
following.

Theorem 2.3. (The Cox model with interval censoring). The efficient score function for θ is

l∗θ(x) = exp(z′θ)Q(y, δ, z)Λ(y)
{
z − E[(Z exp(2z′θ)O(Y | Z) | Y = y]

E[(exp(2Z ′θ)O(Y | Z) | Y = y]

}
.(2.12)

where

Q(y, δ, z) = δ
F (y | z)

1− F (y | z)
− (1− δ)

and

O(y|z) =
F (y | z)

1− F (y | z)
.

Moreover, the information for θ is I(θ) where

I(θ) = E[l∗θ(X)l∗θ(X)]

= E

{
Λ2(Y | Z)Q2(Y, δ, Z)

[
Z − E(Z exp(2Z ′θ)O(Y | Z) | Y ]

E(exp(2θZ)O(Y | Z) | Y ]

]⊗2
}

= E

{
R(Y, Z)

[
Z − E(ZR(Y,Z) | Y )

E(R(Y, Z) | Y )

]⊗2
}
,

where R(Y, Z) ≡ Λ2(Y | Z)O(Y | Z). Hence the information for θ is positive unless ZE(R(Y, Z)|Y ) =
E(ZR(Y, Z)|Y ) with probability one.

Proof of Theorem 2.1. For simplicity, we will prove (2.8) and (2.9) for θ ∈ R. The generalization
to θ ∈ Rd is straightforward.

We first compute the score function for θ and F . The score function for θ is simply the derivative of the
log-likelihood with respect to θ. That is,

l̇θ(x) = −δ f(y − z′θ)z
F (y − z′θ)

+ (1− δ)
f(y − z′θ)z

1− F (y − z′θ)
.

Now suppose F0 = {Fη, |η| < 1} is a regular parametric sub-family of
F = {F : F � µ, µ = Lebesgue measure}. Set

∂

∂η
log fη(t) |η=0= a(t).

10



Then a ∈ L0
2(F ), and

∂

∂η
Fη(t)|η=0 =

∫ t

−∞
adF,

∂

∂η
F η(t)|η=0 = −

∫ t

−∞
adF.

The score operator for f is:

l̇f (a)(x) = δ

∫ y−z′θ

−∞ a(t)dF (t)
F (y − z′θ)

− (1− δ)

∫ y−z′θ

−∞ a(t)dF (t)
1− F (y − z′θ)

.

To calculate the information for θ in this semiparametric model, we follow the general theory of Bickel,
Klaassen, Ritov, and Wellner (1993). We first need to compute the efficient score function l̇∗θ for θ.
Geometrically, l̇∗θ can be interpreted as the residual of l̇θ projected in the space spanned by l̇fa, where
a ∈ L0

2(F ) = {a :
∫
adF = 0 and

∫
a2dF < ∞}. Thus we need to find a function a∗ with

∫
a∗dF = 0 so

that l̇∗θ = l̇θ − l̇fa∗ ⊥ l̇fa for all a ∈ L0
2(F ). That is

E(l̇θ − l̇fa∗)(l̇fa) = 0(2.13)

for all a ∈ L0
2(F ). Now we proceed to find a∗ such that (2.13) is true. We have

l̇θ(x)− (l̇fa∗)(x)

=

[
f(y − z′θ)z +

∫ y−z′θ

−∞
a∗(t)dF (t)

] [
1− δ

1− F (y − z′θ)
− δ

F (y − z′θ)

]
.

Thus

−E((l̇θ − l̇fa∗)(l̇fa)

= E

{[
1− δ

1− F (Y − Z ′θ)
− δ

F (Y − Z ′θ)

]2

×

[
f(Y − Z ′θ)Z +

∫ Y−Z′θ

−∞
a∗(t)dF (t)

] ∫ Y−Z′θ

−∞
a(t)dF (t)

}

= E

{[
f(Y − Z ′θ)Z +

∫ Y−Z′θ

−∞
a∗(t)dF (t)

]

×
[

1
1− F (Y − Z ′θ)

+
1

F (Y − Z ′θ)

] ∫ Y−Z′θ

−∞
a(t)dF (t)

}

= E

{[
1

1− F (s)
+

1
F (s)

] ∫ s

−∞
a(t)dF (t)

× E

[
(f(s)Z +

∫ s

−∞
a∗(t)dF (t)) |Y − Z ′θ = s

]}
.

So we can set

E

[
(f(s)Z +

∫ s

−∞
a∗(t)dF (t)) |Y − Z ′θ = s

]
= 0

to ensure that (2.13) is true. We obtain a∗ by solving the following equation:

f(s)E(Z|Y − Z ′θ = s) +
∫ s

−∞
a∗(t)dF (t) = 0.

11



In other words, we can choose any a∗ that satisfies the above equation. In particular, if f(s) and h(s) =
E(Z|Y −Z ′θ = s) are differentiable, and f(s) > 0 for any s ∈ R, then we have an explicit expression for a∗:

a∗(s) = −h′(s)− h(s)
f ′(s)
f(s)

.

By the assumptions, we have∫
a∗(t)dF (t) = lim

s→∞

∫ s

−∞
a∗(t)dF (t) = lim

s→∞
f(s)E(Z|Y − Z ′θ = s) = 0.

It follows that the efficient score function for θ is

l∗θ(x) = l̇θ(x)− l̇fa∗(x)

= f(y − z′θ)[z − E(Z|Y − Z ′θ = y − z′θ)]
[

1− δ

1− F (y − z′θ)
− δ

F (y − z′θ)

]
.

The information for θ is

I(θ) = E[l̇∗θ(X)]2

= E

{
f(Y − Z ′θ)2

[
1

1− F (Y − Z ′θ)
+

1
F (Y − Z ′θ)

]
[Z − E(Z|Y − Z ′θ)]2

}
= E

{
f(Y − Z ′θ)2

[
1

F (Y − Z ′θ)(1− F (Y − Z ′θ))

]
[Z − E(Z|Y − Z ′θ)]2

}
.

Hence the information for θ is positive unless Z = E(Z|Y − Z ′θ) with probability one. 2

Proof of Theorem 2.3. The log-likelihood function is

l(θ, F ) = log pθ,F (X) = δ log(1− F (Y )eθZ

) + (1− δ)eθZ logF (Y ) + constants.

Now we first compute the score function for θ and F . The score function for θ is simply the derivative of
the log-likelihood with respect to θ, that is,

l̇θ(x) = δ
F (y)exp(θz)eθzΛ(y)z

1− F (y)exp(θz)
+ (1− δ)zeθz logF (y).

Using the formula − logF (y) = Λ(y), it follows that

l̇θ(x) = zeθzΛ(y)
[
δ

F (y|z)
1− F (y|z)

− (1− δ)
]
.

Now suppose F0 = {Fη, |η| < 1} is a regular parametric sub-family of
F = {F : F � µ, µ = Lebesgue measure}. Set

∂

∂η
log fη(t) |η=0= a(t),

then a ∈ L0
2(F ) and

∂

∂η
F η(t)|η=0 =

∫ ∞

t

adF.
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The score operator for f is

l̇f (a)(x) = δ
−eθzF (y)exp(θz)−1

∫∞
y
adF

1− F (y | z)
+ (1− δ)eθz 1

F (y)

∫ ∞

y

adF

= eθz

∫∞
y
adF

F (y)

[
δ
−F (y | z)

1− F (y | z)
+ (1− δ)

]
.

Let Q(y, δ, z) = δ F (y|z)

1−F (y|z)
− (1− δ), then

l̇θ(x) = zeθzΛ(y)Q(y, δ, z),

and

l̇f (a)(x) = −eθz

∫∞
y
adF

F (y)
Q(y, δ, z).

To calculate the efficient score l̇∗θ for θ, we need to find a function a∗ with
∫
a∗dF = 0 so that

l̇θ − l̇fa∗ ⊥ l̇fa for all a ∈ L0
2(F ),

that is, E(l̇θ − l̇fa∗)(l̇fa) = 0 for all a ∈ L0
2(F ).

Letting exp(z) = ez, we have

l̇θ(x)− (l̇fa∗)(x) = exp(θz)Q(y, z, δ)

[
zΛ(y) +

∫∞
y
a∗dF

F (y)

]
.

Thus it follows that

−E(l̇θ − l̇fa∗)(l̇fa) = E

{
exp(2θZ)Q2(Y, Z, δ)

[
ZΛ(Y ) +

∫∞
Y
a∗dF

F (Y )

] ∫∞
Y
adF

F (Y )

}
,

where

Q2(y, δ, z) =
[
δ

F (y | z)
1− F (y | z)

− (1− δ)
]2

= δ

[
F (y | z)

1− F (y | z)

]2

+ (1− δ).

The conditional expectation of Q2(Y, δ, Z) given Y, Z is

E[Q2(Y, δ, Z) | Y = y, Z = z] =
F

2
(y | z)

1− F (y | z)
+ F (y | z) =

F (y | z)
1− F (y | z)

,

which is the conditional odds ratio of the conditional survival function of y and will be denoted as O(y | z)
below. So we have

−E(l̇θ − l̇fa∗)(l̇fa)

= EY,ZE

{
exp(2θZ)Q2(Y, δ, Z)[ZΛ(Y ) +

∫∞
Y
a∗dF

F (Y )
]

∫∞
Y
adF

F (Y )
| Y, Z

}

= E

{
exp(2θZ)O(Y | Z)[ZΛ(Y ) +

∫∞
Y
a∗dF

F (Y )
]

∫∞
Y
adF

F (Y )

}

= EY

{∫∞
Y
adF

F (Y )
E[exp(2θZ)O(Y | Z)[ZΛ(Y ) +

∫∞
Y
a∗dF

F (Y )
] | Y ]

}
.
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Suppose that

E

{
exp(2θZ)O(Y | Z)[ZΛ(Y ) +

∫∞
Y
a∗dF

F (Y )
] | Y

}
= 0.

Then

Λ(Y )E[exp(2θZ)O(Y | Z)Z | Y ] = −
∫∞

Y
a∗dF

F (Y )
E[exp(2θZ)O(Y | Z) | Y ],

and hence ∫ ∞

y

a∗dF = −Λ(y)F (y)E[Z exp(2θZ)O(Y | Z)|Y = y]
E[exp(2θZ)O(Y | Z) | Y = y]

.

Denoting the the term at the right side of the equation as −L(y), we have

a∗(y) =
L̇(y)
f(y)

,

provided f(y) > 0 for y ∈ R.
Hence if we can prove that a∗ ∈ L0

2(F ), a∗ meets our requirement. This is equivalent to prove that

lim
y→0

L(y) = 0.

This is true if the covariate Z has bounded support, i.e., there is constant M > 0 such that |Z| ≤ M with
probability 1. Because in this case, noticing that exp(2θz) and O(y | z) are both positive for all y and z, we
have, ∣∣∣∣E[Z exp(2θZ)O(Y | Z)|Y = y]

E[exp(2θZ)O(Y | Z) | Y = y]

∣∣∣∣ ≤ E[|Z| exp(2θZ)O(Y | Z)|Y = y]
E[exp(2θZ)O(Y | Z) | Y = y]

≤M.

This implies ∣∣∣∣∫ ∞

y

a∗dF

∣∣∣∣ ≤MΛ(y)F (y) → 0,

as y → 0. So the efficient score function for θ is

l̇∗θ(x) = l̇θ(x)− (l̇fa∗)(x)

= exp(θz)Q(y, δ, z)

{
zΛ(y) +

∫∞
y
a∗dF

F (y)

}

= exp(θz)Q(y, δ, z)Λ(y)
{
z − E[(Z exp(2θZ)O(Y | Z) | Y = y]

E[(exp(2θZ)O(Y | Z) | Y = y]

}
.

The information for θ is

I(θ) = E[l∗θ(X)]2(2.14)

= E

{
Λ2(Y | Z)Q2(Y, δ, Z)

[
Z − E(Z exp(2θZ)O(Y | Z) | Y ]

E(exp(2θZ)O(Y | Z) | Y ]

]2
}

(2.15)

= E

{
R(Y, Z)

[
Z − E(ZR(Y,Z) | Y )

E(R(Y, Z) | Y )

]2
}
,

where R(Y,Z) = Λ2(Y | Z)O(Y | Z). 2
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3. Maximum Likelihood Estimation via Profile Likelihood. In this section, we discuss maximum
likelihood estimates in semiparametric models obtained via profile likelihoods.

Consider a semiparametric model

P = {Pθ,F : θ ∈ Θ, F ∈ F},(3.16)

where Θ ⊂ Rd, and F is an infinite dimensional function space. In many applications, the parameter of
primary interest in the model P is the finite dimensional parameter θ. F is usually a parameter of secondary
interest or a “nuisance” parameter. Our main goal here is to estimate θ. Let p(·; θ, F ) be the density function
corresponding to Pθ,F ∈ P. Moreover, suppose X1, . . . , Xn are i.i.d. with density p(·; θ0, F0), where θ0 and
F0 are the assumed true values of the parameters. Let ln(θ, F ) =

∑n
i=1 log p(Xi; θ, F ) be the log-likelihood

function. Computing the maximum likelihood estimates via the profile likelihood proceeds by the following
steps:

(i) For any θ fixed, construct a function Fn(·; θ) by maximizing ln(θ;F ) with respect to F ∈ F : Fn(·; θ) =
argmaxF ln(θ, F ); i.e. supF∈F ln(θ, F ) = ln(θ, Fn(·; θ)). [If we knew θ = θ0, then Fn(·; θ0) is the
maximum likelihood estimator of F .]

(ii) Substitute Fn(·; θ) back into the log-likelihood function to obtain the profile log-likelihood function

l̃n(θ) ≡ ln(θ, Fn(·; θ)).

(iii) Maximize l̃n(θ) to obtain an estimator θ̂n of θ0 and F̂n ≡ Fn(·; θ̂n) of F0: θ̂n = argmax l̃n(θ).

It is straightforward to show that in fact (θ̂n, F̂n) is the maximum likelihood estimator of (θ, F ) (assuming
existence and uniqueness). This method of computing maximum likelihood estimates seems to date back to
Richards (1961); see also Kale (1963), Kalbfleisch and Sprott (1970), Patefield (1977), and the survey by
Barndorff-Nielsen (1991). See Cox and Oakes (1984), pages 41-43 for a nice treatment of the Weibull model
via profile likelihood. All of these authors are concerned with (regular) parametric models.

It is now well-known that in the case of the Cox model with right censoring, the Cox “partial likelihood”
is also simply the profile likelihood; see e.g. Johansen (1978), Bailey (1984), and Andersen, Borgan, Gill,
and Keiding (1993), page 482.

In the case of many semiparametric models P the maximization problem in step (i) is not sensible or
well-defined. This often happens when the space F is “too large”; in these cases some sort of regularization
is needed. However, in some important cases, such as the interval censoring problems considered here,
the maximization problem in (i) is well defined. For example, in the linear regression model with interval
censoring, F is the space of all distribution functions. The natural monotonicity constraints imposed on the
maximization of ln(θ, F ) with respect to F make Fn(·; θ) well defined for each θ ∈ Θ. These estimators were
first proposed in the further special case of the binary choice model by Cosslett (1983). For the Cox model
with interval censoring, F is the space of all cumulative hazard functions, again, the maximization problem
is well defined.

In both of the interval censoring models studied here, the iterative convex minorant algorithms developed
by Groeneboom (see Groeneboom and Wellner (1992), section 3.2, pages 69 - 73) converge sufficiently quickly
to allow for rapid computation of the profile likelihood function l̃n as a function of θ, and hence computation
of θ̂n numerically by a variety of methods. In fact, no iteration is needed in step (i) in the case of the linear
regression model with interval censoring. When θ ∈ Θ ⊂ R, it is fruitful to plot l̃n(θ) and compute θ̂n via a
simple grid search.

An important question is the efficiency of the maximum profile likelihood estimator θ̂n. One would expect
that if θ̂n is obtained strictly according to steps (i) - (iii), then with some appropriate regularity conditions,
it should be locally regular and (asymptotically) efficient. However, very little seems to be known about the
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properties of maximum likelihood estimators in the semiparametric model setting (when they exist). One
exception is the work by Severini and Wong (1992). They hypothesized that Fn(·; θ) converges to a function,
say F (·; θ), in an appropriate sense, and that F (·; θ) satisfies F (·; θ0) = F0(·) and

EF0

[∣∣∣∣ ddθ ∂l∂F (θ, F (·; θ))
∣∣∣∣
θ=θ0

]
= 0

where l(θ, F (·; θ) is the limit of ln(θ, Fn(·; θ)). They call such F (·; θ) a least favorable curve. Under additional
regularity and smoothness conditions on Fn(·; θ) including existence of second derivatives with respect to θ,
they showed that θ̂n is asymptotically efficient,

Unfortunately however, the regularity and smoothness conditions of Severini and Wong’s (1992) theorem
are too severe to apply to maximum likelihood estimators in the interval censoring models of interest here:
Fn(·; θ), obtained by maximizing ln(θ, F ) over distribution functions F (or, in the case of the Cox model,
over cumulative hazard functions Λ), is not a smooth function with respect to θ in either of the regression
models we consider. However, we conjecture that the maximum likelihood estimators θ̂n is asymptotically
efficient in all of the models considered here.

One way to get around these difficulties is to take broader view toward step (i): to obtain an
asymptotically efficient estimator of θ, we might relax the requirement that Fn(·; θ) be the solution of
maxF∈F ln(θ, F ). It could be constructed in other ways tailored to the specific problem. For example,
for the linear regression model with interval censoring, Fn(·; θ) could be a histogram estimator or a kernel
estimator. Another way around these difficulties is to study estimators obtained from the “estimated efficient
score equations” or suitable modifications thereof. Several different strategies are considered in the context
of regression models with interval censoring in Huang (1993c).

4. Profile Likelihood for Regression Models with Interval Censoring. Now consider the profile
likelihood function in the case of linear regression with interval censoring.

Suppose we observe
(δ1 = 1{T1≤Y1}, Y1, Z1), . . . , (δn = 1{Tn≤Yn}, Yn, Zn),

where (Ti, Yi, Zi), i = 1, . . . , n are i.i.d. random variables with distribution Qθ0,F0 . Here θ0 and F0 are the
true regression parameter and the true error distribution respectively. The main goal is to estimate the
regression parameter θ in the presence of the infinite dimensional nuisance parameter F . Recall that the
log-likelihood function is, up to an additive constant,

ln(θ, F ) =
n∑

i=1

log pθ,F (δi, Yi, Zi)

=
n∑

i=1

δi logF (Yi − Z ′iθ) + (1− δi) log(1− F (Yi − Z ′iθ))

= nPn {δ logF (y − z′θ) + (1− δ) log(1− F (y − z′θ))}
= nQn

{
1{t≤y} logF (y − z′θ) + 1{t>y} log(1− F (y − z′θ))

}
,

where Pn is the empirical measure of the samples (δi, Yi, Zi), i = 1, . . . , n; Qn is the empirical measure of the
unobservable random variables (Ti, Yi, Zi), i = 1, . . . , n.

The Fn(·; θ) that maximizes ln(θ;F ) (for each fixed θ) is a right continuous increasing step function. It
can be expressed by the min-max formula of isotonic regression theory, see e.g., Robertson, Wright, and
Dykstra (1988), chapter 1. Let ri(θ) = Yi − Z ′iθ, and let r(i)(θ) be the ordered values of ri(θ), i = 1, . . . , n,
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and let δ(i)(θ) be the corresponding δ, i.e., if rj(θ) = r(i)(θ), then δ(i)(θ) = 1{Tj≤Yj}. Then

Fn(r(i)(θ); θ) = max
s≤i

min
t≥i

∑
s≤k≤t δ(k)(θ)
t− s+ 1

, i = 1, . . . , n.

The computation can be easily carried out using the “pool adjacent violators” algorithm. Geometrically,
Fn(·; θ) can be described as the slope of the greatest convex minorant (GCM) of the points (i,

∑i
j=1 δ(j)(θ))

on [0, n]. See, e.g., Groeneboom and Wellner (1992), Proposition 1.2, page 41. Equivalently, this can be
stated as in the following lemma. For (t, θ) ∈ R× Rd, define

Vn(t; θ) =
1
n

n∑
i=1

{Ti ≤ Yi}{Yi − Z ′iθ ≤ t}(4.17)

=
∫
{u ≤ y}{y − z′θ ≤ t}dQn(u, y, z),

Wn(t; θ) =
1
n

n∑
i=1

{Yi − Z ′iθ ≤ t} =
∫
{y − z′θ ≤ t}dQn(u, y, z).(4.18)

Lemma 4.1. Let Vn and Wn be defined by (4.17) and (4.18), respectively. Then Fn(·; θ) is the left
derivative of the greatest convex minorant of the cumulative sum diagram (Wn(s; θ), V n(s; θ)), defined by
the points

Pj =
(
Wn(r(j)(θ); θ), Vn(r(j)(θ); θ)

)
, j = 0, 1, . . . , n;

where P0 = (0, 0) and V n and Wn are obtained by linear interpolation of the points P0, . . . , Pn.

Figures 1 and 3 show the profile log likelihoods l̃n(θ) = ln(θ, Fn(·, θ)) for several sample sizes of simulated
data from the linear regression model with interval censoring for the following situations: in Figure 1, ε,
Y , and Z are all independent with N(0, 1) distributions and the true θ0 = 1. In Figure 3, ε ∼ N(0, 1),
Y ∼ U(−2, 2), and Z ∼ U(−1, 1) are all independent and again the true θ0 = 1. Figures 2 and 4 show
the estimated and true error distributions for the four different sample sizes and two situations: figure 2
accompanies figure 1 and figure accompanies figure 3. Table 2 shows the computed estimates θ̂n for the two
situations and four sample sizes.
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Table 2: Estimates θ̂n of θ0 = 1

sampling situation n 100 200 400 800
Normal Error, Normal Y,Z 0.7839 1.1256 0.9949 1.0351
Normal Error, Uniform Y,Z 0.8191 0.9146 0.9045 0.9748

INSERT FIGURES HERE

Although we are not yet able to show that the maximum likelihood estimator θ̂n = argmaxl̃n(θ) ≡
argmaxln(θ, Fn(·; θ)) is asymptotically efficient, we do have the following preliminary consistency result.

Let G denote the joint distribution of (Y, Z), let H be the distribution of W ≡ Y − Z ′θ0, and let G0

be the joint distribution of (W,Z). We also let P ≡ Pθ0,F0 denote the joint law of each of the i.i.d. triples
(δi, Yi, Zi), i = 1, 2, . . ..

Theorem 4.1. Suppose that:
(i) The true value of the regression parameter θ0 ∈ Θ, where Θ is a bounded subset of Rd.
(ii) H{w : 0 < F0(w) < 1} = 1.
(iii) The distribution of Z is not concentrated on a hyperplane.
Then

θ̂n →p θ0,(4.19)

and
Fn(t; θ̂n) →p F0(t)(4.20)

for almost all (with respect to H) t ∈ S ≡ {t : 0 < F0(t) < 1, t a continuity point of F0}.

Proof. Since Θ is bounded, for any subsequence of θ̂n, we can find a further subsequence converging
to θ∗ ∈ Θ, the closure of Θ. On the other hand, by Helly’s selection theorem, for any subsequence of
Fn(·; θ̂n), we can find a further subsequence converging in distribution to some subdistribution function F∗;
i.e. pointwise convergence at continuity points of F∗. Apparently, we can choose the convergent subsequence
of θ̂n and the convergent subsequence of Fn(·; θ̂n) so that they have the same indices. Without causing
confusion, we assume that θ̂n converges to θ∗ and that Fn(·; θ̂n) converges to F∗. To prove the theorem, it
suffices to prove that θ∗ = θ0 and F∗ = F0.

Let
an = inf{y − z′θ̂n : (y, z) ∈ supp(G)}, bn = sup{y − z′θ̂n : (y, z) ∈ supp(G)},

a∗ = inf{y − z′θ∗ : (y, z) ∈ supp(G)}, b∗ = inf{y − z′θ∗ : (y, z) ∈ supp(G)},

where supp(G) is the support of G, the joint distribution of (Y,Z). We now prove that for any a > a∗ and
b < b∗, there exist finite positive constants 0 < M1 < M2 < 1 such that

M1 ≤ Fn(a; θ̂n) ≤ Fn(b; θ̂n) ≤M2(4.21)

with probability one for all n sufficiently large. Since (θ̂n, Fn) maximizes ln(θ, F ), we have∫
[δ logFn(y − z′θ̂n; θ̂n) + (1− δ) log(1− Fn(y − z′θ̂n; θ̂n))]dPn(δ, y, z)(4.22)

≥
∫

[δ logF0(y − z′θ0) + (1− δ) log(1− F0(y − z′θ0))]dPn(δ, y, z).
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Since an →a.s. a∗, an < a for n sufficiently large. Noticing that δ logFn(y − z′θ̂n; θ̂n) and (1 − δ) log(1 −
Fn(y − z′θ̂n; θ̂n)) are non-positive for all (y, z), it follows that∫

1[an,a](y − z′θ̂n)δ logFn(y − z′θ̂n; θ̂n)dPn(δ, y, z)

≥
∫

[δ logF0(y − z′θ0) + (1− δ) log(1− F0(y − z′θ0))]dPn(δ, y, z).

Since
E[δ logF0(Y − Z ′θ0) + (1− δ) log(1− F0(Y − Z ′θ0))] ≤ 0,

and because x log x ≥ −e−1 for 0 < x < 1,

E[δ logF0(Y − Z ′θ0) + (1− δ) log(1− F0(Y − Z ′θ0))]
= E[F0(Y − Z ′θ0) logF0(Y − Z ′θ0) + (1− F0(Y − Z ′θ0)) log(1− F0(Y − Z ′θ0))]
≥ −2/e > −1.

It follows from the strong law of large numbers that, with probability one,∫
[δ logF0(y − z′θ0) + (1− δ) log(1− F0(y − z′θ0))]dPn(δ, y, z) ≥ −2

for n sufficiently large. So by the monotonicity of Fn(·; θ̂n), for n sufficiently large,

logFn(a; θ̂n)
∫
δ1[an,a](y − z′θ̂n)dPn(δ, y, z)

≥
∫
δ1[an,a](y − z′θ̂n) logFn(y − z′θ̂n)dPn(δ, y, z) ≥ −2.

By the Glivenko-Cantelli theorem for half-spaces, a VC class of sets,

(Pn − P )(δ1[an,a](y − z′θ̂n)) →a.s. 0.

Furthermore, by the bounded convergence theorem,

P (δ1[an,a](y − z′θ̂n)) =
∫
δ1[an,a](y − z′θ̂n)dP (δ, y, z)

→a.s.

∫
δ1[a∗,a](y − z′θ∗)dP (δ, y, z) = P (δ1[a∗,a](y − z′θ∗)),

and hence
Pn(δ1[an,a](y − z′θ̂n)) →a.s. P (δ1[a∗,a](y − z′θ∗)).

Moreover, it follows from condition (ii) that

P (δ1[a∗,a](y − z′θ∗)) = E[F0(Y − Z ′θ0)1[a∗,a](Y − Z ′θ∗)]

is positive. It follows that, with probability one, for n sufficiently large,

Fn(a; θ̂n) ≥M1 ≡ exp(−4/E[F0(Y − Z ′θ0)1[a∗,a](Y − Z ′θ∗)]) > 0.

Thus the first inequality in (4.21) follows. The second inequality of (4.21) can be proved similarly.
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By (4.21), and by the fact that the class of all bounded monotone functions is a VC-hull class, see Dudley
(1987) or Van der Vaart and Wellner (1993), we have∫

1[a,b](y − z′θ̂n)
[
δ logFn(y − z′θ̂n; θ̂n) + (1− δ) log(1− Fn(y − z′θ̂n; θ̂n))

]
d(Pn − P )(δ, y, z) →a.s. 0.

By the bounded convergence theorem,∫
1[a,b](y − z′θ̂n)

[
δ logFn(y − z′θ̂n; θ̂n) + (1− δ) log(1− Fn(y − z′θ̂n; θ̂n))

]
dP (δ, y, z)

→a.s.

∫
1[a,b](y − z′θ∗) [δ logF∗(y − z′θ∗)(1− δ) log(1− F∗(y − z′θ∗))] dP (δ, y, z)

Combining the above, we have∫
1[a,b](y − z′θ̂n)

[
δ logFn(y − z′θ̂n; θ̂n) + δ log(1− Fn(y − z′θ̂n; θ̂n))

]
dPn(δ, y, z)

→a.s.

∫
1[a,b](y − z′θ∗) [δ logF∗(y − z′θ∗) + (1− δ) log(1− F∗(y − z′θ∗))] dP (δ, y, z).

In view of (4.22), this implies, for any a∗ < a < b < b∗,

E
{
1[a,b](Y − Z ′θ∗)(δ logF∗(Y − Z ′θ∗) + (1− δ) log(1− F∗(Y − Z ′θ∗)))

}
≥ E {δ logF0(Y − Z ′θ0) + (1− δ) log(1− F0(Y − Z ′θ0))} .

Letting a ↓ a∗, and b ↑ b∗, it follows that

E {δ logF∗(Y − Z ′θ∗) + (1− δ) log(1− F∗(Y − Z ′θ∗))}
≥ E {δ logF0(Y − Z ′θ0) + (1− δ) log(1− F0(Y − Z ′θ0))} ,

and by subtraction this yields

EP

{
δ log

F∗(Y − Z ′θ∗)
F0(Y − Z ′θ0)

+ (1− δ) log
1− F∗(Y − Z ′θ∗)
1− F0(Y − Z ′θ0)

}
≥ 0

where P = Pθ0,F0 . But, with P∗ = Pθ∗,F∗ , the expression on the left side is just −K(P, P∗), the Kullback-
Leibler “distance” from P to P∗. Since K(P, P∗) ≥ 0 with equality if and only if P∗ = P , see e.g. Shorack
and Wellner (1986), proposition 24.3.1, page 790, the two inequalities together imply that K(P, P∗) = 0 and
P∗ = P . This implies that F∗(y − z′θ∗) = F0(y − z′θ0) for almost all (y, z) (with respect to G, the joint
distribution of (Y,Z)), or F∗(w + z′(θ0 − θ∗)) = F0(w) for almost all (w, z) (with respect to G0, the joint
distribution of (W,Z) ≡ (Y − Z ′θ0, Z)). Since the distribution of Z is not concentrated on any hyperplane
by (iii), this implies that θ∗ = θ0 and hence that F∗(w) = F0(w) for almost all w (with respect to H, the
distribution of W ≡ Y − Z ′θ0). 2

It would be very desirable to relax the assumption that Θ is bounded in theorem 4.1.
Since Fn(s; θ) is the slope of the convex minorant of the diagram (Wn(s; θ), V n(s; θ)), so intuitively, it

should converge to the slope F (s; θ) of the diagram (W (s; θ), V (s; θ)). In fact, it can be shown that Fn(s, θ)
converges to

F (s; θ) =
∂V (s; θ)
∂W (s; θ)

=
∫
F0(s+ z′θ − z′θ0)g(s+ z′θ, z)dz∫

g(s+ z′θ, z)dz
.(4.23)

Notice that F (s; θ0) = F0(s). Furthermore, this is the least favorable curve in the sense of Severini and
Wong (1992) for this model.
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We do not yet have a proof of asymptotic efficiency of the maximum likelihood estimator θ̂n (or even that
θ̂n−θ0 = Op(n−1/2)). We conjecture that under minimal regularity conditions

√
n(θ̂n−θ0) →d N(0, I(θ0)−1)

where I(θ0) is as given in Theorem 2.1. However, as discussed in section 1 it is possible to construct inefficient
estimators of θ which do satisfy, under more regularity conditions, θ̃n − θ0 = Op(n−1/2); several different√
n−consistent estimators are studied in Huang (1993c). Then it is natural to estimate F0 by Fn(·; θ̃n). Here

Fn(·; θ) = argmaxF ln(θ, F ) is the estimator described in lemma 4.1.
Note that if G has density g, then H(s) = P (Y − Z ′θ0 ≤ s) =

∫ ∫
g(u + z′θ0, z)1{u≤s}dzdu, and H has

density h(s) = H ′(s) =
∫
g(s+ z′θ0, z)dz.

Theorem 4.2. Let s0 be such that 0 < F0(s0),H(s0) < 1. Suppose that

(i) F0(s) and H(s) are differentiable, with bounded derivatives f0(s) and h(s), and have strictly positive
derivatives f0(s0) and h(s0) at s = s0, respectively. Moreover, f0(s) and k(s) are continuous in a
neighborhood of θ0.

(ii) The support of the covariate Z is bounded, i.e., there exists z0 > 0 such that |Z| ≤ z0 with probability
one.

(iii) θ̃n − θ0 = Op(n−1/2).

Then:
n1/3[Fn(s0; θn)− Fn(s0; θ0)] →p 0 as n→∞ ,(4.24)

and [
2h(s0)

f0(s0)F0(s0)(1− F0(s0))

]1/3

n1/3[Fn(s0; θn)− F0(s0)] ⇒ 2Z, as n→∞,(4.25)

where Z is the last time where standard two-sided Brownian motion B(s) minus the parabola x(s) = s2

reaches its maximum.

Theorem 4.2 is proved in Huang (1993c).
From this theorem, the maximum likelihood estimator of the distribution F0 converges at rate n1/3 even

if the regression parameter θ0 is known, which is slower than the usual
√
n-convergence rate. Groeneboom

and Wellner (1992) showed that the information operator for F0 is not invertible, hence there is no hope to
construct

√
n-convergence rate estimator for F0. Also from this theorem, when we have an estimator θ̃n of

θ0 such that θ̃n has
√
n-convergence rate, then asymptotically, Fn(s; θ̃n) is as good as Fn(s; θ0). Actually,

the conclusion remains valid if θ̃n − θ0 = Op(n−α) for some α > 1/3.
Results similar to the above also hold for the Cox model with interval censoring. In fact, by comparing

likelihoods, it is clear that the likelihood in the case of the Cox model with interval censoring is a smoother
function of θ than is the likelihood in the case of the linear regression model with interval censoring.
Exploiting this smoothness of the underlying model, Huang (1993c) has succeeded in proving that the
maximum likelihood estimator θ̂n is consistent, asymptotically normal, and efficient under mild regularity
assumptions, even though Λn(·; θ) is not a smooth function of θ, and the least favorable curve Λ(·; θ) cannot
be calculated explicitly in this case: it turns out to be the solution of∫ ∞

y

[
1{t≤y′}

exp(−ez′θΛ(y′; θ))
1− exp(−ez′θΛ(y′; θ))

− 1{t>y′}

]
ez′θdQ(t, y′, z) = 0 for all y .(4.26)

Full details will appear in Huang (1993c).
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