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ABSTRACT We review estimation in interval censoring models, including
nonparametric estimation of a distribution function and estimation of re-
gression models. In the nonparametric setting, we describe computational
procedures and asymptotic properties of the nonparametric maximum like-
lihood estimators. In the regression setting, we focus on the proportional
hazards, the proportional odds and the accelerated failure time semipara-
metric regression models. Particular emphasis is given to calculation of the
Fisher information for the regression parameters. We also discuss compu-
tation of the regression parameter estimators via profile likelihood or max-
imization of the semiparametric likelihood, distributional results for the
maximum likelihood estimators, and estimation of (asymptotic) variances.
Some further problems and open questions are also reviewed.

1. Introduction: interval censoring models.

Interval censored data arises when a failure time T can not be observed,
but can only be determined to lie in an interval obtained from a sequence
of examination times. Kongerud and Samuelsen (1991) and Samuelsen and
Kongerud (1993) report two studies on respiratory symptoms and asth-
matic symptoms among Norwegian aluminum workers. In these studies, the
time to the development of respiratory symptoms or asthmatic symptoms
is only known to be between two health examinations. Other examples of
interval censored data in animal carcinogenicity and epidemiology studies
can be found in Hoel and Walburg (1972), Finkelstein and Wolfe (1985),
Finkelstein (1986), and Self and Grossman (1986). Diamond, McDonald
and Shah (1986), and Diamond and McDonald (1991) contain examples of
interval censored data from demography studies. Closely related censoring
schemes also arise in AIDS studies, see for example, De Gruttola and La-
gakos (1989), Shiboski and Jewell (1992), Jewell, Malani, and Vittinghoff
(1994), etc.

We now briefly describe the three types of interval-censored data consid-
ered in this review. Let T ( or Ti) be the unobservable failure time.
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1.1. “Case 1” interval censoring or current status data.

Suppose that U is an “examination” or “observation” time. Then suppose
that an observation consists of the random vector (δ, U) where δ = 1[T≤U ],
or (δ, U, Z) if a vector Z of covariates is also available. The only knowledge
about the “failure time” T is whether it has occurred before U or not.
Such data is substantially different from right-censored data. In a right
censorship model, the observed data is (min(T, Y ), 1{T≤Y }, Z) where Y is
a “censoring time” and the probability P{T ≤ Y } of observing the survival
time T exactly is positive. But with current status data, we are not able to
observe the exact value of the survival time at all, just 1{T≤Y } (or 1{T≤U}).

The earliest work on nonparametric likelihood estimation (NPMLE) with
current status data goes back to Ayer, Brunk, Ewing, Reid and Silver-
man (1955) and Van Eeden (1956, 1957). These authors introduced the
pool-adjacent-violators algorithm to compute the NPMLE of a distribu-
tion function. Groeneboom (1987) established asymptotic properties of the
NPMLE. See also Groeneboom and Wellner (1992) and Huang and Wellner
(1995a).

In a semiparametric setting, Huang (1994, 1995, 1996) showed that the
maximum likelihood estimator (MLE) for the regression parameter of the
proportional hazards or proportional odds regression model with “case 1”
interval censoring is asymptotically normal and efficient. Rossini and Tsi-
atis (1996) proved asymptotic normality and efficiency of sieve estimators
for the proportional odds regression model.

There is an enormous amount of literature in econometrics on the binary
choice model. This model can be thought as a linear regression model with
unknown error distribution under “case 1” interval censoring. The first con-
sistent estimator, the maximum score estimator, was introduced by Manski
(1975, 1985). Kim and Pollard (1990) derived its asymptotic distribution.
See also Cosslett (1983, 1987), Chamberlain (1986), Han (1987), Horowitz
(1992), and Klein and Spady (1993) for related work. In particular, the
estimator proposed by Klein and Spady (1993) is asymptotically efficient
under appropriate conditions.

1.2. “Case 2” and “case k” interval censoring.

With “case 2” interval censored data, we only know that T has occurred
either within some random time interval, or before the left end point of
the time interval, or after the right end point of the time interval. More
precisely, suppose that there are two examination (or observation) times U
and V , the data observed is:

(δ1, δ2, U, V, Z) = (1{T≤U}, 1{U<T≤V }, U, V, Z).

“Case k” interval censoring arises when there are k examination times
per subject. This is a generalization of “case 2” interval censoring; see e.g.
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Wellner (1996).
Estimation of the proportional hazards model (Cox, 1972) and the pro-

portional odds regression model was considered by Huang and Wellner
(1995b) and Huang and Rossini (1995), respectively. They showed that the
MLEs of the regression parameters in both models are asymptotically nor-
mal and efficient, even though the MLEs of the baseline cumulative hazard
function or odds function only have n1/3-rates of convergence.

1.3. A general interval censoring scheme.

Suppose that
0 < Yi,1 < Yi,2 < · · · < Yi,ni < ∞

are ordered examination times for the ith patient, i = 1, . . . , n. Denote Yi =
(Yi,1, Yi,2, · · · , Yi,ni

). Let Ti be the ith patient’s unobservable failure time.
Computationally, it is convenient to reduce the general interval censoring
to “case 2” interval censoring by considering three possibilities: (i) the
failure occurred before the first examination time. Denote Ui = Yi,1 and
let Vi = Yi,2 . Let δ1i = 1[Ti≤Ui] and δ2i = 1[Ui<Ti≤Vi]. Then δ1i = 1 and
δ2i = 0. (ii) Ti is known to be bracketed between a pair of examination
times (Yi,L, Yi,R), where Yi,L is the last examination time preceding Ti

and Yi,R is the first examination time following Ti. Denote Ui = Yi,L and
Vi = Yi,R. Define δ1i and δ2i as in (i). Then δ1i = 0 and δ2i = 1. (iii) At
the last examination, the failure did not occur. Then δ1i = 0 and δ2i = 0.
The effective observations are

(δ1i, δ2i, Ui, Vi), i = 1, . . . , n.

Turnbull (1976) derived self-consistency equations for a very general cen-
soring scheme which includes interval censoring as a special case. This
yields an EM algorithm for computing the NPMLE. Groeneboom’s Itera-
tive Convex Minorant algorithm can be used for computing the NPMLE.
As suggested in Groeneboom and Wellner (1992), the Iterative Convex
Minorant (ICM) algorithm is considerably faster than the EM algorithm,
especially when the sample size is large. Finkelstein (1986) and Rabinowitz,
Tsiatis and Aragon (1995) considered estimation in the proportional haz-
ards model (Cox, 1972), and in the linear regression model, with general
interval censoring, respectively. Large sample properties of their estimators
are still unknown.

Computationally, the general interval censoring scheme can be reduced
to “case 2” interval censoring. The estimation approach described in section
4 for “case 2” interval censoring works for general interval censoring. The
distributional results do not carry over to the general case although they
can be easily extended to “case k” interval censoring.

The organization of this paper is as follows. In section 2, computation
and distributional results for the nonparametric maximum likelihood esti-
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mator F̂n (NPMLE) of a distribution function with interval censored are
discussed. Section 3 contains recent results on maximum likelihood esti-
mation of three widely used regression models (the proportional hazards,
the proportional odds, and the accelerated failure time models) with “case
1” interval censored data. Section 4 contains results on estimation in these
three regression models with “case 2” interval censored data We empha-
size that, although the distributional results do not carry over to general
interval censored data, the estimation procedures do carry over. In this
section, consistency of the maximum likelihood estimators and informa-
tion calculation in the accelerated failure time model are new results as
far as we know. Section 5 contains brief discussions on further problems.
Some proofs, including most of the information calculations, are included
in section 6. Throughout, we emphasize the importance of information cal-
culations in the (semiparametric) regression models we consider. These cal-
culations not only provide benchmarks for comparison of estimators, but
also help to understand the structure of the models which can facilitate
proofs of the distributional results for maximum likelihood estimators and
can lead to natural families of estimating equations.

2. Nonparametric likelihood estimation.

We assume that the examination times are independent of the failure time
and that their distribution is independent of the distribution function of the
failure time. With these conditions, the joint densities and the likelihood
functions are:

(1) “Case 1” interval censoring: the joint density of a single observation
X = (δ, U) is

p(x) = F (u)δ(1− F (u))1−δh(u),

where h(u) is the density of U . The log-likelihood function of a random
sample of size n is (up to an additive term not involving F )

ln(F ) =
n∑

i=1

{δi log F (Ui) + (1− δi) log(1− F (Ui)}.

(2) “Case 2”, and general interval censoring: the joint density of a single
observation X = (δ1, δ2, U, V ) of a random sample of size n is

p(x) = F (u)δ1 [F (v)− F (u)]δ2(1− F (v))δ3h(u, v), (2.1)

where δ3 = 1 − δ1 − δ2 and h(u, v) is the joint density of (U, V ). The
log-likelihood function is

ln(F ) =
n∑

i=1

{δ1i log F (Ui) + δ2i log(F (Vi)− F (Ui)) + δ3i log(1− F (Vi))},
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where δ3i = 1 − δ1i − δ2i. Notice that for general interval censoring, the
meaning of (δ1i, δ2i, Ui, Vi) is described in section 1. Since the likelihood
functions ln(F ) in both (1) and (2) depend on F only through its values
at the observation times Ui (or (Ui, Vi) in the case of (2)), our convention
is that the NPMLE F̂n of F in either (1) or (2) is a piecewise constant
function with jumps only at the observation points. Although “case 1”
interval censoring can be regarded as a special case of “case 2” interval
censoring by taking Ui = 0 (or Vi = ∞), maximization of ln(F ) given in
(2) is substantially more difficult.

2.1. Computation of F̂n.

For “case 1” interval-censored data, the NPMLE F̂n that maximizes ln(F )
of (1) can be obtained as follows:

(i) Order the examination times: U(1) ≤ U(2) ≤ ... ≤ U(n) and relabel δi

accordingly to obtain δ(1), . . . , δ(n).
(ii) Plot (i,

∑i
j=1 δ(j)), i = 1, . . . , n.

(iii) Form the Greatest Convex Minorant (GCM) G∗ of the points in step
(ii).

(iv) F̂n(U(i)) = left-derivative of G∗ at i, i = 1, . . . , n.
Equivalently, F̂n can be expressed by the max-min formula:

F̂n(U(i)) = max
j≤i

min
k≥i

∑k
m=j δ(m)

k − j + 1
. (2.2)

However, for “case 2” or the general interval censoring, there is no closed
form expression for F̂n. We describe the iterative convex minorant algo-
rithm and the EM algorithm for computing F̂n. Let Pn denote the empirical
measure of a sample of size n from the “case 2” density (2.1);

Pn =
1
n

n∑
i=1

δ(δi,Ui,Vi).

For any distribution function F and t ≥ 0, denote

WF (t) =
∫

u≤t

{
δ1

F (u)
− δ2

F (v)− F (u)

}
d Pn (2.3)

+
∫

v≤t

{
δ2

F (v)− F (u)
− δ3

1− F (v)

}
d Pn,

GF (t) =
∫

u≤t

{
δ1

F (u)2
+

δ2

(F (v)− F (u))2

}
d Pn (2.4)

+
∫

v≤t

{
δ2

(F (v)− F (u))2
+

δ3

(1− F (v))2

}
d Pn,
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and
VF (t) = WF (t) +

∫
[0, t]

F (s)dG(s) . (2.5)

Let J1n be the set of examination times Ui such that Ti either belongs to
[0, Ui] or (Ui, Vi], and let J2n be the set of examination times Vi such that
Ti either belongs to (Ui, Vi] or (Vi,∞). Furthermore, let Jn = J1n ∪ J2n

and let T(j) be the jth order statistic of the set Jn.

Proposition 2.1. (Groeneboom, 1991) Let T(1) correspond to an obser-
vation Ui such that δ1i = 1, and let the largest order statistic T(m) corre-
spond to an observation Vi such that δ1i = δ2i = 0. Then F̂n is the NPMLE
of F0 if and only if F̂n is the left derivative of the convex minorant of the
self-induced cumulative sum diagram formed by the points

P(j) = (G bFn
(T(j)), V bFn

(T(j))), j = 1, 2, . . . ,m

and P(0) = (0, 0).

With this characterization, Groeneboom introduced the iterative convex
minorant algorithm to compute F̂n. See Jongbloed (1995a,b) for modifi-
cations of the iterative convex minorant algorithm which always converge.
Zhan and Wellner (1995) have adapted Jongbloed’s argument to the related
double censoring model; see also Wellner and Zhan (1996).

It can be verified that the NPMLE F̂n satisfies the self-consistency equa-
tion:

F̂n(t) = E bFn
[Fn(t) | δi, γi, Ui, Vi, i = 1, . . . , n] (2.6)

=
1
n

n∑
i=1

{
δ1i

F̂n(Ui ∧ t)

F̂n(Ui)
+ δ2i

F̂n(Vi ∧ t)− F̂n(Ui ∧ t)

F̂n(Vi)− F̂n(Ui)

+δ3i
F̂n(t)− F̂n(Vi ∧ t)

1− F̂n(Vi)

}

where Fn is the (unobservable) empirical distribution function of T1, . . . , Tn.
This was first derived by Turnbull (1976). However, this equation does not
characterize the NPMLE F̂n. That is, there may exist other distribution
functions different from F̂n that satisfy (2.6).

In general, F̂n has no closed form expression. In spite of this, Groene-
boom (1991) characterized the NPMLE for case 2 interval censored data
and developed a fast algorithm (the iterative convex minorant algorithm)
for computing the NPMLE. Aragón and Eberly (1992) and Jongbloed
(1995a,b) proposed modifications of the iterative convex minorant algo-
rithm, and Jongbloed (1995a,b) shows that his modified algorithm always
converges. See Groeneboom and Wellner (1992), pages 69 - 73 and Jong-
bloed (1995a,b).
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2.2. Distributional results.

The asymptotic distribution of F̂n with “case 1” interval censoring was
established by Groeneboom (1987). See Groeneboom and Wellner (1992),
page 89.

Theorem 2.1. (Groeneboom, 1987) Let G be the distribution function of
U and g = G′ be the corresponding density function. Let t0 be such that
0 < F (t0), G(t0) < 1, and let F0 and G be differentiable at t0 with strictly
positive derivatives f(t0) and g(t0), respectively. Furthermore, let F̂n be the
NPMLE of F0. Then we have, as n →∞,

n1/3{F̂n(t0)− F0(t0)} →d 2c1(t0)Z,

where Z is the last time where standard two-sided Brownian motion minus
the parabola y(t) = t2 reaches its maximum and

c1(t0) = {[f(t0)F0(t0)(1− F0(t0)]/2g(t0)}1/3.

With “case 2” interval-censored data, consistency of F̂n was proved by
Groeneboom and Wellner (1992) and by Van de Geer (1993). Finding the
asymptotic distribution of F̂n with “case 2” interval-censored data appears
to be a much harder problem. Groeneboom (1991) conjectured that, with a
different rate of convergence (n log n)−1/3 and a different scaling constant,
the limiting distribution of the NPMLE takes the same form under the as-
sumption that the joint density h of U and V is strictly positive along the
diagonal u = v. He also showed that an approximation F̂

(1)
n to the NPMLE

F̂n has this limiting distribution (marginally at a fixed point t0). However,
this conjecture is still not proved. See also Groeneboom and Wellner (1992),
page 100. Wellner (1995) proposed to explore alternative hypotheses under
which the joint density h of U and V converges to zero as u ≤ v approach
the diagonal u = v; in particular, the hypothesis (C2) below holds if the
joint distribution H of (U, V ) puts zero mass on some small strip border-
ing the diagonal u = v. Under such hypotheses, he proved a result about
the “one-step” approximation to the NPMLE analogous to Groeneboom’s
theorem (see theorem 2.2 below), and made a corresponding conjecture
about the asymptotic distribution of the NPMLE. Although conjecture of
Groeneboom (1991) is still unproved, Groeneboom (1996) has succeeded
in verifying Wellner’s (1995) conjecture in the strict separation case.

Here we will state the version of the result for the “one-step approxi-
mation” F̂

(1)
n at a point t0 under the hypotheses of Wellner (1995). The

hypotheses needed are as follows:

Assumption (C1): the support of F0 is an interval [0, τ ] where τ < ∞, and
t0 ∈ (0, τ).
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Define functions k1 and k2 by

k1(u) =
∫ τ

u

h(u, v)
F0(v)− F0(u)

dv, and k2(v) =
∫ v

0

h(u, v)
F0(v)− F0(u)

du.

We also define functions k1(u, ε) and k2(v, ε) which isolate the contributions
to k1 and k2 by values of v and u respectively near the diagonal u = v:

k1(u; ε) ≡
∫ τ

u

h(u, v)
F0(v)− F0(u)

1[1/(F0(v)−F0(u))>ε]dv

and

k2(v; ε) ≡
∫ v

0

h(u, v)
F0(v)− F0(u)

1[1/(F0(v)−F0(u))>ε]du .

Assumption (C2): For each ε > 0 and i = 1, 2

α

∫
(t0,t0+t/α]

ki(u; εα)du → 0 as α →∞. (2.7)

Assumption (C3): (a) F0(t) and H(u, v) have densities f0(t) and h(u, v)
with respect to Lebesgue measure on R and R2, respectively; (b) h(u, v)
has bounded partial derivatives on the support of (U, V ). Let h1(u) and
h2(v) be the marginal densities of U and V , respectively.

Assumption (C4): 0 < F0(t0) < 1 and 0 < H(t0, t0) < 1.

Theorem 2.2. (Wellner, 1995). Suppose that assumptions (C1) to (C4)
hold. Suppose that f0, h1, h2, k1 and k2 are continuous at t0 and f0(t0) > 0.
Then,

n1/3{F̂n

(1)
(t0)− F0(t0)} →d 2c2(t0)Z,

where Z is the last time where standard two-sided Brownian motion W (t)
minus the parabola y(t) = t2 reaches its maximum,

c2(t0) = {f0(t0)/2ξ(t0)}1/3,

and

ξ(t0) =
h1(t0)
F0(t0)

+ k1(t0) + k2(t0) +
h2(t0)

1− F0(t0)
. (2.8)

From the preceding discussion it is clear that for case 1 interval cen-
sored failure time data and examination times U with positive density h,
the NPMLE F̂n does not satisfy the central limit theorem with the usual
n1/2-rate of convergence, and the use of observed information to construct
confidence intervals or confidence bands for F0 do not have large sample
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justifications. On the other hand, the general bootstrap theory of Politis
and Romano (1994) does apply to yield confidence intervals for F0(t0) as a
consequence of theorem 2.1; see their example 2.1.1, page 2035, for a prob-
lem also involving a convergence rate of n1/3. In view of the conjectures
by Groeneboom and Wellner concerning F̂n with case 2 interval censored
data, these remarks very likely apply to case 2 as well.

It should also be noted that with case 1 data the sequence of stochastic
processes {n1/3(F̂n(t)−F0(t)) : 0 ≤ t ≤ τ} (or the corresponding processes
with scaling (n log n)1/3 for case 2 data under Groeneboom’s hypotheses)
is not tight in D[0, τ ] and do not converge weakly as processes. If 0 < t1 <
t2 < τ are fixed points with the hypotheses of theorem 2.1 holding at both
t1 and t2, then, much as in density estimation problems, it can be shown
that

n1/3(F̂n(t1)− F0(t1), F̂n(t2)− F0(t2)) →d (c1Z1, c2Z2)

where Z1 and Z2 are independent, and this precludes the possibility of
a tight limit process. See Groeneboom (1985) for a study of the (local)
dependence structure of this type of process in a closely related problem.

To complete the picture concerning the NPMLE F̂n, consider case 1 in-
terval censored data when the observation times U fail to have a continuous
density h. Instead, suppose that U has a discrete distribution H with

hj ≡ P (U = uj), j = 1, . . . , d

where we suppose 0 < u1 < . . . < ud < τ . Then it quickly becomes clear
that we can only estimate the distribution function F at the points ui,
i = 1, . . . , d: note that the Ui’s in the formula for the NPMLE given by
(2.2) only take values in the set {u1, . . . , ud}. The NPMLE F̂n(uj) is a con-
sistent estimator of F0(uj), and in fact it is

√
n−consistent. This follows by

re-expressing the NPMLE F̂n(uj) as a monotonization of the simple bino-
mial estimators obtained via (unconstrained) maximization of the resulting
likelihood (see Ayer et al. (1955), Van Eeden (1956), or Robertson, Wright,
and Dykstra (1988), example 1.5.1, page 32), and then using the continu-
ous mapping theorem as in Chernoff (1954). It seems that similar remarks
also apply to the NPMLE F̂n with case 2 or even “case k” type data (the
binomial problems become trinomial or multinomial with k + 1 cells, and
the “weights” in the monotonization problem depend on the solution itself,
but the continuous mapping theorem still carries the argument).

3. Regression models with interval censoring, case 1.

Several regression models can be viewed as special cases of the transforma-
tion model. This model postulates that the conditional distribution F (t|z)
of T given the covariate Z = z satisfies

g(F (t|z)) = h(t) + θ′z, (3.1)
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where g is a specified function, h(t) is an unknown increasing function and
θ is a d-dimensional regression parameter. If we take g(s) = log[− log(1 −
s)], 0 < s < 1, then (3.1) results in the famous proportional hazards model
proposed by Cox (1972); in this case the model is more commonly written
in terms of the cumulative hazard function as

Λ(t|z) = Λ(t)eθ′z, (3.2)

where Λ is the unknown baseline cumulative hazard function.
If we take g(s) = logit(s) ≡ log[s/(1 − s)], 0 < s < 1, then we get the

proportional odds regression model:

logit[F (t|z)] = logit[F (t)] + θ′z, (3.3)

where F (t) ≡ F (t|0) is the baseline distribution function. Let α(t) =
logitF (t), the baseline monotone increasing log-odds function. The propor-
tional odds regression model is an interesting alternative to the proportional
hazards model, and might be appropriate when the proportional hazards
assumption is not satisfied. This model has been used by several authors in
analyzing survival data; for right-censored data, see Bennett (1983), Pet-
titt (1984) and Parzen (1993), while for “case 1” interval censored data,
see Dinse and Lagakos (1983).

Another important model which is closely related to (3.1) is the acceler-
ated failure time regression model:

log T = Z ′θ + ε, (3.4)

where the distribution function F of ε is completely unspecified and where
log T can be replaced by other more appropriate known monotone func-
tions. In terms of conditional distributions, this model can be written as

F (log T |Z) = F (log T − Z ′θ).

There is an enormous amount of literature on statistical inference for the
accelerated failure time model with right-censored data, but much less for
this model with interval censoring. Much of the existing literature seems to
be in connection with the “binary choice” model in econometrics: see e.g.
Cosslett (1983, 1987), Chamberlain (1986), and Manski (1985). For further
review and the relationship with interval censoring see Huang and Wellner
(1996), and Huang (1993).

Throughout we assume the following basic assumptions:
(A1) The (unobservable) failure time is independent of the examination

times given the covariates.
(A2) The joint distribution of the examination times and the covariates

are independent of the parameters of interest.
For consistency of the maximum likelihood estimators, the following iden-

tifiability condition is needed.
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(A3) (a) The distribution of Z is not concentrated on any proper affine
subspace of Rd (i.e. of dimension d− 1 or smaller). (b) Z is bounded, that
is, there exists Z0 > 0 such that P (|Z| ≤ Z0) = 1, where | · | denotes the
Euclidean norm in Rd.

For distributional results of the maximum likelihood estimators, we need
the following further regularity conditions.

(A4) F0(0) = 0. Let τF0 = inf{t : F0(t) = 1}. The support of U is an
interval S[U ] = [τ0, τ1], and 0 < τ0 ≤ τ1 < τF0 .

(A5) F0 has a strictly positive and continuous density on S[U ], and the
joint distribution function H(u, z) of (U,Z) has bounded second order (par-
tial) derivative with respect to u.

Under assumptions (A1) and (A2), the joint density of X = (δ, U, Z) is

p(x) = F (u|z)δ(1− F (u|z))1−δh(u, z),

where h(u, z) is the joint density of (U,Z). So for an independent sample
(δi, Ui, Zi), i = 1, . . . , n with the same distribution as (δ, U, Z), the general
form of the log-likelihood function is, up to an additive constant,

ln =
n∑

i=1

{δi log F (Ui|Zi) + (1− δi) log(1− F (Ui|Zi))}.

A distinct feature of “case 1” interval censoring is that, in the regression
problems we discuss below, the efficient score function and the Fisher in-
formation for the regression parameter have explicit expressions. However,
there are no explicit expressions for these quantities with “case 2” inter-
val censoring in general. Consequently, properties of various estimators (in
particular, maximum likelihood estimators) are better understood for re-
gression models with “case 1” interval censoring than the corresponding
problems with “case 2” interval censoring.

3.1. Proportional hazards model.

In this case, it is convenient to parametrize the model in terms of the
regression parameter and the baseline cumulative hazard function. The
joint density function for the proportional hazards model with case 1 data
is

pθ,Λ(x) = pθ,Λ(δ, u, z) = (1− e−Λ(u)eθ′z

)δe−(1−δ)Λ(u)eθ′z

h(u, z).

It follows that the log-likelihood function is (up to an additive term not
involving (θ, Λ)) is:

ln(θ, Λ) =
n∑

i=1

{
δi log[1− exp(−Λ(Ui)eθ′Zi)]− (1− δi)Λ(Ui)eθ′Zi

}
.
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3.1.1. Information for θ.
It is well known that in most parametric models and many semiparametric
models (such as the Cox model with right censoring), we can estimate the
finite-dimensional parameter at

√
n-convergence rate and asymptotically

efficiently. A necessary condition is that we must have positive Fisher in-
formation. For “case 1” interval censored data, it is not clear a priori that
the information is in fact positive. Actually, from the results on estimation
of the distribution in the nonparametric setting, the Fisher information for
the baseline cumulative hazard function is zero. Therefore, it is useful to
calculate the information for the regression parameter. Positive information
will suggest that it is possible to estimate θ at the n1/2-rate of convergence
as in a regular parametric model, even though it is impossible to achieve
the same thing for the baseline cumulative hazard function. These com-
ments also apply to the corresponding estimation problem with “case 2”
or general interval censoring.

Define the functions

Q(u, δ, z) = δ
F (u | z)

1− F (u | z)
− (1− δ), (3.5)

and

O(u | z) = E[Q2(U, δ, Z) | U = u, Z = z] =
F (u | z)

1− F (u | z)
. (3.6)

Theorem 3.1. Suppose that assumptions (A1) to (A5) are satisfied. Then:
(a) The efficient score function for θ is

l∗θ(x) = eθ′ZQ(u, δ, z)Λ(u)

{
z − E[(Ze2θ′Z)O(U | Z) | U = u]

E[(e2θ′Z)O(U | Z) | U = u]

}
.

(b) The information for θ is

I(θ) = E[l∗θ(X)]⊗2 = E

{
R(U,Z)

[
Z − E(ZR(U,Z) | U)

E(R(U,Z) | U)

]⊗2
}

, (3.7)

where a⊗2 = aa′ for any column vector a ∈ Rd, and R(u, z) = Λ2(u |
Z)O(u | z).

The proof of theorem 3.1 will be given in section 6.

3.1.2. Distributional results.
Let S0(t) be the baseline survival function and let Ŝn(t) = exp(−Λ̂n(t)) be
the corresponding estimator. Let G be the distribution function of U .

Theorem 3.2. (Consistency) Suppose that either (i) conditions (A1),
(A2) and (A3) hold, or, (ii) condition (A1), (A2) and (A3a) holds and
that the parameter space Θ of θ is bounded. Then
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θ̂n →a.s θ0, and Ŝn(t) →a.s S0(t) G− almost surely .

Two interesting special cases of this theorem are: (i) If U is discrete, then
Ŝn(t) →a.s S0(t) at all the mass points of U . (ii) If U has a continuous
distribution function whose support contains the support of S0, then

sup
0≤t<∞

|Ŝn(t)− S0(t)| →a.s 0.

This implies for any finite M > 0,

sup
0≤t≤M

|Λ̂n(t)− Λ0(t)| →a.s 0.

Although consistency is obtained with minimal assumptions, to obtain
rate of convergence and asymptotic normality, further conditions (A4) and
(A5) are needed.

Theorem 3.3. (Asymptotic normality and efficiency with “case 1” inter-
val censoring) Suppose that θ0 is an interior point of Θ and that assump-
tions (A1) to (A5) are satisfied. Then

√
n(θ̂n − θ0) →d N(0, I(θ0)−1),

where I(θ0) is the generalized Fisher information given in (3.7) which takes
into account that the baseline cumulative hazard function Λ0 is unknown.
However, {∫ τ1

τ0

(Λ̂n(u)− Λ0(u))2dG(u)
}1/2

= Op(n−1/3).

Proofs of theorems 3.2 and 3.3 are given in Huang (1996).

3.1.3. Variance estimation.
By Theorem 3.3, I−1(θ0)/n is the asymptotic variance-covariance matrix
for θ̂n. This provides one way to obtain a consistent estimator of the vari-
ance of θ̂n. Recall in the expression for I(θ0), R(u, z) is defined to be

R(u, z) = Λ2(u | z)O(u | z) = e2z′θ0Λ2
0(u)

exp(−Λ0(u)ez′θ0)
1− exp(−Λ0(u)ez′θ0)

.

Denote

R̂n(u, z) = e2z′bθnΛ̂n

2
(u)

exp(−Λ̂n(u)ez′bθn)

1− exp(−Λ̂n(u)ez′bθn)
. (3.8)

Let

µ1(u) = E(R(u, Z)|U = u), and µ2(u) = E(ZR(u, Z)|U = u).
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Then when we have obtained reasonable estimators µ1n(u) and µ2n(u) for
µ1(u) and µ2(u), we can estimate I(θ0) by

În(θ̂n) =
1
n

n∑
i=1

{
R̂n(Ui, Zi)

[
Zi −

µ2n(Ui)
µ1n(Ui)

]⊗2
}

. (3.9)

The hard work is to estimate µ1(u) and µ2(u). Also, θ0 and the rest of R
need to be estimated. When Z is a continuous covariate vector, µ1(u) ≡
E(R(u, Z)|U = u) can be approximated by E(R̂n(u, Z)|U = u). Then we
can estimate E(R̂n(u, Z)|U = u) by nonparametric regression approaches,
see, e.g. Stone (1977).

When Z is a categorical covariate, the above nonparametric smoothing
procedure does not work well because of the discrete nature of the values
of R̂n(u, z). Here we consider the simplest case when Z is a dichotomous
variable indicating two treatment groups, that is, Z only takes values 0 or
1 with P{Z = 1} = γ and P{Z = 0} = 1− γ. Thus E[ZR(Z,U)|U = u] =
R(1, u)P{Z = 1|U = u} = R(1, u)f1(u)γ/f(u), and

E[R(Z,U)|U = u] = R(1, u)P{Z = 1|U = u}+ R(0, u)P{Z = 0|U = u}

=
R(1, u)f1(u)γ

f(u)
+

R(0, u)f0(u)(1− γ)
f(u)

,

where f1(u) is the conditional density of Y given Z = 1, f0(u) is the
conditional density of Y given Z = 0, and f(u) is the marginal density
of Y . Notice that we only need to estimate the ratio the ratio of the two
conditional expectations. First we can estimate γ by the total number of
subjects in the treatment group with Z = 1 divided by the sample size.
Let f̂1n(u) be a kernel density estimator of f1(u), and f̂0n(u) be a kernel
density estimator of f0(u). Then a natural estimator of E[ZR(Z,U)|U =
u]/E[R(Z,U)|U = u] is

µ̂n(u) =
R̂n(1, u)f̂1n(u)γ̂n

R̂n(1, u)f̂1n(u)γ̂n + R̂n(0, u)f̂0n(u)(1− γ̂n)
.

Here R̂n(u, z) is defined in (3.8). With a proper choice of the bandwidth and
kernel in estimation of f1(u) and f0(u), the above estimator is consistent,
see e.g., Silverman (1986). Hence a reasonable estimator of I(θ0) is:

În(θ̂n) =
1
n

n∑
i=1

{
R̂n(Ui, Zi)(Zi − µ̂n(Ui))2

}
. (3.10)

In the special case when Y and Z are independent, the above nonpara-
metric smoothing is not necessary. In this case, we have

I(θ0) = E

{
R(U,Z)

[
Z − EZ(ZR(U,Z))

EZR(U,Z)

]⊗2
}

,
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where EZ means expectation with respect to Z. We can simply estimate
I(θ0) by

În(θ̂n) =
1
n

n∑
i=1

R̂n(Ui, Zi)

[
Zi −

∑n
j=1 ZjR̂n(Ui, Zj))∑n

j=1 R̂n(Ui, Zj)

]⊗2
 . (3.11)

Two alternative approaches based on the observed Fisher information or
the curvature of the profile likelihood function can also be used. These will
be discussed in section 4.1.3.

3.2. Proportional odds model.

We parametrize the model in terms of the regression parameter and the
baseline log-odds function α(t) = logit[F (t)]. Then with conditions (A1)
and (A2), the joint density function of the observations is

pθ,α(x) = pθ,α(δ, u, z) = eδ(α(t)+θ′z)(1 + eα(t)+θ′z)−1h(u, z).

It follows that the log-likelihood function is (up to an additive term not
depending on (θ, α))

ln(θ, α) =
n∑

i=1

{δi(α(Ui) + θ′Zi)− log(1 + exp(α(Ui) + θ′Zi))} . (3.12)

The maximum likelihood estimator is the (θ̂n, α̂n) that maximizes ln(θ, α)
with the constraint that α̂n is a nondecreasing function.

3.2.1. Information for θ.
The following result on the information bound for estimation of θ is given
in Rossini and Tsiatis (1996).

Theorem 3.4. Suppose that conditions (A1) to (A5) are satisfied. Then:
(a) The efficient score function for θ is

l̇∗θ(x) = (δ − E(δ|U = u, Z = z))
(

z − E(ZVar(δ|U,Z)|U = u)
E(Var(δ|U,Z)|U = u)

)
(b) The information for θ is

I(θ) = E

[
(δ − E(δ|U,Z))2

(
Z − E(ZVar(δ|U,Z)|U)

E(Var(δ|U,Z)|U)

)⊗2
]

. (3.13)
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3.2.2. Distribution results.

Theorem 3.5. (Asymptotic normality) Suppose that conditions (A1)-(A5)
stated earlier hold and that θ0 is an interior point of Θ. Then

√
n(θ̂n − θ0) →d N(0, I(θ0)−1),

where I(θ0) is the Fisher information given in (3.13). However,{∫
[α̂n(u)− α0(u)]2dG(u)

}1/2

= Op(n−1/3).

The proof of this result is given in Huang (1995). Although a bounded-
ness restriction is imposed on α̂n in that paper, it can be shown that this
restriction can be removed; the first author intends to do this elsewhere.

3.2.3. Variance estimation.

This can be done similarly as in section 3.1.3 by using the explicit form of
the asymptotic variance of θ̂n given in terms of I(θ) in (3.13). Two alterna-
tive estimators are based on observed Fisher information or the curvature
of the profile likelihood function in a neighborhood of θ̂n. We will discuss
this further in section 4.1.3.

3.3. The accelerated failure time model.

For simplicity, let T be the logarithm or other appropriate transformation
of the failure time and assume that the same transformation has been made
for the examination time. So the model is

T = Z ′θ + ε,

where ε ∼ F0 unspecified. Suppose that ε is independent of Z and the
examination times. Then the density of one observation is

pθ,F (x) = pθ,F (δ, u, z) = F (u− θ′z)δ(1− F (u− θ′z))1−δh(u, z);

hence the log-likelihood function for (θ, F ) is (up to an additive term)

ln(θ, F ) =
n∑

i=1

log{δiF (Ui − θ′Zi) + (1− δi)(1− F (Vi − θ′Zi))}.

The maximum (profile) likelihood estimator of (θ0, F0) is the (θ̂n, F̂n) that
maximizes ln(θ, F ) with the restriction that F̂n is a (sub)distribution func-
tion. As proposed by Cosslett (1983), (θ̂n, F̂n) can be computed via the
maximum profile likelihood approach:
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(i) For any fixed θ, maximize ln(θ;F ) with respect to F under the con-
straint that F is a distribution function. Denote the resulting maximizer
by Fn(·; θ).

(ii) Substituting Fn(·; θ) back into ln(θ;F ), yields the profile likelihood
ln(θ;Fn(·; θ)). Then the maximum profile likelihood estimator θ̂n is any
value of θ that maximizes ln(θ;Fn(·; θ)) (assuming that it exists).

(iii) A natural estimator of F is Fn(·; θ̂n).

3.3.1. Information for θ.
The following is the result concerning the efficient score and the information
bound for θ in this model.

Theorem 3.6. Let k(s) = E(Z|U −Z ′θ = s). Suppose that k is bounded.
Then the efficient score for θ is

l∗θ(x) = f(u−z′θ)[z−E(Z|U−Z ′θ = y−z′θ)]
[

1− δ

1− F (u− z′θ)
− δ

F (u− z′θ)

]
.

(3.14)
Moreover, the information for estimation of θ is:

I(θ) = E

{
f(U − Z ′θ)2

F (U − Z ′θ)(1− F (U − Z ′θ))
[Z − E(Z|U − Z ′θ)]⊗2

}
. (3.15)

The proof of theorem 3.6 will be given in section 6.

3.3.2. Distributional results.
Consistency of (θ̂n, F̂n(·; θ̂n)) can be shown as in Cosslett (1983); alterna-
tively, consistency can be shown as in theorem 4.7.

We have not been able to establish distributional results for θ̂n. It is not
clear whether or not θ̂n has a normal limiting distribution with n1/2-rate
of convergence since ln(θ, F̂n(·; θ)) is not a “smooth” function of θ. This is
a challenging open problem.

3.4. Computation.

We describe in detail an approach for computing the maximum likelihood
estimators in the proportional hazards model.

Unlike in the nonparametric setting, there is no closed form expression
for Λ̂n. We describe an algorithm which is also applicable to general interval
censoring.

In principle, computation of (θ̂n, Λ̂n) can be accomplished by maximizing
(4.2) jointly with respect to (θ, Λ), or, by using a profile likelihood approach,
maximizing over Λ for all fixed values of θ ∈ Θ first to obtain Λ̂n(·, θ), and
then maximizing the profile log-likelihood function ln(θ, Λ̂n(·, θ)) over θ to
find θ̂n and hence Λ̂n = Λ̂n(·, θ̂n). For low dimensional θ, Groeneboom’s
iterative convex minorant algorithm (see Groeneboom and Wellner (1992),
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pages 69 - 74) is sufficiently fast to implement this profile likelihood ap-
proach for computing (θ̂n, Λ̂n). For higher dimensional θ we propose the
following iterative algorithm for computing (θ̂n, Λ̂n). Let θ(0) be an initial
guess and set k = 0.

Step (i). Maximize ln(θ(k),Λ) with respect to Λ to obtain Λ(k).
Step (ii). Maximize ln(θ, Λ(k)) with respect to θ. Set k = k + 1, and let

θ(k) be the maximizer. Go back to (i). Repeat (i) and (ii) until convergence.
It can be verified that for any fixed θ, ln(θ, Λ) is concave in Λ, and

for any fixed Λ, ln(θ, Λ) is concave in θ. So steps (i) and (ii) are well
defined concave maximization problems. Since each iteration increases the
likelihood function, the algorithm converges. A much stronger conclusion
holds as stated in the following proposition.

Proposition 3.1. (1) The function ln(θ, Λ) has a unique maximizer
(θ̂n, Λ̂n); (2) Starting from any point θ(0), the algorithm produces a sequence
(θ(k),Λ(k)) converging to (θ̂n, Λ̂n).

Proof. Reparametrize ln(θ, Λ) in terms of θ and φ = log Λ. Let

ln(θ, φ) =
n∑

i=1

{δi log[1− exp(− exp(θ′Zi + φ(Ui)))]

− (1− δi) exp(θ′Zi + φ(Ui))} .

Then maximizing ln(θ, Λ) with respect to (θ, Λ) with monotonicity con-
straints on Λ is equivalent to maximizing ln(θ, φ) with respect to (θ, φ)
with monotonicity constraints on φ. Since functions log[1− exp(− exp(x))]
and − exp(x) are concave, ln(θ, φ) is concave in (θ, φ) (This follows from
Theorem 5.7 of Rockafellar (1970), page 38). Thus a local maximizer of
ln(θ, φ) will also be a global maximizer. This implies a local maximizer of
ln(θ, Λ) will also be a global maximizer because of the one-to-one correspon-
dence between (θ, Λ) and (θ, φ). The uniqueness of the global maximizer
follows since ln(θ, φ) is strictly concave on the product of the space of θ and
the reduced space of φ. Here the reduced space of φ means the space of the
distinct values of φ(U(1)), . . . , φ(U(n)), since the monotonicity constraints
will force φ(U(i)), i = 1, . . . , n to be blockwise constant. �

To implement step (i), we use the iterative convex minorant algorithm
introduced by Groeneboom. To describe it in the present setting, we first
introduce some notation. Let

q(u′, z, θ, Λ) =
exp(− exp(θ′z)Λ(u′))

1− exp(− exp(θ′z)Λ(u′))
.

Define the processes WΛ, GΛ and VΛ by

WΛ(u) =
∫

u′∈[0,u]

{
1{t≤u′}q(u′, z, θ, Λ)− 1{t>u′} exp(θ′z)

}
dQn(t, u′, z),
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GΛ(u) =
∫

u′∈[0,u]

{
1{t≤u′}q(u′, z, θ, Λ)− 1{t>u′} exp(θ′z)

}2
dQn(t, u′, z),

and
VΛ(u) = WΛ(u) +

∫
[0,u]

Λ(u′)dGΛ(u′), u ≥ 0,

where Qn is the empirical measure of the (unobservable) points (Ti, Ui, Zi),
i = 1, . . . , n.

Theorem 3.7. For any fixed θ, suppose that δ(1) = 1, δ(n) = 0. then
Λn(·; θ) maximizes ln(θ, Λ) if and only if Λn(·; θ) is the left derivative of
the greatest convex minorant of the “self-induced” cumulative sum diagram,
consisting of the points

P(j) =
(
GΛn(·;θ)(U(j)), VΛn(·;θ)(U(j))

)
, j = 1, · · · , n,

and the origin (0, 0).

The cumulative sum diagram is simply the linear interpolation of the
points P(0), P(1), . . . , P(m), and the greatest convex minorant is the greatest
convex function that is below this linear interpolation.

The proof of Theorem 3.7 is completely analogous to that of Proposition
1.4 of Groeneboom and Wellner (1992). This theorem gives an iterative pro-
cedure to compute Λn(·; θ) for any fixed θ. It proceeds as follows. Suppose
Λ(k)(·; θ) is obtained at the kth iteration; then Λ(k+1)(·; θ) is computed as
the left derivative of the convex minorant of the cumulative sum diagram,
consisting of the points

(GΛ(k)(·;θ)(U(j)), VΛ(k)(·;θ)(U(j))), j = 1, . . . , n;

and the origin (0, 0).
In step (ii), the Newton-Raphson method can be used. Specifically, for

any fixed Λ, let
s1(θ) = (∂/∂θ)ln(θ, Λ).

By concavity, the solution to s1(θ) = 0 is the unique maximizer of ln(θ, Λ)
(for fixed Λ).

The approach described above can be used for computing (θ̂n, α̂n) in the
proportional odds model. This is because ln(θ, α) is a concave function of
(θ, α), so proposition 3.1 holds for the proportional odds model. To see this,
verify that − log(1 + exp(x)) is a concave function. Thus the concavity of
ln(θ, α) follows from Theorem 5.7 of Rockafellar (1970), page 38, or it can
be verified directly.

4. Regression models with interval censoring, case 2.

Again we assume conditions (A1) to (A3) stated in the beginning of section
3. The joint density of X = (δ1, δ2, δ3, U, V, Z) where δi ∈ {0, 1} for i =
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1, 2, 3 and δ1 + δ2 + δ3 = 1 is

p(x) = F (u|z)δ1 [F (v|z)− F (u|z)]δ2(1− F (v|z))δ3h(u, v, z); (4.1)

here h is the joint density function of (U, V, Z) with respect to the product of
Lebesgue measure on R2 and a fixed measure µ on Rd. The log-likelihood
likelihood function of an independent sample (δ1i, δ2i, δ3i, Ui, Vi, Zi), i =
1, . . . , n with the same distribution as (δ1, δ2, δ3, U, V, Z) is, up to an addi-
tive term not depending on F (·|Z),

ln =
n∑

i=1

{δ1i log F (Ui|Zi)

+ δ2i log[F (Vi|Zi)− F (Ui|Zi)] + δ3i log(1− F (Vi|Zi))}.

For proofs of the distributional results of maximum likelihood estimators
discussed below, we also need the following regularity conditions.

(B4) (a) There exists a positive number η such that P (V − U ≥ η) = 1;
(b) the union of the support of U and V is contained in an interval [τ0, τ1],
where 0 < τ0 < τ1 < ∞.

(B5) F0 has strictly positive and bounded continuous derivative on [τ0, τ1].
(B6) The conditional density g(u, v|z) of (U, V ) given Z has bounded

partial derivatives with respect to u and v. The bounds of these partial
derivatives do not depend on z.

4.1. The proportional hazards model.

In the case of the proportional hazards model, the log-likelihood function
for the regression parameter θ and the baseline cumulative hazard function
Λ is

ln(θ, Λ) =
n∑

i=1

{
δ1i log(1− exp(−Λ(Ui)eθ′Zi)) (4.2)

+ δ2i log[exp(−Λ(Ui)eθ′Zi)− exp(−Λ(Vi)eθ′Zi)]

− δ3iΛ(Vi)eθ′Zi

}
.

The maximum likelihood estimator is then the (θ̂n, Λ̂n) that maximizes
ln(θ, Λ) under the constraint that Λ̂n is a nonnegative and nondecreasing
function.

4.1.1. Information for θ.
Let x = (δ1, δ2, δ3, u, v, z). Denote the log-likelihood function for one ob-
servation by

l(x; θ, Λ) = δ1 log{1− exp(−Λ(u)eθ′z)} (4.3)

+ δ2 log[exp(−Λ(u)eθ′z)− exp(−Λ(v)eθ′z)]

− δ3Λ(v)eθ′z}.
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Let f and F be the density and distribution corresponding to Λ, and let
fs be a one-dimensional smooth curve through f , where the smoothness
is with respect to s. Denote a = ∂

∂s log fs

∣∣
s=0

. Then a ∈ L0
2(F ) ≡ {a :∫

adF = 0 and
∫

a2dF < ∞}. Let

h =
∂

∂s
Λs

∣∣∣∣
s=0

=

∫ .

0
adF

1− F
=
−
∫∞

.
adF

1− F
; (4.4)

it follows from Hardy’s inequality that h ∈ L2(F ); see Bickel, Klaassen,
Ritov, and Wellner (1993), page 423 [hereafter referred to as BKRW (1993)].

The score function for θ is

l̇θ(x) =
∂

∂θ
l(x; θ, Λ),

and the score operator for Λ is

l̇Λa(x) =
∂

∂s
l(x; θ, Λs)

∣∣∣∣
s=0

.

Explicit expressions for l̇θ(x) and l̇Λa(x) can be obtained by carrying out
the differentiation. The score operator l̇Λ maps L0

2(F ) to L0
2(P ), where P

is the joint probability measure of (δ1, δ2, U, V, Z) and L0
2(P ) is defined

similarly as L0
2(F ). Let l̇

T

Λ : L0
2(P ) → L0

2(F ) be the adjoint operator of l̇Λ,
i.e., for any a ∈ L0

2(F ) and b ∈ L0
2(P ), define h as in (4.7),

〈b, l̇Λa〉P = 〈l̇
T

Λb, a〉F ,

where 〈·, ·〉P and 〈·, ·〉F are the inner products in L0
2(P ) and L0

2(F ), respec-
tively. We need to find a∗ such that l̇θ − l̇Λ(a∗) is orthogonal to l̇Λ(a) in
L0

2(P ). This amounts to solving the following normal equation:

l̇
T

Λ l̇Λ(a∗) = l̇
T

Λ l̇θ. (4.5)

The value of l̇
T

Λ at any b ∈ L0
2(P ) can be computed by

l̇
T

Λb(t) = E[b(X)|T = t] = EZE[b(X)|T = t, Z];

see e.g. BKRW (1993), pages 271-272, or Groeneboom and Wellner (1992),
pages 8 and 9.

The proof of the following theorem is deferred to the appendix.

Theorem 4.1. For θ ∈ R, under conditions (A1)-(A3) and (B4)-(B6),
equation (4.5) has a unique solution a∗. Moreover, the corresponding func-
tion h∗ (given by (4.4) with a replaced by a∗) has a bounded derivative.
In general, for θ ∈ Rd, h∗ ∈ L2(F )d is a d-dimensional vector and each
component has a bounded derivative. The efficient score for θ is

l∗θ(x) = l̇θ(x)− l̇Λa∗(x),
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and the information bound for θ is

I(θ) = E[l∗θ(X)]⊗2,

where a⊗2 = aa′ for any column vector a ∈ Rd. Under conditions (A1)–
(A5), I(θ) is a positive definite matrix with finite entries. The efficient
influence function is

l̃θ(x) = I(θ)−1l∗θ(x).

4.1.2. Distributional results.
Let G be the joint distribution function of (U, V ) and let G1 and G2 be
the marginal distribution functions of U and V , respectively. The following
assumption is needed in the consistency result.

Theorem 4.2. (Consistency) Under the same conditions as in theorem
3.2, we have

θ̂n →a.s θ0, and Ŝn(t) →a.s S0(t) (G1 + G2)− almost everywhere .

Two interesting special cases of this theorem are: (i) If both U and V are
discrete, this implies Ŝn(t) →a.s S0(t) at all the mass points of U and V .
(ii) If at least one of U and V has a continuous distribution function whose
support contains the support of S0, then

sup
0≤t<∞

|Ŝn(t)− S0(t)| →a.s 0.

This implies for any finite M > 0,

sup
0≤t≤M

|Λ̂n(t)− Λ0(t)| →a.s 0.

With regularity conditions (B4) to (B6), we have the following theorem.

Theorem 4.3. (Asymptotic normality and efficiency) Suppose that θ0 is
an interior point of the bounded set Θ and that conditions (A1)-(A3) and
(B4)-(B6) hold. Then

√
n(θ̂n − θ0) →d N(0, I(θ0)−1),

where I(θ0) is the generalized Fisher information for θ taking into account
that the baseline cumulative hazard function Λ0 is unknown; hence θ̂n is
asymptotically normal and efficient. For Λ̂n,

||Λ̂n − Λ0||2 = Op(n−1/3) .

Proofs of theorems 4.2 and 4.3 can be found in Huang and Wellner
(1995b). Notice that in that paper, a boundedness restriction is imposed on
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Λ̂n. We recently found that such restriction can be removed with additional
arguments. These will appear in the revision of that paper.

It is noteworthy that, with both “case 1” and “case 2” interval censoring,
although the nonparametric component Λ̂n only has n1/3 rate of conver-
gence, the parametric component can be estimated at n1/2 rate. With “case
1” interval censoring, Theorem 3.3 provides an explicit form of the asymp-
totic variance which can be used to estimate the variance of θ̂n. With “case
2” interval censoring, although theorem 4.3 does not help in estimating
the variance of θ̂n because of the implicitness of I(θ), it lends support for
the use of the observed Fisher information or the curvature of the profile
likelihood to estimate the variance of θ̂n.

We emphasize that imposition of the conditions for theorems 3.3 and
4.3 is for mathematical rigor of the proofs. In applications, implementa-
tion of the estimation procedure described in section 3.1 does not require
that these conditions be satisfied. (Of course, the independent censorship
assumption (A1) is needed for our likelihood based approach to be sensi-
ble.) Although heuristic arguments suggest that conditions (A3)-(A4) and
(B4)-(B6) can be weakened, at present, we have not yet been able to prove
these two theorems without these conditions. On the other hand, these con-
ditions are not too restrictive in many practical situations. For example,
assumption (B4) means that there is a positive time interval between two
examination times. This is often the case since two examination times are
usually separated by a positive time interval. We believe that asymptotic
normality of θ̂n in Theorems 3.3 and 4.3 continue to hold without(A3) or
(B4). However, the proofs will be considerably more difficult.

4.1.3. Variance estimation.

With the “case 2” or general interval censoring, there is no close form ex-
pression for the asymptotic variance of θ̂n. Direct estimation appears to be
difficult. We suggest two approaches which are straightforward extensions
of two well-known methods used for parametric models. Let ln(θ̂n, Λ̂n) be
the log-likelihood function of θ̂n and the distinct values of Λ̂n. Let

Σ̂11 =
∂2

∂θ̂2
n

ln(θ̂n, Λ̂n), Σ̂12 =
∂2

∂θ̂n∂Λ̂n

ln(θ̂n, Λ̂n), Σ̂22 =
∂2

∂Λ̂2
n

ln(θ̂n, Λ̂n),

and

Σ̂n =

(
Σ̂11 Σ̂12

Σ̂′12 Σ̂22

)
.

Let Σ̂11 be the upper left corner corresponding to Σ̂11 of the inverse of Σ̂n.
Then Σ̂11 can be used as an estimator of the variance-covariance matrix of
θ̂n. It is well known that

Σ̂11 = (Σ̂11 − Σ̂12Σ̂−1
22 Σ̂′12)

−1.
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Computing the inverse of Σ−1
22 is not as bad as it looks even for large sample

size n. Λ̂n is blockwise constant, and by the large sample properties of Λ̂n

(Theorem 4.3) presented in the next section, the number of distinct values
of Λ̂n is on the order of n1/3. So the dimension of Σn is in the order of
O(n1/3).

The second approach is via profile likelihood: for low dimensional θ, it is
sometimes more convenient to compute the curvature of the profile likeli-
hood function ln(θ, Λ̂n(·, θ)). The inverse of the curvature can be used as an
estimator of the variance covariance matrix of θ̂n. Limited simulations and
the example in section 4 suggest that ln(θ, Λ̂n(·, θ)) is probably a smooth
function of θ. But a rigorous proof of this smoothness is not yet available.
In general, we can interpolate ln(θ, Λ̂n(·, θ)) in a neighborhood of θ̂n by a
quadratic function. The second derivative of this quadratic function can be
used as an approximation to the curvature of ln(θ, Λ̂n(·, θ)).

It should be noted, however, that the asymptotic validity of both of the
above approaches remains to be verified.

4.2. The proportional odds model.

In the case of the proportional odds model, the density of one observation
is as in (4.1) with

F (t|z) = exp(α(t) + θ′z)/(1 + exp(α(t) + θ′z)). (4.6)

Hence the log-likelihood function of the regression parameter θ and the
baseline log-odds function α is

ln(θ, α) =
n∑

I=1

{δ1i log F (Ui|Zi)

+ δ2i log[F (Vi|Zi)− F (Ui|Zi)] + δ3i log[1− F (Vi|Zi)]}

where the conditional distribution function F (t|z) is given as in (4.6). The
maximum likelihood estimator is the (θ̂n, α̂n) that maximizes ln(θ, α) under
the constraint that α̂n is a nondecreasing function.

4.2.1. Information for θ.
The log-likelihood function for one observation is, up to an additive con-
stant not dependent on (θ, α),

l(x, θ, α) = δ1 log F (u|z) + δ2 log[F (v|z)− F (u|z)] + δ3 log[1− F (v|z)],

with F (t|z) = exp(α(t)+θ′z)/(1+exp(α(t)+θ′z)). The score function l̇θ(x)
for θ is simply the vector of partial derivatives of l(x, θ, α) with respect to
θ. In the following, we carry out the calculation for θ ∈ R; the general case
θ ∈ Rd only requires repeating the same calculation for each component of
l̇θ(x).
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Recall that α(t) = logit F (t) = log F (t) − log(1 − F (t)), and let f be
the density corresponding to F with fs a one-dimensional smooth curve
through f . Denote a = ∂

∂s log fs

∣∣
s=0

. Then a ∈ L0
2(F ) ≡ {a :

∫
adF =

0 and
∫

a2dF < ∞}. Let

h =
∂

∂s
αs

∣∣∣∣
s=0

=

∫ .

0
adF

F
−
∫∞

.
adF

1− F
=
∫ .

0

adF

{
1
F

+
1

1− F

}
(4.7)

since
∫∞
0

adF = 0. The score operator for α, l̇α, maps L0
2(F ) to L0

2(P ),
where P is the joint probability measure of (δ1, δ2, δ3, U, V, Z) and L0

2(P )
is defined similarly as L0

2(F ). This can be computed as

l̇αa(x) =
∂

∂s
l(x, θ, αs)

∣∣∣∣
s=0

. (4.8)

Let l̇
T

α : L0
2(P ) → L0

2(F ) be the adjoint operator of l̇α, i.e., for any a ∈
L0

2(F ) and b ∈ L0
2(P ), define h as in (4.7),

〈b, l̇αa〉P = 〈l̇
T

αb, a〉F ,

where 〈·, ·〉P and 〈·, ·〉F are inner products in L0
2(P ) and L0

2(F ), respectively.
We need to find a∗ such that l̇θ − l̇α(a∗) is orthogonal (in L0

2(P )) to l̇α(a)
for all a in L0

2(F ). This amounts to solving the following normal equation:

l̇
T

α l̇α(a∗)(t) = l̇
T

α l̇θ(t). (4.9)

Theorem 4.4. For θ ∈ R, under conditions (A1)–(A3) and (B4)-(B6),
equation (4.9) has a unique solution a∗. Moreover, the corresponding func-
tion h∗ (given by (4.7) with a replaced by a∗) has bounded derivative. In
general, for θ ∈ Rd, h∗ is a d-dimensional vector of functions in L0

2(F ) and
each component has a bounded derivative. The efficient score for θ is

l∗θ(x) = l̇θ(x)− l̇αa∗(x).

The information bound for θ is

I(θ) = E[l∗θ(X)⊗2].

I(θ) is a positive definite matrix with finite entries. The efficient influence
function is

l̃θ(x) = I(θ)−1l∗θ(x).

The proof of this theorem is given in Huang and Rossini (1996).

4.2.2. Distributional results.
Consistency of (θ̂n, α̂n) can be shown similarly to theorem 4.2. For brevity,
we only state the distributional results for θ̂n which can be proved in the
same way as theorem 4.3. See Huang and Wellner (1995b).
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Theorem 4.5. (Asymptotic normality and efficiency) Under the same
conditions as in theorem 4.3,

√
n(θ̂n − θ0) →d N(0, I−1(θ0)).

Hence θ̂n is asymptotically normal and efficient.

4.2.3. Variance estimation.
This can be done similarly as in the proportional hazards model with “case
2” interval censoring, by using the observed Fisher information or the cur-
vature of the profile likelihood function in a neighborhood of θ̂n.

4.3. The accelerated failure time model.

The log-likelihood function is, up to an additive constant,

ln(θ, F ) =
n∑

i=1

{δ1i log F (Ui − θ′Zi)

+ δ2i log[F (Vi − θ′Zi)− F (Ui − θ′Zi)]
+ δ3i log(1− F (Vi − θ′Zi))}.

The maximum (profile) likelihood estimator of (θ0, F0) is the (θ̂n, F̂n) that
maximizes ln(θ, F ). (θ̂n, F̂n) can be computed as in the “case 1” inter-
val censoring, using the maximum profile likelihood approach of Cosslett
(1983).

Asymptotic distribution theory for θ̂n appears to be a more difficult
problem than the corresponding one in the proportional hazards model,
and is apparently still unknown. The main difficulty is that two parameters
θ and F are “bundled” together: the result is that F̂n(·; θ) and consequently
also the profile likelihood function are not smooth functions of θ. This model
provides an example in which estimation of the variance-covariance matrix
of θ̂n by observed information fails since ln(θ, F ) is not a twice-differentiable
function of θ.

4.3.1. Information.
For “case 2” interval censoring, as far as we know, the information calcu-
lation for θ has not been carried out and no efficient estimator of θ has
been constructed. (For some work on inefficient estimators based on nat-
ural families of estimating equations, see Rabinowitz, Tsiatis, and Aragon
(1995). Below we show that the information I(θ) for θ is positive. This
suggests that it is possible to construct efficient estimators for θ. However,
in contrast to the “case 1” setting, I(θ) does not have an explicit expres-
sion. The least favorable direction which defines the efficient score and
I(θ) is determined by an integral equation with no closed form solution
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in general. This equation is similar to the one encountered in calculat-
ing the information for smooth functionals of the distribution function in
the nonparametric setting (with no covariates). This problem is solved by
Geskus and Groeneboom (1996a,b,c). Their approach and results can be
used in the present setting. It should be noted that although the informa-
tion calculations for this model with “case 1” interval censoring is quite
straightforward, the same problem with “case 2” interval censored data is
considerably more difficult. It involves an integral equation with a singular
kernel (in general), and hence the Fredholm theory of integral equations
cannot be applied directly.

We need the following conditions to carry out the information calcula-
tions. These conditions are similar (and slightly stronger for simplicity) to
those given in Geskus and Groeneboom (1996c) in calculating the infor-
mation for smooth functionals of the distribution function in the nonpara-
metric setting. Let U1 = U −Z ′θ and V1 = V −Z ′θ, and let h1 be the joint
density of (U1, V1). Let h11 and h12 be the marginal densities of U1 and V1,
respectively. Finally, let

h2(u1, v1) = E{Z|U1 = u1, V1 = v1}h1(u1, v1)

=
∫

zh(u1 + z′θ, v1 + z′θ, z)dµ(z).

Assumption (D1): the union of the supports of U1 and V1 is a bounded
interval [−τ1, τ2], where 0 < τ1, τ2 < ∞.

Assumption (D2): F has a continuous density f which is bounded on
[−τ1, τ2].

Assumption (D3): h1(u1, v1) is continuous and has continuous partial
derivatives which are bounded, uniformly over −τ1 ≤ u1 ≤ v1 ≤ τ2. In
addition, h11(s) + h12(s) > 0 for all s ∈ [−τ1, τ2].

Assumption (D4): h2(u1, v1) is continuous and uniformly bounded over
−τ1 ≤ u1 ≤ v1 ≤ τ2.

Theorem 4.6. Suppose that assumptions (D1) to (D4) hold. Then the
efficient score for θ is

l∗θ(x) = l̇θ(x)− l̇fa∗(x), (4.10)

where l̇θ and l̇fa are defined by (6.9) and (6.10) below, and a∗ is the unique
solution to equation (6.12). The information bound for θ is:

I(θ) = E[l∗θ(X)]⊗2. (4.11)

In section 6 we show how this theorem can be reduced to the situation
considered by Geskus and Groeneboom (1996c) (or to Geskus and Groene-
boom (1996a, 1996b)).

4.3.2. Consistency.
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We prove a consistency result for the accelerated life model with “case 2”
interval censored data; again the generalization to “case k” is straightfor-
ward.

Theorem 4.7. (i) The true value of the regression parameter is θ0 ∈ Θ,
where Θ is a bounded subset of Rd.
(ii) The distribution of Z is not concentrated on a hyperplane.
(iii) F0 is continuous. Then

θ̂n →a.s. θ0, (4.12)

and
Fn(t; θ̂n) →a.s. F0(t) . (4.13)

for almost all t except on a set with G1 + G2-measure zero where G1 and
G2 are probability measures corresponding to the marginal distribution func-
tions G1 and G2 of U and V , respectively. In particular, if F0 and at least
one of G1 and G2 are continuous, then

sup
−∞<t<∞

|Fn(t; θ̂n)− F0(t)| →a.s. 0.

The proof of this theorem is given in section 6.

4.4. Computation.

We focus on the proportional hazards model. Computation of the maxi-
mum likelihood estimator in the proportional odds model can be done in
a similar way. For one or two-dimensional θ, the maximum profile likeli-
hood approach can be used to compute (θ̂n, Λ̂n). For high-dimensional θ,
the iterative algorithm described in section 3.4 is needed. The likelihood
function with “case 2” interval censoring enjoys similar properties as the
likelihood function for “case 1” data. Specifically, for any fixed θ, ln(θ, Λ)
is concave in Λ, and for any fixed Λ, ln(θ, Λ) is concave in θ. So steps (i)
and (ii) of the algorithm described in section 3.4 are again well-defined
concave maximization problems, and the algorithm converges. Proposition
3.1 continues to hold in the “case 2” interval censoring setting.

To implement step (i), we use the iterative convex minorant algorithm
introduced by Groeneboom (1991). To describe it in the present setting,
we first introduce some notation. Define functions ai, i = 1, 2, 3, by

a1(x; Λ) =
eθ′z exp(−Λ(u)eθ′z)
1− exp(−Λ(u)eθ′z)

,

a2(x; Λ) =
eθ′z exp(−Λ(u)eθ′z)

exp(−Λ(u)eθ′z)− exp(−Λ(v)eθ′z)
,
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and

a3(x; Λ) =
eθ′z exp(−Λ(v)eθ′z)

exp(−Λ(u)eθ′z)− exp(−Λ(v)eθ′z)
.

Let

WΛ(t) =
n∑

i=1

{δ1ia1(Xi,Λ)− δ2ia2(Xi,Λ)}1[Ui≤t]

+
n∑

i=1

{δ2ia3(Xi,Λ)− δ3ie
θ′Zi}1Vi≤t],

GΛ(t) =
n∑

i=1

{δ1ia
2
1(Xi,Λ) + δ2ia

2
2(Xi,Λ)}1[Ui≤t]

+
n∑

i=1

{δ2ia
2
3(Xi,Λ) + δ3ie

2θ′Zi}1Vi≤t],

and
VΛ(t) = WΛ(t) +

∫
[0,t]

Λ(s)dGΛ(s).

Then Λ̂n is the left derivative of the greatest convex minorant of the self-
induced cumulative sum diagram formed by the points P0 = (0, 0) and

Pj = (GbΛn
(Y(j)), VbΛn

(Y(j))), j = 1, . . . ,m.

With this characterization, the iterative convex minorant algorithm can
again be used in step (i). Finally, the Newton-Raphson method can be
used in step (ii).

5. Further problems.

1. Regularity conditions. In the regression setting, it would be very desir-
able to relax conditions (A4) and (A5) for case 1 data, and conditions
(B4) to (B6) for case 2 data. It appears that removing the positive separa-
tion hypothesis (B4a) is the most difficult task. Recently, Groeneboom and
Geskus (1996) succeeded in proving asymptotic normality and efficiency
of the NPMLE of a smooth functional of the distribution function in the
nonparametric setting (with no covariates) in the case when the two ex-
amination times U and V are arbitrarily close and the joint density h(u, v)
is strictly positive along the diagonal u = v. The techniques developed by
Groeneboom and Geskus (1996) can probably be extended to regression
problems.
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2. The accelerated failure time model with interval censoring. Although with
case 1 data, efficient estimators have been constructed by Klein and Spady
(1993), it seems that no efficient estimators with case 2 or general interval-
censored data have been constructed in the literature. It is shown in the-
orem 4.6 that the Fisher information for θ with case 2 data is positive
under appropriate conditions. This suggests that it is possible to construct
efficient estimators of θ. We are not able to prove that the maximum pro-
file likelihood estimator is asymptotically normal and efficient. The main
difficulty is that the profile likelihood function is not smooth in θ. We are
investigating regularized (or penalized) profile maximum likelihood estima-
tion approaches with case 2 data. It seems likely that these approaches will
yield efficient estimators.
3. Estimation of I(θ) and Confidence Sets for θ. In the case 2 or the general
interval censoring, we lack an explicit formula for the information I(θ) and
do not know how to estimate I(θ) directly. In section 4.1.3 we suggested
the use of observed information or the curvature of the profile likelihood
function as estimators of the information and hence of the asymptotic vari-
ance of the estimators. It is reasonable to conjecture is that these two
approaches provide consistent estimators of I(θ), but this remains to be
proved. For some progress in this direction, see Murphy and van der Vaart
(1996a, 1996b).
4. Testing Hypotheses with interval-censored data. It would be desirable to
be able to test hypotheses about θ; for example, consider testing H :
c′(θ − θ0) = 0 versus K : c′(θ − θ0) 6= 0 for fixed vectors θ0 and c.
Furthermore, inversion of the family of likelihood ratio tests of the hy-
potheses H : θ = θ0 versus K : θ 6= θ0 provides confidence sets for θ in
the usual way. [Note that this method apparently circumvents direct es-
timation of the asymptotic variances of estimators.] Likelihood ratio type
tests for semiparametric models have recently been studied by Murphy and
Van der Vaart (1996). Roughly their result asserts that the natural likeli-
hood ratio test for the finite-dimensional parameter θ in a semiparametric
model “works as would be expected from finite-dimensional parametric”
theory if the corresponding maximum likelihood estimator θ̂n is asymp-
totically normal and efficient. Murphy and Van der Vaart (1995) consider
several examples, including the proportional hazards model with case 1 in-
terval censored data (see our section 3.1 and Huang (1996a)). It remains
to implement their proposal in a range of interval censoring models and
to compare the resulting confidence intervals with those obtained by other
methods, including those suggested in sections 3.1.3 and 4.1.3.

Score tests seem feasible and useful in all of the interval censoring re-
gression models considered here. Tests of this type have been previously
suggested in the literature (see e.g. Hoel and Walburg (1972) and Peto
et al. (1980)), but apparently have not yet been studied thoroughly and
still lack justification from the current viewpoint. Fay (1996) considered
a class of rank invariant tests for interval-censored data which appears to



1. Interval Censoring 31

be closely related to score tests. The methods of Huang (1994) and (1996)
seem to apply directly to these natural score tests, and we intend to pursue
this elsewhere.

Another interesting problem concerns nonparametric tests for two or k
populations with interval-censored data. We are currently investigating test
statistics generated by score functions based on certain regression models;
see e.g. Huang, Wang, and Wellner (1996).
5. Regression models with time-dependent covariates. In this review we have
restricted attention to regression models with covariates not depending on
time. Time-dependent covariates also often arise in practice. Extension of
the maximum likelihood approach considered in this article seems feasible
and potentially useful. It may also be possible to extend the methods for
proving distributional properties with time-independent covariates to the
case of time-dependent covariates.
6. Small sample comparisons and refinements. We have emphasized maximum
likelihod procedures in this review. It remains to carry out thorough small-
sample comparisons of these methods with alternative procedures involving
sieved maximum likelihood or smoothing methods. For a bit of work in
this direction in the case of the proportional odds model, see Rossini and
Tsiatis (1996). [Rossini and Tsiatis (1996) concluded that “Nonetheless,
we did find that the automatic choice of intervals resulting by the use of
the NPMLE behaved well, for the most part, over a variety of models and
sample sizes.”]

6. Appendix.

Proof of Theorem 3.1. Without loss of generality, we only prove the
theorem for Z ∈ R. The general case can be proved similarly. We first
compute the score function for θ and F . The score function for θ is simply
the derivative of the log-likelihood with respect to θ, that is,

l̇θ(x) = zeθzΛ(u)
[
δ

F (u|z)
1− F (u|z)

− (1− δ)
]

.

Now suppose F0 = {Fη, |η| < 1} is a regular parametric sub-family of
F = {F : F � µ, µ = Lebesgue measure}. Set ∂

∂η log fη(t)|η=0 = a(t), then
a ∈ L0

2(F ) and ∂
∂η F η(t)|η=0 =

∫∞
t

adF. The score operator for f is

l̇f (a)(x) = eθz

∫∞
u

adF

F (u)

[
−δ

F (u | z)
1− F (u | z)

+ (1− δ)
]

.

Let Q(u, δ, z) be defined by (3.5), then

l̇θ(x) = zeθzΛ(u)Q(u, δ, z) and l̇f (a)(x) = −eθz

∫∞
u

adF

F (u)
Q(u, δ, z).
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With conditions (A2) and (A3), l̇θ is square integrable, and for any a ∈
L2(F ), l̇f (a) is square integrable. To calculate the efficient score l̇∗θ for θ,
we need to find a function a∗ so that

l̇θ − l̇fa∗ ⊥ l̇fa for all a ∈ L0
2(F ), (6.1)

that is, E(l̇θ − l̇fa∗)(l̇fa) = 0. for all a ∈ L0
2(F ). Let r(z) = ez. Some

calculation yields

−E(l̇θ − l̇fa∗)(l̇fa) = EU

{∫∞
U

adF

F (U)
E[r(2θZ)O(U | Z)[ZΛ(U)

+

∫∞
U

a∗dF

F (U)
] | U ]

}
,

where O(U |Z) is defined by (3.6). Let

E

{
r(2θZ)O(U | Z)[ZΛ(U) +

∫∞
U

a∗dF

F (U)
] | U

}
= 0,

then

Λ(U)E[r(2θZ)O(U | Z)Z | U ] = −
∫∞

U
a∗dF

F (U)
E[r(2θZ)O(U | Z) | U ],

thus with a∗ determined by∫ ∞

u

a∗dF = −Λ(u)F (u)E[Zr(2θZ)O(U | Z)|U = y]
E[r(2θZ)O(U | Z) | U = y]

,

(6.1) holds. Notice that a∗ is only determined on the support of U . However,
l̇fa∗ is a square integrable function with expectation zero. So the efficient
score function for θ is

l̇∗θ(x) = l̇θ(x)− (l̇fa∗)(x)

= r(θz)Q(y, δ, z)Λ(u)
{

z − E[(Zr(2θZ)O(U | Z) | U = y]
E[(r(2θZ)O(U | Z) | U = y]

}
.

The information for θ is

I(θ) = E[l̇∗θ(X)]2 = E

{
R(U,Z)

[
Z − E(ZR(U,Z) | U)

E(R(U,Z) | U)

]2}
, (6.2)

where R(U,Z) = Λ2(U | Z)O(U | Z). �
Proof of Theorem 3.6. For simplicity, we will prove (3.14) and (3.15)
for θ ∈ R. The generalization to θ ∈ Rd is straightforward.
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We first compute the score function for θ and F . The score function for
θ is simply the derivative of the log-likelihood with respect to θ. That is,

l̇θ(x) = −δ
f(u− z′θ)z
F (u− z′θ)

+ (1− δ)
f(u− z′θ)z

1− F (u− z′θ)
.

Now suppose F0 = {Fη, |η| < 1} is a regular parametric sub-family of
F = {F : F � µ, µ = Lebesgue measure}. Set

∂

∂η
log fη(t) |η=0= a(t).

Then a ∈ L0
2(F ), and

∂

∂η
Fη(t)|η=0 =

∫ t

−∞
adF,

∂

∂η
F η(t)|η=0 = −

∫ t

−∞
adF.

The score operator for f is:

l̇f (a)(x) = δ

∫ u−z′θ

−∞ a(t)dF (t)
F (u− z′θ)

− (1− δ)

∫ u−z′θ

−∞ a(t)dF (t)
1− F (u− z′θ)

.

To calculate the information for θ in this semiparametric model, we follow
the general theory of Bickel, Klaassen, Ritov, and Wellner (1993). We first
need to compute the efficient score function l̇∗θ for θ. Geometrically, l̇∗θ can be
interpreted as the residual of l̇θ projected in the space spanned by l̇fa, where
a ∈ L0

2(F ) = {a :
∫

adF = 0 and
∫

a2dF < ∞}. Thus we need to find a
function a∗ with

∫
a∗dF = 0 so that l̇∗θ = l̇θ− l̇fa∗ ⊥ l̇fa for all a ∈ L0

2(F ).
That is

E(l̇θ − l̇fa∗)(l̇fa) = 0 (6.3)

for all a ∈ L0
2(F ). Now we proceed to find a∗ such that (6.3) is true. We

have

l̇θ(x)− (l̇fa∗)(x)

=

[
f(u− z′θ)z +

∫ u−z′θ

−∞
a∗(t)dF (t)

] [
1− δ

1− F (u− z′θ)
− δ

F (u− z′θ)

]
.

Thus

−E((l̇θ − l̇fa∗)(l̇fa))

= E

{[
1− δ

1− F (U − Z ′θ)
− δ

F (U − Z ′θ)

]2
×

[
f(U − Z ′θ)Z +

∫ U−Z′θ

−∞
a∗(t)dF (t)

]∫ U−Z′θ

−∞
a(t)dF (t)

}
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= E

{[
f(U − Z ′θ)Z +

∫ U−Z′θ

−∞
a∗(t)dF (t)

]

×
[

1
1− F (U − Z ′θ)

+
1

F (U − Z ′θ)

] ∫ U−Z′θ

−∞
a(t)dF (t)

}
.

So, with U1 ≡ U − Z ′θ, we can set

E

[
(f(U1)Z +

∫ U1

−∞
a∗(t)dF (t)) |U1

]
= 0

to ensure that (6.3) is true. We obtain a∗ by solving the following equation:

f(s)E(Z|U − Z ′θ = s) +
∫ s

−∞
a∗(t)dF (t) = 0.

In other words, we can choose any a∗ that satisfies the above equation. In
particular, if f(s) and k(s) = E(Z|U − Z ′θ = s) are differentiable, and
f(s) > 0 for any s ∈ R, then we have an explicit expression for a∗:

a∗(s) = −k′(s)− k(s)
f ′(s)
f(s)

.

By the assumptions, we have∫
a∗(t)dF (t) = lim

s→∞

∫ s

−∞
a∗(t)dF (t) = lim

s→∞
f(s)E(Z|U − Z ′θ = s) = 0.

It follows that the efficient score function for θ is

l∗θ(x) = l̇θ(x)− l̇fa∗(x)
= f(u− z′θ)[z − E(Z|U − Z ′θ = u− z′θ)]

×
[

1− δ

1− F (u− z′θ)
− δ

F (u− z′θ)

]
.

The information for θ is

I(θ) = E[l̇∗θ(X)]2

= E

{[
f(U − Z ′θ)2

F (U − Z ′θ)(1− F (U − Z ′θ))

]
[Z − E(Z|U − Z ′θ)]2

}
.

Hence the information for θ is positive unless Z = E(Z|U − Z ′θ) with
probability one. �

Proof of Theorem 4.1. Recall that a1, a2 and a3 are defined in section
4.4. By conditions (A3) and (A4), a1, a2 and a3 are positive functions of
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(u, v, z). To make formulas shorter, we will drop the arguments of a’s in
the following. Let x = (δ, γ, u, v, z), and let l(x; θ, Λ) be the logarithm of
the density function of X. The score function for θ is

l̇θ(x) =
∂

∂θ
l(x; θ, Λ) = zeθ′z{δΛ(u)a1−γ[Λ(u)a2−Λ(v)a3]−(1−δ−γ)Λ(v)}.

The score operator for Λ is

l̇Λa(x) =
∂

∂s
l(x; θ, Λs)

∣∣∣∣
s=0

= eθ′z{δh(u)a1 − γ[h(u)a2 − h(v)a3]− (1− δ − γ)h(v)}

where h ≡ h[a] is defined by (4.4). In the following, we carry out the
calculation for θ ∈ R. For the general case θ ∈ Rd, we only need to repeat
the same calculation for each component of l̇θ(x).

The score operator l̇Λ maps L0
2(F ) to L0

2(P ), where P is the joint proba-
bility measure of (δ, γ, U, V, Z) and L0

2(P ) is defined similarly as L0
2(F ). Let

l̇
T

Λ : L0
2(P ) → L0

2(F ) be the adjoint operator of l̇Λ, i.e., for any a ∈ L0
2(F )

and b ∈ L0
2(P ), define h as in (4.7),

〈b, l̇Λa〉P = 〈l̇
T

Λb, a〉F ,

where 〈·, ·〉P and 〈·, ·〉F are the inner products in L0
2(P ) and L0

2(F ), respec-
tively. We need to find a∗ such that l̇θ − l̇α(a∗) is orthogonal to l̇α(a) in
L0

2(P ). This amounts to solving the following normal equation:

l̇
T

Λ l̇Λ(a∗) = l̇
T

Λ l̇θ. (6.4)

We know that

l̇
T

Λ l̇Λ(a)(t) = E[l̇Λ(a)(X)|T = t] = EZE[l̇Λ(a)(X)|T = t, Z];

see e.g. BKRW (1993), pages 271-272, or Groeneboom and Wellner (1992),
pages 8 and 9. By conditions (A1) and (A4),

E[l̇Λ(a)(X)|T = t, Z = z]

=
∫ τ1

u=t

∫ τ1

v=u+η

eθ′zh(u)a1g(u, v|z)dvdu

−
∫ t

u=τ0

∫ τ1

v=t

eθ′z(h(u)a2 − h(v)a3)g(u, v|z)1[v−u≥η]dvdu

−
∫ t

u=τ0

∫ t

v=u+η

eθ′zh(v)g(u, v|z)dudv,

where g(u, v|z) is the conditional density of (U, V ) given Z. Let

b1(u, v) = EZ [eθ′Za1(u, v, Z)g(u, v|Z)],
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b2(u, v) = EZ [eθ′Za2(u, v, Z)g(u, v|Z)],

b3(u, v) = EZ [eθ′Za3(u, v, Z)g(u, v|Z)],

and
b4(u, v) = EZ [eθ′Zg(u, v|Z)].

By the their definition, all the functions Aj and Bj are positive functions,
and

b2(u, v) = b3(u, v) + b4(u, v). (6.5)

We calculate

L(t) ≡ l̇
T

Λ l̇Λ(a)(t)

=
∫ τ1

u=t

∫ τ1

v=u+η

h(u)b1(u, v)dvdu

−
∫ t

u=τ0

∫ τ1

v=t

[h(u)b2(u, v)− h(v)b3(u, v)]1[v−u≥η]dvdu

−
∫ t

u=τ0

∫ t

v=u+η

h(v)b4(u, v)dvdu;

recall that h is defined in terms of a by (4.4). Let

c1(u, v) = EZ [Zeθ′Za1(u, v, Z)g(u, v|Z)],

c2(u, v) = EZ [Zeθ′Za2(u, v, Z)g(u, v|Z)],

c3(u, v) = EZ [Zeθ′Za3(u, v, Z)g(u, v|Z)],

and
c4(u, v) = EZ [Zeθ′Zg(u, v|Z)].

Then further calculation yields

R(t) ≡ l̇
T

Λ l̇θ(t) =
∫ τ1

u=t

∫ τ1

v=u+η

Λ(u)c1(u, v)dvdu

−
∫ t

u=τ0

∫ τ1

v=t

[Λ(u)c2(u, v)− Λ(v)c3(u, v)]1[v−u≥η]dvdu

−
∫ t

u=τ0

∫ t

v=u+η

Λ(v)c4(u, v)dvdu.

Let

b(t) =
∫ τ1

t+η

b1(t, x)dx+
∫ τ1

t+η

b2(t, x)dx+
∫ t−η

τ0

b3(x, t)dx+
∫ t−η

τ0

b4(x, t)dx.

After some straightforward calculations, the derivative of L(t) is

L′(t) = −b(t)h(t) +
∫ t−η

τ0

h(x)b2(x, t)dx +
∫ τ1

t+η

h(x)b3(t, x)dx.
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Similarly, let

c(t) =
∫ τ1

t+η

c1(t, x)dx+
∫ τ1

t+η

c2(t, x)dx+
∫ t−η

τ0

c3(x, t)dx+
∫ t−η

τ0

c4(x, t)dx.

The derivative of R(t)

r(t) ≡ R′(t) = −c(t)Λ(t) +
∫ t−η

τ0

Λ(x)c2(x, t)dx +
∫ τ1

t+η

Λ(x)c3(t, x)dx.

By conditions (A3)–(A5), r has a bounded derivative r′ on [τ0, τ1]. So equa-
tion (6.4) reduces to

−b(t)h(t) +
∫ t−η

τ0

h(x)b2(x, t)dx +
∫ τ1

t+η

h(x)b3(t, x)dx = r(t). (6.6)

By conditions (A3) and (A4), infτ0≤t≤τ1 b(t) > 0. Let d(t) = −r(t)/b(t)
and

K(t, x) = [b2(x, t)1[τ0≤x≤t−η] + b3(t, x)1[t+η≤x≤τ1]]/b(t).

We obtain a Fredholm integral equation of the second kind,

h∗(t)−
∫

K(t, x)h∗(x)dx = d(t).

Since K(t, x) is a bounded kernel (K being a L2 kernel suffices), by
lemma 6.1 below and the classical results on Fredholm integral equations
(Kanwal 1971), Sections 4.2 and 4.3; or Kress (1989), Chapter 4), there
exists a resolvent Γ(t, x) (completely determined by K) such that

h∗(t) = d(t) +
∫

Γ(t, x)d(x)dx. (6.7)

From equations (6.6) and (6.7), we can derive properties of h∗. By (6.7),
h∗ is bounded on [τ0, τ1]. By (6.6), this implies h∗ is continuous. This in
turn implies h∗ is differentiable. Since b is bounded away from zero, the
partial derivative of b2(x, t) with respect to t is bounded on [τ0, t − η],
the partial derivative of b3(t, x) with respect to t is bounded on [t + η, τ1],
and the derivative of r is bounded, it follows that the derivative of h∗ is
bounded. �

The following lemma is used in the proof of theorem 4.1.

Lemma 6.1. If

h(t)−
∫

K(t, x)h(x)dx = 0,

then h(t) ≡ 0 on [τ0, τ1].
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Proof of Lemma 6.1. According to the definition of K, the equation
can be written as∫ τ1

t+η

B3(t, x)h(x)dx +
∫ t−η

τ0

B2(x, t)h(x)dx

= h(t)
[∫ τ1

t+η

B1(t, x)dx +
∫ τ1

t+η

B2(t, x)dx

+
∫ t−η

τ0

B3(x, t)dx +
∫ t−η

τ0

B4(x, t)dx

]
. (6.8)

If there exists a point x0 such that h(x0) > 0, let y be the point in [τ0, τ1]
such that h(u) = supτ0≤x≤τ1

h(x), then by equation (6.5),∫ τ1

u+η

h(x)B3(u, x)dx +
∫ u−η

τ0

h(x)B2(x, y)dx

≤ h(u)
[∫ τ1

u+η

B3(u, x)dx +
∫ u−η

τ0

B2(x, y)dx

]
< h(u)

[∫ τ1

u+η

B2(u, x)dx +
∫ u−η

τ0

B2(x, y)dx

]
≤ h(u)

[∫ τ1

u+η

B1(u, x)dx +
∫ τ1

u+η

B2(u, x)dx +
∫ u−η

τ0

B2(x, y)dx

]
≤ h(u)

[∫ τ1

u+η

B1(u, x)dx +
∫ τ1

u+η

B2(u, x)dx

+
∫ u−η

τ0

B3(x, y)dx +
∫ u−η

τ0

B4(x, y)dx

]
.

This is a contradiction to equation (6.8). Since if h satisfies (6.8), −h also
satisfies (6.8), so there can not be a point x0 such that h(x0) < 0. �

Proof of Theorem 4.6. For simplicity, we will carry out the computation
for one-dimensional θ ∈ R. For θ ∈ Rd, we only need to repeat the same
calculation for each component of θ.

The score function for θ is simply the derivative of the log-likelihood with
respect to θ. That is,

l̇θ(x) =
(
−δ1

f(u− z′θ)
F (u− z′θ)

− δ2
f(v − z′θ)− f(u− z′θ)
F (v − z′θ)− F (u− z′θ)

+ δ3
f(v − z′θ)

1− F (v − z′θ)

)
z. (6.9)

Now suppose F0 = {Fη, |η| < 1} is a regular parametric sub-family of
F = {F : F � µ, µ = Lebesgue measure}. Set

∂

∂η
log fη(t) |η=0= a(t).



1. Interval Censoring 39

Then a ∈ L0
2(F ) ≡ {a :

∫
adF = 0, and

∫
a2dF < ∞, and, with F ≡ 1−F ,

∂

∂η
Fη(t)|η=0 =

∫ t

−∞
adF,

∂

∂η
F η(t)|η=0 = −

∫ t

−∞
adF.

Let φ(t) =
∫ t

−∞ a(s)dF (s). The score operator for f is:

l̇f (a)(x) = δ1
φ(u− z′θ)
F (u− z′θ)

+ δ2
φ(v − z′θ)− φ(u− z′θ)
F (v − z′θ)− F (u− z′θ)

− δ3
φ(v − z′θ)

1− F (v − z′θ)
.

(6.10)
The score operator l̇f maps L0

2(F ) to L0
2(P ), where P is the joint probability

measure of (δ1, δ2, U, V, Z) and L0
2(P ) is defined similarly as L0

2(F ). Let
l̇
T

f : L0
2(P ) → L0

2(F ) be the adjoint operator of l̇f , i.e., for any a ∈ L0
2(F )

and b ∈ L0
2(P ),

〈b, l̇fa〉P = 〈l̇
T

f b, a〉F ,

where 〈·, ·〉P and 〈·, ·〉F are the inner products in L0
2(P ) and L0

2(F ), respec-
tively. We need to find a∗ such that l̇θ − l̇f (a∗) is orthogonal to l̇α(h) in
L0

2(P ). This amounts to solving the following normal equation:

l̇
T

f l̇f (a∗) = l̇
T

f l̇θ. (6.11)

The value of l̇
T

f at any b ∈ L0
2(P ) can be computed by

l̇
T

f b(t) = E[b(X)|T = t]
= EZE[b(X)|T = t, Z] = EZE[b(X)|T − Z ′θ = t− Z ′θ, Z];

see e.g. BKRW (1993), pages 271-272, or Groeneboom and Wellner (1992),
pages 8 and 9.

Let h1 be the joint density of (U1, V1) where U1 = U−Z ′θ, V1 = V −Z ′θ.
Let s = t− z′θ. Then, with φ(t) ≡

∫ t

−∞ adF as before,

l̇
T

f l̇fa(t) =
∫ ∞

u1=t

∫ ∞

v1=u1

φ(u1)
F (u1)

h1(u1, v1)dv1du1

+
∫ t

u1=−∞

∫ ∞

v1=t

φ(v1)− φ(u1)
F (v1)− F (u1)

h1(u1, v1)dv1du1

−
∫ t

v1=−∞

∫ v1

u1=−∞

φ(v1)
1− F (v1)

h1(u1, v1)du1dv1.

Similarly, let

h2(u1, v1) =
∫

zh(u1 + z′θ, v1 + z′θ, z)dµ(z)

= E{Z|U1 ≡ U − Z ′θ = u1, V1 ≡ V − Z ′θ = v1}h1(u1, v1) .



40 Jian Huang , Jon A. Wellner

Then

l̇
T

f l̇θ(t) = −
∫ ∞

u1=t

∫ ∞

v1=u1

f(u1)
F (u1)

h2(u1, v1)dv1du1

−
∫ t

u1=−∞

∫ ∞

v1=t

f(v1)− f(u1)
F (v1)− F (u1)

h2(u1, v1)dv1du1

+
∫ t

v1=−∞

∫ v1

u1=−∞

f(v1)
1− F (v1)

h2(u1, v1)du1dv1 .

Let h11 and h12 be the marginal densities of h1. Using these two expressions
and differentiating both sides of (6.11), we find, after multiplying across by
−d, that

φ(t) + d(t)
[∫ t

−∞

φ(t)− φ(u)
F (t)− F (u)

h1(u, t)du−
∫ ∞

t

φ(u)− φ(t)
F (u)− F (t)

h1(t, u)du

]
= − d(t)g(t) (6.12)

where

d(t) =
F (t)(1− F (t))

h11(t)[1− F (t)] + h12(t)F (t)
,

g(t) is the derivative of l̇
T

f l̇θ(t), and g(t)F (t)(1− F (t)) is given by

g(t)F (t)F (t) = {h21(t)[1− F (t)] + h22(t)F (t)}f(t)

+F (t)F (t)
[∫ t

u=−∞

φ(t)− φ(u)
F (t)− F (u)

h2(u, t)du

−
∫ ∞

u=t

φ(u)− φ(t)
F (u)− F (t)

h2(t, u)du

]
with h21(u1) =

∫∞
u1

h2(u1, v1)dv1 and h22(v1) =
∫ v1

−∞ h2(u1, v1)du1.
Equation (6.12) has exactly the same structure as the integral equation

involved in computing the information for a smooth functional of the dis-
tribution function studied in Geskus and Groeneboom (1996a,b,c).

In particular, Geskus and Groeneboom (1996c) showed that (6.12) has
a unique solution φ∗(s) and that the Radon-Nikodyn derivative dφ∗/dF is
a.e.−[F ] bounded under hypotheses which are implied by our assumptions
(D1) - (D4); see their Theorem 2.2 and Corollary 2.1. This implies (6.11)
has a unique solution. �

Proof of Theorem 4.7. We apply Theorem 3.1 of Van de Geer (1993).
Let

p(x; θ, F ) = F (u− θ′z)δ1 [F (v − θ′z)− F (u− θ′z)]δ2(1− F (v − θ′z))δ3 .
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Denote the class of functions

H = {p(x; θ, F ) : (θ, F ) ∈ Θ×F}.

Clearly H is uniformly bounded by 1. Here we change notation from section
4 slightly by letting µ be the product of counting measure on {(0, 0), (0, 1), (1, 0)}
and the joint measure induced by the joint distribution H of (U, V, Z). Then∫

p(x; θ0, F0)dµ(x) ≤ 1.

Furthermore, the class H is a VC-hull class; see Dudley (1987), or Van der
Vaart and Wellner (1996), section 2.6.3 and lemma 2.6.19, page 145. Thus
the entropy condition of Theorem 3.1 of Van de Geer (1993) are satisfied.
This implies∫ (√

p(x; θ̂n, F̂n)−
√

p(x; θ0, F0)
)2

dµ(x) →a.s. 0.

This in turn implies,∫ (√
F̂n(u− θ̂n

′
z; θ̂n)−

√
F0(u− θ′0z)

)2

dG(u, v, z) →a.s. 0.

Changing variables in the integration and integration over v yields∫ (√
F̂n(s; θ̂n)−

√
F0(u + θ̂n − θ′0z)

)2

dG13(s + θ̂n

′
z, z) →a.s. 0 (6.13)

where G13 is the marginal distribution of (U,Z). Since Θ is bounded, for
any subsequence of θ̂n, we can find a further subsequence converging to
θ∗ ∈ Θ, the closure of Θ. On the other hand, by Helly’s selection theo-
rem, for any subsequence of Fn(·; θ̂n), we can find a further subsequence
converging in distribution to some subdistribution function F∗; i.e. point-
wise convergence at continuity points of F∗. Apparently, we can choose the
convergent subsequence of θ̂n and the convergent subsequence of Fn(·; θ̂n)
so that they have the same indices. Without causing confusion, we assume
that θ̂n converges to θ∗ and that Fn(·; θ̂n) converges to F∗. To prove the
theorem, it suffices to prove that θ∗ = θ0 and F∗ = F0. By continuity of F0

and (6.13), F∗ and θ∗ satisfy

F∗(u) = F0(u + θ′∗z − θ′0z) for G− almost all (u, z).

Thus

θ′∗z = θ′0z and F∗(u) = F0(u) G− almost all (u, z).
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Condition (ii) implies θ∗ = θ0. (4.12) follows. Similarly, we have

F∗(v) = F0(v) G2 − almost all v,

and (4.13) follows. �
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