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Abstract

A useful approach to asymptotic e�ciency for estimators in semiparametric models is the
study of lower bounds on asymptotic variances via convolution theorems. Such theorems are
often applicable in models in which the classical assumptions of independence and identical
distributions fail to hold, but to date, much of the research has focused on semiparametric models
with independent and identically distributed (i.i.d.) data because tools are available in the i.i.d.
setting for verifying pre-conditions of the convolution theorems. We develop tools for non-i.i.d.
data that are similar in spirit to those for i.i.d. data and also analogous to the approaches used
in parametric models with dependent data. This involves extending the notion of the tangent
vector �guring so prominently in the i.i.d. theory and providing conditions for smoothness, or
di�erentiability, of the parameter of interest as a function of the underlying probability measures.
As a corollary to the di�erentiability result we obtain su�cient conditions for equivalence, in
terms of asymptotic variance bounds, of two models. Regularity and asymptotic linearity of
estimators are also discussed. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Given a number of choices for making inference from observed data or, more par-
ticularly, estimating parameters, an important goal is to identify the procedure that
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makes the best use of available data. Unfortunately, even conceptually simple exper-
iments often lead to statistical models in which it is extremely di�cult to describe
performance of estimators in �nite samples. The simpli�cation in the structure of the
model obtained when the sample size tends to in�nity is often the only way to obtain
a tractable notion of optimality. The hope is that estimators determined to be optimal
in an asymptotic sense may be expected to perform well in the �nite samples obtained
in practice.
A relatively well-studied concept of e�ciency is based on what are commonly re-

ferred to as convolution theorems. The two key hypotheses of such a theorem are local
asymptotic normality (LAN) and di�erentiability of the parameter of interest. The latter
requires that this parameter, which could take values in an in�nite-dimensional space,
represents a smooth function of the probability measures in the underlying statistical
model. Under these hypotheses, convolution theorems assert a minimum asymptotic
variance among estimators that satisfy certain regularity conditions. Application to many
interesting i.i.d. data models and the resulting characterization of e�cient estimators
has met with considerable success. See for example the monograph by Bickel et al.
(1993) (hereafter referred to as BKRW) for applications to non- and semi-parametric
models. The appeal of the i.i.d. theory is the availability of convenient su�cient con-
ditions for the hypotheses. For example, it is known that certain “di�erentiability in
quadratic mean” conditions imply LAN. These conditions introduce the concepts of
tangent vectors and the tangent space. The geometry of the latter has proved to be
particularly useful in characterizing e�cient estimators. To establish di�erentiability
when the parameter is an implicit function of the probability measures resulting from
the parametrization of the model, rather than an explicit function, a result due to Van
der Vaart (1991) gives necessary and su�cient conditions for di�erentiability. In this
paper we explore analogous results that do not assume i.i.d. data. The results are
illustrated on a series of examples.
A more detailed outline of the paper is as follows. In Section 2 we give more

precise de�nitions of LAN, di�erentiability and regularity of an estimator, along with a
statement of a convolution theorem due to Van der Vaart and Wellner (1996). Section 3
discusses LAN in more detail and describes a set of su�cient conditions that do not
assume i.i.d. data. Particular emphasis is placed on stating these results in a way that
resembles the i.i.d. theory as much as possible. Based on the de�nition of tangent
vectors developed in Section 3, conditions for the smoothness of the parameter to be
estimated are developed in Section 4 that parallel results in the i.i.d. theory. In Section 5
we discuss regularity of estimators in more detail along with a characterization of
e�cient estimators. We conclude with a discussion of the results and open problems.

2. Basic de�nitions and convolution theorem

To state the theorem, we �rst need a precise de�nition of local asymptotic normality
(LAN), the di�erentiability hypothesis, and of the notion of regular estimators. The
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�rst de�nition introduces the tangent space H; the second and third are relative to H.
All three are taken from Van der Vaart and Wellner (1996, p. 413).
Before giving the formal de�nition of LAN we describe the notation used in the

de�nition. Let � denote a parameter space and P={P�: �∈�} be a family of proba-
bility measures de�ned on a measurable space (
;F). Suppose we observe mn random
elements (Xn1; : : : ; Xnmn) ∼ Pn;� where Pn;� = P�|Fn , the restriction of P� to the sigma
algebra Fn = �(Xn1; : : : ; Xnmn). The log likelihood ratio for two points �1 and �2 in �
with n observations will be denoted by

�n(�1; �2) = log
dPn;�1

dPn;�2
;

where dPn;�1 =dPn;�2 denotes the Radon–Nikodym derivative of the absolutely continuous
part of Pn;�1 with respect to Pn;�2 .

De�nition 2.1 (LAN). Let H be a linear space with inner-product 〈·; ·〉 and norm
|| · ||. We say the model is LAN at �0 ∈� indexed by the tangent space H if for each
h∈H there exists a sequence {Pn;�n(h)} of probability measures de�ned on (
;F)
with

�n(�n(h); �0) = �n;h − 1
2 ||h||2 + oPn; 0 (1): (2.1)

Here �n;h : 
 → R are measurable maps with

L(�n;h1 ; : : : ; �n;hd |Pn;0)→ Nd(0; 〈hi; hj〉) (2.2)

for every �nite subset h1; : : : ; hd ∈H.

Consider also the weaker condition

L(�n;h)→ N1(0; ||h||2) for every h∈H: (2.3)

Note that if the maps �n;h are linear in h then given any collection (h1; : : : ; hd) and
any vector a∈Rd we have

�
n;
∑d

i=1
aihi
=

d∑
i=1

ai�n;hi = (�n;h1 ; : : : ; �n;hd)a
T: (2.4)

But, under (2.3),

L(�
n;
∑d

i=1
aihi
)→ N1

(
0;
∣∣∣∣
∣∣∣∣ d∑
i=1

aihi

∣∣∣∣
∣∣∣∣
2
)

where
∣∣∣∣
∣∣∣∣ d∑
i=1

aihi

∣∣∣∣
∣∣∣∣
2

= aT[〈hi; hj〉]d a:

We may thus conclude, after an application of the Cram�er–Wold device, that (2.2)
holds under the linearity assumption (2.4). This would continue to be the case if the
�n;h are only approximately linear; i.e. if

�n;a1h1+a2h2 = a1�n;h1 + a2�n;h2 + oPn0 (1):

With the tangent space de�ned, we may now give a statement of the di�erentiability
condition and of regularity of an estimator.
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De�nition 2.2 (Di�erentiability of a parameter). Let B be a Banach space and
�n(Pn;�) be B-valued “parameters”. We say the sequence {�n} is di�erentiable if

Rn(�n(Pn;�n(h))− �n(Pn;0))→ �̇(h) for every h∈H (2.5)

for some sequence of linear maps Rn : B → B with ||Rn|| → ∞ and a continuous linear
map �̇ :H → B.

De�nition 2.3 (Regular estimators). A sequence of maps Tn : Xn → B is said to be
locally regular for �n if under Pn;�n(h),

Rn(Tn − �n(Pn;�n(h)))⇒ Z as n → ∞; (2.6)

for every h∈H, where Z is a Borel measurable tight random element in B which
does not depend on h∈H.

Theorem 2.4 (Convolution theorem). Suppose P= {P�: �∈�} is LAN at a point �0
indexed by a linear subspace (H; 〈·; ·〉) of a Hilbert space. Further suppose {�n} is a
di�erentiable sequence of parameters. Then if Tn is locally regular for �n; there exist
tight Borel measurable elements Z0 and W in B with

(A) P(Z0 ∈ �̇(H)) = 1.
(B) L(Z) =L(Z0 +W).
(C) Z0 and W are independent.
(D) L(b∗Z0) = N(0; ||�̇Tb∗ ||2) for every b∗ ∈B∗.

Here �̇Tb∗ is the unique element of �H such that

(�̇Tb∗)h= 〈�̇Tb∗ ; h〉 where �̇T : B∗→H∗

is the adjoint of �̇.

Theorem 2.4 was established by Van der Vaart and Wellner (1991), and is Theorem
3:11:2, p. 414 of Van der Vaart and Wellner (1996).
Because a Hilbert space and its dual can always be identi�ed, we often do not make a

distinction between �̇Tb∗ and �̇Tb∗ . Note also that we do not require the adjoint to map to
the dual of a closed, and hence complete, subspace. Although many interesting features
of adjoints depend on completeness, we shall only use the most basic properties. For
our applications we only need the dual to separate points of the space in question
so that adjoints are well de�ned. This is certainly true for the (subspaces of) Banach
spaces we will encounter in our applications.

3. Local asymptotic normality (LAN)

To interpret the LAN conditions it is helpful to specialize to the case where the
parameter space is �nite-dimensional. Then De�nition 2.1 may be expressed as: The
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model is LAN at �0 if there are random vectors Sn and a positive-de�nite matrix K
such that for all t ∈Rk

�n(�0 + �nt; �0) = t′Sn − 1
2 t

′Kt + Rn(�0; t); (3.1)

where L(Sn|Pn;�0 )→ N(0; K) and Rn(�0; t)→ 0 in Pn;�0 probability.
It is a fact due to Le Cam (1960) that under the LAN conditions the sequences

Pn;�0+�nt and Pn;�0 are mutually contiguous. However, the reasoning behind the ter-
minology (locally asymptotically normal) is as follows. Consider a random vector X ,
distributed as N(Kt; K) under a measure Qt , and distributed as N(0; K) under Q0. Some
algebra reveals that the log likelihood ratio of Qt to Q0 is indeed t′X − (1=2)t′Kt. Thus
the likelihood ratios in (3.1) converge in distribution to the likelihood ratios of a
Gaussian shift experiment where t indexes the shift. It is known (Le Cam, 1969) that
this convergence in distribution of likelihood ratios is equivalent to a certain type of
convergence of experiments; that is, the sequence Pn is approximated, in local (shrink-
ing) neighborhoods of �0, by a Gaussian shift experiment. The vectors t in (3.1) can
be thought of as directions in Rk from which � is approached at rate �n. The path
of approach represents a one-dimensional submodel. In problems where the parameter
space is in�nite-dimensional, such as in non- and semi-parametric models, we continue
to look at one-dimensional submodels that satisfy a condition such as (3.1). Just as
the t’s index directions and the shift in the approximating experiment for parametric
models, so do the h’s in the more general context. These are the keys in the asymptotic
expansion in a neighborhood of �0 and the geometry provided by the inner product is
a natural extension of the form of the approximation for parametric models.
In certain examples LAN may be veri�ed by direct calculation, as in the following.

Example 1. A particular case of the class of models studied by Pfanzagl (1993) can
be described as follows. Consider sampling X1; X2; : : : independently from normal dis-
tributions N(�1 + �; 1);N(�2 + �; 1); : : : for an unobserved sequence � ≡ (�1; �2; : : :) and
common parameter �∈R. The goal is to estimate �. In the i.i.d. version, we envision
� as a random sample according to some distribution G, say with mean 0 so that �
can be identi�ed. Then the resulting observations are i.i.d. according to the measure
de�ned by

P�;G(Xi6x) =
∫ ∞

−∞

∫ x

−∞
�(t − (�+ �)) dt dG(�);

where � is the standard normal density. One possible non-i.i.d. case arises if � is
thought of as a �xed, unknown, unobserved sequence which is centered at 0 in the
sense that limn→∞ n−1

∑n
i=1 �i=0. This is sometimes called a functional model. More

generally, one could consider sampling � according to a measure � on HN and then
conditional on �, sampling X1; X2; : : : from P�;�1 ; P�;�2 ; : : : . The i.i.d. model corresponds
to � = GN while the functional model corresponds to � = ��, a point mass at �.
This more general setting allows the nuisance sequence to be speci�ed, for instance,
as a sample from a stationary process. However, for the remainder of this paper we
consider two special cases where the nuisance sequence is chosen deterministically
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via a function on [0; 1]. In both instances the resulting data are independent but not
identically distributed.
For the �rst of these approaches, take a continuous function f0 on the interval [0; 1].

Since [0; 1] is compact, f0 is actually uniformly continuous and bounded. Suppose
further that f0 is centered about 0 in that

∫
f0(s) ds = 0 and denote the space of all

such functions C0b [0; 1] equipped with the supremum norm ||f||∞ = supx|f(x)|. Since
f0 ∈C0b [0; 1] it makes sense to specify an array of nuisance parameters by �ni=f0(i=n),
i = 1; : : : ; n.
In the second approach take the nuisance parameters to be generated by a function

ḟ0 ∈L02(�) with � Lebesgue measure on [0; 1]. For given n take

�ni = n
∫ i=n

(i−1)=n
ḟ0 d�; i = 1; : : : ; n:

Then indeed
1
n

n∑
i=1

�ni =
∫ 1

0
ḟ0 d�= 0:

To verify LAN, say for the model given by the �rst method of specifying the
nuisance parameters, we must consider a sequence of points in the parameter space
that tend toward (�0; f0). This is achieved by �rst considering paths in the parameter
space that pass through (�0; f0), and then considering a sequence along the paths. In
this case we take a path (�t; ft) where �t ∈R with �t = �0 + ta and ft ∈C0b [0; 1] with
ft(s) = f(s) + tg(s) for g∈C0b [0; 1]. Then, for tn = n−1=2, the log likelihood ratio for
a single observation Xni in the nth row of the array is given by

− 1
2 (Xni − (ftn(i=n) + �tn))

2 +
1
2
(Xni − (f0(i=n) + �0))2:

It is then straightforward to verify that

�n((�tn ; ftn); (�0; f0)) = �nh − �2n=2; (3.2)

where h is given by h(s) = g(s) + a,

�2n =
1
n

n∑
i=1
(g(i=n) + a)2

and

�nh =
1√
n

n∑
i=1

{[Xni − (f0(i=n) + �0)](g(i=n) + a)} ∼ N(0; �2n):

In order to conclude LAN it is important that h be an element of an inner-product
space. Here we choose L2(�) where � is Lebesgue measure on [0; 1]. Thus we say
h= l̇(a; g)= a+ g for l̇ : R×C0b [0; 1]→ H= L2(�). Since �2n = n−1

∑n
i=1(g(i=n)+ a)2

converges to �2 ≡ ∫ 10 h(s)2ds= ||h||2L2(�), L(�nh|P(�0 ;f0))→ N(0; �2). Conclude that

�((�tn ; ftn); (�0; f0)) = �nh − �2=2 + oP(1):

Finally, note that �nh is linear in h, while the operator l̇ is linear so that its range, H,
is a linear space. With these �nal conditions satis�ed, this model could be described
as LAN indexed by R(l̇).
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For the version of this problem where the nuisance sequence is generated by an
L02(�) function ḟ0, the paths through the parameter space are constructed analogously
with ḟt where ḟt(s) = ḟ0(s) + tġ(s) for ġ∈L02(�). In general, write

�ni(ḟ) = n
∫ i=n

(i−1)=n
ḟ d�:

The path �t in R is as before. Again take tn = n−1=2. The log likelihood ratio for a
single observation Xni in the nth row is now

− 1
2 (Xni − (�ni(ḟtn) + �tn))

2 + 1
2 (Xni − (�ni(ḟ0) + �0))2:

From this we get a log-likelihood ratio of

�n((�tn ; ḟtn); (�0; ḟ0)) = �nh − �2n=2; (3.3)

where h(s) = ġ(s) + a,

�2n =
1
n

n∑
i=1
(�ni(ġ) + a)2

and

�nh =
1√
n

n∑
i=1
([Xni − (�ni(ḟ0) + �0)](�ni(ġ) + a)) ∼ N (0; �2n):

In this case, h is already an element of an inner-product space namely L2(�). The score
operator here is de�ned by h = l̇(a; g) = a + ġ for l̇: R × L02(�) → H = L2(�). The
functions

�n(x) = n
∫ i=n

(i−1)=n
(ġ+ a) d� 1((i−1)=n; i=n](x)

are approximants that converge in L2(�) to ġ+a by standard results in L2 approximation
theory (eg. Royden, 1988, pp. 128–129). Thus

�2n = ||�n||2 → ||ġ+ a||2 ≡ �2

so that L(�nh|P(�0 ;ḟ0))→ N(0; �2), and

�((�tn ; ḟtn); (�0; ḟ0)) = �nh − �2=2 + oP(1)

for the newly de�ned �nh and �2. The map �nh is still linear in h, and the score
operator l̇ is linear so this version of the model could be described as LAN indexed
by R(l̇).

In the above example the real-valued parameter � is described as the parameter
of interest, while the functions f0 or ḟ0 that generate the sequence �n1; �n2; : : : are
described as nuisance parameters. However, estimation of f0 or ḟ0 could also be stated
as goals of inference. These parameters are not expressed as explicit functions of the
probability measures in the underlying model. Rather, they are de�ned implicitly via the
parametrization. Establishing di�erentiability of implicitly de�ned parameters is taken
up in Section 4. There we shall see that f is di�erentiable, while ḟ is not.
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The above LAN calculations rely on the assumed normality of the observations.
Most often the task of establishing LAN is more di�cult. However, in the case the
experiments consist of independent observations, LAN is implied by a certain “di�er-
entiability in quadratic mean” condition. We �rst discuss these su�cient conditions,
before describing analogous su�cient conditions that do not assume i.i.d. data.

3.1. Su�cient conditions for LAN in i.i.d. models

A related concept to LAN, one which plays a prominent role in the i.i.d. theory,
is the tangent vector. This was �rst described by Koshevnik and Levit (1976) for
sequences of probability measures. In its simplest form, a function h∈L2(P�0 ) is the
tangent vector at P�0 of a path � 7→ P�� through P with P��.P�0 for all � if

∫ [
�−1

(√
dP��

dP�0
− 1
)

− 1
2
h

]2
dP�0 → 0 as � ↓ 0: (3.4)

Since the above is L2(P�0 ) convergence, we may think of h=2 as the L2(P�0 ), or
quadratic mean derivative of

√
dP��=dP�0 at � = 0. The absolute continuity condition

can, in fact, be relaxed if the P�� -measure of the set where P�0 places no mass (the sin-
gular part of P�0 ) disappears fast enough. See for example the two (DQM0) conditions
in Le Cam and Yang (1990, p. 101). These two conditions are equivalent to

∫ [
�−1

(√
dP��

d��
−
√
dP�0

d��

)
− 1
2
h

√
dP�0

d��

]2
d�� → 0 as � ↓ 0; (3.5)

where each �� is an arbitrary �-�nite measure dominating both P�� and P�0 . In fact,
the integral expression on the left-hand side is the same for all choices of �� so that
this measure is often suppressed in the notation. In this form, 12h

√
dP�0 =d�� is called

the Hellinger derivative since the Hellinger distance between two measures P�� and
P�0 is the square root of

1
2

∫
[
√
dP��=d�� −

√
dP�0 =d��]2 d�� (cf. Begun et al. (1983)

for this terminology).
Under the above di�erentiability in quadratic mean condition, it can be shown that

for �n = n−1=2 + o(n−1=2),

�n(��n ; �0) =
1√
n

n∑
i=1

h(Xi)− 1
2
||h||2 + rn; (3.6)

where rn → 0 in Pn
�0 -probability and || · || is the L2(P�0 ) norm. In the case of regular

�nite-dimensional parametric models, the tangents are given by l̇(�0)Tt for t ∈Rk where
l̇(�0) is the score vector in the quadratic mean sense; that is, for points �0+ t=

√
n along

a path through �,∫ [√
n(
√
dP��0+t=

√
n
−
√
dP��0

)− 1
2
l̇(�0)Tt

√
dP��0

]2
→ 0 as n → ∞:

Thus, the tangent space for a regular parametric model is given by the span of the
score vector l̇(�0) (which usually coincides with the score vector in the usual sense)
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as a subspace of L2(P�0 ). This is actually a subspace of L02(P�0 ), the set of L2(P�0 )
functions with mean 0, since scores have mean 0 (BKRW, p. 15). Note also the
role of the score vector as an operator from Rk to H that maps the derivative of
a given path (indicated by t) to the corresponding tangent (l̇(�0)Tt). The analog for
in�nite-dimensional parameter spaces, usually assumed to be a Hilbert space, are score
operators. As in the �nite-dimensional case these can be used to determine the tangent
space. Score operators in the current context will be discussed at the end of this section.

3.2. Su�cient conditions for LAN without assuming i.i.d. data

In general models we do not have a common density. However, we may still write
the likelihood ratio as a product of “conditional densities”. Such an approach was
taken by Jeganathan (1982), in the context of parametric models, for verifying a more
general asymptotic expansion of the likelihood ratios (local asymptotic mixed normality
or LAMN). In the present context, we follow the approach outlined in Greenwood
and Shiryayev (1985). As before � denotes the (possibly in�nite dimensional) para-
meter space and P = {P�: �∈�} is a family of probability measures de�ned on a
measurable space (
;F). For mn observed random elements (Xn1; : : : ; Xnmn) we have
a non-decreasing family of sub-�-algebras {Fnj: j = 0; : : : ; mn} where Fn0 = {∅; 
},
Fnj = �(Xn1; : : : ; Xnj) for j6mn, and Fn =Fnmn .
For given measures P and P̃ the above systems of sub-�-algebras allow us to de�ne

Pn = P|Fn ; P̃n = P̃|Fn ; Pnk = P|Fnk = Pn|Fnk ; P̃nk = P̃|Fnk = P̃n|Fnk

and with �nk = (P̃nk + Pnk)=2 and �n = (P̃n + Pn)=2,

�nk =
dPnk

d�nk
; �̃nk =

dP̃nk

d�nk
and znk =

�̃nk

�nk

with analogous de�nitions for �n, �̃n and zn. Since Fn=Fnmn , �n= �nmn , �̃n= �̃nmn and
zn = znmn . We will also make use of �nk = znk =zn(k−1) with the conventions a=0 =∞ if
a¿ 0 and 0=0=0. With Fn0={∅; 
}, this implies zn0=1, since any probability measure
restricted to this trivial �-algebra is the same, so that znk =

∏k
i=1 �ni. In addition, de�ne

�nk = �nk=�n(k−1) and �̃nk = �̃nk =�̃n(k−1). The �nk may be interpreted as conditional
densities under Pn of Xnk given Xn1; : : : ; Xn(k−1). Since �nk = �̃nk =�nk we see that it is
like a ratio of conditional likelihoods. Of course, if the observations are independent,
then conditioning has no e�ect and the �nk are the more familiar likelihood ratios
corresponding to the observation Xnk .
When the measures P̃ and P are given by P�1 and P�2 respectively write znk(�1; �2),

zn(�1; �2), �nk(�1; �2) and �n(�1; �2). The log likelihood ratio is then given by

�n(�1; �2) = log zn(�1; �2) =
mn∑
k=1
log �nk(�1; �2):

We are now ready to state a theorem providing a set of su�cient conditions for
LAN in this more general setting.
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Theorem 3.1. Let H be a pre-Hilbert space and suppose that for each h∈H there
exists a sequence {�n}∈� and an array {hnk ; k = 1; : : : ; mn; n= 1; 2; : : :} associated
with h. Let En denote expectation under Pn;�0 and Ẽn denote expectation under Pn;�n .
Suppose that with �nk ≡ �nk(�n; �0);

mn∑
k=1

Ẽn[1{�nk=∞}|Xn1; : : : ; Xn;k−1]
P0→ 0; (3.7)

1
mn

mn∑
k=1

En

[√
mn(

√
�nk − 1)− 1

2
hnk

]2
→ 0; (3.8)

1
mn

mn∑
k=1

En[h2nk1{|hnk |¿
√

n�}]→ 0 for all �¿ 0; (3.9)

1
mn

mn∑
k=1

En[h2nk |Xn1; : : : ; Xn;k−1]
Pn;�0→ ||h||2; (3.10)

1
mn

mn∑
k=1

En[h2nk ]→ ||h||2 (3.11)

and

�n;h ≡ 1√
mn

mn∑
i=1
(hnk − En[hnk |Xn1; : : : ; Xn;k−1]) (3.12)

is well de�ned and approximately linear in h; i.e.;

�n;a1h1+a2h2 = a1�n;h1 + a2�n;h2 + oP0 (1):

Then

1. �n(�n; �0) = �n;h − 1
2 ||h||2 + rn where rn

P0→ 0; and
2. L(�n;h|P0)→ N(0; ||h||2).

The proof of the above theorem, given in Appendix A, follows Strasser (1985, Sec-
tion 74) and Strasser (1989) who considered arrays of independent but not necessarily
identically distributed observations. Our proof applies in the present more general set-
ting that allows dependent observations. For a similar set of su�cient conditions for
LAN in non-i.i.d. contexts when the parameter space is �nite-dimensional, see also
Ibragimov and Khas’minskii (1975).

Remark 3.2. The arrays {hnk ; k = 1; : : : ; mn; n = 1; 2; : : :} are the real key to guaran-
teeing the right form of the asymptotic expansion of the log likelihood ratios. However
the LAN de�nition requires that this expansion be indexed by elements h of a geomet-
ric (Hilbert) space. The connection between a tangent h and the corresponding array
{hnk ; k = 1; : : : ; mn; n = 1; 2; : : :} is speci�ed by conditions (3.10)–(3.12). Because
these conditions all involve approximations that improve as n tends to in�nity, h may
be thought of as a “feature” of the array {hnk} in the limit. This loose speci�cation
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of the connection between tangents and the associated arrays leaves a certain amount
of freedom in choosing the tangent space in applications. A concrete construction of
tangents is given in De�nition 3.5 and this construction is carried out in Examples 2
and 3 below.

Remark 3.3. Conditions (3.9)–(3.11) guarantee that

{hnk − E[hnk |Xn1; : : : ; Xn;k−1] : k = 1; : : : ; mn}
is a Martingale di�erence array which leads to the required asymptotic normality in
conclusion 2.

Remark 3.4. Often the conditional expectations E[hnk |Xn1; : : : ; Xn;k−1] are identically
zero and the support condition (3.7) is trivially satis�ed. Then the above result asserts
that if the conditional likelihood ratios along paths in the model are approximated in
the sense of condition (3.8) by a Martingale di�erence array with properties (3.9)–
(3.11) and each array is associated with an element of a Hilbert space such that (3.12)
holds, then the model is LAN at �0.

For i.i.d. data, (3.7) becomes nP�n{p(X |�0) = 0} → 0; while (3.8) becomes (3.4).
As described at the beginning of this section, these two conditions are equivalent to
the more familiar Hellinger- or pathwise-di�erentiability with tangent h (Eq. (3.5)).
Conditions (3.9)–(3.11) are satis�ed if h is in L2(P�0 ), and �n;h is taken to be
n−1=2

∑n
i=1 h(Xi) which is clearly linear in h. In this situation the tangents really are

tangents. Since each h is de�ned by (3.4) 1
2h is an L2(P�0 ) tangent to the path indexed

by �. Our h in general is just something constructed to verify LAN, but we are going
to use it analogously.
As indicated in Remark 3.2, Theorem 3.1 leaves open the identi�cation of H. In

the absence of any intuition about what form the tangents should take, a systematic
approach is also available, based on Strasser’s (1989) approach. With hn0 =0 for all n,
the step function hn(·; t)=

∑n
k=0 hnk(·)1{[nt]=k} is in L2(Pn;�0 ×�), where � is Lebesgue

measure on [0; 1]. If the sequence {hn} converges in L2(P�0 × �), then the limit, call
it h, could be used as a tangent vector since it belongs to a Hilbert space and has the
property ||h||2 = limn→∞||hn||2 = �2. The functions �n;h from the LAN de�nition are
then given by

�n;h =
1√
n

n∑
k=1
(hnk − E[hnk |Fn(k−1)]):

We summarize the above in the following de�nition.

De�nition 3.5. Let h∈L2(P�0 × �). If there exists a sequence {�n}∈� such that with
�nk=�nk(�n; �0) the conditions of Theorem 3.1 are satis�ed by an array {hn1; : : : ; hnmn};
n= 1; 2; : : : with each hnk Fnk -measurable, and furthermore that with

hn(·; t) =
n∑

k=1
hnk(·)1{[nt]=k} we have ||hn − h||L2(P�0×�) → 0; (3.13)
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then call h the tangent vector corresponding to {�n(h)} ≡ {�n}. The tangent set
H0⊂L2(P�0 × �), is the collection of all h as in (3.13).

Although this de�nition does not describe the random variables �n;h explicitly in
terms of the tangent h (instead they are de�ned implicitly via the array {hnk} associated
with h) the next proposition shows it is enough to guarantee (approximate) linearity of
�n;h in h over any linear subspace of H0. The implication is that the model is LAN
indexed by such a subspace.

Proposition 3.6. If H is a linear subspace of H0; then the model is LAN at �0
indexed by H. In particular; if H0 itself is linear; the model is LAN at �0 indexed
by H0.

Proof. Let h1; h2 ∈H and a1; a2 ∈R. Then a1h1 + a2h2 ∈H so that there exists a
sequence h̃n and an array of elements h̃nk that satisfy (3.8)–(3.11), and give rise to
the random variable �n;a1h1+a2h2 in the expansion. In addition there are sequences h1n
and h2n with arrays h1nk and h2nk corresponding to h1 and h2, respectively. These
are such that a1h1n + a2h2n → a1h1 + a2h2 while h̃n → a1h1 + a2h2 by de�nition.
Thus ||a1h1n + a2h2n − h̃n|| → 0. But this convergence translates into the type of
convergence of arrays in (3.8). In light of Remark A.4 (Appendix A) we see that the
array a1h1nk+a2h2nk satis�es the same expansion of the log likelihood ratio as h̃n. Thus
�n;a1h1+a2h2 = a1�n;h1 + a2�n;h2 + oP(1). From this approximate linearity and the form
of the expansion, which satis�es Eqs. (2.1) and (2.3) of the general LAN de�nition,
we conclude the model is LAN at �0 indexed by H.

See Strasser (1989) for a more thorough treatment of tangent vectors in the case
of independent but not identically distributed observations. One example of such a
sampling scheme is the following.

Example 2 (Bivariate three-sample model). In the bivariate three-sample model dis-
cussed in Van der Vaart and Wellner (1991), the �rst sample consists of pairs (X11; Y11);
: : : ; (X1n1 ; Y1n1 ) from a bivariate distribution P. In the second sample we only observe
the �rst margin, that is X21; : : : ; X2n2 , while in the third sample we observe the sec-
ond margin, Y31; : : : ; Y3n3 . The parameter of interest can be taken to be the probability
measure P itself – there is no parametric component. This model can be viewed as a
missing data model where the Y ’s are missing in the second sample and the X ’s are
missing in the third sample. It could, of course, be extended to a case where the “com-
plete” observation was p-variate and we could have as many as K=

∑p
i=1(

p
i )=2

p−1
samples.
The computations here follow those in Example 4:2 of Van der Vaart and Wellner

(1991). Consider �rst an i.i.d. non-parametric model P of measures on a measurable
space (X×Y;A×B) and a point P0 ∈P. We observe n1 complete observations, n2
observations on the �rst margin only and n3 observations on the second margin only
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giving a total of n observations. It is supposed that each sequence ni=n converges to a
known constant �i with �1 + �2 + �3 = 1.
It can be shown that for an arbitrary function g∈G0={all bounded L02(P0) functions},

g is a tangent in the i.i.d. sense corresponding to the path P� given by

P�(A× B) =
∫
A×B

(1 + �g) dP0

for �∈R small enough so that dP�=dP0 = 1 + �g¿0. Let P�;X and P�;Y denote the
marginal probability measures of P�. To compute tangents in these marginal models
we refer to Proposition A:5 in BKRW which states that the corresponding tangents for
the model where we observe X only is g1(X )=E[g(X; Y )|X ] and when we observe Y
only is g2(Y ) = E[g(X; Y )|Y ].
To verify the conditions of Theorem 3.1 suppose the observations are arranged so

that the n1 complete observations come �rst, the n2 observations with X only come
second, and the n3 observations with Y only come third.
For a total sample of size n su�ciently large, take � from the de�nition of the paths

to be n−1=2 and let the array of hnk elements in the nth row be given by

hnk = g1{1; :::; n1}(k) + g11{n1+1;:::;n1+n2}(k) + g21{n1+n2+1;:::;n}(k):

From the independence of the observations we have

�nk =



dP�=dP0 = 1 + �g; 16k6n1;
dP�;X =dP0;X = 1 + �g1; n1 + 16k6n1 + n2;
dP�;Y =dP0;Y = 1 + �g2; n1 + n2 + 16k6n:

Note that P�.P0, P�;X.P0;X , P�;Y.P0;Y , so that any sequence along such a path
satis�es (3.7). The above construction emphasizes the three i.i.d. subproblems. Using
the i.i.d. theory on these subproblems allows straightforward veri�cation of conditions
(3.8) and (3.9).
The expression in condition (3.10) becomes

n1
n

∫
g2 dP0 +

n2
n

∫
g21 dP0;X +

n3
n

∫
g22 dP0;Y

which converges to �1||g||2 + �2||g1||2 + �3||g3||2 ≡ �2: Thus (3.11) is also satis�ed
and hence all the necessary conditions for De�nition 3.5 are met. The function hn(·; t)
from De�nition 3.5 is

n1∑
k=1

g1{[nt]=k} +
n2∑
k=1

g11{[nt]=k+n1} +
n3∑
k=1

g21{[nt]=k+n1+n2}

= g1[0; n1=n](t) + g11(n1=n;(n1+n2)=n](t) + g21(n1+n2)=n;1](t):

From the convergence ni=n → �i for all i, and the square integrability of the function
g, the sequence {hn} can be seen to converge in L2(P�0 × �) (or simply L2(P0 × �))
to the tangent h(·; t) = g1[0; �1](t) + g11(�1 ;�1+�2](t) + g21(�1+�2 ;1](t). Since the collection
of functions G0 is a linear space and g can be taken to be any member of G0, the
collection of all such h is a linear space. Thus the conclusion is that H0 is linear and
hence the model is LAN at P0 indexed by H0.
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Another choice for the tangent, as in Van der Vaart and Wellner (1991), would be
h= (g; g1; g2) in a space where the inner product is de�ned by

〈h̃; h〉= �1〈g̃; g〉+ �2〈g̃1; g1〉+ �3〈g̃2; g2〉:
Here it is clear how the functions �n;h depend on the tangent vector and it is easily
seen that they are linear in h.

Example 3 (Case-control data). Case-control designs are an e�ective tool for studying
the relationship between exposures of interest and rare outcomes. Such a design is an
example of a two-sample problem. Let the variable Y indicate case or control status
of an individual with 0 being disease free and 1 being diseased. In addition, suppose a
covariate vector X = (X1; : : : ; Xp)′ of exposures and other factors related to disease is
available. In a common form of the case-control design, covariate information for all
or a random sample of subjects who develop disease in a speci�ed “case accession”
period of time are recorded, along with the information on a random sample of disease
free individuals. Let n0 and n1 denote the number in each of the two samples and n
the total number of observations. In this sampling scheme, we obtain realizations from
the distribution of X conditional on case/control status, while the parameters of interest
will typically be from a prospective model with

Pr(Y = 1|X = x) =
exp{�+ X T�}

1 + exp{�+ X T�} :

Here � is an intercept and � is a p-vector of regression, or odds-ratio parameters. The
vector � is of primary interest in this problem. The marginal density g(x) of X is the
in�nite-dimensional nuisance parameter in this model.

The parameter space can be described as �×G where �⊂Rp+1 corresponds to the
regression parameters and G is the space of distributions for X . The usual approach
for computing variance bounds in the estimation problem involving prospective models
for case-control data is to alter the problem slightly so that it is an i.i.d. model. The
i.i.d. modi�cation is given by a two-stage sampling procedure. First, either a case or
control is selected with probabilities �1 and �0, respectively, where these probabilities
are assumed known. Second, the covariate X is sampled for the individual drawn at
step 1. The sample sizes n1 and n0 are now regarded as random. See Breslow and
Wellner (1997) for recent work establishing the e�ciency of logistic regression for
estimating regression parameters in this modi�ed problem. It is widely believed that
variance bounds obtained for this model are valid in the two-sample model that is used
in practice. In Section 4 we show this to be true, at least when the proportions �1 and
�0 are assumed known.
The approach for the two-sample version is similar to Example 2 (a three sample

model) in that we use i.i.d. theory to �nd tangents within each of the two samples,
and then form the tangents in the sense of De�nition 3.5 based on these. The usual
development is to �rst compute scores in the prospective model, where both disease
outcome Y and the covariates X are considered random, and then relate these to the
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scores in the retrospective model. Following the calculations in BKRW Section 4:4,
we obtain scores at a point ((�; �)0; g0) of the form l̇(�; �)T�+ a. Here

l̇(�; �)T�= (X e(Y − E(Y |X ; �; �)))T�;
with X e = (1; X T)T, is the score along a path � 7→ (�; �)0 + �� (with �∈Rp+1, �∈R)
evaluated at �= 0. The second component a∈L2(G0) (with G0 being the distribution
function corresponding to the density g0 of the covariates) satis�es∫ [

�−1(
√
g� −√

g0)− 1
2
a
√
g0

]2
d� → 0 as � ↓ 0

for a path g� through the in�nite-dimensional part of the parameter space.
Tangents for the retrospective model are then given by

hi = l̇(�; �)T�+ a− E(l̇(�; �)T�+ a|Y = i) ≡ �i(�; a)

for i = 0; 1 corresponding to the control and case samples respectively (BKRW, pp.
116–117).
Now, suppose the data are arranged so that the controls are listed �rst and then the

cases. Since the tangents h0 and h1 are chosen to satisfy a pathwise-di�erentiability
condition like (3.5), the support condition (3.7) is automatically satis�ed, as is condi-
tion (3.8). Veri�cation of conditions (3.9)–(3.11) is straightforward and follows the
calculations from Example 2 using the current h0 and h1. We conclude that the tangent
in the sense of De�nition 3.5 is

h(·; t) = h01[0; �0](t) + h11(�0 ;1](t) = �0(�; a)1[0; �0](t) + �1(�; a)1(�0 ;1](t) ≡ l̇�0 (�; a):

The last two expressions emphasize that h is also a function of � and a which determine
the path. Furthermore, the operator l̇�0 that maps from �; a to h is linear. As a result,
the collection of such h as � ranges over Rp+1 and a ranges over L02(G0) is a linear
space which leads to the conclusion, via Proposition 3.6, that the model at ((�; �)0; g0)
is LAN indexed by this space. For future reference we also introduce the following
notation:

l̇�0 (�; a) = [l̇(�; �)− E(l̇(�; �)|Y = 0)1[0; �0](t) + E(l̇(�; �)|Y = 1)1(�0 ;1](t)]T�
+[a− E(a|Y = 0)1[0; �0](t) + E(a|Y = 1)1(�0 ;1](t)]

≡ l̇
T
1�+ l̇2(a): (3.14)

As in Example 2, we note an alternative de�nition of the tangents could be based on
h0, h1 and the relative sample sizes �0 and �1 as in the remarks at the end of Example
2 above.
The above examples all involve independent, but not identically distributed data. For

an application of Theorem 3.1 to a model with dependent observations, see Breslow
et al. (1998).
As illustrated by Example 3, when the model is speci�ed by a parameterization (other

than the probability measures themselves) the tangent set can often be conveniently
described as the range of a linear operator. Because these so-called score operators
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play an important role in the di�erentiability conditions in Section 4 we need a more
precise de�nition.

3.3. Score operators

As we have seen, a natural way to construct tangents at a point in the model is to
introduce a linear operator that acts on tangents to paths in the parameter space. To
describe paths in a general � that converge to a point �0, we at least need a topology,
say �, on �. For convenience let us also assume that � is a vector space and that the
operations of addition and scalar multiplication are continuous under our topology; i.e.
(�; �) is a topological vector space. Most often in the study of e�ciency � is even
taken to be a (subset of) a Hilbert space. However, in the following de�nition we
leave the structure of � open; all we require is that the dual space of (�; �) separate
points of � so that adjoints are well de�ned. In the case � is a product space with
product topology this is true if the dual of each coordinate space separates points of
that coordinate space (Lemma B.1). It is also true of any normed space.
The following is a formal de�nition of the concept of a score operator already used

in the previous section. The notation lin(�) indicates the closed linear span of �.

De�nition 3.7 (Score operators). Let t 7→ �t be a path in � converging to �0 as t ↓ 0
with an element �̇∈ lin(�) such that (�t − �0)=t → �̇ in (�; �) as t ↓ 0. Let �̇ be the
set of all �̇ obtained in this way. We say l̇�0 : � → H is a score operator at �0 if
for all �̇∈ �̇ there exists a sequence cn ↓ 0 such that �cn forms a sequence �n(h) such
that Pn;�n(h) has tangent h as in the LAN de�nition (De�nition 2.1) and l̇�0 (�̇) = h.

Linearity of �̇ and the score operator imply the image of l̇�0 is a linear space. Thus,
if in addition the random variables �n;h are linear in h, the model is LAN indexed by
the image space.

4. Di�erentiability

In non-parametric models where the parameter of interest is naturally stated as
a function of the underlying probability measure, di�erentiability can be established
directly, as in the following.

Example 2 (Cont.). Here we continue with the calculations in Van der Vaart and
Wellner (1991). In this example the parameter of interest is the probability measure P
itself. To make this a parameter in a Banach space �rst consider a collection of square
integrable functions F. To simplify matters we might even suppose this collection of
functions is also uniformly bounded since here we are thinking of, for example, the
collection of indicators of measurable sets. Now we may take the Banach space B to
be l∞(F) – the space of all bounded real-valued functions on F. Then the goal may
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be stated as estimation of �n(Pn;0) de�ned by

�n(Pn;0) =
∫

f(x11; y11) dP0(x11; y11) =
1
n1

n1∑
i=1

∫
f(X1i ; Y1i) dP0:

Taking a sequence �n = n−1=2 along a path corresponding to a bounded, measurable,
mean 0 function g as speci�ed in Section 3, Example 2, this implies

√
n(�n(Pn;�n)− �n(Pn;0)) =

∫
gf dP0 =

∫
g(f − P0f) dP0;

where Pf=
∫
f dP and the last equality follows from the fact that g has mean 0. Thus

(2.5) holds with Rn =
√
n and we can identify �̇(h) as

�̇(h)f =
〈
1
�1
(f − P0f; 0; 0); (g; g1; g2)

〉
:

Here we are using the version of the tangent space used in Van der Vaart and Wellner
(1991), rather than the version corresponding to De�nition 3.5.
To identify the adjoint it su�ces, because B is a function space, to consider the

evaluation maps �f ∈B∗ de�ned by �fb = b(f) for all b∈B. Then the adjoint �̇T is
de�ned by

�f�̇(h) = �̇(h)f=
〈
1
�1
(f − P0f; 0; 0); (g; g1; g2)

〉

=
〈
1
�1

(
f − P0f − af − bf;

�1
�2

af;
�1
�3

bf

)
; (g; g1; g2)

〉
= 〈�̇T�f; (g; g1; g2)〉; (4.1)

where af and bf satisfy

E(�2fo(X; Y )− (�1 + �2)af(X )− �2bf(Y )|X = x) = 0

and

E(�3fo(X; Y )− �3af(X )− (�1 + �3)bf(Y )|Y = y) = 0

and fo(X; Y ) ≡ f(X; Y ) − Ef(X; Y ). These last two conditions are derived from the
fact that �̇T must map into H (which is identi�ed with H∗) so that the second element
of �̇T�f must be the conditional expectation of the �rst given X and the third element
must be the conditional expectation of the �rst given Y . From these equations it follows
that

Cov(Z(f);Z(g)) = 〈�̇T�f; �̇T�g〉
=
1
�1

E(f0 − af − bf)(g0 − ag − bg) +
1
�2

E(afag) +
1
�3

E(bfbg)

=
1
�1

E(f0 − af − bf)g0:

The last equality follows from the fact that

− 1
�1

E[(f0 − af − bf)ag] =− 1
�1

E{E[(f0 − af − bf)|X ]ag}=− 1
�1

E
{
�1
�2

afag

}
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resulting in some cancellation, with a similar calculation for −1=�1E[(f0−af−bf)bg]
resulting in further cancellation.
Although these equations characterize the adjoint and provide expressions for the

covariances of inuence functions, we cannot compute these covariances explicitly
except in special cases. For instance, under independence, E(a(X )|Y ) = E(a(X )) and
E(b(Y )|X )=E(b(Y )). If we choose a(X )=k1E(fo(X; Y )|X ) and b(Y )=k2E(fo(X; Y )|Y )
with k1=�2=(�1+�2) and k2=�3=(�1+�3), then E(a(X )|Y )=E(a(X ))=0=E(b(Y ))=
E(b(Y )|X ) and it is easily veri�ed that the equations de�ning �̇T�f hold.
Now we may make some calculations of relative e�ciencies along the lines of those

in Bickel et al. (1991). To simplify matters, take the sample space to be [0; 1]× [0; 1]
and fst(X; Y ) = 1[0; s](X )1[0; t](Y ) so that fo

st(X; Y ) = 1[0; s](X )1[0; t](Y )− st. In this case
we have a(X ) = k1t(1[0; s](X ) − s) and b(Y ) = k2s(1[0; t](Y ) − t). Direct calculation of
the variance of �̇T�f using the formula given above yields

1
�1

E(fo2
st − affo

st − bffo
st) =

1
�1
(st(1− st)− k1t2s(1− s)− k2s2t(1− t));

while the asymptotic variance of the estimator that uses only the complete data is given
by

1
�1

E(fo2) =
1
�1

st(1− st):

Thus the asymptotic relative e�ciency of the e�cient estimator to the crude estimator
is

E(fo2
st − affo

st − bffo
st)

E(fo2)
=
(st(1− st)− k1t2s(1− s)− k2s2t(1− t))

st(1− st)
:

With �1 ≈ 0 and thus k1 ≈ k2 ≈ 1 this gives a relative e�ciency of approximately
(1− s)(1− t)=(1− st) which agrees with Bickel et al. (1991).
When �1=�2=�3=1=3 we have k1=k2=1=2 and an ARE of (1−(t+s)=2)=(1−st).

This can be as small as 1=2 (when either s or t are 1) and as big as 1. At t = s=1=2
the ARE is 2=3 (cf. with 1=3 when �1 ≈ 0), and when s= t in general we get an ARE
of (1 + t)−1. We also see that when �1 ≈ 1 we have k1 ≈ k2 ≈ 0 and an ARE of
approximately 1.

Even when the parameter of interest is speci�ed via a parametrization of the model,
it is possible to verify di�erentiability using a “projection of scores” method.

Example 3 (Cont.: Semiparametric models). For semiparametric models when the
�nite-dimensional parameter, or some function q of this parameter, is of interest, one
usually proceeds to calculate �̇ via projection of scores. To describe this approach
we adopt the more common notation from semiparametrics. Let now � denote a
k-dimensional parameter of interest and g the in�nite-dimensional nuisance parame-
ter. Corresponding to these are �̇ and Ġ. In Example 3, for instance, these were given
by Rp+1 and L02(G0), respectively. The space �̇ × Ġ replaces the space �̇ from the
de�nition of score operators (De�nition 3.7). In such situations the score operator also
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has two components. These were labeled l̇1 and l̇2 at the end of Example 3 (Eq.
(3.14)), but we now use l̇� and l̇g to emphasize the point �; g in the parameter space.
The estimation problem, as a function of the probability measures is �(Pn; (�;g))=q(�),

for q : Rk → Rm. A derivative of the form �̇(l̇
T
� �+ l̇g(a))= q̇(�)�, where q̇ is the m×k

derivative matrix, satis�es (2.5) with Rn = n1=2. We must, however, identify �̇ as a
function of l̇

T
� �+ l̇g(a).

First consider projection of the score function l̇� onto the subspace l̇g(Ġ). Let

�(·|l̇g(Ġ)) be the projection operator. For example, we have from Theorem 2 of Ap-
pendix 2 of BKRW, that when l̇g(Ġ) is already closed, the projection of an element
y onto l̇g(Ġ) is given by

�(y|l̇g(Ġ)) = l̇g(l̇
T
g l̇g)

−(l̇
T
gy):

where (l̇
T
g l̇g)

−(l̇
T
gy) is a solution of (l̇

T
g l̇g)x=(l̇

T
gy): When the inverse (l̇

T
g l̇g)

−1 exists,

this is just (l̇
T
g l̇g)

−1(l̇
T
gy).

Now let l∗� = l̇� − �(l̇�|l̇g(Ġ)), i.e. the projection of l̇� onto the orthocomplement

of l̇g(Ġ), and suppose I∗ = 〈l∗� ; l∗
′

� 〉H is non-singular. Then we have

I∗−1〈l∗� ; (l̇
′
��+ l̇g(ġ))〉H = I∗−1〈l∗� ; l∗

′
� �+�(l̇�|l̇g(Ġ))′�+ l̇g(ġ)〉H

= I∗−1〈l∗� ; l∗
′

� �〉H + I∗−1〈l∗� ; �(l̇�|l̇g(Ġ))′�+ l̇g(ġ)〉H
= I∗−1I∗�+ 0= �;

where the 0 term follows from the fact that �(l̇�|l̇g(Ġ))′� + l̇g(ġ) is in l̇g(Ġ) while

l∗� is a vector of elements in l̇g(Ġ)
⊥
. Thus a candidate for �̇(·) is 〈q̇I∗−1l∗� ; ·〉H. The

only concern is that q̇I∗−1l∗� be a vector of elements in H. This follows from the
calculation

q̇I∗−1l∗� = q̇I∗−1l̇� − q̇I∗−1�(l̇�|l̇g(Ġ));
so that the �rst term on the right-hand side is a vector of elements in [l̇�] and the
second term is a vector of linear combinations of elements of l̇g(Ġ) and hence is a

vector of elements of l̇g(Ġ). Conclude that

q̇I∗−1l∗� ∈ [l̇�] + l̇g(Ġ) =H:

From this point, computation of the adjoint �̇T is straightforward and we �nd that
for b∗ in Rm, �̇Tb∗ = b∗

′
I∗−1l∗� which has norm b∗

′
I∗−1b∗.

This entire development is completely analogous to the i.i.d. case and when one
begins calculating scores and projections, the similarity with the i.i.d. formulation of
Example 3 becomes apparent. In fact, the information bounds are identical and therefore
logistic regression is still e�cient. This will be shown more formally in the next section
via a corollary to the di�erentiability theorem (Theorem 4.1).

Besides the above projection-of-scores approach, another useful method for verifying
di�erentiability and identifying the adjoint �̇T in the i.i.d. framework is via a theorem
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due to Van der Vaart (1991). The next section describes how this carries over to the
present context.

4.1. Di�erentiability of implicitly de�ned functionals

Returning to the general notation, we consider estimation of functions of Pn;� of the
form

�n(Pn;�) =  n(�) (4.2)

for a sequence of maps  n from the set � to a Banach space B. Assume there exists
a continuous linear map  ̇ : �̇ → B with

Rn( n(�cn)−  n(�))−  ̇ (�̇)→ 0 (4.3)

for cn corresponding to a �̇ as in De�nition 3.7. This occurs, for example, if there
exists a map  : � → B such that

Rn( (�cn)−  (�))−  ̇ (�̇)→ 0 as n → ∞
and { n} converges to  in the sense that

Rn( n(�cn)−  (�cn))→ 0 as n → ∞:

Then

lim
n→∞ Rn( n(�tn)−  n(�))

= lim
n→∞{Rn( n(�tn)−  (�tn))− Rn( n(�)−  (�)) + Rn( (�cn)−  (�))}

and the convergence assumption ensures the limits of the �rst two parts in the right-hand
side of the above are 0.
We further assume there is an N¿0 such that for n¿N , �n is well de�ned. That is,

if Pn;�1 = Pn;�2 , then  n(�1) =  n(�2).
For this discussion we can specialize De�nition 2.2 and de�ne the sequence {�n} to

be di�erentiable if, for any sequence {cn} as in De�nition 3.7 (Section 3),
Rn(�n(Pn;�cn )− �n(Pn;�))− �̇(l̇(�̇)) → 0; (4.4)

where �̇ :H → B is continuous and linear. Thus, we wish to identify conditions under
which �̇(l̇(�̇)) =  ̇ (�̇). The theorem to provide such conditions in the i.i.d. case was
given in Van der Vaart (1991). With the above notation, the argument at the heart of
his theorem applies to the present set-up.

Theorem 4.1. Suppose the topology on the space � is chosen so that the dual sepa-
rates points (making adjoints well de�ned). Let �̇ be the closed subset of � described
above and suppose R(i)⊂H⊂R(i): Then the sequence {�n} as in (4:2) is di�eren-
tiable in the sense of (2:5) if and only if

R( ̇
T
)⊂R(l̇

T
):
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The adjoint �̇T is then uniquely speci�ed by the relation

 ̇
T
b∗ = l̇

T
�̇Tb∗:

Proof. Proceed as in Van der Vaart (1991). First suppose �̇ exists. By (4.2)–(4.4) we
have that for all �̇ in �̇

�̇(l̇(�̇)) = lim
n→∞ Rn(�n(Pn;�cn )− �n(Pn;�)) = lim

n→∞ Rn( n(�cn)−  n(�)) =  ̇ (�̇):

Hence, for any element b∗ in the dual B∗,

b∗�̇(l̇(�̇)) = b∗ ̇ (�̇) = 〈b∗;  ̇ (�̇)〉= 〈 ̇ Tb∗; �̇〉:
But, we also have

b∗�̇(l̇(�̇)) = 〈b∗; �̇(l̇(�̇))〉= 〈�̇Tb∗; l̇(�̇)〉= 〈l̇T�̇Tb∗; �̇〉:
Since this holds for all �̇, we conclude that  ̇

T
b∗ = l̇

T
�̇Tb∗ and this is true for all b∗.

Hence R( ̇
T
)⊂R(l̇

T
). Note that this also implies R( ̇

T
)⊥ ⊃R(l̇

T
)⊥.

Now to prove the converse suppose R( ̇
T
)⊂R(l̇

T
). We may tentatively de�ne �̇ on

R(l̇) via

�̇(l̇(�̇)) =  ̇ (�̇):

That this is well de�ned can be seen as follows. If l̇(�̇1)= l̇(�̇2), then �̇1− �̇2 ∈N(l̇)=

R(l̇
T
)⊥ ⊂R( ̇

T
)⊥ =N( ̇ ) which implies  ̇ (�̇1) =  ̇ (�̇2). (The equalities involving

the annihilators are familiar in the case �̇ is a Banach space – cf. Theorem 4:12
of Rudin (1991) – but it is straightforward to show they extend to more general
topological vector spaces given more general de�nitions of adjoints and annihilators.
See, for example, the de�nitions in Kelley and Namioka (1963).) We now must show
�̇ is continuous and linear. Using the fact that B is a Banach space and Lemma B.2
in Appendix B, it su�ces to show it is weakly continuous and linear; that is, for all
b∗ ∈B∗, b∗�̇ is a continuous linear functional.
By hypothesis,  ̇

T
b∗ ∈R(l̇

T
). Let h∗ ∈H∗ be such that  ̇

T
b∗ = l̇

T
h∗. Then

b∗�̇(l̇(�̇)) = b∗ ̇ (�̇) = 〈b∗;  ̇ (�̇)〉= 〈 ̇ Tb∗; �̇〉= 〈l̇Th∗; �̇〉= 〈h∗; l̇(�̇)〉= h∗l̇(�̇):

Continuity and linearity of h∗ implies the functional b∗�̇ is continuous and linear. This
concludes the proof that �̇ is continuous and linear on R(l̇) and it may be continuously
extended to H if necessary.
To show uniqueness of �̇T under the condition R(l̇)⊂H⊂R(l̇), suppose �̇T1 and �̇T2

are two solutions. Then

 ̇
T
b∗ = l̇

T
�̇T1b

∗ = l̇
T
�̇T2b

∗

so

�̇T1b
∗ − �̇T2b

∗ ∈N(l̇
T
) =R(l̇)⊥ =R(l̇)

⊥ ⊂H⊥:

But �̇T2b
∗ and ��̇T1b

∗ are both elements of �H and therefore so is the di�erence. Thus
�̇T2b

∗ − �̇T1b
∗ = 0 in H for all b∗ ∈B∗ so that �̇T2 = �̇T1 .
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Remark 4.2. If the space �̇ can be assumed to be a subspace of a Hilbert space, the
conclusion of the theorem can be restated to provide the inuence functions �̇Tb∗ which
specify the �nite-dimensional distributions of the optimal limit random variable in the

convolution theorem. Speci�cally, when �̇ is Hilbert,  ̇
T
can be thought of as a map

from B∗ to �̇ itself rather than its dual. Similarly, we can think of �̇ as a map from
B∗ to H and interpret l̇

T
as a map from H to �̇. Then the inuence functions �̇Tb∗

are determined by the equation  ̇
T
b∗ = l̇

T
�̇Tb∗ where  ̇

T
b∗ is the element of �̇ such that

 ̇
T
b∗h= 〈 ̇ Tb∗ ; h〉 for all h∈H. This is how Van der Vaart’s theorem for i.i.d. data is

stated.

Example 1 (Cont). This example provides a simple illustration of the theorem. Here
the tangents were not scores in the quadratic mean sense, as is usually the case, but
nevertheless the theorem can be used to check di�erentiability and identify �̇T. Recall
that in this problem the tangent space was given by H=R(l̇); the image of the score
operator l̇ : R×C0b [0; 1]→ H with l̇(a; g)=a+g ≡ h for a∈R and g∈C0b [0; 1], where
the latter is equipped with the supremum norm. Here we take H to be a subspace of
L2(�). It is interesting to note that H is not a closed subspace of L2(�) and hence it
is not a Hilbert space. Represent �̇

∗
= (R × C0b [0; 1])

∗ as R × C0b [0; 1]
∗; that is, for

�̇= (a; g); �̇
∗
�̇= �̇

∗
1a+ �̇

∗
2g where �̇

∗
1 ∈R and �̇

∗
2 ∈C0b [0; 1]

∗.

By direct calculation, we �nd the adjoint l̇
T
: L2(�)∗ → �̇

∗
, de�ned via

〈h∗; l̇(�̇)〉H = 〈l̇Th∗; �̇〉�̇
for h∗ ∈H∗, to be given by l̇

T
h∗ = (h∗1; h∗ − h∗1).

To determine if either  �(�; f)= � or  f(�; f)=f are di�erentiable functionals we
must compute the relevant derivatives  ̇ and their adjoints. Begin with the functional

 �(�; f)=�. This has derivative  ̇ �(a; g)=a. In this case, the adjoint  ̇
T
� : R→ �̇

∗
is

given by  ̇
T
�b

∗ = (b∗; 0) for all b∗ ∈R. Thus the range of  ̇
T
� is (R× {0}). That this

is contained in the range of l̇
T
can be seen as follows. For any x∈R we can �nd an

h∗x ∈H∗ with h∗x1 = x by taking h∗x (t) = x1[0;1](t). We also have h∗x −
∫
h∗x = 0 on all

of [0; 1] so that, of course,∫ (
h∗x −

∫
h∗ d�

)
g d�= 0 for g∈C0b [0; 1]:

Thus (R×{0})⊂R(l̇
T
) and we conclude from Theorem 4.1 that  is di�erentiable. To

compute the lower bound in the convolution theorem we need the adjoint �̇T : B∗ → H∗

which, according to Theorem 4.1, is given by  ̇
T
b∗ = l̇

T
�̇Tb∗. Thus, take �̇Tb∗ to be

(�̇Tb∗)h=b∗
∫
h d�. We might also consider �̇T as a map from B∗ to H in which case

we would say �̇Tb∗= �̇Tb∗ where �̇Tb∗(t) = b∗1[0;1](t) since then
∫
�̇Tb∗(t)h d�= b∗

∫
h d�.

From these calculations and the conclusion of Theorem 2.4, it follows that

Cov(b∗1Z; b∗2Z) = 〈�̇Tb∗1 ; �̇
T
b∗2
〉= b∗1b

∗
2 ;
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that is, the optimal limit random variable has variance 1. This lower bound is achieved
by the sample mean �X .
If the parameter of interest is  f(�; f) = f, another direct calculation shows that,

for b∗ ∈B∗ = C0b [0; 1]
∗;  ̇

T
fb

∗ = (0; b∗). Thus this operator has range 0 × C0b [0; 1]
∗.

However, the form of l̇
T
is l̇

T
1 + l̇

T
2 with (l̇

T
h∗)2 g =

∫
h∗g d�. The range of l̇

T
2 is a

strict subset of C0b [0; 1]
∗ since, for example, the evaluation maps �t(f) = f(t) are in

C0b [0; 1]
∗ but cannot be represented as

∫
h∗f d� for any h∗. We therefore conclude that

 f(�; f) = f is not a di�erentiable function. This is to be expected since it is well
known (Stone, 1982) that even if smoothness of f is imposed, say by assuming an
in�nite number of derivatives, it is not possible to obtain a convergence rate of n−1=2

for estimating an element of (C[0; 1]; || · ||∞).
When we use the version of the problem where the nuisance sequence is generated by

the L02(�) function ḟ0, the score operator l̇ is speci�ed by l̇(a; ġ)=ġ+a, now considered

as a map from R× L02(�) to L2(�). Calculation of the adjoint l̇
T
in this version of the

model is as before and we �nd that l̇
T
is given by l̇

T
1 + l̇

T
2 with (l̇

T
h∗)1 a= a

∫
h∗ d�

and (l̇
T
h∗)2 g=

∫
(h∗ − ∫ h∗ d�)g d�.

For estimating  ḟ0
(�; ḟ0)= ḟ0, the derivative  ̇ ḟ0

is a map from R×L02(�) to L02(�).
To compute this derivative, it is useful to back up to the de�nition of  ḟ. Following
Eq. (4.2), we de�ne

�n(Pn; (�; ḟ)) =  n(�; ḟ) = �n(ḟ);

where  n(ḟ)(x)= n
∫ i=n
(i−1)=n ḟ ≡ �ni(ḟ) if x∈ ((i− 1)=n; i=n]. This is reasonable because

we can really only hope to estimate �n(ḟ) based on Xn1; : : : ; Xnn. It is only in the limit
that  ḟ enters. Now, from (4.3), using the special choices Rn=

√
n and cn=n−1=2, the

derivative is de�ned to be the continuous linear map such that
√
n( n(�cn ; ḟcn)−  n(�0; ḟ0))−  ̇ ḟ0

(a; ġ)→ 0: (4.5)

If we let  ̇ ḟ0
(a; ġ) = ġ, the norm of the left-hand side of this expression is

||√n(�n(ḟcn)− �n(ḟ0))− ġ||L2(�) = ||√n(�n(ḟcn − ḟ0))− ġ||L2(�)
= ||√n(�n(ġ=

√
n)− ġ||L2(�)

= ||�n(ġ)− ġ||L2(�) → 0;

where, as noted previously, the convergence to 0 follows from standard results in
L2 approximation theory (Royden, 1988). The adjoint may then be computed to be

 ̇
T
ḟ0
g∗ = (0; g∗) for g∗ ∈L02(�)

∗, so that R( ̇
T
ḟ0
) = ({0} × L02(�))

∗. On the other hand,

the range of l̇
T
is (R×L02(�))

∗. To see this, note that every functional in (R×L02(�))
∗

is based on an x∈R and an f∈L02(�). Let h
∗ =f+ x. For this choice, (l̇

T
h∗)1a= xa

and (l̇
T
h∗)2g=

∫
fg d�. We conclude that R( ̇

T
ḟ0
)⊂R(l̇

T
) and hence by Theorem 4.1,

 ḟ0
is di�erentiable. The lower bound from the convolution theorem can be calculated

by �rst computing the adjoint �̇T given by the solution to  ̇
T
g∗ = l̇

T
�̇Tg∗ for all
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g∗ ∈L02(�)
∗. Taking �̇T to be the identity map from L02 into L2 gives

l̇
T
�̇Tg∗ = l̇

T
g∗ = (0; g∗) =  ̇

T
ḟ0
g∗

as required. Thus the inuence functions are simply �̇Tg∗ = g∗. From Theorem 2.4 we
conclude that the optimal limit random variable would have covariance function given
by

Cov(g∗1Z; g∗2Z) = 〈�̇Tg∗1 ; �̇
T
g∗2
〉L2(�) =

∫
g∗1g

∗
2 d�:

Unfortunately, a continuous Gaussian process with these marginal distributions does not
exist, since, via Sudakov’s inequality (Van der Vaart and Wellner, 1996, Proposition
A:2:5), the index set for any continuous process must be totally bounded. This is not
the case for L2(�). Furthermore, according to Proposition 5:5 of Millar (1982, p. 724)
there are actually no

√
n-consistent estimators in this problem. This illustrates the fact

that di�erentiability of a parameter alone does not guarantee that it can be estimated
at

√
n rate. Di�erentiability only allows calculation of the lower bound which asserts

a minimum variance among the class of regular,
√
n-consistent estimators. It does not

rule out the possibility that this class is empty.
As an alternative to the regularity as in De�nition 2.3, we might instead de�ne an

estimator Tn of a B-valued parameter to be weakly e�cient if

b∗(
√
n(Tn −  n(�0; ḟ0)))→d N(0; ||�̇Tb∗ ||2)

for all b∗ ∈B∗. This is equivalent to the usual notion of e�ciency if B is a �nite-

dimensional space. Such an estimator does exist in this problem, namely ˆ̇f0n(x) =∑n
i=1 Xni1((i−1)=n; i=n](x). To see why, �rst recall the notation

�n(f)(x) =
n∑

i=1
�ni(f) 1((i−1)=n; i=n](x) =

n∑
i=1

n
∫ i=n

(i−1)=n
f d� 1((i−1)=n; i=n](x):

Then for any bounded linear functional g∗ and the function g∗ ∈L02(�) that represents
it, we have

g∗(
√
n( ˆ̇f0n − �n(ḟ0)))

=
√
ng∗( ˆ̇f0n − �n(ḟ0)) =

√
n
(∫

g∗ ˆ̇f0n d�−
∫

g∗�n(ḟ0) d�
)

=
√
n
(

n∑
i=1

�ni(g∗)
n

(Xni − �ni(ḟ0))
)

=
n∑

i=1

�ni(g∗)√
n
(Xni − �ni(ḟ0))

d=N(0; �2n);

where �2n =
∑n

i=1 �ni(g∗)2=n. But then

�2n =
n∑

i=1
�ni(g∗)2

∫ i=n

(i−1)=n
1 d�=

n∑
i=1

∫ i=n

(i−1)=n
�ni(g∗)2 d�

=
∫

�2n(g
∗) d�= ||�n(g∗)||2 → ||g∗||2:
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As a result,

g∗(
√
n( ˆ̇f0n − �n(ḟ0)))→d N(0; ||g∗||2);

so that it is weakly e�cient. Note however that ˆ̇f0n is not even consistent for �n(ḟ0)
in L2(�). We have

|| ˆ̇f0n − �n||2 =
n∑

i=1

∫ i=n

(i−1)=n
( ˆ̇f0n − �n)2 d�=

1
n

n∑
i=1
(Xni − �ni)2 →p 1

by the WLLN since Xni − �ni ∼ N(0; 1) so the squares are independent �21 with
mean 1.

As in Van der Vaart (1991), the di�erentiability theorem may be specialized to the
case of semiparametric models. The results and proofs are identical, but we include the
following corollary for completeness. We use the standard semiparametrics notation,
introduced earlier in this section, with a k-dimensional parameter of interest � and
in�nite-dimensional nuisance parameter g, along with the corresponding score operators
l̇� and l̇g. We consider estimating q(�) with q : Rk → Rm and write q̇(�) for the
m× k derivative matrix. As before, the e�cient score for � is de�ned to be l∗� = l̇� −
�(l̇�| �̇lg(Ġ)), the projection of l̇� onto the orthocomplement of �̇lg(Ġ), and the e�cient
information matrix is I∗ = 〈l∗� ; l∗

′
� 〉H. In this and the following we use the notation a′

for vector transpose of a column vector a to avoid confusion with adjoints.

Corollary 4.3. The sequence �n(Pn;�;g) = q(�) is di�erentiable if and only if N(I∗)
⊂N(q̇(�)T).

Proof. First de�ne  n(�; g) ≡  (�; g)=q(�). Let �̇∈Rk and ġ∈ Ġ, where Ġ is the space
of derivatives in the in�nite-dimensional part of the parameter space and ġ corresponds
to a path {gt : t ¿ 0} with g= g0. Then

 ̇ (�̇; ġ) = lim
t↓0
( (�+ t�̇; gt)−  (�; g)) = lim

t↓0
(q(�+ t�̇; gt)− q(�)) = q̇(�)�̇:

Thus we have, for any b∗ ∈B∗=Rm; 〈 ̇ (�̇; ġ); b∗〉B=〈(�̇; ġ);  ̇ Tb∗〉Rk×Ġ so that  ̇
T
b∗=

(b∗
′
q̇(�); 0). In other words, R( ̇

T
) = (R(q̇(�)T); {0}).

The score operator l̇ is given by l̇(�̇; ġ) = l̇
′
��̇+ l̇gġ so that for any h∈H,

〈l̇(�̇; ġ); h〉H = 〈l̇′��̇+ l̇gġ; h〉H = 〈l̇′��̇; h〉H + 〈l̇gġ; h〉H = 〈l̇′�; h〉H�̇+ 〈ġ; l̇Tg h〉Ġ
and hence

l̇
T
h= (l̇

T
� h; l̇

T
g h) = (〈l̇

′
�; h〉H; l̇

T
g h):

Thus, according to Theorem 4.1, the parameter is di�erentiable if and only if

R(q̇(�)T)⊂{〈l̇′�; h〉H: h∈N(l̇g) =R(l̇g)⊥}:
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Since R(l̇g)⊥ is spanned by the e�cient score l∗� , any h∈R(l̇g)⊥ is of the form
h= l∗

′
� a, and consequently

〈l̇′�; h〉H = 〈l∗� ; h〉H = 〈l∗� ; l∗
′

� 〉H = I∗a:

Thus the parameter is di�erentiable if and only if R(q̇(�)T)⊂R(I∗). Finally, because
the two ranges in question are �nite-dimensional and hence closed, this last statement
is equivalent to the condition of the corollary.

Note that for estimating all of �, q is the identity, and the corollary states that �
is di�erentiable if and only if the e�cient score matrix is non-singular. This was the
condition used in the projection-of-scores approach earlier in this section.
In addition to the above specialization of Theorem 4.1 we have the following corol-

lary giving su�cient conditions for equivalence of information bounds in di�erent
experiments. This can be used, for example, to show that the variance bounds are the
same for the case-control example (Example 3) as in its randomized i.i.d. version.

Corollary 4.4. Consider two di�erent LAN experiments that involve the same param-
eter space and for which the goal is estimation of the same parameter in a Banach
space B. Suppose the �rst experiment is LAN indexed by H1 and the second LAN
indexed by H2. Let l̇1 : �̇ → H1 denote the score operator for the �rst experi-
ment and l̇2 : �̇ → H2 the score operator for the second where R(l̇1) =H1 and
R(l̇2) =H2. If the map � : H1 → H2 de�ned by l̇2�̇ = �l̇1�̇ is a (Hilbert space)
isomorphism then the parameter is di�erentiable in one experiment if and only if it is
di�erentiable in the other. If the parameter is di�erentiable; the information bounds
are the same in the two experiments.

Proof. The function  of the parameter is hypothesized to be the same for both ex-

periments and hence so is  ̇
T
. From the de�nition of � and the fact that it is an

isomorphism (which means that � is a one-to-one mapping of H1 onto H2 which
satis�es 〈�g; �h〉H2 = 〈g; h〉H1 for all g; h∈H1; see e.g. Rudin (1966, p. 86) we �nd
that

〈�̇; l̇T1h1〉�̇ = 〈l̇1�̇; h1〉H1 = 〈�−1l̇2�̇; h1〉H1 = 〈l̇2�̇; �h1〉H2 = 〈�̇; l̇T2�h1〉�̇:

Thus l̇
T
1 = l̇

T
2� and similarly l̇

T
2 = l̇

T
1�

−1. Suppose � ∗ ∈R(l̇
T
1 ). Then � ∗= l̇

T
1h1 for some

h1 ∈H1. Setting h2 = �h1, we have

l̇
T
1h1 = l̇

T
1�h2 = l̇

T
2h2

so that � ∗ ∈R(l̇
T
2 ). Hence R(l̇

T
1 )⊂R(l̇

T
2 ). A similar argument shows the reverse in-

clusion so that R(l̇
T
1 ) =R(l̇

T
2 ). By Theorem 4.1 we conclude that a parameter will be

di�erentiable in one model if and only if it is di�erentiable in the other.
Next let �̇i :Hi → B and �̇Ti : B

∗ → Hi ; i=1; 2 be the derivatives of the functionals
to be estimated and their adjoints for the two experiments. That �̇T2 =� ◦ �̇T1 follows in
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a similar manner to the proof of uniqueness of �̇T in Theorem 4.1. In particular, we
have from Theorem 4.1 that for any b∗ ∈B∗

 ̇
T
b∗ = l̇

T
1 �̇
T
1b

∗ = l̇
T
2��̇T1b

∗ = l̇
T
2 �̇
T
2b

∗:

Thus,

�̇T2b
∗ − ��̇T1b

∗ ∈N(l̇
T
2 ) =R(l̇2)⊥ =H⊥

2 :

We conclude that �̇T2b
∗ −��̇T1b

∗ = 0 in H2 for all b∗ ∈B∗ so that �̇T2 =��̇T1 , or equiv-
alently, �̇T1 = �−1�̇T2 . Finally, using again the fact that � is an isomorphism,

〈�̇T1b∗1 ; �̇T1b∗2〉H1 = 〈�̇T2b∗1 ; �̇T2b∗2〉H2

and the optimal limit Z0 has the same covariance function under either experiment.

Example 3 (Cont). In either the example or its randomized version the goal is still
the estimation of the regression parameters �. Compare the score operator

l̇�0 (�; a)(·; t) = (l̇
T
1�)(·; t) + (l̇2(a))(·; t) = �0(�; a)1[0; �0](t) + �1(�; a)1(�0 ;1](t)

given in Section 3 to the score operator for the i.i.d. version speci�ed in BKRW on
p. 116 as l̇i:i:d:(�; a)(·; i) = �i(�; a). Label the former as experiment 1 and the second
as experiment 2. Then it is easily veri�ed that the map � is an isomorphism since

〈l̇�0 (�1; a1); l̇�0 (�2; a2)〉H1 =
∫ ∫ 1

0
l̇�0 (�1; a1)l̇�0 (�2; a2) dt dP�0

=
∫

1∑
i=0

�i�i(�1; a1)�i(�2; a2) dP�0 ;

while

〈l̇i:i:d:(�1; a1); l̇i:i:d:(�2; a2)〉H2 =
∫

1∑
i=0

�i�i(�1; a1)�i(�2; a2) dP�0

as well.
Thus, the information bound is the same in Example 3 as in the i.i.d. version. As

shown in Breslow and Wellner (1997) logistic regression is an e�cient estimator for
the regression parameters in the latter and hence in the two sample version of Example
3 as well.

The above program has also been carried out for response-selective sampling designs;
see Breslow et al. (1998).

5. Regularity and linearity of estimators

In this section, the goal is to develop the notions of regularity and linearity of
estimators, and to connect these with the geometry of the tangent space. The �rst task
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is to establish an analog to Proposition 3.3.1 of BKRW, part of which states that an
asymptotically linear and regular estimator with inuence function in the tangent space
is e�cient. For this we need an analogous de�nition of linearity of an estimator. One
possibility is to say an estimator Tn is asymptotically linear if for all b∗ ∈B∗,

√
nb∗(Tn − �n(Pn;�0 )) = �n;hb∗ + oP(1)

for some hb∗ . The problem here is that �n;h is, in general, only de�ned on H. Note
that in the i.i.d. setting, the map �n;h is de�ned to be

�n;h = n−1=2
n∑

i=1
h(Xi)

for h∈ Ṗ⊂L2(P�0 ). In this case it is clear how to extend �n;h to all of L2(P�0 ) and
we obtain a useful de�nition of asymptotic linearity. Without being able to extend
�n;h in some meaningful way, the resulting de�nition would declare an estimator to be
asymptotically linear only if it had inuence function in the tangent space, in which
case asymptotically linear and regular would be a synonym for e�cient. This is only
the case in the i.i.d. theory when treating a fully nonparametric model.
There are several possibilities for extending �n;h. For instance, following Bickel

(1993, p. 67) one could de�ne a tangent space and maps �n;h on a “largest possible”
model of interest M . Then the �n;h described in this paper would be the restriction to
the tangent space H of particular interest. This largest model corresponds to a fully
nonparametric model in the i.i.d. theory.
Alternatively, we could proceed based on the results of Theorem 3.1 and in particular

the condition (3.12) which states

�n;h ≡ 1√
mn

mn∑
i=1
(hnk − En[hnk |Xn1; : : : ; Xn;k−1])

is well de�ned and approximately linear in h; i.e., �n;a1h1+a2h2 =a1�h1 +a2�h2 +oP0(1).
The array {hnk} above is required to approximate the array of conditional log-likelihood
ratios {�nk}, but �n;h remains perfectly well de�ned for arbitrary arrays, say subject to
the constraint that each hnk is square integrable. This is still a rather vague de�nition.
To go one step further, the de�nition could be based on the particular form of tangent
vectors h de�ned in De�nition 3.5 based on building step functions

hn(·; t) =
n∑

k=1
hnk(·)1{[nt]=k} and requiring ||hn − h||L2(P�0×�) → 0:

The tangent vectors constructed in this way are also in the spirit of Bickel (1992); see
his Example 2:5:2, p. 68.
For now, the simplest approach appears to be to specify a largest model of interest

M . Corresponding to M , let HM denote the tangent space and suppose �n;h is well
de�ned and linear on HM . In what follows assume HM is closed.

De�nition 5.1 (Asymptotic linearity). Let �n : Pn → B be a sequence of parameters
taking values in a Banach space B and Tn be a sequence of estimators for �n. We say
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Tn is asymptotically linear if for all b∗ ∈B∗,
√
nb∗(Tn − �n(Pn;�0 )) = �n;hb∗ + oP(1)

for hb∗ ∈HM and the associated array �n;hb∗ as in the LAN de�nition (De�nition
2.1) for the largest model of interest M . In particular, if �n(Pn;�) is an m-dimensional
parameter (m¡∞), a sequence {Tn} is asymptotically linear if

√
n(Tn − �(P�0 )) = �n; h̃ + oP(1)

for h̃= (h̃1; : : : ; h̃m)∈Hm
M and the associated �n; h̃ = (�n; h̃1 ; : : : ; �n; h̃m).

Remark 5.2. Even in the i.i.d. theory there are several possible de�nitions of asymp-
totic linearity for estimators of a general parameter (all of which coincide when the
parameter is �nite-dimensional). See, for example, De�nition 5:2:5 of BKRW (p. 180).
The above choice corresponds to their weakly asymptotically linear.

The �rst proposition uses the specialized form of the asymptotic linearity de�nition
for �nite-dimensional parameters. The second is a result for the general case. In view
of Remark 5.2, it seems helpful to have separate results for the �nite-dimensional and
general cases.

Proposition 5.3. Suppose the model is LAN at a point �0 indexed by a subspace
H of a Hilbert space and that the maps �n;h of De�nition 2:1 are linear in h. Let
�n(Pn;�) be a sequence of m-dimensional parameters that are pathwise di�erentiable
with derivative represented by �̇∈ �H

m
. If {Tn} is asymptotically linear in �n; h̃ then

it is regular if and only if (h̃− �̇)⊥Hm. If h̃∈ �H
m
then {Tn} is regular if and only

if h̃= �̇ in which case Tn is e�cient.

Proof. Let Pn;0 ≡ Pn;�0 . For an h∈H, consider its LAN sequence {�n(h)}. Then by
linearity of �n;h in h on all of HM , LAN, and the Cram�er–Wold device it follows that
under Pn;0(√

n(Tn − �n(Pn;0))
�n(�n(h); �0)

)
=
(

�n; h̃ + oP(1)
�n;h − 1

2�22 + oP(1)

)
→d N

((
0

−�22=2

)
; �
)

;

where �= [�ij], �11 = [〈h̃i; h̃j〉HM ], �12 = 〈h; h̃〉HM , and �22 = ||h||HM .
Then, by Le Cam’s third lemma (see, for example, Van der Vaart and Wellner,

1996, pp. 404–405)
√
n(Tn − �n(Pn;0))→d N(�12; �11)

under Pn;�n(h). Also,
√
n(�n(Pn;�n(h))− �n(Pn;0))→ �̇(h) = 〈h; �̇〉HM for �̇∈ �H

m ⊂ �H
m
M :

Combining these two facts with
√
n(Tn − �n(Pn;�n(h))) =

√
n(Tn − �n(Pn;0))−

√
n(�n(Pn;�n(h))− �n(Pn;0))
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implies that under Pn;�n(h)
√
n(Tn − �n(Pn;�n(h)))→d N(�12 − �̇(h); �11) = N(〈h; h̃− �̇〉HM ; �11):

Hence Tn is regular if and only if 〈h; h̃ − �̇〉HM is constant for all h. Since 0∈H it
must be that this constant is 0, which implies that (h̃− �̇)⊥H (coordinatewise). If, in
addition, h̃∈ �H

m
, then h̃− �̇ is in �H

m
, while also being orthogonal to H and �H. This

implies that h̃ − �̇ = 0; i.e. h̃ = �̇. Thus the asymptotic variance of
√
n(Tn − �n(Pn;)))

is that of �n; �̇ which is 〈�̇T; �̇〉; the information bound. In other words, Tn is e�cient.

Proposition 5.4. Suppose the model is LAN at a point �0 indexed by a subspace
H of a Hilbert space and that the maps �n;h of De�nition 2:1 are linear in h. Let
�n(Pn;�) be a sequence of B-valued parameters that are pathwise di�erentiable with
derivative �̇ such that b∗�̇ can be represented by a �̇b∗ ∈ �H for all b∗ ∈B∗. If {Tn} is
asymptotically linear in the sense of De�nition 5:1; with all hb∗ ∈H; then {b∗Tn} is
regular if and only if (hb∗ − �̇b∗)⊥H. If; in addition;

√
n(Tn − �n(Pn;�n(h))) converges

weakly under {Pn;�n(h)} to a tight limit in B for each {�n(h)}; then {Tn} is regular.
When hb∗ ∈H; then {b∗Tn} is regular if and only if hb∗= �̇b∗ in which case {b∗Tn}

is e�cient for b∗�n(Pn;0). Similarly; if
√
n(Tn − �n(Pn;�n(h))) converges weakly under

{Pn;�n(h)} to a tight limit in B for each {�n(h)}; then {Tn} is regular and e�cient.

Proof. The assertions regarding regularity and e�ciency of b∗Tn follow from Propo-
sition 5.3. If b∗Tn is regular and e�cient for all b∗ ∈B, then with the additional
assumption of weak convergence of

√
n(Tn − �n(Pn;�n(h))) under {Pn;�n(h)}, conclude

that this limit must be the same for all {�n(h)} so that {Tn} is regular.
When b∗Tn is regular and e�cient for all b∗ ∈B, then the additional assumption of

weak convergence implies
√
n(Tn − �n(Pn;�n(h))) has the same covariance function as

the optimal limit random element. That is, Tn is regular and e�cient.

Example 2 (Cont.). In the bivariate three sample model, the natural way to obtain
a largest possible model of interest would be to drop the restriction that the second
sample is from the �rst margin (X ) of the bivariate distribution P0 ≡ P01 and that
the third sample is from the second margin (Y ). The second and third samples could
instead be drawn from measures P02 and P03 where P0i.P01, i=2; 3. This larger model
would lead to tangents of the form (g1; g2; g3) in a space HM with inner-product

〈h; h̃〉HM =
3∑

i=1
�i〈gi; g̃i〉L2(P01);

where now g2 need not be E(g1|X ) and g3 need not be E(g1|Y ); these are the restric-
tions that hold true on the subspace H corresponding to the model of interest. It can
be shown that the maps �n;h on the larger space HM are of the form

1√
n

3∑
j=1

nj∑
i=1

gj(Xji; Yji):
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The naive estimator of P01 just uses the n1 observations from the �rst sample; i.e.

P̂01 = Pn1 =
1
n1

n1∑
i=1

�(X1i ; Y1i):

For the purpose of estimation, P01 is considered to be an element of ‘∞(F) where
F is a given collection of P01-square-integrable functions. Because this is a function
space, it su�ces to consider only �f ∈ ‘∞(F)∗ for a given f∈F, where �f(b)=b(f)
for all b∈B ≡ ‘∞(F). By de�nition Pn1 is asymptotically linear if for all �f

√
n(�fPn1 − �fP01) =

√
n(Pn1f − P01f) =

√
n
1
n1

n1∑
i=1
(f(Xi1; Y1i)− P01f)

=
1√
n

n1∑
i=1

n
n1
(f(Xi1; Y1i)− P01f) = �n;h�f

for some h�f ∈HM , at least up to an oP(1) term. This is true for h�f = �−11 (f −
P01f; 0; 0).
From Van der Vaart and Wellner’s calculations, as described earlier in Section 4,

the element of H that represents the derivative �f�̇ is

�̇�f =
1
�1

(
f − P01f − af − bf;

�1
�2

af;
�1
�3

bf

)
;

where af and bf satisfy

E(�2fo(X; Y )− (�1 + �2)af(X )− �2bf(Y )|X = x) = 0

and

E(�3fo(X; Y )− �3af(X )− (�1 + �3)bf(Y )|Y = y) = 0

with fo(X; Y ) = f(X; Y ) − Ef(X; Y ). Recall that these two conditions were derived
from the fact that the second element of �̇�f must be the conditional expectation of
the �rst given X and the third element must be the conditional expectation of the �rst
given Y .
From the de�nition of �̇�f and the calculations in Eq. (4.1) we see that

〈h�f ; (g1; g2; g3)〉HM = 〈�̇�f ; (g1; g2; g3)〉HM or 〈h�f − �̇�f ; (g1; g2; g3)〉HM = 0

for any (g1; g2; g3)∈H. Hence �fPn1 =Pn1f is a regular (but not e�cient) estimator
of �fP01 =P01f. Finally, if we assume F is such that supf∈F||Pn;�nf

2||=O(1), then
Theorem 3:10:12 of Van der Vaart and Wellner (1996, p. 407) implies

√
n(Pn1−Pn;�n)

converges weakly under Pn;�n . Thus Proposition 5.4 implies that Pn1 is regular. (Note
that Theorem 3:10:12 of Van der Vaart and Wellner (1996) may be used to show
regularity of Pn1 without Proposition 5.4. However, the above calculation provides an
illustration of the geometric content of this proposition.)

6. Discussion of open problems

Although several results used in application of convolution theorems for i.i.d. data
have been extended to non-i.i.d. models, many others remain. For instance, a nice
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conclusion to Section 4 would be a version of Theorem 3 in Van der Vaart (1995)
that provides su�cient conditions for e�ciency of M-estimators. This remains to be
done. Even a version of this theorem for e�ciency of maximum likelihood as a special
case would be useful. Others that remain to be extended include Theorem 2:1 from
Van der Vaart (1991) stating that the existence of regular n1=2 consistent estimators of
a functional implies its di�erentiability. This also appears as Theorem 5:2:3 in BKRW.
Although the theory developed so far is enough to deal with all current examples,

there are two additional extensions that come to mind that may allow treatment of
additional examples that do not �t into this framework. The �rst would be to consider
di�erent rates. In the proof of Theorem 3.1 (speci�cally in Lemma A.3), the array
{2(√�nk − 1)} is approximated by an array of the form {hnk=

√
n} and we impose

conditions on this second array (conditions (B.I.S), (B.II), and (C) from Appendix
A). Instead we could replace the rate

√
n by an arbitrary rate cn and consider approx-

imation of {2(√�nk − 1)} by {c−1n hnk}. Such an approach would be useful for the
study of estimators of parameters for which information accumulates at rates di�erent
than n.
A second possible extension of the results would be to allow the second term in the

stochastic expansion of the log likelihood ratios to remain random. This is a so-called
locally asymptotically quadratic (LAQ) condition. An interesting class of models that
�t into this framework are the cointegrated time-series models studied by, for ex-
ample, Park and Phillips (1988) or Phillips (1991). Although the examples in these
papers involve parametric models, one could easily imagine semiparametric analogs.
Convolution theorems for �nite-dimensional parameters under LAMN (locally asymp-
totically mixed normal), a special case of LAQ, have been given by Jeganathan (1982)
and more recently a convolution theorem under general LAQ has been given by Van
den Heuvel (1996). In addition, a convolution theorem under LAMN when there are
possibly in�nite-dimensional nuisance parameters has been given by Schick (1988).
Extensions of these LAQ conditions, LAMN conditions and convolution theorems for
more general parameter spaces remain open problems.

Appendix A. Proof of Theorem 3.1

The proof of Theorem 3.1 consists of a series of lemmas beginning with Lemma
A.1 below. To simplify notation we replace mn with n throughout, but the conclusions
remain valid for general mn. As noted in Section 3, the treatment follows Strasser
(1985, Section 74; 1989) who considered arrays of independent but not necessarily
identically distributed observations. Here we work in the more general setting which
allows dependent observations. Throughout the development we assume condition (3.7),
but we begin with weaker conditions than (3.8)–(3.12). The next result is taken from
Greenwood and Shiryayev (1985) although we do not use their full level of generality.
They consider the process (in t)

∑[nt]
k=0 log �nk and conditions for convergence to a

Gaussian process with drift. We use the special case when only t = 1 is of interest.
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Greenwood and Shiryayev rely on the following conditions:

P0→(I) ∑n
k=1 En[(

√
�nk − 1)21{|√�nk−1|¿�}|Fn(k−1)]

Pn;�0→ 0 for all �¿ 0,

(II)
∑n

k=1 En[(
√
�nk − 1)2|Fn(k−1)]

Pn;�0→ �2

4 ;

(III)
∑n

k=1(
√
�nk − 1)2

Pn;�0→ �2

4 :

Lemma A.1. Assume (3:7) holds. Then the following three pairs of conditions are
equivalent:
1. (I; II);
2. (I; III);
3. (a) L(�(�n; �0)|Pn;�0 )→ N(0; �2))− 1

2�
2,

(b) L(�(�n; �0)|Pn;�n)→ N(0; �2) + 1
2�
2.

Proof. With the addition of (3.7), this follows from Theorems 8 and 9 and Remark
5 in Greenwood and Shiryayev (1985). The additional condition seems necessary to
make their proof work. Lemma B.4, which is used in the proof of Lemma A.2 below,
gives a corrected version of the part of Greenwood and Shiryayev’s argument that
appears to be in error.

Part (a) of the last assertion looks very much like Eqs. (2.1) and (2.3) of the LAN
de�nition. Our next goal is to use the above result to identify the functions h and �n;h

and show that the latter is linear in h. Such expansions of the log likelihood ratio are
well known in the case of independent observations. For the �rst step in this direction,
we will need something a little stronger than (I), namely:

(I:S)
n∑

k=1
En[(

√
�nk − 1)21{|√�nk−1|¿�}]→ 0 for all �¿ 0:

Lemma A.2. Assume (3:7) holds. Then under (I:S) and either (II) or (III); and with
the notation gnk = 2(

√
�nk − 1); the following expansion is valid:

�n(�n; �0) =
n∑

k=1
(gnk − En[gnk |Fn(k−1)])− 1

2

n∑
k=1

En[g2nk |Fn(k−1)] + rn; (A.1)

where rn
Pn;�0→ 0. Furthermore;

L

(
n∑

k=1
gnk − En[gnk |Fn(k−1)]|Pn;�0

)
→ N(0; �2): (A.2)

Proof. Recall that �n(�n; �0) =
∑n

k=1 log �nk(�n; �0). Let

gnk(�n; �0) = 2(
√

�nk(�n; �0)− 1) so that log �nk = 2 log( 12gnk + 1):

From a Taylor series expansion we have that 2 log(x=2+ 1)= x− 1
4x
2r(x) for x¿− 2

with r(x) such that r(0)=1 and |r(x1)− r(x2)|6C|x1−x2| for a constant C if |xi|¡ 1,
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i = 1; 2. In particular, we have |1− r(x)|6C|x| if |x|¡ 1. Thus,

�n(�n; �0) = 2
n∑

k=1
log
(
1
2
gnk + 1

)
=

n∑
k=1

gnk − 1
4

n∑
k=1

g2nkr(gnk):

This in turn can be written as
n∑

k=1
gnk − 1

4

n∑
k=1

g2nk +
1
4

n∑
k=1

g2nk(1− r(gnk)):

The goal now is to show the last term of the above converges to 0 in Pn;�0 -probability.
Since |∑n

k=1 g
2
nk(1−r(gnk))|6max16k6n|1−r(gnk)|

∑n
k=1 g

2
nk and

∑n
k=1 g

2
nk=OPn; �0 (1)

by (III), it su�ces, from the properties of the remainder term, to show max16k6n|gnk |
Pn;�0→ 0. For this we have

Pn;�0

(
max
16k6n

|gnk |¿�
)
6

n∑
k=1

Pn;�0 (|gnk |¿�)6
n∑

k=1

1
�2

En[g2nk1{|gnk |¿�}]→ 0

for all �¿ 0, where the asserted convergence follows from (I.S). Thus, we arrive at
the expansion

�n(�n; �0) =
n∑

k=1
gnk − 1

4

n∑
k=1

g2nk + rn where rn
Pn;�0→ 0:

We also have, by the equivalence of (II) and (III) under (I) or (I.S), and the de�nition
of gnk that

n∑
k=1

g2nk −
n∑

k=1
En[g2nk |Fn(k−1)]

Pn;�0→ 0;

so we could also write

�n(�n; �0) =
n∑

k=1
gnk − 1

4

n∑
k=1

En[g2nk |Fn(k−1)] + rn:

From the identity 2(
√
�− 1) = (�− 1)− (√�− 1)2 we have

n∑
k=1

En[gnk |Fn(k−1)] =
n∑

k=1
En[(�nk − 1)|Fn(k−1)]−

n∑
k=1

En[(
√
�nk − 1)2|Fn(k−1)]

=
n∑

k=1
En[(�nk − 1)|Fn(k−1)]− 1

4

n∑
k=1

En[g2nk |Fn(k−1)]:

The �rst term on the right-hand side of the above converges to 0 in Pn;�0 -probability
by Lemma B.4. Thus it is also true that

�n(�n; �0) =
n∑

k=1
(gnk − EPn [gnk |Fn(k−1)])− 1

2

n∑
k=1

En[g2nk |Fn(k−1)] + rn;

where rn
Pn;�0→ 0. Since

∑n
k=1 En[g2nk |Fn(k−1)]− �2 = oPn; �0 (1), Lemma A.1 implies that

n∑
k=1
(gnk − En[gnk |Fn(k−1)])

converges in distribution (under Pn;�0 ) to a standard normal with variance �2.
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One approach to verifying (I.S) and (II) is to �nd a di�erent array which satis�es
these conditions and also approximates the original array in a way that implies (I.S)
and (II) hold for the original. This is the idea behind the next lemma.

Lemma A.3. Suppose (3:7) holds and there exists an array {hn1; : : : ; hnn}; n=1; 2; : : :
where hnk is Fnk -measurable for all k and n; such that

(A) 1
n

∑n
k=1 En

[√
n(
√
�nk − 1)− 1

2hnk
]2 → 0;

(B:I:S) 1
n

∑n
k=1 En[h2nk1{|hnk |¿

√
n�}]→ 0 for all �¿ 0;

(B:II) 1
n

∑n
k=1 En[h2nk |Fn(k−1)]

Pn;�0→ �2;

(C) limn
1
n

∑n
k=1 En[h2nk ]¡∞:

Then

(a) conditions (B:I:S); (B:II) and (C) are true with hnk replaced by
√
ngnk=

√
n2(

√
�nk−

1). In particular; expansion (A:1) of Lemma A:2 is valid.
(b) In (A:1); gnk can be replaced with hnk=

√
n.

Proof. (a) Note that for a vector of functions f = (f1; : : : ; fn), the function ||f|| ≡
{(1=n)∑n

k=1 En[f2k ]}1=2 is indeed a (pseudo-) norm. Thus,[
1
n

n∑
k=1

ng2nk

]
6

({
En

[
1
n

n∑
k=1

h2nk

]}1=2
+
{
En

[
1
n

n∑
k=1
(
√
ngnk − hnk)2

]}1=2)2
:

Hence by (C) and (A), limn En[(1=n)
∑n

k=1 ng
2
nk ]¡∞.

To show (I:S) holds, or equivalently, for any �¿ 0,
∑n

k=1 En[g2nk1{|gkn|¿�}]→ 0, we
have

1
n

n∑
k=1

En[ng2nk1{|gnk |¿�}]

6

({
1
n

n∑
k=1

En[(
√
ngnk − hnk)21{|gkn|¿�}]

}1=2
+
{
1
n

n∑
k=1

En[h2nk1{|gnk |¿�}]
}1=2)2

6
2
n

n∑
k=1

En[
√
ngnk − hnk ]2 +

2
n

n∑
k=1

En[h2nk1{|gnk |¿�}]: (A.3)

The �rst term on the right-hand side of (A.3) converges to 0 by (A). Ignoring the
factor of 2, the second term can be bounded above by

1
n

n∑
k=1

En[h2nk1{|hnk |¿
√

n�=2}] +
n∑

k=1
En

[
h2nk
n
1{|√ngnk−hnk |¿

√
n�=2}

]
: (A.4)

The �rst term of (A.4) also tends to 0 by (B.I.S). Then note that

h2nk
n
1{|√ngnk−hnk |¿

√
n�=2}6

{
h2nk =n if |hnk |¿

√
n;

1{√ngnk−hnk |¿
√

n�=2} if |hnk |6
√
n:

Hence the second term of (A.4) is bounded by
n∑

k=1
En

[
h2nk
n
1{|hnk |¿

√
n}

]
+

n∑
k=1

En[1{√ngnk−hnk |¿
√

n�=2}1{|hnk |¿
√

n}]:
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The �rst term of this expression also converges to 0, again by (B.I.S), while the second
is less than or equal to

n∑
k=1

En[1{√ngnk−hnk |¿
√

n�=2}]6
n∑

k=1

4
n�2

En[(
√
ngnk − hnk)2]→ 0

by (A). Thus (I.S) is proved.
To obtain (II) we must show (1=n)

∑n
k=1 En[ng2nk |Fn(k−1)] converges in Pn;�0 -probability

to �2. This expression can be written as

1
n

n∑
k=1

En[ng2nk − h2nk |Fn(k−1)] + �2 + oPn; �0 (1)

by (B:II). Thus it would su�ce to show the �rst term converges in Pn;�0 -probability
to 0. In fact we can show the L1(Pn;�0 ) norms converge to 0 since,

En

∣∣∣∣1n
n∑

k=1
En[ng2nk − h2nk |Fn(k−1)]

∣∣∣∣61n
n∑

k=1
En
∣∣ng2nk − h2nk

∣∣
=
1
n

n∑
k=1

En|(
√
ngnk − hnk)(

√
ngnk + hnk)|

6
1
n

n∑
k=1

{En(
√
ngnk − hnk)2}1=2{En(

√
ngnk + hnk)2}1=2;

where the last inequality is due to the Cauchy–Schwarz inequality. Another application
of Cauchy–Schwarz treating the summation as an integral bounds the above by{

1
n

n∑
k=1

En(
√
ngnk − hnk)2

}1=2{1
n

n∑
k=1

En(
√
ngnk + hnk)2

}1=2
:

The �rst term converges to 0 by (A) so that we obtain the desired convergence if, for
example, the second term is bounded. This is the case since{

1
n

n∑
k=1

En(
√
ngnk + hnk)2

}1=2
6
{
1
n

n∑
k=1

En(
√
ngnk)2

}1=2
+
{
1
n

n∑
k=1

E(hnk)2
}1=2

:

Now condition (C) and the conclusion following Eq. (A.3) imply boundedness.
(b) The preceding argument also shows that

n∑
k=1

En[g2nk |Fn(k−1)] and
n∑

k=1
En[h2nk =n|Fn(k−1)]

are equal up to an oPn; �0 (1) remainder term. Thus all that remains is to show gnk can
be replaced by hnk=

√
n in the �rst term of (A.1). Using Lemma B.3 we have

En

[(
n∑

k=1
gnk − En[gnk |Fn(k−1)]

)
−
(

n∑
k=1

hnk=
√
n− En[hnk=

√
n|Fn(k−1)]

)]2

=En

[
n∑

k=1
(gnk − hnk=

√
n− En[gnk − hnk=

√
n|Fn(k−1)])

]2

6
n∑

k=1
En[gnk − hnk=

√
n]2 → 0

by (A), from which the result follows.
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Remark A.4. The proof of (a) was not speci�c to the array involving
√
ngnk and is

more of a criteria for a certain type of equivalence of arrays. Similarly, the arguments in
(b) can be used to show that given an array that satis�es the expansion of Lemma A.2
(gnk in this case) the array involving terms hnk=

√
n also satis�es the expansion if (A)

holds. In the case of independent data the conditional expectations are unconditional
and we obtain the results in Strasser (1985, Section 74), upon which the above proof
was based. See also Van der Vaart (1988, Proposition A:8).

The above results essentially prove Theorem 3.1. Condition (A) is (3.8), (B.I.S)
is (3.9), (B.II) is (3.10), and (3.11) implies (C). In fact, (3.11) is only required for
the approach to tangent vectors summarized in De�nition 3.5, but it is a reasonable
condition to impose in general. Among other things, it implies that (for su�ciently
large n) each hnk ∈L2(Pn;�0 )⊂L2(P�0 ). Also note that when the data are independent,
the conditional expectations in condition (B.II) are unconditional and we obtain (C)
anyway. All that remains is the concept of a tangent vector h associated with the array
{hnk} and this is provided by (3:8).

Appendix B. Some technical lemmas

Lemma B.1. Let X be a topological vector space and let XN be the product space
of sequences of points in X with its product topology. If X ∗ separates points of
X; (XN)∗ separates points of XN.

Proof. Given x∗ ∈X ∗, the functional x∗�i is a continuous linear functional on XN so
is in (XN)∗. If x1 6= x2, then there exists j such that x1j 6= x2j and there exists x∗ ∈X ∗

such that x∗x1j 6= x∗x2j since X ∗ separates points of X . Thus x∗�ix1 6= x∗�ix2 so that
(XN)∗ separates points of XN.

Lemma B.2. Let � be a map from a normed linear space X to a complete normed
linear space Y such that y′ ◦ �∈X ∗ for every y′ in a closed subspace Y ′ of Y ∗

satisfying ||y|| = sup{y′(y): ||y′||61} for every y∈Y . Then � is continuous and
linear.

Proof. See Van der Vaart (1991, Lemma A.2).

Lemma B.3. Let F1⊂ · · ·⊂Fn be a sequence of �-algebras and X1; : : : ; Xn be random
variables such that each Xi is Fi-measurable and EX 2

i ¡∞. Then

E
(

n∑
i=1

Xi − E(Xi|Fi−1)
)2
=

n∑
i=1

EX 2
i −

n∑
i=1

E[E(Xi|Fi−1)]26
n∑

i=1
EX 2

i :

Proof. This follows from standard martingale theory.
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Lemma B.4. Let Fnk and �nk=�nk(�n; �0)= be de�ned as in Section 3. Let En denote
expectation under �0 and Ẽn denote expectation under �n. If

n∑
i=1

Ẽn(1{�nk=∞}|Fn;k−1)
Pn;�0→ 0; (B.1)

then
n∑

k=1
En[(1− �nk)|Fn;k−1]

Pn;�0→ 0:

Proof. Start by noting that

�nk = �nk1{�nk¡∞} + �nk1{�nk=∞} = �nk1{�nk¡∞} P�0 -a:s:;

since the set {�nk =∞} has P�0 -probability 0. Thus,

E(�nk |Fn;k−1) = E(�nk1{�nk¡∞}|Fn;k−1)

= 1{1=�n; k−1¡∞}Ẽ
(
�nk

�nk
1{�nk¡∞}|Fn;k−1

)
+E(�nk1{�nk¡∞}1{1=�nk=∞}|Fn;k−1); (B.2)

where the last equality follows from Lemma 3 of Greenwood and Shiryayev (1985,
pp. 17–18). The last term on the right-hand side of (B.2) can be taken to be 0 since

�nk1{�nk¡∞}1{1=�nk=∞} = �nk1{�nk=0} = 0:

In the �rst term of the right-hand side of (B.2) we note that

�nk=�nk1{�nk¡∞} = 1{0¡�nk¡∞};

but the set {�nk = 0} has P�n -probability 0 so that a version of (B.2) is

1{1=�n; k−1¡∞}Ẽ(1{�nk¡∞}|Fn;k−1)

=1{1=�n; k−1¡∞} + 1{1=�n; k−1¡∞}[Ẽ(1{�nk¡∞}|Fn;k−1)− 1]
=1{1=�n; k−1¡∞} − 1{1=�n; k−1¡∞}Ẽ(1{�nk=∞}|Fn;k−1):

From this it follows that
n∑

k=1
En[(1− �nk) | Fn;k−1]

=
n∑

k=1

{
1− 1{1=�n; k−1¡∞} + 1{1=�n; k−1¡∞}Ẽ(1{�nk=∞}|Fn;k−1)

}
=

n∑
k=1
1{1=�n; k−1=∞} +

n∑
k=1
1{1=�n; k−1¡∞}Ẽ(1{�nk=∞}|Fn;k−1)

6
n∑

k=1
1{1=�n; k−1=∞} +

n∑
k=1

Ẽ(1{�nk=∞}|Fn;k−1):

The �rst term on the right of this last display is Eq. (5:18), p. 100 of Greenwood and
Shiryayev (1985). The proof that it converges in probability to 0 is a key part of the
proof (pp. 100–103) of their Theorem 8. The second term converges in probability to
0 by assumption (B.1), whence the result.
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7. Uncited References

Bickel and Ritov (1995); Blackwell (1951); Breslow and Holubkov (1997); H�ajek
(1970); Lawless et al. (1997); Le Cam (1986); Strasser, 1996; Strasser, 1998.
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