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The mean residual life function e at age x is defined to be the
expected remaining life given survival to age x; it is a function
of interest in actuarial studies, survivorship analysis, and
reliability. Here we characterize those functions which can arise
as mean residual life functions, present and study an "inversion
formula' which expresses the survival function in terms of e,

and collect a variety of facts about e and other residual moments:
inequalities for e, new characterizations of the exponential
distribution, inequalities for coefficients of variation, and
limiting behavior of e at 'great age'. We also discuss

applications to parametric modelling.

1. INTRODUCTICH

Let X be a non-negative random variable with right continuous distribution func-

. . = . + 5
F, and survival function F =1 - F, on R and suppose that
F(0) = 0 and u 2 E(X) = ngdF{Y; = fg F(x)dx < «; write T = TF z infix: F{x) =
1} <= The mean residual ) function or remaining life expectancy

(1.1) e(x) = e (x) = E(X-x}X>x) = ”~ FAI/F(x), for x>0,
e

I to denote the identity function and

The discretized version of the MRL function e has had considerable use in life

e.g. Chiang, 1968, pages 189 and 213-214; Gross and Clark,

1975, page 25ff), and estimation of e = e. on the basis of samples from F has
!
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ions, residual variance,
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recently been considered by Yang (1978) and Hall and Wellner (1980). Here we
are concerned with the behavior of e as a function (of x and F). For example,
what functions e can arise as MRL functions? (What is the image or range E of
the set F  of all df's with finite mean under the function F - eF?) Does the

mean residual life function e, determine the df F completely? (Is the func-

F

tion F + e. one-to-one?) These questions are answered in Section 3, along with

a brief revizw of the related literature.

The remainder of the paper presents a number of related properties of e, and of
other residual moments, and applications thereof. Among them are elementary in-
equalities for e (Section 2}; some characterizations of the exponential distri-
bution, some inequalities for coefficients of variation, and Pyke's variance
formula (Section 4); characterization of linear segments in e, decomposition of
e, and relations with renewal theory (Section 5); and limiting properties of e

'at great age' (Section 6). Use of some of the results of Sections 5 and 6 in

parametric modelling appears in Section 7.

2. BOUNDS FOR MRL

The following elementary inequalities yield bounds for the MRL function ep!

Since ep(x) + x = E(X E X » x}, we have {ep(x} + XIF(x) = E(X-l(x N x)) =

G - . . v o< TF r.l/r=,  1-(1/1)
u - E(X l(X < x)}' But E(X 1(X > x)) % TFF(x), < u, and < (EX") F(x)
for r > 1, the last by Holder's inequality. Similarly, E{X-l(x < x)) < xF({x)

; e
and also < (EXT)IITF(X)1 (1/7) for r > 1. These five inequalities, together

with conditions for equality, yield (a) - (e) below; (f) - intuitively trivial as

is (a) - follows from (d).

Proposition 1. If F is non-degenerate with mean u and v, E X’ < o,

(a) eF(x} < (T - x}+ for all x, with eguality if and only if F(x} = F(T-) or 1;
(b} eF{x) < (u/F(x)) - x for all x with equality if and only if F(x} = 0;
(e) ep(x) < (vr/?(x}}l/r - x for all x and any r > 1;
(d) eF(x} > (u - §}+/?(x} for x < T with equality if and only if F(x} = 0;
(e) eF{x) > {u - F(x}(vr/F(x}}X/r}/?Xx) - x for x < T and any r > 1;
+

183 eF{x) > {u - x) for all x, with equality if and only if F(x) = 0 or 1.

. . + L
If F 1is degenerate at u, e {x} = {(u - x) for all x.

3. CHARACTERIZATIONS OF MRL; THE INVERSION FORMULA

We first present some properties of the MRL function eg;

ps some are apparently
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trivial but are included to provide the basis for a characterization theorem.

Proposition 2. (Properties of MRL). (a) e is non-negative and right-contin-
uous, and e(0) = u > 0; (b)Y v=e+ Iis non-decreasing; (¢} e has left limits
everywhere in (0,») and has positive increments at discontinuities, if any;

(d) e(x-) >0 for x e (0,T); ifT <=, e(T-) =0 and e is continuous at T;

(e) F(x) = {e(0)/e(x)Iexpl-[(1/e)dI} for all x < T; () [5(1/e)dl » = as x~T.

Proof. The continuity of the numerator in (1.1) and the right continuity and

positivity of the denominator establishes much of (a). To prove (b}, consider
o = P

t>0 and x + t < T; then v(x+t) - v(x) 2 {([,  FdI - JFAI/FO} + t =

{-fi*t FAI/F(x)} +t >0. Ifx<T < x+ t, this remains true, and if T < x (b)

is trivial. Now (c) follows from (b).

For x < T, e(x-) 2 [z_ Fdl > 0. Ifx<T<e, v(x) v(T) =Tsoe(x) sT-x

and e(T-) = 0. Hence e is continuous at T (when T < =), and (d) is proved.

To prove (e), write k(x) = fi FdI = F(x)e(x); then

i

jg(l/e)dl = - fgd(logk(t)} -log{k(x)/k(0)} = -log{F(x)e(x)/e(0)}, (3.1)
from which (e) follows after negative exponentiation. Now k(x) »0 as x + T, so
the right side in (3.1) » = , proving (f). [}

The function v{x) in (b) is the mean age gE_death conditional on survival to

age Xx; it is intuitive that it should be monotone. It increases from u at

x=0toTat x =T (< ), and is flat only on intervals having zero probability.

The formula (e) shows that F may be recovered from ecs and hence a one-to-one
correspondence exists between survival functions (with u - «) and MRL functions.
This formula has been discovered, rediscovered, and generalized repeatedly: it
was alluded to by Cox (1962, Exercise 1, page 128); given explicitly and proved
very simply by Meilijson (1972); also presented in Swartz (1973}, Laurent (1974},
and Galambos and Kotz (1978); "extended" to expectations of the form E{h(X)EX>x},
h a fixed function, X with df F absolutely continuous, by a series of authors
including Hamdan (1972), Gupta (1975), and Shanbag and Rao (1975) (see the
discussion on pages 21 and 32 of Galambos and Kotz in this regard); and extended
to df's on (-=,») in Kotz and Shanbag (1980). We demonstrate a variety of uses
of the inversion formula (e) in the next two sections.

The property (f) describes a limitation on how fast e can grow; thus, for each

I+e

k>1, e(x) ~ ¢ x{log x) -~ {1ogk_1x}(lcgkx) is seen to be possible for ¢ = 0,
t

impossible for ¢ > 0. Behavior of e ‘a

e great age' is pursued in Section 6.

We now proceed to find a list of characteristic properties, in that any function

e satisfying them will be a MRL function for some survival function F, namely
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Is

F defined by the inversion formula (e). Since property (c) above follows

7

directly from (b), it need not be explicitly required; likewise, if e(T} = 0 for
some T < =, then (b) implies :é'l/e)di = o (since e{(x) ¢ T - x) and so (f)
need only be required when e is strictly positive everywhere. We thus are led to:

. + + © s L . . .
Characterization Theorem. Suppose e: R + R satisfies (a) e is right-continuous

and e(0) > 0; (b) v 2 e + I is non-decreasing; (c) if e(x-) = 0 for some x = Xo’
then e(x) = 0 on [XO,m); (d) if e(x-) > 0 for all x, then fz(l/e)dl = o
Let T = inf{x: e(x-) = 0} < =, and define F by (e) for x < T and F(x) = 0 for

X >T. Then F =1 - F is a df on R* with F(0) =0, T, = T, finite mean u, = e(0)

F F

and MRL function ep = e.
For related results, see Theorem 2.1 of Bhattacharjee (1980) (who has a more
complex list of characteristic properties) and Proposition 2 of Kotz and Shanbag

(1980) (more general and more complex).

Counterexamples can be constructed to demonstrate that none of (a) - (d) can be
omitted. In particular, if e(x) = 1+ x2, x > 0, then f;(l/e)dl = arctan{(x) -
m/2 < @ as x » », According to Proposition 2(f), e cannot be a MRL function;

nevertheless, the inversion formula (e) may be used to define a df F whose MRL

2. ) ) 7
function e turns out to be (1 + x"){1 - exp(arctan(x) - ;J} # e(x).

Proof. We need to prove: (a'}) F is non-negative, right-continuous, with
F(0) = 1; (b') F 1is non-increasing; (c') F> 0 for x < T, and if T =

?(x) + 0 as x =+ «; and (d') bp <@ and e; = e.

Now (a') follows from (a) and (e). To prove (b'), consider 0 <t <t + x < T;
then TF(x+t)/F(x) = f{e(x)/e(x+t) lexpi- fX+t(1/e}dI}. But

'X+t(1/e)dl rx+t(v( ) - ldu (3.2)
> [P veen) - w Tl by @)
> logi{le(x+t) + t]/e(x+t)}
and hence
[P /e)dl 2 togle(x)/elxety}, (3.3)

again by (b). Therefore F(x+t)/F(x) ¢ {e(x)/e(x+t)texp{-logle(x)/e(x+t)]} = 1,

proving (b') for x < T. The case of x > T is trivial.

For x < T, there exists e > 0 for which inf{e(t): O<t<x} > ¢
hence jeille‘dl <= and F(x) > 0. Now consider (3.2} with x = 0 and ¢t < T = =

}0 (1/e)dl > logife(t} + tl/e{t)} so that F(t)<{e(0)/e(t)} « {e(t)/fe(t) + t

which decreases to 0 as t » = by (b). Note that this last inequality
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F(x)} < e(0)/v(x} 1is equivalent to e(x) s (e(0}/F(x)) - x, stated in Proposition
1(b) for a MRL function e = ep-
To prove (d'), we first show that e has property (£) (already assumed in (d)
if T = «»): simply apply (3.3) with x = 0 and let t+T. Now note from (e) that
-log{F(x)e(x)/e(0)} = fg(l/e)dl for x < T (and hence Fe + 0). The right side
has derivative 1/e(x). Hence the left side is differentiable, and equating

derivatives yields F(x) = -(d/dx){F(x)e(x)}, and therefore

[T Far = Fe|}, = Foelo for all x < T. (3.4)
In particular, ug = f; Fdl = fg FdI < =, and dividing (3.4) by F(x) yields eg=e.l]

How irregular or ill-behaved can g be? It inherits continuity and differentia-
bility properties from F at all points except T = TF; and although e + I is

monotone, e may oscillate with 0 < liminfx»we(x) < limsupx%me(x) < =, with one

or both equalities holding. For further discussion see Section 5.

4. RESIDUAL MOMENT FORMULAS AND SOME CHARACTERIZATIONS
Introduce the notation
F ) = 7 FOUar (<=, forr=1,2,... (4.0)

=(0)

where F and v, = EFXr (< =). When normalized, these are the survival

functions corresponding to the df's F(r) of Smith (1959, page 6). We find by

successive integration by parts that

v, = ! 7oy for v = 1,2,... 4.1

with ) finite if and only if v, is finite. Hence @anF® = - 7D,

Now introduce the residual life distribution at age a:

&

LX) =P(X>a+x | X > a) = F(a + x)/F(a)
for a < T, and let Xa represent a random variable with df F, . Appending the

subscript 'a' on previous symbols we have ?ﬁr}(x) = fi ?ﬁrgljd

I “which equals
7 (2 + x)/F(a) by induction on r. Hence (4.1) yields:

Proposition 3. For r = 0,1,... and a<T,

v = ot FO @) /Fa), (4.2)

In particular,

e(a) = F V) (a)/Fa)

it

(4.3}

&

’(a} /F(a), 4.4)
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(2)
2 2 2 F (a) \
onfay o] =v, . - U = U {2— - U} (4.5)
F a 2,a a Fgl}(a) a
: ; - w1 - - w02 .
In the following pages we have used the notation k £F , K= F , so K

-k, k' = -F, etc.

Now for some characterizations of the exponential distribution. It is elementary
(e.g. from the inversion formula (e)) that a constant eg characterizes the
exponential distribution. It likewise follows from the differential equation
(4.2) with v = 1: p = -k(x)/k'(x} for all x. A constant residual life moment
of any order does likewise; see Theorem 2.3.2, page 33 of Galambos and Kotz (1978)

and the accompanying discussion:

Proposition 4. Suppose T is a positive integer. Then Ve . =V (> 0) for all

a e R' if and only if F is exponential.

Proof. This follows directly by expressing (4.2) as a differential equation,
recalling that F(x) = (-1)r(dr/dxr)?{r)(x), namely v, = r! {—1}rg(x)/g(r){x)
(1) (r)

where g = F and g is the rth derivative of g. []

If we only ask that ep be constant a.e.(F), then other distributions are possible.
Specifically, the geometric distribution on a lattice in (0,=} has e constant
on the lattice but has slope -1 off the lattice. (This is a characterization,
among distributions with positive probability everywhere on the lattice.) But
other e's (and hence F's) may be constructed:’ take e constant except on an
interval [a,b) where it is continuous with slope -1; then F 1is exponential,
except flat on the interval and with a mass point at the right end of the
intéerval; additional mass points may be inserted inside the interval. Other dis-

crete distributions may also be constructed, non-lattice or lattice with tholes'.

Also, the exponential distribution has a constant residual variance. Does this
uniquely characterize the exponential law? Not quite, since it may be verified
that a geometric distribution on a lattice has a constant residual variance. (The
residual distribution remains geometric, but on a 'shifted lattice' which of
course does not affect the variance.} We prove the following characterization

and return to this question at the end of this section:

Proposition 5. If F 1is strictly increasing on R" and sgix) = ¢° for all x,

then F 1is exponential with mean u = 0.
Proof. Equation (4.5) yields
2 ; N4 , ~ Y
r(x) = (¢“(x)/e(x)} + e{x} = 2 K{x)/k(x). (4.6}

Since k has derivative -F and K has derivative -k, the right side has

= 2 . N .
derivative -2 + 2E(OK(x)/kK“(x) = -2 + r(x)/e{x) (using (4.6)]) = -s(x) where

r
2,.2 . R . .
s{x) 1 - c°/e"(x). Hence from (4.6) T also has derivative -s.
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Since e is right-continuous, we find, for & > 0,
2

g
T e(x+8ie(x)

}

r(x+8) - r(x) _ e(x+8) - e(x) {1
8 8

= E£5i§igj_fi52»{s(x) +o(1)} as &~ 0.

Since the left side has limit -s(x), e has a right-derivative e'(x) and
{e'(x) + 1l}s(x) = 0.

Now F strictly increasing may be shown to imply that v = e + I is strictly
increasing, from which it follows that e'(x) + 1 1is positive. Hence s(x) =0

or e(x) =o. [

We now go to the residual coefficient of variation Y, = Ga/ua. It is identically
unity for an exponential distribution, and this again is a characterization; this

and some other related characterizations are given in

Proposition 6. op(x) = yeF(x) for all x in R+ and some vy > 0 if and only
if eF(x) = (U + cx)+ with ¢ = Cyz - l)/(y2 + 1), and hence F 1is Pareto
(if vy > 1), exponential (v = 1), rescaled beta(a,8) with a =1 (0 <y < 1), or

degenerate (y = 0), respectively.

Hence a constant residual coefficient of variation characterizes the distributions

listed, up to a scale factor.

Proof. Verification that YFCX) is constant for each listed distribution is

elementary, using (4.5).

That e(x) = {u + cx)+ occurs if and only if F is of one of the given types
follows from the inversion formula (e). For such an e,, the corresponding
Gé(x} may be found from (4.5) after substituting the inversion formula as

noted in Section 5, and hence the constancy of yp(x) established.

For the converse, consider x < T, replace the left side of (4.5) with yzez(x) to
obtain Be(x) = K(x}/k(x)}where B = (1/2)(72 + 1}. Differentiating both sides
leads to Be'(x) = -1 + 8, and hence to e(x} = u + ¢cx for x < T, and by

0

e +
continuity e(x) = {yu + cx} for all x.

Several classes of distributions are defined in terms of the MRL: NBUE
{eF(x) < eF{G} = u for all x), NWUE {eF(x) > u for all x}, IMRL (eF +3,

and DMRL (e, + ). These are larger than the classes IFRA and DFRA respect-

F
ively (if u < «),

Watson and Wells (1961) show that is at most, or at least, unity in the IFR

Y
F

and DFR classes. Barlow and Proschan (1975}, page 117, extended these
inequalities to the IFRA and DFRA classes. We show that the same inequalities

hold for the even larger NBUE and NWUE classes. (See Bryson and Siddiqui (1969)
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for the relationships of these classes; and Haines and Singpurwalla (1974) and

Klefsjo (1979) for other classes and related material.)

Proposition 7. Suppose that F is in the NWUE [NBUE, resp.] class. Then

Yp 2 1 [ <1 resp.], and the exponential distribution is the unique member of
these classes with y =1. (If pw=® or u<e=g0,y = =]

Proof. Assume F is NWUE. Then e(x) > u for all x ¢ R* and hence k(x) >
uF(x). Integrating this inequality (0 to =) and using (4.1), we find EX? >
Zuz or 02 > uz. Equality holds only if e(x) = u for all x. Similarly for

F NBUE. [I

An application in renewal theory is that M(t) - (t/u) (M the renewal function)
has a positive limit (YF - 1) as t -« whenever F is NBUE (F is also

required to be non-arithmetic); see Karlin and Taylor (1975), page 195.

Proposition 7 can be extended to residual coefficients of variation: Define the

class NWUE(a) as {F: eF(a+x) > ep(a) for all x ¢ R'} and similarly NBUE(a);
hence F is in NWUE(a) if Fa is in NWUE, and F 1is in NWUE(a) for every a 2 0
if and only if F 1is in IMRL. From Proposition 7, F e NWUE(a) implies T, 2 My,

with equality if and only if E is exponential:

Proposition 8. If F is IMRL [DMRL, resp.], then vy, = aa/ua > 1 [<1, resp.]

+
for every a e R .

It is easily seen that Yy 2 1 [ <1, resp.] does not imply that

e is non-
decreasing [non-increasing, resp.]; in fact, if e 1is such that cg = «, then
oi = ® and Yp T for all a > 0, but e need not be monotone. Or, take

e arbitrary continuous with e + I increasing on [O,xo], e(x) = e(x) +
o
2(x - xo) on [xo,m). Yet another counterexample is the geometric distribution:

vy(x) » 1 for all x, but e decreases off the integers.

We close this section with an extension of 'Pyke's formula for the variance'--a
curious formula relating Ug to eF~—and comment again on distributions with con-
stant residual variance. The continuous case version of this formula appears in
Pyke (1965, page 422).

Proposition 9. cg = EFe(X)e(X~) s cg(x) = EF{e(X}e{X-}ﬁx > x] .

Proof. It may be verified (by integrating over the continuity set for F and
each of the discontinuity points) that d(1/F(x)) = {?(x}?(x~}§'1dF(x} a.e.(F).
Writing Ee(X)e(X~)} as a triple integral, applying Fubini and the formula just
given, yields [[[F(svt) - F(s)F(t)]dsdt, which equals o® since [[F(svt)dsdt =
!ffzstdF{u}ésdt = fusz[u} by Fubini. This proves the formula for 52; the

residual variance formula holds similarly. [}
L2 . e . s 2 .
Whether EFe{Xj , or even its finiteness, is related to oz when F 1is not con-

tinuous is not known.
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The formulas in Proposition 9 enable characterization of distributions with con-
stant residual variance, alternative to Proposition 5. Specifically, it follows
readily that ci{x) = og for all x, or a.e.(F), if e(x)e(x-) is constant a.,e.(F).
Among continucus F's, the exponentials are the only such distributions; this is
consistent with Proposition 5. But discontinuous distributions are possible--e.g.
the geometric distribution has this property as already noted; for it, e(x)e(x-)

is easily seen to be constant on the lattice.

Other discrete distributions with constant residual variance can be constructed
by modifying a geometric distribution--removing one mass point, or translating a
mass point, and adjusting subsequent masses appropriately to preserve the

"e(x)e(x-) = 02 a.e." property.

To construct a mixed distribution with constant residual variance, start with an
exponential with e(x) = u, say. Choose an interval I = (a,b) with length < yu

and set e(x) = u - (x-a) on [a,c¢) and = 4 + b - ¢ - (x-c) on [e,b], with ¢ in I

H

so chosen that e(c)e(c-) uz -- i.e., by solving the quadratic equation (p+b-c)-
(u-c+a) = uz for ¢. The resulting e 1is a MRL function, of a distribution F
with e(x)e(x-) = uza.e. This F 1is exponential on [0,a) and on [b,=), has a

mass point at ¢, and (a,c) and (c,b) are null intervals. To have constant
residual variance, F must be exponential on any interval on which it is strictly

increasing.

5. APPLICATIONS OF THE INVERSION FORMULA

Recall the inversion formula from (e):

F(x) = {e(O)/e{x)}exp{-fg(l/e}dl} for x < T (5.1)
or k(x) = u-exp{-fg(l/e)dl}. Applying (5.1) to the residual survival function ?;
vields

- , 4y a+x N 3 R e
Fa{x} = {e(a)/e(a+x) texp{- fa (1/e}d1} for x < T - a. (5.2}

Use of these formulas (4.1) - (4.5) is sometimes convenient. Thus from (4.1),

o

X Ny . . .

vy = 2pf0 exp{—fg(l/e}di;dx and similarly for vz(a); the first of these yields
an alternative easy proof of Proposition 7, and both are useful when e has a
convenient form, as noted already in the proof of Proposition 6.
We now apply the inversion formula in the form (5.2) to infer properties of ?; on
an interval [0,b] from properties of ep onJ = [a,a+b], and conversely. Since
Fla+x) = f{a}?é(x), we equivalently relate properties of F and e. on J.
Specifically, the next proposition characterizes MRL's containing linear segments.
Proposition 10. Let J = [a,a+b] (orfa,»)), a >0, a+b<T

T I

(0 eF{K} =% -~ c¢cx on J (= < ¢ < 1)
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then
B Flay({(x - ex)/ O - ca) (9l on g ifc#0
@ Fx o= {_
F(a) exp(-{x-a)/A) on J ifc#0
and, trivially,
(%) A= eF(a+b) + ca + cb (if b < =).

Conversely, if (2) and (3) hold for some c, or if (2) holds and F(a+b) = 0,
then ep is linear (if ¢ # 0) or constant (if ¢ = 0) on J; specifically, (1)
holds.

Remarks. The case c¢ = 1 corresponds to PF(J) = 0; the case 0 <c <1
corresponds to F beta (1,(1/¢}-1) on J; c¢=0to F exponential on J;

and ¢ <0 to F Pareto on J. The converse without (3) is not true (if
F(a+b) > 0), as will become apparent in the proof; this is not surprising: for
(1) to hold at x = a+b imposes a condition on the (mean of the) residual dist-

ribution beyond a+b, and (2) makes no imposition on this residual distribution.

Proof. We prove the case with ¢ = 0; the other case is similar when a+b < TF’

and easier when a+b = TF’

From the inversion formula, we have for x e J, F(x)/F(a) = exp(-(x-a)/X) which

is (2). Conversely, assume (2) (and b < «); then for x € J

[ Far - }'i*b Far + 7. FdI

I
a+b

i

?(a)fi+bexp{—(t-a)/k}dt + ?{a+b)ep(a+b)

H

F(a) » exp{-(x-a)/r} - F(a) A exp{-b/A}

+ ?Ia}exp{—b/k}ep(a+b).

Therefore on J ep(x} = X - exp{x-a)/iltexp{-b/A}{A- ep(a+b)} and (1) follows

if and only if (3) is assumed or b = =. ]

Example: If eF(x) =y - c(xaa) for some a > 0, then (from (2), or directly

from the inversion formula)
- 1/7¢) -
F(x) = {1 - (c/p)(x,\a}}(‘/cj 1exp{—(x—a}+i{u-ca)} onR'. (5.3

Conversely, if F(x) = {1 - {c/u}(x4\a)}(1/C}_1exp{—(x~a}+/{p-ca}} on R+, then
eF(x} is constant for x > a; also, eF{x) is linear on [0,a] if and only if
po= eF[a) + ca, i.e., u = x + ca. Also see Section 7.

For related results, see Proposition 9 of Kotz and Shanbag (1980) and the
references therein. The relationship of ep and F on [a,=), for large a,

is pursued similarly in Section 6.

We now discuss decomposition of e and F. From the definition of e, or from
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the inversion formula, and with v = e + I, we find
dv = (e/F)dF or dF = (F/e)dv

and dv = de + dI (treating e as v-I, the difference between two increasing
functions). Hence, except for a possible mass point at TF (if < »), where e and
F vanish, absolutely continuous, singular and discrete components occur together
or in neither of F and v. However, an absolutely continuous component in v
need not correspond to one in e, and conversely; for if e (or F) is discrete or

singular, v and hence F (or e) has an absolutely continuous component.

We thus conclude: If F has a discrete [singular, resp.] component then so does
e, except a discontinuity in F at TF does not lead to a discontinuity in e, and

conversely. Either e or F alone can have an absolutely continuous component.

Brown (1980, page 238) noted that if F is in the IMRL class, then it must have an
absolutely continuous component and raised the question whether a singular com-
ponent is possible. The formula dF = (F/e)(de + dI), when e is increasing,
provides an alternative proof of Brown's claim. Moreover, both discrete and
singular components are seen to be possible: let e be 1+G for a discrete df G,
and e, = (Z-H)-l for a singular df H, and let e = e, + &,. Then F corresponding
to e is in the IMRL class and has discrete, singular, and absolutely continuous

components.

A final application of the inversion formula, in renewal theory, is as follows:
When watching a cumulative sum of iid rv's until "just before’, and 'just after',
it crosses a level t, 5t (= t - 'the sum before crossing') is defined as the
current life at time t, and Ye (= 'the sum after crossing' - t) is defined as the

excess life at time t. It is well-known (e.g. Karlin and Taylor (1975), page 193)
that

lin, P8, 2y, v 2 ¥ = L, FI/u = GOwy)
for all x,y > 0, where G(x) = u_lfg FdI; this is the df F(l) of Smith (1959)-
see (4.0) in Section 4. Alternative expressions for G(x) are
kF(x)/u = ?{x}eF[x)/u and exp{—fg(l/e)di}, the latter from the inversion

formula. It follows immediately that e_ is related to the hazard function of

G as noted by Meilijson (1972) and by Biattacharjee (1980). The df G  has a
monotone density g = F/u and its hazard function kG = g/G equals l/eF. Con-
versely, if g is an arbitrary non-increasing density on {0,») (right-continucus
without loss of generality} with hazard function Kg, then F(x) = g(x)/g(0)
defines a df F with ep = I/AG. Meilijson used these facts to give a very simple

proof of the inversion formula (e).
6. MRL AT GREAT AGE'

Now suppose that F(x) » 0 for all x ¢ R+ as well as u = EX < =. Recall that
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e

is said to be regularly-varying (at infinity) with exponent -y, and we write
Fe R—Y’ if F(ex)/F(t) - x 7 forall x 30 as t ~=; F is regularly-varying
with exponent -=, written F e R__, if F(tx)/F(t) - =,1,0 according as

x <,=,> 1 respectively; and that F satisfies the weak law of large numbers,
written F e WLLN, if F(t+x)/F(t) - 0 for all x > 0. The following propos-
ition is simply a restatement of various theorems concerning functions of regular

variation -- which are conveniently stated in de Haan (1875).

Proposition 11. If F(x) >0 for all x ¢ R™ and u=EX < then, as x =+ =,

(a) e(x)/x + if F e R—l’

(b) e(x)/x +c e (0, if and only if F ¢ R—l—(l/c}’
(¢) e(x)/x ~ 0 if and only if Fe R _ ,

(d) e(x) » 0 if and only if F e WLLN .

Now, in addition, suppose that f = F' exists for large x and define » = f/F,

the hazard function. Then, as Xx -+ =,
(e) e(x)/x~ 0 if xi(x) » », and
(f) e(x) ~ 0 if A(x) + .

Finally, make the further assumption that £ is non-increasing; then, as x » =,

(g) e(x}/x >0 if and only if xi{x) = =, and
{h) e(x) » 0 if and only if X(x) = = .
Proof. A

11 of (a) - (h) are simply restatements of results in de Haan (1975}:
(a) and (b)

(a) are in Theorem 1.2.1, page 15; (c) is in Theorems 1.3.1,page 26, and
2.9.3 page 116; (d) is Theorem 2.9.3,page 119; (e) and (g) are given in Theorem

2.9.2,page 118; and (£f) and (h) are given in Theorem 2.9.4, page 120. i

It would be interesting to know other sufficient conditions for limsup e(x)/x to
be finite; this would imply for example that EFe(X)z < EFXZ (see Proposition 9

above and the remarks after Condition la in Hall and Wellner (1980)).

For best results concerning the residual distribution at great age, see Balkema
and de Haan (1974).

The principal shortcoming of Proposition 11 is that many quite different MRL
functions satisfy (c), (e), and (g): e(x)/x = 0 is a relatively crude description
of the behavior of e for large x. The next proposition presents an attempt t
'separate out' or distinguish a more complete range of possible behavier of e,

and correspondingly of ¥, at infinity.

Proposition 12. Suppose that (i) e -~ e,

and (ii) - 1og(erG} = 0(-10gG). Then
N . G
- = 1+0(1)

-}og(?ﬁ ~ —isg(?ﬁ, or equivalently, F{x} = G(x
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A simple sufficient condition for (ii) is liminfx+®ec(x) > 0; another (see the

Lemma below) is: eq has a derivative eé with a limit at =.

Proof. Let n(x) = {eG(x}/eF(x)} -1 =o0(1) by (i). Then the inversion formula

yields _
F(x)

Hp X
= - {1 * n(x)}exp{-f (n/e)dI} .
T Y6 0= 6

But | [§(n/eg)dI| < [[§n/egal] + s[X(1/edl if [n(0] < ¢ forall x>t =t
(for large x) and the right side = A(t) + ng(l/eG)dI. Now, by the inversion
formula and (ii), fg(l/ec)dl = - 1og{eG(x)E(x)/uG} = 0(-1ogG) and hence
fg(n/es)dl = 6(-10gG(x)). Then log(r(x)) = 0(1) - Ig(n/eG)dI = 6(-logG(x)) or
-10gF = -logG + o(-logG). 0

r(x} =

4

Lemma. Suppose F (or eF) is absolutely continuous and e% has a limit (< )

at infinity. Then lim epip > 1 and lim{—log(eF§3/~log?7 <1 where Ap = £/F.

Proof. e'(x) = -1 + A(x)e(x) and lim e' > 0 (since lim e' < 0 implies

1im e < 0). Therefore 1im(er) > 1 and.lim(1l/e) < 1. But, by L‘Hépital's rule,
1im{log(eF)1/[10g(F)] = lim[logfiﬁdl]/[log(f(x))] = 1im(1/er). [I

The following Corollary is an immediate consequence of Proposition 12. Note that
eF(x)/x + 0 in cases (a},‘(b), and (e), but the related —logF‘s are asymptotic
to quite different -logG's.

Corollary.
(a) If eg(x) »c as x ==, then F(x) = 5{x)1+0(1) where G(x) - e Xe
(b) If eF(x) N cx1~8 for some c ¢ (0,®), 6 >0, then F(x) = E{x)l+0(1)
where G(x) = cxp{‘axe}, a > 0, a Weibull survival function.
(e} If eF(x) -~ cx for some c e (0,»), then F(x) = ﬁ(x)lﬂy(l) where
G(x) = (1 + bx)'l/b, b =c(c + 1)‘1, a Pareto survival function.
1+ (1)

(&) 1If eF[x) ~ ¢ xlog(x) for some c € (0,»), then F(x) = G(x)
where G(x) = x'l{log(ex}}'T, T = 1+(1/c).
(e) 1If eF(x) ~ czx/log(x), GZ > 0, then F = 5&+O{1) where G(x) =

P(exp(oZ + u) > x), Z ~ N(0,1}, a lognormal survival function.

(See Watson and Wells (1961) page 289 in regard to (e).) Note that in (a) we
could also have taken G to be a Gamma (B,1/c) df for some B8 > 0 {i.e. G(x) =

peo

Iy c—ar(sj'lte'le'tfcdt}; all of these gamma df's have eG(x) > ¢ as x - .

7. USE OF MRL IN MODELLING

Various authors have (at least implicitly) suggested that knowledge of the
characteristic forms of MRL functions may be useful in modelling (e.g.
Bhattacharjee (1980}, Bryson and Siddiqui (1969), Chhikara and Folks (1877},

Laurent (1974}, Muth (1977}, and Watson and Wells (1961)). We add a few comments
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supporting this view.

Specifically, if the empirical MRL function has some apparently linear segments,
Proposition 10 characterizes the survival function on these segments (see
example below). Also, the behavior of the empirical MRL 'at great age' may
suggest a corresponding tail behavior of the underlying survival function,

asserted in the Corollary of the previous section.

Of course, histograms, density estimates, empirical survival functions, total
time on test plots, and empirical (cumulative) hazard functions may likewise be
used to advantage in parametric modelling. We only suggest that the empirical
MRL function is a useful addition to this arsenal -- one which identifies certain
kinds of behavior more readily than others. For example, a flat (or linear) tail
on the MRL suggests a gamma (or Pareto or beta) tail on F, features not so

readily determined from other empirical plots.

As an example, consider the survival times of 72 guinea pigs injected with
tubercle bacilli (Bjerkedal, 1960, regimen 4.3), illustrated in Figure 1 of Hall
and Wellner (1980). The empirical plot of the MRL is not too different from that
in the example of Section 5 above, namely, twc line segments, the latter one
horizontal: e(x) = u - c{xAa). This suggests the parametric model of (5.3) for
the survival function: beta followed by exponential. By maximum likelihood
methods, we fit the parameters as n = 176.3, ¢ = 0.8278, and a = 91.9,
yielding an asymptote of 100.2. By contrast, other plots (not shown) do not so
clearly suggest a parametric model. This model suggests that an abrupt change in

the mechanism of mortality occurs after an 'incubation period' of about 92 hours.
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igure 2 in Hall
and Wellner (1980) and note from the text that the MRL curves downward eventually)
the MRL plot suggests a linear segment followed by a function curving upward,
flattening, and then proceeding downward. This can be fit by piecing together
two beta distributions, consistent again with an abrupt change after an initial

period.

Finally, study of the MRL plot of survival times (from date of diagnosis) of 43
leukemia patients, presented by Bryson and Siddiqui (1969}, suggests a linear MRL
tail from 1000 to 2500 days with slope -%; then, according to Proposition 10,

this is consistent with a beta(l,1) = uniform distribution on this interval.
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