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ABSTRACT. We consider estimation in a particular semiparametric regression
model for the mean of a counting process under the assumption of “panel count”
data. The basic model assumption is that the conditional mean function of the
counting process is of the form E{N(t)|Z} = exp(6'Z)A(t) where Z is a vector
of covariates and A is the baseline mean function. The “panel count” observation
scheme involves observation of the counting process N for an individual at a random
number K of random time points; both the number and the locations of these time
points may differ across individuals. N

We study maximum pseudo-likelihood and maximum likelihood estimators 6%°
and 6, of the regression parameter . The pseudo-likelihood estimators are fairly
easy to compute, while the full maximum likelihood estimators pose more challenges
from the computational perspective. We derive expressions for the asymptotic vari-
ances of both estimators under the proportional mean model. Our primary aim is to
understand when the pseudo-likelihood estimators have very low efficiency relative
to the full maximum likelihood estimators. The upshot is that the pseudo-likelihood
estimators can have arbitrarily small efficiency relative to the full maximum likeli-
hood estimators when the distribution of K, the number of observation time points
per individual, is very heavy-tailed.
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1 Introduction

Our goal in this paper is to study efficiency aspects of two types of estima-
tors for a particular semiparametric model for panel count data. Panel count
data arise in many fields including demographic studies, industrial reliability,
and clinical trials; see for example [19], [7], [31], [32], [29], and [33] where the
estimation of either the intensity of event recurrence or the mean function
of a counting process with panel count data was studied. Many applications
involve covariates whose effects on the underlying counting process are of
interest. While there is considerable work on regression modeling for recur-
rent events based on continuous observations (see, for example [22], [5], and
[23]), regression analysis with panel count data for counting processes has
just started recently. [30] proposed estimating equation methods, while [35]
and [36] proposed a pseudo-likelihood method for studying the multiplicative
mean model (1) with panel count data.

Here is a description of the model and the observation scheme. Suppose
that N = {N(#) : t > 0} is a univariate counting process. In many applications,
it is important to estimate the expected number of events E{N(¢)|Z} which
will occur by the time ¢, conditionally on a covariate vector Z.

In this paper we consider the proportional mean regression model given
by

A(t|Z) = B{N(t)| 2} = " Z A(t) (1)

where the monotone increasing function A is the baseline mean function. The
parameters of primary interest are § and A.

The observation scheme we want to study is as follows: suppose that we
observe the counting process N at a random number K of random times

OETK70 <TK71 < .- <TK,K-

We write Ty = (Tk1,---, Tk k), and we assume that (K,Tx|Z) ~ G(:|Z)
is conditionally independent of the counting process N given the covariate
vector Z. We further assume that Z ~ H on R?, but we will make no fur-
ther assumptions about G or H (modulo mild integrability and boundedness
requirements).

The data for each individual will consist of

X = (Z,K7ZK5N(TK71)7"'7N(TK,K>) = (Z5K7ZK7NK> . (2)

We will assume that the data consist of X1,...,X,, i.i.d. as X.

To derive useful estimators for this model we will often assume, in addition
to (1), that the counting process N, conditionally on Z, is a non-homogeneous
Poisson process. But our general perspective will be to study the estimators
and other procedures when the Poisson assumption fails to hold and we assume
only that the proportional mean assumption (1) holds.

Such a program was carried out for estimation of A without any covariates
for this panel count observation model by [33]. Briefly, [33] studied both the
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maximum likelihood estimator /Tn and the pseudo-maximum likelihood esti-
mator AP° of A. They showed that both estimators are consistent in Lo(u)
where p is the measure defined (in terms of the observation process) by

w(B)=> P(K=k)Y P(Ty;€B|K=k).
k=1

j=1
[33] also succeeded in showing (under additional smoothness and boundedness
assumptions) that

2 ’ 1/3
nl/3(A2% (1) — Ao(to)) —a {7" gtg),éz()t“} 27

where o2(t) = Var[N(t)], G'(t) = > o P(K = k) Z§=1 k1), and Z =
argmax{W (t) — t?} for a two-sided Brownian motion process W starting at
0. They also proved a corresponding result for a “toy estimator” version of
the maximum likelihood estimator A,, under the Poisson process assumption,
and made efficiency comparisons between the two estimators based on Monte-
Carlo studies.

The outline of the rest of the present paper is as follows: In section 2, we
describe two methods of estimation, namely maximum pseudo-likelihood es-
timators and maximum likelihood estimators of § and A. The basic picture is
that the pseudo-likelihood estimators are computationally relatively straight-
forward and easy to implement, while the (full, semiparametric) maximum
likelihood estimators are considerably more difficult, requiring an iterative al-
gorithm in the computation of the profile likelihood. For other examples of
the use of pseudo-likelihood to obtain computationally simple methods, see
e.g. [3] and [27].

In section 3 we present information calculations for the semiparametric
model described by the proportional mean function assumption (1) together
with the non-homogeneous Poisson process assumption on N. This provides
a baseline for comparisons of variances with the best possible asymptotic
variance under the Poisson and proportional mean model assumptions. In
section 4 we describe asymptotic normality results for the pseudo-likelihood
and full maximum likelihood estimators 62° and 6,, of § assuming only the
proportional mean structure (1), but not assuming that N is a Poisson process.
Proofs of these results will be presented in detail in [34]. Finally, in section
4 we compare the pseudo-likelihood and full likelihood estimators of 6 under
three different scenarios with the goal of determining situations under which
the pseudo-likelihood estimators will lose considerable efficiency relative to
the full maximum likelihood estimators.

As will be seen, the rough upshot of the calculations here is that the
efficiency of the pseudo-likelihood estimators relative to the full maximum
likelihood estimators can be low when the distribution of K, the number of
observation times per subject, is heavy-tailed.
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2 Two Methods of Estimation

Maximum Pseudo-likelihood Estimation: The natural pseudo-likelihood
estimators for this model use the marginal distributions of N, conditional on
Z

)

At 2)*

P(N(t) = k2) = =

exp(=A(t2))

and ignore dependence between N(t1), N(t2) to obtain the pseudo-likelihood:

256, 4) ZZ{ T ) log AT )

=1 j=1

+ N )0z — " “ AT )}
Then the maximum pseudo-likelihood estimator ((5;;5,25;3) of (0, A) is given
by
(08°, AL?) = argmax, 4 I5°(6, A).

This can be implemented in two steps via the usual (pseudo-) profile likeli-
hood. For each fixed value of 6 we set

25(,0) = argmax , 12°(0, ), (3)
and define R
iperrerite (g) = 1250, 2 (,0))
Then
62 = argmax, [25PTo7 e (9) | and AR5 = APS(.,6P%).

In fact, the optimization problem in (3) is easily solved as follows: Let t; <
< t,, denote the ordered distinct observation time points in the collection
of all observations times, {TI((ZB,]., j=1,...,K;,i=1,...,n}, let Ng? .=

) irJ
NG (TI({?J), and set

ZZIT()-—Q MZZZN Ki,j [T() =]

=1 j=1 i=1 j=1
ex GZ (i) .
wl Z Z p [TK’N:tL]
=1 j=1

Then it is easily shown that
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AP3 (.. 9) = left-derivative of Greatest Convex Minorant of

(O wA(0),> wN)HE,
1<i 1<i

. Zigp <wpNy
= maxmin — at 1,
i<l j>l ZKF < wpA,(0)

which is straightforward to compute.

Maximum Likelihood Estimation: Under the assumption that N is (con-
ditionally, given Z) a non-homogeneous Poisson process, the likelihood can
be calculated using the (conditional) independence of the increments of N,
AN(s,t] = N(t) — N(s), and the Poisson distribution of these increments:

AA((s,t]|2))*
PaN(s, 1 = k2) = DI o an((s,112))
to obtain the log-likelihood:
(0, 4) = > { AN [ log Al g+ AN 07— % Al 5}
i=1 j=1

where

ANgj = N(Tk ;) — N(Txk j-1), j=1,....K
ANk = MTk j) — ATk j-1), j=1,...,K,

with N(Tk o) = 0 and A(Tk ) = 0. Then
(é\n, //l\n) = argmaxy 4 [,(0, 4).

This maximization can also be carried out in two steps via profile likelihood.
For each fixed value of 6 we set

o~

Ap(+,0) = argmax 4 1,(0, A) ,
and define B R
profite(9y = 1,,(0, A, (-,0)) .
Then R ‘ R L
6,, = argmax, [P (9) | and Ap = A0, 0,) .

Computation of the (profile) “estimator” /Tn(7 ) is computationally involved,
but possible via the iterative convex minorant algorithm; see e.g. [17]. For more
on computation without covariates see [33].
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3 Information bounds for @ under the Poisson model.

We first compute information bounds for estimation of # under the propor-
tional mean (non-homogeneous) Poisson process model.

Suppose that (N|Z) ~ Poisson(A(-|Z)), and ((K,Tk)|Z) ~ G(-|Z) are
conditionally independent given Z. We will assume here that N is conditionally
a nonhomogeneous Poisson process with conditional mean function

E[N(t)|Z] = A(t|1Z) = %% Ay(t) . (4)

The second equality expresses the proportional mean regression model as-
sumption.

The likelihood for one observation is, using the same notation introduced
in Section 2,

K
p(X;0,4) = ] exp(—AAk;)

j=1

(Ad ;)2
(ANg;)!

Thus the log-likelihood for (6, A) for one observation is given by
K
1ng(X, 9, /1) = Z {ANK] log AAK] — AAKJ‘ — log(ANK]')} .
j=1

Differentiating this with respect to 6 and A respectively, the scores for 6 and
A are easily seen to be

K
lg(x) = > Z(ANk; — "% Adok;) | (5)
j=1
while
K
lLya(z) = {—]60 Aag
j; AAOKj J
K
’ AaK'
= ANg; — %% Adyk; J
;{ Nigj —e OKJ} Aok’
where

TK,j
A(l[(j = / ad/l()7 a € LQ(A()) .

Tk,j—1

To compute the information bound for estimation of # it follows from the
results of [2] and [4] that we want to find a* so that

19 — 1Aa* 1 iACL
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for all a € Ly(Ap); i.e.
0 =F {(19 - iAa*)iAa}

K
/ Aa: \ .
=F (ANg; — e"Z Adgg;) (Z - K{) 11a

K
’ A * . .
- B § (ANKj _ BGOZAAOK]_)2 (Z ¢ > AaKg

= - Adok; ) Aok
K
, Aa’-. Aag;
=F %% Aoy ; <Z B > J
; 0Kj Aok, ) Adok;

by conditioning on K, Tk, Z

/ ACI,* ; Aa :
- E ElePZ Aoy, | 7 — 2 Ki K
’ {; {e " ( AAOKj) AAOKj‘

K
= Fx ZE {E {GQUZAAOKJ‘

j=1

ACL;(» Aag;
Z — J K T i1, T |K
< AAOKj) Al 17770 K’J}‘ }}
K Aa
Kj 4

= Fx ZE{AAOKJTOKJJ (E{ZGGOZ|K7TKJ‘71>TKJ}

Il
-

J

*
Aaj;

_ 7E{ 07| K Ty i 1, T } ‘K
AAOKJ € | K,j—1 K,j

—

Thus we see that the desired orthogonality holds with

A(L?{j E{Z€96Z|K,TKJ‘_1,TKJ}

= ; . 6
AAOKj E{6902|K,TKJ,1,TK7]‘} ( )

Hence the efficient score function for 6 is given by
15 () = lg(2) — 140" (2)

B{2e"2|K, Tic i1, Tie; }
Z ; )
E {69 Z|K, TK,j—laTK,j}

K
Z(ANK] — EQIZAAOK]‘)
j=1

and the information for 6 is, by computing conditionally on Z, K, Tk,

10) = Bo {i5(x)°%}
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®2

FE {Z€06Z|K, TK,j—l,TK,j}
Z

K
. 0,2 .
- E, E e’ Adok E{6962|K,TK,3‘717TKJ}

j=1
In particular, we have the following corollary:

Corollary 1. (Current status data). If P(KX = 1) =1 (so that the only Tk;
of relevance is Th 1 = T while T} o = 0), then the efficient score function is

. . ) B{ze%?|T}
0(z) =ly(z) —1ra™(z) = (N(T) — e”0“ Ao(T)) Z_W
and the information for 6 is given by
- B{ze%7 T}
I(0) = Eo {la(X) }:Eo e0? Ao(T) Z*W

This can be compared with the information for 6 for the Cox proportional
hazards model with current status data given by [15], page 547 (with Huang’s
Y replaced by our present T for comparison):

) E(ZR(T, 2)|T) | **
o= { . {2~ SEHE N

where R(T, Z) = A*(T, Z)O(T|Z) and

O F(tl) (1= Fy(t)oee?)
O(t|z) = ) 1= (= Ry

Corollary 2. (Case 2 Interval-censored data). If P(K = 2) =1 (so that the
only Tk ;’s of relevance are Tp 1 = Ty and T o = T5, while T5 o = 0), then the
efficient score function is

15 () = Ig(w) — 1aa" ()
o (. Elzem)
= (N(T) — ™% Ao(11)) | Z - E{HIT)
+ N(Tz) — N(T1)
E {Ze%Z|T1,T2}
E{AO T} |

— %7 (Ay(T) — Ao(TV)) | Z

and the information for 6 is given by
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16) = o {i5(x)°2}
E {Z€9()Z|TI} ®2

= F 0Z Ao (T 7 -
04 € o(T1) E{GQOZ|T1}

E{Ze%Z|T1,T2}
E {6962|T1,T2}

+ Eo § %% (Ag(T2) — Ao(T2)) | Z —

This is much simpler than the information for 8 for the Cox proportional haz-
ards model with interval censored case II data given by [16]. The calculations
of Huang and Wellner resulted in an integral equation to be solved, analo-
gously to the results for the mean functional considered by [8], [9], and [10].

4 Asymptotic normality of the two estimators of 6.

Here is the crucial theorem concerning the asymptotic behavior of the max-
imum pseudo-likelihood and maximum likelihood estimators of 6 when the
proportional mean model holds, but the Poisson assumption concerning N
may fail.

Theorem 1. Under suitable regularity and integrability conditions, the esti-
mators 62° and 0,, are asymptotically normal:

-~

Vit0n = 00) =4 Z ~ Na (0,47'B (47)') | (7)

and
\/ﬁ<§£g _ 90) g VAL Nd (07 (AI)S)—lBPS ((Aps)—l)/) (8)

where

B = Em*(0y, Ao; X)®?

/ ®2
EK: E (2e%7|K, Ti 5, T 1)
=FE ijj’(Z) Z - 7 ’
Gj'=1 E <6002|K7 TK;j’TK;j')
/ ®2
K E (Z6902|K, TK,j—hTK,j)

A=F ZAAOKje%Z Z —
j=1
CjJ’/(Z) = Cov [ANK]‘,ANKJ'/‘Z, K,IK] s
BP* = Em*P% (6, Ag; X)®?

E (%7 |K, Tc; 1, Tk ;)



10 Jon A. Wellner, Ying Zhang, and Hao Liu

E (Ze%zu(, TKJ)
E (606Z|K7 TK,j)

K
=Eq Y CP(2)|Z-
33'=1
/

E <Z€06Z|K, TK,j/)

7 —
E (e%7|K, Tk ) ’

E (Ze%Z\K, TKJ—)
E (e%?|K, Tk ;) ’

K
APP = F ZAOKJ‘GGSZ Z —
j=1

Cﬁj,(Z) = Cov [NKj,NKj/|Z, K, TKJ‘,TK,]‘/] .

Our proof of this theorem is based on the results of [35]. While we will not
give the proof in detail, we will present here a sketch of the computation of
the asymptotic variances given in (7) and (8).

Based on the Poisson model, the log-likelihood for (6, A) with one obser-
vation is given by

K
m(0, 4; X) = logp(X;0,4) = Y {ANg; log Adk; — Ad; —log(ANg;!)}

j=1

K
=Y {ANg;log Adg; + ANg;0'Z
j=1

— ee,ZAAOKj — log(ANK]')} . (9)
Thus the log-likelihood [, (6, A) for n i.i.d. observations is given by
(0, 4) = nP,m(6, A;-). (10)

The maximum likelihood estimators (5, A) are obtained by maximizing (10).

A natural pseudo-likelihood is obtained by simply taking the product of
the marginal distributions of the observed counts at the successive observation
times. Thus a log-pseudo-likelihood for one observation is given by

K
mpS(Q,A;X) = Z {NKj 10g AK]‘ + NK]‘H/Z — eGIZAKj — log(NK]')} (11)

j=1

with Ag ; = A(Tk ;), and the log-pseudo-likelihood 2°(6, A) for n i.i.d. ob-
servations is given by

1P2(0, A) = nlP,mP*(0, 4; ), (12)

and the corresponding pseudo-MLE’s (@ps,//l\”s) are obtained by maximizing
(12).
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4.1 Asymptotic variance of the MLE

Based on the Poisson model, the log-likelihood for (f, A) with one observation
is given by (9). Using the notation of [35], page 29, we have

K
ma (6, 4;X) = 3 7 [ ANk — Adyeje” 7],
j=1
K
ANg: o
ma(0, A; X)[h] = [%—eg Z} Ahk;,
=1 K

K
mi (0,4 X) = = Ady;27'e"7,

Jj=1

K
maa(0, 4; X)[h] = m3, (0, A; X)[h] = = Ze" Z Ahyg;,

Jj=1
5. ANg;
maz(6, 4; X)[h, h] = =Y L Ahy; Ay,
j=1 (AAKJ’)
where Ahg; = ;:’il hdAy for h € La(A). By A2 of [35], page 30, we need

to find a h* such that

S12(60, Ag)[h] — Saa (60, Ag)[h*, ]
= P{mlg(eo,Ao;X)[h] - m22(90aAO;X)[h*7 h]} = O’

for all h € La(Ap). Note that

P{mlg(a(),/lo; X)[h] — mgg(eo, /10,)()[1’1*7 h]}
K

/ ANK
= - B{Y | zef - =K ARy | Ahgg
= (AAOK])Z Kj J
K ! Z *
, e’0“ Ah
=—E > |Zeh% - Kil A
(K, Tk,2) = AAOK] Kj

Therefore, an obvious choice of h* is

E (2696Z|K, TK,j717TK,j)
Ahj; = Adpk; ; .
Kj 0K E (6002|K, TKLj—l,TK,j)

Hence

m* (6o, Ao; X)
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= my (6o, Ao; X) — ma(bo, Ao; X)["]

i {7 (ANk; - %% Ao,

<.
—

E(Z 02| K Ty 1. T )
3 (ANKj _eegz> Adox; 6,0 1K, Tk j—1. Tk
Aok E (e%?|K, Tk j-1,Tk ;)
E (ZG%ZIK, TK,j_l,TK,j>
Z 7
E (e%?|K, Tk j1,Tk ;)

IR

(AN, — €% Ador;)
1

J

By Theorem 2.3.5 of [35], page 32, the asymptotic variance will be A~ B (A_l)l,
where

B = Em* (6, Ag; X)®?

K
= Bk 1¢,2) Z C(Tk j Tk j1s Tr j-1, Tk j-15 2)

J,3'=1
[ E (ZG%ZlK,TK7j_1,TK7j)
Z - 7

B (e%?|K, Tk j-1,Tk,;)

/

E <Z€062|K, TK’jlfl, TK’j/)
Z - 7 I
E (%7 |K, Tk jr-1, Tr j)

A=— 5'11(907/10) + 5’21(90v 4o)[h]
K
=EQ> [AAonEGOZZZ/
i=1
62 E (Ze"f)ZIK TK,j’—l’Tva')
— e%Z Adgy s 7 z
e 0Kj E(690Z|K’TKJ’717TK»J‘,)

K o [ E (Z6932|K,TK,j71,TK,j)_
= E(k,1i,2 Alog e’ | Z — : Z
(K, Tk ,7Z) ; J E (e%?|K, Tk j-1,Tk,;)
- , @2
K oy E (ZeGOZ|K,TK,j—17TKJ)
:EKyT Z AAOK'e0 Z— / ’
(K.Tx.Z) ; I B (e%?|K, Tk j-1, Tk ;)

and
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C(Tk,j, Tk jr, Tk j—1, Tk jr—13 Z)
=F |:(ANKJ - 696ZAA0KJ')

(ANKj’ - 69624/101(]'/) |Z, K, TK,j—hTK,j,TK,juhTK,j/} .

Note that if the counting process is indeed a conditional Poisson process with
the mean function given as specified,

Adggje®? | if j =y

C(Tk Ty, Tk j—1: Tr jr—15 Z) = {0 it £

This yields B = A = I(f) and thus A~'B (A~1) = I71(6)).

4.2 Asymptotic Variance of the Pseudo-MLE
Based on the Poisson model, the pseudo log-likelihood for (6, A) with one

observation is given by (11). Using the notation of Zhang (1998), page 29, we
have

K
mi*(0,4; X) = ZZ [NK], _ AKjeo’z} 7

j=1
Koy
s . _ Kj 0'Z )
mb* (0, A; X)[h] = ; {A—KJ —e } hicj,
K
mis (0,4 X) = = Ag; 22",
j=1

K
mb5(0, 4; X)[h] = m3, (0, A; X)[h] = = > Ze" P hyg,
<\
: Kj
m3(0, 4 X) b, h] = =) —— 5 hiihg;,
where hg; = fOTK’j hdA for h € La(A). By A2 of [35], page 30, we need to find

a h* such that

S75 (60, Ao)[h] — S35 (60, Ao)[0*, A]
= P{mll);(eo’AO;X)[h] - mg;(e()vAO;X)[h*’ h]} =0,

for all h € La(Ap). Note that
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P {m{5(6o, Ao; X)[h] — mb3 (6o, Ao; X)[h*, h]}

K N
’ Ki *
=—EQY  |Zeh7 — I ohi; | hi;
= Aok ;)
K 0! Z 1. %
, e’0“h. .
— _E E:Z%Z,ilﬁh.
(K, Tk ,Z) P € Aox Kj

Therefore, an obvious choice of h* is

E (Ze%Z|K, TKJ—)
h} = AOKj 7 .
J E (e%?|K, Tk ;)

Hence

m*pS

—~

6o, Ao; X)
* (6o, Ao; X) —m5* (6o, Ao; X)[*]

_ E(Ze%Z|K, Ty ;
Z (NK- — %% Ao ) ~ (R - e Aok ( ; | K’J)
! ! AOK] I E (660Z|I(7 TK,])

3
s

1

<.
Il

/ E (2¢%7|K, Tx ;)
NKj — GGOZAOKj) Z —

j=1 E (e%?|K, Tk ;)

] >

By Theorem 2.3.5 of [35], page 32, the asymptotic variance will be (AP*)~1 BP$ ((Aps)_l)/,
where

BP* = Em*P% (6, Ag; X)®?
K E <Z695Z|K7 TKJ)
—E CP(Tk i, Ti.i:2) | Z — 7
wrez § D2 O (T Ty Z) E (e%?|K, Tk ;)

J,3'=1

!

E (Ze9SZ|K, TKJ,)

YT B EPETG) | (

AP® = — SP¥ (0o, Ao) + S5; (6o, Ao ) [h*]

K U (2696Z|K, Tw)
- E Nogc:€%Z2 272" — %% Ny :
j; OKJe e 0K j B <GOUZ|K7 TK’J")

E (Ze9éz|K, TKJ)
E (606Z|[(7 TK,J)

K
= E(K,TK,Z) ZAOKJ'QQOZ Z —
j=1
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B (Ze%7|K, Tic )
E (e%?|K, Tk ;) ’

K
= Ekric,2) § ) Aoxje? | Z —
j=1

and
CP*(Tk 5 Tk j3 Z)
=F [(NKJ - 6962/10}(3') (NKj/ — 606Z/10Kj/) ‘Z, K, TK,jaTK,j/:| .

Note that if the counting process is indeed a conditional Poisson process with
the mean function given as specified,

CP* (T, Tre 313 Z) = €% Ao (o -
This yields

E (Ze%%|K, Tic;)
E <606Z|K7 TKJ)

BP% = APS + 2E(K,TK,Z) Z eOOZAOKj Z —
i<y’
/

E (Ze%Z\K, TKJ-,>

Zﬁ E(696Z|K7TKJ‘/)

£ APS

5 Comparisons: MLE versus pseudo-MLE.

Scenario 1. We first suppose that the underlying counting process is in fact

a standard homogeneous Poisson process conditionally given Z, with base-

line mean function Ag(t) = At, We will also assume that the distribution of

(K,T ) is independent of Z. As a consequence, Z is independent of (K, T ),

and the formulas in the preceding section simplify considerably. Because of

the Poisson process assumption, A = B = I(6), and this matrix is given by
, ®2

K o 7 E (Z€002|K, TK,j—hTK,j)
I1(6y) = FE Aoy e’ | Z — ;
( 0) (T 2) Z o E (690Z|K7 TKJ—l’TKJ)

j=1

’ ®2
s E (Ze"oz)
= Egro{do(Tk )} Ez e | Z — W
= By {40(Tk k) } C

so that if C' is nonsingular,



16 Jon A. Wellner, Ying Zhang, and Hao Liu

1
Bk o {Ao(Tkx)}

I(0p) t=C!

On the other hand,

’ T ®2
E (2¢%7|K, Tk ;)

E (606Z|K7 TKJ)

K
APS = E(K,TK,Z) ZAOKJ‘G%Z Z —

j=1

K , E(ze%7) ]
= B § O Ao(Tk;) p EX €7 | Z — E(07)
j=1

)

|
|

while

E (Ze%z) 2

K
B = Bucres | 20 Mo(Tans) o Bz 71 2= sl o

5i'=1
so that
1 paps (¢ per 1N/ ey DU TR.Z) {ijle AO(TK,J‘AJ")}
(AP*)=iBPe ((AP*) 1) =C - 5
(E(K,TK) {Zj:l A0<TKJ)})

Thus it follows that the ARE of the pseudo-MLE of 6 relative to the MLE
of 6y under the above scenario is given by

A-1B(A~H)T
(Aps)—prs((Aps)—l)T
2
B {B{Zi 20T }}
E{Ao(Tk,x)} E {Z;,{j’:l AO(TKaj/\j/)} .

Note that this equals 1 if P(K = 1) = 1. Actually, we have not yet used the
assumption about Ag. If we assume that Ay (¢) = At, then

(el m)y
E{Txk}E {ij’:l TK’j/\j,}

Scenario 1A. If we assume, further, that P(K = k) = 1 for a fixed integer
k>2 and Ty = (Tk1,--., Tk k) are the order statistics of a sample of k
uniformly distributed random variables on an interval [0, M], then

ARE(pseudo, mle) =

ARE (pseudo, mle) =

EAS Ti, b =S L m=Fn
= Ko ;k+1 2
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k

BTk} = =7 M,
and
K k jAg k(2k +1)
BN 2 Teany 0= 2 M =" M.
§.j'=1 J,3'=1
Hence in this case
B (k/2)? 3k +1) 3
ARE (pseudo, mle) = _k_kRE+1) T 2(2k + 1) T
k+1 6
ask—)OO.
[k J1]2[3 45 6] 7]8]09]10]

1(0) " T(k)MA][ 2 [3/2]4/3 [5/4 ] 6/5 | 7/6 | 8/7 | 9/8 | 10/9 [11/10
VP (R)MAX || 2 |5/3]14/9] 3/2 [22/15]13/9|10/7|17/12[38/27] 7/5
ARE(k) ||1.00].900]0.857]0.833[0.818 [0.808]0.800/0.794 |0.7890.786

Scenario 1B. If we assume instead that K is random and for some 0 < ¢ <
1/2
Tk, ; ~ Uniform[j — ¢, j + ¢, j=1,...,K,

and are independent (conditionally on K), then we calculate

E(Tk k) = E(K),
K

E Tk;)=E (M) ,
j=1

2
K
B Z Tiony) = B (K(K+ 1%(2K+ 1)) ’
Jy'=1
and hence
{e(5) )
ARE(pseudo, mle) =

E(K)E (K(K+1é(2K+1)) ’

Note that this depends only on the first three moments of K, with the third
moment appearing in the denominator. It does not depend on ¢, but only on
ETk;|K)=j4,5=1,...,K. When P(K = k) = 1 we find that under this

scenario

3(k + 1)

ARE (pseudo, mle) = 30k +1)

3
py 4 .
It is clear that for random K the ARE in this scenario can be arbitrarily small
if the distribution of K is heavy-tailed. This will be shown in more detail in
Scenario 2.
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Scenario 2. A variant on these calculations is to repeat all the assumptions
about Z and (K,T ), assume, conditionally on K, that

Ty =Tka,---,Tk k) are the order statistics of a sample of K uniformly dis-
tributed random variables on an interval [0, M], but now allow a distribution
for K. Then

YD Tic|[K 0 =3 M =5 M
j=1 j=1
K
E{T ’K}:—M,
KoK K+1
and
K L,
JNJ _ K(2K +1)
ES N Tijng K M= M.

J,3'=1 J,3'=1

If we let K be distributed according to 1+Poisson(u), then the ARE will
be asymptotically 3/4 again as u — oo. A more interesting choice of the
distribution of K is the Zeta(«) distribution given as follows: for a > 1,

1/k B
W@ k=1,2,...,

where ((a) = 527 j—1J~ " is the Riemann Zeta function. Then we can compute

P(K =k) =

K K
_ J _Eu(K), M¢(a—1)
;TKJ =K ;K+1 M= 5 M_2 @)

E{Tk k}=E, < )

and

K . 5
E ZTKW = (Z

Jy'=1

2E,(K?) + Eqo(K)}
{2§a—2 —i—C(a—l)}

& PalK(2K +1))
{

M

M
6

M
6

Hence in this case
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{2<<a—2>+c<a—1) }
VP (a) = C1 ¢la)

6MA (Cég‘(;?)z

and

ARE(pseudo, mle)(a) = ARE(«)
(Ea(K)/2)?
FEaTRC S
Cla—1)/¢(e)

K 1 20(a—2)+¢(a—1)
Eo{ &} Be=2iel)

((a—1)
{20(a=2) +Cla - 1)} BEa{ g5}

and this varies between 0 and 1 as « varies from 3 to co; note that for o = 3,
E(K?) =00 = ((1), while E(K) = ¢(2)/¢(3) = 10.5844 .. .. See Figure 1.

| W N W t{j

3.5 4 4.5 5 5.5 g alpha

Fig. 1. ARE(«)

If we change the distribution of K to K ~ Unif{1,...,ko}, then

K+1 2 4

K K .
E(K k 1
By Ty p =B S g tar= 2 ar = Bt lay,

j=1 j=1
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. ~ AT
E Z Tk jnj ¢ = Ea Z Kl M
Ji3'=1 J,3'=1

%E(K(QK +1))

= M) + £(0))

M 2(k0+1)(2k0+1)+k0+1
6 6 2

while

Hence in this case

10)" (o) = Olm )

(ko+1)(2ko+1)/3+ (ko+1)/2
6

MA(ko + 1)2/16

VS (ko) = C ™1
and

ARE(pseudo, mle)(kg) = ARE (ko)
(E(K)/2)?
= E{KLH}EKQ?H)

_ (ko + 1)2/16
- k k k ’
E{KL-H}( o+1)(2 0+16)/3+( 0+1)/2

and this varies between 1 and 9/16 as ky varies from 1 to oco.

Scenario 3. We now suppose that the underlying counting process is not a
Poisson process, conditionally given Z, but is, instead, defined as in terms of
the “negative-binomialization” of an empirical counting process, as follows:
suppose that X, X5,... are i.i.d. with distribution function F' on R, and
define

Nn(t) = Z 1[Xi§t] for t > 0.
i=1

Suppose that (N|Z) ~ Negative Binomial(r(Z,~, 0y), p) where r(Z,~,6p) =
~ve%Z  and define N by

N(t) = Nn(t) = Z Lixi<t) -
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Then, since

. Var(N|2) = r(Z,7,00)+

E(N|Z):T(Z77700) p27

hSHES

it follows that

E{N(t)|Z} = E{E[N(t)|Z, N]|Z} = E{NF ()| 2}
— 172 F (1) g = %7 Ao (1),

with Ag(t) = vF(t)(¢/p). Alternatively,
. . . p
N(t)|Z) ~ Negative Binomial(r, —————
(N(£)|2) ~ Neg 0L

by straightforward computation, and hence it follows that
q

qF (t)/(p+qF(t)) ; q e%ZQ _ oz
p/(p+aqF(t)) F(t)p =7 pF(t) Ao (),

in agreement with the above calculation. Moreover

aFt)/(p+aF(®) _ a q
I D) A

p p
= rLF) (%) F(t)?.

E{N(@®)|2} =r

Var{N(t)|Z} =r

Remark. It should be noted that this is somewhat different than the model
obtained by supposing that the underlying counting process is a nonhomo-
geneous Poisson process conditionally given Z and an unobserved frailty
Y ~ Gamma(vy,~) and conditional (on Y and Z) mean function

E{N(t)|Z,Y} = Yo% Ay (t) .
In this model we have
E{N(t)|Z} = %7 Ay(t),
but

Var{N(t)|Z} = E{Var|[N@®)|Y, Z]|Z} + Var{E[N(t)|Y, Z]|Z}
= %7 Ao (t) + v 17 A2(t) .

Now we want to calculate
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C(Tx Tk, Tk j—1, Tk j -1 Z)
=F [(ANKJ — e%ZAAQKj)
(ANKj’ - eeozﬂAon’) |Z, K, T j-1,Tk j, T jo—1, Tk jr

By computing conditionally on NN, and using the fact that conditionally on
Z,K, Tk j—1,Tk,j, Tk, j—1, Tk j» and N, N has increments with a joint multi-
nomial distribution, we find that

C(Tkj,Trj Tk j—1, Tk j—1: 2)
=F [(ANKJ — GQ‘SZAAOKJ‘)
(ANKj/ — e%ZAAon/) ‘Z, K, TK,j—l;TK,j7TK,j’—hTK,j’}
- B {E [(ANKj — B(ANg;|N) + E(ANg;|N) — e"éZAAOKj)
. (ANKj/ — E(ANKJIUV) + E(ANKJ/|N) - e%ZA/l()Kj/)
’N7 Z, K, TK,j—laTK,j,TK,j/—laTK,j/:|
‘Z K, TK,j—laTK,j>TK,j’—1;TK,j’}

—E{NAFKJAFK] |Z, K, TK}
+ E{(N - rq/p)QAFK]AFKJ Z,K, Ty}, ifj#j

T%( FKJ (AFKJ) ) Tp%AFK,jV lf]:]/

- {r}% AFKJAFKJ : if j #
T%AFKJ —|—T (AFKJ) 5 lf] = jl
T2AFKJAFKJ, 1f]<j,

ef ZAAO %P AN k)2, i G =4,

,yeQZq AFKJAFKJ, 1f]?é]/,

{ %7 AN ; + 7y e% P (Ao i )2, it =74,

vy -1 HZAAOKJAAOKja lfj#]/

Remark. Note that if (N|Z) ~ Poisson(r(Z, 7, 0)), then the process N = Ny
is conditionally, given Z, a non-homogeneous Poisson process with conditional

mean function / /
E{N(t)|Z} = ve®? F(t) = %7 Ay (1),

and conditional variance function

Var{N(t)|Z} = ve%?F(t) = %% Ay(t)
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where Ag(t) = yF(t).

We will also assume, as in Scenarios 1 and 2, that the distribution of
(K,T ) is independent of Z. As a consequence, Z is independent of (K, T ),
and the formulas in the preceding section again simplify. By taking F' uniform
on [0, M], Ag(t) = At where A = (v/M)(q/p), and we compute, using moments
and covariances of uniform spacings, as found on page 721 of [28],

B = Em* (0, Ao; X)®?

K
= E(k,1x,2) Z C(Tk,j, Tk jr, Tk j—1, Tk jo—1; Z)
J,3'=1
P E (ZB%Z|K, TK,j—laTK,j>
E (e%Z|K, Tk j-1,Tk.;)
’ /
E <Z€90Z|K, TK,j/flaTK,j’)
Z - 7
E (e%?|K, Tk ji—1,Tk,j)
K
= Ekmie.z) § D7 Aok,
=1
2
E (Ze%Z) ¢
1,607 2 B
+ voe 0 (AAOKJ) ) Z E (e%z)
K / E (Zeagz) @2
+ Bk, Tw,2) Z 7_1690ZAA0KjAA0Kj/ Z — —
— E(e 0 )
J#J
K
=0 Ex i Z(AAOKj +77 1 (Adok;)?)
=1
K
+ Y ' Ex 1y Z Alogj Alog
J#3’

K K
= ME | —— NMPE( ——
C{A <K+1)ﬂ A <K+2)}

B K . K

where, as in scenario 1,
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FE (Z€962> o

C =Pz 2= 5

On the other hand, we find that

, ®2
E <Z€002|[(7 TK,j—l; TKJ)

E (e%?|K, Tk j-1,Tk,;)

K
A= E(K,TK,Z) ZAAOKJ'G%Z Z —

j=1

K
o {7 )

Thus the asymptotic variance of the MLE for this scenario is

AT'BATY = (aMO)! o {KL“} YR {KL”} .

{& ()}

Now for the asymptotic variance of the pseudo-MLE under scenario 3. To
calculate BP® we first need to calculate

C"(Tk 3, Tk 13 Z)
E [(NK]' — GGF’ZAOK]‘) (NKj’ - eeézAOKj’) |Z7 K, TK,jvTK-j/}
= F {E [(Nm - e%ZAOKj) (NKJ" - 69‘32/10&")
IN. Z, K, Tic 3y Tic 1) | 2, K, Tic g, Tic g
= E{N(F(Tx; NTk;) = F(Tk;)F(Tk ;)
+ (N = rq/p)*F(Tx ;) F(Tx )| Z. K, TKJ,TK,J»/}

= T%{F(TKJ’ ATk 1) — F(Tk ;) F(Tk ;) } + TZ%F(TK,j)F(TK,j/)
= %07 Ao(Trc,y A Tic.gr) +77"€%7 Ao(Tic ) Ao (T 5)
= %% Ng(T ;) (1 + 71 Ao(Tk ) if 5 <.

We can then calculate

BPS = Em*ps(ao,/l(); X)®2

K E (ZG%ZIKvTKJ)
Bz \ D O (T Ty B (e%?|K, Tk ;)

J,3'=1
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!

E (Ze%%|K, Tic 1)
B (e%?|K, Tk ;)

7 —

K
= E(K,TK,Z) Z (AO(TK,j) (1 + ’Y_IAO(TK,j’))) 6962
Gg'=1

E (Ze%z)
TR

K , E (2¢%7|K, Tx ;)
E (6062‘[(, TKJ)

Thus we find that the asymptotic variance of the pseudo-MLE @\ﬁs is given by

K(2K+1) AM K(3K+1)
LB () e (M)

{B(5))

and the asymptotic relative efficiency of the pseudo-mle to the mle is, under
scenario 3,

(AP*)=IBP((AP*) ™) = (AMC)

3

ARE (pseudo, mle)(NegBin)
B{ Kﬁl}+%E{2K’i2
{5(Z5)}
= E( K(2§+1) )+¥E( K(3II;+1))

{2(5)}
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e{ea) oo {ds)t ()
- E(K(2§+1))+ME(K(3K+1)) \ g KLH)
{2 {ds) B(5ER)
= E(KLH) ( 2K+1)) +,\TME( 3K+1))

-ARE (pseudo, mle)(Poisson)

(1 1AM E(mz)

2l
— (1) - ARE(pseudo, mle)(Poisson) .

B(KGK+D
(1 + 24 W)

Note that when factor AM /v = q/p — 0, is zero then we recover our earlier re-
sult for the Poisson case. This is to be expected since Poisson(Ag(t) exp(0,2))
becomes the limiting distribution of Negative Binomial(r,p/(p + qF(t))) as
p— 1.
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6 Conclusions and Further Problems

Conclusions

As in the case of panel count data without covariates studied in [29] and
[33], the pseudo likelihood estimation method for the semiparametric propor-
tional mean model with panel count data proposed and studied in [35] and
[36] also has advantages in terms of computational simplicity. The results of
section 5 above show that the maximum pseudo-likelihood estimator of the
regression parameters can be very inefficient relative to the maximum like-
lihood estimator, especially when the distribution of K is heavy - tailed. In
such cases it is clear that we will want to avoid the pseudo-likelihood estima-
tor, and the computational effort required by the “full” maximum likelihood
estimators can be justified by the consequent gain in efficiency.

Our derivation of the asymptotic normality of the maximum likelihood es-
timator of the regression parameters results in a relatively complicated expres-
sion for the asymptotic variance which may be difficult to estimate directly.
Hence it becomes important to develop efficient algorithms for computation
of the maximum likelihood estimator in order to allow implementation, for
example, of bootstrap inference procedures. Alternatively, profile likelihood
inference may be quite feasible in this model; see e.g. [24], [25], [26] for likeli-
hood ratio procedures in some related interval censoring models.

Further problems

The asymptotic normality results stated in section 4 will be developed and
given in detail in [34]. There are quite a large number of interesting problems
still open concerning the semiparametric model for panel count data which
has been studied here. Here is a short list: R
e Find a fast and reliable algorithm for computation of the MLE 6 of 6.
Although reasonable algorithms for computation of the maximum pseudo-
likelihood estimators have been proposed in [35] and [36] based on the earlier
work of [29], good algorithms for computation of the maximum likelihood
estimators have yet to be developed and implemented.
e Show that the natural semiparametric profile likelihood ratio procedures are
valid for inference about the regression parameter 6 via the theorems of [24],
[25], and [26].
e Do the non-standard likelihood ratio procdures and methods of [1] extend
to the present model to give tests and confidence intervals for Ag(t)?
e Are there compromise or hybrid estimators between the maximum pseudo-
likelihood estimators and the full maximum likelihood estimators which have
the computational advantages of the former and the efficiency advantages of
the latter?
e Do similar results continue to hold for panel count data with covariates,
but with other models for the mean function replacing the proportional mean
model given by (1)?
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e Are there computational or efficiency advantages to using the MLE’s for
one of the class of Mixed Poisson Process (N|Z), for example the Negative-
Binomial model? Further comparisons with the work of [6], [14], and [20], [21]
would be useful.
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