
EMPIRICAL PROCESSES

If X1, X2, . . . , Xn are independent identically
distributed random variables (RVs) with val-
ues in a measurable space (X, B) and with
common probability measure P on X, the
empirical measure or empirical distribution
Pn of (X1, . . . , Xn) is the measure which puts
mass 1/n at each Xi, i = 1, . . . , n:

Pn = n−1(δX1 + · · · + δXn ), (1)

where δx(A) = 1 if x ∈ A, 0 if x �∈ A, A ∈ B.
Thus nPn(A) is simply the number of Xi’s in A
for any set A ∈ B. The empirical process Gn,
defined for each n � 1 by

Gn = n1/2(Pn − P), (2)

may be viewed as a stochastic process∗
indexed (a) by some class of sets C ⊂ B,

Gn(C) = n1/2(Pn(C) − P(C)), C ∈ C, (3)

or (b) by some class of functions F from X to
the real line R1,

Gn(f ) =
∫

X
fd{n1/2(Pn − P)}

= n1/2
∫

X
f (x){Pn(dx) − P(dx)},

f ∈ F. (4)

Frequently, in applications of interest the
observations X1, . . . , Xn are dependent, or
nonidentically distributed, or perhaps both.
In such cases we will continue to speak of
the empirical measure Pn and empirical pro-
cess Gn, perhaps with P replaced in (2) by an
appropriate average measure.

In the classical case of real-valued ran-
dom variables, X = R1, the class of sets C =
{(−∞, x] : x ∈ R1} in (3), or the class F =
{1(−∞,x] : x ∈ R1} of indicator functions in (4)
[where 1A(x) = 1 if x ∈ A, 0 if x �∈ A], yields
the usual empirical distribution function Fn
given by

Fn(x) = Pn(−∞, x]

= n−1{number of i � n

with Xi � x}, (5)
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and the empirical process

Gn(x) = n1/2(Fn(x) − F(x)) (6)

indexed by x ∈ R1.
The subject of empirical processes is con-

cerned with the large- and small-sample prop-
erties of the processes Pn and Gn, methods
for studying these processes, and with the
use of these properties and methods to treat
systematically the extremely large number
of statistics which may be viewed as func-
tions of the empirical measure Pn or of the
empirical process Gn. Much of the motiva-
tion for the study of Pn, Gn, and functions
thereof comes both historically and in current
work from the desirability and attractiveness
of nonparametric or distribution-free∗ statis-
tical methods, methods which have proved
to be of interest in a wide variety of prob-
lems, ranging from rank∗ and goodness-of-
fit∗ tests, to density estimation∗, clustering
and classification∗, and survival analysis∗.
The study of empirical processes also has
strong connections with the related proba-
bilistic topics of weak convergence and invari-
ance principles∗, as will be seen in the course
of this article.

For any fixed set C ∈ B, nPn(C) is simply
a binomial RV with parameters n and P(C).
Hence, by the classical weak law of large
numbers, central limit theorem∗, and law of
the iterated logarithm∗, respectively, as n →
∞,

Pn(C)
p→P(C), (7)

Gn(C) = n1/2(Pn(C) − P(C))
d→GP(C)

∼ N(0, P(C)(1 − P(C))), (8)

and

lim sup
n→∞

|Gn(C)|
(2 log log n)1/2

= lim sup
n→∞

n1/2|Pn(C) − P(C)|
(2 log log n)1/2

= [P(C)(1 − P(C))]1/2 a.s. (9)

(where we write ‘‘∼’’ for ‘‘is distributed as’’,
N(µ, σ 2) denotes the ‘‘normal’’ or Gaussian
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2 EMPIRICAL PROCESSES

distribution with mean µ and variance σ 2,
‘‘

p→’’ denotes convergence in probability, and

‘‘
d→’’ denotes convergence in distribution or

law; see CONVERGENCE OF SEQUENCES OF

RANDOM VARIABLES). A large part of the the-
ory of empirical processes is concerned with
strengthened versions of (7) to (9), versions
of these convergence results that hold simul-
taneously (i.e., uniformly) for all sets C in
some collection b . See GLIVENKO–CANTELLI

THEOREMS for such uniform extensions of (7)
and applications thereof. We will concentrate
in this article on various uniform analogs
of (8) (sometimes called Donsker theorems
or functional central limit theorems), and of
(9) (which we call Strassen-Finkelstein log-
log laws or functional laws of the iterated
logarithm). In the same way that Glivenko-
Cantelli theorems serve as tools for estab-
lishing the consistency of various estimators
or statistics, uniform versions of (8) and (9)
serve as tools for establishing convergence in
distribution (often asymptotic normality∗), or
laws of the iterated logarithm, respectively,
for those estimators and statistics expressible
in terms of Pn or Gn. We have chosen to con-
centrate this exposition on the large-sample
theory∗ of empirical processes since so little is
known concerning finite sample sizes beyond
the classical one-dimensional case of real-
valued RVs; for useful summaries of finite-
sample size results in the one-dimensional
case, see Durbin [1], Niederhausen [4] and
the references given there.

The article has been divided into the fol-
lowing four sections:

1. The one-dimensional case

2. More general sample spaces and
index sets

3. Dependent or nonidentically dis-
tributed observations

4. Miscellaneous topics

Many topics have been omitted or are men-
tioned only briefly. For a nice survey of earlier
work and a helpful exposition of weak con-
vergence issues, see Pyke [3]. For a recent
comprehensive review of the i.i.d. case, see
Gaenssler and Stute [2].

ONE-DIMENSIONAL CASE

Here we focus on the classical empirical dis-
tribution function Fn and empirical process
Gn of real-valued random variables given in
(5) and (6). In this one-dimensional situa-
tion, a significant further simplification is
possible by use of the fundamental trans-
formations of nonparametric statistics (the
probability integral transformation∗ and the
inverse probability integral transformation
or quantile transformation):

If F is continuous and X ∼ F,

then F(X) ∼ uniform(0, 1); (10)

If U ∼ uniform (0, 1), then F−1(U) ≡ X

∼ F for an arbitrary df F, (11)

where F−1 is the left-continuous inverse
of F, F−1(u) = inf{x : F(x) � u}. Thus, letting
U1, U2, . . . , Un be independent, identically
distributed (i.i.d.) uniform (0, 1) RVs with dis-
tribution function I(t) = t on [0, 1], empirical
distribution function �n, and corresponding
uniform empirical process Un defined by

Un(t) = n1/2(�n(t) − t), 0 � t � 1,

it follows from (10) and (11) that

Gn ◦ F−1 d=Un if F is continuous, (12)

and

Gn
d=Un ◦ F for arbitraryF, (13)

where ‘‘ d=’’ means equal in distribution or law
(so that the two processes are probabilisti-
cally equivalent), and ‘‘ ◦ ’’ denotes functional
composition, f ◦ g(t) = f (g(t)). By virtue of (12)
and (13), we may restrict attention to the uni-
form empirical process Un throughout most
of the remainder of this section.

The random function �n is a nondecreas-
ing, right-continuous step function equal to
0 at t = 0 and 1 at t = 1, which increases
by jumps of size 1/n at the order statistics∗
0 � Un:1 � · · · � Un:n � 1. The random func-
tion or process Un equals 0 at both t = 0
and 1, decreases linearly between successive
order statistics with slope −n1/2, and jumps
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upward at the order statistics with jumps
of size n−1/2. Both �n and Un take values
in D = D[0, 1], the set of functions on [0, 1]
which are right continuous and have left lim-
its.

Donsker’s Theorem; Weak Convergence of UN

Convergence in distribution of specific
functions of the process Un was first
treated by Cramér [16], von Mises [65], Kol-
mogorov [39], and Smirnov [61,62] in the
course of investigations of the now well-
known Cramér-von Mises∗ and Kolmogorov
goodness-of-fit statistics. A general unified
approach to the large-sample theory of
statistics such as these did not emerge until
Doob [28] gave his heuristic approach to the
Kolmogorov-Smirnov limit theorems. Doob’s
approach was to note that (a) Un is a zero-
mean stochastic process on [0, 1] with covari-
ance function

cov[Un(s), Un(t)] = min(s, t) − st

for all 0 � s, t � 1; (14)

(b) by a simple application of the multivari-
ate central limit theorem∗, all the finite-
dimensional joint df’s of Un converge to
the corresponding normal df’s which are the
finite-dimensional joint df’s of a mean-zero
Gaussian process∗ U on [0, 1] with covari-
ance as in (14), called a Brownian Bridge
process; and (c) hence, for any real-valued
‘‘continuous’’ function g of Un it should fol-
low that

g(Un)
d→g(U) as n → ∞ (15)

in the ordinary sense of convergence in
distribution of RVs. For example, for the
Kolmogorov statistic g(u) = sup0�t�1 |u(t)| ≡
||u||, and Doob [28] showed that the limit-
ing distribution of g(Un) = ||Un|| = n1/2||�n −
I||, obtained earlier by Kolmogorov [39], is
exactly that of g(U) = ||U||.

A precise formulation of Doob’s heuristic
approach requires a careful definition of the
idea of weak convergence of a sequence of
stochastic processes∗, a notion which extends
the more familiar concept of convergence in
distribution of random variables or random
vector. Donsker [27] succeeded in justifying

Doob’s [28] heuristic approach, and this in
combination with related work on invari-
ance principles by Erdös and Kac [32,33],
Donsker [26], and others led to the develop-
ment of a general theory of weak convergence
of stochastic processes (and their associated
probability laws) by Prohorov [44] and Sko-
rokhod [59]. This theory has been very clearly
presented and further developed in an exem-
plary monograph by Billingsley [5]; see also
Billingsley [6].

Unfortunately for the theory of empiri-
cal processes, the space D = D[0, 1] in which
Un takes its values is inseparable when con-
sidered as a metric space with the supre-
mum or uniform metric || · || (i.e., ||f −
g|| ≡ sup0�t�1 |f (t) − g(t)|), as pointed out by
Chibisov [14]; see Billingsley [5, Sec. 18]. This
lack of separability creates certain technical
difficulties in the weak convergence theory
of Un and has led to a number of different
approaches to the study of its weak con-
vergence: Skorokhod [59] introduced a met-
ric d with which D becomes separable (see
Billingsley [5, Sec. 14]), while Dudley [69],
Pyke and Shorack [48], and Pyke [47] give
different definitions of weak convergence.
These difficulties are largely technical in
nature, however. Here we follow Pyke and
Shorack [48] and Pyke [47] and say that
Un ⇒ U (‘‘Un converges weakly to U’’) if

g(Un)
d→g(U) for all || · ||-continuous real-

valued functions g of Un for which g(Un)(n �
1) and g(U) are (measurable) RVs. With this
definition we have:

Theorem 1. (Donsker [27]). Un ⇒ U on (D,
|| · ||).

The importance of Theorem 1 for applica-
tions in statistics is that the limiting distribu-
tion of any statistic that can be expressed as
g(Un) for some || · ||-continuous measurable
function g is that of g(U). For example:

||Un|| d→||U|| [g(u) = ||u||]; (16)∫ 1

0
[Un(t)]2dt

d→
∫ 1

0
[U(t)]2dt

[
g(u) =

∫ 1

0
(u(t))2dt

]
; (17)
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and

n1/2
(

Un − 1
2

)

= −
∫ 1

0
Un(t)dt

d→ −
∫ 1

0
U(t)dt ∼ N(0, 1

12 )

[
g(u) = −

∫ 1

0
u(t)dt

]
(18)

as n → ∞. Of course, the distribution func-
tion of the RV g(U) must be computed in
order to complete the program. For linear
functions of Un [as in (18)], and hence of U,
this is easy: under appropriate integrability
conditions, linear functions of the Gaussian
process U have normal distributions with
easily computed variances. In general, evalu-
ation of the distribution of g(U) is not an easy
task, but well-developed tools are available
for quadratic and supremum-type functionals
as illustrated by Doob [28] and Darling [24];
see also Sähler [51] and Durbin [30]. More
sophisticated applications making essential
use of the identities (12) and (13) may be
found, for example, in Pyke and Shorack [48]
(rank statistics); Shorack [53,54] (linear com-
binations of order statistics, quantile∗, and
spacings processes); and Bolthausen [7], Pol-
lard [43], and Boos [8] (minimum distance
estimators∗ and tests). The weak convergence
approach, in combination with the device of
almost surely convergent versions of weakly
convergent processes (to be discussed in the
section ‘‘Almost Surely Convergent Construc-
tions; Strong Approximations’’), has become
a key tool in the modern statistical work-
shop.

Iterated Logarithm Laws

Following a pattern similar to that outlined
above, iterated logarithm laws for specified
functions of the process Un were established
by Smirnov [62], Chung [15], Cassels [12],
and others in connection with investigations
of particular goodness-of-fit statistics, espe-
cially ||Un|| and ||U+

n ||:

lim sup
n→∞

||Un||
(2 log log n)1/2

= lim sup
n→∞

n1/2||�n − I||
(2 log log n)1/2 = 1

2
a.s. (19)

A general law of the iterated logarithm result
for the uniform empirical process Un compa-
rable to Donsker’s theorem emerged in the
light of work on almost surely convergent con-
structions or embeddings of partial sum pro-
cesses in Brownian motion by Skorokhod [60]
and the ‘‘invariance principle for the law of
the iterated logarithm’’ by Strassen [63]. Let
U0 be the set of functions on [0, 1] which
are absolutely continuous with respect to
Lebesgue measure, equal to 0 at 0 and 1, and
whose derivatives have L2-norm no larger
than 1; alternatively, U0 is simply the unit
ball of the reproducing kernel Hilbert space
with kernel given by the covariance function
(14) of the Brownian bridge process U.

Theorem 2. (Finkelstein [34]). With proba-
bility 1 every subsequence of

{
Un

(2 log log n)1/2 : n � 3
}

has a uniformly convergent subsequence, and
the set of limit functions is precisely U0.

In a way completely parallel to the applica-
tions of Donsker’s theorem given in the pre-
ceding section, Finkelstein’s theorem yields
laws of the iterated logarithm for || · ||-
continuous functions g of Un/bn, where bn =
(2 log log n)1/2:

lim sup
n→∞

g(Un/bn) = sup{g(u) : u ∈ U0} a.s.,

(20)

where the problem of evaluating the supre-
mum on the right side for specific functions g
may be thought of as analogous to the prob-
lem of finding the distribution of g(U) in the
case of weak convergence. For example, in
parallel to (16) to (18), Finkelstein’s theorem
yields

lim sup
n→∞

||Un/bn||

= sup{||u|| : u ∈ U0} = 1
2

a.s. (21)
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with equality when u(t) = min(t, 1 − t), 0 �
t � 1;

lim sup
n→∞

∫ 1

0
[Un(t)/bn]2dt

= sup

{∫ 1

0
(u(t))2dt : u ∈ U0

}

= 1/π2 a.s. (22)

with equality when u(t) = (21/2/π ) sin(πt),
0 � t � 1; and

lim sup
n→∞

∫ 1

0
(Un(t)/bn)dt

= sup

{∫ 1

0
u(t)dt : u ∈ U0

}

= 1/
√

12
1/2

a.s. (23)

with equality when u(t) = √
12

∫ 1
0 (min(s, t) −

st)ds = √
3t(1 − t).

Almost Surely Convergent Constructions;
Strong Approximations

In Skorokhod’s [59] paper the basis for a dif-
ferent and very fruitful approach to weak
convergence was already in evidence: that
of replacing weak convergence by almost
sure (a.s.) convergence. See also HUNGARIAN

CONSTRUCTIONS OF EMPIRICAL PROCESSES.

Theorem 3. (Skorokhod, Dudley, Wichura).
If the processes {Zn, n � 0} take values in
a metric space (M, m) and Zn ⇒ Z0, then
there exists a probability space (�,A, P) and
processes {Z∗

n, n � 0} defined there such that

Zn
d=Z∗

n for all n � 0 and m(Z∗
n,Z∗

0) → 0 a.s. as
n → ∞.

Skorokhod [59] gave the first version of this
result in the case that (M, m) is complete
and separable; Dudley [29] and Wichura [66]
proved that the hypotheses of complete-
ness and separability, respectively, could
be dropped. See also Billingsley [6, p. 7].
Although the theorem does not tell how to
construct the special almost surely conver-
gent Z∗

n processes , it provides an extremely
valuable conceptual tool. For example, in the
case of the uniform empirical processes {Un},

the theorem yields the existence of probabilis-
tically equivalent processes U∗

n, n � 1, and a
Brownian bridge process U∗ all defined on a
common probability space (�,A, P) such that
for each fixed ω ∈ � the sequence of func-
tions U∗

n = U∗
n(·, ω) converge uniformly to the

continuous function U∗ = U∗(·, ω) on [0, 1] as
n → ∞; that is,

||U∗
n − U∗|| → 0 a.s. as n → ∞. (24)

The extreme usefulness of this point of
view in dealing with weak convergence prob-
lems in statistics was recognized, explained,
and advocated by Pyke [45,46] and has been
effectively used to deal with a variety of prob-
lems involving two-sample rank statistics,
linear combinations of order statistics (see-
L-STATISTICS), spacings∗, minimum-distance
estimators, and censored data∗ (the ‘‘product
limit’’ estimator) by Pyke and Shorack [48],
Pyke [46], Shorack [53–55], and Breslow and
Crowley [10], to name only a few outstand-
ing examples. See Pyke [45–47] for excellent
expositions of this approach.

When the metric space M is the real line
R1, so that the Zn’s are just real-valued RVs,
a very explicit construction of the Z∗

n’s is pos-
sible using (11): If Fn(z) ≡ P(Zn � z), n � 0,

then Fn
d→F0 implies that F−1

n (u) → F−1
0 (u) for

almost all u ∈[0, 1] with respect to Lebesgue
measure. Hence, if U is a uniform(0, 1)
RV, then

Z
∗
n ≡ F−1

n (U) d=Zn

by (11), and

Z
∗
n ≡ F−1

n (U) → F−1
0 (U) ≡ Z∗

0 a.s.

as n → ∞ [45].
The possibility of giving explicit, concrete

constructions of the almost surely conver-
gent versions U∗

n of the uniform empiri-
cal process Un began to become apparent
soon after the appearance of Skorokhod [60]
(available in English translation in 1965),
and Strassen [63] concerning the embed-
ding of partial sum processes in Brownian
motion∗. This idea, together with a rep-
resentation of uniform order statistics as
ratios of partial sums of independent expo-
nential RVs, was used by several authors,
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including Breiman [9], Brillinger [11], and
Root [49], to give explicit constructions of the
a.s. convergent processes {U∗

n} guaranteed
to exist by Skorokhod’s [59] theorem. The
‘‘closeness’’ or ‘‘rate’’ of this approximation
was studied by Kiefer [37], Rosenkrantz [50],
and Sawyer [52].

The method of Skorokhod embedding gave
a relatively straightforward and clear con-
struction of versions {U∗

n} converging almost
surely. It quickly became apparent, how-
ever, that for some purposes the constructed
versions {U∗

n} from this embedding method
suffered from two inadequacies or deficien-
cies: The joint distributions of U∗

n and U∗
n+1

(i.e., in n) were not correct; and rates of
convergence for specific functions of the Un
process yielded by the construction were sub-
stantially less than those obtainable by other
(direct, special) methods (n−1/4 or less, rather
than n−1/2 or a little less). These difficul-
ties were overcome by a Hungarian group of
probabilists and statisticians in a remarkable
series of papers published in 1975: see Csörgö
and Révész [21] and Komlós et al. [40]. By
combining the quantile or inverse probability
integral transform (11), an ingenious dyadic
approximation scheme, and careful analysis,
the Hungarian construction∗ yields uniform
empirical processes {U∗

n} which have the cor-
rect distributions jointly in n and which are
(at least very nearly) as close as possible to a
sequence {B∗

n} of Brownian bridge processes

(each B∗
n

d=U = Brownian bridge) with the cor-
rect joint distributions in n dimensions:

Theorem 4. (Komlós et al. [40]). For the
Hungarian construction {U∗

n} of the uniform
empirical processes

||U∗
n − B∗

n|| = O(n−1/2(log n)2) a.s.

as n → ∞; (25)

that is, there exists a positive constant M <

∞ such that

limsup
n→∞

n1/2

(log n)2 ||U∗
n − B∗

n|| � M a.s. (26)

Thus the supremum distance between the
constructed uniform empirical processes U∗

n
and the sequence of Brownian bridge pro-
cesses B∗

n goes to zero only a little more

slowly than n−1/2 as n → ∞. This funda-
mental strong approximation theorem has
already proved itself to be of basic importance
in a wide and growing range of problems, and
has already been generalized and extended
in several directions, some of which will be
mentioned briefly. The monograph by Csörgö
and Révész [23] contains an exposition and a
variety of applications.

Other Limit Theorems for Un

Weighted Metrics . The empirical pro-
cess Un is small near 0 and 1: Un(0) =
Un(1) = 0 and var[Un(t)] = t(1 − t) for 0 � t �
1. This has led to the introduction of var-
ious ‘‘weighted’’ metrics to account for and
exploit the small values of Un near 0 and
1. Supremum-type weighted metrics || · /q||
(defined by

||(f − g)/q|| ≡ sup0�t�1 |(f (t) − g(t))/q(t)|

were first introduced by Chibisov [13], who
gave conditions for Un ⇒ U with respect to
|| · /q||: Essentially, q must satisfy

q2(t)/[t(1 − t) log log({t(1 − t)}−1)] → ∞
as t → 0 or 1 [e.g., q(t) = [t(1 − t)]1/2−δ

with 0 < δ < 1
2 ]. This convergence, which

strengthens Donsker’s theorem, was fur-
ther investigated by Pyke and Shorack [48],
O’Reilly [42], Shorack [56], and Shorack and
Wellner [58], and successfully applied to sta-
tistical problems by Pyke and Shorack [48],
Shorack [53,54], and subsequently by others.
James [36] has established a corresponding
weighted version of the Strassen-Finkelstein
functional law of the iterated logarithm for
Un/bn.

The standardized or normalized empirical
process Zn(t) = Un(t)/

√
t(1 − t), 0 < t < 1, has

also been thoroughly investigated, largely
because it has the appealing feature of
having var[Zn(t)] = 1 for all 0 < t < 1 and
every n � 1. The limit theory of Zn turns
out to be closely linked to the Ornstein-
Uhlenbeck process∗ and the classical work of
Darling and Erdös [25] on normalized sums:
see Jaeschke [35] and Eicker [31] for distri-
butional limit theorems; and Csáki [19,20],
Shorack [57], and Mason [41] for iterated
logarithm-type results.
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Oscillations of Un. The oscillation modu-
lus ωn(a) of Un, defined by

ωn(a) = sup|t−s|�a |Un(t) − Un(s)|
= n1/2 sup|t−s|�a |�n(t) − �n(s) − (t − s)|,

0 < a � 1,
(27)

arises naturally in many statistical problems
including tests for ‘‘bumps’’ of probability
and density estimation∗. Note that ωn(1) is
the classical Kuiper goodness-of-fit∗ statistic
(see, e.g., Durbin [30, p. 33]). Cassels [12]
established laws of the iterated logarithm
for ωn(a); Cressie [17,18] has investigated
the limiting distribution of ωn(a) for fixed
a (which, by Donsker’s theorem, is that of
ω(a) ≡ sup|t−s|�a |U(t) − U(s)|); and Stute [64]
proved that if a = an → 0, an = n−λ, 0 < λ <

1, then

lim
n→∞

ωn(an)
{2an log(1/an)}1/2 = 1 a.s. (28)

Stute [64] has exploited this result to obtain
several interesting limit theorems for kernel
estimates∗ of density functions. Shorack and
Wellner [58] study related oscillation mod-
uli and give weighted-metric convergence
theorems related to those of Chibisov [13]
and O’Reilly [42].

Quantile Processes . An important process
closely related to the uniform empirical pro-
cess Un is the uniform quantile process∗ Vn
defined on [0, 1] by

Vn(t) = n1/2(�−1
n (t) − t), 0 � t � 1, (29)

where �−1
n is the left-continuous inverse of

�n. �−1
n and Vn are important for problems

involving order statistics since �−1
n (i/n) =

Un:i, the ith order statistic of the sample
U1, . . . , Un of n i.i.d. uniform (0,1) RVs. There
are many relationships between the processes
Un and Vn, such as the identity

Vn = −Un ◦ �−1
n + n1/2(�n ◦ �−1

n − I), (30)

which shows that Vn ⇒ V ≡ −U, because
�−1

n (t) → t uniformly in t a.s. and the sec-
ond term in (30) has supremum norm equal
to n−1/2; a corresponding functional law of

the iterated logarithm for Vn/bn follows sim-
ilarly.

For a sample from a general df F on R1,
the quantile process Qn is defined by

Qn(t) = n1/2(F−1
n (t) − F−1(t)), (31)

where F−1
n denotes the left continuous inverse

of the empirical df Fn. By the inverse proba-
bility integral transform (11),

Qn(t) d=n1/2(F−1 ◦ �−1
n − F−1) = Rn · Vn, (32)

where the random difference quotient Rn ≡
(F−1(�−1

n ) − F−1)/(�−1
n − I) can be shown to

converge (under appropriate differentiability
hypotheses on F−1) to dF−1/dt = 1/(f ◦ F−1).
Thus, at least roughly,

Qn ⇒ 1
f ◦ F−1 V = −1

f ◦ F−1 U. (33)

For precise formulations of this type of
limit theorem, see Shorack [54] and Csörgö
and Révész [22], who make use of strong
approximation methods together with the
deep theorems of Kiefer [38] concerning the
process Dn = Un + Vn.

MORE GENERAL SAMPLE SPACES AND
INDEX SETS

Spurred by questions in many different areas
of statistics, the theory of empirical pro-
cesses has undergone rapid development. The
basic theorems of Donsker and Strassen-
Finkelstein in one dimension have been gen-
eralized to observations X with values in
higher-dimensional Euclidean spaces Rk or
more general sample spaces; to indexing by
classes of sets or functions, and to observa-
tions which are dependent or nonidentically
distributed. We focus on i.i.d. RVs in higher-
dimensional spaces and indexing of these
processes by sets and functions; dependent
or nonidentically distributed RVs will be dis-
cussed in the following section.
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A General ‘‘Donsker Theorem’’

Now, as in the introduction, suppose that
X1, X2, . . . , Xn are i.i.d. RVs with values in
the measurable space (X,B), and consider the
empirical measures Pn and empirical pro-
cess Gn as processes ‘‘indexed’’ by sets C in
some class of sets C ⊂ B. It turns out that the
C-empirical process {Gn(C) : C ∈ C} will con-
verge weakly only if the class of sets C is not
‘‘too large.’’ The most complete results to date
are those of Dudley [70].

Theorem 5. (Dudley [70]). Under measura-
bility and entropy∗ conditions (satisfied if C
is not ‘‘too large’’),

Gn ⇒ Gp as n → ∞,

where GP is a zero-mean Gaussian process
indexed by sets C ∈ C with continuous sample
functions and covariance

cov[GP(A), GP(B)]

= P(A ∩ B) − P(A)P(B)

for all A, B ∈ C.

This theorem generalizes and contains as
special cases earlier results by Dudley [69],
Bickel and Wichura [67], Neuhaus [77], and
Straf [85] (all of which dealt with the case
X = Rk and the class C of lower-left orthants,
which yield the usual k-dimensional df F(x)
and empirical df Fn(x), x ∈ Rk) as well as
more recent results for convex sets due
to Bolthausen [68]. Dudley’s results have
been used by Pollard [79] to treat chi-square
goodness-of-fit∗ tests with data dependent
cells.

If the empirical process Gn is considered as
a process indexed by functions f in some class
F, {Gn(f ) : f ∈ F}, then a ‘‘Donsker theorem’’
will hold if the class F is not ‘‘too large.’’
Roughly speaking, all the functions f in F
must be sufficiently smooth and square inte-
grable (with respect to P). Such a theorem
under metric entropy conditions on the class
F was first given by Strassen and Dudley [86]
for the case when the sample space X is a
compact metric space such as [0, 1] ⊂ R1, or
[0, 1]k ⊂ Rk. In the case X = [0, 1], the weak
convergence of Gn to G = {G(f ) : f ∈ F} holds

if the class F is any of the classes of Lipschitz
functions

Fα = {f : |f (x) − f (y)| � |x − y|α

for all x, y ∈ [0, 1]}
with α > 1

2 ; if α = 1
2 , the convergence fails

(there are ‘‘too many’’ functions in the class
F1/2). Very recently similar (but more diffi-
cult) results have been given by Dudley [71]
and Pollard [81] without the restriction to
compact metric sample spaces X.

Several applications of the properties of
empirical processes indexed by functions
to problems in statistics have been made:
Giné [72] and Wellner [87] use such pro-
cesses to study test statistics of interest
for directional data∗; Pollard [80] uses his
Donsker theorem to give a central limit
theorem for the cluster centers of a clus-
tering method studied earlier in R1 by Harti-
gan [73].

General Law of the Iterated Logarithm

In the same way that Dudley’s weak con-
vergence theorem in the preceding section
generalizes Donsker’s theorem, a law of the
iterated logarithm for the C-empirical process
which generalizes the Strassen-Finkelstein
theorem has been proved by Kuelbs and Dud-
ley [76]. We introduce the sets of functions

H0 = {h ∈ L2(X,B, P) :
∫

hdP = 0

and
∫

|h|2dP � 1},

g0
C = {g : C → R defined by g(C)

=
∫

C
hdP, C ∈ C; h ∈ H0};

g0
C is the appropriate analog for the C-

empirical process of the set of functions
U0 which arose in the Strassen-Finkelstein
theorem.

Theorem 6. (Kuelbs and Dudley [76]).
Under the same measurability and entropy
conditions as required for weak convergence
of the C-empirical process (satisfied if C is not
‘‘too large’’), with probability 1 every subse-
quence of {

Gn

(2 log log n)1/2 : n � 3
}
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restricted to C ∈ Chas a uniformly convergent
subsequence, and the set of limit functions is
precisely g0

C .

This theorem has consequences analogous to
those of the Strassen-Finkelstein theorem,
and generalizes earlier results for special
sample spaces X and classes C due to
Kiefer [75], Révész [82], Richter [84], and
Wichura [88]; it contains the Strassen-
Finkelstein theorem as a special case (X =
[0, 1], C = {[0, t] : 0 � t � 1}).

For the F-empirical process (indexed by
functions f in some collection F), only partial
results are available (see, e.g., Kaufman and
Philipp [74]). However, if F is a class of func-
tions satisfying the hypotheses of Dudley [17]
or Pollard [81] sufficient for weak conver-
gence, the following iterated logarithm law
should hold: With probability 1 every subse-
quence of

{
Gn(f )

(2 log log n)1/2 : n � 3, f ∈ F
}

has a uniformly (in f ∈ F) convergent subse-
quence, and the set of limit functions is

g0
F = {g : F → R1 defined by g(f )

=
∫

fhdP, f ∈ F; h ∈ H0}.

Almost Surely Convergent Versions; Strong
Approximations

In higher-dimensional situations the Skoro-
khod-Dudley-Wichura theorem continues to
guarantee the existence of almost surely con-
vergent versions G∗

n of the empirical process
Gn, and this again provides an extremely
useful way to treat statistics representable
as functions of Pn and Gn.

Concerning explicit strong approximations
much less is known, the best results being
those of Philipp and Pinzur [78] (for the case
X = Rk, general P, and b = the lower left
orthants) and Révész [82,83] (X = [0, 1]k, P
uniform on [0, 1]k, and b = a class of sets
with smooth boundaries).

DEPENDENT OR NONIDENTICALLY
DISTRIBUTED OBSERVATIONS

In many cases of practical importance the
observations are either nonidentically dis-
tributed, or dependent, or both. In compari-
son to the i.i.d. case treated in the preceding
sections, present knowledge of the empiri-
cal measures Pn and corresponding empir-
ical processes Gn is much less complete in
these cases. A variety of results are avail-
able, however, for the most important case of
X = Rk and b = {(−∞, x] : x ∈ Rk}, the lower-
left orthants.

Independent, Nonidentically Distributed
Observations

When the observations X1, . . . , Xn have distri-
butions P1, . . . , Pn on X, the natural empirical
process to consider is

Gn = n1/2(Pn − Pn),

Pn = n−1(P1 + · · · + Pn).

In the case X = R1 and b = {(−∞, x] : x ∈ R1},
sufficient conditions for weak convergence
of (‘‘reduced versions’’ of) Gn have been
given by Koul [103], Shorack [121,122], and
Withers [128]. These authors also study the
‘‘weighted’’ or ‘‘regression’’ processes Wn =∑n

i=1 cni(δXi − Pi)/(
∑n

i c2
ni)

1/2, where the cni’s
are appropriate (regression) constants (see
also Hájek [102]); Shorack [122] gives con-
vergence with respect to weighted metrics
and convergence theorems for the related
quantile processes; Withers [128] allows the
observations to be dependent (strong mixing).
Interesting inequalities for the limiting dis-
tributions of supremum functionals of the
process are given by Sen et al. [120] and
Rechtschaffen [115]; van Zuijlen [124,125]
gives linear bounds and many useful inequal-
ities.

In the case X = Rk and b = the lower-
left orthants, conditions ensuring weak
convergence of (‘‘reduced’’ versions of) Gn
have been given by Neuhaus [108] and
Rüschendorf [119]. Many of the weak con-
vergence theorems above are (naturally) for-
mulated for triangular arrays of RVs with
independent RVs in each row.
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Although little is known about functional
laws of the iterated logarithm analogous to
the Strassen-Finkelstein theorem for inde-
pendent nonidentically distributed observa-
tions, a recent inequality due to Bretag-
nolle [91] makes possible the following exten-
sion of the Chung-Smirnov law of the iterated
logarithm in the case X = R1, b = O1, and
the observations form a single independent
sequence. Let Fn(x) = Pn(−∞, x], Fn(x) =
Pn(−∞, x], and Gn(x) = n1/2(Fn(x) − Fn(x))
for x ∈ R1, so ||Gn|| = n1/2||Fn − Fn|| =
n1/2 supx |Fn(x) − Fn(x)|. Bretagnolle’s [91]
inequality says that the classical exponential
bound of Dvoretzky et al. [97] for the i.i.d.
case continues to hold (for arbitrary df’s of
the observations F1, . . . , Fn) if their absolute
constant is increased by a factor of 4:

Pr(||Gn|| � λ) = Pr(n1/2||Fn − Fn|| � λ)

� 4C exp(−2λ2)

for all n � 1 and all λ > 0, where C is an abso-
lute constant (weaker inequalities were given
earlier by Singh [123] and Devroye [95]).
A consequence of Bretagnolle’s inequality
is that

lim sup
n→∞

||Gn||
(2 log log n)1/2

= lim sup
n→∞

n1/2||Fn − Fn||
(2 log log n)1/2 � 1

2
a.s.

for independent observations X1, X2, . . . from
a completely arbitrary sequence of df’s
F1, F2, . . .

The results for Gn (and Wn) sketched
here have been applied by Koul [104] and
Bickel [89] (regression problems), Shorack
[121] (linear combinations of order statistics),
Sen et al. [120] (strength of fiber bundles),
and Gill [101] (censored survival data).

Dependent Observations

Billingsley [90, Sec. 22] proved two differ-
ent weak convergence or Donsker theorems
for the empirical process of a strictly sta-
tionary sequence of real-valued random vari-
ables with common continuous df F satisfying
a weak or φ-mixing condition. Billingsley’s
results have subsequently been extended to
other weaker (i.e., less restrictive) mixing

conditions by Mehra and Rao [107] (who also
consider the regression process Wn men-
tioned above and weighted metrics), Gast-
wirth and Rubin [99] (who introduced a
new mixing condition intermediate between
weak and strong mixing), and Withers [128].
Puri and Tran [110] provide linear in prob-
ability bounds, almost sure nearly linear
bounds, and strengthened Glivenko-Cantelli
theorems for Fn under a variety of mixing
conditions.

When the (dependent) stationary
sequence of observations has values
in X = Rk, Donsker theorems for the
empirical process have been given by
Rüschendorf [118] and Yoshihara [129].
The recent strong approximation results of
Philipp and Pinzur [109] apply to strictly
stationary Rk-valued observations with
common continuous df satisfying a cer-
tain strong-mixing property. This strong
approximation has, as corollaries, both
Donsker (weak convergence) and Strassen-
Finkelstein iterated logarithm theorems for
the empirical processes of such variables.

An especially interesting Donsker theorem
application for the empirical process of mix-
ing variables is to robust location estima-
tors under dependence by Gastwirth and
Rubin [100].

Dependent and/or nonidentically dis-
tributed observations and the correspond-
ing empirical processes also arise in stud-
ies of (a) problems involving finite popula-
tions [116,117]; (b) closely related problems
concerning permutation tests∗ [89,127]; (c)
residuals and ‘‘parameter-estimated empiri-
cal processes’’ [92,96,106]; (d) Fourier coef-
ficients of an i.i.d. real-valued sample [98];
and (e) the spacings between the points of an
i.i.d. sample [93,94,105,111,112,114,121]. An
interesting variant on the latter set of prob-
lems is Kakutani’s method of interval subdi-
vision; see Van Zwet [126] and Pyke [113] for
a discussion of Glivenko-Cantelli theorems;
analogs of the Donsker theorem and the
Strassen-Finkelstein theorem seem to be
unknown.

MISCELLANEOUS TOPICS

This section briefly summarizes work con-
cerning (a) censored survival data and the
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product limit estimator, (b) optimality prop-
erties of Pn as an estimator of P, and (c) large
deviation theorems for empirical measures
and processes.

Censored Survival Data; The Product Limit
Estimator

In many important problems arising in med-
ical or reliability settings, RVs X1, . . . , Xn
(i.i.d. with common df F) representing ‘‘sur-
vival times,’’ cannot be observed. Instead,
the statistician observes (Z1, δ1), . . . , (Zn, δn),
where Zi is the smaller of the lifetime Xi and
a censoring time Yi, Zi = min{Xi, Yi}, and δi
equals 1 or 0 according as Zi = Xi or Zi = Yi.
The statistician’s goal is to estimate the df
F of the survival times {Xi}, in spite of the
censoring.

The nonparametric maximum likelihood
estimator of F, the product-limit estimator
(or Kaplan-Meier estimator∗) F̂n, was derived
by Kaplan and Meier [139]:

1 − F̂n(t) =
∏

{i:Zn:i�t}
(1 − 1/(n − i + 1))δn:i ,

where Zn:1 � · · · � Zn:n and δn:1, . . . , δn:n
denote the corresponding δ’s. When there is
no censoring, so Zi = Xi and δi = 1 for all
i = 1, . . . , n, the product-limit estimator F̂n
reduces to the usual empirical df Fn.

Study of Donsker or weak convergence
theorems for the corresponding empirical pro-
cess

Ĝn = n1/2(F̂n − F)

was initiated by Efron [134] under the
assumption of i.i.d. censoring variables Yi
independent of the Xi (the random censor-
ship model). Efron conjectured the weak
convergence of Ĝn, and used it in a study
of two-sample statistics of interest for cen-
sored data. The weak convergence of Ĝn was
first proved by Breslow and Crowley [132]
under the assumption of i.i.d. censoring vari-
ables with common df G by use of a Sko-
rokhod construction and long calculations.
Gill [137], following Aalen [130,131], put the
large-sample theory of F̂n and Ĝn in its nat-
ural setting by using the martingale∗ theory
of counting processes together with a mar-
tingale (functional) central limit theorem

due to Rebolledo [140] to give a simpler
proof of the weak convergence under mini-
mal assumptions on the independent censor-
ing times {Yi}, . . . , Yn. To state the theorem,
let C(t) = ∫ t

0(1 − F)−2(1 − G)−1 dF and set
K(t) = C(t)/(1 + C(t)).

Theorem 7. (Breslow and Crowley [132];
Gill [137]).

Ĝn = n1/2(F̂n − F) ⇒ (1 − F) · B ◦ C

d=
(

1 − F
1 − K

)
· U ◦ K as n → ∞

where B denotes standard Brownian motion
on [0, ∞).

Gill [138] has given a refined and complete
version of this theorem. Aalen [130,131] and
Gill [137,138] have clarified the extremely
important role which counting processes, and
their associated martingales, play in the the-
ory of empirical processes in the uncensored
as well as the censored case.

Some preliminary iterated logarithm laws
for Gn have been established by Földes and
Rejtö [135,136]; iterated logarithm laws also
follow from the strong approximations of
Ĝn and other related processes provided by
Burke et al. [133].

Optimality

Asymptotic minimax theorems demonstrat-
ing the asymptotic optimality of the empirical
df Fn in a very large class of estimators of
F and with respect to a large class of loss
functions were first obtained by Dvoretzky
et al. [144] in the i.i.d. case with X = R1,
and by Kiefer and Wolfowitz [145] in the
case X = Rk; see also Levit [148]. An inter-
esting representation theorem for the lim-
iting distributions of regular estimates of
a df F on [0, 1] has been established by
Beran [141]. This asserts, roughly speaking,
that the limiting process corresponding to
any regular estimator of F has a represen-
tation as U ◦ F + W, where U is a Brownian
bridge process and W is some process on [0,
1] independent of U. Hence the empirical df
Fn is an optimal estimator of F in this sense
since Gn = n1/2(Fn − F) d=Un ◦ F ⇒ U ◦ F with
W = 0 identically.
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Motivated by questions in reliability,
Kiefer and Wolfowitz [146] showed that the
empirical df Fn remains asymptotically min-
imax for the problem of estimating a con-
cave (or convex) df (even though Fn is
itself not necessarily concave). Millar [149],
using results of LeCam [147], put the earlier
asymptotic minimax results in an elegant
general setting and gave a geometric suffi-
cient condition in order that the empirical df
Fn be an asymptotically minimax estimator
of F in a specified subset of df’s. Millar’s geo-
metric criterion implies, in particular, that
the empirical df is asymptotically minimax
for estimating F in the classes of distribu-
tions with increasing or decreasing failure
rates, or the class of distribution functions
with decreasing densities on [0, ∞); also, Fn is
not asymptotically optimal as an estimator of
a df symmetric at 0 (the symmetrized empir-
ical df is optimal for this class). Wellner [15]
established the asymptotical optimality of
the product limit estimator in the case of
randomly censored data.

There is a large literature concerning
the power of various tests based on the
empirical df and empirical processes; see
Chibisov [142,143] on local alternatives, and
Raghavachari [150] concerning the limiting
distributions of Kolmogorov statistics under
fixed alternatives.

Large Deviations∗

Suppose that X1, . . . , Xn are i.i.d. RVs with
values in X, common probability measure P
on X, and empirical measures Pn, n � 1, as
in the introduction. If 
 is a collection of
probability measures on X distant from P,
then, by a Glivenko-Cantelli theorem,

Pr(Pn ∈ 
) → 0 as n → ∞

since Pn → P a.s. (in a variety of senses).
In fact, this convergence to zero typically
occurs exponentially fast as n increases, as
demonstrated in problems concerning the
Bahadur efficiency∗ of a variety of test statis-
tics; see Groeneboom et al. [156], Bahadur
and Zabell [154], and references therein. The
constant appearing in the exponential rate is
given by the Kullback-Liebler information of


 relative to P, K(
, P), defined by

K(
, P) = inf
Q∈


K(Q, P),

K(Q, P) =
⎧⎨
⎩

∫
q log qdP, Q 
 P, q ≡ dQ

dP
,

∞, otherwise

Theorem 8. (Groeneboom et al. [156]). If X
is a Hausdorff space, 
 is a collection of prob-
ability measures on X satisfying K(
0, P) =
K(
, P) = K(
, P), where the interior 
0 and
closure 
 of 
 are taken relative to a certain
topology τ , then

Pr(Pn ∈ 
) = exp(−n[K(
, P) + o(1)])

as n → ∞
[i.e., limn→∞ n−1 log Pr(Pn ∈ 
) = K(
, P)].

Groeneboom et al. [156] give several applica-
tions of this general theorem. In the special
case of i.i.d. uniform (0,1) X ’s and


 = {P : supt(F(t) − t) � λ > 0

with F(t) = P(−∞, t]},

the number K(
, I) has been computed explic-
itly by Sethuraman [157], Abrahamson [152],
Bahadur [153], and Siegmund [158]:

K(
, I)

= inf
0�t�1−λ

{
(λ + t) log

(
λ + t

t

)

+(1 − λ − t) log
(

1 − λ − t
1 − t

)}

= (θ1 − θ2)λ + θ2 + log(1 − θ2) ≡ g(λ),

where θ2 < 0 < θ1 satisfy θ−1
1 + θ−1

2 = λ−1 and
θ1 − θ2 = log[(1 − θ2)/(1 − θ1)]. The calcula-
tions of Siegmund [158] make the o(1) term
explicit in this case.

Pr

(
sup

0�t�1
(Fn(t) − t) > λ

)

∼ h(λ) exp(−ng(λ)) as n → ∞,
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where

h(λ) ≡
{
λ|θ2|−1(1 − θ2)

×
[

1 +
( |θ2|

θ1

)3 (
1 − θ1

1 − θ2

)]}−1/2

Berk and Jones [155] have some related
results.
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