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A MARTINGALE INEQUALITY FOR THE
EMPIRICAL PROCESS

By JoN A. WELLNER
University of Washington

A martingale inequality for the o, distance from the uniform empirical
process to zero is proved, compared with other inequalities for the process,
and used to establish a law of the iterated logarithm.

1. Introduction. Forn > 11leté, ..., &, be i.i.d. uniform (O, 1) rv’s and let
I, denote their empirical df. The uniform empirical process U, is the process on
[0, 1] defined by U, = n¥(T', — I) where I denotes the identity function I(r) = 1.
If g is a nonnegative function approaching zero at the endpoints of the interval
[0, 1] and x, y are functions on [0, 1], the p -metric is defined by

04(%, ¥) = p(x/q, y[9) = SUPocecs [X(1) — y(1)]/9(2)
where p denotes the usual supremum metric. The convergence of U, with re-
spect to certain of these p,-metrics has become an important tool in the study
of linear rank statistics [11], linear combinations of order statistics [12], and
sample quantiles [15].

Our main object here is to prove a martingale type inequality for the p, dis-
tance from U, to zero and show how it may be combined with a Berry—Esseen
theorem of Katz [7] to prove a law of the iterated logarithm for U,. Theorem 1
presents the new inequality; Corollaries 1 and 2 relate it to inequalities for U,
due to Pyke and Shorack [11], and Dvoretzky, Kiefer and Wolfowitz [3]. Fi-
nally, the power of the new inequality is illustrated in the proof of Theorem 2.
This theorem is in the spirit of Chover’s proof [2] of Strassen’s law of the iter-
ated logarithm [14] which requires 2 4+  moments with § > 0 as opposed to
Strassen’s proof which requires only second moments. While the approach
taken in the proof of Theorem 2 yields a result which is weaker than a theorem
of James [6], it has the virtue of simplicity. In [15] we use the inequality of
Theorem 1 to establish a different type of strong limit theorem for U,.

2. The inequality. Our proof of Theorem 1 will rely upon the fact that the
process U,(1)/(1 — 1),0 < t < 1 isa martingale (cf. [8]) in conjunction with the
following lemmas. Lemma 1 is a special case of Lemma 1 of [13]; Lemma 2 is
a consequence of Doob’s martingale inequality.

Let {X;, j =1, --., m} be arbitrary rv’s and let {r;, j = 1, - - -, m} be positive
and nondecreasing real numbers; for k =1, - .-, m set

Sy = Zf:’:l Xj s Dk = Z§=1 (Xj/rj) .
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LEMMA 1. max,gicm [Sel/re < 2 max gym | Dl

Proor. Let Ar,=r;—r,,, AD;=D;—D;,, j=2,---,m, Ar,=n,
AD, = D,. Then, by writing X; = r;AD; = }}{_, Ar;AD; and interchanging
the order of summation, one obtains S, = Zf=1 Ar(D, — D,_,). Hence [S;|/r, =
max, <, | Dy — D;_,| and this implies the statement of the lemma. []

Remark 1. If (X, j=1,...,m} is a martingale-difference sequence then
{Dy,k=1,...,m}isa martingale transform and under the present conditions is

itself a martingale (confer [1]).
To state the second lemma, let {T}, &, k = 1, - - -, m} be a positive submar-

tingale.
LEMMA 2. Forall 2 >0
P(max,guc, Ty = 24) < A7 E(T, 117, 20) -
PrOOF. Let M, = max, ,<, T;- From Doob’s martingale inequality,
20P(M,, 2 22) < E(Tp 1, 200)

= E(T, lmmgzz,rmgz]) + E(Tn l[umgn,rmaﬂ

< E(Tolgryan) + AP(My = 20) . 0
Let & denote the set of positive continuous functions on [0, 1] which are

nondecreasing on [0, 4], symmetric about }, and have {j¢=?dl < co. The
functions ¢(f) = [#(1 — 7)]i~? with 0 < 6 < } are all in &; so are the functions

q(t) = [t(1 — 0)]f[—log [«(1 — #)]]*** with é > 0.
THEOREM 1. Let ge & and 6 € (0,%]. Then forall 2 >0

(1) P (stprcizs 1%L = 42) < 2 BT o)
where T, = n=t 3.7_, Y,, the sum of the i.i.d. rv’s
Vo= L 1 ar
96(§:) (1 —I)g,

i=1,..-,n with 1/g, = g'144. Furthermore, the Y.s have E(Y;) =0 and
Var (Y,) = {¢ ¢-*dl.

ProoF. Let W, (1) = U,(1)/(1 — t); W, is a martingale in ¢ for each fixed n (cf.
[8] or [10], page 42) with covariance s/(1 — 5), s < t. Alsolet r(r) = q(H/(1 —1).
Form = 2* h > 1an integer,and 1 < k < m, define X;, = W, (k/m) — W,((k —
1)/m) and r, = r(k/m). Note that the r,’s are nondecreasing for 1 < k < [md].
Then, using Lemmas 1 and 2
Wkm, 42)

r

k

P<Sup0<t50 | (E;)l > 42) = lim,_, P <max1§k5[m0]

k
?) — lim, .. P (maxls,,s[mo] 128X S 42)
r

k
< limy_,, P(Max,gegima | 21 (X/75)| > 24)
< limy o A7E( 2 (X[ ) Lusimo) cx e 1> 20)
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where the first inequality follows from Lemma 1 and the second inequality fol-
lows from Lemma 2 since, by Remark 1, {3%_, (Xi/r;)s k=1, ..., [mf]}is a
martingale. We now show that

(3) T, = lim,_,, 390 (X;/r;)
exists for each we Q and equals 7, of the statement of the theorem. Write

W, =n=t 31, Q; with Qy(r) = (1, 4(&) — /(1 — 7). Using this together with
the definition of X, in (3) and interchanging the order of summation one obtains

To= ot B lim . 220 {0 (L) — o (L)

Since the Q, are i.i.d. processes, it suffices to show that this last limit exists for
i = 1 and equals Y, of the statement of the theorem. For s <t

_ 1 _ (=)
Oi(1) — Qu(9) = (1—_‘7) Lig,a(61) HTXI—_Q 113(60)

and hence, taking ¢ = j/m, s = (j — 1)/m and using the monotone convergence
theorem

zi{a(2)- o (5
= 2 %i’(’"ﬁ%? - % o - ( 1—1)7;!)]((15)— Jlmyr;
1 1

——-)*—-—SSEI————dI h——)OO

94(£1) (1 — 1),
=Y,.

Now the first assertion of the theorem follows if the limit on # and integration
with respect to P in the last line of (2) may be interchanged; this follows easily
from standard theorems (e.g., [9], page 52) since the sequence {Y;im%1 (X i7i)s
m = 1} is bounded in L, and hence uniformly integrable.

That E(Y,) = 0 and Var (Y)) = (¢ ¢q~?dl is easily verified by straightforward
computation. []

REMARK 2. The process {B,(f) = (1 + DU/ + 1)), 0 <t < oo} is also a
martingale and has the same covariance as Brownian motion, E(B,(s)B,(1)) =
s A t. Note that the random variable T, may be written in terms of the process
B, as

T, = ¢ fdB,

where f(t) = [(1 + 0)q(¢/(1 + )], 6% = /(1 — 6), and the integral is to be
interpreted as an improper (since [ is unbounded near zero) Riemann-Stieltjes
integral. In analogy with stochastic integrals (of deterministic L, functions) with
respect to Brownian motion ([5], page 21) it is not surprising that

E(T,)y =" f*dl = {{ q~*dI .
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REMARK 3. Forge &, {{g~*dl — 0 as § — 0 and hence Var (Y;) can be made
arbitrarily small by choosing § small.

REMARK 4. If {} g7*~? dI < oo for some 6 > 0, then the C, and Jensen in-
equalities may be used to show that E|Y,|*** < C(0) (¢ ¢7*=* dI < oo with C(d) =
3. 2t48,

By use of the Birnbaum-Marshall inequality it may be shown that (confer
[10], page 41 and Lemma 2.2 of [11])

@) P (supocrs 1201 = 2) < it g g2

9(1)
When g = 1, § = 1 Dvoretzky, Kiefer and Wolfowitz [3] proved that
() P(supyg,s: [Un(1)] Z 2) < Ce™™®

for some absolute constant C > 0. The following corollaries of Theorem 1
shows that (1) implies versions of the inequalities (4) and (5) which differ from
them by constant factors.
COROLLARY 1. Forqe & and 2 > 0
U

6) P<supo<t59 Tt))l > x) < 1622 {0 g2 dI .

Proor. This follows immediately from (1) and E(T,*) = {{ ¢-*dl. []
COROLLARY 2. Forall 2 >0
(7) P(supygiz: [UL(1)] Z 2) < 8(27)~#a-%e 20

Proor. For ¢ = 1 the inequality (1) holds for any 0 < 6 < 1 since r(f) =
(1 — #)~' is increasing on [0, 1). Letting 6 — 1 the Y, of Theorem 1 become

Y,=1—(i(1l =I)*dl=1+41log(l — &)= —(exp(l) = 1)

where exp(1) denotes an exponential rv with scale parameter one. Therefore
T, = —n=¥G, — n) where G, denotes a gamma (n, 1) rv and the right side of
(1) may be computed exactly:

nrt
E(lTnllur,,lzx]) =

$o—n
(1 = 2yerin 4 (1 4 dye-r)
n.

where 1, = An~%. Use of Stirling’s formula and the elementary inequalities
log(l —x) £ —x — 4x* and log (14 x) < x — £x*, 0 < x < 1 (recall that
SUPy<e<r |Un(f)] < nt and hence we need only consider 42 < nt or 2, < 1) to
bound this last expression yields

P(Supyg.s1 |Un(t)] Z 42) < (2/m)12 e~ @02
which implies (7). [

The inequalities (6) and (7) are not as sharp as the inequalities (4) and (5) es-
sentially because of the two factors of two which enter through Lemmas 1 and
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2. However, (1) holds for all g € & and is more powerful than (4). In the fol-
lowing we use (1) to establish a law of the iterated logarithm for U,,.

3. A law of the iterated logarithm for U,. Let b, = (2 log log n)t and let
={feCl0,1]: f(0) = 0 = f(1), f = 5 f"dI, 5 (f")"dl < 1}.

Finkelstein [4] has shown that with probability one the sequence {U,/b,, n = 1}
is relatively compact with respect to the supremum metric p and has limit set B.
James [6] extended this conclusion to the metrics p, for a class of functions g
which is slightly larger than &; he shows that finiteness of the integral

§s 97*{log log (/(1 — 1))~} dI
is both necessary and sufficient for this convergence.

Here we use Theorem 1 in conjunction with the Berry-Esseen estimate of
Katz [7] to establish the relative compactness of U, /b, with respect to p, for a
class of functions ¢ which is slightly smaller than €. The proof is in the spirit
of Chover’s [2] proof of Strassen’s law of the iterated logarithm under the as-
sumption of a finite 2 4 § moment, 6 > 0, and is considerably simpler than the
proofs of [6]. In [16] we use the convergence given by Theorem 2 or [6] to
prove a law of the iterated logarithm for linear combinations of order statistics;
in[15] Theorem 1 is used to prove a different type of strong limit theorem for U,.

For 0 > 0 let &, denote the subset of & having {} ¢7*° dI < co.

THEOREM 2. Let q € &, for some d > 0. Then with probability one the sequence
{U,/b,, n = 1} is relatively compact with respect to p, with limit set B.

Proor. Suppose gc &,. In view of Finkelstein’s [4] proof of the relative
compactness with respect to the supremum metric p and symmetry of the pro-
cess about ¢ = 4, it suffices to show that with probability one

®) lim,_, lim sup, .., SUPy<,<y l (t;l?‘

Let ¢ > 0 and take 2 = ¢b,/4 in (1). Application of the Cauchy-Schwarz
inequality to (1) yields a bound involving {P(|T,| = ¢b,/4)}}. Since ge &,
Remark 4 implies that a 2 4- d version of the Berry—Esseen theorem [7] may be
used to bound this probability.

Let ¢,” = Var (Y,) = ({¢{ ¢7*dl, C, = E|(Y/o,)|**’, and denote the standard
normal density by ¢. Using the Berry-Esseen bound, Mill’s ratio, and
(a + b)t < a' + b* one obtains, for n = 3,

P(specan il 22) = () o {(Ge) # (52) + € comf

= ¢ exp (—% <‘E> log log n) + czﬁ—m

where ¢, ¢, are constants depending on ¢ and 6 but not on n. By Remark 3, ¢
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may be chosen so small that }(¢/40,)* > 1; with this choice of # the above in-
equality implies, via Borel-Cantelli, that with probability one the lim sup in (7)
is less than ¢ for a subsequence of the form n, = [a*] with « > 1. This is easily
extended to the full sequence in the usual way using (the Banach space version
of) Skorohod’s inequality, and since ¢ is arbitrary (8) holds. []

Acknowledgment. This paper is based on part of the author’s 1975 Ph. D.
dissertation prepared at the University of Washington under the direction of
Galen R. Shorack.
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