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Summary. We  consider almost sure limit  theorems  for
i IS = sup (L(0)ft) and |I/1,]|s = sup (¢/L,(¢)) where I is the empirical

n
an=t=1 b R e §

| distribution function of a random sample of # uniform (0, 1) random vari-
ables and a,|0. It is shown that (1) if na,/log,n— oo then both |I/I |; and
I/L]IL converge to 1 as; (2) if na,log,n=d>0 (d>1) then |5/
(I1/1;]|; ) has an almost surely finite limit superior which is the solution of a
certain transcendental equation; and (3) if na,/log,n—0 then [I/I|. and
I I;'I;!,jﬂ have limit superior + oo almost surely. Similar results are established

for the inverse function ;1.

1. Introduction and Statement of Results

Let &,,...,¢, be independent uniform (0, 1) rv’s with empirical distribution I,

and ordered values 0=¢,(<¢,, £ =&,,2¢,,,,=1 Let I,-' denote the left
continuous inverse of I; ie. I~'(t)=inf{s:I(s)=t}. The true distribution
function of the &'s is the identity function on [0, 1] which we denote by I.

For functions f on [0,1] we let f* and f~ denote the positive and negative

parts respectively. Let | f]® denote sup |f(r)| and write | f]| if a=0 and b=1.
a=t=h

It is known from results of Kiefer (1972) and Robbins and Siegmund (1972)
that

limsup | L/I| =zlimsup(1/né, )= as.

n— o0 n—+aoG
and

lim sup [ I/L| ;. Zlimsup (né,,)=c0 as.

n— o H~ 00
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74 : 1.A. Wellner

In fact,

Iim sup log || I} /I]|/log,n=1 as. (1)
and

lim sup |[I/1}]|:, flog,n=1 as; 2)

see Shorack and Wellner (1978) for even more precise results. On the other
hand, the well known Glivenko-Cantelli theorem implies that for any fixed
D<e=l

lim [L/I);=1 as.

and

lim [I/T|!=1 as.

n—+aog

Our object in this paper is to provide answers to the following types of
questions: for what sequences a,— 0 is it true that

lim |L/I)s =1 as.,

lim [I/L); =1 as.,
and “how rapidly” does this convergence occur? Also, for what sequences a, —0
do the random variables |[I /I |;;n and I-I.H;Hj“ have finite limit superiors a.s.?
Further, for a,— 0 so rapidly that the limit superiors are a.s. infinite, “how fast™
does this occur? We will also deal with similar problems concerning I}~ .

This class of problems is related to some problems posed by Csorgé and
Révész (1975) concerning sup |L(t)—tl/(t(1—1))*?; these problems have

an=t=1—a, :

recently been answered by Csaki (1977) and Shorack (1978). Our results are also
closely related to the theorems of Kiefer (1972); in fact our theorems extend
Kiefer’s results for large value behavior of I)(a,)/a, and a,/I}(a,) to |L/I|; and
| I/L;]l; respectively. The general theme that emerges is that behavior at the
single point a, determines the behavior of the ratios over the entire interval
[a,,1].

The work of McBride (1974) is related to the present study, but is in a
somewhat different spirit. He obtains functional laws of the iterated logarithm
for processes R, defined by

R (O=nl(a,t), O0=t<w

with a,—0 at various rates. The present theorems do not seem to overlap with
his. We should also mention the recent papers by Krumbholz (1976a, 1976b).
Krumbholz treats statistics of the form

T.(a,b,u,v)= (L, I)/(u+ )|
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where a,b,u,v are such that u+v:>0 for all a<i<b. The requirement that
u+vt>0 puts the problems considered by Krumbholz in the “Gaussian do-
main”; note that all of his limiting distributions or approximating probabilities
are obtained from the distributions of the appropriate functionals of a Brownian
bridge process. On the other hand, in the cases that we shall deal with here, the
limiting probabilities are in the “Poisson domain”; indeed the function h
introduced below can be viewed roughly as a function which “interpolates™
between “Gaussian behavior” (h(1+A)~4%/2 as 1—0) and “Poisson behavior”
(exp(—Ah(lid))=erexp(—2)).

Because our results depend heavily on several basic exponential inequalities,
it seems worthwhile to begin with these. To state the inequalities we introduce
the convex function k defined for all x=0 by

h(x)=x(logx—1)+1, x>0,

and h(0)=1; h is non-negative, attains its minimum value 0 at x=1, is strictly
decreasing for 0 = x < 1, and is strictly increasing for 1 <x < oo, h is related to the
function k,; of Bennett (1962) and Hoeffding (1963); for 0=x < oo, x=+1, h(x)=(x
—1)hy(x—1) where b, (x)=(1+x""log(l +x)—1.

Lemma 1. For all =1 and 0=£a=1
() PULIIEzA)<exp(—nah(2)
and

(i) P(I/Lez2A=P( sup (= L))z —1/4) Sexp(—nah(1/2)).
=1

ast

These Inequalities have several useful equivalent expressions. Lemma 2

restates Lemma 1 in terms of I;—‘; Lemmas 3 and 4 restate Lemmas 1 and 2 in
= F

terms of (I,/I —1)= and (I;~'/I —1)* respectively.

Lemma 2. For all A=1 and 0=b=1

@) Py zA)=exp(—nbA™ h(A))=exp (—nbf(1/4))
and

(i) P(IL "1, 22) =exp(—nbAh(1/4)=exp(—nbf(2)
where f(A)=Ah(1/2)=A+log(1/4)—1.

15

Remark 1. The special case b=n"' of Lemma 2 yields the interesting in-

equalities
@ PULIIZA=PULL iz Se /M P e
and

(@) PUILGIL,ZH=PUL |} pZ ) Se~ =ele~?

nllEg =
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for all 1=1. Of course it is well known (Daniels, 1945; Robbins, 1954) that the
probability in (i) equals 1/2 for A=1 and all n=1, so (i) yields nothing new. But
(ii) improves the constant in (2) of Shorack and Wellner (1978), replacing 16 by e,
and has a simpler proof than the proof of (2) given there (which relied on results
of Chang (1964) concerning the exact distribution of VL2 ).

é?l[
Lemma 3. For all A.z0 and 0£a=1,

[

Lemma 4. For all A=0 and 0=b=1,

Ey
=

Remark 2. The inequalities of part (i) of Lemma 1 and the “+7” part of Lemma 3
can be improved slightly. By using the methods of Bennett (1962) and Hoeffding
(1963), it can be shown that

|1
! gi)gexp(—mxh(l—i)}.

a !

1

P g?,)gexp(—nbf(lii))

——

b

P(|1/1llg = 2) =exp (—nah(A)/(1 —a))

and
Vi +||L
P (M [T"— l) \ '-2_11) =exp{—nah(l1+4)/(1—a)).
Of course there are corresponding improvements of (i) of Lemma 2 and the -~
part of Lemma 4. The inequalities of our lemmas have simpler proofs (because
of the step which uses 1 —x=e~¥); since we are interested in the case a—0 the
easier, although slightly less precise, inequalities will suffice.

2

Remark 3. The inequalities (ii) of Lemmas 1 and 2, the “—" part of Lemma 3,
and the “+7 part of Lemma 4 are tighter than any of the Bennett-Hoefiding
inequalities for small values of @ and are apparently new. (T.L. Lai (1975) has
proved special cases of these inequalities and used them to deal with sequential
rank tests; our Lemmas 1 and 2 imply Lai’s (2.4) and (2.5) with precise values for
the constants.) In particular, the “—" inequality of Lemma 3 implies the
following inequality for the Binomial random variable nI (a):

P(L(a)—a= —/J)=exp (—nah (1 —i)) =W
aly

This should be compared to the bound implied by one of Hoeffding’s (1963,
Theorem 1, page 15) inequalities, which yields

P(I(a)—a< —A)Sexp(—ni*f2a(l—a)=H.
By means of the series expansion h(l+x)= ) (—1)" n-l(n—1)"1x" valid for
=2

Ix|<1, it is easily shown that H= W if A<a? while W<H if 2z3a%. I am
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indebted to G.R. Shorack for this comparison and for several helpful comments
on the inequalities presented here.

The inequalities of Lemmas 3 and 4 provide an easy proof of the con-
vergence in probability of the ratios I}/ and I, '/I to 1; the part of the theorem
concerning I, is due to Chang (1964).

1

— 0.
by,

I;_l
B

Theorem 0. If na,— 20 then — 0. If nb, — oo then

@

The following theorems show that na,— 20 (or nb,— =) is not sufficient for
the almost sure version of Theorem 0.

Theorem 1. If a,| and ¢, =na,/log,n— o then

@) lim L)L =1 as.

and

(i) lim [IGIA=1 as.

R— a0

The next theorem strengthens the conclusion of Theorem 1 under an
additional monotonicity assumption; the corollary which follows is a direct
consequence of either Theorem 1 or Theorem 18S.

Theorem 18. If a,| and c,=na,/log,nT oo then

a‘I"n +
=t

Corollary 1. If a,| and c,=na,/log,n— oo then

1
—al

iy

lim sup(na,/2log, n)'/?

n—as

1
— {0 qs

dy

- n
lim T_l

a0

If ¢,=na,log,n=d=>0 then |§I;;"I|[jn and |I/T}]|; do not have almost sure

limits; they do have limit superiors which are finite in most cases and related to
the function A.

Theorem 2. If na, flog,n=d =0 then
() limsup [L/I1L,=B, as.

where ;> 1 is the solution of h(f,)=1/d; and

() limsup |I/L]; =1/B; as.

where By <1 is the solution of h(B})=1/d for 1 <d<oc and §]=0 for 0<d<1.

Remark 4. Asdf oz, §;]1 and /11, asd]0, f;T00; asd|1, §7]0. The equations
involving h which define f; and f] in (i) and (i1) above are just the “fundamental
equation” (2.24) of Kiefer (1972).
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Remark 5. The condition ¢,=na,/log,n=d of Theorem 2 can, in most cases, be
replaced by the condition ¢,—d; one notable exception is (ii) of the theorem
when d =1. For simplicity we avoid these complications.

Remark 6. For any fixed integer n | ”";”;,, is an extended-valued random
variable: it equals + oo when &, >a, which occurs with probability (1—a,)".

Corollary 2. If ¢,=na,flog,n=d>0 then

_ | T +||1
(i) limsup ‘(f— ) =3 s,
o X rr;l = '
(i1) limsup (_I = ) =1—5; ‘as,
and

s I :
(iii) lim sup f— o =hi—1 as:

The next theorem deals with |5I;/I|!;“ when ¢, —0 and also with [|I/[}||; when
¢, 1 1. Our results for the first ratio are fairly complete; (ia), (1b), and (ic) below
tell how fast ||I}/I]|, blows up when ¢,—0 at various rates. Our results for
| I/} are much less complete however; at present we can only give a
condition which implies that the latter ratio has + oc as its upper limit w.p. 1.

Theorem 3. (ia) If ¢, =na,/log,nl0 and log, nflogc,; ' — o then

limsupe,loge; 'L/, =1 as.

N

o
(i) If ¢,—0, na,l|, Zn Y(nay=o0 for some fixed integer r, 1=<r<o0, and
i

lim log, nfloge; *=p, r=p<r+1, then

r<limsupna, |[L/I)L <p  as.

nt
R 00

o

(ic) Ifec,—0and ) a,<oo then
1

lim suplog | /1|, flog,n=1 a.s.

e

(i) Ifna,t,c,l1, and Y n~"(na,)*exp(—na,)=co for some k=2, then
1

limsup [I/L]l. = +c0 as.

R o0

Remark 7. Y n™!(na,)"=c0 and lim log, n/loge, ' exists together imply that the
latter limit is =r: also, lim log,n/loge, *<r+1 implies Y n~'(na,y*' <.

Thus the conditions of (ib) are slightly redundant.
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Lemma 5. If a,| then, for any A>1 and integers n' =n”, [i31;,.-"'1||§“g,1for some
; 7 e A
wEnznlc| L, = A
1

Proof. Easy, using the monotonicity of nl, and a,. [I
Lemma 6. If a, | then, for any —1=1<0 and integers n' <n”,
[ sup (—L(t)f)=4 for some n' =n=<n"] C[ sup {djj,,(t),«’r)gn—r:i].
a,st=1 eSS 1 n
Proof. Also easy using a,|, —n[ (f}| for each fixed ¢, and 1 <0. [
With Lemmas 5 and 6 in hand we are ready to prove the main theorems.
Proof of Theorem 1. Since |._I:;'I:|IH§I,‘,(1]=1, to prove (i) of the theorem it

suffices to show that a,| and na,/log, n—oc imply

limsup L/, =1 as. (3)
To show this, fix A1>1 and «>1 so that Afa> 1. Then e=h(A/o) >0. Set n,=[o"]
for k= 1. To prove (3) it suffices by Lemma 5 and Borel-Cantelli, to show that
> P(B,) < oo where

k

Bk = [”I;u:+ 1/I|Iénk = g(nk-’;nk+ 1) ’;l']
Now Lemma 1(i) implies that

P(Bk) <oy logong +1

ge—tlogznk_l

=constant-k=°

with ©>1 for k sufficiently large since ¢,=na,/log,n— oo. Hence ) P(B,)<
and (3) is proved. B

Since |I/1,]|; = 1/1;(1)=1, to prove (ii) of the theorem it suffices to show that
if a,| and na,/log, n— oo then

limsup [I/L]I; =1 as,

n—*oo
or, equivalently, that

limsup sup (—IL(t)/f)=—1 as. (4)

n—a  dan=r=1 :
To prove this, fix A>—1 and «>1 so that —x/<1. Then e=h(—oi)ju=0.
Again set n,=[o*], k=1. To prove (4) it suffices, by Lemma 6 and Borel-
Cantelli, to show that } P(C,)<oc where
K

G=| swp_ (-Lemz"ta)

.

Mg SEEL
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Now Lemma 1(i1) implies that
P(C)exp(—nea,,, h(=ad)
sexp(—sc,,,, logm_4)
Zexp(—tlog,n,, )

=constant- k= °

with t>1 for k sufficiently large since ¢,=na,/log, n— 0. Hence ZP(C,‘)‘:oo
and (4) holds. [J

Proof of Theorem 1S. If a,| and ¢,7 then Theorem 5 of Kiefer (1972) implies

that

=limsup+(na,2log, 1*1)“-"2 ([{a)fa,—1)

n oo

=+ ({1

lim sup (na,/2log, n)'*

H— 0O

=limsup+(2na,log,n)~*(nl,(a,)—na,

n— oo

=1 as

and thus it remains only to prove the reverse inequalities. These are easily
proved by use of Lemmas 3, 5 and 6, monotonicity of ¢, h(1 +4)~3 A% as 1—0,
and standard arguments. We omit the details. []

Proof of Theorem 2. Since Theorem 3 of Kiefer (1972) implies that

hmsup |5/ Zlimsup nl(a,)/dlog,n=F; as.

=l H— oo

when na,/log, n=d >0, to prove (i) of Theorem 2 it suffices to show that

lim sup L/ |a"__,8d as. (5)
This will follow from Lemma 5 and Borel-Cantelli if we show that Z P(D,)<co
where

D.=[lFL,. ;.-"T”:a,,k“ 2 (ny/my ., 1) (By+e)ls
£>0, n,=[o"], and o> 1 is chosen so that (f;+¢)>o f;. Then, by Lemma 1(i)
(D) Sexp(—dh((B, +e)fa)log,m, . 1)
=cxp(—tlog, ny, )
<constant - k="
with t=dh((f;+¢)/«)>1. Hence ), P(D,) < oo and (15) holds.
k
Similarly, Theorem 4 of Kiefer (1972) implies, for 1 <d < oz,
lim sup | /T |2, = lim sup (n[;(a,)/d log, )~ = 1/B; as. 6)

m— o
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In case 0<d <1, (3.13) of Kiefer implies that (6) continues to hold with ;=0 so
1/f; =oo. For 0<d <1 this completes the proof. To complete the proof of (ii) of
Theorem 2 when 1 <d < oo it therefore suffices to show that, in this case,

limsup | [/1,|1% < 1/8;  as.

or equivalently, that
limsup sup (—IL())=—pf, as. (7)
= “"ﬂ!g]
By Lemma 6 and Borel-Cantelli, (7) will be proved if we show that } P(E,)<
where £

E=L swp_ (=L0/02 0. /m) (=i +a)l,

by SLEL
e>0, m=[¢"], and o>1 is chosen so that r=a~'dh(x(f;—c))>1. But by
Lemma 1(ii),
P(E,) Zexp(—(mng, 1) dh(o(By —¢)) log, n, . )
=exp(—a~ ' dh(«(f; —¢) log, n, )
=exp(—zlog,m )

Zconstant -k 7,

so Y P(E,) <o, (7) holds, and Theorem 2 is proved. [
It

Proof of Corollaries 1 and 2. (i) and (ii) of both corollaries follow easily from the
theorems together with the observation that

T, +]]1 ;
I|(7_1) i1

an

and

I

Fraae

(l—l) ! =1+ sup (—IL (1))
t fn ap=t=1
(iii) of Corollary 2 follows from (i) and (ii) together with the inequality §,—1>1
— By for all 0<d< oo (since I'(x)=logx and hence, for O<x<1, —h'(l—x)=
—log(l —x)>log(l +x)=h'(1+x). [

Proof of Theorem 3. (ia) From Theorem 3 of Kiefer (1972), (3.9) in particular, it
follows that

lim sup ¢, log e; * |I/1]}, Zlimsup ¢, log ¢ I;(a,)/a,

dpn—
n— oo n=* oo

=lim sup (log ¢, */log, ) n I (a,)

= oo

—E i
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are direct translations of Theorems 1 and 2; Theorem 6 requires a separate
proof.

Theorem 4. If b, | and nb,/log, n— oo then

Oyl

n—

and

@) lUm [I/L7 M5, =1 as.

| Himalin

The following theorem is an analogue of Theorem 1S. It sharpens the
conclusion of Theorem 4 and again requires an additional monotonicity as-
sumption.

Theorem 4S. If b,| and nb,/log,nT o then

lim sup (nb,/log, n)'*

R ac

The following corollary is an immediate consequence of either of the
preceding two theorems.

Corollary 4. If b, | and nb /log, n— oo then

-1

s ]

1
lim | =0 as.
l

H o

Corresponding to Theorem 2 we have the following theorem for I,

Theorem 5. If nb, flog, n=v, 0 <v<x, then

M limsup |5 YL =1/ as.

n— o

where 0 <yl <1 is the solution of h(y))=v~ "y, and

(i) limsup I/, =7, as.

»
= oo
o : s T S el
where 1 <y, < oo is the solution of h(y,)=v""7,.

Remark 9. As vloo, ¥.11 and y/11; as v|0, y.Toc and y,|0. The equations

involving / in the statement of Theorem 5 may be obtained by rewriting the two
equations of (3.16) of Kiefer (1972). We prefer to define the quantities ¢, and ¢,
separately and solve only one equation (for ¥ or y") rather than two.

Theorem 5 has the following corollary which is an analogue of Corollary 2.

Corollary 5. If nb, flog,n=v>0 then
.-F—l +||1 1

‘(-"——1) =——1 as,
o d

(1) limsup
b }‘u

a0
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et = |1 1
(i1} lim sup (" -1) =1-— as,
oo I bn Yo
and
I
(iii) limsup‘(" —1) =——1 as.
[ ] I . v

Theorem 6 is analogous to Theorem 3; it handles the case of b,’s converging
to zero more rapidly; since I,"' equals &,; on [0, n='] we treat only b,=n"".

Theorem 6. (i) If b,=n"", b, |, and nb,flog,n|0, then

limsup (nb,/log,n) |[," ' [l;, =1 as.

(i) If b, 1, nb log,n |0, and nb,1, then

lim sup (nb,/log, n) log [ 1/I,7'[|; =1 a.us.
Remark 10. When b,=n"' Theorem 6 yields weak forms of the law of the
iterated logarithm for |L/I| = I/~ "1, and |I/L |} =I5 /1]|},, v 1 given by
(1) and (2). This is to be expected in view of Remark 1. As mentioned before,
strong forms of (1) and (2) have been established by Shorack and Wellner (1978).

Our final theorem is in a slightly different spirit than the preceding theo-
rems; a version of it was first proved by James (1971). It improves the almost
sure “nearly linear” bounds (lower bounds for I, upper bounds for I;,~") of
Wellner (1977a) where ¢(1)=t~% 1, 1 <y<2, was treated.

Theorem 7. If ¢(t)=log,(e%/t) for 0<t <1, then

i) ||t
(i) lim {—@ =1 as
n— o0 ‘rn |;'"1
and
e o E
(i) lim [—=— =1 iar
kv 77|

Thus we have the following corollary:

Corollary 7. If ¢(t)=log,(e%/t) for 0<t<1 and t>1, then for all w in a set with
probability one there is an N = N(w, 1) such that n=N implies

@) LOzttel) for £,st=1
and

(i I W=cidlty  Jorwm "=<r=L

2. Proofs

We begin with proofs of the basic exponential inequalities.
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Proof of Lemma 1. Since {I}(1)/t, 0<t =1} is a reverse martingale, for >0

P(IG/1;zA) =P(le"™,ze™)
<e " Eexp((r/na)nl(a))
=e—rz‘.{ 1 —a(l _er,"na}}n

< e—rz’.e—na(l —grinay

since 1 —x=<e * Choosing r=nalogl yields (i) of Lemma 1. To prove (ii) of
Lemma 1, first note that the two events

[I/E)i22] and [ sup (—~L@/Mz—1/4]

azt=1
are equal. Then, since { — I (1)/t,0<t =1} is a reverse martingale, for r>0

Al

ast=1

— e

<e*Eexp((rina) (—n T (@)

:er,f,»l{l ___a(] _E—r,l’mx)}n

< plitg=mati=e=td | ginee | x>

=e—nahfl,-'}{]

by choosing r= —nalog(l/A)=0 for i=1. [

Proof of Lemma 2. Lemma 2 follows from Lemma 1 and the following identities:
LI/ 1 2 A0 =015 5,2 2]

and

LG~ Y12 =052 2) O
Proof of Lemmas 3 and 4. Lemma 3 is a consequence of Lemma 1 and the

following set equalities:

[i‘(*’?_l) :;z]=[|m.,«'f||izl+f’-l

and
[H(?-l) :zﬂ]=[nrm 1= 1/(1- D]

Lemma 4 follows from Lemma 2 by way of similar identities. []

Theorem 0 follows immediately from Lemmas 3 and 4 upon noting that all
of the four quantities h(1 £&), f(1 &) are strictly positive for every O<e<1.

Our proofs of the remaining theorems require the following preliminary
lemmas.
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Remark 8. Under the stated conditions (ib) implies the less precise result

lim sup log ||[I/I||} log,n=1/p as.

o

gy

The following examples may help in understanding the various parts of
Theorem 3.

Example 1. Let a,=n"'. Then c¢,=(log,n)"'—=0 and log,n/loge; "
=log,n/logsn— oc; hence (ia) of Theorem 3 applies and yields

lim sup (log;n/log,n) | [I|},=1 as.

Example 2. Let a,=n"'(log,n)(logn)~"*, p=1. Then ¢,=(logn)~'* -0,
gn_ Y(na,)*'=cc and log,n/logc; '=p; hence (ib) of Theorem 3 applies and
):iclds

[p] <lim sup (log,n/(logn)**) | L/I]|: <p as.

Example 3. Let a,=n"'(logn)~!. Then ¢,=(logn-log,n)™'>0 and
log,nflog ¢; ' =log, ni(log, n+log;n)—1=p; hence (ib) of Theorem 3. again
applies and yields

limsup(logn)~! L/, =1 as.

= oo

Example 4. Let a,=(nlogn)~ ' (log,n)~%, 1= 1. Then

o

=(logn)~(log,n)"“*" >0 and )} a,<cc;
1

hence (ic) of Theorem 3 applies and yields

lim suplog | /1|, flog,n=1 as.

In this domain &,; = a, eventually w.p. 1 and ||I}/] ||§“ behaves the same as || /I]].

Example 5. Let a,=n"!(log,n+7y logsn] v>0. Then na,l, c,=(log,n

"

+ylogyn)flog,nll, and, if k+1>7, Zn Y(na, )'> an — ory; hence (ii) of Theo-
rem 3 applies and yields

limsup |I/L]l; =c0 as.
1 do not know if it is possible to have ¢,|1 slowly and still maintain
llm sup [/1,]|; <o as.; in this connection see the discussion on page 237 of

Klefcr (1972).
Now we translate our results for I into similar theorems for I,-'. The
following theorems are related to Theorem 6 of Kiefer (1972). Theorems 4 and 5
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when log, nflog ¢, ' — oc. Thus it remains to prove the reverse inequality. Set /,
=(c,loge;H~1; let >0, choose 1 <a<1+¢, and let n,=[«*], k= 1. Then, using
4,7 and Lemma 3,
[5G/, = A,(1 +¢) for some m, =n=n, ]
LI, ., A, . 200 ) A (L8] =F.

"k—.1"

Thus to show that

limsup A Y| L/ <1 as.

it suffices to show that ) P(F)<oo. But, by Lemma 1(i) and h(x)~xlogx as
k
x— oo, if 1 <t<a1(1+e), then, for k sufficiently large,

P(F)Sexp(—n, 14, , hla" {1+ 4,))

=exp(—tlog, )

<constant - k77,

and this completes the proof of (ia).
(ib) From Theorem 1 of Kiefer (1972), na,| and ) »n~'(na,) = co imply that
P(¢,,=a,10)=1. Hence

h an|:rr‘a."q| ; g il r;:(an} zf’

las
occurs infinitely often w.p. 1; to complete the proof it suffices to show that

limsupna, L/, =p as. (8)

with p= lim log, nflogc;*. Let e>0, choose 1 <a<1+¢, and set n, =[], k= 1.

n-—r oo

Then, using na,| and Lemma 5,

CIL)L =(1+¢) p/na, for some m,<n<n, ]
LG, 1L, 20y, ) p(+8)n,a,,
=
Thus to prove (8) it suffices to show that ) P(G,)<oc. But by Lemma 1(i),
hix)~xlogx as x — oo, and lim log, nfloge, lk: p,if l<t<a '(1+¢) then for k

H— o

sufficiently large

P(G)Sexp(—ny 1 a, . h(a~(1+8) p/nya,)
=exp(—rtlog,n)

=constant - k=7,

and this completes the proof of (ib).
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(ic) If > a,< o0, &,; 2 a, for all sufficiently large n w.p. 1 since P({,; <a, 1.0.)
=0 by Theorem 1 of Kmfur (1972). Hence

llmsupiogﬂf“ T . ;Iog2n>limsuplov(lncn1) log,n=1 as.

On the other hand, |I;/1]|} =|I,/I| and hence (1) implies that

lim sup log||I/1| !

R =Hol

iy =

llIT!bl]plOgH Hll/log,n=1 as.

which completes the proof.

(ii) By (ii) of Theorem 1 of Shorack and Wellner (1978), the given conditions
imply that P(né,,=na, io)—l Thus for all w in a set with probability one,
there exists a subsequence n' =n'(w) such that &, ,Za, . Therefore, for this same
subsequence #', we have

I L =0 &, k=1 zn'a,/(k—1)=(c,/k—1)log,n'—»co. [

ay'

Proofs of Theorems 4, 4S, 5, and 6. The proofs of these theorems are similar to
the proofs of Theorems 1, 18, 2, and 3, so we will omit most of the details.
Theorems 4 and 5 are easily proved either by way of Theorems 1 and 2 or by
direct use of Lemma 2 and (3.18) of Kiefer (1972). Theorem 45 is proved by
using (3.17) of Kiefer (1972) to show that the limit superiors are =1, and using
Lemmas 4, 5, and 6, monotonicity of nb,/log,n, and f(1+i)~%.% as 2—0 to
prove the reverse inequalities. Corollaries 4 and 5 follow directly from Theo-

1
rems 4 and 5; that —-—1>1 —i for all 0 <v< oo may be easily seen by writing
Yo Yo
h(py=v=1yas f(1/M=v~! and notmg that — /(1 —x)=x/{1 —x)=>x/(1 +x)=f"(1
+x) for 0<x<1. Theorem 6 is proved by use of Lemmas 2, 5, and 6, f{x)~x
and f(1/x)~logx as x— oo, and (3.19) and (3.20) of Kiefer (1972). [

Proof of Theorem 7. To prove (i), first note that

‘(b’f@ﬁ) I S Vo) _
I:! .5,,1_ I U“)
and hence it suffices to show that
x’(b
llI;"lyb:_llp o =1 as (12)

Now, letting a,=n""logn, we have

@)t _|aed) | |dd )
Bl I,
where
I/ an
WION™ < mpe. - dla)-* ST Aog, ) (logs nfblay)
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Hence, by (2) and ¢(a,) ~log, n as n— o,

)

H

lim sup =1

=0

En1

On the other hand, since 1/¢ =<1 on (0, 1],

’ﬂ@ <
L e, ;

and, by Theorem 1 this last quantity converges to 1 a.s. as n—oo. Thus (12)
holds and the proof of (i) of Theorem 7 is complete. The proof of (ii) is similar to
that of (i) and we omit it. [
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