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The bounded-dual-Lipschitz and Prohorov distances from the ‘empirical measure’ to the 
‘average measure’ of independent random variables converges to zero a.lmost surely if the sequence 
‘of average measures i; tight. Three examples are also given. 

1. The theorem 

AMS Subj. Class.: 60F15,60BlO 
Bounded-dual-Lipschitz metric 
3 trong law 

Let (S, d) be a separable metric space; let 9(S) be the set of all Bore1 probability 
measures on S; and let Xl, X2, . . . be independent S-valued random variables with 

distributions PI, &, . . . where all Pn E g?(S). For x E S let 6, be the unit mass at x. For 
n 3 1 define the ‘empirical measure’ P, by 

and the ‘average measure’ p, by 

Let p ark p denote the Prohorov and dual-bounded-Lipschitz metrics on 
respectively: thus for P, Q E g(S), 

p(lp: Q)=inf{s>O: P(A)- -= E + Q(A”) for all Bore1 sets A} 

where 

A”={yeS:d(x,y)<E forsomexEA}, 
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and 

/3(1’, a>+--Q~~&_=sup 1 IJ f d(P-Q)i: Ilflls~.+ s 

with llflloo = supx Ifb9l, llfk = supx z y If(x) -0 Y )1/&x, Y ), and llfll~~ = Ilfllm Q llflt. 
WhenB1=&=***=P(sopn = P for all tz a 1) it is well known that p(P,, P) * 0 

a.s. and p(iP,, P) + 0 a.s.; the latter is due to Fortet and Mourier [S], and the 
convergence of the Prohorov distance p follows from this since p and /3 are 
equivalent metrics [2, Coroll. 3, p. 1568]. Varadarajan [8] proves that V, converges 
weakly to P with probability one; and p and /? metrize this convergence [4, Th. 8.31. 

In the present case of possibly differing Pn’s, the measures p,, vary with n, and 
hence (as suggested by [l, Th. 131) some restriction is necessary in order to insure 
convergence. A sufficient condition is that the sequence of measures {p’,},al be tight. 

Theorem 1. If {pv}, 21 is tight, then p($,,, F,,) + 0 a.s. and p(IFp,, p,,) + 0 a.s. as n + m. 

Proof. Since p and /3 are equivalent metrics, it suffices to show that p (I&, Fa) + 0 as. 
For f bounded and continuous 

J fd(IP, -pn)=A i (f(Xi) - Ef(Xi)) + 0 a.s. 
S n i=l 

(1) 

as n + 00. This is a consequence of Kolmogorov’s strong law of large numbers for 
independent random variables. Thus if 9 is any countable collection of baunded 
continuous functions, 

P (2) 

Now let E > 0; since {pn} is tight there is a compact set K c S such that pn(K) > 
l-EforaIln > 1. Note that the set of functions B = {f: IlflluL s l}, restricted to K, is 3 
compact set of functions for II* Ilao. H ence for some finite raz there are a;, . , . , f,,, E 

BL(S, d) such that for any f~ B, SUP,&(X) -f;.(x)1 < E for some j, and further 

sup If(x) -fiwl s 3&* 
XEK= 

(3) 

Let g(x j = max(0, (1 - E%(x, K))}. Then g E BL(S, d) and 1~ s g s l:(c. Thus 

Pn(K’)s 
J 

gd~,,>~,,(K)~l--E (4) 

and 

$,*(Kr)~JgdP,=Jgd(~n--~,i)+Jgd~~ 

>--E.+l-@=l-2E 
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for n sufficiently large and for all w in a set with probability 1 by (1). Therefore, using 

ll,#Ja =S 1, (3, (3L 0 and (9, we get 

= If (jy?+h) d(Pn -pn)+ 
Ke 

J’ 
(KS)= 

fd(P, -&,I 

C293&i- 11 
ICE 

fi d(~, -Pa,1 +~bn((KE)C)+~~((KE)C) (by (3)) 

G 10~ for n ~N(E, w) (by (2)). 

Letting ~$0 (through a countable set) completes the proof. 

If pn converges weakly to some P’ E P(S) then {&} is tight ([6], [4, Th. 10.31). But, 
of course, {pa} may be tight and not weakly cl::>nvergent. If {Pn) is tight, then {p,,} is 
tight. 

When S = 68’) IF n (x) = P, ( -- 00, x], and E, (x ‘I =p: p,,, ( -- 00, x], Shorack [7, Th. 1, p. 9] 
has shown that IIff ,i, - F,,llm -b 0 as IV -f 00 for arbitrary triangular arrays of row- 
independent rv’s. Dudley [3] has examined1 ti;e rate of convergence to zero of 
EP(lP,, p,,,) and Ep(,lP,, &) in the case P, == P for all n 2 1. 

2. Remarks and examples 

In each of the following three exalmples the sequence of average measures {pf,) is 
not tight. In Example 1 {I$‘} is not tight because S is not complete, but yet 
/3(Pn, Fn) + 0 a.s. since S is totally bounded, and hence the closure of S, S, is 
compact (so {&} is tight as a sequence of measures on S-). In Example 2 S is not 
totally bounded, but the measures P,, are degenerate and hence p (ff r, r’,) = 0 as. for 
all n 2 I, even though {pn} 3s not tight. Finally, in Example 3 (,pn} is not tight and 
lim inf n.+ooP(lPn, &) > 0 wit11 probability one. Thus although tightness of the 
sequences {p,J is a useful s&icient condition for a.s. convergence of p( 
&P,, &) to zero, it is not necessary. The examples suggest that a necessary and 
sufficient condition will probably involve som.e sort of ‘degenerateness at infinity’ of 
the sequence (Pn}. 

Example 1, Let S = (0, 1], and suppose that X, - Wniform(2-“, 2-‘“**‘) are 
independent for n 2 1. Then (pa) is not tight (p,, + So, with OiS), but S = [ 
compact and BL(S, ti) is naturally isometri& to BL(S, rk) where Theorem Y 
I-Ience p(lP,, R) = IIP, - Ijnll&_(S.dJ = IIF”” - P$$_~s-,n, + 0 a.s. 
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xample 2. Let S = R’ and let X, = rz, n 2 1. Then {pn}, the sequence of uniform 

measures on {I, . . L , n}, is not tight, but IP, = I’, with probability one, and hence 
p(P,, P”) = 0 as. for all n 2 1. 

xampre 3. Let S = R’ and suppose that Xa -Uniform(2n -2, 2~ - 1) a:e 

independent for sz 2 1. Then for each it -3 1, F,, is the uniform measure on IJy=, (2i - 
2,2i - I), and it is easily seen that (I?n} is not tight. To show that /3(P),, &) does not 
converge to zero we proceed as follows: given X,(w), X&I), . . . , define f(x) = 
f(x,O)byf(Xn(w),W)=Oandf(2n-~,w)=:foralln~1,f(x)-Oforx~X~,and 
let f be linear between these points. Then 11 f II= s $ and 11 f Iloo s $ so 11 f lls= c 1. Note that 
2n - 1 -X, = Un are i.i.d. Uniform(0, 1) rv’s, and that X, - (2n - 2) = V, are also 
i.i.d. Uniform(0, 1) rv’s. Since If dlP, = 0, an elementary computation shows that 

and hence lim inf ,.+oop(P,, Fn) 3 lim inf ,,,I1 f d(P, -pn)l = $ log 3 >O with prob- 
ability one. 
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