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SHORT COMMUNICATION

A GLIVENKO-CANTELLI THEQOREM FOR EMPIRICAL
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The bounded-dual-Lipschitz and Prohorov distances from the ‘empirical measure’ to the
‘average measure’ of independent random variables converges to zero almost surely if the sequence
of average measures is tight. Three examples are also given.

AMS Subj. Class.: 60F15, 60B10 Prohorov metric
Bounded-dual-Lipschitz metric convergence
strong law

1. The theorem

Let (S, d) be a separable metric space; let ?(S) be the set of all Borel probability
measures on S; and let X, X5, . . . be independent 5-valued random variables with
distributions P;, P,, . . . where all P, € (S). For x € § let §, be the unit mass at x. For
n =1 define the ‘empirical ineasure’ P, by

P.=(8x,+ - +8x,)/n
and the ‘average measure’ P, by
ﬁn =P+ -I-P,.)/n.

Let p and B denote the Prohorov and dual-bounded-Lipschitz metrics on P(S)
respectively: thus for P, Q € 2(S),

p(P, Q)=inf{e >0: P(A)<¢ + Q(A®) for all Borel sets A}

where

A*={yeS:d(x, y)<e for some x € A},
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with ||l =sup|f ()], [lfll = sup.x, |f(x) = f(y)l/d(x, y), and || fllor = [lflleo + | Fll.
When Py =P,=:--=P (so P, = P for all n = 1) it is well known that p(P,, P)~> 0
a.s. and B(P,, P)—>0 as.; the latter is due to Fortet and Mourier [5], and the
convergence of the Prohorov distance p follows from this since p and B are
equivalent metrics [2, Coroll. 3, p. 1568]. Varadarajan [8] proves that [?, converges
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In the present case of possibly differing P,’s, the measures P, vary with n, and
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convergence. A sufficient condition is that the sequence of measures {P, }n=1 be tight.
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Theorem 1. If {P.}.= istight, then p(P,, P,)> 0 a.s. and B(P,, P.)>0a.s. asn » o,

Proof. Since p and B are eQuivalent metrics, it suffices to show that 8(P,, P,) >0 a.s.
For f bounded and continuous

[ 4@, ~P=1 £ (1)~ EfCX)»0as, 1)

as n - 0. This is a consequence of Kclmogorov’s strong law of large numbers for
independent random variables. Thus if & is any countable collection of bounded
continuous functicns,

P{Lfd(u:v,,--ﬁ,,)-»()asn»oofor eachfeg‘?}=1. @)

Now let & >0; since {P,} is tight there is a compact set K = S such that P, (K)>
1 - ¢ forail n = 1. Note that the set of functions B = {f: ||fllsL < 1}, restricted to K, is a
compact set of functions for | :|lo. Hence for some finite m there are f1,...,fm €
BL(S, d) such that for any f € B, sup,cx|f(x)—fj(x)| < e for some j, and further

sup |f(x)~fi(x)]<3e. 3)
xeK*® .
Let g(x) =max{0, (1—¢'d(x, K))}. Then ge BL(S, d) and 1x <g <1-. Thus
P"(K‘)aj gdP,=P,(K)=1-¢ @)
and

Pr:(Ke)zj. gdpn = j- gd(Pn —'13'1)+I gdﬁn

>—g+1l-e=1-2¢ (5
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for n sufficiently large and for all w in a set with probability 1 by (1). Thercfore, using
Iflo=<1, (2), (3), (4) and (5), we get

_ I(J'Kfj(mf)f d®, - P,)

=|[ -t ya@a-By+|  fa@.-P

(K

[ ra@.-P)

<2-:3e+

[ 5 4@u =P+ a1+ PR by @)

<0¢ +

(by (4) and (5))

[ fiaw.-P

<10e forn=N(e,w) (by(2)).
Letting £}0 (through a countable set) completes the proof.

If P, converges weakly to some P € ?(S) then {P,} is tight ([6], [4, Th. 10.3]). But,
of course, {P,} may be tight and not weakly convergent. If {P,} is tight, then {P,} is
tight.

When § =R, F,(x)=P,(~, x],and F, (x)== P, (- 00, x], Shorack [7, Th. 1, p. 9]
has shown that |F, —F,|x—0 as n-00 for arbitrary triangular arrays of row-
independent rv’s. Dudley [3] has examined ti:e rate of convergence to zero of
EB(P,, P,) and Ep(P,, P,) in the case P, =P forall n = 1.

2. Remarks and examples

In each of the following three examples the sequence of average measures {P, } is
not tight. In Example 1 {£,} is not tight because S is not complete, but yet
B(P,, F,)»0 as. since S is totally bounded, and hence the closure of S, $7, is
compact (so {P,} is tight as a sequence of measures on $~). In Examgle 2 § is not
totally bounded, but the measures P, are degenerate and hence B(P., P,) =0a.s. for
all n =1, even though {P,} is not tight. Finally, in Example 3 {P,} is not tight and
lim inf, .o (P, P,)>0 with probability one. Thus although tightness of the
sequences {P,} is a useful sufficient condition for a.s. convergence of (P, P,) or
p(P,, P,) to zero, it is not aecessary. The examples suggest that a necessary and
sufficient condition will probably involve some sort of ‘degenerateness at infinity’ of
the sequence {P,}.

Example 1. Let S$=(0,1], and suppose that X, ~ Uniform(2™",27""") are
independent for n = 1. Then {P,} is not tight (P, » 8o, with 0& $), but S~ =[0, 1]is
compact and BL(S, d) is naturally isometri. to BL(S ", d) where Theorem 1 applies.
Hence B(Pm pn) EE"Pn - Pn"ﬁL(S.d) = "Pn - lﬁn"g‘L(S’.dV" 0as.
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Example 2. Let S = R! and let X, =n, n=1. Then {P,}, the sequence of uniform
measures on {1, ..., n}, is not tight, but P, = P, with probability one, and hence
BP., P,)=0as.foralln=1.

Example 3. Let S= R' and suppose that X, ~Uniform(2n-2, 2r-1) a‘e
independent for n = 1. Then for each n =1, P, is the uniform measure on|_J;_, (2i —
2, 2i—1), and it is easily seen that {P,} is not tight. To show that 8(P,, P,) does not
converge to zero we proceed as follows: given X;(w), Xz(w), ..., define f(x)=
f(x, @) by f(X,(w), ) =0 and f(2n —3, w) =13 for all n =1, f(x) =0 for x <X, and
let f be linear between these points. Then ||f]l. <3 and || fllo <3 so || fllsL < 1. Note that
2n—-1-X,=U, are i.i.d. Uniform(0, 1) rv’s, and that X, —(2n —2)=V,, are also
i.i.d. Uniform(0, 1) rv’s. Since | f dP, =0, an elementary computation shows that
1 g Ul Vi }
o 2T T T

U2
{U+%}=11~210g3>0

Lfd(Pn P,

1
- 3K
a.s.

and hence lim inf,.B(P,, P,)=lim inf,. .|| f d(P, - P,)|=310g 3>0 with prob-
ability one.
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