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SUPPLEMENTARY MATERIAL FOR “GLOBAL RATES
OF CONVERGENCE OF THE MLES OF LOG-CONCAVE
AND S—CONCAVE DENSITIES”

By CHARLES R. Doss** AND JoN A. WELLNERD?
University of Minnesota; University of Washington®

In this supplement we present additional technical arguments and
proofs for [1]. Equation and theorem references made to the main
document do not contain letters.

A. Appendix: Technical Lemmas and Inequalities. We begin with
the proof of Proposition 4.1. It requires a result from [2], so we will state
that theorem, for the reader’s ease. The theorem gives bounds on bracket-
ing numbers for classes of convex functions that are bounded and satisfy
Lipschitz constraints. Let C ([a,b], [—B, B],T") be the class of functions f €
C ([a,b], [-B, B]) satisfying the Lipschitz constraint |f(z) — f(y)| < I'|x —y|
for all =,y € [a, b].

THEOREM A.1 (Theorem 3.2 of [2]).  There exist positive constants ¢ and
€o such that for all a < b and positive B,T", we have

B+r(b—a)>1/2

€

log N (€,C ([a,0],[-B, B],T),Ls) < c (

forall0 <e<e{B+T(b—a)}.

PROOF. [2] prove this statement for metric covering numbers rather than
bracketing covering numbers, but when using the supremum norm, the two
are equal, if € is adjusted by a factor of 2: If fi,..., fy are the centers
of Lo balls of radius e that cover a function class C, then [f; — €, f; + €],
i =1,..., N, are brackets of size 2¢ that cover C (see e.g. page 157, the proof
of Corollary 2.7.2, of [5]). O
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Fic A. Theorem 4.1: Bracketing of a concave function ¢ (rather than h(y)). Here IiLA,,y =
[ai,, ai,] and Igw = a1, -1, ai,+1], and the right boundary of the domain of ¢ lies between
ai, and ai,+1. We focus on the right side, near a;, and ai,+1. In the top plot is a bracket
on the domain U};ll [g,]- (which we let have right endpoint b here) and the range [y~—1, yo]
(below which ¢ is greyed out). The next plot shows an application of Proposition 4.1 to
find a bracket on I{‘%,Y, The final plot shows the combination of the two.
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PrROOF OF PROPOSITION 4.1. First, notice that the L, bracketing num-
bers scale in the following fashion. For a function f € C([b1, bo],[—B, B]) we

can define
~ f(b1 + (bg — bl)l’) — B

fla) = - ,

a scaled and translated version of f that satisfies f € C([0,1],[—1,1]). Thus,
if [I,u] is a bracket for C([b1, b2], [—B, B]), then we have

r 1 ba
de = / w(z) = U(z)|" d.
i | o) - 1)

BT/OI ‘ﬂ(w) — ()

Thus an e—size L, bracket for C([0,1],[—1,1]) immediately scales to be an
e(by — b1)Y" B bracket for C([by, ba], [~ B, B]). Thus for the remainder of the
proof we set by =0, by =1, and B = 1.

We take the domain to be fixed for these classes so that we can apply
Theorem 3.2 of [2] which is the building block of the proof. Now we fix

(A.1) po=exp(—2(r +1)*(r +2)log2) and v:=1-—pu.

(Note that 4 and v are u and v, respectively, in [2].) We will consider the
intervals [0, u], [u, V], and [v,1] separately, and will show the bound (4.2)
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separately for the restriction of C(]0, 1], [—1, 1]) to each of these sub-intervals.
This will imply (4.2). We fix € > 0, let 5 = (3/17)"/7¢, choose an integer A
and dg,...,044+1 such that

(A.2) 0=00<n =01 << - <da<pu<day1.

For two functions f and g on [0, 1], we can decompose the integral fol |f —
g|"dX\ as

1 °w v 1
(A3) /0 f—glrdr = /0 F—glrdxr+ / f—glrdr+ / f — glrdn.
n v

The first term and last term are symmetric, so we consider just the first
term, which can be bounded by

Iz A Om+1
(A1) [ir=arax< ¥ [T 1 - glran
m=0"“m

since d441 > p. Now for a fixed m € {1,..., A}, we consider the problem of
covering the functions in C([0, 1], [—1, 1]) on the interval [6,,, dpm41]. Defining

f(@) = f(0m + Gmy1 — O)x) and §(z) = g(6m + (i1 — Om)z), we have

Om+1
(A.5) / 1 — g d\ = (G — / F—glrdn.

Since concavity is certainly preserved by restriction of a function, the re-
striction of any function f in C([0,1],[—1,1]) to [0m,dm+1] belongs to the
Lipschitz class C([0m, Om+1], [—1,1],2/,) (since f cannot “rise” by more
than 2 over a “run” bounded by d;,). Thus the corresponding f belongs to
C([0,1], [=1,1],2(dm+1—09m)/0m). We can now use Theorem A.1 to assert the
existence of positive constants €y and ¢ that depend only on r such that for
all oy, < € there exists an a,-bracket for C([0, 1], [—1, 1], 2(dm+1 — Om)/0m)
in the supremum norm of cardinality smaller than

(A.6) exp <ca;ll/2 <2 + W)1/2> < exp (C (;mﬂ >1/2> |
m mam

Denote the brackets by {[lm.nm:Ummnm) @ m = 1,..., Ny} where Ny, is
bounded by (A.6) and m = 1,..., A. Now, define the brackets [l,,,, , un,,] by

(A7) ln,, (7) = _1[0,61]( r) + Zm 1 1[6m,5m+1]( ) by, (7)),
Up,, () = 1[0,51]( r) + Zm 1 1[5m,6m+1]( ) U (T)
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for the restrictions of the functions in C([0, 1], [—1, 1]) to the set [0, u], where
the tuple (ni,...,n4) defining the bracket varies over all possible tuples
with components n,, < N,,, m = 1,..., A. The brackets were chosen in the

. . 1/r
supremum norm, so we can compute their L, () size as Sl/ where

A
(A.8) S1=014 Y ap(Gmi1 — Om),
m=1

and the cardinality is exp(S2) where

A 1/2
25m+1
(A.9) S=cY () .
= \Omam

Thus our S and S are identical to those in (7) in [2]. Thus, by using their
choice of d,, and a;,,

5 r+1 mfll

=exp|r 0

m P " gn |
(r+1)m=2

Q= M exXp —rmlogn ,

their conclusion that

7 2\ /2
S1 < =n" and Sy < 2¢ <)

3 "

holds.
An identical conclusion holds for the restriction of f € C (]0,1],[—1,1])

o [v,1]. Finally, if f € C([0,1],[—1,1]) then its restriction to [u,v] lies in
C ([u,v],[—B, B],2/u), for which, via Theorem A.1, for all n < €y, we can
find a bracketing of size n in the L, metric (which is smaller than the Lo,
metric) having cardinality smaller than

1 9\ 1/2 o\ /2 /9 1/2
exp | en 2—1—; <exp|c ; 6 .

Thus we have brackets for C ([0, 1], [—1,1]) with L, size bounded by

7 7 1/r 17 1/r
(377 +§77 +77> = <3> n,
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and log cardinality bounded by

IERION

Since n = (3/17)'/"¢, we have shown that

1\ /2
log N 6. C(0.11 1,1, L) < € ()
for a constant C; and € < e3 = (17/3)'/7¢.
To extend this result to all € > 0, we note that if ¢ > 2, we can use the

/
trivial bracket [—~1g ), 1jo,1j]- Then, letting Cy = (11//6231)/122,

for e3 < e <2 we
have

Cy-Cre V2 > Cre; 7 = log Nyj(e, ([0, 1], [1, 1)), Ly),

since bracketing numbers are non-increasing. Thus, taking C' = Cy - C1, we
have shown (4.2) holds for all € > 0 with [b1,b2] = [0, 1] and B = 1. By the
scaling argument at the beginning of the proof we are now done. O

For ¢ > 0 and P}, consisting of all h-concave densities on R as in (4.1), let
Pr(6)={p € Pr: H(p,po) <6},

Pr(d) ={(p+1ro)/2: p € P, H((p+p0)/2,p0) <0},
and let Pysp, be as defined in (4.3).

LEMMA A.l. Let § > 0 and 0 < ¢ < 6. With the definitions in the
previous display

(A.10) Ny (e, Pr(0), H) < Nyj(e, Pr(40), H)
(All) < N[](€7PM,haH)'

PrOOF. We will follow the notation in [4] (see e.g. chapter 4) and set
P = (p+ po)/2 for any function p. Then if p; € Py(5), by (4.6) on page
48 of [4], we have H(p1,po) < 4H (P;,po) < 40, so that p; € Pp(49). Then
given e—brackets [la, ua], of Pn(40), with 1 < a < Njj(e, Pr(49), H), we can
construct brackets of Pp,(8) since for any p; € Pp(46) which is bracketed

by [la,uq] for some «, p; is bracketed by [lq,Uq], so that [l, U] form a
collection of brackets for P, (§) with size bounded by

H(ly,ug) (lo, uq) < €,

1 1
< —_H —
V2 V2
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where we used (4.5) on page 48 of [4]. Thus we have a collection of brackets
of Hellinger size ¢/v/2 < e with cardinality bounded by Njj(e, P4(46), H)
and (A.10) holds.

Next we show (A.11), which will follow from showing P (46) C Parp.
Now if 0 < M~ < inf,c;_1,1)po(z) then for any p that has its mode in
[—1,1] and satisfies

(A.12)
sup |p(z) — po(x)| < min inf po(x) — M~ M- sup po(z) |,
ze[-1,1] z€[-1,1] ze[-1,1]

we can conclude that p € Payp.
The proof of Lemma 3.14 of [3] shows that for any sequence of h-concave
densities p;,

(A.13) H(pi,po) — 0 implies  sup |p;(x) — po(z)| — 0.
z€[—1,1]

This says that the topology defined by the Hellinger metric has more open
sets than that defined by the supremum distance on [—1,1], which implies
that open supremum balls are nested within open Hellinger balls, i.e. for
e>0

(A14) Be(p07 [Sup]) - B45(p07 H)
-1,1

for some § > 0, where B¢(pg,d) denotes an open ball about py of size € in
the metric d.

Now, if p is uniformly within € of py on [—1, 1], then for € small enough we
know that the mode of p is in [=1,1]. Thus for 0 < M~! < inf,e_1 1] po(z)
and ¢ small enough, any p € Pp,(40) is also in Pjy;, as desired, and so (A.11)
has been shown. ]

LEMMA A.2.  For a concave-function transformation h that satisfies As-
sumption T.1, we can have that h=' is nondecreasing and as f \, 0,

(A.15) W) = o(f7Y).
In particular, for f € (0,L], h='(f) < Mpf~e.

PROOF. Let ranh = h(domh). For two increasing functions h < g de-
fined on (—o0, o) taking values in [—o0o, 0o], where ran h and ran g are both
intervals, we will show that ¢g='(f) < h~!(f) for any f € ranh N rang.
By definition, for such f, we can find a z € (—o0, 00) such that f = g(z).
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That is, g(z) = h(h~1)(f) < g(h~(f)) since h < g. Applying g~!, we see
2z =g Yf) < h7L(f), as desired.

Then (A.15) follows by letting g(y) = d(—y)~®, which has g~!(f) =
—(%f)*l/o‘. The statement that h='(f) < M f~'/* follows since on neigh-
borhoods away from 0, h~! is bounded above and f — f~1/®
below.

To see that h~! is nondecreasing, we differentiate to see (h™1)'(f) =
1/B'(h=1(f)). Since ' > 0 so is (h™1)". -

is bounded

PROPOSITION A.1. Let h be a concave-function transformation and f =
hoo for p € C and let F(x) = [*__ f(y)dy. Then for g < x1 < x or
x < x1 < xo, all such that —oo < p(x) < p(r1) < p(zo) < 00, we have

olao) — plo)
(416)  fo) < b (lan) ~ hlplo) D = E T o - 20)).

PrRoOF. Take x1,x2 € R with 1 < x2. Then

Flag) ~ Flon) = [ f@)yda = [ hiplo))do

1 1
T2
Tr9 — T r — I
:/ h<g0< T+ 332)) dzr,
x1 T2 —a T2 — T

and since h is nondecreasing and ¢ is concave, the above is not smaller than

z2 To — T T—
/ h < 2 o(z1) + ! <p(a:2)> dz,
1 Tg — X1 To — T

which, by the change of variables u = (z — z1)/(z2 — 1), can be written as

1
(A.17) /0 h((1 —w)p(z1) + up(z2)) (x2 — x1) du.

Now we let 1 = zg and zo = z with z¢g < 1 < z as in the statement.
Since xg and x; are in dom ¢,

1
(A.18) C= / h((1 —u)p(xo) + up(x1)) du
0
satisfies

(A.19) 0 < h(p(z1)) < C < h(p(xo))-
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Now, let n = (p(z0) — ¢(z1))/(p(z0) — ¢(2)), so that n € (0,1) by the
assumption of the proposition. Then

/ B((1 — uplao) + up(a)) du

(/ /> (1 = u)p(a0) + up(w)) du

> /0 h((1 = u)p(x0) + up(x)) du.

Then by the substitution v = u/n, this is equal to

1
(A.20) | (G = metan) + mopta)) .
which is
o lae) —elm)
a2 [ R0 = opla) + el DRI i

by the construction of 7, i.e. because

(1 = mo)pleo) + nup(e) = (1 - W) o) + PEN @)y

¢(wo) — ¢(x) o(wo) — p(z)
 volzn) 4 ) —el@) o
= vp(wo) + o(z0) — o (@) (e(z) — ¢(20))

= vp(z0) — v(p(0) — P(71))
= (1 —v)p(wo) + vi(z1).

And, by definition of C, (A.21) equals C(¢(xg) — ¢(z1))/(e(x0) — ©(2)).
This gives, by applying (A.17), that

1
F(z) - F(wo) > (z — 20) /0 B((1 — w)p(z0) + up(z)) du

_ o @) — e(z1)
(4.22) > =200 e — o)

Now we rearrange the above display to get an inequality for ¢(x). From
(A.22), we have

C@(%) — 80(551)(

F(z) ~ Flag) "0

p(x) < plzo) -
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and, since h is nondecreasing,

_oPlo) —ple)
hplo) < b (i) — 5 =EE @ — )

o(w0) — (1)
<h <<P(930) - h(so(wl))m(x - xO)) ;

by (A.19). This proves the claim for o < x; < x. The proof for x < z1 < x¢
is similar. O

LEMMA A.3. If g = h'/? is a concave-function transformation satisfying

g'(y) = o(ly|~@s*V) then g(y) = o(|y|=*¢), h(y) = o(|y|2%), and I'(y) =
o(|y|_(20‘9+1)) as y — —oo.

PROOF. Since for any 6 > 0 we can find N > 0 where for y < —N,
g(x) = ffoo g (y)dy < 5fivoo(—y)_(%+1), we conclude that g(y) = o(|y|~%9).
It follows additionally that h(y) = o(|y|~2%¢). Thus for § > 0 there exists N
such that for y < —N, h=/2(y) > 6~1/2|y|*, and so we have that

Syl ot = h R (y) W (y) = 6712yl (y)
since 2¢'(y) = h=/2(y)h/ (y), so that §3/2|y|~Castl) > p/(y), as desired. [
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