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In this supplement we present additional technical arguments and
proofs for [1]. Equation and theorem references made to the main
document do not contain letters.

A. Appendix: Technical Lemmas and Inequalities. We begin with
the proof of Proposition 4.1. It requires a result from [2], so we will state
that theorem, for the reader’s ease. The theorem gives bounds on bracket-
ing numbers for classes of convex functions that are bounded and satisfy
Lipschitz constraints. Let C ([a, b], [−B,B],Γ) be the class of functions f ∈
C ([a, b], [−B,B]) satisfying the Lipschitz constraint |f(x)− f(y)| ≤ Γ|x− y|
for all x, y ∈ [a, b].

Theorem A.1 (Theorem 3.2 of [2]). There exist positive constants c and
ε0 such that for all a < b and positive B,Γ, we have

logN[ ] (ε, C ([a, b], [−B,B],Γ), L∞) ≤ c
(
B + Γ(b− a)

ε

)1/2

for all 0 < ε ≤ ε0{B + Γ(b− a)}.

Proof. [2] prove this statement for metric covering numbers rather than
bracketing covering numbers, but when using the supremum norm, the two
are equal, if ε is adjusted by a factor of 2: If f1, . . . , fN are the centers
of L∞ balls of radius ε that cover a function class C, then [fi − ε, fi + ε],
i = 1, . . . , N , are brackets of size 2ε that cover C (see e.g. page 157, the proof
of Corollary 2.7.2, of [5]).
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Fig A. Theorem 4.1: Bracketing of a concave function ϕ (rather than h(ϕ)). Here ILiγ ,γ =

[al1 , al2 ] and IUiγ ,γ = [al1−1, al2+1], and the right boundary of the domain of ϕ lies between
al2 and al2+1. We focus on the right side, near al2 and al2+1. In the top plot is a bracket
on the domain ∪γ−1

j=1 I
U
ij ,j (which we let have right endpoint b here) and the range [yγ−1, y0]

(below which ϕ is greyed out). The next plot shows an application of Proposition 4.1 to
find a bracket on ILiγ ,γ . The final plot shows the combination of the two.
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Proof of Proposition 4.1. First, notice that the Lr bracketing num-
bers scale in the following fashion. For a function f ∈ C([b1, b2], [−B,B]) we
can define

f̃(x) :=
f(b1 + (b2 − b1)x)−B

B
,

a scaled and translated version of f that satisfies f̃ ∈ C([0, 1], [−1, 1]). Thus,
if [l, u] is a bracket for C([b1, b2], [−B,B]), then we have

Br

∫ 1

0

∣∣∣ũ(x)− l̃(x)
∣∣∣r dx =

1

b2 − b1

∫ b2

b1

|u(x)− l(x)|r dx.

Thus an ε−size Lr bracket for C([0, 1], [−1, 1]) immediately scales to be an
ε(b2− b1)1/rB bracket for C([b1, b2], [−B,B]). Thus for the remainder of the
proof we set b1 = 0, b2 = 1, and B = 1.

We take the domain to be fixed for these classes so that we can apply
Theorem 3.2 of [2] which is the building block of the proof. Now we fix

(A.1) µ := exp(−2(r + 1)2(r + 2) log 2) and ν := 1− µ.

(Note that µ and ν are u and v, respectively, in [2].) We will consider the
intervals [0, µ], [µ, ν], and [ν, 1] separately, and will show the bound (4.2)
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separately for the restriction of C([0, 1], [−1, 1]) to each of these sub-intervals.
This will imply (4.2). We fix ε > 0, let η = (3/17)1/rε, choose an integer A
and δ0, . . . , δA+1 such that

(A.2) 0 = δ0 < ηr = δ1 < δ2 < · · · < δA < µ ≤ δA+1.

For two functions f and g on [0, 1], we can decompose the integral
∫ 1
0 |f −

g|rdλ as

(A.3)

∫ 1

0
|f − g|rdλ =

∫ µ

0
|f − g|rdλ+

∫ ν

µ
|f − g|rdλ+

∫ 1

ν
|f − g|rdλ.

The first term and last term are symmetric, so we consider just the first
term, which can be bounded by

(A.4)

∫ µ

0
|f − g|rdλ ≤

A∑
m=0

∫ δm+1

δm

|f − g|rdλ,

since δA+1 ≥ µ. Now for a fixed m ∈ {1, . . . , A}, we consider the problem of
covering the functions in C([0, 1], [−1, 1]) on the interval [δm, δm+1]. Defining
f̃(x) = f(δm + (δm+1 − δm)x) and g̃(x) = g(δm + (δm+1 − δm)x), we have

(A.5)

∫ δm+1

δm

|f − g|rdλ = (δm+1 − δm)

∫ 1

0
|f̃ − g̃|rdλ.

Since concavity is certainly preserved by restriction of a function, the re-
striction of any function f in C([0, 1], [−1, 1]) to [δm, δm+1] belongs to the
Lipschitz class C([δm, δm+1], [−1, 1], 2/δm) (since f cannot “rise” by more
than 2 over a “run” bounded by δm). Thus the corresponding f̃ belongs to
C([0, 1], [−1, 1], 2(δm+1−δm)/δm). We can now use Theorem A.1 to assert the
existence of positive constants ε0 and c that depend only on r such that for
all αm ≤ ε0 there exists an αm-bracket for C([0, 1], [−1, 1], 2(δm+1− δm)/δm)
in the supremum norm of cardinality smaller than

(A.6) exp

(
cα−1/2m

(
2 +

2(δm+1 − δm)

δm

)1/2
)
≤ exp

(
c

(
δm+1

δmαm

)1/2
)
.

Denote the brackets by {[lm,nm , um,nm ] : nm = 1, . . . , Nm} where Nm is
bounded by (A.6) and m = 1, . . . , A. Now, define the brackets [lnm , unm ] by

(A.7)
lnm(x) ≡ −1[0,δ1](x) +

∑A
m=1 1[δm,δm+1](x) lm,nm(x),

unm(x) ≡ 1[0,δ1](x) +
∑A

m=1 1[δm,δm+1](x)um,nm(x)
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for the restrictions of the functions in C([0, 1], [−1, 1]) to the set [0, µ], where
the tuple (n1, . . . , nA) defining the bracket varies over all possible tuples
with components nm ≤ Nm, m = 1, . . . , A. The brackets were chosen in the

supremum norm, so we can compute their Lr(λ) size as S
1/r
1 where

(A.8) S1 = δ1 +
A∑

m=1

αrm(δm+1 − δm),

and the cardinality is exp(S2) where

(A.9) S2 = c

A∑
m=1

(
2δm+1

δmαm

)1/2

.

Thus our S1 and S2 are identical to those in (7) in [2]. Thus, by using their
choice of δm and αm,

δm = exp

(
r

(
r + 1

r + 2

)m−1
log η

)
,

αm = η exp

(
−r (r + 1)m−2

(r + 2)m−1
log η

)
,

their conclusion that

S1 ≤
7

3
ηr and S2 ≤ 2c

(
2

η

)1/2

holds.
An identical conclusion holds for the restriction of f ∈ C ([0, 1], [−1, 1])

to [ν, 1]. Finally, if f ∈ C ([0, 1], [−1, 1]) then its restriction to [µ, ν] lies in
C ([µ, ν], [−B,B], 2/µ), for which, via Theorem A.1, for all η ≤ ε0, we can
find a bracketing of size η in the Lr metric (which is smaller than the L∞
metric) having cardinality smaller than

exp

(
cη−1/2

(
2 +

2

µ

)1/2
)
≤ exp

(
c

(
2

µ

)1/2(2

η

)1/2
)
.

Thus we have brackets for C ([0, 1], [−1, 1]) with Lr size bounded by(
7

3
ηr +

7

3
ηr + ηr

)1/r

=

(
17

3

)1/r

η,
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and log cardinality bounded by

c

(
4 +

(
2

µ

)1/2
)(

2

η

)1/2

.

Since η = (3/17)1/rε, we have shown that

logN[ ](ε, C([0, 1], [−1, 1]), Lr) ≤ C1

(
1

ε

)1/2

for a constant C1 and ε ≤ ε3 ≡ (17/3)1/rε0.
To extend this result to all ε > 0, we note that if ε ≥ 2, we can use the

trivial bracket [−1[0,1], 1[0,1]]. Then, letting C2 = (1/ε3)1/2

1/21/2
, for ε3 ≤ ε ≤ 2 we

have

C2 · C1ε
−1/2 ≥ C1ε

−1/2
3 ≥ logN[ ](ε, C([0, 1], [−1, 1]), Lr),

since bracketing numbers are non-increasing. Thus, taking C ≡ C2 · C1, we
have shown (4.2) holds for all ε > 0 with [b1, b2] = [0, 1] and B = 1. By the
scaling argument at the beginning of the proof we are now done.

For δ > 0 and Ph consisting of all h-concave densities on R as in (4.1), let

Ph(δ) ≡ {p ∈ Ph : H(p, p0) < δ},

Ph(δ) ≡ {(p+ p0)/2 : p ∈ Ph, H((p+ p0)/2, p0) < δ},
and let PM,h be as defined in (4.3).

Lemma A.1. Let δ > 0 and 0 < ε ≤ δ. With the definitions in the
previous display

N[ ](ε,Ph(δ), H) . N[ ](ε,Ph(4δ), H)(A.10)

< N[ ](ε,PM,h, H).(A.11)

Proof. We will follow the notation in [4] (see e.g. chapter 4) and set
p = (p + p0)/2 for any function p. Then if p1 ∈ Ph(δ), by (4.6) on page
48 of [4], we have H(p1, p0) < 4H(p1, p0) < 4δ, so that p1 ∈ Ph(4δ). Then
given ε−brackets [lα, uα], of Ph(4δ), with 1 ≤ α ≤ N[ ](ε,Ph(4δ), H), we can

construct brackets of Ph(δ) since for any p1 ∈ Ph(4δ) which is bracketed
by [lα, uα] for some α, p1 is bracketed by [lα, uα], so that [lα, uα] form a
collection of brackets for Ph(δ) with size bounded by

H(lα, uα) ≤ 1√
2
H(lα, uα) <

1√
2
ε,
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where we used (4.5) on page 48 of [4]. Thus we have a collection of brackets
of Hellinger size ε/

√
2 < ε with cardinality bounded by N[ ](ε,Ph(4δ), H)

and (A.10) holds.
Next we show (A.11), which will follow from showing Ph(4δ) ⊂ PM,h.

Now if 0 < M−1 < infx∈[−1,1] p0(x) then for any p that has its mode in
[−1, 1] and satisfies
(A.12)

sup
x∈[−1,1]

|p(x)− p0(x)| ≤ min

(
inf

x∈[−1,1]
p0(x)−M−1,M − sup

x∈[−1,1]
p0(x)

)
,

we can conclude that p ∈ PM,h.
The proof of Lemma 3.14 of [3] shows that for any sequence of h-concave

densities pi,

(A.13) H(pi, p0)→ 0 implies sup
x∈[−1,1]

|pi(x)− p0(x)| → 0.

This says that the topology defined by the Hellinger metric has more open
sets than that defined by the supremum distance on [−1, 1], which implies
that open supremum balls are nested within open Hellinger balls, i.e. for
ε > 0

(A.14) Bε(p0, sup
[−1,1]

) ⊆ B4δ(p0, H)

for some δ > 0, where Bε(p0, d) denotes an open ball about p0 of size ε in
the metric d.

Now, if p is uniformly within ε of p0 on [−1, 1], then for ε small enough we
know that the mode of p is in [−1, 1]. Thus for 0 < M−1 < infx∈[−1,1] p0(x)
and δ small enough, any p ∈ Ph(4δ) is also in PM,h as desired, and so (A.11)
has been shown.

Lemma A.2. For a concave-function transformation h that satisfies As-
sumption T.1, we can have that h−1 is nondecreasing and as f ↘ 0,

(A.15) h−1(f) = o(f−1/α).

In particular, for f ∈ (0, L], h−1(f) ≤MLf
−1/α.

Proof. Let ranh = h(domh). For two increasing functions h ≤ g de-
fined on (−∞,∞) taking values in [−∞,∞], where ranh and ran g are both
intervals, we will show that g−1(f) ≤ h−1(f) for any f ∈ ranh ∩ ran g.
By definition, for such f , we can find a z ∈ (−∞,∞) such that f = g(z).
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That is, g(z) = h(h−1)(f) ≤ g(h−1(f)) since h ≤ g. Applying g−1, we see
z = g−1(f) ≤ h−1(f), as desired.

Then (A.15) follows by letting g(y) = δ(−y)−α, which has g−1(f) =
−(1δf)−1/α. The statement that h−1(f) ≤ MLf

−1/α follows since on neigh-

borhoods away from 0, h−1 is bounded above and f 7→ f−1/α is bounded
below.

To see that h−1 is nondecreasing, we differentiate to see (h−1)′(f) =
1/h′(h−1(f)). Since h′ ≥ 0 so is (h−1)′.

Proposition A.1. Let h be a concave-function transformation and f =
h ◦ ϕ for ϕ ∈ C and let F (x) =

∫ x
−∞ f(y) dy. Then for x0 < x1 < x or

x < x1 < x0, all such that −∞ < ϕ(x) < ϕ(x1) < ϕ(x0) <∞, we have

(A.16) f(x) ≤ h
(
ϕ(x0)− h(ϕ(x1))

ϕ(x0)− ϕ(x1)

F (x)− F (x0)
(x− x0)

)
.

Proof. Take x1, x2 ∈ R with x1 < x2. Then

F (x2)− F (x1) =

∫ x2

x1

f(x) dx =

∫ x2

x1

h(ϕ(x)) dx

=

∫ x2

x1

h

(
ϕ

(
x2 − x
x2 − x1

x1 +
x− x1
x2 − x1

x2

))
dx,

and since h is nondecreasing and ϕ is concave, the above is not smaller than∫ x2

x1

h

(
x2 − x
x2 − x1

ϕ(x1) +
x− x1
x2 − x1

ϕ(x2)

)
dx,

which, by the change of variables u = (x− x1)/(x2 − x1), can be written as

(A.17)

∫ 1

0
h ((1− u)ϕ(x1) + uϕ(x2)) (x2 − x1) du.

Now we let x1 = x0 and x2 = x with x0 < x1 < x as in the statement.
Since x0 and x1 are in domϕ,

(A.18) C ≡
∫ 1

0
h((1− u)ϕ(x0) + uϕ(x1)) du

satisfies

(A.19) 0 < h(ϕ(x1)) ≤ C ≤ h(ϕ(x0)).
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Now, let η = (ϕ(x0) − ϕ(x1))/(ϕ(x0) − ϕ(x)), so that η ∈ (0, 1) by the
assumption of the proposition. Then∫ 1

0
h((1− u)ϕ(x0) + uϕ(x)) du

=

(∫ η

0
+

∫ 1

η

)
h((1− u)ϕ(x0) + uϕ(x)) du

≥
∫ η

0
h((1− u)ϕ(x0) + uϕ(x)) du.

Then by the substitution v = u/η, this is equal to

(A.20)

∫ 1

0
h ((1− ηv)ϕ(x0) + ηvϕ(x)) η dv.

which is

(A.21)

∫ 1

0
h ((1− v)ϕ(x0) + vϕ(x1))

ϕ(x0)− ϕ(x1)

ϕ(x0)− ϕ(x)
dv,

by the construction of η, i.e. because

(1− ηv)ϕ(x0) + ηvϕ(x) =

(
1− ϕ(x0)− ϕ(x1)

ϕ(x0)− ϕ(x)
v

)
ϕ(x0) +

ϕ(x0)− ϕ(x1)

ϕ(x0)− ϕ(x)
vϕ(x)

= vϕ(x0) +
ϕ(x0)− ϕ(x1)

ϕ(x0)− ϕ(x)
v(ϕ(x)− ϕ(x0))

= vϕ(x0)− v(ϕ(x0)− ϕ(x1))

= (1− v)ϕ(x0) + vϕ(x1).

And, by definition of C, (A.21) equals C(ϕ(x0) − ϕ(x1))/(ϕ(x0) − ϕ(x)).
This gives, by applying (A.17), that

F (x)− F (x0) ≥ (x− x0)
∫ 1

0
h((1− u)ϕ(x0) + uϕ(x)) du

≥ (x− x0)C
ϕ(x0)− ϕ(x1)

ϕ(x0)− ϕ(x)
.(A.22)

Now we rearrange the above display to get an inequality for ϕ(x). From
(A.22), we have

ϕ(x) ≤ ϕ(x0)− C
ϕ(x0)− ϕ(x1)

F (x)− F (x0)
(x− x0),
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and, since h is nondecreasing,

h(ϕ(x)) ≤ h
(
ϕ(x0)− C

ϕ(x0)− ϕ(x1)

F (x)− F (x0)
(x− x0)

)
≤ h

(
ϕ(x0)− h(ϕ(x1))

ϕ(x0)− ϕ(x1)

F (x)− F (x0)
(x− x0)

)
,

by (A.19). This proves the claim for x0 < x1 < x. The proof for x < x1 < x0
is similar.

Lemma A.3. If g ≡ h1/2 is a concave-function transformation satisfying
g′(y) = o(|y|−(αg+1)) then g(y) = o(|y|−αg), h(y) = o(|y|−2αg), and h′(y) =
o(|y|−(2αg+1)) as y → −∞.

Proof. Since for any δ > 0 we can find N > 0 where for y < −N ,
g(x) =

∫ x
−∞ g

′(y)dy ≤ δ
∫ x
−∞(−y)−(αg+1), we conclude that g(y) = o(|y|−αg).

It follows additionally that h(y) = o(|y|−2αg). Thus for δ > 0 there exists N
such that for y < −N , h−1/2(y) ≥ δ−1/2|y|α, and so we have that

δ|y|−(αg+1) ≥ h−1/2(y)h′(y) ≥ δ−1/2|y|αgh′(y)

since 2g′(y) = h−1/2(y)h′(y), so that δ3/2|y|−(2αg+1) ≥ h′(y), as desired.
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