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This supplement presents detailed arguments for the theorems and proposi-
tions of Doss and Wellner [2018a]. Appendices A.1–A.3 contain the proofs of
the main result, Theorem 1.1. The global consistency Theorem 2.1 provides one
of the main tools used in the proofs given in Appendices A.1–A.3. Its proof is
given in Appendix A.4. Appendix B.1 reviews the local limit processes and the
key scaling relations satisfied by these processes, while Appendix B.2 provides
corrections for some typographical errors in Balabdaoui, Rufibach and Well-
ner [2009]. Finally, Appendix C summarizes key technical lemmas used in the
proofs.

A. Proofs

We now deal with the remainder terms defined in (4.9) in the course of our
“proof sketch” for Theorem 1.1. We first deal with the “local” remainder terms
Rn,j , R

0
n,j with j ∈ {2, 3} in Subsection A.1. The analysis of these local remain-

der terms depends crucially on Theorem 2.1. Subsection A.2 is dedicated to the
proofs for the “non-local” remainder terms.

For a function f : R→ R, we let ‖f‖ := supx∈R |f(x)|, and for a set J ⊂ R we
let ‖f‖J := supx∈J |f(x)|. Recall also the following two key assumptions from
Section 3 of Doss and Wellner [2018a] where they appear as Assumption 1 and
Assumption 2:

Assumption A.1. (Curvature at m) Suppose that X1, . . . , Xn are i.i.d. f0 =
eϕ0 ∈ Pm and that ϕ0 is twice continuously differentiable at m with ϕ′′0(m) < 0.

Assumption A.2. (Curvature at x0 6= m) Suppose that X1, . . . , Xn are i.i.d.
f0 = eϕ0 ∈ Pm and that ϕ0 is twice continuously differentiable at x0 6= m with
ϕ′′0(x0) < 0 and f0(x0) > 0.

A.1. The local remainder terms Rn,j, R
0
n,j, j ∈ {2, 3}

We first deal with the (easy) local remainder terms.

Proposition A.1. Let tn,1 = m−Mn−1/5 and tn,2 = m+Mn−1/5 for M > 0.
Then the remainder terms Rn,2, R0

n,2, Rn,3, and R0
n,3 satisfy nRn,j = op(1) and

nR0
n,j = op(1) for j ∈ {2, 3}.

Proof. Recall that the remainder terms Rn,2, R0
n,2, Rn,3, and R0

n,3 given by
(4.4), (4.5), (4.7), and (4.8) are all of the form a constant times

R̃n ≡
∫
Dn

ex̃n(u)(ϕ̂n(u)− ϕ0(m))3du, or

R̃0
n ≡

∫
Dn

ex̃
0
n(u)(ϕ̂0

n(u)− ϕ0(m))3du,

where Dn is a (possibly random) interval of length Op(n
−1/5) and x̃n,j converges

in probability, uniformly in u ∈ Dn, to zero. But by Assumption A.1 and by
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Theorem 2.1 Part A it follows that for any M > 0 we have

sup
|t|≤M

|ϕ̂n(m+ n−1/5t)− ϕ0(m)|

≤ sup
|t|≤M

{
|ϕ̂n(m+ n−1/5t)− ϕ0(m+ n−1/5t)|+ |ϕ0(m+ n−1/5t)− ϕ0(m)|

}
= Op((n

−1 log n)2/5) +O(n−2/5) = Op((n
−1 log n)2/5),

and hence

n|R̃n| = nOp((n
−1 log n)6/5 · n−1/5) = Op(n

−2/5(log n)6/5) = op(1),

By Assumption A.1 and by Theorem 2.1 Part B it follows that for any M > 0
we have

n|R̃0
n| = nOp((n

−1 log n)6/5 · n−1/5) = Op(n
−2/5(log n)6/5) = op(1).

Note that the op terms do not depend on M , by Theorem 2.1. This completes
the proof of negligibility of the local error terms Rn,j , R

0
n,j , j ∈ {2, 3}.

A.2. The global remainder terms Rn,1 and Rc
n,1

Recall that the remainder terms Rn,1 and Rcn,1 are given by (4.2) and (4.3).
Note that the integral in the definition of (4.3) is over [X(1), X(n)] \ Dn, and
hence this term in particular has a global character. We will see later that Rn,1
also can be seen as having a global nature.

Outline: From now on, we will focus our analysis on the portion of Rcn,1,t1,t2
given by integrating over the left side, [X(1), t1]. Arguments for the integral over
[t2, X(n)] are analogous. Thus, by a slight abuse of notation, define the one-sided
counterpart to Rcn,1,t1,t2 from (4.3) for any t < m by

Rcn,1,t ≡
∫
[X(1),t]

ϕ̂ndF̂n − ϕ̂0
ndF̂

0
n −

∫
[X(1),t]

(eϕ̂n − eϕ̂
0
n) dλ. (A.1)

Here λ is Lebesgue measure (and is unrelated to the likelihood ratio λn). The
analysis of Rcn,1,t is the greatest difficulty in understanding 2 log λn. The proof

that Rcn,1,tn is op(n
−1) when b→∞ where tn = m−bn−1/5 is somewhat lengthy

so we provide an outline here.

1. Step 1, Decomposition of Rcn,1,t: Decompose Rcn,1,t, to see that

Rcn,1,t = A1
n,t + E1

n,t − T 1
n,t = A2

n,t + E2
n,t + T 2

n,t, (A.2)

where the summands Ain,t, E
i
n,t, T

i
n,t are defined below (see (A.11) and the

preceding text).
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2. Step 2, Global Op(n
−1) conclusion: In this section we use the fact

that away from the mode, the characterizations of ϕ̂n and ϕ̂0
n are iden-

tical to study T in, i = 1, 2, which are related to
∫
[X(1),t]

(ϕ̂n − ϕ̂0
n)2f̂ndλ.

and
∫
[X(1),t]

(ϕ̂n − ϕ̂0
n)2f̂0ndλ. We will show T in = Op(n

−1), i = 1, 2. Note

Op(n
−1) would be the size of the integral if it were over a local interval of

length Op(n
−1/5) (under our curvature assumptions), but here the integral

is over an interval of constant length or larger, so this result is global in
nature.

3. Step 3, Convert global Op to local op to global op: Convert the global
Op(n

−1) conclusion over T in into an op(n
−1) conclusion over a interval of

length Op(n
−1/5) local to m. Feed this result back into the argument

in Step 2, yielding T in,t = op(n
−1), i = 1, 2. Apply Lemma C.2 to show

additionally that there exist knots of ϕ̂n and ϕ̂0
n that are op(n

−1/5) apart in

an Op(n
−1/5) length interval on which ‖ϕ̂0

n−ϕ̂n‖ = op(n
−2/5), ‖f̂0n−f̂n‖ =

op(n
−2/5), and ‖F̂ 0

n − F̂n‖ = op(n
−3/5).

4. Step 4, Concluding arguments: Return to the decomposition of Rcn,1,t
given in Step 1; the terms given there depend on ϕ̂0

n − ϕ̂n, f̂0n − f̂n, and

F̂ 0
n − F̂n. Thus, using the results of Step 3 we can show nRcn,1,t = op(1) as

desired.

To finalize the argument, in Section A.3, we take tn = m − bn−1/5, but we
also need to let b → ∞. Thus, the Op and op statements above need to hold
uniformly in b.

A.2.1. Decomposition of Rcn,1,t

We begin by decomposing Rcn,1,t for fixed t < m. By (C.2) with ϕ1n = ϕ̂n and
ϕ2n = ϕ̂0

n, we see that

Rcn,1,t =

∫
[X(1),t]

(
ϕ̂nf̂n − ϕ̂0

nf̂
0
n −

(
ϕ̂n − ϕ̂0

n +
(ϕ̂n − ϕ̂0

n)2

2
eε

1
n

)
f̂0n

)
dλ

=

∫
[X(1),t]

(
ϕ̂nf̂n − ϕ̂nf̂0n −

(ϕ̂n − ϕ̂0
n)2

2
eε

1
n f̂0n

)
dλ

=

∫
[X(1),t]

(
ϕ̂n(f̂n − f̂0n)− (ϕ̂n − ϕ̂0

n)2

2
eε

1
n f̂0n

)
dλ, (A.3)
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where λ is Lebesgue measure and ε1n(x) lies between 0 and ϕ̂n(x)−ϕ̂0
n(x). Again

applying (C.2) now with ϕ1n = ϕ̂0
n and ϕ2n = ϕ̂n, we see that

Rcn,1,t =

∫
[X(1),t]

(
ϕ̂nf̂n − ϕ̂0

nf̂
0
n +

(
eϕ̂

0
n−ϕ̂n − 1

)
f̂n

)
dλ

=

∫
[X(1),t]

(
ϕ̂nf̂n − ϕ̂0

nf̂
0
n +

(
ϕ̂0
n − ϕ̂n +

(ϕ̂0
n − ϕ̂n)2

2
eε

2
n

)
f̂n

)
dλ

=

∫
[X(1),t]

(
ϕ̂0
n(f̂n − f̂0n) +

(ϕ̂0
n − ϕ̂n)2

2
eε

2
n f̂n

)
dλ, (A.4)

where ε2n lies between 0 and ϕ̂0
n(x) − ϕ̂n(x). For a function f(x), recall the

notation fs(x) = f(x) − f(s) for x ≤ s and fs(x) = 0 for x ≥ s. Now define
Ain,t ≡ Ain, i = 1, 2 by

A1
n ≡

∫
[X(1),t]

ϕ̂n,t d
(
Fn − F̂ 0

n

)
and A2

n ≡
∫
[X(1),t]

ϕ̂0
n,td

(
F̂n − Fn

)
(A.5)

and define E1
n,t ≡ E1

n to be∫
(τ,t]

ϕ̂n,t d
(
F̂n − Fn

)
+ ϕ̂n(t)(F̂n(t)− F̂ 0

n(t))

+ (ϕ̂n(τ)− ϕ̂n(t))(F̂n(τ)− Fn(τ))

(A.6)

and E2
n,t ≡ E2

n to be∫
(τ0,t]

ϕ̂0
n,td

(
Fn − F̂ 0

n

)
+ ϕ̂0

n(t)(F̂n(t)− F̂ 0
n(t))

+ (ϕ̂0
n(τ0)− ϕ̂0

n(t))(Fn(τ0)− F̂ 0
n(τ0)),

(A.7)

where τ ≡ τ−(t) = supS(ϕ̂n) ∩ (−∞, t] and τ0 ≡ τ0−(t) = supS(ϕ̂0
n) ∩ (−∞, t].

We will assume that
τ ≤ τ0

without loss of generality, because the arguments are symmetric in ϕ̂n and ϕ̂0
n,

since we will be arguing entirely on one side of the mode.
Our next lemma will decompose the first terms in (A.3) and (A.4), into

Ain+Ein, i = 1, 2. The crucial observation is that A1
n ≤ 0 and A2

n ≥ 0, by taking
∆ = ϕ̂n,t and ∆ = ϕ̂0

n,t in the characterization theorems for the constrained
and unconstrained MLEs, Theorem 2.2 A and B of Doss and Wellner [2018b].
Note that since t ≤ m, ϕ̂n,t has modal interval containing m.

Lemma A.2. Let all terms be as defined above. We then have∫
[X(1),t]

ϕ̂n(f̂n − f̂0n)dλ = A1
n,t + E1

n,t (A.8)

and ∫
[X(1),t]

ϕ̂0
n(f̂n − f̂0n)dλ = A2

n,t + E2
n,t. (A.9)
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Proof. We first show (A.8). We can see
∫
[X(1),t]

ϕ̂n(f̂n − f̂0n) equals∫
[X(1),t]

(ϕ̂n,τ− + ϕ̂n − ϕ̂n,τ−)f̂ndλ−
∫
[X(1),t]

(ϕ̂n,t + ϕ̂n − ϕ̂n,t)f̂0ndλ,

and since
∫
ϕ̂n,τ− d

(
Fn − F̂n

)
= 0, this equals∫

[X(1),τ−]

ϕ̂n,τ−dFn +

∫
[X(1),τ−]

(ϕ̂n − ϕ̂n,τ−)f̂ndλ+

∫
(τ−,t]

ϕ̂nf̂ndλ

−

(∫
[X(1),t]

ϕ̂n,tf̂
0
ndλ+ ϕ̂n(t)F̂ 0

n(t)

)

=

∫
[X(1),t]

ϕ̂n,tdFn +

∫
[X(1),τ−]

(ϕ̂n,τ− − ϕ̂n,t)dFn −
∫
(τ−,t]

ϕ̂n,tdFn

+

∫
[X(1),τ−]

ϕ̂n(τ−)f̂ndλ+

∫
(τ−,t]

ϕ̂nf̂ndλ−
(∫

ϕ̂n,tf̂
0
ndλ+ ϕ̂n(t)F̂ 0

n(t)

)
=

∫
[X(1),t]

ϕ̂n,t d
(
Fn − F̂ 0

n

)
+ (ϕ̂n(t)− ϕ̂n(τ−))Fn(τ−)−

∫
(τ−,t]

ϕ̂ndFn

+ ϕ̂n(t)(Fn(t)− Fn(τ−)) + ϕ̂n(τ−)F̂n(τ−) +

∫
(τ−,t]

ϕ̂nf̂ndλ− ϕ̂n(t)F̂ 0
n(t),

which equals∫
ϕ̂n,td

(
Fn − F̂ 0

n

)
+

∫
(τ−,t]

ϕ̂nd
(
F̂n − Fn

)
+ ϕ̂n(t)(Fn(t)− F̂ 0

n(t)) + ϕ̂n(τ−)(F̂n(τ−)− Fn(τ−))

which equals∫
ϕ̂n,td

(
Fn − F̂ 0

n

)
+

∫
(τ−,t]

ϕ̂n,td
(
F̂n − Fn

)
+ ϕ̂n(t)(F̂n(t)− F̂ 0

n(t)) + (ϕ̂n(τ−)− ϕ̂n(t))(F̂n(τ−)− Fn(τ−)),

as desired.
Now we show (A.9). We see

∫
[X(1),t]

ϕ̂0
n(f̂n − f̂0n)dλ equals∫

[X(1),t]

(
ϕ̂0
n,t + ϕ̂0

n − ϕ̂n,t
)
f̂ndλ−

∫
[X(1),t]

(
ϕ̂0
n,τ0
−

+ ϕ̂0
n − ϕ̂0

n,τ0
−

)
f̂0ndλ

and since
∫
ϕ̂0
n,τ0
−
d(Fn − F̂ 0

n) = 0, this equals∫
[X(1),t]

ϕ̂0
n,tf̂ndλ+ ϕ̂0

n(t)F̂n(t)−
[ ∫

ϕ̂0
n,τ0
−
dFn +

∫
[X(1),τ

0
−]

ϕ̂0
n(τ0−)f̂0ndλ

+

∫
(τ0
−,t]

ϕ̂0
nf̂

0
ndλ

]
,
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which equals∫
[X(1),t]

ϕ̂0
n,tf̂ndλ+ ϕ̂0

n(t)F̂n(t)−
[ ∫

[X(1),t]

ϕ̂0
n,tdFn

+

∫
[X(1),t]

(ϕ̂0
n,τ0
−
− ϕ̂0

n,t)dFn + ϕ̂0
n(τ0−)F̂ 0

n(τ0−) +

∫
(τ0
−,t]

ϕ̂0
nf̂

0
ndλ

]
which equals∫

[X(1),t]

ϕ̂0
n,td(F̂n − Fn) + ϕ̂0

n(t)F̂n(t)−
[ ∫

[X(1),τ
0
−]

(ϕ̂0
n(t)− ϕ̂0

n(τ0−))dFn

−
∫
(τ0,t]

ϕ̂0
ndFn +

∫
(τ0
−,t]

ϕ̂0
n(t)dFn + ϕ̂0

n(τ0−)F̂ 0
n(τ0−) +

∫
(τ0
−,t]

ϕ̂0
nf̂

0
ndλ

]
which equals∫

[X(1),t]

ϕ̂0
n,td(F̂n − Fn) +

∫
(τ0
−,t]

ϕ̂0
nd(Fn − F̂ 0

n) + ϕ̂0
n(t)F̂n(t) + ϕ̂0

n(τ0−)Fn(τ0−)

− ϕ̂0
n(t)Fn(τ0−)− ϕ̂0

n(t)(Fn(t)− Fn(τ0−))− ϕ̂0
n(τ0−)F̂ 0

n(τ0−)

which equals∫
[X(1),t]

ϕ̂0
n,td(F̂n − Fn) +

∫
(τ0
−,t]

ϕ̂0
nd(Fn − F̂ 0

n)

+ ϕ̂0
n(t)(F̂n(t)− Fn(t)) + ϕ̂0

n(τ0−)(Fn(τ0−)− F̂ 0
n(τ0−))

which equals∫
[X(1),t]

ϕ̂0
n,td

(
F̂n − Fn

)
+

∫
(τ0
−,t]

ϕ̂0
n,td

(
Fn − F̂ 0

n

)
+ ϕ̂0

n(t)(F̂n(t)− F̂ 0
n(t))

+ (ϕ̂0
n(τ0−)− ϕ̂0

n(t))(Fn(τ0−)− F̂ 0
n(τ0−)),

as desired.

Define T in,t ≡ T in, i = 1, 2, by

T 1
n =

∫
[X(1),t]

(ϕ̂n − ϕ̂0
n)2

2
eε

1
n f̂0ndλ and T 2

n =

∫
[X(1),t]

(ϕ̂n − ϕ̂0
n)2

2
eε

2
n f̂ndλ,

(A.10)

so that
Rcn,1,t = A1

n,t + E1
n,t − T 1

n,t = A2
n,t + E2

n,t + T 2
n,t. (A.11)

by (A.3) and (A.4). Recall (from page 5) that A1
n ≤ 0 ≤ A2

n. Thus

E1
n − E2

n ≥ E1
n − E2

n − T 2
n − T 1

n = A2
n −A1

n ≥

{
A2
n ≥ 0,

−A1
n ≥ 0.

(A.12)
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To see thatRcn,1 = Op(n
−1) we need to see that Ein, A

i
n, and T in are eachOp(n

−1)
(for, say, i = 1). We can see already that E1

n−E2
n = Op(n

−1) (by direct analysis
of the terms in E1

n − E2
n from (A.6) and (A.7)), which yields that A1

n and A2
n

are both Op(n
−1). However, it is clear that we also need to analyze T 1

n + T 2
n

to understand Rcn,1. We need to show that T 1
n,t + T 2

n,t is Op(n
−1) to see that

Rcn,1,t = Op(n
−1); but we will also be able to use that T 1

n,t + T 2
n,t = Op(n

−1)
to then find t∗ values such that T 1

n,t∗ + T 2
n,t∗ = op(n

−1), which will allow us
to argue in fact that E1

n,t∗ + E2
n,t∗ = op(n

−1) (rather than just Op(n
−1)), and

thus that Rcn,1,t∗ = op(n
−1), as is eventually needed. Thus, we will now turn

our attention to studying T 1
n + T 2

n . Afterwards, we will study

Rcn,1,t = (A1
n,t + E1

n,t − T 1
n,t +A2

n,t + E2
n,t + T 2

n,t)/2, (A.13)

from (A.11). From seeing T 1
n,t∗ + T 2

n,t∗ = op(n
−1), we will be able to conclude

that A1
n,t∗ + A2

n,t∗ and E1
n,t∗ + E2

n,t∗ are also op(n
−1), as desired. Then we can

conclude Rcn,1,t∗ = op(n
−1).

A.2.2. Show T in = Op(n
−1), i = 1, 2

The next lemma shows that terms that are nearly identical to T in are Op(n
−1).

The difference between the integrand in the terms in the lemma and the inte-
grand defining T in is that εin is replaced by a slightly different ε̃in. Previously, we
considered t to be fixed, whereas now we will have it vary with n.

Lemma A.3. Let tn < m be a (potentially random) sequence such that

tn ≤ max
(
S(ϕ̂n) ∪ S(ϕ̂0

n)
)
∩ (−∞,m). (A.14)

Let

T̃ 1
n,t =

∫
[X(1),tn]

(
ϕ̂0
n − ϕ̂n

)2
eε̃

1
n f̂0ndλ and T̃ 2

n,t =

∫
[X(1),tn]

(
ϕ̂0
n − ϕ̂n

)2
eε̃

2
n f̂ndλ,

(A.15)
where ε̃1n(x) lies between ϕ̂n(x)− ϕ̂0

n(x) and 0, and ε̃2n(x) lies between ϕ̂0
n(x)−

ϕ̂n(x) and 0, and are defined in (A.23) in the proof. Then we have

T̃ in,tn = Op(n
−1) for i = 1, 2. (A.16)

Proof. For a function f(x), recall the notation fs(x) = f(x) − f(s) for x ≤ s
and fs(x) = 0 for x ≥ s. Let τ ∈ S(ϕ̂n) and τ0 ∈ S(ϕ̂0

n), and assume that

τ ≤ τ0 < m. (A.17)

(The argument is symmetric in ϕ̂n and ϕ̂0
n, so we may assume this without loss

of generality.) We will show the lemma holds for the case tn = τ0, and then the
general tn ≤ τ0 case follows since the integral is increasing in tn. Now, because
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Doss and Wellner/Inference for the mode 9

ϕ̂0
n,τ is concave, for ε ≤ 1, the function ϕ̂n(x) + ε(ϕ̂0

n,τ (x)− ϕ̂n,τ (x)) is concave.
So, by Theorem 2.2, page 43, of Dümbgen and Rufibach [2009], we have∫

(ϕ̂0
n,τ − ϕ̂n,τ )d(Fn − F̂n) ≤ 0. (A.18)

Similarly, if τ0 is a knot of ϕ̂0
n and is less than the mode, then since ϕ̂0

n(x) +

ε
(
ϕ̂n,τ0(x)− ϕ̂0

n,τ0(x)
)

is concave with mode at m for ε small (since ϕ̂n,τ0(x)−
ϕ̂0
n,τ0(x) is only nonzero on the left side of the mode), by the characterization

Theorem 2.2 B of Doss and Wellner [2018b], we have∫
(ϕ̂n,τ0 − ϕ̂0

n,τ0)d(Fn − F̂ 0
n) ≤ 0.

Then setting IILn,τ0 :=
∫
[X(1),τ0]

(
ϕ̂n − ϕ̂0

n

)
d
(
Fn − F̂ 0

n

)
, we have

0 ≥
∫
[X(1),τ0]

(
ϕ̂n,τ0 − ϕ̂0

n,τ0

)
d
(
Fn − F̂ 0

n

)
(A.19)

= IILn,τ0 −
(
ϕ̂n(τ0)− ϕ̂0

n(τ0)
) (

Fn(τ0)− F̂ 0
n(τ0)

)
. (A.20)

And setting ILn,τ0 :=
∫
[X(1),τ0]

(
ϕ̂0
n − ϕ̂n

)
d
(
Fn − F̂n

)
, we have

ILn,τ0 =

∫
[X(1),τ ]

(
ϕ̂0
n(u)− ϕ̂0

n(τ)
)
d
(
Fn − F̂n

)
(u)

−
∫
[X(1),τ ]

(ϕ̂n(u)− ϕ̂n(τ)) d
(
Fn − F̂n

)
(u)

+
(
ϕ̂0
n(τ)− ϕ̂n(τ)

) ∫
[X(1),τ ]

d
(
Fn − F̂n

)
+

∫
(τ,τ0]

(
ϕ̂0
n − ϕ̂n

)
d
(
Fn − F̂n

)
,

(A.21)

and, since the first two summands together yield the left hand side of (A.18),
we have

ILn,τ0 ≤
(
ϕ̂0
n(τ)− ϕ̂n(τ)

) ∫
[X(1),τ ]

d
(
Fn − F̂n

)
+

∫
(τ,τ0]

(
ϕ̂0
n − ϕ̂n

)
d
(
Fn − F̂n

)
.

(A.22)
Now, we apply (C.1) of Lemma C.1 to see that

ILn,τ0 + IILn,τ0 =

∫
[X(1),τ0]

(
ϕ̂0
n − ϕ̂n

)
d
(
F̂ 0
n − F̂n

)

=


∫ τ0

X(1)

(
ϕ̂0
n − ϕ̂n

)2
eε̃

1
n f̂0ndλ ≥ 0,∫ τ0

X(1)

(
ϕ̂0
n − ϕ̂n

)2
eε̃

2
n f̂ndλ ≥ 0,

(A.23)
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Doss and Wellner/Inference for the mode 10

where ε̃2n(x) lies between ϕ̂0
n(x)− ϕ̂n(x) and 0 and ε̃1n(x) lies between ϕ̂n(x)−

ϕ̂0
n(x) and 0. By (A.20) and (A.22), (A.23) is bounded above by

(
ϕ̂0
n(τ)− ϕ̂n(τ)

) ∫
[X(1),τ ]

d
(
Fn − F̂n

)
+

∫
(τ,τ0]

(
ϕ̂0
n − ϕ̂n

)
d
(
Fn − F̂n

)
+
(
ϕ̂n(τ0)− ϕ̂0

n(τ0)
) (

Fn(τ0)− F̂ 0
n(τ0)

)
.

(A.24)

By Proposition 7.1 of Doss and Wellner [2018b] and Lemma 4.5 of Balabdaoui,
Rufibach and Wellner [2009], supt∈[τ,τ0]

∣∣ϕ̂0
n(t)− ϕ̂n(t)

∣∣ = Op(n
−2/5). By Corol-

lary 2.5 of Dümbgen and Rufibach [2009],∣∣∣∣∣
∫
[X(1),τ ]

d
(
Fn − F̂n

)∣∣∣∣∣ ≤ 1/n,

so the first term in the above display is Op(n
−7/5). Similarly, by Corollary 2.7B

of Doss and Wellner [2018b],
∣∣∣Fn(τ0)− F̂ 0

n(τ0)
∣∣∣ ≤ 1/n, so the last term in the

previous display is Op(n
−7/5). We can also see that the middle term in the

previous display equals

(ϕ̂0
n − ϕ̂n)(τ0)(Fn − F̂n)(τ0)− (ϕ̂0

n − ϕ̂n)(τ)(Fn − F̂n)(τ)

−
∫
(τ,τ0]

(Fn − F̂n)(ϕ̂0
n − ϕ̂n)′dλ.

(A.25)

Now the middle term in the previous display is Op(n
−7/5). For the last two

terms, we apply Lemma C.4 taking I = [τ, τ0] to see that

sup
t∈(τ,τ0]

n3/5

∣∣∣∣∣
∫
(τ,t]

d
(
Fn − F̂n

)∣∣∣∣∣ = Op(1).

Thus, using Proposition 7.1 of Doss and Wellner [2018b] and Lemma 4.5 of
Balabdaoui, Rufibach and Wellner [2009], we have∫

(τ,τ0]

(Fn − F̂n)(ϕ̂0
n − ϕ̂n)′dλ = Op(n

−4/5)

∫
(τ,τ0]

dλ = Op(n
−1), (A.26)

so we have now shown that (A.25) is Op(n
−1), so the middle term in (A.24)

is Op(n
−1). Thus, (A.24) is Op(n

−1), and since (A.24) bounds (A.23) we can
conclude that∫ τ0

X(1)

(
ϕ̂0
n − ϕ̂n

)2
eε̃

1
n f̂0ndλ =

∫ τ0

X(1)

(
ϕ̂0
n − ϕ̂n

)2
eε̃

2
n f̂ndλ = Op(n

−1), (A.27)

and so we are done.
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Doss and Wellner/Inference for the mode 11

Remark A.1. Note that if we computed the integrals in (A.27) over an interval
of length Op(n

−1/5), by using that the corresponding integrand is Op(n
−4/5)

(under smoothness/curvature assumptions), the integrals would be Op(n
−1).

However, (A.27) shows that the integrals are Op(n
−1) over a larger interval

whose length is constant or larger, with high probability. Thus we can use (A.27)
to show that ϕ̂0

n− ϕ̂n must be of order smaller than Op(n
−2/5) somewhere, and

this line of reasoning will in fact show that T 1
n,t and T 2

n,t are op(n
−1) for certain

t values.

Remark A.2. Having shown (A.16), it may seem that we can easily find a subin-
terval over which the corresponding integrals are op(n

−1) (or smaller), and that
this should allow us to quickly finish up our proof. There is an additional dif-
ficulty, though, preventing us from naively letting |t| → ∞: we need to control
the corresponding integrals actually within small neighborhoods of m (of order
Op(n

−1/5)), not just arbitrarily far away from m. This is because our asymptotic
results for the limit distribution take place in n−1/5 neighborhoods of m.

To connect the result about T̃ in to the title of this section (which states
T in = Op(n

−1)), note that by Lemma C.5, 0 ≤ T in ≤ 2T̃ in = Op(n
−1).

A.2.3. Local and Global op(n
−1) Conclusion

We will now find a subinterval I such that∫
I

(
ϕ̂0
n − ϕ̂n

)2
eε̃

2
n f̂ndλ = op(n

−1).

We will argue by partitioning a larger interval over which the above integral is
Op(n

−1) into smaller subintervals. Let ε > 0. Let L > 0 be such that intervals
of length Ln−1/5 whose endpoints converge to m contain a knot from each of
ϕ̂n and ϕ̂0

n with probability 1 − ε. Also let δ > 0 and ζ = δ/L which we take
without loss of generality to be the reciprocal of an integer. By Proposition 7.3
of Doss and Wellner [2018b], fix M ≥ L large enough such that with probability
1− εζ for any random variable ξn →p m, [ξn −Mn−1/5, ξn +Mn−1/5] contains
knots of both ϕ̂n and of ϕ̂0

n, when n is large enough. Now, each of the intervals

Ijn := (τ0 −Mjn−1/5, τ0 −M(j − 1)n−1/5] for j = 1, . . . , 1/ζ

contains a knot of ϕ̂n and of ϕ̂0
n by taking ξn to be τ0−Mjn−1/5. There are 1/ζ

such intervals so the probability that all intervals contain a knot of both ϕ̂n and

ϕ̂0
n is 1−ε. Now, let K = Op(1) be such that

∫ τ0

X(1)

(
ϕ̂0
n − ϕ̂n

)2
eε̃

2
n f̂ndλ ≤ Kn−1

for τ0 < m, by Lemma A.3. In particular,∫
Ij∗

(
ϕ̂0
n − ϕ̂n

)2
eε̃

2
n f̂ndλ := min

j=1,...,1/ζ

∫
Ij

(
ϕ̂0
n − ϕ̂n

)2
eε̃

2
n f̂ndλ ≤ ζKn−1.

(A.28)
We next conclude by Lemma C.2, since ζ = δ/L, that there exists a subinterval
J∗ ⊂ Ij∗ containing knots η ∈ S(ϕ̂n) and η0 ∈ S(ϕ̂0

n), such that

sup
x∈J∗

|ϕ̂n(x)− ϕ̂0
n(x)| ≤ cδ1n−2/5 and |η0 − η| ≤ cδ1n−1/5 (A.29)
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Doss and Wellner/Inference for the mode 12

for a universal constant c > 0 and where δ1 → 0 as δ → 0.
We can now re-apply the proof of Lemma A.3, this time taking as our knots η

and η0, and again assuming without loss of generality η ≤ η0. We again see that
(A.23) is bounded above by (A.24), and the middle term of (A.24) is bounded
by (A.25). Using (A.29), we can conclude by (A.26) that (A.25) is bounded by
δ2Op(n

−1), so (A.24) is also, and so (A.23) is also, where δ2 → 0 as δ → 0. We
can conclude ∫ η0

X(1)

(
ϕ̂0
n − ϕ̂n

)2
eε̃

2
n f̂ndλ ≤ δ̃n−1.

Now η0 ≥ τ0 −Mn−1/5/ζ, the endpoint of I1/ζ,n. Thus, take bn−1/5 ≥ τ0 −
Mn−1/5/ζ, let tn = m − bn−1/5 and now let J∗ = [tn − L̃n−1/5, tn] where

L̃ = max(L, 8D/ϕ
(2)
0 (m)), chosen so that we can apply Lemma C.2. Then∫ tn

X(1)

(
ϕ̂0
n − ϕ̂n

)2
eε̃

2
n f̂ndλ ≤ δ̃n−1 (A.30)

with high probability. Analogously,∫ tn

X(1)

(
ϕ̂0
n − ϕ̂n

)2
eε̃

1
n f̂0ndλ ≤ δ̃n−1 (A.31)

as n→∞ with high probability. And we can apply Lemma C.2 to the interval
J∗ to see

‖ϕ̂n − ϕ̂0
n‖J∗ = δOp(n

−2/5), ‖f̂n − f̂0n‖J∗ ≤ δKn−2/5, (A.32)

‖F̂n − F̂ 0
n‖J∗ ≤ δKn−3/5, and |τ − τ0| ≤ δKn−1/5, (A.33)

where τ ∈ S(ϕ̂n) ∩ J∗ and τ0 ∈ S(ϕ̂0
n) ∩ J∗, and

‖(ϕ̂n − ϕ̂0
n)′‖[max(τ,τ0)+δOp(n−1/5),tn−δOp(n−1/5)] = δKn−1/5; (A.34)

here, K = Op(1) and depends on ε and L̃ ≡ L̃ε, but not on δ or tn. Thus when

we eventually let δ̃ → 0, so b ≡ bδ̃ →∞, we can still conclude δ̃K → 0. We also
continue to assume, without loss of generality, that

τ ≤ τ0.

Thus, here is the sense in which we mean op, for the remainder of the proof:

if we say, e.g., E1
n,tn − E

2
n,tn = op(n

−1) we mean for any δ̃ > 0, we may set

tn = m− bn−1/5 and choose b large enough that |E1
n,tn−E

2
n,tn | ≤ δ̃Kn

−1 where
K does not depend on tn.

We can now conclude that

T̃ in,tn = op(n
−1) for i = 1, 2, (A.35)

The difference in the definitions of T in (defined in (A.10)) and T̃ in (defined in

(A.15)), for i = 1, 2, is only in the eε
i
n ’s and eε̃

i
n ’s. These arise from Taylor
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expansions of the exponential function. The definition of T in arises from the
expansions of Rcn,1,t (see (A.3) and (A.4)). Thus, if we let ex = 1+x+2−1x2eε(x)

we can see that ε1n(x) = ε(ϕ̂n(x) − ϕ̂0
n(x)) and ε2n(x) = ε(ϕ̂0

n(x) − ϕ̂n(x)).
Let ex = 1 + xeε̃(x). Then we can see that ε̃1n(x) = ε̃(ϕ̂n(x) − ϕ̂0

n(x)) and
ε̃2n(x) = ε̃(ϕ̂0

n(x)− ϕ̂n(x)). Now, by Lemma C.5, for all x ∈ R, eε(x) ≤ 2eε̃(x), so
that

0 ≤ T in,tn ≤ 2T̃ in,tn = op(n
−1), for i = 1, 2, (A.36)

by (A.35).

A.2.4. Return to Rcn,1,t

We take tn and J∗ as defined at the end of the previous section. Now, if we could
show that E1

n,tn − E
2
n,tn = op(n

−1) then from (A.12) we could conclude that

Ain,tn , i = 1, 2, are both op(n
−1). If, in addition, we can show E1

n,tn + E2
n,tn =

op(n
−1), then since

Rcn,1,tn = (E1
n,tn + E2

n,tn +A1
n,tn +A2

n,tn + T 2
n,tn − T

1
n,tn)/2 (A.37)

by (A.11), we could conclude Rcn,1,tn = op(n
−1). Unfortunately it is difficult to

get any results about E1
n,tn −E

2
n,tn . We can analyze E1

n,tn +E2
n,tn , though. The

next lemma shows that the difficult terms in E1
n,tn + E2

n,tn are op(n
−1).

Lemma A.4. Let all terms be as defined above. For any t < m let F 1
n,t =∫

(τ,t]
ϕ̂n,td(F̂n − Fn) and F 2

n,t =
∫
(τ0,t]

ϕ̂0
n,td(Fn − F̂ 0

n). Then

F 1
n,tn + F 2

n,tn = op(n
−1).

Proof. For the proof, denote t ≡ tn and recall that we assume τ ≤ τ0. We see∫
(τ,t]

ϕ̂n,td(F̂n − Fn) +

∫
(τ0,t]

ϕ̂0
n,td(Fn − F̂ 0

n)

=

∫
(τ0,t]

ϕ̂n,td(F̂n − Fn) +

∫
(τ,τ0]

ϕ̂n,td(F̂n − Fn)

−

(∫
(τ0,t]

ϕ̂n,td(F̂ 0
n − Fn) +

∫
(τ0,t]

(ϕ̂0
n,t − ϕ̂n,t)d(F̂ 0

n − Fn)

)

which equals∫
(τ0,t]

ϕ̂n,t(f̂n − f̂0n)dλ−
∫
(τ0,t]

(ϕ̂0
n,t − ϕ̂n,t)d(F̂n − Fn) +

∫
(τ,τ0]

ϕ̂n,td(F̂n − Fn).

(A.38)

Note ‖ϕ̂0
n,t‖J∗ = Op(n

−2/5). This follows because n1/5(τ0−t) = Op(1) by Propo-

sition 7.3 of Doss and Wellner [2018b], and because ‖(ϕ̂0
n)′‖J∗ = n−1/5Op(1) by

Corollary 7.1 of Doss and Wellner [2018b], since ϕ′0(m) = 0. In both cases the
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Op(1) does not depend on tn. Thus, the first term in (A.38) is op(n
−1), since

‖f̂n−f̂0n‖J∗ = op(n
−2/5). We will rewrite the other two terms of (A.38) with inte-

gration by parts. The negative of the middle term,
∫
(τ0,t]

(ϕ̂0
n,t− ϕ̂n,t)d(F̂n−Fn),

equals

((F̂n − Fn)(ϕ̂0
n,t − ϕ̂n,t))(τ0, t]−

∫
(τ0,t]

(F̂n − Fn)((ϕ̂0
n)′ − ϕ̂′n)dλ. (A.39)

Note ‖F̂n − Fn‖J∗ = Op(n
−3/5) by Lemma C.4. Thus the first term in (A.39)

is op(n
−1) because ‖ϕ̂0

n − ϕ̂n‖J∗ = op(n
−2/5). The second term in (A.39) is

op(n
−1) because (A.34) implies that

∫
[τ0,t]

|(ϕ̂n − ϕ̂n)′|dλ = op(n
−2/5), and, as

already noted, ‖F̂n − Fn‖J∗ = Op(n
−3/5). Thus (A.39) is op(n

−1).
We have left the final term of (A.38). This can be bounded by∣∣∣∣∣(F̂n − Fn)(ϕ̂n,t)(τ, τ

0]−
∫
(τ,τ0]

(F̂n − Fn)ϕ̂′ndλ

∣∣∣∣∣ , (A.40)

and the second term above bounded by ‖F̂n−Fn‖[τ,τ0]ϕ̂
′
n(τ+)(τ0−τ) = op(n

−1)

because ‖F̂n−Fn‖J∗ = Op(n
−3/5), ϕ̂′n(τ+) = Op(n

−1/5) (since ϕ′0(m) = 0, and
recall ϕ̂n is linear on [τ, τ0]), and (τ0− τ) = op(n

−1/5). The first term of (A.40)

is op(n
−1) because in fact ‖F̂n − Fn‖[τ,τ0] = op(n

−3/5), by Lemma C.4 (since

|τ − τ0| = op(n
−1/5)), and ‖ϕ̂n,t‖[τ,τ0] = Op(n

−2/5). Thus (A.38) is op(n
−1) so

we are done.

For t < m, define

G1
n,t = ϕ̂n(t)(F̂n(t)− F̂ 0

n(t)) + (ϕ̂n(τ)− ϕ̂n(t))(F̂n(τ)− Fn(τ))

and

G2
n,t = ϕ̂0

n(t)(F̂n(t)− F̂ 0
n(t)) + (ϕ̂0

n(τ0)− ϕ̂0
n(t))(Fn(τ0)− F̂ 0

n(τ0)),

so that Gin,tn = Ein,tn − F
i
n,tn for i = 1, 2 (recalling the definitions of Ein,tn in

(A.6) and (A.7)). The key idea now is that the first term in Gin,t matches up
with Rn,1,t1,t2 . To make this explicit, we need to define a one-sided version of

Rn,1,t1,t2 . Since both f̂n and f̂0n integrate to 1, note for any t1 ≤ m ≤ t2, that

Rn,1,t1,t2 = −ϕ0(m)

∫
Dc

n,t1,t2

(f̂n − f̂0n)dλ;

thus, define
Rn,1,t1 = −ϕ0(m)(F̂n(t1)− F̂ 0

n(t1)). (A.41)

The corresponding definition for the right side is −ϕ0(m)
∫X(n)

t2
(f̂n − f̂0n)dλ,

which when summed with (A.41) yields Rn,1,t1,t2 .
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Lemma A.5. Let all terms be as defined above. We then have for i = 1, 2,

Gin,tn +Rn,1,tn = op(n
−1).

Proof. The second terms in the definitions of Gin,tn , i = 1, 2, are both Op(n
−7/5)

since ϕ̂n(τ) − ϕ̂n(t) and ϕ̂0
n(τ0) − ϕ̂0

n(t) are both Op(n
−2/5) by Lemma 4.5 of

Balabdaoui, Rufibach and Wellner [2009] and Corollary 5.4 of Doss and Wellner

[2018b], and the terms F̂n(τ) − Fn(τ) and F̂ 0
n(τ0) − Fn(τ0) are both Op(n

−1)
by Corollary 2.4 and Corollary 2.12 of Doss and Wellner [2018b].

Thus we consider the first terms of Gin,tn , in sum with Rn,1,tn . Consider the
case i = 1; we see that

ϕ̂n(tn)(F̂n(tn)−F̂ 0
n(tn))+Rn,1,tn = (ϕ̂n(tn)−ϕ0(m))(F̂n(tn)−F̂ 0

n(tn)), (A.42)

and (ϕ̂n(tn)−ϕ0(m)) = Op(n
−2/5) by Lemma 4.5 of Balabdaoui, Rufibach and

Wellner [2009] since ϕ′0(m) = 0. Crucially, we are not making a claim that ϕ̂n is
close to ϕ0(m) uniformly over an interval, just a claim at the point tn satisfying

tn → m, so the Op statement does not depend on b. Since F̂n(tn) − F̂ 0
n(tn) =

op(n
−3/5) by (A.33), we conclude that (A.42) is op(n

−1). Identical reasoning
applies to the case i = 2, using Corollary 5.4 of Doss and Wellner [2018b]. Thus
we are done.

Thus by Lemmas A.4 and A.5,

Rn,1,tn + (E1
n,tn + E2

n,tn)/2 = op(n
−1). (A.43)

Now we decompose the Ain,tn terms. Let

B1
n,tn =

∫
ϕ̂n,τd(Fn − F̂ 0

n),

B2
n,tn =

∫
ϕ̂0
n,τ0d(F̂n − Fn).

where τ and τ0 are as previously defined (on page 12) and

C1
n,tn =

∫
ϕ̂′n(tn−)(x− tn)− d(Fn − F̂ 0

n)

C2
n,tn =

∫
(ϕ̂0
n)′(tn−)(x− tn)− d(F̂n − Fn).

Then, for i = 1, 2, by the definitions of τ and τ0,

Ain = Bin + Cin,

and note that

B1
n,tn =

∫
(ϕ̂n,τ−ϕ̂0

n,τ0)d(Fn−F̂ 0
n) and B2

n,tn =

∫
(ϕ̂0
n,τ0−ϕ̂n,τ )d(F̂n−Fn),

(A.44)
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by the characterization theorems, Theorem 2.2 of Doss and Wellner [2018b] with
∆ = ±ϕ̂0

n,τ0 and Theorem 2.8 of Doss and Wellner [2018b] with ∆ = ±ϕ̂n,τ .

Perhaps strangely, it seems it is easier to analyze B1
n − B2

n than B1
n + B2

n, and
C1
n + C2

n rather than C1
n − C2

n. Perhaps more strangely, this will suffice. Again
by Theorem 2.2 of Doss and Wellner [2018b] with ∆ = ϕ̂n,τ and Theorem 2.8
of Doss and Wellner [2018b] with ∆ = ϕ̂0

n,τ0 , B1
n,tn ≤ 0 and B2

n,tn ≥ 0, so

B1
n,tn −B

2
n,tn ≤

{
−B2

n,tn ≤ 0

B1
n,tn ≤ 0.

(A.45)

Thus, if we can show B1
n,tn − B

2
n,tn = op(n

−1) then Bin,tn = op(n
−1), i = 1, 2,

so B1
n,tn +B2

n,tn = op(n
−1). We do this in the following lemma.

Lemma A.6. With all terms as defined above,

B1
n,tn −B

2
n,tn = op(n

−1),

and thus
B1
n,tn +B2

n,tn = op(n
−1).

Proof. Now by (A.44)

B1
n,tn −B

2
n,tn =

∫
(ϕ̂n,τ − ϕ̂0

n,τ )d(F̂n − F̂ 0
n) +

∫
(ϕ̂0
n,τ − ϕ̂0

n,τ0)d(F̂n − F̂ 0
n)

which equals∫
(ϕ̂n,τ−ϕ̂0

n,τ )d(F̂n−F̂ 0
n)+(ϕ̂0

n(τ0)−ϕ̂0
n(τ))(F̂n−F̂ 0

n)(τ)+

∫ τ0

τ

ϕ̂0
n,τ0d(F̂n−F̂ 0

n).

(A.46)
The first term in (A.46) equals, applying (C.1),∫ τ

X(1)

(ϕ̂n − ϕ̂0
n)2eε̃

1
n f̂0ndλ− ((ϕ̂n − ϕ̂0

n)(F̂n − F̂ 0
n))(τ), (A.47)

where ε̃1n is identical to ε̃1n in Lemma A.3, and thus by (A.30) the first term
in (A.47) is op(n

−1). The second term is also op(n
−1) since ‖ϕ̂n − ϕ̂0

n‖J∗ =

op(n
−2/5) and ‖F̂n − F̂ 0

n‖J∗ = op(n
−3/5). This also shows that the middle

terms in (A.46) is op(n
−1). To see the last term is op(n

−1), recall ‖ϕ̂0
n,τ0‖J∗ =

Op(n
−2/5) by Corollary 5.4 of Doss and Wellner [2018b], using that ϕ′0(m) = 0.

Since |τ0 − τ | = op(n
−1/5) and ‖f̂n − f̂0n‖J∗ = op(n

−2/5) we see the last term of
(A.46) is op(n

−1), so (A.46) is op(n
−1), so B1

n,tn −B
2
n,tn = op(n

−1). By (A.45),
B1
n,tn +B2

n,tn = op(n
−1), so we are done.

We now turn our attention to C1
n,tn + C2

n,tn .

Lemma A.7. With all terms as defined above,

C1
n,tn + C2

n,tn = op(n
−1).
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Proof. Note that C1
n,tn + C2

n,tn equals∫
(ϕ̂′n(tn−)− (ϕ̂0

n)′(tn−))(x− tn)− d(Fn − F̂ 0
n)

+

∫
(ϕ̂0
n)′(tn−)(x− tn)− d(Fn − F̂ 0

n) +

∫
(ϕ̂0
n)′(tn−)(x− tn)− d(F̂n − Fn)

which equals∫
(ϕ̂′n(tn−)−(ϕ̂0

n)′(tn−))(x−tn)− d(Fn−F̂ 0
n)+

∫
(ϕ̂0
n)′(tn−)(x−tn)− d(F̂n−F̂ 0

n).

(A.48)

Since (F̂n − F̂ 0
n)(X(1)) = 0, the second term in (A.48) equals

− (ϕ̂0
n)′(tn−)

∫ tn

−∞
(F̂n − F̂ 0

n)dλ = −(ϕ̂0
n)′(tn−)

∫ tn

υ

(F̂n − F̂ 0
n)dλ (A.49)

for a point υ ∈ [τ, τ0] which exists by the proof of Proposition 2.13 of Doss and
Wellner [2018b]. By (A.33), since tn − υ = Op(n

−1/5),∫ tn

υ

(F̂n − F̂ 0
n)dλ = op(n

−4/5). (A.50)

Since tn → m, by Corollary 5.4 of Doss and Wellner [2018b], (ϕ̂0
n)′(tn−) =

Op(1)n−1/5. As in previous cases, by taking tn = ξn and C = 0 in that corollary,
the Op(1) does not depend on tn. Thus we have shown (A.49) is op(n

−1).

Since Fn(−∞)− F̂ 0
n(−∞) = 0, the first term in (A.48) equals

−(ϕ̂n − ϕ̂0
n)′(tn−)

∫ tn

X(1)

(Fn − F̂ 0
n)dλ,

which equals

− (ϕ̂n − ϕ̂0
n)′(tn−)

∫ tn

τ0

(Fn − F̂ 0
n)dλ (A.51)

because Ĥ0
n,L(τ0) = Yn,L(τ0) by Theorem 2.10 of Doss and Wellner [2018b].

The absolute value of (A.51) is bounded above by

|ϕ̂′n(tn−)− (ϕ̂0
n)′(tn−)|(tn − τ0) sup

u∈[τ0,tn]

|Fn(u)− F̂ 0
n(u)|. (A.52)

We know |ϕ̂′n(tn−)− (ϕ̂0
n)′(tn−)| = Op(n

−1/5) but unfortunately it is not nec-
essarily op(n

−1/5). However,

|ϕ̂′n(tn−)− (ϕ̂0
n)′(tn−)|(tn− τ0) = |(ϕ̂n− ϕ̂0

n)(tn)− (ϕ̂n− ϕ̂0
n)(τ0)| = op(n

−2/5),

so (A.52) is op(n
−1), and thus so also is (A.48); that is, C1

n,tn +C2
n,tn = op(n

−1).
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Thus we have shown that C1
n,tn + C2

n,tn = op(n
−1) and B1

n,tn + B2
n,tn =

op(n
−1), so we can conclude

A1
n,tn +A2

n,tn = op(n
−1).

Together with (A.43), (A.36), and (A.37), we can conclude that

Rn,tn +Rcn,1,tn = op(n
−1). (A.53)

A.3. Proof completion / details: the main result

The preceding one-sided arguments apply symmetrically to the error terms on
the right side of m. Thus, we now return to handling simultaneously the two-
sided error terms. We have thus shown for any δ > 0 we can find a b ≡ bδ, such
that, letting tn,1 = m− bn−1/5, tn,2 = m+ bn−1/5, we have

|Rn,1,tn,1,tn,2
+Rcn,1,tn,1,tn,2

| ≤ δKn−1 (A.54)

where K = Op(1) does not depend on b (i.e., on δ). Now by Proposition A.1

|Rn,2,tn,1,tn,2 |+ |R0
n,2,tn,1,tn,2

|+ |Rn,3,tn,1,tn,2 |+ |R0
n,3,tn,1,tn,2

| = op(n
−1).

Let

Rn,tn,1,tn,2
≡ 2n(Rn,1,tn,1,tn,2

+Rcn,1,tn,1,tn,2
+Rn,2,tn,1,tn,2

−R0
n,2,tn,1,tn,2

+Rn,3,tn,1,tn,2
−R0

n,3,tn,1,tn,2
).

Then by (4.9), write 2 log λn = Dn,tn,1,tn,2 + Rn,tn,1,tn,2 (slightly modifying the
form of the subscripts). Now fixing any subsequence of {n}∞n=1, we can find a
subsubsequence such that Rn,tn,1,tn,2

→d δR for a tight random variable R by

(A.54). For b > 0 let Db ≡
∫ b/γ2
−b/γ2(ϕ̂2(u) − (ϕ̂0)2(u))du, as in (4.11), which lets

us conclude that

2 log λn = Dn,tn,1,tn,2
+Rn,tn,1,tn,2

→d Db + δR (A.55)

along the subsubsequence. Taking say δ = 1 shows that there exists a (tight)
limit random variable, which we denote by D. Then, since R does not depend
on δ, we can let δ ↘ 0 so bδ ≡ b↗∞, and see that limb→∞Db = D, which can
now be seen to be pivotal. Thus along this subsubsequence, 2 log λn →d D. This
was true for an arbitrary subsubsequence, and so the convergence in distribution
holds along the original sequence. Thus,

2 log λn →d D as n→∞.

imsart-generic ver. 2011/05/20 file: p2-supp.tex date: October 16, 2018



Doss and Wellner/Inference for the mode 19

A.4. Proofs for global consistency

Proof of Theorem 2.1 Part B. We now indicate the changes to the arguments
of Dümbgen and Rufibach [2009] which are needed to prove an analog of Theo-
rem 4.1 of Dümbgen and Rufibach [2009] for ϕ̂0

n. Note that our Theorem 2.1 part
B is only a partial analogue of Theorem 2.1 part A since we only consider the case
β = 2 and require m to be unique. We assume f0 ∈ Pm := {eϕ :

∫
eϕ(x)dx = 1,

ϕ ∈ Cm} where for m fixed Cm is the class of concave, closed, proper functions
withm as a maximum. We need to study the allowed ‘caricatures’ of the Lemmas
A.4 and A.5 of Dümbgen and Rufibach [2009], which differ for ϕ̂0

n from those
for ϕ̂n. Let ρn ≡ n−1 log n. Note, we define here a function ∆ to be “piecewise
linear (with q knots)” to mean that

R may be partitioned into q + 1 non-degenerate intervals (A.56)

on each of which ∆ is linear.

In particular, ∆ may be discontinuous. Let Dk be the family of piecewise linear
functions on R with at most k knots. Let

M̂ := {x ∈ R : (ϕ̂0
n)′(x) = 0} and N̂ := [τL, τR], (A.57)

where τL is the greatest knot of ϕ̂0
n strictly smaller than m and τR is the smallest

knot of ϕ̂0
n strictly larger than m. Note that M̂ , the (closed) modal interval of

ϕ̂0
n, is contained in N̂ , and may or may not be strictly contained in N̂ . Let
Sn(ϕ̂0

n) denote the set of knots of ϕ̂0
n. For a function f , let f(x+) = limt↘x f(t)

and f(x−) = limt↗x f(t) when these limits exist.

Lemma A.8. Let M̂ be as in (A.57). Let ∆ : R→ R be piecewise linear in the
sense of (A.56), such that

∆1
M̂

+ (−∞)× 1
M̂c is concave with mode at m, (A.58)

and assume for each knot q of ∆ that one of the following holds:

q ∈ Sn(ϕ̂0
n) \ {m} and ∆(q) = lim inf

x→q
∆(x) (A.59)

∆(q) = lim
r→q

∆(r) and ∆′(q−) ≥ ∆′(q+) (A.60)

q = m,∆(q) = lim
r∈M̂,r→q

∆(r) and ∆(q) = lim inf
x→q

∆(x). (A.61)

Then ∫
∆dFn ≤

∫
∆dF̂ 0

n . (A.62)

Note that if m is not a knot of ϕ̂0
n, so is interior to M̂ , then ∆ must be

continuous at m and (A.58) implies that m is a local mode of ∆. If m ∈ Sn(ϕ̂0
n)

such that (ϕ̂0
n)′(m+) < 0, then (A.61) allows ∆ to be discontinuous at m but

forces ∆(m−) ≤ ∆(m+).
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Proof. We show we can construct a sequence ∆k converging pointwise to ∆,
with |∆k| ≤ |∆|, and such that ϕ̂0

n + ε∆k is concave with mode at m for small

enough ε. We first show this holds on the interval N̂ .
If m is not a knot of ϕ̂0

n then by (A.58) ϕ̂0
n + ε∆ is concave with mode at

m on N̂ . Now if m is a knot of ϕ̂0
n, either (A.60) holds or (A.61) holds. In the

former case, again for ε > 0 small enough, ϕ̂0
n + ε∆ is concave with mode at m

on N̂ .
Thus assume (A.61) holds. For concreteness, assume m ∈ Sn(ϕ̂0

n) is such that
(ϕ̂0
n)′(m−) < 0 = (ϕ̂0

n)′(m+). For x ∈ [m−1/k,m] define ∆k(x) to be the linear
function connecting ∆(m) to ∆(m− 1/k) for k = 1, . . . , and let ∆k(x) = ∆(x)

for x ∈ N̂ \ [m− 1/k,m]. Then for k large,

ϕ̂0
n + ε∆k is concave with mode m (A.63)

on N̂ , and ∆k(x) is monotonically increasing to ∆(x) (again, for k ≥ some K),
by (A.61).

For knots q of ∆ with q 6= m, similar arguments can be made; one can define
∆k(x) such that |∆k(x)| ≤ |∆(x)| where the knots qk of ∆k are either knots of
ϕ̂0
n or satisfy ∆′k(qk−) > ∆′k(q+) so that for ε > 0 small (A.63) holds globally.

Thus, by the dominated convergence theorem, and the characterization theorem
for F̂ 0

n , ∫
∆dFn = lim

k→∞

∫
∆kdFn ≤ lim

k

∫
∆kdF̂

0
n =

∫
∆dF̂ 0

n .

For the next lemma, we define for a function ∆ : R→ R,

W (∆) = sup
x∈R

|∆(x)|
1 ∨ |ϕ0(x)|

and σ2(∆) =

∫
R

∆2(x)dF0(x).

Also, for a point x ∈ R, let τ0+(x) = minSn(ϕ̂0
n)∩[x,∞) and τ0−(x) = maxSn(ϕ̂0

n)∩
(−∞, x].

Lemma A.9. Let T = [A,B] be a compact subinterval strictly contained in
{f0 > 0}. Let ϕ0 − ϕ̂0

n ≥ ε or ϕ̂0
n − ϕ0 ≥ ε on some interval [c, c+ δ] ⊂ T with

length δ > 0 and suppose X(1) < c and X(n) > c + δ. Suppose [τ0−(c), τ0+(c +

δ)] ∩ N̂ = ∅. Then there exists a piecewise linear function ∆ with at most three
knots, each of which satisfies one of conditions (A.59) or (A.60) and a positive
constant K ′ = K ′(f0, T ) such that

|ϕ0 − ϕ̂0| ≥ ε|∆|, (A.64)

∆(ϕ0 − ϕ̂0) ≥ 0, (A.65)

∆ ≤ 1, (A.66)∫ c+δ

c

∆2(x)dx ≥ δ/3, (A.67)

W (∆) ≤ K ′δ−1/2σ(∆). (A.68)
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Proof. The proof is identical to the proof of Lemma A.5 in Dümbgen and Ru-
fibach [2009]; the condition [τ0−(c), τ0+(c+ δ)] ∩ N̂ = ∅ allows us to use identical
perturbations for ϕ̂0

n that one can use for ϕ̂n.

Next, we need an adaptation of the above lemma for the more difficult case
where we have to accomodate the modal constraint. We assume here that the
length of N̂ is shorter than δ, which will be true with high probability when
we apply the lemma to the case where N̂ is of order n−1/5 and δ of order
(log n/n)1/5.

Lemma A.10. Let T = [A,B] be a compact interval strictly contained in {f0 >
0}. Let ϕ0 − ϕ̂0

n ≥ ε or ϕ̂0
n − ϕ0 ≥ ε on some interval [c, c + δ] ⊂ T with

length δ > 0 and suppose that X(1) < c and X(n) > c + δ. Suppose also that

[τ0−(c), τ0+(c + δ)] ∩ N̂ 6= ∅ and |N̂ |, the length of N̂ , is no larger than δ/4,
and suppose T \ [c,∞) and T \ (−∞, c + δ] both contain a knot of ϕ̂0

n. Then
there exists a piecewise linear (in the sense of (A.56)) function ∆ with at most
4 knots, satisfying the conditions of Lemma A.8, and there exists a positive
K ′ ≡ K ′(f0, T ) such that

|ϕ0 − ϕ̂0
n| ≥ ε|∆|, (A.69)

∆(ϕ0 − ϕ̂0
n) ≥ 0, (A.70)

∆ ≤ 1 (A.71)∫ c+δ

c

∆2(x)dx ≥ δ/6, (A.72)

W (∆) ≤ K ′δ−1/2σ(∆). (A.73)

Proof. We argue by several different cases. We focus only on the cases where N̂
is near to [c, c+ δ] in the sense that we now assume that either N̂ ∩ [c, c+ δ] 6= ∅
or there are no knots of ϕ̂0

n between N̂ and [c, c+δ]. In any other case, the proof
Lemma A.5 of Dümbgen and Rufibach [2009] applies without modification.

We begin with the cases where ϕ̂0
n − ϕ0 ≥ ε on [c, c+ δ]. There are separate

subcases depending on how N̂ relates to [c, c + δ] and the (non-)existence of
other knots in [c, c+ δ]. In all cases, we will first verify conditions (A.69)–(A.72)
and put off verifying (A.73) until later.

Case 1.1 Assume ϕ̂0
n−ϕ0 ≥ ε on [c, c+ δ] and N̂ ⊂ [c, c+ δ]. Let ∆ ∈ D4 be

continuous (and piecewise linear) with knots at c, τL, τR, and c + δ, and let ∆

be equal to −1 on N̂ and 0 on [c, c+ δ]c. Thus ∆ satisfies conditions (A.58) and
(A.60) of Lemma A.8. Then |∆| ≤ 1 on [c, c+ δ] and is 0 on [c, c+ δ]c, so (A.69)
is satisfied, and so is (A.70). Since ∆ is always nonpositive, (A.71) is trivially
satisfied. We see that∫ c+δ

c

∆2(x)dx ≥
∫ x0

0

(
x

x0

)2

dx+

∫ δ

x0

(
δ − x
δ − x0

)2

dx (A.74)

=
x0
3

+
δ − x0

3
=
δ

3
,
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so (A.72) is satisfied.

The next two cases assume ϕ̂0
n−ϕ0 ≥ ε on [c, c+ δ] and N̂ 6⊂ [c, c+ δ]. Recall

N̂ = [τL, τR].

Case 1.2 Assume ϕ̂0
n − ϕ0 ≥ ε on [c, c+ δ] and N̂ 6⊂ [c, c+ δ]. Additionally,

assume there exists τ ∈ Sn(ϕ̂0
n)∩ ([c, c+ δ]\ N̂). We now again let ∆ ∈ D3 ⊂ D4

be continuous, now with ∆(τ) = −1. If τR < c + δ, then set the knots of ∆ at
c ∨ τR, τ, and c+ δ, and set ∆ to be 0 on [c ∨ τR, c+ δ]c. If τL > c, then set the
knots at c, τ, and (c + δ) ∧ τL and set ∆ to be 0 on [c, (c + δ) ∧ τL]c. Consider

the case where τR < c + δ, and the other case is identical. Since N̂ 6⊂ [c, c + δ]

and |N̂ | ≤ δ/4, τR− c < δ/4. Again, ∆ satisfies conditions (A.58) and (A.60) of
Lemma A.8. Conditions (A.69)–(A.71) can be immediately verified, as before.
Condition (A.72) can be verified as in the previous case, replacing δ by 3δ/4,
since τR − c < δ/4, and this yields∫ c+δ

c

∆2(x)dx ≥ δ/4. (A.75)

Case 1.3 Assume ϕ̂0
n−ϕ0 ≥ ε on [c, c+δ] and N̂ 6⊂ [c, c+δ]. Additionally, as-

sume that Sn(ϕ̂0
n)∩([c, c+δ]\N̂) = ∅. We define ∆̃ to be an affine function either

with ∆̃(c) = −ε and ∆̃ nonincreasing or ∆̃(c + δ) = −ε and ∆̃ nondecreasing.
Thus, ∆̃ ≤ −ε on [c, c+ δ]. We take ∆̃ to be tangent to ϕ0− ϕ̂0

n (but this is not

essential). Next let (c1, d1) := {∆̃ < 0} ∩ (c0, d0) where [c0, d0] ⊃ ([c, c+ δ] \ N̂)
is defined to be the maximal interval on which ϕ0 − ϕ̂0

n is concave, so ϕ̂0
n is

linear. Define ∆ ∈ D2 ⊂ D4 via

∆(x) :=

{
0 x /∈ [c1, d1],

∆̃(x)/ε x ∈ [c1, d1].

Now, (A.58) of Lemma A.8 is seen to be satisfied since ∆ is 0 on N̂ , and since
by definition τL 6= m 6= τR, (A.59) is satisfied at c1 and d1. Since ∆̃ is tangent
to ϕ0 − ϕ̂0

n, condition (A.69) is verified, and (A.70) and (A.71) are also seen to
be verified. Condition (A.72) holds easily since in fact ∆ ≤ −1 on [c, c+ δ].

Case 2 Now assume ϕ0 − ϕ̂0
n ≥ ε on [c, c+ δ].

Case 2.1 Assume N̂ ⊂ (c, c + δ). Then if c + δ/2 ≤ m ≤ c + δ then set
c0 = τ−1(c), the largest knot of ϕ̂0

n not larger than c, set x0 = m, and set
d0 = τR. If c ≤ m < c + δ/2, set c0 = τL, set x0 = m, and let d0 = τ1(c + δ),
the smallest knot of ϕ̂0

n not smaller than c+ δ.

Case 2.2 Assume N̂ 6⊂ (c, c+δ). Then (c, c+δ)\N̂ is an interval, and we set x0
to be the midpoint of this interval; if m ≥ c+ δ/2 then set c0 = τ−1(c) and and
set d0 = τ1(c + δ) ∧ τL. Similarly, if m < c + δ/2, set c0 = τ−1(c) ∨ τR and set

d0 = τ1(c+ δ). Since |N̂ | ≤ δ/4, c0 − c ≤ δ/4 and c+ δ − d0 < δ/4 (where only
one of the previous inequalities is relevant, depending on whether m < c+ δ/4
or m > c+ 3δ/4).
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For both Case 2.1 and 2.2 we then define ∆ ∈ D3 ⊂ D4 by

∆(x) :=


0, x ∈ [c0, d0]c,

1 + β1(x− x0) x ∈ [c0, x0],

1 + β2(x− x0), x ∈ [x0, d0],

(A.76)

where β1 ≥ 0 is chosen such that if

(ϕ0 − ϕ̂0
n)(c0) ≥ 0 then ∆(c0) = 0, and if (A.77)

(ϕ0 − ϕ̂0
n)(c0) < 0 then sign(∆) = sign(ϕ0 − ϕ̂0

n) on [c0, x0], (A.78)

where sign(y) is 1 if y ≥ 0 and −1 if y < 0. Similarly, β2 ≤ 0 is chosen such that
if

(ϕ0 − ϕ̂0
n)(d0) ≥ 0 then ∆(d0) = 0, and if (A.79)

(ϕ0 − ϕ̂0
n)(d0) < 0 then sign(∆) = sign(ϕ0 − ϕ̂0

n) on [x0, d0]. (A.80)

That is, ∆ is defined to be 1 at x0 and, if ϕ0− ϕ̂0
n crosses below 0 on [c0, c]∪ [c+

δ, d0] at potential points c̃ or d̃, then ∆ crosses below 0 at the same point(s).
We note also for future reference in Case 2.1 that if c + δ/2 ≤ m then (ϕ0 −
ϕ̂0
n)(d0) = 0 since d0 = τR ≤ c + δ, so we are in case (A.79) and ∆(d0) = 0.

Thus W (∆) = W (∆1[c0,x0]), because we have thus forced W (∆1[x0,d0]) = 1 (and
1 ≤ W (∆1[c0,x0])). Similarly, if m < c + δ/2 then we are in case (A.77), and
W (∆) = W (∆1[x0,d0]). Now we check that the conditions of Lemma A.8 hold.

Case 2.1 (continued) If m ∈ N̂ ⊂ [c, c + δ] then ∆ is continuous at m (so
(A.61) holds), (A.58) holds, and at c0 and d0 (A.59) holds (possibly with one
discontinuity) since these are both knots.

Case 2.2 (continued) Note, if N̂ 6⊂ [c, c + δ], then ∆ is 0 on N̂ ⊇ M̂ : if

N̂ ∩ [c, c+ δ] = ∅ then this is immediate (since the endpoint of N̂ is the nearest
knot to [c, c+ δ]), and if one of τL or τR lies in (c, c+ δ), then ϕ0− ϕ̂0

n is greater
or equal to ε at that point, so ∆ will be 0 at that point. Now (A.59) holds at

c0, d0, and ∆ is 0 on N̂ ⊇ M̂ so (A.61) holds.
Now we check the remaining conditions. Conditions (A.70) and (A.71) hold

by construction for both Case 2.1 and 2.2. We check Condition (A.72) holds for
the two cases.
Case 2.1 (continued) Define ∆∗(x) to be the triangle function with ∆∗(x0) =
1 and ∆∗(c) = ∆∗(c + δ) = 0. We assume without loss of generality that m ≥
c + δ/2. Then, ∆1[c,x0] ≥ ∆∗1[c,x0], so by (A.74),

∫
∆2(x)dx ≥

∫m
c

∆2
∗(x)dx ≥

(m− c)/3 ≥ δ/6.
Case 2.2 (continued) Define ∆∗ to be the triangle function with ∆∗(x0) = 1,
∆∗(c0 ∨ c) = 0 = ∆∗(d0 ∧ (c+ δ)), and ∆∗(x) = 0 for x /∈ [c, c+ δ]. Then again
∆1[c0∨c,d0∧(c+δ)] ≥ ∆∗1[c0∨c,d0∧(c+δ)]. Since c0 − c ≤ δ/4 and c + δ − d0 < δ/4,

d0∧(c+δ)−(c0∨c) ≥ 3δ/4. Thus, as in (A.75),
∫ c+δ
c

∆(x)2dx ≥
∫ c+δ
c

∆∗(x)2dx ≥
δ/4.

Next we check (A.69) for both Case 2.1 and 2.2. If ϕ0 − ϕ̂0
n ≥ 0 on [c0, d0]

there is nothing to check (since then |∆| = ∆ ≤ 1). Assume that there is thus
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a point d̃ with c + δ < d̃ < d0 such that ϕ0 − ϕ̂0
n ≤ 0 on [d̃, d0]. (An analogous

argument holds for a point c̃ < c). By construction, (ϕ0 − ϕ̂0
n)(c + δ) ≥ ε ≥

ε∆(c+ δ) ≥ 0, and (ϕ0 − ϕ̂0
n)(d̃) = ε∆(d̃) = 0; on [c+ δ, d0], ϕ0 − ϕ̂0

n is concave
by the definition of d0. Thus, |(ϕ0 − ϕ̂0

n)′(x+)| ≥ ε|β2| for any x ∈ [d̃, d0]. Thus
(ϕ0 − ϕ̂0

n)(x) ≤ ε∆(x) ≤ 0 for x ∈ [d̃, d0]. Thus we have shown (A.69).

Lastly, we check (A.73) in all cases. Note that since T is a compact interval
strictly contained in {f > 0}, there exists a constant C0 such that f(x) ≥ C0 for
x ∈ T . Now, in Case 1.1, W (∆) ≤ ‖∆‖ = 1 where ‖∆‖ = supx∈R |∆(x)|. And
we have σ(∆)2 ≥ C0

∫
R ∆(x)2dx ≥ C0δ/3 by (A.74). So let K ′ ≥ (3/C0)1/2, and

then (A.73) holds.
Similarly, in Case 1.2, W (∆) ≤ 1 and σ(∆)2 ≥ C0δ/4 by (A.75), so let

K ′ ≥ (4/C0)1/2 and then (A.73) holds.
To handle the remaining cases, we consider h(x) defined by h(x) = 1Q(x)(α+

γx) for α, γ ∈ R where Q = [x0, y0] is a nondegenerate interval, Q ⊆ T . We
always have

W (h) ≤ ‖h‖ and σ(h)2 ≥ C0

∫ y0

x0

h(x)2dx.

Now
∫
R h(x)2dx is invariant under translations of h, sign changes of h, and

replacing h by h(−x). Thus, we assume that h(y0) > 0, by replacing h by
−h if necessary. If miny∈Q h(y) ≥ 0 then let [x0, y0] = [0, y0], taking x0 = 0
by translation. Otherwise, take x0 < 0 < y0 and h(0) = 0, by translation.
Furthermore, we assume h(y0) = ‖h‖ by replacing h(x) by −h(−x) if h(x0) <
−h(y0) < 0 (so h(y0) > 0, still), or by h(−x) if h(x0) > h(y0) > 0. Note that
we have forced h to be nondecreasing so γ ≥ 0.

Now if we are in the case infy∈Q h(y) = h(0) = α > 0 with x0 = 0, then∫ y0

0

(α+ γx)2dx =
1

3γ

(
(α+ γy0)3 − α3

)
=

1

3
y0
(
(α+ γy0)2 + α(α+ γy0) + α2

)
=

1

3
(y0 − x0)‖h‖2,

since ‖h‖ = α + γy0 in this case. If we are in the case h(x0) < 0 < h(y0) with
x0 < 0 < y0, then∫ y0

x0

(γx)2dx =
γ2

3
y30 −

γ2

3
x30 =

1

3
(y0 − x0)γ2(y20 − y0x0 + x20) ≥ 1

3
(y0 − x0)‖h‖2

since ‖h‖2 = γ2y20 in this case. Thus, by (C.6),(
3

C0(y0 − x0)

)1/2

σ(h) ≥ ‖h‖. (A.81)

Now we apply these computations to the remaining cases. In Case 1.3, ∆ is of
the form of h defined above and the corresponding x0, y0 satisfy y0− x0 ≥ 3δ/4
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since [c1, d1] ⊇ [c, c + δ] \ N̂ and |N̂ | ≤ δ/4. Note that we can take Q ⊂ T by
the assumption that there are knots of ϕ̂0

n above and below [c, c+ δ], and these
bound the support of ∆. Thus this case is complete since σ(∆)2 ≥ (C0/3)(y0 −
x0)W (∆)2.

For Case 2, ∆ equals h1 + h2 where h1, h2 are of the type considered above
and have disjoint support, where both supports are contained in T again by the
assumption that ϕ̂0

n has knots above and below [c, c+ δ].
Case 2.1 (continued) Assume without loss of generality that m ≥ c + δ/2.
Then, as noted after display (A.80), W (∆) = W (∆1[c0,x0]) ≡ W (h1). For h1,
the corresponding x0, y0 satisfy y0 − x0 ≥ δ/2. Thus,

W (∆) = W (h1) ≤ 61/2

C
1/2
0 δ1/2

σ(h1) ≤ 61/2

C
1/2
0 δ1/2

σ(∆).

Case 2.2 (continued) In this case, for both h1, h2, the corresponding x0, y0
satisfy y0 − x0 ≥ 3δ/8 (again using |N̂ | ≤ δ/4). Thus,

W (∆) = max(W (h1),W (h2)) ≤ 81/2

C
1/2
0 δ1/2

max(σ(h1), σ(h2)) ≤ 81/2

C
1/2
0 δ1/2

σ(∆).

This completes the proof.

Now we complete the proof of Theorem 4.7.B. We treat the case m ∈ K. We
can always enlargeK so this holds. Now, since ϕ′′0(m) < 0, there is an intervalK0

containing m such that ϕ̂0
n has knots above and below K0 with high probability

for large n since ϕ̂0
n is uniformly consistent by Proposition 7.2 of Doss and

Wellner [2018b]. Thus, K0 satisfies the condition needed for Lemma A.10. Now
suppose that

sup
t∈K

(ϕ̂0
n − ϕ0)(t) ≥ Cεn or sup

t∈[A+δn,B−δn]
(ϕ0 − ϕ̂0

n(t) ≥ Cεn

for some C > 0 where εn = ρ
2/5
n and δn = ρ

1/5
n = ε

1/2
n . By Lemma A.3 of

Dümbgen and Rufibach [2009] (stated below as Lemma A.11 for convenience)
with ε = Cεn, if C ≥ K(2, L)−2 and n is large it follows that there is a random
interval [cn, cn + δn] either contained in K0 or contained in K \ K0 on which
either ϕ̂0

n − ϕ0 ≥ Cεn/4 or ϕ0 − ϕ̂0
n ≥ Cεn/4. In the case [cn, cn + δn] ⊂ K0,

then since τR−τL = Op(n
−1/5) by Proposition 7.3 of Doss and Wellner [2018b].

(since we assumed ϕ′′0(m) < 0) so for n large

|N̂ | = τR − τL ≤ δn/4 = (log n/n)1/5/4,

so we can find a random function ∆n with no more than four knots which
satisfies the conditions of Lemma A.10. If [cn, cn+δn] ⊂ K \K0 then we can find
a random function ∆n with no more than three knots satisfying the conditions
of Lemma A.9. Now, calculating as in the proof of Theorem 4.1 of Dümbgen
and Rufibach [2009], we can see that for a constant G0,

C2 ≤ 16G2
0(1 + o(1))ε−2n ρn
σ2(∆n)

=
16G2

0(1 + o(1))

δ−1n σ2(∆n)
≤ 48G2

0(1 + o(1))

inft∈K f0(t)
.
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But if we choose C strictly larger than the constant on the right side we find
that the set is empty, and hence has probability 0 on an event with probability
increasing to 1.

Lemma A.11 (Lemma A.3, Dümbgen and Rufibach [2009]). For any β ∈ [1, 2]
and L > 0 there exists a constant K = K(β, L) ∈ (0, 1] with the following
property: suppose that g and ĝ are concave and real-valued functions on T =
[A,B] where g ∈ Hβ,L(T ). Let ε > 0 and 0 < δ < K min(B −A, ε1/β). Then

sup
t∈T

(ĝ − g)(t) ≥ ε or sup
t∈[A+δ,B−δ]

(g − ĝ)(t) ≥ ε

implies that for some c ∈ [A,B − δ]

inf
t∈[c,c+δ]

(ĝ − g)(t) ≥ ε/4 or inf
t∈[c,c+δ]

(g − ĝ)(t) ≥ ε/4.

B. Local asymptotic distribution theory near the mode

B.1. Limit processes and scaling relations

From Theorems 5.1 and 5.2 of Doss and Wellner [2018b], we know that the
processes H and H(2) = ϕ̂ and H0 and (H0)(2) = ϕ̂0 exist and are unique in
the limiting Gaussian white noise problem described by (1.2). We now intro-
duce further notation and basic scaling results that are needed in the proof of
Theorem 1.1. As in Groeneboom, Jongbloed and Wellner [2001] Appendix A,
Proposition A.1, and Theorem 4.6 of Balabdaoui, Rufibach and Wellner [2009]
(noting the corrections indicated in Subsection B.2 below), σ ≡ 1/

√
f0(m),

a = |ϕ(2)
0 (m)|/4!, and let

Ya,σ(t) ≡ σ
∫ t

0

W (s)ds− at4 d
= σ(σ/a)3/5Y ((a/σ)2/5t),

Y (1)
a,σ (t) = σW (t)− 4at3

d
= σ(σ/a)1/5Y (1)((a/σ)2/5t),

where Y ≡ Y1,1. These processes arise as the limits of appropriate (integrated)
localized empirical processes. Similar relations are satisfied by the unconstrained
and constrained invelope processes Ha,σ, H0

a,σ, and their derivatives: with H ≡
H1,1 and H0 ≡ H0

1,1, where H0 can be either HL or HR,

Ha,σ(t)
d
= σ(σ/a)3/5H((a/σ)2/5t),

H0
a,σ(t)

d
= σ(σ/a)3/5H0((a/σ)2/5t),

H(1)
a,σ(t)

d
= σ(σ/a)1/5H(1)((a/σ)2/5t),

(H0
a,σ)(1)(t)

d
= σ(σ/a)1/5(H0)(1)((a/σ)2/5t),
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and

ϕ̂a,σ = H(2)
a,σ

d
= σ4/5a1/5H(2)((a/σ)2/5·)

=
1

γ1γ22
H(2)(·/γ2) ≡ 1

γ1γ22
ϕ̂(·/γ2), (B.1)

and, similarly,

ϕ̂0
a,σ = (H0

a,σ)(2)
d
= σ4/5a1/5(H0)(2)((a/σ)2/5·)

=
1

γ1γ22
(H0)(2)(·/γ2) ≡ 1

γ1γ22
ϕ̂0(·/γ2), (B.2)

Here

γ1 =

(
f0(m)4|ϕ(2)

0 (m)|3

(4!)3

)1/5

=
1

σ

( a
σ

)3/5
, (B.3)

γ2 =

(
(4!)2

f0(m)|ϕ(2)
0 (m)|2

)1/5

=
(σ
a

)2/5
, (B.4)

and we note that

γ1γ
3/2
2 = σ−1 =

√
f0(m), γ1γ

4
2 = a−1 =

4!

|ϕ(2)
0 (m)|

, (B.5)

γ1γ
2
2 =

1

C(m,ϕ0)
≡

(
4!f0(m)2

|ϕ(2)
0 (m)|

)1/5

. (B.6)

B.2. Corrections for Balabdaoui, Rufibach and Wellner [2009]

In (4.25) of Balabdaoui, Rufibach and Wellner [2009], replace

Yk,a,σ(t) := a

∫ t

0

W (s)ds− σtk+2

by

Yk,a,σ(t) := σ

∫ t

0

W (s)ds− atk+2

to accord with Groeneboom, Jongbloed and Wellner [2001], page 1649, line -4,
when k = 2. In (4.22) of Balabdaoui, Rufibach and Wellner [2009], page 1321,
replace the definition of γ1 by

γ1 =

(
f0(x0)k+2|ϕ0(x0)|3

(4!)3

)1/(2k+1)

.
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In (4.23) of Balabdaoui, Rufibach and Wellner [2009], page 1321, replace the
definition of γ2 by

γ2 =

(
((k + 2)!)2

f0(x0)|ϕ(k)
0 (x0)|2

)1/(2k+1)

.

When k = 2 and x0 = m, these definitions of γ1, γ2 reduce to γ1 and γ2 as given
in (B.4). One line above (4.25) of Balabdaoui, Rufibach and Wellner [2009], page
1321, change Ya,k,σ to Yk,a,σ.

C. Lemmas

Below are some useful lemmas.

Lemma C.1. Let fin = eϕin for i = 1, 2, and let x be such that |f1n(x) −
f2n(x)| → 0 as n→∞. Then

f1n(x)− f2n(x) = (ϕ1n(x)− ϕ2n(x)) eε̃n(x)eϕ2n(x) (C.1)

=

(
ϕ1n(x)− ϕ2n(x) +

(ϕ1n(x)− ϕ2n(x))
2

2
eεn(x)

)
eϕ2n(x)

(C.2)

where ε̃n(x) and εn(x) both lie between 0 and ϕ1n(x)−ϕ2n(x), and thus converge
to 0 as n→∞.

Proof. Taylor expansion shows

f1n(x)− f2n(x) = eϕ1n(x) − eϕ2n(x) =
(
eϕ1n(x)−ϕ2n(x) − 1

)
eϕ2n(x)

= (ϕ1n(x)− ϕ2n(x)) eεn(x)eϕ2n(x),

yielding (C.1). The second expression, (C.2), follows from a similar (two-term)
expansion.

Lemma C.2. Assume ϕ0 is twice continuously differentiable in a neighborhood
of m and ϕ′′0(m) < 0. Let I be a random interval whose endpoints are in an
Op(n

−1/5) neighborhood of m. Let D be such that for any ξn → m, |(ϕ̂0
n)′(ξn)−

ϕ′0(ξn)| ≤ Dn−1/5 with probability 1−ε for large n by Corollary 5.4 of Doss and

Wellner [2018b]. for ε > 0. Assume n1/5λ(I) ≥ 8D/ϕ
(2)
0 (m). Let L > 0, ε > 0,

and δ̌ > 0. Suppose there exists Ǩ > 0 such that∫
I

(ϕ̂0
n − ϕ̂n)2dλ ≤ δ̌

L
Ǩn−1 (C.3)

with probability 1 − ε for n large. Then for any interval J ⊂ I where λ(J) =
Ln−1/5, we have with probability 1− ε for n large

(A) ‖ϕ̂n − ϕ̂0
n‖J ≤ δOp(n−2/5),
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(B) ‖f̂n − f̂0n‖J ≤ δOp(n−2/5),

(C) ‖F̂n − F̂ 0
n‖J ≤ δOp(n−3/5), and

(D) there exist knots η ∈ S(ϕ̂n) ∩ J and η0 ∈ S(ϕ̂0
n) ∩ J such that |η − η0| ≤

δOp(n
−1/5),

(E) and, letting K = [max(η, η0) + δOp(n
−1/5), sup J − δOp(n−1/5)], we have

‖ϕ̂′n − (ϕ̂0
n)′‖K ≤ δOp(n−1/5),

where δ → 0 as δ̌ → 0.

Proof. First we prove the first three statements. By Taylor expansion, ϕ′0(x) =

ϕ
(2)
0 (ξ)(x−m) where ξ is between x and m. Let J = [j1, j2] ⊆ I. Then ϕ′0(j2)−

ϕ′0(j1) ≥ |ϕ(2)
0 (m)|Ln−1/52 for n large enough since ϕ

(2)
0 is continuous near m.

Note with probability 1 − ε, |(ϕ̂0
n)′(j1) − ϕ′0(j1)| and |(ϕ̂0

n)′(j2) − ϕ′0(j2)| are
less than n−1/5D by applying Corollary 5.4 of Doss and Wellner [2018b] twice
taking ξn = j1 and ξn = j2, and C = 0 (not C = λ(J)). Here (ϕ̂0

n)′ may be the
right or left derivative. Now apply Lemma C.3 (taking I in that lemma to be

our J) with ϕ′U − ϕ′L = n−1/5
(

2D + |ϕ(2)
0 (m)|L/2

)
and ε = δ̌Ǩn−1/L. Then

for small enough δ̌,(
δ̌Ǩ

L(2D + |ϕ(2)
0 (m)|L/2)2

)1/3

n−1/5 ≤ Ln−1/5 = λ(J),

as needed. Thus, Lemma C.3 allows us to conclude

‖ϕ̂0
n − ϕ̂n‖ ≤

(
8
n−6/5δ̌Ǩ

L

(
2D + ϕ

(2)
0 (m)L/2

))1/3

.

Thus taking δ̌ so that δ̌ǨD → 0, we see that Lemma C.2 (A) holds. Then (B)
follows by the delta method (or Taylor expansion of exp). Note that Ǩ and D
depend only on ε, not on I.

We show (C) and (D) next. Note that (C) follows from (D) and (B). This is
because

F̂n(x)− F̂ 0
n(x) = F̂n(η)− F̂ 0

n(η) +

∫ x

η

(f̂n(x)− f̂0n(x))dx.

By (B), the second term above is δOp(n
−3/5) since x ∈ J satisfies |x − η| ≤

Ln−1/5. We can next see that the first term in the previous display is δ1/2Op(n
−3/5).

Notice that supt∈[η,η0] |
∫ t
η
d(F̂n(u) − Fn(u))| = δ1/2Op(n

−3/5) by Lemma C.4,
where the random variable implicit in the Op statement depends on J only

through L. Since |F̂n(η) − Fn(η)| ≤ 1/n by Corollary 2.4 of Doss and Well-

ner [2018b], we see that supt∈[η,η0] |F̂n(t) − Fn(t)| = δ1/2Op(n
−3/5). Similarly,

since |F̂ 0
n(η0) − Fn(η0)| ≤ 1/n by Corollary 2.12 of Doss and Wellner [2018b],

supt∈[η,η0] |F̂ 0
n(t) − Fn(t)| = δ1/2Op(n

−3/5) by analogous computations. To-

gether, these let us conclude that supt∈[η,η0] |F̂ 0
n(t)− F̂n(t)| = δ1/2Op(n

−3/5).
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Now we prove (D). Let δ > 0 and define i1 and i2 by I = [i1 − δn−1/5, i2 +
δn−1/5], taking δ small enough that i1 < i2. Let i2 − i1 = M̃n−1/5. Then, by
the Taylor expansion of ϕ′0 (see the beginning of this proof), ϕ′0(i2)− ϕ′0(i1) ≥
|ϕ(2)

0 (m)|M̃n−1/5/2 for δ small and n large enough, since ϕ
(2)
0 is continuous.

Additionally, by applying Corollary 7.1 of Doss and Wellner [2018b] twice, taking
ξn = i1 and ξn = i2 and C = 0 (not C = M̃), we find D (independent of λ(I))
such that |(ϕ̂0

n)′(i1)−ϕ′0(i1)| and |(ϕ̂0
n)′(i2)−ϕ′0(i2)| are, with probability 1−ε,

less than n−1/5D. Here (ϕ̂0
n)′ may be the right or left derivative. For δ small

enough, by assumption D < |ϕ(2)
0 (m)|M̃/8, and we then have (ϕ̂0

n)′(i1+) −
(ϕ̂0
n)′(i2−) ≥ |ϕ(2)

0 (m)|M̃n−1/5/4. We do not know a priori how much (ϕ̂0
n)′

decreases at any specific knot in S(ϕ̂0
n), but by partitioning [i1, i2] into intervals

of a fixed length, we can find one such interval on which (ϕ̂0
n)′ decreases by

the corresponding average amount. That is, there exists a subinterval of [i1, i2],
denoted J∗ = [l∗, r∗], of length 2δn−1/5, such that

(ϕ̂0
n)′(l∗+)− (ϕ̂0

n)′(r∗−) ≥ |ϕ
(2)
0 (m)|M̃n−1/5/4

(i2 − i1)/2δn−1/5
=
|ϕ(2)

0 (m)|δn−1/5

2
≡ Kn−1/5

since i2 − i1 = M̃n−1/5. Let x∗l = sup
{
x ∈ J∗ : (ϕ̂0

n − ϕ̂n)′(x) ≥ 0
}

, and let

x∗l = l∗ if the set is empty, and let x∗r = inf
{
x ∈ J∗ : (ϕ̂0

n − ϕ̂n)′(x) ≤ 0
}

, and

x∗r = x∗l = r∗ if the set is empty. Now (ϕ̂0
n− ϕ̂n)′ decreases by at least Kn−1/5/2

on either [l∗, x∗l ] or on [x∗r , r
∗] (since (ϕ̂0

n − ϕ̂n)′ is constant on [x∗l , x
∗
r ]). Let

η0l = inf S(ϕ̂0
n) ∩ J∗ and η0r = supS(ϕ̂0

n) ∩ J∗. Now by assumption ϕ̂n is linear
on [η0l − δn−1/5, η0r + δn−1/5] (since ϕ̂n is linear on J∗ and within δn−1/5 of any
knot of ϕ̂0

n), and so

(ϕ̂0
n − ϕ̂n)′(u) ≥ Kn−1/5

2
for u ∈ [η0l − δn−1/5, η0l ], or (C.4)

(ϕ̂0
n − ϕ̂n)′(u) ≤ −Kn

−1/5

2
for u ∈ [η0r , η

0
r + δn−1/5], (C.5)

depending on whether (ϕ̂0
n − ϕ̂n)′ decreases by Kn−1/5/2 on [l∗, x∗l ] (in which

case η0l ≤ x∗l ) or on [x∗r , r
∗] (in which case x∗r ≤ η0r). (In the former case, (C.4)

holds because (ϕ̂0
n−ϕ̂n)′ is nonincreasing and its decrease to 0 on [l∗, x∗l ] actually

happens on [η0l , x
∗
l ] since η0l is the last knot of ϕ̂0

n in J∗. Similar reasoning in
the latter case yields (C.5).) If (C.4) holds then

sup
u∈[η0l−δn−1/5,η0l ]

|ϕ̂0
n(u)−ϕ̂n(u)| ≥ (Kn−1/5/2)(δn−1/5/2) = |ϕ(2)

0 (m)|n−2/5δ2/8,

and if (C.5) holds then supu∈[η0r ,η0r+δn−1/5] |ϕ̂0
n(u)−ϕ̂n(u)| ≥ |ϕ(2)

0 (m)|n−2/5δ2/8.

This allows us to lower bound
∫
I
(ϕ̂0
n(u)−ϕ̂n(u))2, to attain a contradiction with

(C.3).
Assume that (C.4) holds. The case where (C.5) holds is shown analogously.

Let z = argminu∈[i1,i2] |ϕ̂
0
n(u) − ϕ̂n(u)|. Let L be the affine function such that
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L(z) = ϕ̂0
n(z)− ϕ̂n(z) and L has slope Kn−1/5/2. Then for x ∈ [η0l −δn−1/5, η0l ],

|L(x)| ≤ |ϕ̂0
n(x)− ϕ̂n(x)|. For z ≤ x ≤ η0l , this is because

|ϕ̂0
n(x)− ϕ̂n(x)| = ϕ̂0

n(x)− ϕ̂n(x) = ϕ̂0
n(z)− ϕ̂n(z) +

∫ x

z

(ϕ̂0
n − ϕ̂n)′dλ

≥ L(z) +

∫ x

z

L′dλ = |L(x)|,

where the first equality holds since ϕ̂0
n − ϕ̂n is increasing on [η0l − δn−1/5, η0l ]

(by (C.4)), so by the definition of z, ϕ̂0
n(x)− ϕ̂n(x) ≥ 0 for x ≥ z, and the last

is similar. For η0l − δn−1/5 ≤ x ≤ z,

−|ϕ̂0
n(x)− ϕ̂n(x)| = (ϕ̂0

n(x)− ϕ̂n)(x) = (ϕ̂0
n − ϕ̂n)(z)−

∫ z

x

(ϕ̂0
n − ϕ̂n)′dλ

≤ L(z)−
∫ z

x

L′dλ = −|L(x)|,

where the first and last equalities follow because for η0l ≤ x ≤ z, since ϕ̂0
n − ϕ̂n

is increasing it must be negative by the definition of z. Thus, |L(u)| ≤ |ϕ̂0
n(u)−

ϕ̂n(u)| on [η0l − δn−1/5, η0l ] so

δ3K2n−1

3 · 25
≤
∫
[η0l−δn−1/5,η0l ]

L2dλ ≤
∫
[η0l−δn−1/5,η0l ]

(ϕ̂0
n−ϕ̂n)2dλ ≤

∫
I

(ϕ̂0
n−ϕ̂n)2dλ,

where the quantity on the far left is
∫ δn−1/5/2

0
(xKn−1/5/2)2dx. This is a con-

tradiction if δ is fixed and we let δ̌ → 0, since [η0l − δn−1/5, η0r + δn−1/5] ⊂ I by
the definition of [i1, i2], and then

∫
I
(ϕ̂0
n− ϕ̂n)2dλ ≤ δ̌Ǩn−1. A similar inequality

can be derived if (C.5) holds. Thus δ → 0 as δ̌ → 0.
Finally, we show (E) holds with similar logic. Let ξ1 < ξ2 be points such

that ϕ̂n is linear on [ξ1, ξ2], and let δ > 0. Then if all knots ξ0 of ϕ̂0
n satisfy

|ξi−ξ0| >
√
δn−1/5, i = 1, 2, then we can see that ‖ϕ̂′n−(ϕ̂0

n)′‖[ξ1,ξ2] ≤
√
δn−1/5.

This is because at any x ∈ [ξ1 +
√
δn−1/5, ξ2 −

√
δn−1/5], if (ϕ̂0

n − ϕ̂n)′(x) >√
δn−1/5, then (ϕ̂0

n − ϕ̂n)′ >
√
δn−1/5 on [x −

√
δn−1/5, x] (since ϕ̂n is linear

on a
√
δn−1/5 neighborhood of x), so (ϕ̂0

n − ϕ̂n)(x −
√
δn−1/5, x] > δn−2/5,

a contradiction. Here we use the notation g(a, b] = g(b) − g(a). Similarly if
(ϕ̂0
n − ϕ̂n)′(x) <

√
δn−1/5 then (ϕ̂0

n − ϕ̂n)(x, x +
√
δn−1/5] < −δn−2/5, a con-

tradiction. We have thus shown that if we take η and η0 to be the largest knot
pair within

√
δn−1/5 (meaning max(η, η0) is largest among such pairs) then

‖(ϕ̂n − ϕ̂0
n)′‖[max(η,η0),sup J−

√
δn−1/5] ≤

√
δn−1/5, by Part ((A)) and by parti-

tioning [max(η, η0), sup J ] into intervals on which ϕ̂n is linear.

The proofs of Parts (D) and (E) in the previous lemma could also be com-
pleted with the roles of ϕ̂0

n and ϕ̂n reversed. The next lemma provides the cal-

culation used in Lemma C.2 to translate an upper bound on
∫
I

(
ϕ̂0
n − ϕ̂n

)2
dλ

into an upper bound on supx∈I
(
ϕ̂0
n(x)− ϕ̂n(x)

)
for an appropriate interval I.
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Lemma C.3. Let ε > 0. Assume ϕi, i = 1, 2, are functions on an interval I,
where

ϕ′L ≤ ϕ′i(x) ≤ ϕ′U for x ∈ I, i = 1, 2, (C.6)

where ϕ′i refers to either the left or right derivative and ϕ′L, ϕ
′
U are real num-

bers. Assume I is of length no smaller than
(
ε/ (ϕ′U − ϕ′L)

2
)1/3

. Assume that∫
I

(ϕ1(x)− ϕ2(x))
2
dx ≤ ε. Then

sup
x∈I
|ϕ1(x)− ϕ2(x)| ≤ (8ε (ϕ′U − ϕ′L))

1/3
.

Proof. Assume that x is such that ϕ1(x) − ϕ2(x) = δ, and without loss of
generality, δ > 0. Then by (C.6), if y is such that |x − y| ≤ (δ/2)/(ϕ′U − ϕ′L)
then ϕ1(y) − ϕ2(y) ≥ δ/2. Thus, if I is an interval whose length is no smaller
than (δ/2)/(ϕ′U − ϕ′L) then if ϕ1(x) − ϕ2(x) ≥ δ for any x ∈ J ⊆ I where the
length of J is equal to (δ/2)/(ϕ′U − ϕ′L), then∫

I

(ϕ1(x)− ϕ2(x))
2
dx ≥

∫
J

(ϕ1(x)− ϕ2(x))
2
dx ≥ δ2

22
λ(J) =

1

8

δ3

ϕ′U − ϕ′L
.

Thus, substituting ε = 1
8

δ3

ϕ′U−ϕ′L
, we see that for x ∈ I, |ϕ1(x) − ϕ2(x)| ≤

(8ε (ϕ′U − ϕ′L))
1/3

, as desired.

Lemma C.4. Let either Assumption A.1 hold at x0 = m or Assumption A.2
hold at x0 6= m, and let F̂ 0

n and F̂n be the log-concave mode-constrained and un-
constrained MLEs of F0. Let I = [v1, v2] be a random interval whose dependence
on n is suppressed and such that n1/5(vj − x0) = Op(1), j = 1, 2. Then

supt∈I

∣∣∣∫[v1,t] d(F̂n(u)− Fn(u))
∣∣∣

supt∈I

∣∣∣∫[v1,t] d(F̂ 0
n(u)− Fn(u))

∣∣∣
 =

√
λ(I)Op(n

−2/5). (C.7)

The random variables implicit in the Op statements in (C.7) depend on I through
its length (in which they are increasing) and not the location of its endpoints.

Proof. We analyze supt∈I

∣∣∣∫ tv1 d(F̂n(u)− Fn(u))
∣∣∣ first. Note

sup
t∈I

∣∣∣∣∣
∫
[v1,t]

d
(
Fn − F̂n

)∣∣∣∣∣
≤ sup

t∈I

∣∣∣∣ ∫ t

v1

(
f̂n(u)− f0(v1)− (u− v1)f ′0(v1)

)
du

−
∫ t

v1

(f0(u)− f0(v1)− (u− v1)f ′0(v1)) du

−
∫
[v1,t]

d (Fn − F0)

∣∣∣∣.
(C.8)
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By (the proof of) Lemma 8.16 of Doss and Wellner [2018b],

sup
t∈I

∣∣∣∣∣
∫
[v1,t]

d (Fn − F0)

∣∣∣∣∣ =
√
λ(I)Op(n

−2/5).

The supremum over the middle term in (C.8) is λ(I)Op(n
−2/5) by a Taylor

expansion of f0, and applying in addition Lemma 4.5 of Balabdaoui, Rufibach
and Wellner [2009], we see that the supremum over the first term in (C.8) is
also λ(I)Op(n

−2/5).
The same analysis, using Proposition 5.3 or Corollary 5.4 of Doss and Well-

ner [2018b], applies to supt∈I

∣∣∣∫[v1,t] d(F̂ 0
n(u)− Fn(u))

∣∣∣. Note in all cases that

the random variables implicit in the Op statements depend on I only through
its length (and they are increasing in the length) and not the location of its end-

points, since ‖f0‖ = f0(m) < ∞ and since f
(2)
0 is continuous and so uniformly

bounded in a neighborhood of x0.

When we apply the previous lemma, the length of I will depend on ε which
gives the probability bound implied by our op statements whereas its endpoints
will depend on δ, which gives the size bound implied by our op statements.

Lemma C.5. Let ε(x) and ε̃(x) be defined by ex = 1 + x + 2−1x2eε(x) and
ex = 1 + xeε̃(x). Then

eε(x) ≤ 2eε̃(x). (C.9)

Proof. We can see

eε(x) =
ex − 1− x

(x2/2)
=

2

x2

∞∑
k=2

xk

k!
=

∞∑
k=0

2xk

(k + 2)!
.

Similarly,

eε̃(x) =
ex − 1

x
=

1

x

∞∑
k=1

xk

k!
=

∞∑
k=0

xk

(k + 1)!
.

Comparing coeffients in the two series, we see that

2

(k + 2)!
≤ 1

(k + 1)!
for all k ≥ 0

since k+ 2 ≥ 2 for k ≥ 0. It follows that eε(x) ≤ eε̃(x) for all x ≥ 0. This implies
that ε(x) ≤ ε̃(x) for all x ≥ 0.

Now for x ≤ 0 we have

2eε̃(x) − eε(x) =
2

x

{
ex − 1− 1

x
(ex − 1− x)

}
=

2

x

{ ∞∑
k=1

xk

k!
−
∞∑
k=1

xk

(k + 1)!

}
=

2

x

∞∑
k=1

k

(k + 1)!
xk

imsart-generic ver. 2011/05/20 file: p2-supp.tex date: October 16, 2018



Doss and Wellner/Inference for the mode 34

where the infinite sum is negative for all x < 0 since the first term is negative.
It follows that

2eε̃(x) − eε(x) ≥ 0

for all x ≤ 0. Combined with the result for x ≥ 0 the claimed result holds:
eε(x) ≤ 2eε̃(x) for all x ∈ R.
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