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SUPPLEMENT TO “APPROXIMATION AND
ESTIMATION OF S-CONCAVE DENSITIES VIA RÉNYI

DIVERGENCES”

By Qiyang Han and Jon A. Wellner∗

University of Washington

In this supplement, we present omitted proofs of Lemmas 2.1,2.3, Corol-
laries 2.7, 2.8, 2.10, Theorem 2.12, Corollary 2.13, Theorems 2.14, 2.16 in
Appendix A, Lemmas 3.1-3.3, Theorem 3.4, Lemma 3.5, Theorems 3.7, 3.8
in Appendix B, and Theorem 4.4, Lemma 4.6 in Appendix C. Appendix D
is devoted to the proof of Theorem 6.1 due to its length. Some supporting
lemmas and auxiliary results from convex analysis are collected Appendix
E.

APPENDIX A: SUPPLEMENTARY PROOFS FOR SECTION 2

Proof of Lemma 2.1. Let Q ∈ Q1. Then by letting g(x) := ‖x‖ + 1,
we have

L(Q) ≤ L(g,Q) =

∫
(1 + ‖x‖) dQ+

1

|β|

∫
dx

(1 + ‖x‖)−β
<∞,

by noting Q ∈ Q1, and −β = −1 − 1/s > d. Now assume L(Q) < ∞. If
Q /∈ Q1, i.e.

∫
‖x‖ dQ = ∞, then since for each g ∈ G, we can find some

a, b > 0 such that g(x) ≥ a‖x‖ − b, we have

L(g,Q) =

∫
g dQ+

1

|β|

∫
gβ dx ≥

∫
(a‖x‖ − b) dQ =∞,

a contradiction. This implies Q ∈ Q1.

Proof of Lemma 2.3. Let g, h be two minimizers for PQ. Since ψs(x) =
1
|β|x

β is strictly convex on [0,∞), L(t · g+ (1− t) · h,Q) is strictly convex in

t ∈ [0, 1] unless g = h a.e. with respect to the canonical Lebesgue measure.
We claim if two closed functions g, h agree a.e. with respect to the canonical
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2 HAN AND WELLNER

Lebesgue measure, then it must agree everywhere, thus closing the argu-
ment. It is easy to see int(domg) = int(domh). Since int(dom(g)) 6= ∅, we
have ri(domg) = int(domg) = int(domh) = ri(domh). Also note that a con-
vex function is continuous in the interior of its domain, and hence almost
everywhere equality implies everywhere equality within the interior of the
domain, i.e. g

∣∣
int(domg)

= h
∣∣
int(domh)

. Now by Corollary 7.3.4 in Rockafellar

(1997), and the closedness of g, h, we find that g = clg = clh = h.

Proof of Corollary 2.7. It is known by Varadarajan’s theorem (cf.
Dudley (2002) Theorem 11.4.1), Qn converges weakly to Q with probabil-
ity 1. Further by the strong law of large numbers (SLLN), we know that∫
‖x‖ dQn →a.s.

∫
‖x‖dQ. This verifies all conditions required in Theorem

2.5.

Proof of Corollary 2.8. The conclusion follows from Corollary 2.7
if −1/(d + 1) < s < 0, so suppose −1/d < s ≤ −1/(d + 1). Since f ∈
Ps′ , we may write f = g1/s′ where g is convex. If f is unbounded, then
g(x0) = 0 for some x0 ∈ R. By Lemma E.9 with r′ = −1/s′, it follows
that

∫
f = ∞, contradicting the fact that f is a density. Thus f must

necessarily be bounded. To see that f has a finite mean, note that by Lemma
3.5 f(x) = (b + a‖x‖)1/s′ where a, b > 0 and r′ ≡ −1/s′ > d + 1. Thus∫
Rd ‖x‖f(x)dx ≤

∫
Rd ‖x‖(b+a‖x‖)−r′dx <∞. Now note that (2.8) holds by

the existence of the Rényi divergence estimator for the empirical measure
(cf. Theorem 4.1 in Koenker and Mizera (2010)) and the same argument
in the proof of Theorem 2.5. Also note that by the proof of Theorem 3.7,
(2.8) would be enough to ensure (2.10). Since f is continuous on the interior
of the domain, we see that (2.10) implies weak convergence: let Q̂n be the
measures corresponding to f̂n. Then Q̂n → Q weakly as n → ∞. Now the
rest follows immediately from Theorems 3.6 and 3.8.

Proof of Corollary 2.10. Let g ≡ g(·|Q). Then by Theorem 2.2 and
Lemma E.4, we find that there exists some a, b > 0 such that g(x) ≥ a‖x‖+b.
Now take v ∈ ∂h(0), i.e. h(x) ≥ h(0) + vTx holds for all x ∈ Rd. Hence for
t > 0, we have

g(x) + th(x) ≥ a‖x‖ + b+ t(h(0) + vTx) ≥ (a− t‖v‖)‖x‖ + (b+ th(0)),

which implies that g + th ∈ G for t > 0 small enough. Now the conclusion
follows from the Theorem 2.9.

Proof of Theorem 2.12. We first note that if F is a distribution func-
tion for a probability measure supported on [X(1), X(n)], and h : [X(1), X(n)]→
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SUPPLEMENT: S-CONCAVE ESTIMATION 3

R an absolutely continuous function, then integration by parts (Fubini’s the-
orem) yields

(A.1)

∫
h dF = h(X(n))−

∫ X(n)

X(1)

h′(x)F (x) dx.

First we assume gn = ĝn. For fixed t ∈ [X(1), X(n)], let h1 be a convex
function whose derivative is given by h′1(x) = −1(x ≤ t). Now by Theorem
2.9 we find that

∫
h1 dFn =

∫
h1 dF̂n ≤

∫
h1 dFn. Plugging in (A.1) we find

that
∫ t
X(1)

Fn(x) dx ≤
∫ t
X(1)

Fn(x) dx. For t ∈ Sn(gn), let h2 be the function

with derivative h′2(x) = 1(x ≤ t). It is easy to see gn + th2 is convex for
t > 0 small enough, whence Theorem 2.9 is valid, thus giving the reverse
direction of inequality. This shows the necessity.

For sufficiency, assume gn satisfies (2.13). In view of the proof of Theorem
2.9, we only have to show (2.12) holds for all functions h : R → R which
are linear on [X(i), X(i+1)](i = 1, . . . , n − 1) and gn + th convex for t > 0
small enough. Since gn is a linear function between two consecutive knots, h
must be convex between consecutive knots. This implies that the derivative
of such an h can be written as h′(x) =

∑n
j=2 βj1(x ≤ X(j)), with β2, . . . , βn

satisfying βj ≤ 0 if X(j) /∈ Sn(gn). Now again by (A.1) we have∫
h dF̂n = h(Xn)−

n∑
j=2

βj

∫ X(j)

X(1)

F̂n(x) dx

≤ h(Xn)−
n∑
j=2

βj

∫ X(j)

X(1)

Fn(x) dx =

∫
h dFn,

as desired.

Proof of Corollary 2.13. This follows directly from the Theorem
2.12 by noting for x1 < x0 < x2 we have

1

x2 − x0

∫ x2

x0

F̂n(x) dx ≤ 1

x2 − x0

∫ x2

x0

Fn(x) dx,

and
1

x0 − x1

∫ x0

x1

F̂n(x) dx ≥ 1

x0 − x1

∫ x0

x1

Fn(x) dx.

Now let x1 ↗ x0 and x2 ↘ x0 we find that F̂n(x0) ≤ Fn(x0) by right
continuity and F̂n(x0) ≥ Fn(x0−) = Fn(x0)− 1

n .
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4 HAN AND WELLNER

Proof of Theorem 2.14. The proof closely follows the proof of Theo-
rem 2.7 of Dümbgen, Samworth and Schuhmacher (2011). For the reader’s
convenience we give a full proof here. Let P denote the probability distri-
bution corresponding to F . We first show necessity by assuming g = g(·|Q).
By Corollary 2.10 applied to h(x) = ±x, we find by Fubini’s theorem that

0 =

∫
R
x d(Q− P )(x) =

∫
R

(F −G)(t)dt

which proves (1). Now we turn to (2). Since the map s 7→ (s−x)+ is convex,
again by Corollary 2.10, we find

0 ≤
∫
R

(s− x)+d(Q− P )(s) = −
∫ x

−∞
(F −G)(t) dt,

where in the last equality we used the proved fact that
∫
R(F − G)dλ = 0.

Now we assume x ∈ S̃(g), and discuss two different cases to conclude. If
x ∈ ∂(dom(g)), then let h(s) = −(s − x)+, it is easy to see g + th ∈ G for
t > 0 small enough. Then by Theorem 2.9, we have

0 ≤
∫
h(s)d(Q− P )(s) =

∫ x

−∞
(F −G)(t) dt.

If x ∈ int(dom(g)), then g′(x− δ) < g′(x+ δ) for small δ > 0 by definition,
and hence we define

H ′δ(u) = − g′(u)− g′(x− δ)
g′(x+ δ)− g′(x− δ)

1{u∈[x−δ,x+δ]} − 1{u>x+δ},

whose integral Hδ(s) :=
∫ s
−∞H

′
δ(u) du serves as an approximation of −(s−

x)+ as δ ↘ 0. Note that

(
g+tHδ

)
(s) = g(s)− t

g′(x+ δ)− g′(x− δ)

∫ s∧(x+δ)

s∧(x−δ)

(
g′(u)−g′(x−δ)

)
du−t

(
s−(x+δ)

)
+
,

implying g + tHδ ∈ G for t > 0 small enough (which may depend on δ).
Then by Theorem 2.9,

0 ≤
∫
Hδ(s)d(Q− P )(s)→ −

∫
(s− x)+d(Q− P )(s) =

∫ x

−∞
(F −G)(t) dt,

as δ ↘ 0, where the convergence follows easily from dominated convergence
theorem. This proves (2). Now we show sufficiency by assuming (1)-(2).
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SUPPLEMENT: S-CONCAVE ESTIMATION 5

Consider a Lipschitz continuous function ∆(·) with Lipschitz constant L.
Then ∫

∆d(Q− P ) =

∫
∆′(F −G) dλ = −

∫
(L−∆′)(F −G) dλ

= −
∫
R

(∫ L

−L
1{s>∆′(t)}ds

)
(F −G)(t)dt

= −
∫ L

−L

∫
A(∆′,s)

(F −G)(t) dtds,

where the second line follows from (1), and A(∆′, s) := {t ∈ R : ∆′(t) <
s}. Now replace the generic Lipschitz function ∆ with g(ε) as defined in
Lemma E.2 with Lipschitz constant L = 1/ε. Note in this case A

(
(g(ε))′, s

)
=

(−∞, a(g, ε)), where a(g, s) = min{t ∈ R : g′(t+) ≥ s} and hence a(g, s) ∈
S̃(g). This implies that

∫
A
(

(g(ε))′,s
)(F − G)(s)ds = 0 for all s ∈ (−L,L) by

(2), yielding that
∫
g(ε) d(Q−P ) = 0. Similarly we have

∫
g

(ε)
0 d(Q−P ) ≥ 0

where g0 = g(·|Q). Now let ε ↘ 0, by monotone convergence theorem we
find that

∫
g dQ =

∫
g dP and that

∫
g0 dQ ≥

∫
g0 dP . This yields

L(g0, Q) ≥ L(g0, P ) ≥ L(g, P ) = L(g,Q),

where the second inequality follows from the Fisher consistency of functional
L(·, ·) and the fact that P is the distribution corresponding to g.

Before we prove Theorem 2.16, we will need an elementary lemma.

Lemma A.1. Fix a sequence 0 < αn < 1 with αn ↗ 1. Let fαn be an
(αn − 1)-concave density on R. Let gαn := fαn−1

αn be the underlying convex
function. Suppose {gαn}’s are linear on [a, b] with limn→∞ fαn(a) = γa ∈
[0,∞] and limn→∞ fαn(b) = γb ∈ [0,∞]. Then for all x ∈ [a, b],

(A.2) fαn(x)→ exp

(
log γb − log γa

b− a
(x− a) + log γa

)
where exp(−∞) := 0 and exp(∞) :=∞.

Proof of Lemma A.1. First assume γb 6= γa and γa, γb ∈ (0,∞). For
notational convenience we drop explicit dependence on n and the limit is
taken as α ↗ 1. Let γa,α = fα(a) = gα(a)1/(α−1) and γb,α = fα(b) =

imsart-aos ver. 2014/10/16 file: supp.tex date: October 23, 2015



6 HAN AND WELLNER

gα(b)1/(α−1). For any x ∈ [a, b],

lim
α→1

log fα(x) = lim
α→1

1

α− 1
log

(
γα−1
b,α − γ

α−1
a,α

b− a
(x− a) + γα−1

a,α

)
= lim

α→1

1

α− 1
log

(
γα−1
b − γα−1

a

b− a
(x− a) ·

γα−1
b,α − γ

α−1
a,α

γα−1
b − γα−1

a
+ γα−1

a,α

)
≡ log γa + lim

α→1

1

α− 1
log

(
(γα−1
b − γα−1

a )
(x− a)

(b− a)
· 1

γα−1
a,α
· rα + 1

)
.

(A.3)

Since γα−1
a,α → 1, we claim that it suffices to show that

rα ≡
γα−1
b,α − γ

α−1
a,α

γα−1
b − γα−1

a
→ 1 as α→ 1.(A.4)

To see this, assume without loss of generality that γa > γb and hence γα−1
b −

γα−1
a > 0. Suppose that (A.4) holds and let ε > 0. Then the second term on

right hand side of (A.3) can be bounded from above by

lim
α↗1

1

α− 1
log

((
γα−1
b − γα−1

a

)(x− a)

(b− a)
(1− ε) + 1

)
= lim

α↗1

(
log γb · γα−1

b − log γa · γα−1
a

) (x− a)

(b− a)
(1− ε)

= (log γb − log γa)
(x− a)

(b− a)
(1− ε)

where the second line follows from L’Hospital’s rule. Similarly we can derive
a lower bound:

(log γb − log γa)
(x− a)

(b− a)
(1 + ε).

Thus it remains to show that (A.4) holds. But we can rewrite rα as

rα =
cα−1
α − 1

cα−1 − 1

=
cα−1(cα/c)

α−1 − (cα/c)
α−1 + (cα/c)

α−1 − 1

cα−1 − 1

= (cα/c)
α−1 +

(cα/c)
α−1 − 1

cα−1 − 1
→ 1 + 0 as α→ 1
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SUPPLEMENT: S-CONCAVE ESTIMATION 7

since log((cα/c)
α−1) = (α−1) log(cα/c)→ 0·log 1 = 0, and where the second

limit follows from an upper and lower bound argument using cα/c → 1.
where cα := γb,α/γa,α and c = γb/γa 6= 1.

This shows that (A.4) holds, thereby proving the case for γa 6= γb ∈ (0,∞).
For the case γb = γa ∈ (0,∞), similarly we have

lim
α→1

log fα(x) = log γa + lim
α→1

1

α− 1
log

(
cα−1
α − 1

b− a
(x− a) + 1

)
.

The second term is 0 by an argument much as above by observing cα =
γb,α/γa,α → γb/γa = 1. Finally, if γa ∧ γb = 0, then by the first line of (A.3)
we see that log fα(x)→ −∞; if γa ∨γb =∞, then again log fα(x)→∞.

Proof of Theorem 2.16. In the following, the notation supα, infα, limα

is understood as taking corresponding operation over α close to 1 unless
otherwise specified. We first show almost everywhere convergence by invok-
ing Lemma E.7. To see this, for fixed s0 ∈ (−1/2, 0), let gα := fα−1

α and

g
(s0)
α := (fα)s0 . Then for α > 1+s0, the transformed function g

(s0)
α is convex.

We need to check two conditions in order to apply Lemma E.7 as follows:

(C1) The set (X(1), X(n)) ⊂ {lim infα fα(x) > 0};
(C2) There is a uniform lower bound function g̃s0 ∈ G such that g

(s0)
α ≥ g̃s0

holds for α sufficiently close to 1.

The first assertion can be checked by using the characterization Theorem
2.12. Let Fα be the distribution function of fα. Then

∫ t
X(1)

(Fα−Fn)(x) dx ≤
0 with equality attained if and only if t ∈ Sn(gα). For x ∈ (X(1), X(n)) close
enough to X(n), we claim that lim infα fα(x) > 0. If not, we may assume
without loss of generality that limα fα(x) = 0. We first note that there exists
some t ∈ {1, · · ·n − 1} and some subsequence {α(β)}β∈N with α(β) ↗ 1
for which (1) X(t) is a knot point for {gα(β)}, and (2) X(u) is not a knot
point for any {gα(β)} for u ≥ t+ 1, i.e. gα(β)’s are linear on [X(t), X(n)]. We
drop β for notational simplicity and assume without loss of generality that
both limits limα fα(X(n)), limα fα(X(t)) exist. Now Lemma A.1 shows that
min{limα fα(X(n)), limα fα(X(t))} = 0 since we have assumed limα fα(x) = 0
for some x ∈ (X(t), X(n)). This in turn implies that limα fα(x) = 0 for
all x ∈ (X(t), X(n)). Now we consider the following two cases to derive a
contradiction with the fact

(A.5)

∫ X(n)

X(t)

Fα(x)dx =

∫ X(n)

X(t)

Fn(x)dx

imsart-aos ver. 2014/10/16 file: supp.tex date: October 23, 2015



8 HAN AND WELLNER

that follows from Theorem 2.12, thereby proving lim infα fα(x) > 0 for x
close enough to X(n).
[Case 1.] If limα fα(X(n)) = 0, then the left hand side of (A.5) converges

to X(n) −X(t) while the right hand side is no larger than n−1
n

(
X(n) −X(t)

)
.

[Case 2.]. If limα fα(X(n)) > 0, then we must necessarily have limα fα(x) =
0 for all x ∈ [X(1), X(n)) by convexity of gα: If limα fα(x0) > 0 for some x0 ∈
[X(1), X(t)], then limα gα(x0) ∨ gα(X(n)) < ∞ while limα gα(x) = ∞ for all
x ∈ (X(t), X(n)), which is absurd. Note that this also forces limα fα(X(n)) =
∞, otherwise the constraint

∫
fα = 1 will be invalid eventually. Now the left

hand side of (A.5) converges to 0 while the right hand side is bounded from
below by 1

n(X(n) −X(t)).
Similarly we can show lim infα fα(x) > 0 for x close to X(1). Now (C1)

follows by convexity of fα.
(C2) can be seen by first noting M := supα‖fα‖∞ < ∞. This can be

verified by Lemma 3.3 combined with the first assertion proved above. This

implies that the class {g(s0)
α }α has a uniform lower bound M s0 . Now (C2)

follows by noting that the domain of all g
(s0)
α is conv(X). Therefore all

conditions needed for Lemma E.7 are valid, and hence we can extract a

subsequence {g(s0)
αn }n∈N such that

lim
n→∞,x→y

g(s0)
αn (x) = g(s0)(y), for all y ∈ int(dom(g(s0)));

lim
n→∞,x→y

g(s0)
αn (x) ≥ g(s0)(y), for all y ∈ Rd,

holds for some g(s0) ∈ G. This implies fαn →a.e. f
(s0) as n → ∞ where

f (s0) :=
(
g(s0)

)1/s0 . Now repeat the above argument with another s1 with a

further extracted subsequence {αn(k)}, we see that fαn(k) →a.e. f
(s1)(k →∞)

for some s1-concave f (s1) holds for the subsequence {αn(k)}k∈N. This implies

that f (s0) =a.e. f
(s1). Since a convex function is continuous in the interior of

the domain, we can choose a version of upper semi-continuous f such that
f = f (s) a.e. for all {1/2 < s < 0} ∩Q. This implies that f is s-concave for
any rational 1/2 < s < 0 and hence log-concave. Next we show weighted L1

convergence: For fixed κ > 0, choose 0 > s0 > −1/(κ+ 1). Since there exists

a, b > 0 such that g
(s0)
αn ≥ g(s0) ≥ a‖x‖ − b holds for all n ∈ N, we have an

integrable envelope function:

(
1 + ‖x‖

)κ(
fαn(x) ∨ f(x)

)
≤
(
1 + ‖x‖

)κ((
a‖x‖ − b

)
∨M

)1/s0

.

Now an application of the dominated convergence theorem yields the desired
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SUPPLEMENT: S-CONCAVE ESTIMATION 9

weighted L1 convergence. Similar arguments show weighted convergence is
also valid in arbitrary Lp norms (p ≥ 1).

Finally we show that f = f1 by virtue of Theorem 2.2 in Dümbgen and
Rufibach (2009) and Theorem 2.9. We note that by Lemma A.1, f must
be log-linear between consecutive data points. Now since f1 and f are both
log-linear between consecutive data points of {X1, . . . , Xn}, we only have
to consider test functions h such that h is piecewise linear on consecutive
data points. Recall gα = fα−1

α and g := − log f are the underlying convex
functions for fα and f . For any such h with the property that, g+ th ∈ G for
t small enough, we wish to argue that such h is also a valid test for fα(i.e.
gα + th ∈ G for t > 0 small enough), for a sequence of {αk} converging
up to 1 as k → ∞. Thus we only have to argue that for all X(i) ∈ S(g),
X(i) ∈ S(gα) for a sequence of {αk} going up to 1 as k → ∞. Assume the
contrary that X(i) /∈ S(gα) for all α close enough to 1. Then {gα}’s are
all linear on a closed interval I = [a, b] containing X(i) for α close to 1.
Since fα → f uniformly on I by Theorem 3.7, in particular fα(a) and fα(b)
converges, Lemma A.1 entails that f is log-linear over I, a contradiction to
the fact X(i) ∈ S(g). Hence we can find a subsequence {αk} going up to 1
as k → ∞ such that for all X(i) ∈ S(g), X(i) ∈ S(gαk), i.e. for all feasible
test function h of f1, being linear on consecutive data points, is also valid
for fαk . Now combining the fact that fαk converges in L2 metric to f and
Theorem 2.2 in Dümbgen and Rufibach (2009) we conclude f1 = f .

APPENDIX B: SUPPLEMENTARY PROOFS FOR SECTION 3

Proof of Lemma 3.1. The proof closely follows the first part of the
proof of Proposition 2 Kim and Samworth (2015). Suppose dim

(
csupp(ν)

)
=

d, we show csupp(ν) ⊂ C. To see this, we take x0 /∈ C, then there exists
δ > 0 such that B(x0, δ) ⊂ Cc, and we claim that

(B.1) For all x∗ ∈ B(x0, δ) ⊂ Cc, x∗ /∈ int(csupp(ν)).

If (B.1) holds, then x0 /∈ csupp(ν) and hence csupp(ν) ⊂ C. Now we turn
to show (B.1). Since x∗ /∈ C = {lim infn→∞ fn(x) > 0}, we can find a
subsequence {fn(k)}k∈N of {fn}n∈N such that fn(k)(x

∗) < 1
k holds for all

k ∈ N. Hence x∗ /∈ Γk := {x ∈ Rd : fn(k)(x) ≥ 1
k}. Note that Γk is a closed

convex set, hence by Hyperplane Separation Theorem we can find bk ∈ Rd
with ‖bk‖ = 1 such that {x ∈ Rd : 〈bk, x〉 ≤ 〈bk, x∗〉} ⊂ (Γk)

c. Without loss
of generality we may assume bk → bx∗ as k → ∞ for some bx∗ ∈ Rd with
‖bx∗‖ = 1. Now for fixed R > 0 and η > 0, define

AR,η := {x ∈ Rd : 〈bx∗ , x〉 < 〈bx∗ , x∗〉 − η, ‖x‖ ≤ R}.
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10 HAN AND WELLNER

Choose k0 ∈ N large enough such that ‖bk − bx∗‖ ≤ η
2R holds for all k ≥

k0(x∗, η, R). Now for R > ‖x∗‖ and x ∈ AR,η, we have

〈bk, x− x∗〉 = 〈bx∗ , x− x∗〉+ 〈bk − bx∗ , x− x∗〉 < −η+
η

2R
(‖x‖+ ‖x∗‖) ≤ 0

holds for all k ≥ k0(x∗, η, R). This implies for R > ‖x∗‖ and η > 0,

AR,η ⊂ {x ∈ Rd : 〈bk, x〉 ≤ 〈bk, x∗〉} ⊂ (Γk)
c = {x ∈ Rd : fn(k)(x) <

1

k
}.

Now note AR,η is open, by Portmanteau Theorem we find that

ν(AR,η) ≤ lim inf
k→∞

νn(k)(AR,η) = lim inf
k→∞

∫
AR,η

fn(k)(x) dx ≤ lim inf
k→∞

λd(AR,η)

k
= 0.

This implies

ν
(
{x ∈ Rd : 〈bx∗ , x〉 < 〈bx∗ , x∗〉}

)
= ν

( ∞⋃
R=1

AR,1/R

)
= lim

R→∞
ν(AR,1/R) = 0,

where the second equality follows from the fact {AR,1/R} is an increasing
family as R increases. By the assumption that dim

(
csupp(ν)

)
= d, we find

x∗ /∈ int(csupp(ν)), as we claimed in (B.1).
Now Suppose dimC = d, we claim C ⊂ csupp(ν). To see this, we only

have to show C ⊂ csupp(ν) by the closedness of csupp(ν). Suppose not,
then we can find x0 ∈ C \ csupp(ν). This implies that there exists δ > 0
such that B(x0, δ) ∩ csupp(ν) 6= ∅. By the assumption that dimC = d,
we can find x1, . . . , xd ∈ B(x0, δ) ∩ C such that {x0, . . . , xd} are in general
position. By definition of C we can find ε0 > 0, n0 ∈ N such that fn(xj) ≥ ε0
for allj = 0, 1, . . . , d and n ≥ n0. By convexity, we conclude that fn(x) ≥
ε0, for all x ∈ conv({x0, . . . , xd}) and n ≥ n0. This gives

ν
(
conv({x0, . . . , xd})

)
≥ lim sup

n→∞
νn
(
conv({x0, . . . , xd})

)
≥ ε0λd

(
conv({x0, . . . , xd})

)
> 0,

a contradiction with B(x0, δ) ∩ csupp(ν) 6= ∅, thus completing the proof of
the claim. To summarize, we have proved

1. If dim
(
csupp(ν)

)
= d, then csupp(ν) ⊂ C. This in turn implies

dimC = d, and hence C ⊂ csupp(ν). Now it follows that csupp(ν) =
C;

2. If dimC = d, then C ⊂ csupp(ν). This in turn implies dim
(
csupp(ν)

)
=

d, and hence csupp(ν) ⊂ C. Now it follows that csupp(ν) = C.
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SUPPLEMENT: S-CONCAVE ESTIMATION 11

Proof of Lemma 3.2. The proof is essentially the same as the proof
of Proposition 2 Cule and Samworth (2010) by exploiting convexity at the
level of the underlying basic convex function so we shall omit it.

Proof of Lemma 3.3. Set Un,t = {x ∈ Rd : fn(x) ≥ t}. We first claim
that there exists n0 ∈ N, ε0 ∈ (0, 1) such that λd(Un,ε0) ≥ ε0 holds for all
n ≥ n0. If not, then for all k ∈ N, l ∈ N, there exists nk,l ∈ N such that
λd(Unk,l,1/l) ≤

1
l . Note that {lim infn fn > 0} = ∪k∈N ∪l∈N ∩n≥kUn,1/l. Since

λd
(⋃

l∈N
⋂
n≥k Un,1/l

)
= liml→∞ λd

(⋂
n≥k Un,1/l

)
≤ liml→∞ λd(Unk,l,1/l) =

0, we find that C = {lim infn fn > 0} is a countable union of null set and
hence λd(C) = 0, a contradiction to the assumption dimC = d. This shows
the claim.

Denote Mn := supx∈Rd fn(x), εn ∈ Arg max fn(x). Without loss of gen-
erality we assume Mn ≥ ε0

(1+κs)1/s
where κs = (1/2)s − 1 > 0, and we set

λn := κsMs
n

εs0−Ms
n
∈ [0, 1]. Now for x ∈ Un,ε0 , by convexity of fsn we have

fsn (εn + λn(x− εn)) ≤ λnfsn(x)+(1−λn)fsn(εn) ≤ λnεs0+(1−λn)M s
n = (Mn/2)s.

This implies fn(x) ≥Mn/2 := Ωn, for all x ∈ Vn,ε0 := {εn +λn(x− εn) : x ∈
Un,ε0}. Hence Vn,ε0 ⊂ Un,Ωn and therefore λd(Vn,ε0) = λd(Un,ε0)λdn, thus

λd(Un,Ωn) ≥ λd(Vn,ε0) = λd(Un,ε0)λdn ≥ ε0λdn,

holds for all n ≥ n0. On the other hand,

1 =

∫
fn ≥ Ωnλd(Un,Ωn) ≥ Ωnε0λ

d
n,

and suppose the contrary that Mn →∞ as n→∞, then

1 ≥ Ωnε0λ
d
n =

ε0κ
d
s

2(εs0 −M s
n)d

M1+sd
n ≥ cM1+sd

n →∞, n→∞,

since 1 + sd > 0 by assumption −1/d < s < 0. Here c =
ε1−sd0 κds

2 . This gives
a contradiction and the proof is complete.

Proof of Theorem 3.4. We only have to show ν is absolutely contin-
uous with respect to λd. To this end, for given ε > 0, choose δ = ε/2M ,
where M := supn‖fn‖∞ < ∞ by virtue of Lemma 3.3. Now for Borel set
A ⊂ Rd with λd(A) ≤ δ, we can take an open A′ ⊃ A such that λd(A

′) ≤ 2δ
by the regularity of Lebesgue measure. Then

ν(A) ≤ ν(A′) ≤ lim inf
n→∞

νn(A′) = lim inf
n→∞

∫
A′
fn ≤ 2δM = ε,

as desired.
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12 HAN AND WELLNER

Proof of Lemma 3.5. Let gn = fsn and g = fs. Without loss of gen-
erality we assume 0 ∈ int(dom(g)), and choose η > 0 small enough such
that Bη := B(0, η) ⊂ int(dom(g)). By the Lemma E.4, we know there ex-

ists a > 0, R > 0 such that g(x)−g(0)
‖x‖ ≥ a, holds for all ‖x‖ ≥ R

2 . Now

we claim that there exists n0 ∈ N such that gn(x)−gn(0)
‖x‖ ≥ a

8 , holds for all

‖x‖ ≥ R and n ≥ n0. Note for each n ∈ N, by convexity of gn(·), we know

that for fixed x ∈ Rd, the quantity gn(λx)−gn(0)
‖λx‖ is non-decreasing in λ, so

we only have to show the claim for ‖x‖ = R and n0 ≥ n. Suppose the con-
trary, then we can find a subsequence {gn(k)} and ‖xn(k)‖ = R such that
gn(k)(xn(k))−gn(k)(0)

‖xn(k)‖
< a

8 . For simplicity of notation we think of {gn}, {xn}
as {gn(k)}, {xn(k)}. Now define An := conv({xn, Bη});Bn := {y ∈ Rd :
‖y − xn‖ ≤ R/2};Cn := An ∩ Bn. By reducing η > 0 if necessary, we may
assume Bη ∩ Bn = ∅. It is easy to see Cn is convex and λd(Cn) = λ0 is a
constant independent of n ∈ N. By Lemma 3.2, we know that gn →a.e. g
on Bη, and hence supx∈Bη |gn(x)− g(x)| → 0(n → ∞) by Theorem 10.8,
Rockafellar (1997). By further reducing η > 0 if necessary, we may assume
gn(y) ≤ g(0) + aR

8 , holds for all y ∈ Bη and n ∈ N. Now for any x∗ ∈ Cn,
write x∗ = λxn + (1− λ)y, by noting R/2 ≤ ‖x∗‖ ≤ R and convexity of gn,
we get

gn(x∗)− gn(0)

‖x∗‖
≤ λgn(xn) + (1− λ)gn(y)− gn(0)

‖x∗‖

= λ · gn(xn)− gn(0)

‖xn‖
· ‖xn‖
‖x∗‖

+ (1− λ)
gn(y)− gn(0)

‖x∗‖

≤ λ · a
8

R

R/2
+ (1− λ)

aR/8

R/2
=
a

4
.

This gives rise to

lim inf
n→∞

∫
Cn

(fn − f) ≥ lim inf
n→∞

λ0

(
(aR/4 + gn(0))1/s − (aR/2 + g(0))1/s

)
= λ0

(
(aR/4 + g(0))1/s − (aR/2 + g(0))1/s

)
> 0,

which is a contradiction to Lemma E.10. This establishes our claim. Now
by Lemma 3.2, we find that the set {lim infn fn(·) > 0} is full-dimensional,
and hence by Lemma 3.3 we conclude gn(·) is uniformly bounded away from
zero. Also note by Lemma E.9 we find g(·) must be bounded away from zero,
which gives the desired assertion.

Before the proof of Theorem 3.7, we first state some useful lemmas that
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SUPPLEMENT: S-CONCAVE ESTIMATION 13

give good control of tails with local information of the s-concave densities;
the proof can be found in Appendix E.

Lemma B.1. Let x0, . . . , xd be d + 1 points in Rd such that its convex

hull ∆ = conv({x0, . . . , xd}) is non-void. If f(y) ≤ minj
(

1
d

∑
i 6=j f

s(xi)
)1/s

,
then

f(y) ≤ fmax

(
1− d

r
+
d

r
fminC(1 + ‖y‖2)1/2

)−r
.

Here the constant C = λd(∆)(d+1)−1/2σmax(X)−1 where X =

(
x0 . . . xd
1 . . . 1

)
and fmin := min0≤j≤d f(xj), fmax := max0≤j≤d f(xj).

Lemma B.2. Let ν be a probability measure with s-concave density f .
Suppose that B(0, δ) ⊂ int(dom(f)) for some δ > 0. Then for any y ∈ Rd,

sup
x∈B(y,δt)

f(x) ≤ J0

(
1

t

((
ν(B(ty, δt))

J0λd(B(ty, δt))

)−1/r

− (1− t)

))−r
,

where J0 := infv∈B(0,δ) f(v) and δt = δ 1−t
1+t .

Now we are in position to prove Theorem 3.7.

Proof of Theorem 3.7. That the sequence {fn}n∈N converges uniformly
on any compact subset in int(dom(f)) follows directly from Lemma 3.2 and
Theorem 10.8 Rockafellar (1997). Now we show that if f is continuous at
y ∈ Rd with f(y) = 0, then for any η > 0 there exists δ = δ(y, η) such that

(B.2) lim sup
n→∞

sup
x∈B(y,δ(y,η))

fn(x) ≤ η.

Assume without loss of generality that B(0, δ0) ⊂ int(dom(f)) for some
δ0 > 0. Let J0 := infx∈B(0,δ0) f(x). Then uniform convergence of {fn} to f
over B(0, δ0) entails that

lim inf
n→∞

inf
x∈B(0,δ0)

fn(x) ≥ J0.

Hence with δt = δ0
1−t
1+t , it follows from Lemma B.2 that

lim sup
n→∞

sup
x∈B(y,δt)

fn(x) ≤ J0

(
1

t

((
ν(B(ty, δt))

J0λd(B(ty, δt))

)−1/r

− (1− t)
))−r

≤ J0

(
J

1/r
0

(
supx∈B(ty,δt) f(x)

)−1/r − (1− t)
t

)−r
→ 0
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14 HAN AND WELLNER

as t↗ 1. This completes the proof for (B.2). So far we have shown that

lim
n→∞

sup
x∈S∩B(0,ρ)

|fn(x)− f(x)| = 0

holds for every ρ ≥ 0, where S is the closed set contained in the con-
tinuity points of f . Our goal is to let ρ → ∞ and conclude. Let ∆ =
conv({x0, . . . , xd}) be a non-void simplex with x0, . . . , xd ∈ int(dom(f)).
Note first by a closer look at the proof of Lemma 3.5, fn(x) ∨ f(x) ≤(
(a‖x‖ − b)

)1/s
+

holds for all x ∈ Rd with some a, b > 0. Let ρ0 := inf{ρ ≥
0 :
(
aρ− b)1/s ≤ fmin/2} where fmin := min0≤j≤d f(xi) > 0. Then

{x ∈ Rd : ‖x‖ ≥ ρ0} ⊂
⋂
n≥1

{fn ≤ fmin/2}
⋂
{f ≤ fmin/2}

⊂
⋂
n≥n0

{fn ≤ (fn)min}
⋂
{f ≤ fmin}

⊂
⋂
n≥n0

{fn ≤ min
j

(1

d

∑
i 6=j

fsn(xi)
)1/s}⋂{f ≤ min

j

(1

d

∑
i 6=j

fs(xi)
)1/s},

where n0 ∈ N is a large constant. The second inclusion follows from the
fact that limn→∞ fn(xi) = f(xi) holds for i = 0, . . . , d. By Lemma B.1 we
conclude that

lim sup
n→∞

sup
x:‖x‖≥ρ∨ρ0

(
1 + ‖x‖)κ

(
fn(x) ∨ f(x)

)
≤ sup
x:‖x‖≥ρ∨ρ0

fmax

(
1 + ‖x‖)κ

(
1− d

r
+
d

r
fminC

(
1 + ‖x‖2

)1/2)−r → 0,

as ρ→∞. This completes the proof.

Proof of Theorem 3.8. Since ∇ξfn(x) = −rgn(x)1/s−1∇ξgn(x),

|∇ξfn(x)−∇ξf(x)|

= r
∣∣∣gn(x)1/s∇ξgn(x)− g(x)1/s∇ξg(x)

∣∣∣
≤ r
(
fn(x) |∇ξgn(x)−∇ξg(x)|+ |fn(x)− f(x)| |∇ξg(x)|

)
≤ 2r sup

x∈T
|f(x)| |∇ξgn(x)−∇ξg(x)|+ r sup

x∈T
|fn(x)− f(x)| sup

x∈T
‖∇g(x)‖2

holds for n large enough by Theorem 3.7. By Theorem 23.4 in Rockafellar
(1997), ∇ξgn(x) = τTx ξ for some τx ∈ ∂gn(x) since ∂gn(x) is a closed set.
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SUPPLEMENT: S-CONCAVE ESTIMATION 15

Thus the first term above is further bounded by

2r sup
x∈T
|f(x)| sup

x∈T,τ∈∂gn(x)
‖τ −∇g(x)‖2,

which vanishes as n → ∞ in view of Lemma 3.10 in Seijo and Sen (2011).
Note that∇g(·) is continuous on T by Corollary 25.5.1 in Rockafellar (1997),
and hence supx∈T ‖∇g(x)‖2 <∞. Now it is easy to see that the second term
also vanishes as n→∞ by virtue of Theorem 3.7.

APPENDIX C: SUPPLEMENTARY PROOFS FOR SECTION 4

Proof of Theorem 4.4. The proof is essentially the same as that of
Theorem 3.6 Balabdaoui, Rufibach and Wellner (2009).

Lemma C.1. Assume (A1)-(A4). Then∫ ∞
−∞

f̃ε(x) dx = 1 + πk
rg(k)(m0)

g(m0)r+1
εk+1 + o(εk+1),

where

πk =
1

(k + 1)!

[
3k−1(2k2 − 4k + 3) + 2k2 − 1

]
.

Proof of Lemma C.1. This is straightforward calculation by Taylor
expansion. Note that∫ ∞

−∞
g̃−rε (x) dx =

∫ ∞
−∞

(g̃−rε (x)− g−r(x)) dx+ 1

=

∫ m0−ε

m0−cεε

(
g̃−rε (x)− g−r(x)

)
dx

+

∫ m0+ε

m0−ε

(
g̃−rε (x)− g−r(x)

)
dx+ 1

:= I + II + 1.

For y > x, we have x−r−y−r =
∑∞

n≥1

(−r
n

)
(−1)n(y−x)ny−r−n. Now for the
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16 HAN AND WELLNER

first term above, we continue our calculation of its leading term by noting

g(x)− g̃ε(x)

= g(x)− g(m0 − cεε)− (x−m0 + cεε)g
′(m0 − cεε)

= g(m0) +
g(k)(m0)

k!
(x−m0)k −

[
g(m0) +

g(k)(m0)

k!
(−cεε)k

]
− (x−m0 + cεε)

g(k)(m0)

(k − 1)!
(−cεε)k−1 + higher order terms

=
g(k)(m0)

k!

[
(x−m0)k − ckε εk + kck−1

ε εk−1(x−m0 + cεε)

]
+ higher order terms.

(C.1)

Here we used the fact k is an even number, as shown in Lemma D.1. Thus
we have

leading term of I

=

∫ m0−ε

m0−cεε
r

(
g(x)− g(m0 − cεε)− (x−m0 + cεε)g

′(m0 − cεε)
)
g(x)−r−1 dx

=
rg(k)(m0)

k!g(m0)r+1

∫ m0−ε

m0−cεε

[
(x−m0)k − ckε εk + kck−1

ε εk−1(x−m0 + cεε)

]
dx+ o(εk+1)

= αk
rg(k)(m0)

g(m0)r+1
εk+1 + o(εk+1)

Here

αk =
1

(k + 1)!

[
3k−1(2k2 − 4k + 3)− 1

]
.

For the second term,

g(x)− g̃ε(x)

= g(x)− g(m0 + ε)− (x−m0 − ε)g′(m0 + ε)

=
g(k)(m0)

k!

[
(x−m0)k − εk − kεk−1(x−m0 − ε)

]
+ higher order terms.

(C.2)

Now similar calculations yield that the second term = βk
rg(k)(m0)
g(m0)r+1 ε

k+1 +

o(εk+1) with

βk =
2k2

(k + 1)!
.

This gives the conclusion.
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SUPPLEMENT: S-CONCAVE ESTIMATION 17

Proof of Lemma 4.6. By definition of the Hellinger metric and Lemma
C.1, we have

2h2(fε, f) =

∫ ∞
−∞

(√
fε(x)−

√
f(x)

)2
dx

=

∫ ∞
−∞

(
g̃−r/2ε (x)

(
1− πk

2

rg(k)(m0)

g(m0)r+1
εk+1 + o(εk+1)

)
− g−r/2(x)

)2

dx

≡
∫ ∞
−∞

(
g̃−r/2ε (x)(1 + ηk(ε))− g−r/2(x)

)2
dx

since

fε(x) = g̃−rε (x)

(
1 + πk

rg(k)(m0)

g(m0)r+1
εk+1 + o(εk+1)

)−1

= g̃−rε (x)

(
1− πk

rg(k)(m0)

g(m0)r+1
εk+1 + o(εk+1)

)
.

Here ηk(ε) = O(εk+1). Splitting two terms apart in the above integral we
get

2h2(fε, f) =

∫ ∞
−∞

(
g̃−r/2ε (x)− g−r/2(x) + ηk(ε)g̃

−r/2
ε (x)

)2

dx

=

∫ ∞
−∞

(
g̃−r/2ε (x)− g−r/2(x)

)2
dx+

(
ηk(ε)

)2 ∫ ∞
−∞

g̃−rε (x) dx

+ 2ηk(ε)

∫ ∞
−∞

g̃−r/2ε (x)
(
g̃−r/2ε (x)− g−r/2(x)

)
dx

= I + II + III.

Now for the first term,

I =

∫ m0+ε

m0−cεε

r2

4

[
g(x)− g̃ε(x)

]2
g(x)−r−2 dx+ higher order terms

=
r2

4g(m0)r+2

∫ m0+ε

m0−cεε

[
g(x)− g̃ε(x)

]2
dx+ higher order terms

=
r2

4g(m0)r+2

(∫ m0−ε

m0−cεε
+

∫ m0+ε

m0−ε

)[
g(x)− g̃ε(x)

]2
dx+ higher order terms

= I1 + I2 + higher order terms.
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18 HAN AND WELLNER

By (C.1) and (C.2) we see that for i = 1, 2,

Ii =
r2

4g(m0)r+2

∫
Ii

[
g(x)− g̃ε(x)

]2
dx

= ζ
(i)
k

r2f(m0)g(k)(m0)2

g(m0)2
ε2k+1 + o(ε2k+1).

Here I1 = [m0 − cεε,m0 − ε], I2 = [m0 − ε,m0 + ε], and

ζ
(1)
k =

1

108(k!)2(k + 1)(k + 2)(2k + 1)

[
− 4 · 3k+2(2k + 1)(3k+2 + k2 + k − 3)

+ (k + 1)(k + 2)

(
27(32k+1 − 1) + 2 · 32k(2k + 1)(2k(2k − 9) + 27)

)]
.

ζ
(2)
k =

2k2(2k2 + 1)

3(k!)2(k + 1)(2k + 1)
.

On the other hand, II = O(ε(2k+2)) = o(ε2k+1) and |III| ≤ O(εk+1·ε(2k+1)/2·
ε(2k+2)/2) = o(ε2k+1) by Cauchy-Schwarz. This completes the proof.

APPENDIX D: PROOF OF THEOREM 6.1

We first observe that

Lemma D.1. k is an even integer and g
(k)
0 (x0) > 0.

Proof of Lemma D.1. By Taylor expansion of g′′0 around x0, we find
that locally for x ≈ x0,

g′′0(x) =
g

(k)
0 (x0)

(k − 2)!
(x− x0)k−2 + o

(
(x− x0)k−2

)
.

Also note g′′0(x) ≥ 0 by convexity and local smoothness assumed in (A3).

This gives that k − 2 is even and g
(k)
0 (x0) > 0.

For further technical discussions, we denote throughout this subsection

that for fixed k, rn := n
k+2
2k+1 ; sn := n−

1
2k+1 ;xn(t) := x0 + snt; ln,x0 :=

[x0, xn(t)]. Let τ+
n := inf{t ∈ Sn(ĝn) : t > x0}, and τ−n := sup{t ∈ Sn(ĝn) :

t < x0}. The key step in establishing the limit theory, is to establish a
stochastic bound for the gap τ+

n − τ−n as follows.

Theorem D.2. Assume (A1)-(A4) hold. Then

τ+
n − τ−n = Op(sn).
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SUPPLEMENT: S-CONCAVE ESTIMATION 19

Proof. Define ∆0(x) := (τ−n − x)1[τ−n ,τ̄ ](x) + (x − τ+
n )1[τ̄ ,τ+n ](x), and

∆1 := ∆0 + τ+n −τ−n
4 1[τ−n ,τ

+
n ], where τ̄ =: τ

−
n +τ+n

2 . Thus we find that∫
∆1 d(Fn − F0) =

∫
∆1 d(Fn − F̂n) +

∫
∆1 d(F̂n − F0)

≥ −τ
+
n − τ−n

4

∣∣∣∣∣
∫ τ+n

τ−n

d(Fn − F̂n)

∣∣∣∣∣+

∫
∆1(f̂n − f0) dλ

≥ −τ
+
n − τ−n

2n
+

∫
∆1(f̂n − f0) dλ,

where the last line follows from Corollary 2.13. Now let R1n :=
∫

∆1(f̂n −
f0) dλ,R2n :=

∫
∆1 d(Fn − F0). The conclusion follows directly from the

following lemma.

Lemma D.3. Suppose (A1)-(A4) hold. Then R1n = Op(τ
+
n −τ−n )k+2 and

R2n = Op(r
−1
n ).

Proof of Lemma D.3. Define pn := ĝn/g0 on [τ+
n , τ

−
n ]. It is easy to see

that τ+
n − τ−n = op(1), so with large probability, for all n ∈ N large enough,

infx∈[τ+n ,τ
−
n ] f0(x) > 0 by (A2).

R1n =

∫ τ+n

τ−n

∆1(x)
(
f̂n(x)− f0(x)

)
dx =

∫ τ+n

τ−n

∆1(x)f0(x)

(
f̂n(x)

f0(x)
− 1

)
dx

=

∫ τ+n

τ−n

∆1(x)f0(x)

( k−1∑
j=1

(
−r
j

)
(pn(x)− 1)j +

(
−r
k

)
θ−r−kx,n (pn(x)− 1)k

)
dx,

where θx,n ∈ [1 ∧ ĝn(x)
g0(x) , 1 ∨

ĝn(x)
g0(x) ]. Now define

Snj =

∫ τ+n

τ−n

∆1(x)f0(x)

(
−r
j

)
(pn(x)− 1)j dx, 1 ≤ j ≤ k − 1,

Snk =

∫ τ+n

τ−n

∆1(x)f0(x)

(
−r
k

)
θ−r−kx,n (pn(x)− 1)k dx.
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20 HAN AND WELLNER

Expand f0 around τ̄ , then we have

Snj =
k−1∑
l=0

∫ τ+n

τ−n

∆1(x)
f

(l)
0 (τ̄)

l!
(x− τ̄)l

(
−r
j

)
(pn(x)− 1)j dx

+

∫ τ+n

τ−n

∆1(x)
f

(l)
0 (ηn,x,k)

k!
(x− τ̄)k

(
−r
k

)
(pn(x)− 1)k dx,

Snk =

k−1∑
l=0

∫ τ+n

τ−n

∆1(x)
f

(l)
0 (τ̄)

l!
θ−r−kx,n (x− τ̄)l

(
−r
j

)
(pn(x)− 1)k dx

+

∫ τ+n

τ−n

∆1(x)
f

(l)
0 (ηn,x,k)

k!
θ−r−kx,n (x− τ̄)k

(
−r
k

)
(pn(x)− 1)k dx.

Now we see the dominating term is the first term in Sn1 since all other terms
are of higher orders, and |θx,n − 1| = op(1) uniformly locally in x in view of
Theorem 3.7. We denote this term Qn1. Note that 1/g0(x0) = 1/g0(τ)+op(1)
uniformly in τ around x0, and that ĝn is piecewise linear, yielding

Qn1

−rf0(τ̄)
=

∫ τ+n

τ−n

∆1(x)
1

g0(x)

(
ĝn(x)− g0(x)

)
dx

=

(
1

g0(x0)
+ op(1)

)∫ τ+n

τ−n

∆1(x)
(
ĝn(x)− g0(x)

)
dx

=

(
1

g0(x0)
+ op(1)

)[(
ĝn(τ̄)− g0(τ̄)

) ∫ τ+n

τ−n

∆1(x) dx

+
(
ĝ′n(τ̄)− g′0(τ̄)

) ∫ τ+n

τ−n

∆1(x)(x− τ̄) dx

−
k∑
j=2

g
(j)
0 (τ̄)

j!

∫ τ+n

τ−n

∆1(x)(x− τ̄)j dx

−
∫ τ+n

τ−n

εn(x)∆1(x)(x− τ̄)k dx

]
,

where the first two terms in the bracket is zero by construction of ∆1. Now
note that∫ τ+n

τ−n

∆1(x)(x−τ̄)j dx =

{
0 j = 0, or j is odd;

j
2j+2(j+1)(j+2)

(
τ+
n − τ−n

)j+2
j > 0, and j is even,

and that g
(j)
0 (τ̄) = 1

(k−j)!(g
(k)
0 (x0) + op(1))

(
τ̄ − x0)k−j . This means that for
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SUPPLEMENT: S-CONCAVE ESTIMATION 21

j ≥ 2 and j even,

g
(j)
0 (τ̄)

j!

∫ τ+n

τ−n

∆1(x)(x− τ̄)j dx =
j(g

(k)
0 (x0) + op(1))

(k − j)!(j + 2)!2j+2
(τ̄ − x0)k−j(τ+

n − τ−n )j+2

=
j(g

(k)
0 (x0) + op(1))

(k − j)!(j + 2)!2j+2
Op(1)(τ+

n − τ−n )k+2.

Further note that ‖εn‖∞ = op(1) as τ+
n − τ−n →p 0, we get Qn1 = Op(τ

+
n −

τ−n )k+2. This establishes the first claim. The proof for R2n follows the same
line as in the proof of Lemma 4.4 Balabdaoui, Rufibach and Wellner (2009)
p1318-1319.

Lemma D.4. We have the following:

f
(j)
0 (x0) = j!

(
−r
j

)
g0(x0)−r−j

(
g′0(x0)

)j
, 1 ≤ j ≤ k − 1;

f
(k)
0 (x0) = k!

(
−r
k

)
g0(x0)−r−k

(
g′0(x0)

)k − rg0(x0)−r−1g
(k)
0 (x0).

Proof. This follows from direct calculation.

Lemma D.5. For any M > 0, we have

sup
|t|≤M

∣∣ĝ′n(x0 + snt)− ĝ′0(x0)
∣∣ = Op(s

k−1
n );

sup
|t|≤M

∣∣ĝn(x0 + snt)− g0(x0)− sntg′0(x0)
∣∣ = Op(s

k
n).

The proof is identical to Lemma 4.4 in Groeneboom, Jongbloed and Well-
ner (2001) so we shall omit it.

Lemma D.6. Let

ên(u) := f̂n(u)−
k−1∑
j=0

f
(j)
0 (x0)

j!
(u− x0)j − f0(x0)

(
−r
k

)(
g′0(x0)

g0(x0)

)k
(u− x0)k.

Then for any M > 0, we have sup|t|≤M |ên(x0 + snt)| = Op(s
k
n).
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22 HAN AND WELLNER

Proof. Note that

f̂n(u)− f0(x0) = f0(x0)

[
f̂n(u)

f0(x0)
− 1

]
= f0(x0)

[(
ĝn(u)

g0(x0)

)−r
− 1

]
= f0(x0)

( k∑
j=1

(
−r
j

)(
ĝn(u)

g0(x0)
− 1

)j
+
∑
j≥k+1

(
−r
j

)(
ĝn(u)

g0(x0)
− 1

)j
︸ ︷︷ ︸

=:Ψ̂k,n,1(u)

)
.

(D.1)

Define Ψ̂k,n,1(u) :=
∑

j≥k+1

(−r
j

) ( ĝn(u)
g0(x0) − 1

)j
=
∑

j≥k+1

(−r
j

)
1

g0(x0)j

(
ĝn(u)−

g0(x0)
)j

. Note that(
ĝn(u)− g0(x0)

)j
=
(
ĝn(u)− g0(x0)− (u− x0)g′0(x0) + (u− x0)g′0(x0)

)j
=

j∑
l=1

(
j

l

)[
ĝn(u)− g0(x0)− (u− x0)g′0(x0)

]l
(u− x0)j−lg′0(x0)j−l

+ (u− x0)jg′0(x0)j

= Op(s
kl
n · sj−ln ) +Op(s

j
n)

uniformly on {u : |u− x0| ≤Mn−1/(2k+1)}

= Op(n
− j

2k+1 ),

if j ≥ k + 1. Here the third line follows from Lemma D.5. This implies

Ψ̂k,n,1(u) = op(n
− k

2k+1 ), uniformly on {u : |u− x0| ≤ Mn−1/(2k+1)}. Using
the same expansion in the first term on the right hand side of (D.1), we
arrive at

f̂n(u)− f0(x0)︸ ︷︷ ︸
(1)

= f0(x0)
k∑
j=1

(
−r
j

)
1

[g0(x0)]j

j∑
r=1

(
j

r

)[
ĝn(u)− g0(x0)− (u− x0)g′0(x0)

]r
(u− x0)j−rg0(x0)j−r︸ ︷︷ ︸

(2)

+ f0(x0)
k∑
j=1

(
−r
j

)(
g′0(x0)

g0(x0)

)j
(u− x0)j︸ ︷︷ ︸

(3)

+ f0(x0)Ψ̂k,n,1(u)︸ ︷︷ ︸
(4)

.

By Lemma D.4, we see that ên(u) = (1)−(3) = (2)+(4) = Op(s
k
n) uniformly

on {u : |u− x0| ≤Mn−1/(2k+1)}. This yields the desired result.
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We are now ready for the proof of Theorem 6.1.

Proof of Theorem 6.1. For the first assertion, note that

[f0(x0)]−1

(
f̂n(u)−

k−1∑
j=0

f
(j)
0 (x0)

j!
(u− x0)j

)

=[f0(x0)]−1

(
f̂n(u)− f0(x0)−

k−1∑
j=1

f
(j)
0 (x0)

j!
(u− x0)j

)

=[f0(x0)]−1

(
f0(x0)

( k∑
j=1

(
−r
j

)(
ĝn(u)

g0(x0)
− 1

)j
+ Ψ̂k,n,1(u)

)
−
k−1∑
j=1

f
(j)
0 (x0)

j!
(u− x0)j

)
by (D.1)

=Ψ̂k,n,1(u) +
k∑
j=1

(
−r
j

)(
ĝn(u)

g0(x0)
− 1

)j
− [f0(x0)]−1

k−1∑
j=1

f
(j)
0 (x0)

j!
(u− x0)j

=Ψ̂k,n,1(u) +

(
−r
1

)(
ĝn(u)

g0(x0)
− 1

)
− 1

f0(x0)
f ′0(x0)(u− x0)

+
k∑
j=2

(
−r
j

)(
ĝn(u)

g0(x0)
− 1

)j
− [f0(x0)]−1

k−1∑
j=2

f
(j)
0 (x0)

j!
(u− x0)j

=Ψ̂k,n,1(u)− r

g0(x0)

(
ĝn(u)− g0(x0)− g′0(x0)(u− x0)

)
+

k∑
j=2

(
−r
j

)(
ĝn(u)

g0(x0)
− 1

)j

− [f0(x0)]−1
k−1∑
j=2

f
(j)
0 (x0)

j!
(u− x0)j

=− r

g0(x0)

(
ĝn(u)− g0(x0)− g′0(x0)(u− x0)

)
+ Ψ̂k,n,2(u),

where

Ψ̂k,n,2(u) := Ψ̂k,n,1(u)+

k∑
j=2

(
−r
j

)(
ĝn(u)

g0(x0)
−1

)j
−[f0(x0)]−1

k−1∑
j=2

f
(j)
0 (x0)

j!
(u−x0)j .
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24 HAN AND WELLNER

Now we calculate∫
ln,x0

∫ v

x0

Ψ̂k,n,2(u)dudv

=
1

2
t2n−

2
2k+1 sup

u∈ln,x0

∣∣∣Ψ̂k,n,1(u)
∣∣∣+

k∑
j=2

(
−r
j

)∫
ln,x0

∫ v

x0

(
ĝn(u)

g0(x0)
− 1

)j
dudv

− [f0(x0)]−1
k−1∑
j=2

f
(j)
0 (x0)

j!

∫
ln,x0

∫ v

x0

(u− x0)j dudv

=op(r
−1
n ) +

k∑
j=2

(
−r
j

)(
g′0(x0)

g0(x0)

)j ∫
ln,x0

∫ v

x0

(u− x0)j dudv

−
k−1∑
j=2

(
−r
j

)(
g′0(x0)

g0(x0)

)j ∫
ln,x0

∫ v

x0

(u− x0)j dudv

+

( k∑
j=2

(
−r
j

)
1

[g0(x0)]j

×
∫
ln,x0

∫ v

x0

j∑
l=1

(
j

l

)(
ĝn(u)− g0(x0)− g′0(x0)(u− x0)

)l
(u− x0)j−l[g′0(x0)]j−l dudv

)

=op(r
−1
n ) +

(
−r
k

)(
g′0(x0)

g0(x0)

)k ∫
ln,x0

∫ v

x0

(u− x0)k dudv

+

( k∑
j=2

(
−r
j

)
1

[g0(x0)]j

×
∫
ln,x0

∫ v

x0

j∑
l=1

(
j

l

)(
ĝn(u)− g0(x0)− g′0(x0)(u− x0)

)l
(u− x0)j−l[g′0(x0)]j−l dudv

)
:=op(r

−1
n ) + (2) + (1).

Consider (1): for each (j, l) satisfying 1 ≤ l ≤ j ≤ k and j ≥ 2, we have

(1) : rn

∫
ln,x0

∫ v

x0

(
ĝn(u)− g0(x0)− g′0(x0)(u− x0)

)l
(u− x0)j−l[g′0(x0)]j−l dudv

= n
k+2
2k+1 ·O(n−

2
2k+1 ) ·Op(n−

kl
2k+1 ) ·Op(n−

j−l
2k+1 ) = Op(n

− k(l−1)+(j−l)
2k+1 ) = op(1).
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Consider (2) as follows:

(2) =

(
−r
k

)(
g′0(x0)

g0(x0)

)k ∫
ln,x0

∫ v

x0

(u− x0)k dudv

=
1

(k + 1)(k + 2)

(
−r
k

)(
g′0(x0)

g0(x0)

)k
tk+2r−1

n .

Hence we have

rn

∫
ln,x0

∫ v

x0

Ψ̂k,n,2(u)dudv =
1

(k + 1)(k + 2)

(
−r
k

)(
g′0(x0)

g0(x0)

)k
tk+2 + op(1).

Note by definition we have

(D.2) Ylocmod
n (t) =

Yloc
n (t)

f0(x0)
− rn

∫
ln,x0

∫ v

x0

Ψ̂k,n,2(u)dudv.

Let n → ∞, by the same calculation in the proof of Theorem 6.2 Groene-
boom, Jongbloed and Wellner (2001), we have

Ylocmod
n (t)→d

1√
f0(x0)

∫ t

0
W (s) ds

+

[
f

(k)
0 (x0)

(k + 2)!f0(x0)
− 1

(k + 1)(k + 2)

(
−r
k

)(
g′0(x0)

g0(x0)

)k]
tk+2

=
1√
f0(x0)

∫ t

0
W (s) ds− rg

(k)
0 (x0)

g0(x0)(k + 2)!
tk+2,

where the last line follows from Lemma D.4. Now we turn to the second
assertion. It is easy to check by the definition of Ψ̂k,n,2(·) that

(D.3) Hlocmod
n (t) =

Hloc
n (t)

f0(x0)
− rn

∫
ln,x0

∫ v

x0

Ψ̂k,n,2(u)dudv.

On the other hand, simple calculation yields that Yloc
n (t)−Hloc

n (t) = rn
(
Hn(x0+

snt) − Ĥn(x0 + snt)
)
≥ 0 where the inequality follows from Theorem 2.12.

Combined with (D.2) and (D.3) we have shown the second assertion. Finally
we show tightness of {Ân} and {B̂n}. By Theorem D.2, we can find M > 0
and τ ∈ S(ĝn) such that 0 ≤ τ − x0 ≤ Mn−1/(2k+1) with large probability.
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Now note∣∣∣Ân∣∣∣ ≤ rnsn ∣∣∣(F̂n(x0)− F̂n(τ)
)
−
(
Fn(x0)− Fn(τ)

)∣∣∣+
rnsn
n

≤ rnsn

∣∣∣∣∣∣
∫ τ

x0

(
f̂n(u)−

k−1∑
j=0

f
(j)
0 (x0)

j!
(u− x0)j

)
du

∣∣∣∣∣∣
+ rnsn

∣∣∣∣∣∣
∫ τ

x0

( k−1∑
j=0

f
(j)
0 (x0)

j!
(u− x0)j − f0(u)

)
du

∣∣∣∣∣∣
+ rnsn

∣∣∣∣∫ τ

x0

d(Fn − F0)

∣∣∣∣+ n−k/(2k+1)

=: Ân1 + Ân2 + Ân3 + n−k/(2k+1).

We calculate three terms respectively.

Ân1 ≤ rnsn
∣∣∣∣∫ τ

x0

ên(u) du

∣∣∣∣+ rnsn

∣∣∣∣∣
∫ τ

x0

f0(x0)

(
−r
k

)(
g′0(x0)

g0(x0)

)k
(u− x0)k du

∣∣∣∣∣
= Op(rnsn · sk+1

n ) + op(rnsn · sk+1
n ) = Op(1), by Lemma D.6

Ân2 ≤ rnsn

∣∣∣∣∣
∫ τ

x0

f
(k)
0 (x0)

k!
(u− x0)k du

∣∣∣∣∣+ rnsn

∣∣∣∣∫ τ

x0

(u− x0)kεn(u) du

∣∣∣∣
= Op(1), since ‖εn‖∞ →p 0 as x0 − τ →p 0.

For Ân3, we follow the lines of Lemma 4.1 Balabdaoui, Rufibach and Wellner
(2009) again to conclude. Fix R > 0, and consider the function class Fx0,R :=
{1[x0,y] : x0 ≤ y ≤ x0 + R}. Then Fx0,R(z) := 1[x0,x0+R](z) is an envelop

function for Fx0,R, and EF 2
x0,R

=
∫ x0+R
x0

dz = R. Now let s = k, d = 1 in
Lemma 4.1 Balabdaoui, Rufibach and Wellner (2009), we have

Ân3 =

∣∣∣∣∫ τ

x0

d(Fn − F0)(z)

∣∣∣∣ ≤ |τ − x0|k+1 +Op(1)n−
k+1
2k+1 = Op(1).

This completes the proof for tightness for {An}. {Bn} follows from similar
argument so we omit the details.

APPENDIX E: AUXILIARY RESULTS

E.1. Proosf of Lemmas B.1 and B.2.

imsart-aos ver. 2014/10/16 file: supp.tex date: October 23, 2015



SUPPLEMENT: S-CONCAVE ESTIMATION 27

Lemma E.1. Let ν be a probability measure with s-concave density f ,
and x0, . . . , xd ∈ Rd be d + 1 points such that ∆ := conv({x0, . . . , xd}) is

non-void. If f(x0) ≤
(

1
d

∑d
i=1 f

s(xi)
)1/s

, then

f(x0) ≤ ḡ−r
(

1− d

r
+
d

r

λd(∆)ḡ−r

ν(∆)

)−r
,

where ḡ := 1
d

∑d
j=1 f

s(xj).

Proof of Lemma E.1. For any point x ∈ ∆, we can find some u =
(u1, . . . , ud) ∈ ∆d = {u :

∑d
i=1 ui ≤ 1} such that x(u) =

∑d
i=0 uixi. Here

u0 := 1 −
∑d

i=1 ui ≥ 0. We use the following representation of integration
on the unit simplex ∆d: For any measurable function h : ∆d → [0,∞), we
have

∫
∆d
h(u) du = 1

d!Eh(B1, . . . , Bd), where Bi = Ei/
∑d

j=0Ej with inde-
pendent, standard exponentially distributed random variables E0, . . . , Ed.

ν(∆)

λd(∆)
=

1

λd(∆d)

∫
∆d

g
(
x(u)

)−r
du = Eg

( d∑
j=0

Bjxj

)−r

≥ E
( d∑
j=0

Bjg(xj)

)−r
= E

(
B0g0 + (1−B0)

d∑
i=1

B̃ig(xi)

)−r
,

where B̃i := Ei/
∑d

j=1Ej for 1 ≤ i ≤ d. Following Cule and Dümbgen

(2008), it is known that B0 and {B̃i}di=1 are independent, and E[B̃i] = 1/d.
Hence it follows from Jensen’s inequality that

ν(∆)

λd(∆)
≥ E

[
E
(
B0g0 + (1−B0)

d∑
i=1

B̃ig(xi)

)−r∣∣∣∣B0

]

≥ E
(
B0g0 + (1−B0)

1

d

d∑
i=1

g(xi)

)−r
= E (B0g0 + (1−B0)ḡ)−r

=

∫ 1

0
d(1− t)d−1

(
tg0 + (1− t)ḡ

)−r
dt

= ḡ−r
∫ 1

0
d(1− t)d−1

(
1− st

(
(−1/s)

(
g0

ḡ
− 1

)))
dt

= ḡ−rJd,s

(
− 1

s

(
g0

ḡ
− 1

))
,
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where

Jd,s(y) =

∫ 1

0
d(1− t)d−1(1− syt)1/s dt.

We claim that

Jd,s(y) ≥
∫ 1

0
d(1− t)d−1(1− t)ydt =

d

d+ y
,

holds for s < 0, y > 0. To see this, we write (1− syt)1/s = (1 + yt/r)−(r/y)y.
Then we only have to show (1 + yt/r)−r/y ≥ (1 − t) for 0 ≤ t ≤ 1, or
equivalently (1 + bt) ≤ (1 − t)−b where we let b = y/r. Let g(t) := (1 −
t)−b − (1 + bt). It is easy to verify that g(0) = 0, g′(t) = b(1 − t)−b−1 − b
with g′(0) = 0, and g′′(t) = b(b + 1)(1 − t)−b−2 ≥ 0. Integrating g′′ twice
yields g(t) ≥ 0, and hence we have verified the claim. Now we proceed with
the calculation

ν(∆)

λd(∆)
≥ ḡ−rJd,s

(
− 1

s

(
g0

ḡ
− 1

))
≥ ḡ−r d

d− 1
s

(g0
ḡ − 1

) .
Solving for g0 and replacing −1/s = r proves the desired inequality.

Proof of Lemma B.1. For fixed j ∈ {0, . . . , d}, note |det(xi − xj) : i 6= j| =

|detX| where X =

(
x0 . . . xd
1 . . . 1

)
. Also for each y ∈ Rd, since ∆ =

conv({x0, . . . , xd}) is non-void, y must be in the affine hull of ∆ and hence
we can write y =

∑d
i=0 λixi with

∑d
i=0 λi = 1 (not necessary non-negative),

i.e. λ = X−1
(
y
1

)
. Let ∆j(y) := conv({xi : i 6= j} ∪ {y}). Then

λd(∆j(y)) =
1

d!

∣∣∣∣det

(
x0 . . . xj−1 y xj+1 . . . xd
1 . . . 1 1 1 . . . 1

)∣∣∣∣
=

1

d!
|λj | |detX| = |λj |λd(∆).

Hence,

max
0≤j≤d

λd(∆j(y)) ≥ λd(∆) max
j
|λj | = λd(∆)‖X−1

(
y

1

)
‖∞

≥ λd(∆)(d+ 1)−1/2‖X−1

(
y

1

)
‖

≥ λd(∆)(d+ 1)−1/2σmax(X)−1(1 + ‖y‖2)1/2 = C(1 + ‖y‖2)1/2.

Now the conclusion follows from Lemma E.1 by noting

f(y) ≤ ḡ−rj

(
1− d

r
+
d

r

λd(∆j(y))ḡ−rj
ν(∆j(y))

)−r
≤ fmax

(
1− d

r
+
d

r
fminC(1 + ‖y‖2)1/2

)−r
,
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since ḡ−rj =
(

1
d

∑
i 6=j f

s(xi)
)1/s

and hence fmin ≤ ḡ−rj ≤ fmax, and the index
j is chosen such that λd(∆j(y)) is maximized.

Proof of Lemma B.2. The key point that for any point x ∈ B(y, δt)

B(ty, δt) ⊂ (1− t)B(0, δ) + tx

can be shown in the same way as in the proof of Lemma 4.2 Schuhmacher,
Hüsler and Dümbgen (2011). Namely, pick any w ∈ B(ty, δt), let v := (1 −
t)−1(w − tx), then since

‖v‖ = (1−t)−1‖w−tx‖ = (1−t)−1‖w−ty+t(y−x)‖ ≤ (1−t)−1(δt+tδt) = δ,

and hence v ∈ B(0, δ). This implies that w = (1−t)v+tx ∈ (1−t)B(0, δ)+tx,
as desired. By s-concavity of f , we have

f(w) ≥
(
(1− t)f(v)s + tf(x)s

)1/s
≥
(
(1− t)Js0 + tf(x)s

)1/s
= J0

(
1− t+ t

(
f(x)

J0

)s)1/s

.

Averaging over w ∈ B(ty, δt) yields

ν(B(ty, δt))

λd(B(ty, δt))
≥ J0

(
1− t+ t

(
f(x)

J0

)s)1/s

.

Solving for f(x) completes the proof.

E.2. Auxiliary convex analysis.

Lemma E.2 (Lemma 4.3, Dümbgen, Samworth and Schuhmacher (2011)).
For any ϕ(·) ∈ G with non-empty domain, and ε > 0, define

ϕ(ε)(x) := sup
(v,c)

(vTx+ c)

where the supremum is taken over all pairs of (v, c) ∈ Rd × R such that

1. ‖v‖ ≤ 1
ε ;

2. ϕ(y) ≥ vT y + c holds for all y ∈ Rd.

Then ϕ(ε) ∈ G with Lipschitz constant 1
ε . Furthermore,

ϕ(ε) ↗ ϕ, as ε↘ 0,

where the convergence is pointwise for all x ∈ Rd.
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Lemma E.3 (Lemma 2.13, Dümbgen, Samworth and Schuhmacher (2011)).
Given Q ∈ Q0, a point x ∈ Rd is an interior point of csupp(Q) if and only
if

h(Q, x) ≡ sup{Q(C) : C ⊂ Rd closed and convex, x /∈ int(C)} < 1.

Moreover, if {Qn} ⊂ Q converges weakly to Q, then

lim sup
n→∞

h(Qn, x) ≤ h(Q, x)

holds for all x ∈ Rd.

Lemma E.4. If g ∈ G, then there exists a, b > 0 such that for all x ∈ Rd,
g(x) ≥ a‖x‖ − b.

Proof. The proof is essentially the same as for Lemma 1, Cule and
Samworth (2010), so we shall omit it.

Consider the class of functions

GM :=

{
g ∈ G :

∫
gβ dx ≤M

}
.

Lemma E.5. For a given g ∈ GM , denote Dr := D(g, r) := {g ≤ r} to
be the level set of g(·) at level r, and ε := inf g. Then for r > ε, we have

λ(Dr) ≤
M(−s)(r − ε)d

(s+ 1)
∫ r−ε

0 vd(v + ε)1/s dv
,

where β = 1 + 1/s, and −1 < s < 0.

Proof. For u ∈ [ε, r], by convexity of g(·), we have

λ(Du) ≥
(
u− ε
r − ε

)d
λ(Dr).

This can be seen as follows: Consider the epigraph Γg of g(·), where Γg =
{(t, x) ∈ Rd × R : x ≥ g(t)}. Let x0 ∈ Rd be a minimizer of g. Consider
the convex set Cr = conv

(
Γg ∩ {g = r}, (x0, ε)

)
⊂ Γg ∩ {g ≤ r}. where the

inclusion follows from the convexity of Γg as a subset of Rd+1. The claimed
inequality follows from

λd(Du) = λd
(
πd(Γg∩{g = u})

)
≥ λd

(
πd(Cr∩{g = u})

)
=

(
u− ε
r − ε

)d
λd(Dr),
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where πd : Rd ×R→ Rd is the natural projection onto the first component.
Now we do the calculation as follows:

M ≥
∫
Dr

(
g(x)1/s+1 − r1/s+1

)
dx

= −
(

1

s
+ 1

)∫
Dr

(∫ r

ε
1(u ≥ g(x))u1/s du

)
dx

= −
(

1

s
+ 1

)∫ r

ε
u1/s du

∫
Dr

1(u ≥ g(x)) dx

= −
(

1

s
+ 1

)∫ r

ε
λ(Du)u1/s du

≥ −
(

1

s
+ 1

)∫ r

ε

(
u− ε
r − ε

)d
λ(Dr)u

1/s du

= λ(Dr) ·
(s+ 1)

∫ r
ε (u− ε)du1/s du

(−s)(r − ε)d
.

By a change of variable in the integral we get the desired inequality.

Lemma E.6. Let G be a convex set in Rd with non-empty interior,
and a sequence {yn}n∈N with ‖yn‖ → ∞ as n → ∞. Then there exists
{x1, . . . , xd} ⊂ G such that

λd
(
conv

(
x1, . . . , xd, yn(k)

) )
→∞,

as k →∞ where {yn(k)}k∈N is a suitable subsequence of {yn}n∈N.

Proof. Without loss of generality we assume 0 ∈ int(dom(G)), and we
first choose a convergent subsequence {yn(k)}k∈N from {yn/‖yn‖}n∈N. Now
if we let a := limk→∞ yn(k)/‖yn(k)‖, then ‖a‖ = 1. Since G has non-empty

interior, {aTx = 0}∩G has non-empty relative interior. Thus we can choose
x1, . . . , xd ⊂ {aTx = 0}∩G such that λd−1(K) ≡ λd−1

(
conv (x1, . . . , xd)

)
>

0. Note that

dist
(
yn(k), aff(K)

)
= dist

(
yn(k), {aTx = 0}

)
= 〈yn(k), a〉 = ‖yn(k)‖〈yn(k)/‖yn(k)‖, a〉 → ∞,

as k →∞. Since

λd
(
conv

(
x1, . . . , xd, yn(k)

) )
= λd

(
conv

(
K, yn(k)

) )
= cλd−1(K)·dist

(
yn(k), aff(K)

)
,

for some constant c = c(d) > 0, the proof is complete as we let k →∞.
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Lemma E.7 (Lemma 4.2, Dümbgen, Samworth and Schuhmacher (2011)).
Let ḡ and {gn}n∈N be functions in G such that gn ≥ ḡ, for all n ∈ N. Suppose
the set C := {x ∈ Rd : lim supn→∞ gn(x) < ∞} is non-empty. Then there
exist a subsequence {gn(k)}k∈N of {gn}n∈N, and a function g ∈ G such that
C ⊂ dom(g) and

lim
k→∞,x→y

gn(k)(x) = g(y), for all y ∈ int(dom(g)),

lim inf
k→∞,x→y

gn(k)(x) ≥ g(y), for all y ∈ Rd.
(E.1)

Lemma E.8. Let {gn} be a sequence of non-negative convex functions
satisfying the following conditions:

(A1). There exists a convex set G with non-empty interior such that for all
x0 ∈ int(G), we have supn∈N gn(x0) <∞.

(A2). There exists some M > 0 such that supn∈N
∫ (
gn(x)

)β
dx ≤M <∞.

Then there exists a, b > 0 such that for all x ∈ Rd and k ∈ N

gn(k)(x) ≥ a‖x‖ − b,

where {gn(k)}k∈N is a suitable subsequence of {gn}n∈N.

Proof. Without loss of generality we may assume G is contained in all
int(dom(gn)). We first note (A1)-(A2) implies that {x̂n ∈ Arg minx∈Rd gn(x)}∞n=1

is a bounded sequence, i.e.

(E.2) sup
n∈N
‖x̂n‖ <∞,

Suppose not, then without loss of generality we may assume ‖x̂n‖ → ∞
as n → ∞. By Lemma E.6, we can choose {x1, . . . , xd} ⊂ G such that
λd
(
conv

(
x1, . . . , xd, x̂n(k)

) )
→∞, as k →∞ for some subsequence {x̂n(k)} ⊂

{x̂n}. For simplicity of notation we think of {x̂n} as such an appropriate sub-
sequence. Denote εn := infx∈Rd gn(x), andM2 := supn∈N εn ≤ supn∈N gn(x0) <
∞ by (A1). Again by (A1) and convexity we may assume that

sup
x∈conv(x1,...,xd,x̂n)

gn(x) ≤M1,

holds for some M1 > 0 and all n ∈ N. This implies that∫
gβn(x) dx ≥Mβ

1 λd
(
conv (x1, . . . , xd, x̂n)

)
→∞,
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as n→∞, which gives a contradiction to (A2). This shows (E.2).
Now we define g(·) be the convex hull of g̃(x) := infn∈N gn(x), then g ≤ gn

holds for all n ∈ N. We claim that g(x)→∞ as ‖x‖ → ∞. By Lemma E.5,
for fixed η > 1, we have

λd
(
D(gn, ηM2)

)
≤ M(−s)(ηM2 − εn)d

(s+ 1)
∫ ηM2−εn

0 vd(v + εn)1/s dv

≤ M(−s)(ηM2)d

(s+ 1)
∫ (η−1)M2

0 vd(v +M2)1/s dv
<∞,

where D(gn, ηM2) := {gn ≤ ηM2}. Hence

(E.3) sup
n∈N

λd
(
D(gn, ηM2)

)
<∞.

holds for every η > 1. Now combining (E.2) and (E.3), we claim that, for
fixed η large enough, it is possible to find R = R(η) > 0 such that

(E.4) gn(x) ≥ ηM2,

holds for all x ≥ R(η) and n ∈ N. If this is not true, then for all k ∈ N, we
can find n(k) ∈ N and x̄k ∈ Rd with ‖x̄k‖ ≥ k such that gn(k)(x̄k) ≤ ηM2.
We consider two cases to derive a contradiction.
[Case 1.] If for some n0 ∈ N there exists infinitely many k ∈ N with n(k) =
n0, then we may assume without loss of generality that we can find some a
sequence {x̄k}k∈N with ‖x̄k‖ → ∞ as k →∞, and gn0(x̄k) ≤ ηM2. Since the
support gn0 has non-empty interior, by Lemma E.6, we can find x1, . . . , xd ∈
supp(gn0) such that λd

(
conv(x1, . . . , xd, x̄k(j))

)
→ ∞ as j → ∞ holds for

some subsequence {x̄k(j)}j∈N of {x̄k}k∈N. Let M̄ := max1≤i≤d gn0(xi), then
we find λd

(
D(gn0 , M̄ ∨ ηM2)

)
=∞. This contradicts with (E.3).

[Case 2.] If #{k ∈ N : n = n(k)} < ∞ for all n ∈ N, then without
loss of generality we may assume that for all k ∈ N, we can find x̄k ∈ Rd
with ‖x̄k‖ ≥ k such that gk(xk) ≤ ηM2. Recall by assumption (A1) convex
set G has non-empty interior, and is contained in the support of gn for
all n ∈ N. Again by Lemma E.6, we may take x1, . . . , xd ∈ C such that
λd
(
conv(x1, . . . , xd, x̄k(j))

)
→ ∞ as j → ∞ holds for some subsequence

{x̄k(j)}j∈N of {x̄k}k∈N. In view of (A1), we conclude by convexity that M̄ :=
max1≤i≤d supj∈N gk(j)(xi) <∞. This implies

λd
(
D(gnk(j) , M̄ ∨ ηM2)

)
≥ λd

(
conv(x1, . . . , xd, x̄k(j))

)
→∞, j →∞,

which gives a contradiction.
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Combining these two cases we have proved (E.4). This implies that g̃(x)→
∞ as ‖x‖ → ∞, whence verifying the claim that g(x) → ∞ as ‖x‖ → ∞.
Hence in view of Lemma E.4, we find that there exists a, b > 0 such that
gn(x) ≥ a‖x‖ − b holds for all x ∈ Rd and n ∈ N.

Lemma E.9. Assume x0, . . . , xd ∈ Rd are in general position. If g(·) is a
non-negative function with ∆ ≡ conv(x0, . . . , xd) ⊂ dom(g), and g(x0) = 0.

Then for r ≥ d, we have
∫

∆

(
g(x)

)−r
dx =∞.

Proof. We may assume without loss of generality that x0 = 0, xi = ei ∈
Rd, where ei is the unit directional vector with 1 in its i-th coordinate and
0 otherwise. Then ∆ = ∆0 := {x ∈ Rd :

∑d
i=1 xi ≤ 1, xi ≥ 0, ∀i = 1, . . . , d}.

Denote ai = g(xi) ≥ 0. We may assume there is at least one ai 6= 0. Then
by convexity of g we find g(x) ≤

∑d
i=1 aixi for all x ∈ ∆0. This gives

∫
∆0

(
g(x)

)−r
dx ≥

∫
∆0

( d∑
i=1

aixi
)−r

dx ≥
∫

∆0

1

(maxi=1,...,d ai)r‖x‖r1
dx

≥ 1

(maxi=1,...,d ai)rdr/2

∫
C0

1

‖x‖r2
dx =∞,

where C0 := {‖x‖2 ≤ 1√
d
} ∩ {xi ≥ 0, i = 1, . . . , d}. Note we used the fact

that ‖x‖1 ≤
√
d‖x‖2.

Lemma E.10 (Theorem 1.11, Bhattacharya and Ranga Rao (1976)). Let
fn →d f , and D be the class of all Borel measurable, convex subsets in Rd.
Then limn→∞ supD∈D

∣∣∫
D(fn − f)

∣∣ = 0.
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