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APPROXIMATION AND ESTIMATION OF s-CONCAVE DENSITIES
VIA RÉNYI DIVERGENCES

BY QIYANG HAN AND JON A. WELLNER1

University of Washington

In this paper, we study the approximation and estimation of s-concave
densities via Rényi divergence. We first show that the approximation of a
probability measure Q by an s-concave density exists and is unique via the
procedure of minimizing a divergence functional proposed by [Ann. Statist.
38 (2010) 2998–3027] if and only if Q admits full-dimensional support and
a first moment. We also show continuity of the divergence functional in Q:
if Qn → Q in the Wasserstein metric, then the projected densities converge
in weighted L1 metrics and uniformly on closed subsets of the continuity
set of the limit. Moreover, directional derivatives of the projected densities
also enjoy local uniform convergence. This contains both on-the-model and
off-the-model situations, and entails strong consistency of the divergence es-
timator of an s-concave density under mild conditions. One interesting and
important feature for the Rényi divergence estimator of an s-concave density
is that the estimator is intrinsically related with the estimation of log-concave
densities via maximum likelihood methods. In fact, we show that for d = 1
at least, the Rényi divergence estimators for s-concave densities converge to
the maximum likelihood estimator of a log-concave density as s ↗ 0. The
Rényi divergence estimator shares similar characterizations as the MLE for
log-concave distributions, which allows us to develop pointwise asymptotic
distribution theory assuming that the underlying density is s-concave.

1. Introduction.

1.1. Overview. The class of s-concave densities on Rd is defined by the gen-
eralized means of order s as follows. Let

Ms(a, b; θ) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
(1 − θ)as + θbs

)1/s
, s �= 0, a, b > 0,

0, s < 0, ab = 0,

a1−θbθ , s = 0,

a ∧ b, s = −∞.

Then a density p(·) on Rd is called s-concave, that is, p ∈ Ps if and only if
for all x0, x1 ∈ Rd and θ ∈ (0,1), p((1 − θ)x0 + θx1) ≥ Ms(p(x0),p(x1); θ).
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This definition apparently goes back to Avriel (1972) with further studies by
Borell (1974, 1975), Das Gupta (1976), Rinott (1976), and Uhrin (1984); see also
Dharmadhikari and Joag-Dev (1988) for a nice summary. It is easy to see that
the densities p(·) have the form p = ϕ

1/s
+ for some concave function ϕ if s > 0,

p = exp(ϕ) for some concave ϕ if s = 0, and p = ϕ
1/s
+ for some convex ϕ if

s < 0. The function classes Ps are nested in s in that for every r > 0 > s, we have
Pr ⊂ P0 ⊂ Ps ⊂P−∞.

Nonparametric estimation of s-concave densities has been under intense re-
search efforts in recent years. In particular, much attention has been paid to es-
timation in the special case s = 0 which corresponds to all log-concave densities
on Rd . The nonparametric maximum likelihood estimator (MLE) of a log-concave
density was studied in the univariate setting by Walther (2002), Dümbgen and Ru-
fibach (2009), Pal, Woodroofe and Meyer (2007); and in the multivariate setting
by Cule and Samworth (2010), Cule, Samworth and Stewart (2010). The limiting
distribution theory at fixed points when d = 1 was studied in Balabdaoui, Rufibach
and Wellner (2009), and rate results in Doss and Wellner (2016), Kim and Sam-
worth (2015). Dümbgen, Samworth and Schuhmacher (2011) also studied stability
properties of the MLE projection of any probability measure onto the class of log-
concave densities.

Compared with the well-studied log-concave densities (i.e., s = 0), much re-
mains unknown concerning estimation and inference procedures for the larger
classes Ps, s < 0. One important feature for this larger class is that the densities
in Ps(s < 0) are allowed to have heavier and heavier tails as s → −∞. In fact,
t-distributions with ν degrees of freedom belong to P−1/(ν+1)(R) [and hence also
to Ps(R) for any s < −1/(ν + 1)]. The study of maximum likelihood estimators
(MLEs in the following) for general s-concave densities in Seregin and Wellner
(2010) shows that the MLE exists and is consistent for s ∈ (−1,∞). However,
there is no known result about uniqueness of the MLE of s-concave densities ex-
cept for s = 0. The difficulties in the theory of estimation via MLE lie in the fact
we have still very little knowledge of “good” characterizations of the MLE in the
s-concave setting. This has hindered further development of both theoretical and
statistical properties of the estimation procedure.

Some alternative approaches to estimation of s-concave densities have been pro-
posed in the literature by using divergences other than the log-likelihood functional
(Kullback–Leibler divergence in some sense). Koenker and Mizera (2010) pro-
posed an alternative to maximum likelihood based on generalized Rényi entropies.
Similar procedures were also proposed in parametric settings by Basu et al. (1998)
using a family of discrepancy measures. In our setting of s-concave densities with
s < 0, the methods of Koenker and Mizera (2010) can be formulated as follows.

Given i.i.d. observations X = (X1, . . . ,Xn), consider the primal optimization
problem (P):

(P) min
g∈G(X)

L(g,Qn) ≡ 1

n

n∑
i=1

g(Xi) + 1

|β|
∫
Rd

g(x)β dx,(1.1)
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where G(X) denotes all nonnegative closed convex functions supported on the
convex set conv(X), Qn = 1

n

∑n
i=1 δXi

the empirical measure and β = 1+1/s < 0.
As is shown by Koenker and Mizera (2010), the associated dual problem (D) is

(D) max
f

∫
Rd

(f (y))α

α
dy,

(1.2)

subject to f = d(Qn − G)

dy
for some G ∈ G(X)◦,

where G(X)◦ ≡ {G ∈ C∗(X)| ∫ g dG ≤ 0, for all g ∈ G(X)} is the polar cone of
G(X), and α is the conjugate index of β , that is, 1/α + 1/β = 1. Here, C∗(X), the
space of signed Radon measures on conv(X), is the topological dual of C(X), the
space of continuous functions on conv(X). We also note that the constraint G ∈
G(X)◦ in the dual form (1.2) comes from the “dual” of the primal constraint g ∈
G(X), and the constraint f = d(Qn−G)

dy
can be derived from the dual computation

of L(·,Qn):

(
L(·,Qn)

)∗
(G) = sup

g

(
〈G,g〉 − 1

n

n∑
i=1

g(Xi) − 1

|β|
∫
Rd

g(x)β dx

)

= sup
g

(
〈G −Qn, g〉 −

∫
ψs

(
g(x)

)
dx

)
= 	∗

s (G −Qn).

Here, we used the notation 〈G,g〉 := ∫
g dG, ψs(·) := (·)β/|β| and 	s is the func-

tional defined by 	s(g) := ∫
ψs(g(x))dx for clarity. Now the dual form (1.2) fol-

lows by the well-known fact [e.g., Rockafellar (1971) Corollary 4A] that the form
of the above dual functional is given by

	∗(G) =

⎧⎪⎪⎨
⎪⎪⎩

∫
ψ∗(dG/dx)dx, if G is absolute continuous with respect to

Lebesgue measure,

+∞, otherwise.

For the primal problem (P) and the dual problem (D), Koenker and Mizera
(2010) proved the following results:

THEOREM 1.1 [Theorem 4.1, Koenker and Mizera (2010)]. (P) admits a
unique solution g∗

n if int(conv(X)) �= ∅, where g∗
n is a polyhedral convex func-

tion supported on conv(X).

THEOREM 1.2 [Theorem 3.1, Koenker and Mizera (2010)]. Strong duality
between (P) and (D) holds. Any dual feasible solution is actually a density on
Rd with respect to the canonical Lebesgue measure. The dual optimal solution f ∗

n

exists, and satisfies f ∗
n = (g∗

n)1/s .
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We note that the above results are all obtained in the empirical setting. At the
population level, given a probability measure Q with suitable regularity conditions,
consider

(PQ) min
g∈G Ls(g,Q),(1.3)

where

L(g,Q) ≡ Ls(g,Q) ≡
∫

g(x)dQ + 1

|β|
∫
Rd

g(x)β dx,

and G denotes the class of all (nonnegative) closed convex functions with non-
empty interior, which are coercive in the sense that g(x) → ∞, as ‖x‖ → ∞.
Koenker and Mizera (2010) show that Fisher consistency holds at the population
level: Suppose Q(A) := ∫

A f0 dλ is defined for some f0 = g
1/s
0 where g0 ∈ G; then

g0 is an optimal solution for (PQ).
Koenker and Mizera (2010) also proposed a general discretization scheme cor-

responding to the primal form (1.1) and the dual form (1.2) for fast computation,
by which the one-dimensional problem can be solved via linear programming and
the two-dimensional problem via semi-definite programming. These have been im-
plemented in the R package REBayes by Koenker and Mizera (2014). Koenker’s
package depends in turn on the MOSEK implementation of MOSEK ApS (2011);
see Appendix B of Koenker and Mizera (2010) for further details. On the other
hand, in the special case s = 0, computation of the MLEs of log-concave densi-
ties has been implemented in the R package LogConcDEAD developed in Cule,
Samworth and Stewart (2010) in arbitrary dimensions. However, expensive search
for the proper triangulation of the support conv(X) renders computation difficult
in high dimensions.

In this paper, we show that the estimation procedure proposed by Koenker and
Mizera (2010) is the “natural” way to estimate s-concave densities. As a starting
point, since the classes Ps are nested in s, it is natural to consider estimation of
the extreme case s = 0 (the class of log-concave densities) as some kind of “limit”
of estimation of the larger class s < 0. As we will see, estimation of s-concave
distributions via Rényi divergences is intrinsically related with the estimation of
log-concave distributions via maximum likelihood methods. In fact, we show that
in the empirical setting in dimension 1, the Rényi divergence estimators converge
to the maximum likelihood estimator for log-concave densities as s ↗ 0.

We will show that the Rényi divergence estimators share characterization and
stability properties similar to the analogous properties established in the log-
concave setting by Cule and Samworth (2010), Dümbgen and Rufibach (2009) and
Dümbgen, Samworth and Schuhmacher (2011). Once these properties are avail-
able, further theoretical and statistical considerations in estimation of s-concave
densities become possible. In particular, the characterizations developed here en-
able us to overcome some of the difficulties of maximum likelihood estimators as
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proposed by Seregin and Wellner (2010), and to develop limit distribution theory at
fixed points assuming that the underlying model is s-concave. The pointwise rate
and limit distribution results follow a pattern similar to the corresponding results
for the MLEs in the log-concave setting obtained by Balabdaoui, Rufibach and
Wellner (2009). This local point of view also underlines the results on global rates
of convergence considered in Doss and Wellner (2016), showing that the difficulty
of estimation for such densities with tails light or heavy, comes almost solely from
the shape constraints, namely, the convexity-based constraints.

The rest of the paper is organized as follows. In Section 2, we study the basic
theoretical properties of the approximation/projection scheme defined by the pro-
cedure (1.3). In Section 3, we study the limit behavior of s-concave probability
measures in the setting of weak convergence under dimensionality conditions on
the supports of the limiting sequence. In Section 4, we develop limiting distribu-
tion theory of the divergence estimator in dimension 1 under curvature conditions
with tools developed in Sections 2 and 3. Related issues and further problems are
discussed in Section 5. Some proofs are given in Section 6; most of the proofs
and some auxiliary results are presented in the Supplementary Material, Han and
Wellner (2015).

1.2. Notation. In this paper, we denote the canonical Lebesgue measure on
Rd by λ or λd and write ‖ · ‖p for the canonical Euclidean p-norm in Rd , and
‖ · ‖ = ‖ · ‖2 unless otherwise specified. B(x, δ) stands for the open ball of radius δ

centered at x in Rd , and 1A for the indicator function of A ⊂ Rd . We use Lp(f ) ≡
‖f ‖Lp ≡ ‖f ‖p = (

∫ |f |p dλd)1/p to denote the Lp(λd) norm of a measurable
function f on Rd if no confusion arises.

We write csupp(Q) for the convex support of a measure Q defined on Rd , that
is,

csupp(Q) = ⋂{
C : C ⊂ Rd closed and convex,Q(C) = 1

}
.

We let Q0 denote all probability measures on Rd whose convex support has non-
void interior, while Q1 denotes the set of all probability measures Q with finite
first moment:

∫ ‖x‖Q(dx) < ∞.
We write fn →d f if Pn converges weakly to P for the corresponding proba-

bility measures Pn(A) ≡ ∫
A fn dλ and P(A) ≡ ∫

A f dλ.
We write α := 1 + s, β := 1 + 1/s, r := −1/s unless otherwise specified.

2. Theoretical properties of the divergence estimator. In this section, we
study the basic theoretical properties of the proposed projection scheme via Rényi
divergence (1.3). Starting from a given probability measure Q, we first show the
existence and uniqueness of such projections via Rényi divergence under assump-
tions on the index s and Q. We will call such a projection the Rényi divergence
estimator for the given probability measure Q in the following discussions. We
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next show that the projection scheme is continuous in Q in the following sense: if
a sequence of probability measures Qn, for which the projections onto the class of
s-concave densities exist, converge to a limiting probability measure Q in Wasser-
stein distance, then the corresponding projected densities converge in weighted
L1 metrics and uniformly on closed subsets of the continuity set of the limit. The
directional derivatives of such projected densities also converge uniformly in all
directions in a local sense. We then turn our attention the explicit characterizations
of the Rényi divergence estimators, especially in dimension 1. This helps in two
ways. First, it helps to understand the continuity of the projection scheme in the
index s, that is, answers affirmatively the question: For a given probability measure
Q, does the Rényi divergence estimator converge to the log-concave projection as
studied in Dümbgen, Samworth and Schuhmacher (2011) as s ↗ 0? Second, the
explicit characterizations are exploited in the development of asymptotic distribu-
tion theory presented in Section 4.

2.1. Existence and uniqueness. For a given probability measure Q, let
L(Q) = infg∈G L(g,Q).

LEMMA 2.1. Assume −1/(d + 1) < s < 0 and Q ∈ Q0. Then L(Q) < ∞ if
and only if Q ∈ Q1.

Now we state our main theorem for the existence of Rényi divergence projection
corresponding to a general measure Q on Rd .

THEOREM 2.2. Assume −1/(d + 1) < s < 0 and Q ∈ Q0 ∩ Q1. Then (1.3)
achieves its nontrivial minimum for some g̃ ∈ G. Moreover, g̃ is bounded away
from zero, and f̃ ≡ g̃1/s is a bounded density with respect to λd .

The uniqueness of the solution follows immediately from the strict convexity of
the functional L(·,Q).

LEMMA 2.3. g̃ is the unique solution for (PQ) if int(dom(g̃)) �=∅.

REMARK 2.4. By the above discussion, we conclude that the map Q �→
arg ming∈G L(g,Q) is well-defined for probability measures Q with suitable reg-
ularity conditions: in particular, if Q ∈ Q0 and −1/(d + 1) < s < 0, it is well-
defined if and only if Q ∈ Q1. From now on, we denote the optimal solution
as gs(·|Q) or simply g(·|Q) if no confusion arises, and write PQ for the corre-
sponding s-concave distribution, and say that PQ is the Rényi projection of Q to
PQ ∈ Ps .
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2.2. Weighted global convergence in ‖ · ‖L1 and ‖ · ‖∞.

THEOREM 2.5. Assume −1/(d + 1) < s < 0. Let {Qn} ⊂ Q0 be a sequence
of probability measures converging weakly to Q ⊂ Q0 ∩Q1. Then∫

‖x‖dQ ≤ lim inf
n→∞

∫
‖x‖dQn.(2.1)

If we further assume that

lim
n→∞

∫
‖x‖dQn =

∫
‖x‖dQ,(2.2)

then,

L(Q) = lim
n→∞L(Qn).(2.3)

Conversely, if (2.3) holds, then (2.2) holds true. In the former case [i.e., (2.2)
holds], let g := g(·|Q) and gn := g(·|Qn), then f := g1/s , fn := g

1/s
n satisfy

lim
n→∞,x→y

fn(x) = f (y) for all y ∈ Rd \ ∂{f > 0},
(2.4)

lim sup
n→∞,x→y

fn(x) ≤ f (y) for all y ∈ Rd .

For κ < r − d ≡ −1/s − d ,

lim
n→∞

∫ (
1 + ‖x‖)κ ∣∣fn(x) − f (x)

∣∣ dx = 0.(2.5)

For any closed set S contained in the continuity points of f and κ < r ,

lim
n→∞ sup

x∈S

(
1 + ‖x‖)κ ∣∣fn(x) − f (x)

∣∣ = 0.(2.6)

Furthermore, let Df := {x ∈ int(dom(f )) : f is differentiable at x}, and T ⊂
int(Df ) be any compact set. Then

lim
n→∞ sup

x∈T ,‖ξ‖2=1

∣∣∇ξ fn(x) − ∇ξ f (x)
∣∣ = 0,(2.7)

where ∇ξf (x) := limh↘0
f (x+hξ)−f (x)

h
denotes the (one-sided) directional deriva-

tive along ξ .

REMARK 2.6. The one-sided directional derivative for a convex function g is
well-defined and ∇ξ g(x) = infh>0

g(x+hξ)−g(x)
h

, hence well-defined for f ≡ g1/s .
See Section 23 in Rockafellar (1997) for more details.

As a direct consequence, we have the following result covering both on and
off-the-model cases.
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COROLLARY 2.7. Assume −1/(d + 1) < s < 0. Let Q be a probability mea-
sure such that Q ∈ Q0 ∩ Q1, with fQ := g(·|Q)1/s the density function corre-
sponding to the Rényi projection PQ (as in Remark 2.4). Let Qn = 1

n

∑n
i=1 δXi

be
the empirical measure when X1, . . . ,Xn are i.i.d. with distribution Q on Rd . Let
ĝn := g(·|Qn) and f̂n := ĝ

1/s
n be the Rényi divergence estimator of Q. Then almost

surely we have

lim
n→∞,x→y

f̂n(x) = fQ(y) for all y ∈Rd \ ∂{f > 0},
(2.8)

lim sup
n→∞,x→y

f̂n(x) ≤ fQ(y) for all y ∈Rd .

For κ < r − d ≡ −1/s − d ,

lim
n→∞

∫ (
1 + ‖x‖)κ ∣∣f̂n(x) − fQ(x)

∣∣ dx =a.s. 0.(2.9)

For any closed set S contained in the continuity points of f and κ < r ,

lim
n→∞ sup

x∈S

(
1 + ‖x‖)κ ∣∣f̂n(x) − fQ(x)

∣∣ =a.s. 0.(2.10)

Furthermore, for any compact set T ⊂ int(DfQ
),

lim
n→∞ sup

x∈T ,‖ξ‖2=1

∣∣∇ξ f̂n(x) − ∇ξfQ(x)
∣∣ =a.s. 0.(2.11)

Now we return to the correctly specified case and relax the previous assumption
that s > −1/(d + 1) for the case of the empirical measure Qn ≡ Qn and some
measure Q with finite mean and bounded density f ∈Ps′ ⊂ Ps with s′ > s.

COROLLARY 2.8. Assume −1/d < s < 0. Let Q be a probability measure on
Rd with density f ∈ Ps if −1/(d + 1) < s and f ∈ Ps′ where s′ > −1/(d + 1)

if s ∈ (−1/d,−1/(d + 1)]. (Thus, f is bounded and f has a finite mean.) Let
f̂n ≡ f̂n,s be defined as in Corollary 2.7. Then (2.8), (2.9), (2.10) and (2.11) hold
with fQ replaced by f .

2.3. Characterization of the Rényi divergence projection and estimator. We
now develop characterizations for the Rényi divergence projection, especially in
dimension 1. All proofs for this subsection can be found in the Supplementary
Material.

We note that the assumption −1/(d + 1) < s < 0 is imposed only for the exis-
tence and uniqueness of the Rényi divergence projection. For the specific case of
empirical measure Qn ≡ Qn, this condition can be relaxed to −1/d < s < 0.

Now we give a variational characterization in the spirit of Theorem 2.2 in
Dümbgen and Rufibach (2009). This result holds for all dimensions d ≥ 1.
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THEOREM 2.9. Assume −1/(d + 1) < s < 0 and Q ∈ Q0 ∩ Q1. Then g =
g(·|Q) if and only if ∫

h · g1/s dλ ≤
∫

hdQ,(2.12)

holds for all h :Rd →R such that there exists t0 > 0 with g + th ∈ G holds for all
t ∈ (0, t0).

COROLLARY 2.10. Assume −1/(d + 1) < s < 0 and Q ∈ Q0 ∩Q1 and let h

be any closed convex function. Then∫
hdP ≤

∫
hdQ,

where P = PQ is the Rényi projection of Q to PQ ∈ Ps (as in Remark 2.4).

As a direct consequence, we have the following.

COROLLARY 2.11 (Moment inequalities). Assume −1/(d + 1) < s < 0 and
Q ∈ Q0 ∩Q1. Let μQ := EQ[X]. Then μP = μQ. Furthermore, if −1/(d + 2) <

s < 0, we have λmax(�P ) ≤ λmax(�Q) and λmin(�P ) ≤ λmin(�Q) where �Q is
the covariance matrix defined by �Q := EQ[(X − μQ)(X − μQ)T ]. Generally if
−1/(d + k) < s < 0 for some k ∈ N, then EP [‖X‖l] ≤ EQ[‖X‖l] holds for all
l = 1, . . . , k.

Now we restrict our attention to d = 1, and in the following we will give
a full characterization of the Rényi divergence estimator. Suppose we observe
X1, . . . ,Xn i.i.d. Q on R, and let X(1) ≤ X(2) ≤ · · · ≤ X(n) be the order statis-
tics of X1, . . . ,Xn. Let Fn be the empirical distribution function corresponding
to the empirical probability measure Qn := 1

n

∑n
i=1 δXi

. Let ĝn := g(·|Qn) and

F̂n(t) := ∫ t
−∞ ĝ

1/s
n (x)dx. From Theorem 4.1 in Koenker and Mizera (2010), it

follows that ĝn is a convex function supported on [X(1),X(n)], and linear on
[X(i),X(i+1)] for all i = 1, . . . , n − 1. For a continuous piecewise linear function
h : [X(1),X(n)] →R, define the set of knots to be

Sn(h) := {
t ∈ (X(1),X(n)) : h′(t−) �= h′(t+)

} ∩ {X1, . . . ,Xn}.
THEOREM 2.12. Let gn be a convex function taking the value +∞ on R \

[X(1),X(n)] and linear on [X(i),X(i+1)] for all i = 1, . . . , n − 1. Let

Fn(t) :=
∫ t

−∞
g1/s

n (x)dx.

Assume Fn(X(n)) = 1. Then gn = ĝn if and only if∫ t

X(1)

(
Fn(x) − Fn(x)

)
dx

{= 0, if t ∈ Sn(gn),

≤ 0, otherwise.
(2.13)
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COROLLARY 2.13. For x0 ∈ Sn(ĝn), we have

Fn(x0) − 1

n
≤ F̂n(x0) ≤ Fn(x0).

Finally, we give a characterization of the Rényi divergence estimator in terms
of distribution function as Theorem 2.7 in Dümbgen, Samworth and Schuhmacher
(2011).

THEOREM 2.14. Assume −1/2 < s < 0 and Q ∈ Q0 ∩ Q1 is a probability
measure on R with distribution function G(·). Let g ∈ G be such that f ≡ g1/s is
a density on R, with distribution function F(·). Then g = g(·|Q) if and only if:

1.
∫
R(F − G)(t)dt = 0;

2.
∫ x
−∞(F − G)(t)dt ≤ 0 for all x ∈R with equality when x ∈ S̃(g).

Here, S̃(g) := {x ∈ R : g(x) < 1
2(g(x + δ) + g(x − δ)) holds for δ > 0 small

enough}.
The above theorem is useful for understanding the projected s-concave density

given an arbitrary probability measure Q ∈ Q0 ∩ Q1. The following example il-
lustrates these projections and also gives some insight concerning the boundary
properties of the class of s-concave densities.

EXAMPLE 2.15. Consider the class of densities Q defined by

Q =
{
qτ (x) = τ − 1

2(τ − 2)

(
1 + |x|

τ − 2

)−τ

, τ > 2
}
.

Note that qτ is −1/τ -concave and not s-concave for any 0 > s > −1/τ . We start
from arbitrary qτ ∈ Q with τ > 2, and we will show in the following that the
projection of qτ onto the class of s-concave (0 > s > −1/τ ) distribution through
L(·, qτ ) will be given by q−1/s . Let Qτ be the distribution function of qτ (·), then
we can calculate

Qτ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2

(
1 − x

τ − 2

)−(τ−1)

, if x ≤ 0,

1 − 1

2

(
1 + x

τ − 2

)−(τ−1)

, if x > 0.

It is easy to check by direct calculation that
∫ x
−∞(Qr(t)−Qτ(t))dt ≤ 0 with equal-

ity attained if and only if x = 0. It is clear that S̃(qτ ) = {0} and hence the condi-
tions in Theorem 2.14 are verified. Note that, in Example 2.9 of Dümbgen, Sam-
worth and Schuhmacher (2011), the log-concave approximation of the rescaled t2
density is the Laplace distribution. It is easy to see from the above calculation that
the log-concave projection of the whole class Q will be the Laplace distribution
q∞ = 1

2 exp(−|x|). Therefore, the log-concave approximation fails to distinguish
densities at least amongst the class Q∪ {t2}.
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2.4. Continuity of the Rényi divergence estimator in s. Recall that α = 1 + s,
and then α,β is a conjugate pair with α−1 + β−1 = 1 where β = 1 + 1/s. For
1 − 1/d < α < 1, let

Fα(f ) = 1

α − 1
log

∫
f α(x)dx,

F1(f ) =
∫

f (x) logf (x)dx.

For a given index −1/d < s < 0, and data X = (X1, . . . ,Xn) with non-void
int(conv(X)), solving the dual problem (1.2) for the primal problem (1.1) is equiv-
alent to solving

(Dα) min
f

Fα(f ) = 1

α − 1
log

∫
f α(x)dx

(2.14)

subject to f = d(Qn − G)

dy
for some G ∈ G(X)◦,

where G(X)◦ is the polar cone of G(X) and Qn = 1
n

∑n
i=1 δXi

is the empirical
measure. The maximum likelihood estimation of a log-concave density has dual
form

(D1) min
f

F1(f ) =
∫

f (x) logf (x)dx,

(2.15)

subject to f = d(Qn − G)

dy
for some G ∈ G(X)◦.

Let fα and f1 be the solutions of (Dα) and (D1). For simplicity, we drop the
explicit notational dependence of fα,f on n. Since Fα(f ) → F1(f ) as α ↗ 1 for
f smooth enough, it is natural to expect some convergence property of fα to f1.
The main result is summarized as follows.

THEOREM 2.16. Suppose d = 1. For all κ > 0,p ≥ 1, we have the following
weighted convergence:

lim
α↗1

∫ (
1 + ‖x‖)κ ∣∣fα(x) − f1(x)

∣∣p dx = 0.

Moreover, for any closed set S contained in the continuity points of f ,

lim
α↗1

sup
x∈S

(
1 + ‖x‖)κ ∣∣fα(x) − f1(x)

∣∣ = 0

for all κ > 0.
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3. Limit behavior of s-concave densities. Let {fn}n∈N be a sequence of s-
concave densities with corresponding measures dνn = fn dλ. Suppose νn →d ν.
From Borell (1974, 1975) and Brascamp and Lieb (1976), we know that each νn

is a t-concave measure with t = s/(1 + sd) if −1/d < s < ∞, t = −∞ if s =
−1/d , and t = 1/d if s = ∞. This result is proved via different methods by Rinott
(1976). Furthermore, if the dimension of the support of ν is d , then it follows
from Borell (1974), Theorem 2.2 that the limit measure ν is t-concave, and hence
has a Lebesgue density with s = t/(1 − td). Here, we pursue this type of result
in somewhat more detail. Our key dimensionality condition will be formulated in
terms of the set C := {x ∈ Rd : lim inffn(x) > 0}. We will show that if

(D1) Either dim(csupp(ν)) = d or dim(C) = d

holds, then the limiting probability measure ν admits an upper semi-continuous
s-concave density on Rd . Furthermore, if a sequence of s-concave densities {fn}
converges weakly to some density f (in the sense that the corresponding prob-
ability measures converge weakly), then f is s-concave, and fn converges to f

in weighted L1 metrics and uniformly on any closed set of continuity points of
f . The directional derivatives of fn also converge uniformly in all directions in a
local sense.

In the following sections, we will not fully exploit the strength of the results
we have obtained. The results obtained will be interesting in their own right, and
careful readers will find them useful as technical support for Sections 2 and 4.

3.1. Limit characterization via dimensionality condition. Note that C is a con-
vex set. For a general convex set K , we follow the convention [see Rockafellar
(1997)] that dimK = dim(aff(K)), where aff(K) is the affine hull of K . It is well
known that the dimension of a convex set K is the maximum of the dimensions of
the various simplices included in K [cf. Theorem 2.4, Rockafellar (1997)].

We first extend several results in Kim and Samworth (2015) and Cule and Sam-
worth (2010) from the log-concave setting to our s-concave setting. The proofs
will all be deferred to the Supplementary Material.

LEMMA 3.1. Assume (D1). Then csupp(ν) = C.

LEMMA 3.2. Let {νn}n∈N be probability measures with upper semi-continuous
s-concave densities {fn}n∈N such that νn → ν weakly as n → ∞. Here, ν is a
probability measure with density f . Then fn →a.e. f , and f can be taken as
f = cl(limn fn) and hence upper semi-continuous s-concave.

In many situations, uniform boundedness of a sequence of s-concave densities
give rise to good stability and convergence property.
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LEMMA 3.3. Assume −1/d < s < 0. Let {fn}n∈N be a sequence of s-
concave densities on Rd . If dimC = d where C = {lim infn fn > 0} as above, then
supn∈N ‖fn‖∞ < ∞.

Now we state one limit characterization theorem.

THEOREM 3.4. Assume −1/d < s < 0. Under either condition of (D1), ν is
absolutely continuous with respect to λd , with a version of the Radon–Nikodym
derivative cl(limn fn), which is an upper semi-continuous and an s-concave den-
sity on Rd .

3.2. Modes of convergence. It is shown above that the weak convergence of
s-concave probability measures implies almost everywhere pointwise convergence
at the density level. In many applications, we wish different/stronger types of con-
vergence. This subsection is devoted to the study of the following two types of
convergence:

1. Convergence in ‖ · ‖L1 metric;
2. Convergence in ‖ · ‖∞ metric.

We start by investigating convergence property in ‖ · ‖L1 metric.

LEMMA 3.5. Assume −1/d < s < 0. Let ν, ν1, . . . , νn, . . . be probability mea-
sures with upper semi-continuous s-concave densities f,f1, . . . , fn, . . . such that
νn → ν weakly as n → ∞. Then there exists a, b > 0 such that fn(x) ∨ f (x) ≤
(a‖x‖ + b)1/s .

Once the existence of a suitable integrable envelope function is established, we
conclude naturally by dominated convergence theorem and have the following.

THEOREM 3.6. Assume −1/d < s < 0. Let ν, ν1, . . . , νn, . . . be probability
measures with upper semi-continuous s-concave densities f,f1, . . . , fn, . . . such
that νn → ν weakly as n → ∞. Then for κ < r − d ,

lim
n→∞

∫ (
1 + ‖x‖)κ ∣∣fn(x) − f (x)

∣∣ dx = 0.(3.1)

Next, we examine convergence of s-concave densities in ‖·‖∞ norm. We denote
g = f s, gn = f s

n unless otherwise specified. Since we have established pointwise
convergence in Lemma 3.2, classical convex analysis guarantees that the conver-
gence is uniform over compact sets in int(dom(f )). To establish global uniform
convergence result, we only need to control the tail behavior of the class of s-
concave functions and the region near the boundary of f . This is accomplished via
Lemmas B.1 and B.2.
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THEOREM 3.7. Let ν, ν1, . . . , νn, . . . be probability measures with upper
semi-continuous s-concave densities f,f1, . . . , fn, . . . such that νn → ν weakly
as n → ∞. Then for any closed set S contained in the continuity points of f and
κ < r = −1/s,

lim
n→∞ sup

x∈S

(
1 + ‖x‖)κ ∣∣fn(x) − f (x)

∣∣ = 0.

We note that no assumption on the index s is required here.

3.3. Local convergence of directional derivatives. It is known in convex anal-
ysis that if a sequence of convex functions gn converges pointwise to g on an open
convex set, then the subdifferential of gn also “converges” to the subdifferential
of g. If we further assume smoothness of gn, then local uniform convergence of
the derivatives automatically follows. See Theorems 24.5 and 25.7 in Rockafellar
(1997) for precise statements. Here, we pursue this issue at the level of transformed
densities.

THEOREM 3.8. Let ν, ν1, . . . , νn, . . . be probability measures with upper
semi-continuous s-concave densities f,f1, . . . , fn, . . . such that νn → ν weakly as
n → ∞. Let Df := {x ∈ int(dom(f )) : f is differentiable at x}, and T ⊂ int(Df )

be any compact set. Then

lim
n→∞ sup

x∈T ,‖ξ‖2=1

∣∣∇ξ fn(x) − ∇ξf (x)
∣∣ = 0.

4. Limiting distribution theory of the divergence estimator. In this section,
we establish local asymptotic distribution theory of the divergence estimator f̂n at
a fixed point x0 ∈ R. Limit distribution theory in shape-constrained estimation was
pioneered for monotone density and regression estimators by Prakasa Rao (1969),
Brunk (1970), Wright (1981) and Groeneboom (1985). Groeneboom, Jongbloed
and Wellner (2001) established pointwise limit theory for the MLEs and LSEs of a
convex decreasing density, and also treated pointwise limit theory estimation of a
convex regression function. Balabdaoui, Rufibach and Wellner (2009) established
pointwise limit theorems for the MLEs of log-concave densities on R. On the
other hand, for nonparametric estimation of s-concave densities, asymptotic theory
beyond the Hellinger consistency results for the MLEs established by Seregin and
Wellner (2010) has been nonexistent. Doss and Wellner (2016) have shown in the
case of d = 1 that the MLEs have Hellinger convergence rates of order Op(n−2/5)

for each s ∈ (−1,∞) (which includes the log-concave case s = 0). However, due
at least in part to the lack of explicit characterizations of the MLE for s-concave
classes, no results concerning limiting distributions of the MLE at fixed points
are currently available. In the remainder of this section, we formulate results of
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this type for the Rényi divergence estimators. These results are comparable to the
pointwise limit distribution results for the MLEs of log-concave densities obtained
by Balabdaoui, Rufibach and Wellner (2009).

In the following, we will see how natural and strong characterizations devel-
oped in Section 2 help us to understand the limit behavior of the Rényi divergence
estimator at a fixed point. For this purpose, we assume the true density f0 = g−r

0
satisfies the following:

(A1) g0 ∈ G and f0 is an s-concave density on R, where −1 < s < 0;
(A2) f0(x0) > 0;
(A3) g0 is locally Ck around x0 for some k ≥ 2.
(A4) Let k := max{k ∈ N : k ≥ 2, g

(j)
0 (x0) = 0, for all 2 ≤ j ≤ k − 1,

g
(k)
0 (x0) �= 0}, and k = 2 if the above set is empty. Assume g

(k)
0 is continuous

around x0.

4.1. Limit distribution theory. Before we state the main results concerning the
limit distribution theory for the Rényi divergence estimator, let us sketch the route
by which the theory is developed. We first denote F̂n(x) := ∫ x

−∞ f̂n(t)dt , Ĥn(x) :=∫ x
−∞ F̂n(t)dt and Hn(x) := ∫ x

−∞ Fn(t)dt . We also denote rn := n(k+2)/(2k+1) and
ln,x0 = [x0, x0 + n−1/(2k+1)t]. Due to the form of the characterizations obtained
in Theorem 2.12, we define local processes at the level of integrated distribution
functions as follows:

Yloc
n (t) := rn

∫
ln,x0

(
Fn(v) − Fn(x0) −

∫ v

x0

(
k−1∑
j=0

f
(j)
0 (x0)

j ! (u − x0)
j

)
du

)
dv;

Hloc
n (t) := rn

∫
ln,x0

(
F̂n(v) − F̂ (x0) −

∫ v

x0

(
k−1∑
j=0

f
(j)
0 (x0)

j ! (u − x0)
j

)
du

)
dv

+ Ânt + B̂n,

where Ân := n(k+1)/(2k+1)(F̂n(x0) − Fn(x0)) and B̂n := n(k+2)/(2k+1)(Ĥn(x0) −
Hn(x0)) are defined so that Yloc

n (·) ≥ Hloc
n (·) by virtue of Theorem 2.12. Since we

wish to derive asymptotic theory at the level of the underlying convex function, we
modify the processes by

Ylocmod
n (t) := Yloc

n (t)

f0(x0)
− rn

∫
ln,x0

∫ v

x0

	̂k,n,2(u)dudv,

(4.1)

Hlocmod
n (t) := Hloc

n (t)

f0(x0)
− rn

∫
ln,x0

∫ v

x0

	̂k,n,2(u)dudv,
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where

	̂k,n,2(u) = 1

f0(x0)

(
f̂n(u) −

k−1∑
j=0

f
(j)
0 (x0)

j ! (u − x0)
j

)

(4.2)
+ r

g0(x0)

(
ĝn(u) − g0(x0) − g′

0(x0)(u − x0)
)
.

A direct calculation reveals that with r = −1/s > 0,

Hlocmod
n (t) = −r · rn

g0(x0)

∫
ln,x0

∫ v

x0

(
ĝn(u) − g0(x0) − (u − x0)g

′
0(x0)

)
dudv

+ Ânt + B̂n

f0(x0)
,

and hence

nk/(2k+1)(ĝn(x0 + snt) − g0(x0) − sntg
′
0(x0)

) = g0(x0)

−r

d2

dt2H
locmod
n (t),

(4.3)

n(k−1)/(2k+1)(ĝ′
n(x0 + snt) − g′

0(x0)
) = g0(x0)

−r

d3

dt3H
locmod
n (t).

It is clear from (4.1) that the order relationship Ylocmod
n (·) ≥ Hlocmod

n (·) is still
valid for the modified processes. Now by tightness arguments, the limit process
H of Hlocmod

n , including its derivatives, exists uniquely, giving us the possibility of
taking the limit in (4.3) as n → ∞. Finally, we relate H to the canonical process Hk

defined in Theorem 4.1 by looking at their respective “envelope” functions Y and
Yk , where Y denotes the limit process of Ylocmod

n and Yk(t) = ∫ t
0 W(s)ds − tk+2.

Careful calculation of the limit of Yloc
n and 	̂k,n,2 reveals that

Ylocmod
n (t) →d

1√
f0(x0)

∫ t

0
W(s)ds − rg

(k)
0 (x0)

g0(x0)(k + 2)! t
k+2.

Now by the scaling property of Brownian motion, W(at) =d

√
aW(t), we get the

following theorem.

THEOREM 4.1. Under assumptions (A1)–(A4), we have(
nk/(2k+1)

(
ĝn(x0) − g0(x0)

)
n(k−1)/(2k+1)

(
ĝ′

n(x0) − g′
0(x0)

))
(4.4)

→d

⎛
⎜⎜⎜⎝

−
(

g2k
0 (x0)g

(k)
0 (x0)

r2kf0(x0)k(k + 2)!
)1/(2k+1)

H
(2)
k (0)

−
(

g2k−2
0 (x0)[g(k)

0 (x0)]3

r2k−2f0(x0)k−1[(k + 2)!]3

)1/(2k+1)

H
(3)
k (0)

⎞
⎟⎟⎟⎠ ,
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and (
nk/(2k+1)

(
f̂n(x0) − f0(x0)

)
n(k−1)/(2k+1)

(
f̂ ′

n(x0) − f ′
0(x0)

)
)

(4.5)

→d

⎛
⎜⎜⎜⎝

(
rf0(x0)

k+1g
(k)
0 (x0)

g0(x0)(k + 2)!
)1/(2k+1)

H
(2)
k (0)

(
r3f0(x0)

k+2(g
(k)
0 (x0))

3

g0(x0)3[(k + 2)!]3

)1/(2k+1)

H
(3)
k (0)

⎞
⎟⎟⎟⎠ ,

where Hk is the unique lower envelope of the process Yk satisfying:

1. Hk(t) ≤ Yk(t) for all t ∈R;
2. H

(2)
k is concave;

3. Hk(t) = Yk(t) if the slope of H
(2)
k decreases strictly at t .

REMARK 4.2. We note that the minus sign appearing in (4.4) is due to the
convexity of ĝn, g0 and the concavity of the limit process H

(2)
k (0). The dependence

of the constant appearing in the limit is optimal in view of Theorem 2.23 in Seregin
and Wellner (2010).

REMARK 4.3. Assume −1 < s < 0 and k = 2. Let f0 = exp(ϕ0) be a log-
concave density where ϕ0 : R→R is the underlying concave function. Then f0 is
also s-concave. Let gs := f

−1/r
0 = exp(−ϕ0/r) be the underlying convex function

when f0 is viewed as an s-concave density. Then direct calculation yields that

g(2)
s (x0) = 1

r2 gs(x0)
(
ϕ′

0(x0)
2 − rϕ′′

0 (x0)
)
.

Hence, the constant before H
(2)
k (0) appearing in (4.5) becomes

(
f0(x0)

3ϕ′
0(x0)

2

4!r + f0(x0)
3|ϕ′′

0 (x0)|
4!

)1/5

.

Note that the second term in the above display is exactly the constant involved
in the limiting distribution when f0(x0) is estimated via the log-concave MLE;
see (2.2), page 1305 in Balabdaoui, Rufibach and Wellner (2009). The first term
is nonnegative, and hence illustrates the price we need to pay by estimating a true
log-concave density via the Rényi divergence estimator over a larger class of s-
concave densities. We also note that the additional term vanishes as r → ∞, or
equivalently s ↗ 0.

4.2. Estimation of the mode. We consider the estimation of the mode of an
s-concave density f (·) defined by M(f ) := inf{t ∈ R : f (t) = supu∈R f (u)}.
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THEOREM 4.4. Assume (A1)–(A4) hold. Then

n1/(2k+1)(m̂n − m0) →d

(
g0(m0)

2(k + 2)!2
r2f0(m0)g

(k)
0 (m0)2

)1/(2k+1)

M
(
H

(2)
k

)
,(4.6)

where m̂n = M(f̂n),m0 = M(f0).

By Theorem 2.26 in Seregin and Wellner (2010), the dependence of the constant
on local smoothness is optimal when k = 2. Here, we show that this dependence
is also optimal for k > 2.

Consider a class of densities P dominated by the canonical Lebesgue measure
on Rd . Let T : P → R be any functional. For an increasing convex loss function
l(·) on R+, we define the minimax risk as

Rl(n;T ,P) := inf
tn

sup
p∈P

Ep×nl
(∣∣tn(X1, . . . ,Xn) − T (p)

∣∣),(4.7)

where the infimum is taken over all possible estimators of T (p) based on
X1, . . . ,Xn. Our basic method of deriving minimax lower bound based on the
following work in Jongbloed (2000).

THEOREM 4.5 [Theorem 1 Jongbloed (2000)]. Let {pn} be a sequence of den-
sities in P such that lim supn→∞ nh2(pn,p) ≤ τ 2 for some density p ∈P . Then

lim inf
n→∞

Rl(n;T , {p,pn})
l(exp(−2τ 2)/4 · |T (pn) − T (p)|) ≥ 1.(4.8)

For fixed g ∈ G and f := g1/s = g−r , let m0 := M(g) be the mode of g. Con-
sider a class of local perturbations of g: For every ε > 0, define

g̃ε(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

g(m0 − εcε) + (x − m0 + εcε)g
′(m0 − εcε),

x ∈ [m0 − εcε,m0 − ε),

g(m0 + ε) + (x − m0 − ε)g′(m0 + ε),

x ∈ [m0 − ε,m0 + ε),

g(x), otherwise.

Here, cε is chosen so that gε is continuous at m0 − ε. This construction of
a perturbation class is also seen in Balabdaoui, Rufibach and Wellner (2009),
Groeneboom, Jongbloed and Wellner (2001). By Taylor expansion at m0 − ε, we
can easily see cε = 3 + o(1) as ε → 0. Since f̃ε := g̃−r

ε is not a density, we nor-

malize it by fε(x) := f̃ε(x)∫
R

f̃ε(y)dy
. Now fε is s-concave for each ε > 0 with mode

m0 − ε.
The following result follows from direct calculation. For a proof, we refer to the

Supplemental Material.
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LEMMA 4.6. Assume (A1)–(A4). Then

h2(fε, f ) = ζk

r2f (m0)(g
(k)(m0))

2

g(m0)2 ε2k+1 + o
(
ε2k+1)

,

where

ζk = 1

108(k!)2(k + 1)(k + 2)(2k + 1)

[−4 · 3k+2(2k + 1)
(
3k+2 + k2 + k − 3

)
+ (k + 1)(k + 2)

(
27

(
32k+1 − 1

) + 2 · 32k(2k + 1)
(
2k(2k − 9) + 27

))]
+ 2k2(2k2 + 1)

3(k!)2(k + 1)(2k + 1)
.

THEOREM 4.7. For an s-concave density f0, let SCn,τ (f0) be defined by

SCn,τ (f0) :=
{
f : s-concave density, h2(f, f0) ≤ τ 2

n

}
.

Let m0 = M(f0) be the mode of f0. Suppose (A1)–(A4) hold. Then

sup
τ>0

lim inf
n→∞ n1/(2k+1) inf

tn
sup

f ∈SCn,τ

Ef

∣∣Tn − M(f )
∣∣

≥ ρk

(
g0(m0)

2

r2f0(m0)g
(k)
0 (m0)2

)1/(2k+1)

,

where ρk = (2(2k + 1)ζk)
−1/(2k+1)/4.

PROOF. Take l(x) = |x|. Let ε = cn−1/(2k+1), and let γ = r2f (m0)(g
(k)(m0))

2

g(m0)
2 ,

fn := fcn−1/(2k+1) . Then lim supn→∞ nh2(fn, f ) = ζkγ c2k+1. Applying Theo-
rem 4.5, we find that

lim inf
n→∞ n1/(2k+1)Rl

(
n;T , {f,fn}) ≥ 1

4
c exp

(−2ζkγ c(2k+1)).
Now we choose c = (2(2k + 1)ζkγ )−1/(2k+1) to conclude. �

5. Discussion. We show in this paper that the class of s-concave densities can
be approximated and estimated via Rényi divergences in a robust and stable way.
We also develop local asymptotic distribution theory for the divergence estimator,
which suggests that the convexity constraint is the main complexity within the
class of s-concave densities regardless heavy tails. In the rest of this section, we
will sketch some related problems and future research directions.
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5.1. Behavior of Rényi projection for generic measures Q when s < −1/(d +
1). We have considered in this paper two regions for the index s: (1) −1/(d +
1) < s < 0 and (2) −1/d < s ≤ −1/(d + 1). In case (1), we showed that starting
from a generic measure Q with the interior of its convex support non-void and a
first moment, the Rényi projection through (1.3) exists and enjoys nice continuity
properties that cover both on and off-the-model situations. In case (2), we showed
that the Rényi projection for the empirical measure still enjoys such continuity
properties when Q is a probability measure corresponding to a true s-concave
density with a finite first moment.

It remains open to investigate the behavior of the Rényi projection in the re-
gion (2) for a generic measure Q. If Q does not admit a first moment, that is,∫ ‖x‖dQ(x) = ∞, then the first term in the functional (1.3) diverges for any
candidate convex function. We conjecture that the Rényi divergence projection
fails to exist in this case. We do not know if the Rényi projection exists when
−1/d < s ≤ −1/(d + 1) and Q /∈ Ps but

∫ ‖x‖dQ(x) < ∞.
It should be mentioned that the MLEs for the classes Ps exist (for an in-

creasingly large sample size n as s ↘ −1/d), and are Hellinger consistent for
−1/d < s < 0 [cf. Seregin and Wellner (2010)]. Moreover, it is known from Doss
and Wellner (2016) that the MLE does not exist for s < −1/d . But we do not
yet know any continuity properties of the Maximum Likelihood projection “off
the model”. This leaves the interval −1/d < s ≤ −1/(d + 1) presently without a
nicely stable nonparametric estimation procedure. See Koenker and Mizera (2010)
pages 3008 and 3016 for some further discussion.

5.2. Global rates of convergence for Rényi divergence estimators. Classical
empirical process theory relates the maximum likelihood estimators with Hellinger
loss via “basic inequalities” as coined in van de Geer (2000) and van der Vaart and
Wellner (1996). This reduces the problem of global rates of convergence to the
study of modulus of continuity of empirical process indexed by a suitable transfor-
mation of the function class of interest. We expect that similar “basic inequalities”
can be exploited to relate the Rényi divergence estimators to some divergence (not
necessarily Hellinger distance). We also expect some uniformity in the rates of
convergence for the Rényi divergence estimators as observed by Kim and Sam-
worth (2015) in the case of the MLEs for log-concave densities.

5.3. Conjectures about the global rates in higher dimensions. It is now well
understood from the work of Doss and Wellner (2016) that the MLEs for s-concave
densities (−1 < s < 0) and log-concave densities in dimension 1 converge at rates
no worse than Op(n−2/5) in Hellinger loss. In higher dimensions, Kim and Sam-
worth (2015) provide an important lower bound on the bracketing entropy for a
subclass of log-concave densities on the order of O(ε−(d/2)∨(d−1)) in Hellinger
distance, and a matching upper bound up to logarithmic factors for d ≤ 3. Lack of
corresponding results in discrete convex geometry precludes further upper bounds
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beyond d = 3. If a matching upper bound can be achieved for d ≥ 4 (with possi-
ble logarithmic losses), the rates of convergence r2

n in squared Hellinger distances
become

r2
n = O

(
n−1/(d−1)), d ≥ 4

(up to logarithmic factors). It is also worth mentioning that minimum contrast
estimator may well be rate inefficient in higher dimensions, as observed by Birgé
and Massart (1993) in another context with “trans-Donsker” class of functions.
Therefore, it is also interesting to design sieved/regularized estimator to achieve
the efficient rates.

5.4. Adaptive estimation of concave-transformed class of functions. The rates
conjectured above are conservative in that they are derived from the global point
of view. From a local perspective, adaptive estimation may be possible when
the underlying function/density exhibits special structures. In fact, it is shown by
Guntuboyina and Sen (2015) that in the univariate convex regression setting, if the
underlying convex function is piecewise linear, then the rate of convergence for
the global risk in the discrete l2 norm adapts to nearly parametric rate n−1/2 (up
to logarithmic factors). It would be interesting to examine if same phenomenon
can be observed for the MLEs/Rényi divergence estimators, and more generally
for minimum contrast estimators of concave-transformed classes of functions.

6. Proofs. In this section, we give proofs for Theorem 2.2, Theorem 2.5, The-
orem 2.9 and Theorem 4.1.

PROOF OF THEOREM 2.2. We note that L(Q) < ∞ by Lemma 2.1. Hence,
we can take a sequence {gn}n∈N ⊂ G such that ∞ > M0 ≥ L(gn,Q) ↘ L(Q) as
n → ∞ for some M0 > 0. Now we claim that, for all x0 ∈ int(csupp(Q)),

sup
n∈N

gn(x0) < ∞.(6.1)

Denote εn ≡ infx∈Rd gn(x). First, note

L(gn,Q) ≥
∫

gn dQ =
∫

gn1
(
gn ≤ gn(x0)

)
dQ +

∫
gn1

(
gn > gn(x0)

)
dQ

=
∫ (

gn − gn(x0) + gn(x0)
)
1
(
gn ≤ gn(x0)

)
dQ

+
∫

gn1
(
gn > gn(x0)

)
dQ

≥ gn(x0) − (
gn(x0) − εn

)
Q

({
gn(·) ≤ gn(x0)

})
.

If gn(x0) > εn, then x0 is not an interior point of the closed convex set {gn ≤
gn(x0)}, which implies Q({gn(·) ≤ gn(x0)}) ≤ h(Q,x), where h(·, ·) is defined in
Lemma E.3. Hence, in this case, the above term is lower bounded by

L(gn,Q) ≥ gn(x0) − (
gn(x0) − εn

)
h(Q,x0) ≥ gn(x0)

(
1 − h(Q,x0)

)
.
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This inequality also holds for gn(x0) = εn, which implies that

gn(x0) ≤ L(gn,Q)

1 − h(Q,x0)
≤ M0

1 − h(Q,x0)

by the first statement of Lemma E.3. Thus, we verified (6.1). Now invoking
Lemma E.8, and we check conditions (A1)–(A2) as follows: (A1) follows by (6.1);
(A2) follows by the choice of gn since supn∈N L(gn,Q) ≤ M0. By Lemma E.7,
we can find a subsequence {gn(k)}k∈N of {gn}n∈N, and a function g̃ ∈ G such that
{x ∈ Rd : supn∈N gn(x) < ∞} ⊂ dom(g̃), and

lim
k→∞,x→y

gn(k)(x) = g̃(y) for all y ∈ int
(
dom(g̃)

)
,

lim inf
k→∞,x→y

gn(k)(x) ≥ g̃(y) for all y ∈ Rd .

Again for simplicity, we assume that {gn} satisfies the above properties. We note
that

L(Q) = lim
n→∞

(∫
gn dQ + 1

|β|
∫

gβ
n dx

)

≥ lim inf
n→∞

∫
gn dQ + 1

|β| lim inf
n→∞

∫
gβ

n dx

≥
∫

g̃ dQ + 1

|β|
∫

g̃β dx = L(g̃,Q) ≥ L(Q),

where the third line follows from Fatou’s lemma for the first term, and Fatou’s
lemma and the fact that the boundary of a convex set has Lebesgue measure
zero for the second term [Theorem 1.1, Lang (1986)]. This establishes L(g̃,Q) =
L(Q), and hence g̃ is the desired minimizer. Since g̃ ∈ G achieves its minimum,
we may assume x0 ∈ Arg minx∈Rd g̃(x). If g̃(x0) = 0, since g̃ has domain with
nonempty interior, we can choose x1, . . . , xd ∈ dom(g̃) such that {x0, . . . , xd} are
in general position. Then by Lemma E.9 we find L(g̃,Q) = ∞, a contradiction.
This implies g̃ must be bounded away from zero.

For the last statement, since g̃ is a minimizer of (1.3), and the fact that g̃ is
bounded away from zero, then L(g̃ + c,Q) is well-defined for all |c| ≤ δ with
small δ > 0, and we must necessarily have d

dc
L(g̃ + c,Q)|c=0 = 0. On the other

hand it is easy to calculate that d
dc

L(g̃+c,Q) = 1−∫
(g̃(x)+c)β−1 dx. This yields

the desired result by noting β − 1 = 1/s. �

PROOF OF THEOREM 2.5. To show (2.1), we use Skorohod’s theorem: since
Qn →d Q, there exist random vectors Xn ∼ Qn and X ∼ Q defined on a common
probability space (�,B,P) satisfying Xn →a.s. X. Then by Fatou’s lemma, we
have

∫ ‖x‖dQ = E[‖X‖] ≤ lim infn→∞E[‖Xn‖] = lim infn→∞
∫ ‖x‖dQn.
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Assume (2.2). We first claim that

lim sup
n→∞

L(Qn) ≤ L(g,Q) = L(Q).(6.2)

Let gn(·), g(·) be defined as in the statement of the theorem. Note that
lim supn→∞ L(gn,Qn) ≤ limn→∞ L(g(ε),Qn) = L(g(ε),Q). Here, g(ε) is the
Lipschitz approximation of g defined in Lemma E.2, and the last equality follows

from the moment convergence condition (2.2) by rewriting g(ε)(x) = g(ε)(x)
1+‖x‖ (1 +

‖x‖), and note the Lipschitz condition on g(ε) implies boundedness of g(ε)(x)
1+‖x‖ . By

construction of {g(ε)}ε>0, we know that if x0 is a minimizer of g, then it is also
a minimizer of g(ε). This implies that the function class {g(ε)}ε>0 is bounded
away from zero since g is bounded away from zero by Theorem 2.2, that is,
infx∈Rd g(ε)(x) ≥ ε0 holds for all ε > 0 with some ε0 > 0. Now let ε ↘ 0, in
view of Lemma E.2, by the monotone convergence theorem applied to g(ε) and
ε
β
0 − (g(ε))β we have verified (6.2).

Next, we claim that, for all x0 ∈ int(dom(Q)),

lim sup
n→∞

gn(x0) < ∞.(6.3)

Denote εn ≡ infx∈Rd gn(x). Note by essentially the same argument as in the proof
of Theorem 2.2, we have

gn(x0) ≤ L(Qn)

1 − h(Qn, x0)
.

By taking lim sup as n → ∞, (6.3) follows by virtue of Lemma E.3 and (6.2).
Now we proceed to show (2.3) and (2.4). By invoking Lemma E.8, we can easily

check that all conditions are satisfied [note we also used (6.2) here]. Thus we can
find a subsequence {gn(k)}k∈N of {gn}n∈N with gn(k)(x) ≥ a‖x‖ − b, holds for all
x ∈ Rd and all k ∈ N with some a, b > 0. Hence, by Lemma E.7, we can find a
function g̃ ∈ G such that {x ∈Rd : lim supk→∞ gn(k)(x) < ∞} ⊂ dom(g̃), and that

lim
k→∞,x→y

gn(k)(x) = g̃(y) for all y ∈ int
(
dom(g̃)

)
,

lim inf
k→∞,x→y

gn(k)(x) ≥ g̃(y) for all y ∈ Rd .

Again for simplicity, we assume {gn} admit the above properties. Now define ran-
dom variables Hn ≡ gn(Xn) − (a‖Xn‖ − b). Then by the same reasoning as in the
proof of Theorem 2.2, we have

lim inf
n→∞ L(Qn) = lim inf

n→∞

(∫
gn dQn + 1

|β|
∫

gβ
n dx

)

≥ lim inf
n→∞ E

[
Hn + a(Xn) − b

] + 1

|β|
∫

g̃β dx
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≥ E
[
lim inf
n→∞ Hn

]
+ a lim inf

n→∞

∫
‖x‖dQn − b + 1

|β|
∫

g̃β dx

= L(g̃,Q) + a

(
lim inf
n→∞

∫
‖x‖dQn −

∫
‖x‖dQ

)

≥ L(Q) + a

(
lim inf
n→∞

∫
‖x‖dQn −

∫
‖x‖dQ

)
.

Note the expectation is taken with respect to the probability space (�,B,P) de-
fined above. This establishes that if (2.2) holds true, then

lim inf
n→∞ L(Qn) ≥ L(g̃,Q) ≥ L(Q).(6.4)

Conversely, if (2.2) does not hold true, then there exists a subsequence {Qn(k)} such
that lim infk→∞

∫ ‖x‖dQn(k) >
∫ ‖x‖dQ. However, this means that

lim infk→∞ L(Qn(k)) > L(Q), which contradicts (2.3). Hence, if (2.3) holds, then
(2.2) holds true. Combine (6.4) and (6.2), and by virtue of Lemma 2.3, we find
g̃ ≡ g. This completes the proof for (2.3) and (2.4).

We show (2.5). First, we claim that {x̂n ∈ Arg minx∈Rd gn(x)}n∈N is bounded. If
not, then we can find a subsequence such that ‖x̂n(k)‖ → ∞ as k → ∞. How-
ever, this means that gn(k)(x) ≥ gn(k)(x̂n(k)) ≥ a‖x̂n(k)‖ − b → ∞ as k → ∞
for any x, a contradiction. Next, we claim that there exists ε0 > 0 such that
infk∈N εn(k) ≥ ε0 holds for some subsequence {εn(k)}k∈N of {εn}n∈N. This can be
seen as follows: Boundedness of {x̂n} implies x̂n(k) → x∗ as k → ∞ for some
subsequence {x̂n(k)}k∈N ⊂ {x̂n}n∈N and some x∗ ∈ R. Hence, by (2.4) we have
lim supk→∞ fn(k)(x̂n(k)) ≤ f (x∗) < ∞, since f (·) is bounded. This implies that
supk∈N ‖fn(k)‖∞ < ∞, which is equivalent to the claim. As before, we will un-
derstand the notation for whole sequence as a suitable subsequence. Now we have
gn(x) ≥ (a‖x‖ − b) ∨ ε0 holds for all x ∈ Rd . This gives rise to

fn(x) ≤ (
(a‖x‖ − b) ∨ ε0

)1/s for all x ∈ Rd .(6.5)

Note that −1/(d + 1) < s < 0 implies 1/s < −(d + 1), whence we get an in-
tegrable envelope. Now a simple application of dominated convergence theorem
yields the desired result (2.5), in view of the fact that the boundary of a convex set
has Lebesgue measure zero [cf. Theorem 1.1 in Lang (1986)].

Finally, (2.6) and (2.7) are direct results of Theorems 3.7 and 3.8 by noting that
(2.5) entails fn →d f (in the sense that the corresponding probability measures
converge weakly). �

PROOF OF THEOREM 2.9. Denote L(·) := L(·,Q). We first claim the follow-
ing.

CLAIM. g = arg ming∈G L(g) if and only if limt↘0
L(g+th)−L(g)

t
≥ 0, holds

for all h : Rd → R such that there exists t0 > 0 with g + th ∈ G holds for all
t ∈ (0, t0).
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To see this, we only have to show sufficiency. Now suppose g is not a minimizer
of L(·). By Theorem 2.2, we know there exists ĝ ∈ G such that ĝ = g(·|Q). By
convexity, we have that for any t > 0, L(g + t (ĝ − g)) ≤ (1 − t)L(g) + tL(ĝ).
This implies that if we let h = ĝ − g, and t0 = 1, then

L(g + th) − L(g)

t
≤ 1

t

(
(1 − t)L(g) + tL(ĝ) − L(g)

) = −t
(
L(g) − L(ĝ)

)
,

and thus limt↘0
L(g+th)−L(g)

t
≤ −(L(g) − L(ĝ)) < 0, where the strict inequality

follows from Lemma 2.3. This proves our claim. Now the theorem follows from
simple calculation:

0 ≤ lim
t↘0

1

t

(
L(g + th) − L(g)

) =
∫

hdQ −
∫

h · g1/s dλ,

as desired. �

Proofs of Theorems 2.16 and all the results in Section 3 are given in the Sup-
plementary Material, Han and Wellner (2015).

Before we prove Theorem 4.1, we will need the following tightness result.

THEOREM 6.1. We have the following conclusions:

1. For fixed K > 0, the modified local process Ylocmod
n (·) converges weakly to a

drifted integrated Gaussian process on C[−K,K]:

Ylocmod
n (t) →d

1√
f0(x0)

∫ t

0
W(s)ds − rg

(k)
0 (x0)

g0(x0)(k + 2)! t
k+2,

where W(·) is the standard two-sided Brownian motion starting from 0 on R.
2. The localized processes satisfy

Ylocmod
n (t) −Hlocmod

n (t) ≥ 0,

with equality attained for all t such that x0 + tn−1/(2k+1) ∈ S(ĝn).
3. The sequences {Ân} and {B̂n} are tight.

The above theorem includes everything necessary in order to apply the “in-
velope” argument roughly indicated in Section 4.1. For a proof of this technical
result, we refer the reader to the Supplementary Material. Here, we will provide
proofs for our main results.

PROOF OF THEOREM 4.1. By the same tightness and uniqueness argument
adopted in Groeneboom, Jongbloed and Wellner (2001), Balabdaoui and Wellner
(2007) and Balabdaoui, Rufibach and Wellner (2009), we only have to find the
rescaling constants. To this end, we denote H(·),Y(·) the corresponding limit of
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Hlocmod
n (·) and Ylocmod

n (·) in the uniform topology on the space C[−K,K], and let
Y(t) = γ1Yk(γ2t), where by Theorem 6.1, we know that

Y(t) = 1√
f0(x0)

∫ t

0
W(s)ds − rg

(k)
0 (x0)

g0(x0)(k + 2)! t
k+2.

Let a := (f0(x0))
−1/2 and b := rg

(k)
0 (x0)

g0(x0)(k+2)! , then by rescaling property of Brown-

ian motion, we find that γ1γ
3/2
2 = a, γ1γ

k+2
2 = b. Solving for γ1, γ2 yields

γ1 = a(2k+4)/(2k+1)b−3/(2k+1), γ2 = a−2/(2k+1)b2/(2k+1).(6.6)

On the other hand, by (4.3), let n → ∞, we find that(
nk/(2k+1)

(
ĝn(x0 + snt) − g0(x0) − sntg

′
0(x0)

)
n(k−1)/(2k+1)

(
ĝ′

n(x0 + snt) − g′
0(x0)

) )
(6.7)

→d

⎛
⎜⎜⎝

g0(x0)

−r

d2

dt2H(t)

g0(x0)

−r

d3

dt3H(t)

⎞
⎟⎟⎠ .

It is easy to see that d2

dt2H(t) = γ1γ
2
2

d2

dt2 Hk(γ2t) and d3

dt3H(t) = γ1γ
3
2

d3

dt3 Hk(γ2t).
Now by substitution in (6.6) we get the conclusion by direct calculation and the
delta method. �
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SUPPLEMENTARY MATERIAL

Supplement to “Approximation and estimation of s-concave densities via
Rényi divergences” (DOI: 10.1214/15-AOS1408SUPP; .pdf). In the supplement
Han and Wellner (2015), we provide details of the omitted proofs for Sections 2,
3, 4 and 6 and some auxiliary results from convex analysis used in the main paper.
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