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a b s t r a c t

We introduce new shape-constrained classes of distribution functions on R, the bi-s∗-
concave classes. In parallel to results of Dümbgen et al. (2017) for what they called the
class of bi-log-concave distribution functions, we show that every s-concave density f
has a bi-s∗-concave distribution function F for s∗ ≤ s/(s+ 1).

Confidence bands building on existing nonparametric confidence bands, but account-
ing for the shape constraint of bi-s∗-concavity, are also considered. The new bands
extend those developed by Dümbgen et al. (2017) for the constraint of bi-log-concavity.
We also make connections between bi-s∗-concavity and finiteness of the Csörgő–Révész
constant of F which plays an important role in the theory of quantile processes.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Statistical methods based on shape constraints have been developing rapidly during the past 15–20 years. From the
lassical univariate methods based on monotonicity going back to the work of Grenander (1956) and van Eeden (1956)
n the 1950s and 1960s, research has progressed to consideration of convexity type constraints in a variety of problems
ncluding estimation of density functions, regression functions, and other ‘‘nonparametric’’ functions such as hazard (rate)
unctions. See Samworth and Sen (2018) for a summary and overview of some of this recent activity.

One very appealing shape constraint is log-concavity: a (density) function f : Rd
→ [0,∞] is log-concave if log f is

concave (with log 0 = −∞). See Samworth (2018) for a recent review of the properties of log-concave densities and their
relevance for statistical applications. While much of the current literature has focused on point estimation, our main focus
here will be on inference for one-dimensional distribution functions and especially on (honest, exact) confidence bands
for distribution functions which take advantage of shape constraints.

To this end, Dümbgen et al. (2017) introduced the class of bi-log-concave distribution functions defined as follows:
a distribution function F on R is bi-log-concave if both F and 1 − F are log-concave. They provided several different
equivalent characterizations of this property, and noted (the previously known fact) that if f is a log-concave density,
then the corresponding distribution function F and survival function 1−F are both log-concave. But the converse is false:
here are many bi-log-concave distribution functions F with density f which fail to be log-concave; see Section 2 for an
explicit example. Dümbgen et al. (2017) also showed how to construct confidence bands which exploit the bi-log-concave
shape constraint and thereby obtain narrower bands, especially in the tails, with correct coverage when the bi-log-concave
assumption holds.
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However, a difficulty with the assumption of bi-log-concavity is that the corresponding density functions inherit the
equirement of exponentially decaying tails of the class of log-concave densities, and this rules out distribution functions
with tails decaying more slowly than exponentially. Here we introduce new shape-constrained families of distribution

unctions F , which we call the bi-s∗-concave distributions, with tails possibly decaying more slowly (or more rapidly)
han exponentially. As the name indicates, these families involve a parameter s∗ ∈ (−∞, 1] which allows heavier
han exponential tails when s∗ < 0, lighter than exponential tails when s∗ > 0, and which correspond to exactly the
i-log-concave class introduced by Dümbgen et al. (2017) when s∗ = 0.
Here is an outline of the rest of the paper. In Section 2 we give careful definitions of the new classes of bi-s∗-concave

istributions. We also present several helpful examples and discuss some basic properties of the new classes and their
onnections to the classes of s-concave densities studied by Borell (1975), Brascamp and Lieb (1976), and Rinott (1976).
See also Dharmadhikari and Joag-Dev (1988), and Gardner (2002).) Section 3 contains the main theoretical results of
he paper. The connection between the bi-s∗-concave class and a key condition in the theory of quantile processes, the
sörgő–Révész condition, is discussed in Corollary 4. Finally, we give two tail bounds for distribution functions F ∈ Ps∗ ,
ee Corollary 5.
In Section 4 we first introduce the new confidence bands for a distribution function F ∈ Ps∗ assuming s∗ is known.
e also discuss some of their theoretical properties: the consistency of confidence bands is discussed in Theorem 7, and
heorem 9 provides a rate of convergence for linear functionals of bi-s∗-distribution functions contained in the bands. This

extends Theorem 5 of Dümbgen et al. (2017). We then briefly discuss the algorithms used to compute the new bands, and
illustrate the new bands with real and artificial data. Section 5 gives a brief summary and statements of further problems.
An especially important remaining problem concerns construction of confidence bands when s∗ is unknown. The proofs
for all the results in Sections 2, 3, and 4 are given in Sections 6 and Appendix.

We conclude this section with some notation which will be used throughout the rest of the paper. The supremum
norm of a function h : R→ R is denoted by ∥h∥∞ ≡ supx∈R |h(x)|, and for K ⊂ R we write ∥h∥K ,∞ ≡ supx∈K |h(x)|. For a
unction x ↦→ f (x),

f ′
+
(x) ≡ lim

λ↓0

f (x+ λ)− f (x)
λ

, and f ′
−
(x) ≡ lim

λ↑0

f (x+ λ)− f (x)
λ

,

f (x+) ≡ lim
y↓x

f (y), and f (x−) ≡ lim
y↑x

f (y),

assuming that the indicated limits exist. In general, we use F and f to denote a distribution function and the corresponding
density function with respect to Lebesgue measure, and we set J(F ) ≡ {x ∈ R : 0 < F (x) < 1}.

2. Definitions, examples, and first properties

As we discussed above, for distribution functions F on R, Dümbgen et al. (2017) introduced a shape constraint they
called bi-log-concavity by requiring that both F and 1− F be log-concave.

In this paper, we generalize the bi-log-concave distribution functions by introducing and studying bi-s∗-concave
distributions defined as follows.

Definition 1. For −∞ < s∗ < 0, a distribution function F is bi-s∗-concave if both x ↦→ F s∗ (x) and x ↦→ (1− F (x))s
∗

are
convex functions from R to [0,∞].

For s∗ = 0, a distribution function F is bi-s∗-concave (or bi-log-concave) if both x ↦→ log(F (x)) and x ↦→ log (1− F (x))
are concave functions from R to [−∞, 0].

For 0 < s∗ ≤ 1, a distribution function F is bi-s∗-concave if x ↦→ F s∗ (x) is concave from (inf J(F ),∞) to [0, 1] and
x ↦→ (1− F (x))s

∗

is concave from (−∞, sup J(F )) to [0, 1].

The class of bi-s∗-concave distribution functions is denoted by Ps∗ , i.e.

Ps∗ ≡ {F : F is bi-s∗-concave}.

Definition 2 (Alternative to Definition 1). A distribution function F is bi-s∗-concave if it is continuous on R and satisfies
the following properties on J(F ):
• For −∞ < s∗ < 0, both x ↦→ F s∗ (x) and x ↦→ (1− F (x))s

∗

are convex functions on J(F ).
• For s∗ = 0, both x ↦→ log(F (x)) and x ↦→ log (1− F (x)) are concave functions on J(F ).
• For 0 < s∗ ≤ 1, both x ↦→ F s∗ (x) and x ↦→ (1− F (x))s

∗

are concave functions on J(F ).

See the Appendix, Appendix, for a proof of the equivalence of Definitions 1 and 2. The main benefit of the second
definition is that it is immediately clear that any bi-s∗-concave distribution function F is continuous since continuity of
F is explicitly required in Definition 2. Moreover, to verify F ∈ Ps∗ we only need to verify the convexity or concavity of
F s∗ or (1− F)s

∗

on the same interval J(F ).
Recall that a density function f is s-concave if f s is convex for s < 0, f s is concave for s > 0, and log f is concave

for s = 0. Two basic properties linking s-concave densities and bi-s∗-concave distribution functions are given in the
following two propositions. Proposition 1 generalizes the case s = 0 as noted above, while Proposition 2 generalizes the
corresponding nestedness property of the classes of s-concave densities; see e.g. Dharmadhikari and Joag-Dev (1988),
page 86, and Borell (1975), page 111.
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Proposition 1. Suppose a density function f is s-concave with s ∈ (−1,∞). Then the corresponding distribution function F
is bi-s∗-concave for all s∗ ≤ s/(1+ s).

Proposition 2. The bi-s∗-concave classes are nested in the following sense:

Ps∗ ⊂ Pt∗ , whenever t∗ ≤ s∗ ≤ 1. (1)

Moreover, the bi-s∗-concave classes are continuous at s∗ = 0 in the following sense:⋃
s∗>0

Ps∗ = P0 =
⋂
s∗<0

Ps∗ . (2)

In view of the nesting property (1), for each F ∈ Ps∗ for some s∗ we define

s∗0(F ) ≡ sup{s∗ : F is bi-s∗-concave}.

Similarly if f is s-concave for some s we define

s0(f ) ≡ sup{s : f is s-concave}.

We often drop the subscript 0 if the meaning is clear. For other basic properties of s-concave densities and bi-s∗-concave
distribution functions, including results concerning closure under convolution, see Borell (1975), Dharmadhikari and
Joag-Dev (1988), and Saumard (2019).

Now we introduce two important parameters, one of which will appear in connection with our characterization of the
class of bi-s∗-concave distribution functions in the next section and in our examples below. The Csörgő–Révész constant
of a bi-log-concave distribution function F , denoted by γ̃ (F ), is given by

γ̃ (F ) ≡ ess sup
x∈J(F )

F (x)(1− F (x))
|f ′(x)|
f 2(x)

, (3)

provided that F is differentiable on J(F ) ≡ {x ∈ R : 0 < F (x) < 1} with derivative f ≡ F ′ and f is differentiable
almost everywhere on J(F ) with derivative f ′ = F ′′. Here the essential supremum is with respect to Lebesgue measure.
Alternatively (and suited for our characterization Theorem 3),

γ (F ) ≡ ess sup
x∈J(F )

{F (x) ∧ (1− F (x))}
|f ′(x)|
f 2(x)

. (4)

Note that since u ∧ (1 − u) ≤ 2u(1 − u) ≤ 2{u ∧ (1 − u)} it follows that 2−1γ (F ) ≤ γ̃ (F ) ≤ γ (F ), and hence finiteness
of γ (F ) is equivalent to finiteness of γ̃ (F ). The Csörgő–Révész constant γ̃ (F ) arises in the study of quantile processes
and transportation distances between empirical distributions and true distributions on R: see Csörgő and Révész (1978),
Shorack and Wellner (2009), Barrio et al. (2005), and Bobkov and Ledoux (2019). It follows from the characterization
Theorem 1(iv) of DKW (2017) that F is bi-log-concave if and only if γ (F ) ≤ 1. We will define γ (F ) ≥ γ (F ) and generalize
his to the classes of bi-s∗-concave distribution functions in Section 3.

Now we consider several examples of s-concave densities and bi-s∗-concave distribution functions.

xample 1 (Student-t). Suppose x ↦→ fr (x) is the density function of the Student-t distribution with r degrees of freedom
efined as follows:

fr (x) =
Γ ((r + 1)/2)
√

πΓ (r/2)

(
1+

x2

r

)−(r+1)/2
for x ∈ R.

It is well-known (see e.g. Borell (1975)) that fr is s-concave for any s ≤ −1/(1 + r) = s0(fr ). Note that s takes values in
−1, 0) since r ∈ (0,∞). It follows from Proposition 1 that F s∗

r and (1 − F )s
∗

are convex for s∗ = s/(1 + s) = −1/r =
∗

0(Fr ) < 0, and hence Fr is bi-s∗-concave for all 0 < r < ∞. Direct calculation shows that the Csörgő–Révész constant
(Fr ) = 1− s∗ = 1+ (1/r) ∈ (1,∞) for 0 < r <∞.
In particular, this yields γ (F1) = γ (Cauchy) = 2. And it suggests that γ (F ) ≤ 1/(1 + s) = 1 − s∗ for all bi-s∗-concave

istribution functions F where 1/(1+ s) varies from 1 to∞ as s varies from 0 to −1. This is one of the characterizations
f the bi-s∗-concave class that we will prove in Section 3.

xample 2 (Fa,b). Suppose that fa,b is the family of F−distributions with ‘‘degrees of freedom" a > 0 and b > 0. (In
tatistical practice, if T has the density fa,b, this would usually be denoted by T ∼ Fa,b, where a is the ‘‘numerator degrees
f freedom" and b is the ‘‘denominator degrees of freedom".) The density is given by

fa,b(x) = Ca,b
xb/2−1

(a+ bx)(a+b)/2
for x ≥ 0.

In fact, C(a, b) = aa/2bb/2Beta(a/2, b/2), and fa,b(x) → gb(x) as a → ∞ where gb is the Gamma density with
arameters b/2 and b/2.) It is well-known (see e.g. Borell (1975)) that f belongs to the class of s-concave densities, if
a,b
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s ≤ −1/(1+a/2) = s0(fa,b) when a ≥ 2 and b ≥ 2. This implies that s ∈ [−1/2, 0), and the resulting s∗0 = s/(1+s) = −2/a
is in [−1, 0). By Proposition 1, it follows that F s∗ and (1− F )s

∗

are convex; i.e. F is bi-s∗-concave.

Example 3 (Pareto). Suppose that fa,b = (a/b)(x/b)−(a+1)1[b,∞)(x), the Pareto distribution with parameters a > 0 and
b > 0. In this case, fa,b is s-concave for each s ≤ −1/(1+ a) by noting the convexity of f −1/(1+a)a,b = (x/b) · (b/a)1/(1+a).

Thus we take s = −1/(1+ a) ∈ (−1, 0) for a ∈ (0,∞) and hence s∗ = s/(1+ s) equals −1/a. Furthermore, it is easily
seen that

CRR(x) ≡ (1− F (x))
−f ′(x)
f 2(x)

= 1− s∗ = 1+ 1/a for all x > b.

(CRR(·) represents the Csörgő–Révész function in the right tail.)
Thus the Pareto distribution is analogous to the exponential distribution in the log-concave case in the sense that

x ↦→ f s(x) = cx (with c = b−1(b/a)1/(1+a)) is linear.

Example 4 (Symmetrized Beta). Suppose that

fr (x) = Cr (1− x2/r)r/21[−√r,
√
r](x),

where

Cr = Γ ((3+ r)/2)/(
√

πrΓ (1+ r/2))

nd r ∈ (0,∞). Note that fr is an s-concave density with s = 2/r ∈ (0,∞) since

f 2/rr (x) = C2/r
r (1− x2/r)1[−√r,

√
r]

s concave and hence the corresponding distribution function Fr is bi-s∗-concave with s∗ = s/(1 + s) = 2/(2 + r). As
→∞ it is easily seen that

fr (x)→ (2π )−1/2 exp(−x2/2),

he standard normal density. Thus r = ∞ corresponds to s = 0 and s∗ = 0. On the other hand,

gr (x) ≡
√
rfr (
√
rx) =

√
rCr (1− x2)r/21[−1,1](x)→ 2−11[−1,1](x)

as r → 0. Thus r = 0 corresponds to s = ∞ and s∗ = 1.

Note that just as the class of bi-log-concave distributions is considerably larger than the class of log-concave
distributions (as shown by Dümbgen et al. (2017)), the class of bi-s∗-concave distributions is considerably larger than
the class of s-concave distributions. In particular, multimodal distributions are allowed in both the bi-log-concave and
the bi-s∗-concave classes.

Example 5 (Exponential Family; exponential tilt of U(0, 1)). Suppose that

ft (x) = exp(tx− K (t))1[0,1](x)

where

K (t) ≡

{ log(et − 1)− log t, t > 0,
0, t = 0,

log(1− et )− log(−t), t < 0,
(5)

for −∞ < t <∞ with K (0) ≡ 0, and further define Ft (x) ≡
∫ x
0 ft (y)dy.

One can verify that ft is s-concave only for s ≤ 0 and hence Ft is bi-s∗-concave for s∗ ≤ s/(1+ s) ≤ 0 by Proposition 1.
owever, this might not be optimal; i.e. there remains the possibility that F ∈ Ps∗ for some s∗ > 0. In fact, by Theorem 3(iv)
t follows that Ft ∈ Ps∗ with s∗ = e−|t|. (For an example involving a power-tilt of U(0, 1), see Dharmadhikari and Joag-Dev
(1988) (iv), page 95.) This also implies that the converse of Proposition 1 does not hold here or in general. The following
two examples also illustrate this point.

Example 6 (Mixture of Gaussians Shifted Dümbgen et al., 2017, page 2–3). Suppose that fδ is the mixture (1/2)N(−δ, 1)+
1/2)N(δ, 1) with δ > 0. It is well-known that fδ is bimodal if δ > 1. Since all s-concave densities are unimodal (see
.g. Dharmadhikari and Joag-Dev (1988) page 86), it follows that fδ is not s-concave for any δ > 1. Dümbgen et al. (2017)
howed (numerically) that the corresponding distribution Fδ is bi-log-concave for δ ≤ 1.34 but not for δ ≥ 1.35. With
= 1.8 this example also shows that strict inequality can occur in the second inequality in Corollary 4.

xample 7 (Mixture of Shifted Student-t). Now suppose that f is the mixture (1/2)t1(·−δ)+(1/2)t1(·+δ) with δ > 0 where
r is the standard Student-t density with r degrees of freedom as in Example 1. Since fδ is bimodal if δ > δ0 ≈ 0.6 and all
s-concave densities are unimodal, it follows that f is not s-concave for any δ > δ . For values of δ < δ , f is s-concave
δ 0 0 δ
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Table 1
Summary of Examples 1–8.
Name Example Density d.f. s s∗ = s/(1+ s) γ (F ) = 1− s∗

f F

Student-t 1 fr , r > 0 Fr −1/(1+ r) −1/r 1+ (1/r)

Fa,b 2 fa,b , a, b > 0 Fa,b −1/(1+ a/2) −2/a 1+ 2/a

Pareto(a, b) 3 fa,b , a, b > 0 Fa,b −1/(1+ a) −1/a 1+ 1/a

Symmetric Beta 4 fr , r > 0 Fr 2/r 2/(r + 2) 1/(1+ 2/r) = r/(r + 2)

Expo family Tilted U(0, 1) 5 ft , t ∈ R Ft 0 e−|t| 1− e−|t|

Mixture, 6 fδ Fδ Not s-concave 0 for 1
N(δ, 1), N(−δ, 1) for δ > 1 0 < δ < 1.34 0 < δ < 1.34

Mixture, 7 fδ Fδ Not s-concave bi-s∗-concave, some s∗ 2
T (δ, 1), T (−δ, 1) δ > .6 0 < δ <∞ δ small

Lévy α = 1/2 8 fa Fa −2/3 −2 3

with s = −1/2, so Proposition 1 applies and shows that Fδ is bi-s∗-concave with s∗ = −1. By numerical calculation, for
> δ0 the distribution functions Fδ are bi-s∗-concave for some s∗ = s∗(δ) ∈ (−∞, 1] which decreases (approximately

inearly) for large δ.

xample 8 (Lévy with α = 1/2). This example is the completely asymmetric α-stable (or Lévy) law with α = 1/2. It gives
he first passage time to the level a > 0 for a standard Brownian motion B (started at 0 and with no drift). See e.g. Durrett
2019), pages 372–374. The density is given by

fa(t) =
a

√
2π t3

exp(−a2/2t)1(0,∞)(t),

nd the distribution function Fa(t) = 2P(Bt ≥ a) = 2(1 − Φ(a/
√
t)). It is easily seen that fa is s-concave with s = −2/3,

nd hence Fa is bi-s∗-concave with s∗ = −2. Thus γ (F ) = 3.

Table 1 summarizes the examples:
Example 5 shows that strict inequality can hold in the inequality γ (F ) ≤ γ (F )

. Main theoretical results

Here is our theorem characterizing bi-s∗-concave distribution functions.

heorem 3. Let s∗ ≤ 1. For a non-degenerate distribution function F , the following statements are equivalent:
i) F is bi-s∗-concave.
ii) F is continuous on R and differentiable on J(F ) with derivative f = F ′.

Moreover, for s∗ ̸= 0,

F (y)

⎧⎪⎨⎪⎩
≤ F (x) ·

(
1+ s∗ f (x)F (x) (y− x)

)1/s∗
+

≥ 1− (1− F (x)) ·
(
1− s∗ f (x)

1−F (x) (y− x)
)1/s∗
+

(6)

while for s∗ = 0

F (y)

⎧⎨⎩≤ F (x) · exp
(

f (x)
F (x) (y− x)

)
≥ 1− (1− F (x)) · exp

(
−

f (x)
1−F (x) (y− x)

) (7)

for all x, y ∈ J(F ).
(iii) F is continuous on R and differentiable on J(F ) with derivative f = F ′ such that the s∗-hazard function f /(1 − F )1−s

∗

is
non-decreasing on J(F ), and the reverse s∗-hazard function f /F 1−s∗ is non-increasing on J(F ).
(iv) F is continuous on R and differentiable on J(F ) with bounded and strictly positive derivative f = F ′. Furthermore, f is
differentiable almost everywhere on J(F ) with derivative f ′ = F ′′ satisfying

− (1− s∗)
f 2

1− F
≤ f ′ ≤ (1− s∗)

f 2

F
almost everywhere on J(F ). (8)

The following two remarks are immediately consequences of Theorem 3. See Section 6 for a proof of Remark 1.
131
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Remark 1. (i) The proof of Theorem 3(iv) implies that if s∗ > 1, then not both F s∗ and (1− F )s
∗

can be concave.
(ii) If F is a bi-s∗-concave distribution function for 0 < s∗ ≤ 1, then inf J(F ) > −∞ and sup J(F ) <∞.
(iii) If F is a bi-s∗-concave distribution function for s∗ < 0, then it follows that

(0, T (F )) ⊂
{
t ∈ R+ :

∫
|x|tdF (x) <∞

}
, (9)

with

T (F ) ≡
{
∞ if inf J(F ) > −∞ and sup J(F ) <∞,

−
1
s∗ otherwise. (10)

emark 2. Suppose that F is a bi-s∗-concave distribution function, and define

T1(F ) ≡ sup
x∈J(F )

f
F 1−s∗ (x), and T2(F ) ≡ sup

x∈J(F )

f
(1− F )1−s∗

(x).

ince f /F 1−s∗ is monotonically non-increasing on J(F ), it follows that for any x, x0 ∈ J(F ) with x < x0,

f
F 1−s∗ (x) ≥

1
s∗ F

s∗ (x)− 1
s∗ F

s∗ (x0)
x− x0

and hence

T1(F ) = sup
x∈J(F )

f
F 1−s∗ (x) = lim

x→inf J(F )

f
F 1−s∗ (x)

{
> 0,
= ∞ if inf J(F ) > −∞.

Analogously one can show that

T2(F )
{

> 0,
= ∞ if sup J(F ) <∞.

Corollary 4 (Connection with the Csörgő–Révész Constant). Suppose F is a bi-s∗-concave distribution function for s∗ ≤ 1. Then
with γ̃ (F ) and γ (F ) as defined in (3) and (4), we have

1
2
γ (F ) ≤ γ̃ (F ) ≤ γ (F ) ≤ γ (F ) ≤ 1− s∗, (11)

here

γ (F ) ≡ max{C̃R(F ), C̃R(F̄ )}, F̄ ≡ 1− F ,

C̃R(F ) ≡ ess sup
x∈J(F )

F (x)F ′′(x)
(F ′(x))2

,

and

γ (F ) ≡ ess sup
x∈J(F )

{F (x) ∧ (1− F (x))}|F ′′(x)|
(F ′(x))2

= ess sup
x∈J(F )

{F (x) ∧ (1− F (x))}|f ′(x)|
(f (x))2

.

Remark 3. By Theorem 3, one can verify that C̃R(F ) is well-defined for any F ∈ Ps∗ . Note that

C̃R(F ) ≡ ess sup
x∈J(F )

F (x)(−F ′′(x))
(F ′(x))2

.

The first two inequalities in Corollary 4 follow (as we noted before) from 2−1{u ∧ (1 − u)} ≤ u(1 − u) ≤ u ∧ (1 − u) for
≤ u ≤ 1. Thus finiteness of γ̃ (F ) implies finiteness of γ (F ) and vice-versa. Examples show that strict inequality may
old in the inner inequalities in (11). On the other hand, if f is non-decreasing on (a, F−1(1/2)) and f is non-increasing

on (F−1(1/2), b) where J(F ) = (a, b), then γ = γ by inspection of the proof of γ (F ) ≤ γ (F ).

orollary 5 (Bounds for F ∈ Ps∗ , where s∗ ̸= 0). For any s∗ ∈ (−∞, 0) ∪ (0, 1] and F ∈ Ps∗ ,

FL(x) ≤ F (x) ≤ FU (x), (12)

where FL(x) ≡ 1
s∗
(
F s∗ (x)− (1− s∗)

)
and FU (x) ≡ 1

s∗

(
1− (1− F (x))s

∗
)
.

Moreover, FU (x) is a convex function on J(F ), and FL(x) is a concave function on J(F ). For s∗ = 0 and F ∈ P0, (12) holds
with FL(x) = 1+ log F (x) and FU (x) = − log(1− F (x)).
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4. Confidence bands for bi-s∗-concave distribution functions

Our goal in this section is to define confidence bands for F which exploit the shape constraint F ∈ Ps∗0
. We start with

ome known unconstrained nonparametric bands and define new bands under the assumption that the true distribution
unction F satisfies the shape constraint F ∈ Ps∗0

where s∗0 is known.

.1. Definitions and basic properties

Let X1, . . . , Xn be i.i.d. random variables with continuous distribution function F . A (1−α)-confidence band, denoted by
(Ln,Un), for F means that both Ln and Un are monotonically non-decreasing functions on R depending on α and X1, . . . , Xn
only, moreover, Ln and Un have to satisfy Ln < 1, Un > 0 and

P (Ln(x) ≤ F (x) ≤ Un(x) for all x ∈ R) = 1− α.

The following two bands are discussed in Dümbgen et al. (2017) and we briefly restate them here.

Example (Kolmogorov–Smirnov Band). A Kolmogorov–Smirnov band (Ln,Un) is given by

[Ln(x),Un(x)] ≡

[
Fn(x)−

κKS
α,n
√
n

,Fn(x)+
κKS

α,n
√
n

]
∩ [0, 1],

where Fn is the empirical distribution function and κKS
α,n denotes the (1 − α)-quantile of supx∈R n1/2

|Fn(x)− F (x)|,
ee Shorack and Wellner (2009) Note that κKS

α,n ≤
√
log(2/α)/2 by Massart’s (1990) inequality, see Massart (1990).

Example (Weighted Kolmogorov–Smirnov Band). A Weighted Kolmogorov–Smirnov band (Ln,Un) is as follows: for any
∈ [0, 1/2),

[Ln(x),Un(x)] ≡

[
ti −

κWKS
α,n
√
n

(ti(1− ti))γ , ti+1 +
κWKS

α,n
√
n

(ti+1(1− ti+1))γ
]
∩ [0, 1],

or i ∈ {0, 1, . . . , n} and x ∈ [X(i), X(i+1)), where {X(i)}
n
i=1 denotes the order statistics of {Xi}

n
i=1, X(0) ≡ −∞, X(n+1) ≡ ∞,

ti ≡ i/(n+ 1) for i = 1, . . . , n, and κWKS
α,n denotes the (1− α)-quantile of the following test statistics

√
n max

i=1,...,n

|F (X(i))− ti|
(ti(1− ti))γ

.

ote that κWKS
α,n = O(1).

A further example of a nonparametric confidence band due to Owen (1995) and refined by Dümbgen and Wellner
2014) was considered by Dümbgen et al. (2017). We will not consider this third possibility further here due to space
onstraints.
Now we turn to confidence bands for bi-s∗-distribution functions. Our approach will be to refine the three uncon-

strained bands given in the three examples.
Suppose F is a bi-s∗-concave distribution function. A nonparametric (1 − α) confidence band (Ln,Un) for F may be

refined as follows:

Lon(x) ≡ inf{G(x) : G ∈ Ps∗ , Ln ≤ G ≤ Un},

Uo
n (x) ≡ sup{G(x) : G ∈ Ps∗ , Ln ≤ G ≤ Un}.

If there is no bi-s∗-concave distribution function F fitting into the band (Ln,Un), we set Lon ≡ 1 and Uo
n ≡ 0 and we

conclude with confidence 1 − α that F is not bi-s∗-concave. But in the case of F ∈ Ps∗ , this happens with probability at
most α.

The following lemma implies two properties of our shape-constrained band (Lon,U
o
n ). The first one is that both Lon and

Uo
n are Lipschitz continuous on R, unless inf{x ∈ R : Ln(x) > 0} ≥ sup{x ∈ R : Un(x) < 1}. The second one is that
o
n(x) converges polynomially fast to 0 as x → −∞ and Uo

n (x) converges polynomially fast to 1 as x → ∞ as long as
imx→∞ Ln(x) > limx→−∞ Un(x).

emma 6. For real numbers a < b, 0 < u < v < 1 and s∗ ∈ (−∞, 0) ∪ (0, 1], define

γ1 ≡

1
s∗
(
vs∗
− us∗

)
b− a

and γ2 ≡

−1
s∗
(
(1− v)s

∗

− (1− u)s
∗)

b− a
.

i) If L (a) ≥ u and U (b) ≤ v, then Lo and Uo are Lipschitz-continuous on R with Lipschitz constant max{γ , γ }.
n n n n 1 2
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(ii) If Un(a) ≤ u and Ln(b) ≥ v, then

Uo
n (x) ≤

(
us∗
+ s∗γ1(x− a)

)1/s∗
+

for x ≤ a,

1− Lon(x) ≤
(
(1− v)s

∗

− s∗γ2(x− b)
)1/s∗
+

for x ≥ b.

The following theorem implies the consistency of our proposed confidence band (Lon,U
o
n ).

heorem 7. Suppose that the original confidence band (Ln,Un) is consistent in the sense that for any fixed x ∈ R, both Ln(x)
nd Un(x) tend to F (x) in probability.
i) Suppose that F /∈ Ps∗ . Then P(Lon ≤ Uo

n )→ 0.
ii) Suppose that F ∈ Ps∗ with s∗ ̸= 0. Then P(Lon ≤ Uo

n ) ≥ 1− α, and

sup
G∈Ps∗ :Ln≤G≤Un

∥G− F∥∞ →p 0, (13)

here sup(∅) ≡ 0. Moreover, for any compact interval K ⊂ J(F ),

sup
G∈Ps∗ :Ln≤G≤Un

∥hG − hF∥K ,∞ →p 0, (14)

where hG stands for any of the three functions G′,
(
Gs∗
)′
, and

(
(1− G)s

∗)′
. Finally, for any fixed x1 ∈ J(F ) and 0 < b1 <

f (x1)/F 1−s∗ (x1),

P
(
Uo
n (x) ≤

(
U s∗
n (x′)+ s∗b1(x− x′)

)1/s∗
+

for x ≤ x′ ≤ x1

)
→ 1, (15)

hile for any fixed x2 ∈ J(F ) and 0 < b2 < f (x2)/(1− F (x2))1−s
∗

,

P
(
1− Lon(x) ≤

(
(1− Ln(x′))s

∗

− s∗b2(x− x′)
)1/s∗
+

for x ≥ x′ ≥ x2

)
→ 1. (16)

The following result provides the consistency of confidence bands for functionals
∫

φdF of F with well-behaved
integrands φ : R→ R.

Corollary 8. Suppose that the original confidence band (Ln,Un) is consistent, and let F ∈ Ps∗ with s∗ < 0. Let φ : R ↦→ R
be absolutely continuous with a continuous derivative φ′ satisfying the following constraint: there exist constants a > 0 and
k < −1/s∗ such that

|φ′(x)| ≤ a|x|k−1.

Then

sup
G:Lon≤G≤U

o
n

⏐⏐⏐⏐∫ φdG−
∫

φdF
⏐⏐⏐⏐→p 0.

The following theorem provides rates of convergence, with the following condition on the original confidence band
(Ln,Un):

Condition (*): For certain constants γ ∈ [0, 1/2) and κ, λ > 0,

max{Fn − Ln,Un − Fn} ≤ κn−1/2 (Fn(1− Fn))γ

on the interval {λn−1/(2−2γ )
≤ Fn ≤ 1− λn−1/(2−2γ )

}.
As stated in Dümbgen et al. (2017), this condition is satisfied with γ = 0 in the case of the Kolmogorov–Smirnov band.

In the case of the weighted Kolmogorov–Smirnov band, it is satisfied for the given value of γ ∈ [0, 1/2). For the refined
version of Owen’s band, it is satisfied for any fixed number γ ∈ (0, 1/2).

Theorem 9. Suppose that F ∈ Ps∗ with s∗ < 0 and let (Ln,Un) satisfy Condition (*). Let φ : R ↦→ R be absolutely continuous
with a continuous derivative φ′.

Suppose that |φ′(x)| = O(|x|k−1) as |x| → ∞ for some numbers k < −1/s∗. Then

sup
G:Lon≤G≤U

o
n

⏐⏐⏐⏐∫ φdG−
∫

φdF
⏐⏐⏐⏐ = Op

(
n−

1
2

(
1∧ ks∗+1

1−γ

))
. (17)

emark. (i) From (17), one can verify that the convergence rate is n−1/2 as long as k < γ/(−s∗).
ii) From (17), one can verify that when γ = 0, the convergence rate is n−1/2+k/(−s

∗) and we have a ‘‘power deficit" (or
‘polynomial rate deficit") relative to n−1/2.
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4.2. Implementation and illustration of the confidence bands

In this section, we discuss the implementation of confidence bands for bi-s∗-concave distribution functions. This
extends the treatment of Dümbgen et al. (2017) from s∗ = 0 to general values s∗ ∈ (−∞, 1].

Recall the procedure ConcInt(·, ·) developed in Dümbgen et al. (2017). Given any finite set T = {t0, . . . , tm} of real
numbers t0 < t1 < · · · < tm and any pair (l, u) of functions l, u : T → [−∞,∞) with l < u pointwise and l(t) > −∞ for
at least two different points t ∈ T , this procedure computes the pair (lo, uo) where

lo(x) ≡ inf {g(x) : g is concave on R, l ≤ g ≤ u on T } ,

uo(x) ≡ sup {g(x) : g is concave on R, l ≤ g ≤ u on T } .

First note that lo is the smallest concave majorant of l on T ; thus it may be computed by a version of the pool-adjacent-
violators algorithm; see for example (Robertson et al., 1988). Then we obtain indices 0 ≤ j(0) < j(1) < · · · < j(b) ≤ m
uch that

lo

⎧⎨⎩
≡ −∞ on R\[tj(0), tj(b)],
is linear on [tj(a−1), tj(a)] for 1 ≤ a ≤ b,
change slope at tj(a) if 1 ≤ a ≤ b.

With lo in hand, we then check to see if lo ≤ u on T . If this fails, then there is no concave function lying between l and
u, and the procedure returns an error message. If this test succeeds, then we compute uo(x) as

min
{
u(s)+

u(s)− lo(r)
s− r

(x− s) : r ∈ To, r < s ≤ x or x ≤ s < r
}

,

here To = {tj(0), tj(1), . . . , tj(b)}. (The rest of the description of the procedure ConcInt(·, ·) is just as in Dümbgen et al.
2017).)

When s∗ < 0, let g(v; s∗) ≡ g(v) ≡ −vs∗ and h(v; s∗) ≡ h(v) ≡ (−v)1/s
∗

. (This is the most important new case. When
= s∗ = 0, g(v) ≡ log(v), h(v) ≡ exp(v). When s∗ > 0, g(v) ≡ vs∗ and h(v) ≡ v1/s∗ .) Here is pseudocode for the
omputation of (Lon,U

o
n ).

(Lon,U
o
n )← (Ln,Un)

(lo, uo)← ConcInt(g(Lon), g(U
o
n ))

(̃Lon, Ũ
o
n )← (h(lo), h(uo))

(lo, uo)← ConcInt(g(1− Ũo
n ), g(1− L̃on))

(̃Lon, Ũ
o
n )← (1− h(uo), 1− h(lo))

while (̃Lon, Ũ
o
n ) ̸= (Lon,U

o
n ) do

(Lon,U
o
n )← (̃Lon, Ũ

o
n )

(lo, uo)← ConcInt(g(Lon), g(U
o
n ))

(̃Lon, Ũ
o
n )← (h(lo), h(uo))

(lo, uo)← ConcInt(g(1− Ũo
n ), g(1− L̃on))

(̃Lon, Ũ
o
n )← (1− h(uo), 1− h(lo))

end while.

Illustration of the confidence bands
To get some feeling for the new confidence bands in a setting in which s∗0 is known, we generated a sample of size

n = 100 from the Student-t distribution with r = 1 degrees of freedom. This distribution belongs to Ps∗ for every
s∗ ≤ −1 ≡ s∗0. We constructed Kolmogorov–Smirnov (KS) and weighted Kolmogorov–Smirnov (WKS) bands with γ = 0.4
as the initial starting bands (Ln,Un). We then computed and plotted our shape constrained confidence bands (L0n,U

0
n )

under the (correct) assumption that s∗ = −1 and the (incorrect) assumption that s∗ = 0 for both the KS and WKS bands
as initial nonparametric bands with for α = 0.05; see Figs. 1 and 2. To see the components of Figs. 1 and 2 separately,
see the Supplementary file, Figures 1–2 and 3–4 respectively.

Note that when s∗ = 0, s∗ is miss-specified and the resulting bands are not guaranteed to have coverage probability
.95. An indication of this is that the shape constrained bands computed under the assumption s∗ = 0 do not contain the
empirical distribution.

From these two plots, an immediate observation is that the confidence bands for smaller s∗ are wider than those with
larger s∗. This is a direct consequence of the nested property of the bi-s∗-concave classes; see Proposition 2. Also note

that the shape constrained band with s∗ = −1 does improve on the KS band, especially in the tail (see Fig. 3).
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Fig. 1. Confidence bands for bi-s∗-concave distribution functions based on KS bands. The black curve is the distribution function of the Student-t
distribution with 1 degree of freedom. The two gray–black lines give the KS band and lines in other colors are refined confidence bands under the
bi-s∗-concave assumption. The step function in the middle is the empirical distribution function. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Confidence bands for bi-s∗-concave distribution functions based on WKS bands. The black curve is the distribution function of the Student-t
istribution with 1 degree of freedom. The two gray–black lines give the WKS band and lines in other colors are refined confidence bands under
he bi-s∗-concave assumption. The step function in the middle is the empirical distribution function. (For interpretation of the references to color
n this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Confidence Bands for bi-s∗-concave distribution functions from KS bands based on a sample of size 1000 from the Student-t distribution
ith 1 degree of freedom. The two gray–black lines give the initial bands, lines in other colors are refined confidence bands under the bi-s∗-concave
ssumption. The step function (black) in the middle is the empirical distribution function. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

n Application
Dümbgen et al. (2017) gave an application of bi-log-concave confidence bands to a dataset from Woolridge (2000). It

ontains approximate annual salaries of the CEOs of 177 randomly chosen companies in the U.S. The salary is rounded
o multiples of 1000 USD. We denote the ith observed approximate salary by Y . Dümbgen et al. (2017) assume that
i,raw
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Fig. 4. Confidence Bands for bi-s∗-concave distribution functions from WKS bands based on a sample of size 1000 from the Student-t distribution
ith one degree of freedom. The two gray–black lines give the initial bands, lines in other colors are refined confidence bands under the bi-s∗-concave
ssumption. The step function (black) in the middle is the empirical distribution function. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

he unobserved true salary Yi,true lies within (Yi,raw − 1, Yi,raw + 1). Let us assume that Gtrue is the unknown distribution of
true. For income data it is sometimes assumed that log10 Ytrue is Gaussian (see Kleiber and Kotz (2003)). Since Gaussian
ensities are all log-concave and hence have bi-log-concave distribution functions (by Proposition 1), it is natural to
onsider replacing the Gaussian assumption by the assumption of bi-log-concavity. Dümbgen et al. (2017) therefore
ssumed that X = log10 Ytrue is bi-log-concave and constructed 95% confidence bands (Ln,Un) (see Fig. 4 of Dümbgen
t al. (2017)) where Ln is computed with the empirical distribution of log10(Yi,raw − 1)ni=1 and Un is computed with that
f log10(Yi,raw + 1)ni=1.
Here we assume that the distribution of X is bi-s∗-concave for some s∗ and compute confidence bands for different

alues of s∗. Now we are confronted with the issue of choosing s∗: if we want narrower confidence bands we would
ssume some value of s∗ ∈ (0, 1], while if we are not willing to assume s∗ = 0 (the choice made by Dümbgen et al.
2017), then we would assume some value of s∗ < 0 (leading to the larger classes Ps∗ with s∗ < 0. It is of some interest to
now if the CEO data could be modeled by use of the bi-s∗ classes with s∗ ∈ (0, 1] since this would result in still narrower
onfidence bands. But it is also of interest to try to use the data to choose s∗.

hoosing s∗
Since F can be a member of Ps∗ for various values of s∗, each s∗ leads to a different set of bands. However, due to the

esting property of Ps∗ , a larger s∗ always yields a narrower confidence band. Thus, it is of interest to estimate

s∗0(F ) := sup{s∗ ∈ (−∞, 1] : F ∈ Ps∗}

ince s∗ = s∗0 generates the narrowest bands at a given confidence level. If F is not bi-s∗-concave for any s∗ ≤ 1, then
e set s∗0(F ) = −∞. Now s∗0 is connected to the Csörgő–Révész constant since s∗ = s∗0 when γ (F ) = 1 − s∗ and F ∈ P∗s .

For example, the Student-t distribution with r ‘‘degree of freedom’’ has s∗0 = −1/r . However, this connection cannot be
easily exploited for practical estimation purposes due to difficulties in estimating γ (F ) or γ (F ). So we take an alternative
route to making inference about s∗0.

Starting from an initial 1− α band (Ln,Un), a bound on s∗0 is given by

s∗n = sup{s∗ ∈ (−∞, 1] : (Ln,Un) contains some d.f. F ∈ Ps∗}.

Clearly, for s∗ > s∗n, there is no bi-s∗-concave distribution function fitting into the band (Ln,Un). Since this happens with
robability at most α ∈ (0, 1) when the true distribution function F ∈ Ps∗ , it follows that (−∞, s∗n] is a confidence set for
∗

0 with coverage probability at least 1 − α. Our simulations suggest that s∗n is generally considerably larger than s∗0, and
ence not suitable as an estimator, especially for α = 0.05.
Instead, we propose an estimator of s∗0 based on the Fn measure of the set where the empirical measure remains

etween the shape-constrained band for s∗. More formally, let Lon(s
∗) and Uo

n (s
∗) denote the 1 − α level bi-s∗-concave

onfidence bands based on the initial bands Ln and Un and the assumption F ∈ Ps∗ . Define

ω(s∗) := n−1
n∑

i=1

1{Lon(s
∗)(Xi) ≤ Fn(Xi) ≤ Uo

n (s
∗)(Xi)}

·1{Lon(s
∗)(Xi) ≤ Uo

n (s
∗)(Xi)}

= F
(
{Lo(s∗) ≤ F ≤ Uo(s∗)} ∩ {Lo(s∗) ≤ Uo(s∗)}

)
.
n n n n n n
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Fig. 5. Confidence Bands from an initial KS band for the CEO salary data. The step function in the middle is the empirical distribution function. The
two gray–black lines give the KS band and lines in other colors are refined confidence bands under the bi-s∗-concave assumption. (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Confidence Bands from an initial WKS band for the CEO salary data. The step function in the middle is the empirical distribution function.
he two gray–black lines give the WKS band and lines in other colors are refined confidence bands under the bi-s∗-concave assumption. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

A higher value of ω(s∗) indicates that (Lon(s
∗),Uo

n (s
∗)) contains a greater portion of Fn. Since the bands (Ln(s∗),Un(s∗))

ecome narrower as s∗ increases, ω(s∗) decreases in s∗, and eventually becomes zero when s∗ > s∗n. A plausible estimator
f s∗0 is therefore given by

ŝ∗n = min{s∗ ∈ (−∞, s∗n] : ω(s∗) > ρ}, (18)

where ρ is a threshold taking values in (0, 1). The calculation of ŝ∗n thus depends on α and ρ.
In the case of the CEO data, s∗n ≈ 0.23 for the KS initial band, and s∗n ≈ 0.18 for the WKS band. Taking α = 0.05

and ρ = .95, leads to ŝ∗n = 0.12, while taking α = 0.05 and ρ = 0.95, leads to ŝ∗n = .12. The resulting bands are
iven in Figs. 5 and 6. Also see the Supplementary file, Figures 9–10 and Figures 11–12 for the steps in constructing
igs. 5 and 6.
We should emphasize that our current theory says little about the coverage probabilities of the bands (Lon(s

∗),Uo
n (s
∗)).

iscussion of the consistency of ŝ∗n is beyond the scope of the present paper, but this and further issues concerning
nference for both s∗ and F ∈ Ps seem to be interesting directions for future research.

. Summary and further problems

In this paper we have:
• Defined new classes of shape-constrained distribution functions, the bi-s∗-classes extending the bi-log-concave class

f distribution functions defined by Dümbgen et al. (2017).
• Characterized the new classes and connected our characterization to an important parameter, the Csörgő–Révész

onstant associated with a distribution function F .
• Used the new bi-s∗-concave classes to define refined confidence bands for distribution functions which exploit the

hape constraint, thereby producing more accurate (narrower) bands with honest coverage when the shape constraint
olds.
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Thus we have shown that if we know the parameter s∗ ∈ (−∞, 1] determining the class, we can construct refined
confidence bands which improve on any given nonparametric confidence bands if the given value of s∗ is correct. It follows
from the construction of our bands that they have conservative coverage probabilities under the (null) hypothesis that
the true distribution function is in Ps∗ and that s∗ is correctly specified.
• What if we do not know s∗? Can we estimate it from the data? As becomes clear from the discussion of the CEO

data via Figs. 5 and 6, our methods provide one-sided confidence bounds for the true s∗ of the form (−∞, s∗n] under the
ssumption that F ∈ Ps∗ for some s∗. It remains to develop inference methods for s∗ and (s∗, F ) jointly. It will also be of

interest to have a more complete understanding of the power behavior of tests related to s∗n and ŝ∗n.
• The stable laws are known to be unimodal; see e.g. Hall (1984) for some history. In connection with Example 8 we

ave the following:

onjecture. the α-stable laws are s-concave with s = −1/(1+ α) for 0 < α < 2.

. Proofs

roof of Theorem 3. Throughout our proof we will denote inf J(F ) and sup J(F ) by a and b respectively. Moreover, we
ssume s∗ < 0 in the following proof and leave the case of s∗ > 0 for Appendix A. Note that the case s∗ = 0 is proved
y Dümbgen et al. (2017).
i) implies (ii):

Suppose F ∈ Ps∗ . To prove that F is continuous on R, we first note that x ↦→ F s∗ (x) and x ↦→ (1− F (x))s
∗

(x) are
onvex functions on R. By Theorem 10.1 (page 82) of Rockafellar (1970), F s∗ and (1− F (x))s

∗

are continuous on any open
onvex sets in their effective domains. In particular, F s∗ and (1− F)s

∗

are continuous on (a,∞) and (−∞, b) respectively.
This implies that F is continuous on (a,∞) and (−∞, b), or equivalently, on (a,∞) ∪ (−∞, b) = (−∞,∞) since F is
non-degenerate.

To prove that F is differentiable on J(F ), note that J(F ) = (a, b) since F is continuous on R. By Theorem 23.1 (page
213) of Rockafellar (1970), for any x ∈ J(F ), the convexity of F s∗ on J(F ) implies the existence of

(
F s∗
)′
+
(x) and

(
F s∗
)′
−
(x).

Moreover,
(
F s∗
)′
−
(x) ≤

(
F s∗
)′
+
(x) by Theorem 24.1 (page 227) in Rockafellar (1970). Since F =

(
F s∗
)1/s∗

on J(F ), the chain
rule guarantees the existence of F ′

±
(x) and

F ′
±
(x) =

1
s∗

(
F s∗
)1/s∗−1

(x±)
(
F s∗
)′
±

(x).

ince F is continuous on J(F ), then

F ′
±
(x) =

1
s∗

(
F s∗
)1/s∗−1

(x)
(
F s∗
)′
±

(x).

Hence F ′
−
(x) ≥ F ′

+
(x) by noting that

(
F s∗
)′
−
(x) ≤

(
F s∗
)′
+
(x) and s∗ < 0.

Similarly, one can prove F ′
−
(x) ≤ F ′

+
(x) by the convexity of (1− F)s

∗

on J(F ).
Thus F ′

−
(x) = F ′

+
(x) = F ′(x) for any x ∈ J(F ), or equivalently, F is differentiable on J(F ). The derivative of F is denoted

by f , i.e. f ≡ F ′.
To prove (6), note that the convexity of x ↦→ F s∗ (x) on J(F ) implies that, for any x, y ∈ J(F ),

F s∗ (y)− F s∗ (x) ≥ (y− x)
(
F s∗
)′

(x) = (y− x)s∗F s∗−1(x)f (x),

or, with x+ = max{x, 0},

F s∗ (y)
F s∗ (x)

≥

(
1+ s∗

f (x)
F (x)

(y− x)
)
+

.

Hence,

F (y)
F (x)
≤

(
1+ s∗

f (x)
F (x)

(y− x)
)1/s∗

+

,

or, equivalently,

F (y) ≤ F (x)
(
1+ s∗

f (x)
F (x)

(y− x)
)1/s∗

+

.

nalogously, the convexity of (1− F (x))s
∗

on J(F ) implies that

1− F (y) s∗
− 1− F (x) s∗

≥ −(y− x)s∗ 1− F (x) s∗−1 f (x),
( ) ( ) ( )
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or, equivalently,(
1− F (y)
1− F (x)

)s∗

≥

(
1− s∗

f (x)
1− F (x)

(y− x)
)
+

,

which yields

F (y) ≥ 1− (1− F (x))
(
1− s∗

f (x)
1− F (x)

(y− x)
)1/s∗

+

.

The proof of (6) is complete.
(ii) implies (iii):

Applying (6) yields that for any x, y ∈ J(F ) with x < y,

F s∗ (x)
F s∗ (y)

≥ 1+ s∗
f (y)
F (y)

(x− y),

nd

F s∗ (y)
F s∗ (x)

≥ 1+ s∗
f (x)
F (x)

(y− x),

or, equivalently,

F s∗ (x) ≥ F s∗ (y)+ s∗
f (y)

F 1−s∗ (y)
(x− y),

and

F s∗ (y) ≥ F s∗ (x)+ s∗
f (x)

F 1−s∗ (x)
(y− x).

By defining h ≡ f /F 1−s∗ on J(F ), it follows that

F s∗ (x) ≥ F s∗ (y)+ s∗h(y)(x− y),

and

F s∗ (y) ≥ F s∗ (x)+ s∗h(x)(y− x).

After summing up the last two inequalities, it follows that

F s∗ (x)+ F s∗ (y) ≥ F s∗ (y)+ s∗h(y)(x− y)+ F s∗ (x)+ s∗h(x)(y− x),

or, equivalently,

0 ≥ s∗ (h(x)− h(y)) (y− x).

Hence h(x) ≥ h(y), or equivalently, h(·) is a monotonically non-increasing function on J(F ).
The proof of the monotonicity of h̃ ≡ f /(1− F )1−s

∗

is similar and hence is omitted.
(iii) implies (iv):

If (iii) holds, it immediately follows that f > 0 on J(F ) = (a, b). If not, suppose that f (x0) = 0 for some x0 ∈ J(F ).
It follows that h(x0) = f (x0)/F 1−s∗ (x0) = 0. Since h is monotonically non-increasing on J(F ), h(x) = 0 for all x ∈ [x0, b),
or, equivalently, f = 0 on [x0, b). Similarly, the non-decreasing monotonicity of x ↦→ h̃(x) on J(F ) implies that f = 0 on
(a, x0]. Then f = 0 on J(F ), which violates the continuity assumption in (iii) and hence f > 0 on J(F ).

To prove f is bounded on J(F ), note that the monotonicities of h and h̃ imply that for any x, x0 ∈ J(F ),

f (x) =
{
F 1−s∗ (x)h(x) ≤ h(x) ≤ h(x0), if x ≥ x0,
(1− F (x))1−s

∗

h̃(x) ≤ h̃(x) ≤ h̃(x0), if x ≤ x0.

Hence f (x) ≤ max{h(x0), h̃(x0)} for any x, x0 ∈ J(F ).
To prove that f is differentiable on J(F ) almost everywhere, we first prove that f is Lipschitz continuous on (c, d) for

any c, d ∈ J(F ) with c < d.
By the non-increasing monotonicity of h on J(F ), the following arguments yield an upper bound of (f (y)− f (x)) /(y−x)

for any x, y ∈ (c, d):

f (y)− f (x)
y− x

=
F 1−s∗ (y)h(y)− F 1−s∗ (x)h(x)

y− x

= h(y)
F 1−s∗ (y)− F 1−s∗ (x)

+ F 1−s∗ (x)
h(y)− h(x)
y− x y− x
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a
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S

≤ h(y)
F 1−s∗ (y)− F 1−s∗ (x)

y− x
= h(y)(1− s∗)f (z)F−s

∗

(z),

where the last equality follows from the mean value theorem and z is between x and y.
Since −s∗ > 0, it follows that F−s

∗

< 1 and hence

f (y)− f (x)
y− x

< (1− s∗)f (z)h(y) ≤ (1− s∗)max{h(x0), h̃(x0)}h(c)

or x, y ∈ (c, d).
Similar arguments imply that

f (y)− f (x)
y− x

=
F̄ 1−s∗ (y)̃h(y)− F̄ 1−s∗ (x)̃h(x)

y− x

= h̃(y)
F̄ 1−s∗ (y)− F̄ 1−s∗ (x)

y− x
+ F̄ 1−s∗ (x)

h̃(y)− h̃(x)
y− x

≥ h̃(y)
F̄ 1−s∗ (y)− F̄ 1−s∗ (x)

y− x
= −̃h(y)(1− s∗)F̄−s

∗

(z)f (z)

≥ −(1− s∗)max{h(x0), h̃(x0)}̃h(d).

Hence⏐⏐⏐⏐ f (y)− f (x)
y− x

⏐⏐⏐⏐ ≤ (1− s∗)max{h(x0), h̃(x0)}max{h(c), h̃(d)}.

he last display shows that f is Lipschitz continuous on (c, d).
By Proposition 4.1(iii) of Shorack (2017), page 82, f is absolutely continuous on (c, d), and hence f is differentiable on

c, d) almost everywhere.
Since (c, d) is an arbitrary interval in (a, b), the differentiability of f on (c, d) implies the differentiability of f on (a, b)

nd hence f is differentiable on (a, b) with f ′ = F ′′ almost everywhere.
Since f is differentiable almost everywhere, the non-increasing monotonicity of h on J(F ) implies that

h′(x) ≤ 0 almost everywhere on J(F ),

r, equivalently,

log(h)′(x) ≤ 0 almost everywhere on J(F ).

traight-forward calculation yields that the last display is equivalent to

f ′

f
− (1− s∗)

f
F
≤ 0 almost everywhere on J(F ),

or,

f ′ ≤ (1− s∗)
f 2

F
almost everywhere on J(F ),

which is the right hand side of (8).
Similarly, the non-decreasing monotonicity of h̃ implies the left hand side of (8).

(iv) implies (i):
Since F is continuous on R, it suffices to prove that F s∗ is convex on J(F ) by Definition 2. Since we assume that F is

differentiable on J(F ) with derivative f = F ′, the convexity of F s∗ on J(F ) can be proved by the increasing monotonicity
of the first derivative of F s∗ on J(F ). Since f is differentiable almost everywhere on J(F ), the increasing monotonicity of
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w

w

(
F s∗
)′

on J(F ) can be proved by the non-negativity of
(
F s∗
)′′

on J(F ) almost everywhere, which follows from(
F s∗
)′′

(x) = s∗F s∗−1(x)
(
−(1− s∗)

f 2(x)
F (x)
+ f ′(x)

)
≥ 0,

here f = F ′, f ′ = F ′′. The last inequality follows from the right hand side of (8).
Similarly, the convexity of (1− F (x))s

∗

, or F̄ s∗ , on J(F ) can be proved by the following arguments:(
F̄ s∗
)′′

(x) = s∗F̄ s∗−1(x)
(
−(1− s∗)

f 2(x)
F̄ (x)
− f ′(x)

)
≥ 0,

here the last inequality follows from the left part of (8). □

Proof of Proposition 1. First some background and definitions:

• Let a, b ≥ 0 and θ ∈ (0, 1). The generalized mean of order s ∈ R is defined by

Ms(a, b; θ ) =

⎧⎪⎨⎪⎩
((1− θ )as + θbs)1/s , if ± s ∈ (0,∞),
a1−θbθ , if s = 0,
max{a, b}, if s = ∞,

min{a, b}, if s = −∞,

• Let (M, d) be a metric space with Borel σ -field M. A measure µ on M is called t-concave if for nonempty sets
A, B ∈M and 0 < θ < 1 we have

µ∗ ((1− θ )A+ θB) ≥ Mt (µ∗(A), µ∗(B); θ)

where µ∗ is the inner measure corresponding to µ (which is needed in general in view of examples noted by Erdős
and Stone (1970)).
• A non-negative real-valued function h on (M, d) is called s-concave if for x, y ∈ M and 0 < θ < 1 we have

h ((1− θ )x+ θy) ≥ Ms (h(x), h(y); θ) .

See Chapter 3.3 in Dharmadhikari and Joag-Dev (1988) for more details of the definitions of Ms(a, b; θ ), t-concave
and s-concave.
• Suppose (M, d) = (Rk, |·|), k−dimensional Euclidean space with the usual Euclidean metric and suppose that f is an

s-concave density function with respect to Lebesgue measure λ on Bk, and consider the probability measure µ on
Bk defined by

µ(B) =
∫
B
fdλ for all B ∈ Bk.

Then by a theorem of Borell (1975), Brascamp and Lieb (1976) and Rinott (1976), the measure µ is s∗-concave where
s∗ = 1/(1+ ks) if s ∈ (−1/k,∞) and s∗ = 0 if s = 0.
• Here we are in the case k = 1. Thus for s ∈ (−1,∞) the measure µ is s∗ concave: for s ∈ (−1,∞), A, B ∈ B1, and

0 < θ < 1,

µ∗ ((1− θ )A+ θB) ≥ Ms∗ (µ∗(A), µ∗(B); θ) ; (19)

here µ∗ denotes inner measure corresponding to µ.

With this preparation we can give our proof of Proposition 1: if A = (−∞, x] and B = (−∞, y] for x, y ∈ J(F ), it is easily
seen that

(1− θ )A+ θB = {(1− θ )x′ + θy′ : x′ ≤ x, y′ ≤ y}
⊂ {(1− θ )x′ + θy′ : (1− θ )x′ + θy′ ≤ (1− θ )x+ θy}
= (−∞, (1− θ )x+ θy].

Therefore, with the second inequality follows from (19),

F ((1− θ )x+ θy) = µ ((−∞, (1− θ )x+ θy])
≥ µ ((1− θ )(−∞, x] + θ (−∞, y])
≥ Ms∗ (µ((−∞, x]), µ((−∞, y]); θ) = Ms∗ (F (x), F (y); θ );

i.e. F is s∗-concave. Similarly, taking A = (x,∞) and B = (y,∞) it follows that 1− F is s∗-concave.
Note that this argument contains the case s∗ = 0. □
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Proof of Proposition 2. By Theorem 3, for any F ∈ Ps∗ , F is continuous on R and differentiable on J(F ) with derivative
f = F ′. Furthermore, f is differentiable almost everywhere on J(F ) with derivative f ′ = F ′′ satisfying (8).

For any t∗ ≤ s∗, by noting that 1− s∗ ≤ 1− t∗ and −(1− s∗) ≥ −(1− t∗), it follows that

−(1− t∗)
f 2

1− F
≤ −(1− s∗)

f 2

1− F
≤ f ′ ≤ (1− s∗)

f 2

F
≤ (1− t∗)

f 2

F
,

lmost everywhere on J(F ). Hence F ∈ P∗t by Theorem 3. This proves (1).
To prove (2), note that for any F ∈ ∪s∗>0Ps∗ , F is continuous on R and differentiable on J(F ) with derivative f = F ′.

Furthermore, f is differentiable almost everywhere on J(F ) with derivative f ′ = F ′′ satisfying (8), i.e.

−(1− s∗)
f 2

1− F
≤ f ′ ≤ (1− s∗)

f 2

F
almost everywhere on J(F ),

for all s∗ > 0. By taking s∗ → 0, it follows that

−(1− 0)
f 2

1− F
≤ f ′ ≤ (1− 0)

f 2

F
almost everywhere on J(F ).

he last display is equivalent to F ∈ P0 by Theorem 3. This proves that the left hand side of (2) holds. Similarly, one can
prove the right hand side of (2); the details are omitted. □

roof of Corollary 4. To prove the right part of (11), note that (8) implies that

1− s∗ ≥
Ff ′

f 2
and 1− s∗ ≥ −

(1− F )f ′

f 2

lmost everywhere on J(F ), or equivalently,

1− s∗ ≥ max
{
ess sup
x∈J(F )

Ff ′

f 2
, ess sup

x∈J(F )
−

(1− F )f ′

f 2

}
.

eplacing ess sup
x∈J(F )

Ff ′/f 2 and ess sup
x∈J(F )

− (1− F )f ′/f 2 by C̃R(F ) and C̃R(F ), it follows that

1− s∗ ≥ max{C̃R(F ), C̃R(F )} = γ (F ).

One can prove the left two inequalities of (11) by the following arguments:

γ (F ) = max{C̃R(F ), C̃R(F )}

= max
{
ess sup
x∈J(F )

F (x)f ′(x)
f (x)2

, ess sup
x∈J(F )

−
(1− F (x))f ′(x)

f (x)2

}
= max

{
ess sup
x∈J(F )

F (x)f ′(x)
f (x)2

1[f ′(x)≥0], ess sup
x∈J(F )

−
(1− F (x))f ′(x)

f (x)2
1[f ′(x)≤0]

}
= max

{
ess sup
x∈J(F )

F (x)|f ′(x)|
f (x)2

1[f ′(x)≥0], ess sup
x∈J(F )

(1− F (x))|f ′(x)|
f (x)2

1[f ′(x)≤0]

}
≥ max

{
ess sup
x∈J(F )

F (x)∧(1−F (x))|f ′(x)|
f (x)2

1[f ′(x)≥0],

ess sup
x∈J(F )

F (x)∧(1−F (x))|f ′(x)|
f (x)2

1[f ′(x)≤0]

}
= ess sup

x∈J(F )

F (x) ∧ (1− F (x))|f ′(x)|
f (x)2

= γ (F ) ≥ γ̃ (F )

here the last inequality holds since u ∧ (1− u) ≥ u(1− u) for 0 ≤ u ≤ 1. □

roof of Corollary 5. Note that for s∗ < 0 and y > −1, we have (1+y)s
∗

≥ 1+ s∗y. Replacing y by −F (x), where x ∈ J(F ),
t follows that

(1− F (x))s
∗

≥ 1− s∗F (x),

r, by rearranging,

F (x) ≤
1 (

1− (1− F (x))s
∗
)
= FU (x),
s∗
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where FU is a convex function on J(F ) if F ∈ Ps∗ . This proves the right hand side of (12) for s∗ < 0. Similarly, replacing y
y −(1− F (x)), where x ∈ J(F ), by rearranging terms, it follows that

F (x) ≥
1
s∗

(
F s∗ (x)− (1− s∗)

)
= FL(x),

which proves the left hand side of (12) for s∗ < 0.
Similarly, for 1 ≥ s∗ > 0 and y > −1, we have (1+ y)s

∗

≤ 1+ s∗y. Replacing y by −F (x), where x ∈ J(F ), it follows that

(1− F (x))s
∗

≤ 1− s∗F (x),

or, by rearranging,

F (x) ≤
1
s∗

(
1− (1− F (x))s

∗
)
= FU (x),

where FU is a convex function on J(F ) if F ∈ Ps∗ . This proves the right hand side of (12) for s∗ > 0.
Similarly, replacing y by −(1− F (x)), where x ∈ J(F ), by rearranging terms, it follows that

F (x) ≥
1
s∗

(
F s∗ (x)− (1− s∗)

)
= FL(x),

which proves the left hand side of (12) for s∗ > 0.

Proof of Lemma 6. If there is no G ∈ Ps∗ fitting in between Ln and Un, it follows that Lon ≡ 1 and Uo
n ≡ 0 and assertions

in both (i) and (ii) are trivial. In the following proof, we let G ∈ Ps∗ such that Ln ≤ G ≤ Un.
(i) It suffices to prove that for any x ∈ J(G) the density function g = G′ satisfies g(x) ≤ max{γ1, γ2}, because this is
equivalent to Lipschitz-continuity of G with the latter constant, and this property carries over to the pointwise infimum
Lon and supremum Uo

n .
To prove g(x) ≤ max{γ1, γ2}, note that g/G1−s∗ is monotonically non-increasing on J(G) (see Theorem 3(iii)), it follows

that for x ≥ b

g(x)
G1−s∗ (x)

≤
g(b)

G1−s∗ (b)
=

(
1
s∗

Gs∗
)′

(b)

≤

1
s∗ G

s∗ (b)− 1
s∗ G

s∗ (a)
b− a

≤

1
s∗
(
vs∗
− us∗

)
b− a

= γ1.

The last inequality follows from noting that x ↦→ (1/s∗)xs
∗

is a monotonically non-decreasing function for all s∗ ̸= 0,
G(b) ≤ Un(b) ≤ v and G(a) ≥ Ln(a) ≥ u. Hence

g(x) ≤ G1−s∗ (x)γ1 ≤ γ1 for x ≥ b.

Similarly, by noting that g/(1 − G)1−s
∗

is monotonically non-decreasing on J(G) (see Theorem 3(iii)), it follows that for
x ≤ a

g(x)
(1− G(x))1−s∗

≤
g(a)

(1− G(a))1−s∗

=

(
−1
s∗

(1− G)s
∗

)′
(a)

≤

−1
s∗ (1− G(b))s

∗

−
−1
s∗ (1− G(a))s

∗

b− a

≤

−1
s∗
(
(1− v)s

∗

− (1− u)s
∗)

b− a
= γ2.

The last inequality follows from noting that x ↦→ −(1/s∗)(1 − x)s
∗

is a monotonically non-decreasing function for all
s∗ ̸= 0, G(b) ≤ v and G(a) ≥ u. Hence

g(x) ≤ (1− G(x))1−s
∗

γ2 ≤ γ2 for x ≤ a.

For a < x < b, analogously, we get two following inequalities

g(x) = G1−s∗ (x)
g(x)

G1−s∗ (x)

≤ G1−s∗ (x)
1
s∗ G

s∗ (x)− 1
s∗ G

s∗ (a)
x− a

=
1 1 (

G(x)− Gs∗ (a)G1−s∗ (x)
)

s∗ x− a
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and

g(x) = (1− G(x))1−s
∗ g(x)
(1− G(x))1−s∗

≤ (1− G(x))1−s
∗
−1
s∗ (1− G(b))s

∗

−
−1
s∗ (1− G(x))s

∗

b− x

=
1
s∗

1
b− x

(
1− G(x)− (1− G(b))s

∗

(1− G(x))1−s
∗
)

.

The former inequality times (x− a) plus the latter inequality times (b− x) yields

g(x) ≤
1
s∗

1− Gs∗ (a)G1−s∗ (x)− (1− G(b))s
∗

(1− G(x))1−s
∗

b− a
=

h(G(x))
b− a

,

here

h(y) ≡
1
s∗

(
1− Gs∗ (a)y1−s

∗

− (1− G(b))s
∗

(1− y)1−s
∗
)

for y ∈ (0, 1).

Since

h′′(y) = (1− s∗)
(
Gs∗ (a)y−s

∗
−1
+ (1− G(b))s

∗

(1− y)−s
∗
−1
)
≥ 0,

it follows that h(y) is convex on (0, 1) and hence

g(x) ≤ max
y∈{G(a),G(b)}

h(y)
b− a

= max
{
h(G(a))
b− a

,
h(G(b))
b− a

}
.

Note that

h(G(a))
b− a

= (1− G(a))1−s
∗
−1
s∗ (1− G(b))s

∗

−
−1
s∗ (1− G(a))s

∗

b− a
≤ γ2

nd

h(G(b))
b− a

= G(b)1−s
∗

1
s∗ G

s∗ (b)− 1
s∗ G

s∗ (a)
b− a

≤ γ1.

ence g(x) ≤ max{γ1, γ2} for a < x < b.
(ii) By Theorem 3(ii), it follows that for x ≤ a

G(x) ≤ G(a)
(
1+ s∗

g(a)
G(a)

(x− a)
)1/s∗

+

=

(
Gs∗ (a)+ s∗

g(a)
G1−s∗ (a)

(x− a)
)1/s∗

+

.

y Theorem 3(iii), the non-increasing monotonicity of g/G1−s∗ implies that

g(a)
G1−s∗ (a)

=

(
1
s∗

Gs∗
)′

(a) ≥
1
s∗ G

s∗ (b)− 1
s∗ G

s∗ (a)
b− a

≥

1
s∗ v

s∗
−

1
s∗ u

s∗

b− a
= γ1.

he last inequality follows from noting that G(a) ≤ Un(a) ≤ u and G(b) ≥ Ln(b) ≥ v. Since x− a ≤ 0, it follows that

G(x) ≤
(
Gs∗ (a)+ s∗

g(a)
G1−s∗ (a)

(x− a)
)1/s∗

+

≤

(
Gs∗ (a)+ s∗γ1(x− a)

)1/s∗
+

≤

(
us∗
+ s∗γ1(x− a)

)1/s∗
+

.

he last inequality follows from noting that G(a) ≤ u.
On the other hand, by Theorem 3(ii), it follows that for x ≥ b

1− G(x) ≤ (1− G(b))
(
1− s∗

g(b)
1− G(b)

(x− b)
)1/s∗

+

=

(
(1− G(b))s

∗

− s∗
g(b)

(1− G(b))1−s∗
(x− b)

)1/s∗

+

≤

(
(1− v)s

∗

− s∗
g(b)

1−s∗ (x− b)
)1/s∗

.

(1− G(b))

+
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The last inequality follows from noting that 1 − G(b) ≤ 1 − v. By Theorem 3(iii), the non-decreasing monotonicity of
/(1− G)1−s

∗

implies that
g(b)

(1− G)1−s∗ (b)
= (
−1
s∗

(1− G)s
∗

)′(b)

≥

−1
s∗ (1− G(b))s

∗

−
−1
s∗ (1− G(a))s

∗

b− a

=

1
s∗
(
(1− G(a))s

∗

− (1− G(b))s
∗)

b− a

≥

1
s∗
(
(1− u)s

∗

− (1− v)s
∗)

b− a
= γ2 .

he last inequality follows from noting that G(a) ≤ Un(a) ≤ u and G(b) ≥ Ln(b) ≥ v. Since x− b ≥ 0, it follows that

1− G(x) ≤
(
(1− v)s

∗

− s∗γ2(x− b)
)1/s∗
+

. □

roof of Theorem 7. The following proof is analogous to the proof of Theorem 3 in Dümbgen et al. (2017), in which they
roved the result in the case s∗ = 0. In the following proof we assume that s∗ ̸= 0.
i) Suppose s∗ > 0. Since F is not bi-s∗-concave, it follows that F s∗ or (1−F )s

∗

is not concave. Without loss of generality, we
ssume that F s∗ is not concave and hence there exist real numbers x0 < x1 < x2 such that F s∗ (x1) < (1−λ)F s∗ (x0)+λF s∗ (x2),

where λ ≡ (x1 − x0)/(x2 − x0) ∈ (0, 1). By the consistency of Ln and Un, it follows that, with probability tending to one,
U s∗
n (x1) < (1− λ)Ls

∗

n (x0)+ λLs
∗

n (x2) and hence

Gs∗ (x1) < (1− λ)Gs∗ (x0)+ λGs∗ (x2),

for any G such that Ln ≤ G ≤ Un. Therefore, there are no bi-s∗-concave distribution functions fitting between Ln and Un
and hence Lon = 1 and Uo

n = 0 with probability tending to one.
The proof of the case s∗ < 0 is similar and hence is omitted.

(ii) Suppose F ∈ Ps∗ . Note that since (Ln,Un) is a (1− α) confidence band for F , it follows that P(Lon ≤ Uo
n ) ≥ P(Ln ≤ F ≤

Un) ≥ 1− α.
If {G ∈ Ps∗ : Ln ≤ G ≤ Un} is empty, it follows that Lon = 1 and Uo

n = 0 and hence the assertions are trivial. In the
following proof, we assume that {G ∈ Ps∗ : Ln ≤ G ≤ Un} is not empty.

To prove (13), we first prove that ∥Ln − F∥∞ →p 0 and ∥Un − F∥∞ →p 0. By the continuity of F , for any m ∈ N+

with m ≥ 2, there exist real numbers {xi}m−1i=1 such that F (xi) = i/m, i = 1, . . . ,m− 1. Furthermore, define x0 = −∞ and
xm = ∞.

By the non-decreasing monotonicity of Ln and F , it follows that for x ∈ [xi−1, xi]

Ln(x)− F (x) ≤ Ln(xi)− F (xi−1) = Ln(xi)− (F (xi)−
1
m

) = Ln(xi)− F (xi)+
1
m

,

and

Ln(x)− F (x) ≥ Ln(xi−1)− F (xi)

= Ln(xi−1)− (F (xi−1)+
1
m

) = Ln(xi−1)− F (xi−1)−
1
m

.

ence

|Ln(x)− F (x)| ≤ max
i=1,...,m−1

|Ln(xi)− F (xi)| +
1
m

for x ∈ [xi−1, xi]. Note that

∥Ln − F∥∞ = sup
x∈R
|Ln(x)− F (x)| = max

i=1,...,m
sup

x∈[xi−1,xi]
|Ln(x)− F (x)|,

t follows that

∥Ln − F∥∞ ≤ max
i=1,...,m−1

|Ln(xi)− F (xi)| +
1
m

,

nd hence pointwise convergence implies uniform convergence. An analogous proof shows that ∥Un − F∥∞ →p 0 and is
mitted.
Combining ∥Ln − F∥∞ →p 0 and ∥Un − F∥∞ →p 0 implies that

sup ∥G− F∥∞ ≤ ∥Ln − F∥∞ + ∥Un − F∥∞ →p 0.

G∈Ps∗ :Ln≤G≤Un
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To prove (14) in the case that hG =
(
Gs∗
)′
, it suffices to prove that

sup
G∈Ps∗ :Ln≤G≤Un

(Gs∗/s∗
)′
−

(
F s∗/s∗

)′
K ,∞

→p 0. (20)

Note that hG/s∗ = G′/G1−s∗ . Since K is a compact interval in J(F ) and hF/s∗ = f /F 1−s∗ is continuous and non-increasing
on J(F ), for any fixed ϵ > 0 there exist points a0 < a1 < · · · < am < am+1 in J(F ) such that K ⊂ [a1, am] and

0 ≤
1
s∗

hF (ai−1)−
1
s∗

hF (ai) ≤ ϵ for 1 ≤ i ≤ m+ 1.

or G ∈ Ps∗ with Ln ≤ G ≤ Un, for any x ∈ K it follows from the monotonicity of hF/s∗ and hG/s∗ that

sup
x∈K

(
1
s∗

hG(x)−
1
s∗

hF (x)
)
≤ max

i=1,...,m−1

(
1
s∗

hG(ai)−
1
s∗

hF (ai+1)
)

≤ max
i=1,...,m−1

(
1
s∗ G

s∗ (ai)− 1
s∗ G

s∗ (ai−1)
ai − ai−1

−
1
s∗

hF (ai+1)
)

≤ max
i=1,...,m−1

(
1
s∗U

s∗
n (ai)− 1

s∗ L
s∗
n (ai−1)

ai − ai−1

−
1
s∗

hF (ai+1)
)

= max
i=1,...,m−1

(
1
s∗ F

s∗ (ai)− 1
s∗ F

s∗ (ai−1)
ai − ai−1

−
1
s∗

hF (ai+1)
)
+ op(1)

≤ max
i=1,...,m−1

(
1
s∗

hF (ai−1)−
1
s∗

hF (ai+1)
)

+ op(1)
≤ 2ϵ + op(1).

nalogously,

sup
x∈K

(
1
s∗

hF (x)−
1
s∗

hG(x)
)
≤ max

i=1,...,m−1

(
1
s∗

hF (ai)−
1
s∗

hF (ai+2)
)
+ op(1)

≤ 2ϵ + op(1).

ince ϵ > 0 is arbitrarily small, this shows that (20) holds.
The proof of (14) in the case that hG =

(
(1− G)s

∗)′
is similar and hence is omitted.

Since G′ = G1−s∗
(
Gs∗/s∗

)′
, it follows from (20) that (14) holds in the case that hG = G′.

Finally, let x1 < sup J(F ) and b1 < f (x1)/F 1−s∗ (x1). As in the proof of Lemma 6(ii) an analogous argument implies that
for any x′1 > x1, x′1 ∈ J(F ),

Uo
n (x) ≤

(
U s∗
n (x′)+ s∗

1
s∗ L

s∗
n (x′1)−

1
s∗U

s∗
n (x1)

x′1 − x1
(x− x′)

)1/s∗

+

for all x ≤ x′ ≤ x1.
Note that by the consistency of Ln and Un and letting x′1 ↓ x1, it follows that.

1
s∗ L

s∗
n (x′1)−

1
s∗U

s∗
n (x1)

x′1 − x1
→p

1
s∗ F

s∗ (x′1)−
1
s∗ F

s∗ (x1)
x′1 − x1

> b1.

Hence with probability tending to one,

Uo
n (x) ≤

(
U s∗
n (x′)+ s∗b1(x− x′)

)1/s∗
+

,

for all x ≤ x′ ≤ x1. The proof of (16) is similar and hence is omitted. □
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Proof of Remark 1. (i) By Theorem 3(ii), if s∗ > 0 and inf J(F ) = −∞, it follows that for arbitrary x ∈ J(F ),

F (y) ≤ F (x) ·
(
1+ s∗

f (x)
F (x)

(y− x)
)1/s∗

+

= 0

or small enough y such that

1+ s∗
f (x)
F (x)

(y− x) < 0.

This violates the assumption that inf J(F ) = −∞ and hence inf J(F ) > −∞.
The finiteness of sup J(F ) can be proved similarly and hence is omitted.

(ii) We first note that (9) holds automatically if inf J(F ) > −∞ and sup J(F ) <∞.
In the following proof, we focus on the case that inf J(F ) = −∞ and sup J(F ) < ∞. To prove (9), it suffices to show

that
∫
|x|tdF (x) is finite for t ∈ (0, (−1)/s∗).

Note that∫
|x|tdF (x) = E|X |t =

∫
∞

0
P(|X |t > a)da =

∫
∞

0
P(|X | > a1/t )da

=

∫
∞

0
tat−1P(|X | > a)da

=

∫
∞

0
tat−1P(X > a)da+

∫
∞

0
tat−1P(X < −a)da.

Since sup J(F ) is finite, the first term of the last display is finite and hence it suffices to prove that tat−1P(X < −a) is
integrable for t < (−1)/s∗.

It follows from Theorem 3(ii) that for any a large enough and x ∈ J(F ),

P(X < −a) ≤ F (x)
(
1+

s∗f (x)(−a− x)
F (x)

)1/s∗

+

= F (x)
(
1+
−s∗f (x)(a+ x)

F (x)

)1/s∗

+

.

hus tat−1P(X < −a) is integrable for t < (−1)/s∗, since

tat−1P(X < −a) ≤ tF (x)at−1
(
1+
−s∗f (x)(a+ x)

F (x)

)1/s∗

+

= tF (x)
(
−s∗f (x)
F (x)

)1/s∗

at−1
(
a+ x+

F (x)
−s∗f (x)

)1/s∗

+

≤ 2tF (x)
(
−s∗f (x)
F (x)

)1/s∗

at+1/s
∗
−1

for a large enough and at+1/s
∗
−1 is integrable for t < (−1)/s∗.

For other cases, the proof is similar and hence is omitted. □

Proof of Corollary 8. Suppose that x0 is a point in J(F ). Notice that for any z ∈ R,

φ(z)− φ(x0) =
∫
R

(
1[x0≤x<z] − 1[z≤x<x0]

)
φ′(x)dx,

and hence by Fubini’s theorem, it follows that∫
R

φdG = φ(x0)+
∫
R

φ′(x)
(
1[x≥x0] − G(x)

)
dx, (21)

provided that∫
R

⏐⏐φ′(x)⏐⏐ ⏐⏐1[x≥x0] − G(x)
⏐⏐ dx <∞.

To prove the last display, note that for any b1 ∈ (0, T1(F )) and b2 ∈ (0, T2(F )), there exist points x1, x2 ∈ J(F ) with
x1 ≤ x0 ≤ x2 and

f
F 1−s∗ (x1) > b1,

f
(1− F )1−s∗

(x2) > b2.

Then it follows from Theorem 7(ii) that with probability tending to one,

Uo(x) ≤
(
U s∗ (x1)+ s∗b1(x− x1)

)1/s∗
for x ≤ x1,
n n

+
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and

1− Lon(x) ≤
(
(1− Ln(x2))s

∗

− s∗b2(x− x2)
)1/s∗
+

for x ≥ x2.

Hence for any c > max{|x1|, |x2|}, it follows that∫ x1−c

−∞

⏐⏐φ′(x)⏐⏐ ⏐⏐1[x≥x0] − G(x)
⏐⏐ dx = ∫ x1−c

−∞

⏐⏐φ′(x)⏐⏐G(x)dx
≤

∫ x1−c

−∞

⏐⏐φ′(x)⏐⏐Uo
n (x)dx

≤

∫ x1−c

−∞

⏐⏐φ′(x)⏐⏐ (U s∗
n (x1)+ s∗b1(x− x1)

)1/s∗
+

dx

=

∫ x1−c

−∞

⏐⏐φ′(x)⏐⏐ (U s∗
n (x1)+ s∗b1(x− x1)

)1/s∗
dx.

Since |φ′(x)| ≤ a|x|k−1, it follows that the last display is no larger than∫ x1−c

−∞

a|x|k−1
(
U s∗
n (x1)+ s∗b1(x− x1)

)1/s∗
dx,

which is finite by noting that k− 1+ 1/s∗ < −1. Analogously, one can prove that for c > max{|x1|, |x2|},∫
∞

x2+c

⏐⏐φ′(x)⏐⏐ ⏐⏐1[x≥x0] − G(x)
⏐⏐ dx ≤ ∫ ∞

x2+c

⏐⏐φ′(x)⏐⏐ ⏐⏐1− Lon(x)
⏐⏐ dx <∞.

Since φ′ is continuous on R, it follows that for any c > max{|x1|, |x2|},∫ x2+c

x1−c

⏐⏐φ′(x)⏐⏐ ⏐⏐1[x≥x0] − G(x)
⏐⏐ dx <∞

and hence∫
R

⏐⏐φ′(x)⏐⏐ ⏐⏐1[x≥x0] − G(x)
⏐⏐ dx <∞.

By (21), it follows that

sup
G:Lon≤G≤U

o
n

⏐⏐⏐⏐∫ φdG−
∫

φdF
⏐⏐⏐⏐ = sup

G:Lon≤G≤U
o
n

⏐⏐⏐⏐∫ φ′(x)(F − G)(x)dx
⏐⏐⏐⏐ ,

which is not larger than

sup
G:Lon≤G≤U

o
n

∥G− F∥∞

∫ x2+c

x1−c
|φ′(x)|dx

+

∫ x1−c

−∞

|φ′(x)|(F + Uo
n )(x)dx+

∫
∞

x2+c
|φ′(x)|(1− F + 1− Lon)(x)dx

≤ op(1)+ 2
∫ x1−c

−∞

|φ′(x)|Uo
n (x)dx+ 2

∫
∞

x2+c
|φ′(x)|(1− Lon(x))dx.

Note that the last two terms go to zero as c goes to infinity by their integrability and hence

sup
G:Lon≤G≤U

o
n

⏐⏐⏐⏐∫ φdG−
∫

φdF
⏐⏐⏐⏐ = op(1). □

Proof of Theorem 9. It follows from the proof of Corollary 8 that

sup
G:Lon≤G≤U

o
n

⏐⏐⏐⏐∫ φdG−
∫

φdF
⏐⏐⏐⏐ = sup

G:Lon≤G≤U
o
n

⏐⏐⏐⏐∫ φ′(x)(F − G)(x)dx
⏐⏐⏐⏐

and hence

sup
G:Lon≤G≤U

o
n

⏐⏐⏐⏐∫ φdG−
∫

φdF
⏐⏐⏐⏐ ≤ sup

G:Lon≤G≤U
o
n

∫ ⏐⏐φ′(x)⏐⏐ |(G− F )(x)| dx.

o o
It suffices to bound |G− F | on R, where G is between Ln and Un .
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It follows from G ≤ Uo
n ≤ Un and Condition (*) that on the interval {λn−1/(2−2γ )

≤ Fn ≤ 1− λn−1/(2−2γ )
},

G− F ≤ Uo
n − F ≤ Un − F ≤ Un − Fn + Fn − F ≤ κn−1/2 (Fn (1− Fn))

γ
+ |Fn − F |

o bound |Fn − F |, it follows from Theorem 3.7.1, page 141, Shorack and Wellner (2009) that√n (Fn − F)− U ◦ F
(F (1− F ))γ

→p 0

y verifying that q(t) ≡ (t(1− t))γ with 0 ≤ γ < 1/2 is monotonically increasing on [0, 1/2], symmetric about 1/2 and
1
0 q−2(t)dt <∞, where U is Brownian bridge on [0, 1].
Hence for any fixed ϵ ∈ (0, 1) there exists a constant κϵ > 0 such that with probability at least 1− ϵ,

|Fn − F | ≤ κϵn−1/2 (F (1− F ))γ

n R. Thus, it follows that on the interval {λn−1/(2−2γ )
≤ Fn ≤ 1− λn−1/(2−2γ )

},

G− F ≤ κn−1/2 (Fn (1− Fn))
γ
+ κϵn−1/2 (F (1− F ))γ .

o bound Fn (1− Fn) by F (1− F ), note that

Fn (1− Fn) = (Fn − F + F) (1− F + F − Fn)

= (Fn − F) (1− F )+ F (1− F )− (Fn − F)2 − F (Fn − F)

= F (1− F )+ (Fn − F) (1− 2F )− (Fn − F)2

≤ F (1− F )+ |Fn − F | |1− 2F | + |Fn − F |2

≤ F (1− F )+ |Fn − F | + |Fn − F |

= F (1− F ) ·
(
1+

2 |Fn − F |
F (1− F )

)
≤ F (1− F ) ·

(
1+

4 |Fn − F |
min{F , 1− F}

)
since F (1− F ) ≥ min{F , 1− F}/2,

≤ F (1− F ) ·
(
1+

4κϵn−1/2 (F (1− F ))γ

min{F , 1− F}

)
.

For a constant λϵ > 0 to be specified later, it follows from λϵn−1/(2−2γ )
≤ F ≤ 1− λϵn−1/(2−2γ ) and γ ∈ [0, 1/2) that

(F (1− F ))γ

F
= F γ−1(1− F )γ ≤ λγ−1

ϵ n−(γ−1)/(2−2γ )
= λγ−1

ϵ n1/2

nd
(F (1− F ))γ

1− F
= F γ (1− F )γ−1 ≤ λγ−1

ϵ n−(γ−1)/(2−2γ )
= λγ−1

ϵ n1/2.

ence

Fn (1− Fn) ≤ F (1− F ) ·
(
1+ 4κϵn−1/2λγ−1

ϵ n1/2)
= F (1− F )(1+ 4κϵλ

γ−1
ϵ ).

hus, on the interval

{λn−1/(2−2γ )
≤ Fn ≤ 1− λn−1/(2−2γ )

} ∩ {λϵn−1/(2−2γ )
≤ F ≤ 1− λϵn−1/(2−2γ )

},

G− F ≤ κn−1/2
(
F (1− F )(1+ 4κϵλ

γ−1
ϵ )

)γ
+ κϵn−1/2 (F (1− F ))γ

= νϵn−1/2 (F (1− F ))γ ,

here νϵ = κ(1+ 4κϵλ
γ−1
ϵ )γ + κϵ .

The following arguments show that for a large enough λϵ , the interval {λϵn−1/(2−2γ )
≤ F ≤ 1−λϵn−1/(2−2γ )

} is a subset
f {λn−1/(2−2γ )

≤ Fn ≤ 1− λn−1/(2−2γ )
}. To see this, note that

Fn = F + Fn − F

≥

(
1−
|Fn − F |

F

)
F

≥
(
1− κϵn−1/2F γ−1(1− F )γ

)
F

≥
(
1− κϵn−1/2λγ−1

ϵ n1/2) λϵn−1/(2−2γ )

=
(
λ − κ λγ

)
n−1/(2−2γ )
ϵ ϵ ϵ
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and analogously,

1− Fn ≥
(
λϵ − κϵλ

γ
ϵ

)
n−1/(2−2γ ),

it follows that by choosing a λϵ large enough such that λϵ − κϵλ
γ
ϵ > λ, the interval {λϵn−1/(2−2γ )

≤ F ≤ 1− λϵn−1/(2−2γ )
}

is a subset of {λn−1/(2−2γ )
≤ Fn ≤ 1− λn−1/(2−2γ )

} and hence on the interval

{λϵn−1/(2−2γ )
≤ F ≤ 1− λϵn−1/(2−2γ )

},

G− F ≤ νϵn−1/2 (F (1− F ))γ .

Define xn1 and xn2, such that F (xn1) = λϵn−1/(2−2γ ) and F (xn2) = 1 − λϵn−1/(2−2γ ). Analogously, one can prove that
F − G ≤ νϵn−1/2 (F (1− F ))γ on [xn1, xn2] and hence

|G− F | ≤ νϵn−1/2 (F (1− F ))γ (22)

on [xn1, xn2]. Thus for G between Lon and Uo
n ,

sup
G:Lon≤G≤U

o
n

⏐⏐⏐⏐∫ φd(G− F )
⏐⏐⏐⏐ = sup

G:Lon≤G≤U
o
n

⏐⏐⏐⏐∫ φ′(x) (F (x)− G(x)) dx
⏐⏐⏐⏐

≤ νϵn−1/2
∫ xn2

xn1

⏐⏐φ′(x)⏐⏐ F γ (x)(1− F (x))γ dx

+

∫ xn1

−∞

⏐⏐φ′(x)⏐⏐ (F (x)+ Uo
n (x))dx

+

∫
∞

xn2

⏐⏐φ′(x)⏐⏐ (2− F (x)− Lon(x))dx.

From here, we can see that if F ∈ Ps∗ with s∗ > 0, it follows from Remark 1(i) that J(F ) is bounded and hence

sup
G:Lon≤G≤U

o
n

⏐⏐⏐⏐∫ φd(G− F )
⏐⏐⏐⏐ = Op(n−1/2)

as long as φ′ is bounded on J(F ).
The similar argument works if F ∈ Ps∗ with s∗ < 0 and J(F ) is bounded. In the following proof, we get back to our

case that F ∈ Ps∗ with s∗ < 0 and without loss of generality, we assume J(F ) = (−∞,∞).
As in the proof of Corollary 8, for x0 ∈ J(F ), b1 ∈ (0, T1(F )) and b2 ∈ (0, T2(F )), there exist points x1, x2 ∈ J(F ) with

x1 < x0 < x2 such that f (x1)/F 1−s∗ (x1) > b1 and f (x2)/(1− F (x2))1−s
∗

> b2. Then it follows from Theorem 7(ii) that with
asymptotic probability one,

Uo
n (x) ≤

(
U s∗
n (x1)+ s∗b1(x− x1)

)1/s∗
+

= Un(x1)
(
1+

s∗b1
U s∗
n (x1)

(x− x1)
)1/s∗

for x ≤ x1, (23)

nd

1− Lon(x) ≤
(
(1− Ln(x2))s

∗

− s∗b2(x− x2)
)1/s∗
+

= (1− Ln(x2))
(
1−

s∗b2
(1− Ln(x2))s

∗
(x− x2)

)1/s∗

for x ≥ x2.

imilarly, it follows from Theorem 3(ii) that

F (x) ≤ F (x1)
(
1+ s∗

f (x1)
F (x1)

(x− x1)
)1/s∗

+

≤ F (x1)
(
1+

s∗b1
F s∗ (x1)

(x− x1)
)1/s∗

for x ≤ x1, (24)

and

1− F (x) ≤ (1− F (x2))
(
1− s∗

f (x2)
1− F (x2)

(x− x2)
)1/s∗

+

≤ (1− F (x2))
(
1−

s∗b2
s∗ (x− x2)

)1/s∗

for x ≥ x2.

(1− F (x2))
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A

T

A

T

A

For large enough n, one can have [x1, x2] ⊂ [xn1, xn2] and hence

sup
G:Lon≤G≤U

o
n

⏐⏐⏐⏐∫ φd(G− F )
⏐⏐⏐⏐ ≤ In0 + In1 + I ′n1 + In2 + I ′n2,

where

In0 ≡ νϵn−1/2
∫ x2

x1

⏐⏐φ′(x)⏐⏐ F γ (x)(1− F (x))γ dx,

In1 ≡ νϵn−1/2
∫ x1

xn1

⏐⏐φ′(x)⏐⏐ F γ (x)(1− F (x))γ dx,

In2 ≡ νϵn−1/2
∫ xn2

x2

⏐⏐φ′(x)⏐⏐ F γ (x)(1− F (x))γ dx,

I ′n1 ≡
∫ xn1

−∞

⏐⏐φ′(x)⏐⏐ (F (x)+ Uo
n (x))dx,

I ′n2 ≡
∫
∞

xn2

⏐⏐φ′(x)⏐⏐ (2− F (x)− Lon(x))dx.

Note that In0 ≤ νϵn−1/2
∫ x2
x1

⏐⏐φ′(x)⏐⏐ dx = O(n−1/2). For the other terms, first note that F (xn1) = λϵn−1/(2−2γ ) and hence it
follows from (24) that

xn1 ≥ x1 −
F s∗ (x1)
s∗b1

+
λs∗

ϵ

s∗b1
n−s
∗/(2−2γ )

= O(1)+
λs∗

ϵ

s∗b1
n−s
∗/(2−2γ ).

nalogously, one can prove that

xn2 ≤ x2 −
(1− F (x2))s

∗

s∗b2
−

λs∗
ϵ

s∗b2
n−s
∗/(2−2γ )

= O(1)+
λs∗

ϵ

s∗b1
n−s
∗/(2−2γ ).

hus, it follows from (24) and the upper bound of |φ′| that

In1 ≤ νϵn−1/2
∫ x1

xn1

⏐⏐φ′(x)⏐⏐ F γ (x)dx

≤ O

(
n−1/2

∫ x1

xn1

⏐⏐φ′(x)⏐⏐ (1+ s∗b1
F s∗ (x1)

(x− x1)
)γ /s∗

dx

)

≤ O

(
n−1/2

∫ O
(
n−s
∗/(2−2γ )

)
0

⏐⏐φ′(x)⏐⏐ (1+ −s∗b1
F s∗ (x1)

x
)γ /s∗

dx

)

= O

(
n−1/2

∫ O
(
n−s
∗/(2−2γ )

)
0

⏐⏐φ′(x)⏐⏐ xγ /s∗dx

)

≤ O

(
n−1/2

∫ O
(
n−s
∗/(2−2γ )

)
0

xk−1xγ /s∗dx

)
= O

(
n−1/2n−(k+γ /s∗)s∗/(2−2γ )

)
= O

(
n−

1
2

(
1+s∗k
1−γ

))
.

nalogously, one could show that

In2 ≤ O
(
n−

1
2

(
1+s∗k
1−γ

))
.

o bound I ′n1, note that for x ≤ xn1, it follows from an analogous proof of (24) that

F (x) ≤
(
F s∗ (xn1)+ s∗b1(x− xn1)

)1/s∗
=

(
λs∗

ϵ n−s
∗/(2−2γ )

+ s∗b1(x− xn1)
)1/s∗

.

nalogously, it follows that for x ≤ xn1,

Uo(x) ≤
(
U s∗ (x )+ s∗b (x− x )

)1/s∗
.
n n n1 1 n1
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Note that it follows from (22) that

Un(xn1) = Un(xn1)− F (xn1)+ F (xn1)
≤ νϵn−1/2 (F (xn1)(1− F (xn1)))γ + F (xn1)
≤ νϵn−1/2F γ (xn1)+ F (xn1)
= (νϵλ

γ
ϵ + λϵ)n−1/(2−2γ )

and hence for x ≤ xn1,

Uo
n (x) ≤

(
(νϵλ

γ
ϵ + λϵ)s

∗

n−s
∗/(2−2γ )

+ s∗b1(x− xn1)
)1/s∗

.

Thus,

I ′n1 =
∫ xn1

−∞

⏐⏐φ′(x)⏐⏐ (F (x)+ Uo
n (x))dx

= O
(∫ xn1

−∞

⏐⏐φ′(x)⏐⏐ (n−s∗/(2−2γ )
+ s∗b1(x− xn1)

)1/s∗
dx
)

= O
(∫ 0

−∞

⏐⏐φ′(x+ xn1)
⏐⏐ (n−s∗/(2−2γ )

+ s∗b1x
)1/s∗

dx
)

= O
(∫ 0

−∞

|x+ xn1|k−1
(
n−s
∗/(2−2γ )

+ s∗b1x
)1/s∗

dx
)

= O
(
n−1/(2−2γ )

∫ 0

−∞

|x+ xn1|k−1
(
1+ s∗b1x/n−s

∗/(2−2γ )
)1/s∗

dx
)

= O
(
n−1/(2−2γ )n−s

∗/(2−2γ )

·

∫ 0

−∞

⏐⏐⏐xn−s∗/(2−2γ )
+ xn1

⏐⏐⏐k−1 (1+ s∗b1x
)1/s∗ dx)

= O
(
n−1/(2−2γ )n−s

∗/(2−2γ )

·

∫ 0

−∞

⏐⏐⏐xn−s∗/(2−2γ )
+ n−s

∗/(2−2γ )
⏐⏐⏐k−1 (1+ s∗b1x

)1/s∗ dx)
= O

(
n−1/(2−2γ )n−ks

∗/(2−2γ )
∫ 0

−∞

|x|k−1|x|1/s
∗

dx
)

= O
(
n−(ks

∗
+1)/(2−2γ )

)
.

Analogously, one could show that

I ′n2 ≤ O
(
n−(ks

∗
+1)/(2−2γ )

)
.

Hence

sup
G:Lon≤G≤U

o
n

⏐⏐⏐⏐∫ φd(G− F )
⏐⏐⏐⏐ ≤ In0 + In1 + I ′n1 + In2 + I ′n2

≤ O(n−1/2)+ O
(
n−(ks

∗
+1)/(2−2γ )

)
. □
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Appendix A

Proof of the equivalence between Definitions 1 and 2.
Definition 1 implies Definition 2:

For any F ∈ Ps∗ , Theorem 3 shows that F is a continuous function on R. By noticing that J(F ) ⊂ R, J(F ) ⊂ (inf J(F ),∞)
and J(F ) ⊂ (−∞, sup J(F )), the convexity or concavity of F s∗ or (1 − F )s

∗

on R, (inf J(F ),∞) and (−∞, sup J(F )) imply
s∗ s∗
the convexity or concavity of F or (1− F ) on J(F ). Hence, Definition 1 implies Definition 2.
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f

a

t
S

S

A

Definition 2 implies Definition 1:
Suppose s∗ < 0. By Definition 2, for any F ∈ Ps∗ , F s∗ and (1− F )s

∗

are convex on J(F ). Moreover, F is continuous on R
and hence J(F ) = (a, b) where a ≡ inf J(F ), b ≡ sup J(F ).

To prove that F s∗ is convex on R, by continuity of F it suffices to prove that F s∗ is mid-point convex: that is,

F s∗
( x
2
+

y
2

)
≤

1
2
F s∗ (x)+

1
2
F s∗ (y) (25)

or any x, y ∈ R. Without loss of generality, we assume that x < y.
Note that if a = −∞ and b = ∞, then there is nothing to prove. Without loss of generality, we assume that a > −∞

nd b <∞.
Note that if x ∈ (−∞, a], then F s∗ (x) = ∞ and hence (25) holds automatically. If x ∈ (a, b) and y ∈ (a, b), (25) holds by

he convexity of F s∗ on J(F ). Moreover, by noticing the continuity of F s∗ at b, (25) holds for any x ∈ (a, b) and y ∈ (a, b].
ince F s∗ (y) = F s∗ (b) = 1 for y ≥ b, (25) holds for any x ∈ (a, b) and y ∈ [b,∞). If x, y ∈ [b,∞), (25) holds automatically

since F s∗ (x) = F s∗ (y) = 1.
The proof of the convexity of (1− F )s

∗

on R is similar and hence is omitted.
For the cases that s∗ ≥ 0, the proof is similar and hence is omitted. □

Proof of Theorem 3 (0 ≤ s∗ ≤ 1). Recall that a ≡ inf J(F ) and b ≡ sup J(F ). Suppose 1 ≥ s∗ > 0.
(i) implies (ii):

Suppose F ∈ Ps∗ . To prove that F is continuous on R, we first note that x ↦→ F s∗ (x) and x ↦→ (1− F (x))s
∗

(x)
are concave functions on (a,∞) and (−∞, b) respectively. By Theorem 10.1 (page 82) in Rockafellar (1970), F s∗ and
(1− F (x))s

∗

are continuous on any open convex sets in their effective domains. In particular, F s∗ and (1− F)s
∗

are
continuous on (a,∞) and (−∞, b) respectively. This yields that F is continuous on (a,∞) and (−∞, b), or equivalently,
on (a,∞) ∪ (−∞, b) = (−∞,∞) since F is non-degenerate.

To prove that F is differentiable on J(F ), note that J(F ) = (a, b) since F is continuous on R. By Theorem 23.1 (page
213) in Rockafellar (1970), for any x ∈ J(F ), the concavity of F s∗ on J(F ) implies the existence of

(
F s∗
)′
+
(x) and

(
F s∗
)′
−
(x).

Moreover,
(
F s∗
)′
−
(x) ≥

(
F s∗
)′
+
(x) by Theorem 24.1 (page 227) in Rockafellar (1970). Since F =

(
F s∗
)1/s∗

on J(F ), the chain
rule guarantees the existence of F ′

±
(x) and

F ′
±
(x) =

1
s∗

(
F s∗
)1/s∗−1

(x±)
(
F s∗
)′
±

(x).

ince F is continuous on J(F ), then

F ′
±
(x) =

1
s∗

(
F s∗
)1/s∗−1

(x)
(
F s∗
)′
±

(x).

Hence F ′
−
(x) ≥ F ′

+
(x) by

(
F s∗
)′
−
(x) ≥

(
F s∗
)′
+
(x).

Similarly, one can prove F ′
−
(x) ≤ F ′

+
(x) by the concavity of (1− F)s

∗

on J(F ).
Thus F ′

−
(x) = F ′

+
(x) = F ′(x) for any x ∈ J(F ), or equivalently, F is differentiable on J(F ). The derivative of F is denoted

by f , i.e. f ≡ F ′.
To prove (6), note that the concavity of x ↦→ F s∗ (x) on J(F ) implies that, for any x, y ∈ J(F ),

F s∗ (y)− F s∗ (x) ≤ (y− x)
(
F s∗
)′

(x) = (y− x)s∗F s∗−1(x)f (x),

or, with x+ = max{x, 0},

F s∗ (y)
F s∗ (x)

≤

(
1+ s∗

f (x)
F (x)

(y− x)
)
+

.

Hence

F (y)
F (x)
≤

(
1+ s∗

f (x)
F (x)

(y− x)
)1/s∗

+

,

or, equivalently,

F (y) ≤ F (x)
(
1+ s∗

f (x)
F (x)

(y− x)
)1/s∗

+

.

nalogously, the convexity of (1− F (x))s
∗

on J(F ) implies that for any x, y ∈ J(F )

1− F (y) s∗
− 1− F (x) s∗

≤ −(y− x)s∗ 1− F (x) s∗−1 f (x),
( ) ( ) ( )
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a

or, equivalently,(
1− F (y)
1− F (x)

)s∗

≤

(
1− s∗

f (x)
1− F (x)

(y− x)
)
+

,

which yields

F (y) ≥ 1− (1− F (x))
(
1− s∗

f (x)
1− F (x)

(y− x)
)1/s∗

+

.

The proof of (6) is complete.
(ii) implies (iii):

Applying (6) yields that for any x, y ∈ J(F ) with x < y,

F s∗ (x)
F s∗ (y)

≤ 1+ s∗
f (y)
F (y)

(x− y),

nd

F s∗ (y)
F s∗ (x)

≤ 1+ s∗
f (x)
F (x)

(y− x),

or, equivalently,

F s∗ (x) ≤ F s∗ (y)+ s∗
f (y)

F 1−s∗ (y)
(x− y),

and

F s∗ (y) ≤ F s∗ (x)+ s∗
f (x)

F 1−s∗ (x)
(y− x).

By defining h ≡ f /F 1−s∗ on J(F ), it follows that

F s∗ (x) ≤ F s∗ (y)+ s∗h(y)(x− y),

and

F s∗ (y) ≤ F s∗ (x)+ s∗h(x)(y− x).

After summing up the last two inequalities, it follows that

F s∗ (x)+ F s∗ (y) ≤ F s∗ (y)+ s∗h(y)(x− y)+ F s∗ (x)+ s∗h(x)(y− x),

or, equivalently,

0 ≤ s∗ (h(x)− h(y)) (y− x).

Hence h(x) ≥ h(y), or equivalently, h(·) is a monotonically non-increasing function on J(F ).
The proof of the monotonicity of h̃ ≡ f /(1− F )1−s

∗

is similar and hence is omitted.
(iii) implies (iv):

If (iii) holds, it immediately follows that f > 0 on J(F ) = (a, b). If not, suppose that f (x0) = 0 for some x0 ∈ J(F ).
It follows that h(x0) = f (x0)/F 1−s∗ (x0) = 0. Since h is monotonically non-increasing on J(F ), h(x) = 0 for all x ∈ [x0, b),
or, equivalently, f = 0 on [x0, b). Similarly, the non-decreasing monotonicity of x ↦→ h̃(x) on J(F ) implies that f = 0 on
(a, x0]. Then f = 0 on J(F ), which violates the continuity assumption in (iii) and hence f > 0 on J(F ).

To prove f is bounded on J(F ), note that the monotonicities of h and h̃ imply that for any x, x0 ∈ J(F ),

f (x) =
{
F 1−s∗h(x) ≤ h(x) ≤ h(x0), if x ≥ x0,
(1− F (x))1−s

∗

h̃(x) ≤ h̃(x) ≤ h̃(x0), if x ≤ x0.

Hence f (x) ≤ max{h(x0), h̃(x0)} for any x, x0 ∈ J(F ).
To prove that f is differentiable on J(F ) almost every, we first prove that f is Lipschitz continuous on (c, d) for any

c, d ∈ J(F ) with c < d.
By noticing the non-increasing monotonicity of h on J(F ), the following arguments yield an upper bound of (f (y)− f (x))

/(y− x) for x, y ∈ (c, d):

f (y)− f (x)
y− x

=
F 1−s∗ (y)h(y)− F 1−s∗ (x)h(x)

y− x

= h(y)
F 1−s∗ (y)− F 1−s∗ (x)

+ F 1−s∗ (x)
h(y)− h(x)
y− x y− x
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f

w

w

≤ h(y)
F 1−s∗ (y)− F 1−s∗ (x)

y− x
= h(y)(1− s∗)f (z)F−s

∗

(z),

where the last equality follows from the mean value theorem and z is between x and y.
Since −s∗ < 0, it follows that F−s

∗

(z) < F−s
∗

(c) and hence
f (y)− f (x)

y− x
≤ (1− s∗)f (z)h(y)F−s

∗

(z) ≤ (1− s∗)max{h(x0), h̃(x0)}h(c)F−s
∗

(c),

or x, y ∈ (c, d).
Similar arguments imply that

f (y)− f (x)
y− x

=
F̄ 1−s∗ (y)̃h(y)− F̄ 1−s∗ (x)̃h(x)

y− x

= h̃(y)
F̄ 1−s∗ (y)− F̄ 1−s∗ (x)

y− x
+ F̄ 1−s∗ (x)

h̃(y)− h̃(x)
y− x

≥ h̃(y)
F̄ 1−s∗ (y)− F̄ 1−s∗ (x)

y− x
= −̃h(y)(1− s∗)F̄−s

∗

(z)f (z)
≥ −(1− s∗)max{h(x0), h̃(x0)}̃h(d)F̄−s

∗

(d).

Hence⏐⏐⏐⏐ f (y)− f (x)
y− x

⏐⏐⏐⏐ ≤ (1− s∗)max{h(x0), h̃(x0)}max{h(c)F−s
∗

(c), h̃(d)F̄−s
∗

(d)}.

The last display shows that f is Lipschitz continuous on (c, d).
By Proposition 4.1(iii) of Shorack (2017), page 82, f is absolutely continuous on (c, d), and hence f is differentiable on

(c, d) almost everywhere.
Since (c, d) is an arbitrary interval in (a, b), the differentiability of f on (c, d) implies the differentiability of f on (a, b)

and hence f is differentiable on (a, b) with f ′ = F ′′ almost everywhere.
Since f is differentiable almost everywhere, the non-increasing monotonicity of h on J(F ) implies that

h′(x) ≤ 0 almost everywhere on J(F ),

or, equivalently,

log(h)′(x) ≤ 0 almost everywhere on J(F ).

Straight-forward calculation yields that the last display is equivalent to

f ′

f
− (1− s∗)

f
F
≤ 0 almost everywhere on J(F ),

or,

f ′ ≤ (1− s∗)
f 2

F
almost everywhere on J(F ),

which is the right hand side of (8).
Similarly, the non-decreasing monotonicity of h̃ implies the left hand side of (8).

(iv) implies (i):
Since F is continuous on R, it suffices to prove that F s∗ is convex on J(F ) by Definition 2. Since we assume that F is

differentiable on J(F ) with derivative f = F ′, the concavity of F s∗ on J(F ) can be proved by the non-increasing monotonicity
of the first derivative of F s∗ on J(F ). Since f is differentiable almost everywhere on J(F ), the non-increasing monotonicity
of
(
F s∗
)′

on J(F ) can be proved by the non-positivity of
(
F s∗
)′′

on J(F ) almost everywhere, which follows from(
F s∗
)′′

(x) = s∗F s∗−1(x)
(
−(1− s∗)

f 2(x)
F (x)
+ f ′(x)

)
≤ 0,

here f = F ′, f ′ = F ′′. The last inequality follows from the right hand side of (8).
Similarly, the concavity of (1− F (x))s

∗

, or F̄ s∗ , on J(F ) can be proved by the following arguments:(
F̄ s∗
)′′

(x) = s∗F̄ s∗−1(x)
(
−(1− s∗)

f 2(x)
F̄ (x)
− f ′(x)

)
≤ 0,

here the last inequality follows from the left part of (8). □
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Appendix B. Supplementary data: additional figures, one plot at a time

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jspi.2021.03.001.
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