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INFORMATION BOUNDS FOR COX REGRESSION MODELS
WITH MISSING DATA

BY BIN NAN, MARY J. EMONDY AND JON A. WELLNER?
University of Michigan and University of Washington

We derive information bounds for the regression parameters in Cox
models when data are missing at random. These calculations are of interest
for understanding the behavior of efficient estimation in case-cohort designs,
a type of two-phase design often used in cohort studies. The derivations make
use of key lemmas appearing in Robins, Rotnitzky and ZAa#rer. Satist.

Assoc. 89 (1994) 846-866] and Robins, Hsieh and NewédyRoy. Satist.

Soc. Ser. B 57 (1995) 409-424], but in a form suited for our purposes here.
We begin by summarizing the results of Robins, Rotnitzky and Zhao in a
form that leads directly to the projection method which will be of use for
our model of interest. We then proceed to derive new information bounds for
the regression parameters of the Cox model with data Missing At Random
(MAR). In the final section we exemplify our calculations with several
models of interest in cohort studies, including an i.i.d. version of the classical
case-cohort design of PrenticBipmetrika 73 (1986) 1-11] and Self and
Prentice Ann. Satist. 16 (1988) 64—81].

1. Introduction. Models for missing data have been the subject of intense
research over the past decade. In particular, the landmark paper of Robins,
Rotnitzky and Zhao (1994) (hereafter RRZ) provides theoretical results for
information bounds in semiparametric regression models with some covariates
missing at random. RRZ studied extensively the special case where the model for
the complete data is restricted only by specification of its mean, conditional on the
covariates. They provided a brief treatment of the case where the full data model
is the Cox regression model. In related work, Robins, Hsieh and Newey (1995)
(hereafter RHN) provided information bounds for classical regression models with
missing covariate data.

Meanwhile, case-cohort and stratified case-cohort designs have become increas-
ingly important and popular in epidemiology since the basic work of Prentice
(1986) and Self and Prentice (1988). For reports of studies using these designs, see,
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for example, Bell, Hertz-Picciotto and Beaumont (2001), Dome, Chung, Berge-
mann, Umbricht, Saji, Carey, Grundy, Perlman, Breslow and Sukumar (1999),
Margolis, Knauss and Bilker (2002), Mark, Qiao, Dawsey, Wu, Katki, Guntere,
Fraumeni, Blot, Dong and Taylor (2000), Rasmussen, Folsom, Catellier, Tsai, Garg
and Eckfeldt (2001), Zeegers, Goldbohm and van den Brandt (2001) and Zeegers,
Swaen, Kant, Goldbohm and van den Brandt (2001). These study designs corre-
spond to missing data models, since complete data are collected only on a subsam-
ple of the study cohort. The currently used estimators for the Cox model with these
designs are not known to be efficient, being based on pseudo-likelihoods or various
ad hoc estimating equations. Because of the sheer volume of studies using these
designs, it is becoming increasingly important to better understand the following:

(1) What are the information bounds for these types of designs and models?

(2) How much information is being lost by use of ad hoc estimators?

(3) Is it possible to construct reasonable, easily computable estimators which
achieve the information bounds?

Our goal here is to begin to address the first two of these issues.

We begin by reorganizing and summarizing some results appearing in
RRZ and RHN. Our summary (in Section 2) is formulated in a way which will lead
quickly to information bounds for the models of primary concern here, namely Cox
regression models with missing data. Our new information bounds for the Cox re-
gression model with missing data are presented in Section 3. The efficient scores
are characterized in terms of the solution of an integral equation.

In Section 4 the information bounds acalculated gplicitly for particular
submodels in several special cases, including case-cohort and exposure-stratified
case-cohort versions of the Cox model. Although it has been known for some time
that pseudo-likelihood estimators are not semiparametrically efficient, our explicit
calculations quantify the loss of efficiency, and also show that two-phase designs
with stratified subsampling can patrtially recover the information that is lost due to
missing data.

Although we will not address question (3) in this paper, we note that for
complex models such as those under study in Sections 3 and 4 of this paper, it
is not uncommon for the calculation of information bounds to precede and aid
in the development of efficient estimators. For example, the information bounds
obtained by Sasieni (1992a, b) came seven or eight years before the development
of efficient estimators for “partly linear” extensions of the Cox model in Huang
(1999). Construction of efficient estimators for case-cohort designs, with and
without stratification, will be treated by the first author. For preliminary work in
this direction, see Nan (2001).

While our focus here is on information bounds rather than on construction
of estimators, we comment briefly here on work on the estimation side of the
problem. Most of the recent work on estimators for missing data in the Cox model
focuses on improvements of the pseudo-likelihood estimators of Self and Prentice
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(1988); see, for example, Borgan, Langholz, Samuelsen, Goldstein and Pogoda
(2000), Chen and Lo (1999) and the methods developed for related missing data
models in Chatterjee, Chen and Breslow (2003).

2. Information bounds for models with missing data. We first give a brief
review of the general setting for information bound calculations with missing
data. This material is a reworking of important results in Robins, Rotnitzky and
Zhao (1994) in a form suitable for our present calculations. Readers new to these
calculations may also be interested in van der Vaart [(1998), pages 379-383] and
Emond and Wellner (1995).

The general setup in this article is as follows: we supposelilds a random
vector with distributionQ in the model@: U° represents the “full” or “complete
data.” The complete or “full data” mod& may be parametric, semiparametric
or nonparametric, but in our examples it will be semiparamet@ie: {Qy ,,:6 €
® c R4, n € #} whered is the parameter of primary interest amds an infinite-
dimensional “nuisance parameter.” The “observed datal’ jswhere typically
U0 = u?,ud), and thenU = (U° R) = (U° 1) when the indicator variable
R =1, andU = (U, R) = (U?,0) when R = 0. The distribution ofU is P,
an element of the (induced) “observed data” mogrelIn our examples? is
semiparametric, parametrized kg, ), whered € ® c R? is the parameter of
interest and; is a nuisance parameter. The goal is to find the information bound
for estimation of¢ whenn is unknown based on observationi, ..., U, i.i.d.
asU ~ Py, € P.

Here is the primary model of interest for which the information bound is derived
in Sections 3-5.

ExXAMPLE (The Cox model with missing covariates). LBtbe a failure time,
C be acensoring time aril= (X, V) € R be a covariate vector which is not time
dependent. The dafgé are missing at random, whilé=7T A C, A =1jr<c; and
V andR are always observed, wheRds an indicator of missingness as above. The
full data areU° = (Y, A, X, V) and the observed data ale= (Y, A, RX,V, R)
in the general notation introduced above. Note tiahay be missing by design,
as in two-phase studies. In a two-phase stUgy\, V) is observed for all subjects
in phase 1 of the study. [In some “classical” case-cohort designs,@nly) is
observed in phase 1. We will treat this case briefly in Section 3.3.] In phisis 2
obtained on a subsample of the subjects. The probability of being included in this
subsample may depend on what was observed in phase 1. We are interested in
estimating the effect o of the covariateZ = (X, V). Let (T'|Z) ~ F(:|Z) with
density f = fp.,, where

Jo.,(1]2)

1— Fy;(tz) = exp(—e? 2 A(t S0 = ¢ A ),
9.(t2) L CRNG) 1— Fy,(t]2) ¢
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wherel is the (Lebesgue) density of. Also, let(C|Z) ~ G(-|Z) with densityg,
where

g(clz)
1-G(clz)
We assume thdfl andC are conditionally independent givéh (noninformative

censoring). LetZ ~ H with densitysx. Then@ is the set of all densities of the
form

=Ag(c|lz) and AG(c|z):/OCAG(t|z)dt.

q6.3,.6.h(Y,8,2)

=q(y,8,x,v)
1-5

k)
2.1) =[f<y|z) g(tlz)dt] [g(ym f(tlz)dt] h)
(y,00) (y,00)

= (¢"2.(1))° exp(—e” A (1)) (A6 (¥12)) " exp(— AG (y12))h(2).-

The regression parametér is the parameter of interest, and the nuisance
parameten is (A, Ag, h). This is basically the model introduced by Cox (1972).
The modely for the observed data is the set of all distributions with densities of
the form

p(r,y, 8, (r-x),v) = (7(y,8,v)q(y, 8, x,v))
(2.2) 1-r
x ((1—n<y,8, v))/q(y,a,x, v)du(X)) ,

where (Y, A, V) = P(R = 1|UD), with 7(Y,A,V) >0 >0, and i is a
dominating measure o¥.

Now we give a brief introduction to efficiency calculations in general; for more
details see Bickel, Klaassen, Ritov and Wellner (1993) or van der Vaart [(1998),
pages 362—-371].

2.1. Introduction to information bounds for semiparametric models. The
information bound for estimation af in the model& is equal t019*‘1. Here,
1 is the efficient information matrix fo# in &, given by

(2.3) Iy = Ep(i313") = Ep(1;®2),

wherel; is the efficient score fof. The efficient score foé in a model? =
{Po,y:0 € ®,n € #} with nuisance parametersis the (componentwise) projec-
tion of the vector of scorek e (Lg(P))d for 6 onto the orthogonal complement
of the (closure of the linear span) of all scores for the nuisance pararr@;,ers,
Intuitively, whenn is unknown information about can only come from that com-
ponent ofi, that is statistically independent of variability in the data controlled
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by the nuisance parameter. This componeri} is=ormally, each component of
the efficient score fof is orthogonal to all scores for nuisance parameters, where
orthogonallty is relative to the inner produgt(U), a(U))Lo(P) = Ep{ba} In the
spaceL (P), the space of aII mean-zero square- mtegrable functiors. dfet 5

be the tangent space far. & is the closure of the linear span of the scores of all
submodels ofP passing througlP (see BKRW). The tangent space for a model
can be thought of as the space of all components of its score, and the “size” of
corresponds to the amount of unknown information ab’euFor example, when
# is completely nonparametric? is all of L9 5(P). Now let 4 and ., be the
tangent spaces for the submodelsoivherey and9 are assumed known respec-
tively. Analogous definitions hold fc(Qg and(,‘z Then$, + £, C # and we may
assume for our purposes thaf + # see BKRW (page 76) for a discussion.

The orthogonality condition described above fpe (J’,?L)"’ is

(2.4) L, inLY(P);

thatis, E p (I3b) = O for all b € #,, where the orgonality is componentwise (i.e., it
holds for each component of the vector of functidjis Thus, our approach

to calculating/; and the resulting efficiency bound is to projdgtonto the
orthocomplementi’L of #, in LY(P):

(2.5) I = n(i9|gﬁ,7¢),

where IT denotes the projection operator; see, for example, Bickel, Klaassen,
Ritov and Wellner [(1993), Appendix A. 2] [Here thie (orthogonal complement)
denotes the ortho- complementl'ug(P) orLY 5(0Q), depending on the context.] The
space?’L is of further importance, because it contains all influence functions for

all regular estimators af in #. Note thatl; = I (jy| ;") = b* if and only if
(2.6) (b.lg—b*)=0  forallbe P}
This implies that we can find the desired projection by proposing a guefss
I; and then showing that (2.6) holds. This requires some understandLﬂ’gLof
However, this last requirement can be relaxed somewhat. Sirc® = 2 + £,
we have

I (jp|P,") =(lg| P N P;") = T(lg| M N Py)

for any (closed) subspacé such that7> cMcCL) 5(P). So it is sufficient to be
able to identify allb in some setM N 2+, which mlght not be all ofF’L Note that

P NPLECMNPECPL Thisis essentlally the approach of Roblns Rotnitzky
and Zhao (1994); see also the discussion in van der Vaart [(1998), pages 379-383].
The approach proceeds by identifying an “intermediate” et M N J OL , and

then knowinglj € (X)¢ provides a general form fafy. An expressmn forl;
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will be obtained by finding the specific element.&f that is the projection of,
onto.X. The next subsection provides the formal results necessary to carry out this
approach.

2.2. Information bounds with missing data. The following material is essen-
tially a special case of results appearing in Robins, Rotnitzky and Zhao (1994).
Throughout this subsection we take the complete data to/be- (U2, UY) ~
0 € @, with Ug Missing At Random (MAR) in the observed data: thRss an
indicator of whethet’? is observed with? (R = 1|U°) = P(R = 1|U?) = n(U?)
with 7(U?) > o > 0. If = = 7, is allowed to be unknown via parameterse T,
then we letRr = {r, :y € I'} denote the model for the “missingness probabili-
ties” 7. The observed data até = (U?, U2, R)R(U2, R)}R = (UD, RUY, R).
Because there is a measurable map ftoffl, R) to U, the tangent space far x R
can be mapped t® via an operatoA that we call thescore operator. The tangent

spaced x R for @ x R is just@ under our assumption thatU?) is known, and
we indeed impose this assumption throughout the rest of this paper.

REMARK. We have not included® in U° because the functions i@ do
not depend onR. However, if 7 were partially unknown, then the parameters
of = would be additional nuisance parametatswould be included iny°, and
@ would be replaced bg + R in Lemmas 2.1 and 2.2.

Fora e L(Q) define the (score) operatdr: L(Q) — L)(P) by
Aa(U) = (Aa)(U) = E{a(U)|U} = Ra(U% + (1— R)E(a(U%)|U?).

LEMMA 2.1.

A. {Aa(U):ae@}cC .

B. Theadjoint AT :LI(P) — L(Q) of Aisgivenby ATh(U®) = E{b(U)|U°)
for b e LY(P).

C. ATAa =7 (Ud)a(U% + (1 — 7 (UD)E[a|U?] for a € LY(Q).

D. Theoperator (AT A)~1isgiven by

_a®  1-mU)

ATy 1a =
WA a=T 09~ 2wd)

Ela|UY).

Robins, Rotnitzky and Zhao (1994) denote the oper&bA by m. Then
C and D are special cases of their Propositions 8.2a2 and 8.2e. The next lemma
is key since it identifies?;- once@; is known.

LEMMA 2.2. Supposethat 7 (UD) > o > 0. Then:
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A. Range(A) is closed [and so is Range(A|,) or the range of A restricted to
any other closed subspace of Lg(Q)].
B. Letb e LY(P). Then b e ;- ifandonlyif ATb e @;F.

Part B of Lemma 2.2 is Lemma A.6 of Robins, Rotnitzky and Zhao (1994),
while part A of Lemma 2.2 is proved in Robins and Rotnitzky [(1992), proof of
Theorem 4.1, page 326]. Itis also in the proof of Lemma A.4 in Robins, Rotnitzky
and Zhao [(1994), page 862]. Note that the condition of Lemma 2.2 is used by
Robins, Rotnitzky and Zhao (1994) in the proofs of both parts A and B since
RRZ’s proof of Lemma A.6 uses their Lemma A.2 which in turn has their (36) as
a hypothesis.

Now suppose that[iznL is known. Then for the subspac# in the discussion
earlier in this section we will takef",7 + KX, where X consists of the closed
subspace of all functiongU) of the form

R R —
k(U) = Z¢ (U — =L E[WOU2),
T T
wherez (U°) € @;-. Moreover, letf be the set of alj (U) such that
. R 0 R—m 0
JWU)=—=¢U") ———¢(Uy),
T T

wherez (U°) € @ andg (UY) is any function inL2(Pyo). The sety is discussed

by Robins, Rotnitzky and Zhao (1994) and by van der Vaart [(1998), page 383].
As noted by RRZ, the particular functia;h(Uf) in the definition ofk yields the
smallest variance for a given functign

The next three lemmas and two propositions charactgriaad X in terms of
£ and J’UL and show thatK' has the desired properties. These propositions form
the basis for our specific information bound calculations for the Cox model in the
sections to follow.

The next lemma shows that eveby= Aa € LI(P) for a € LI(Q) can be
decomposed into the fortR /) (AT A)a — II((R/7)(ATA)a|g @), whereg @
is the subspace omg(P) with form of the second term in the definition of the
classg. The following Lemma 2.3 is a special case of Lemma A.3 of Robins,
Rotnitzky and Zhao (1994).

LEMMA 2.3. Suppose a(U°) e L3(Q). Then Aa L B=Zg?) for all a €
L3(Q), ¢ € L2(Q); equivalently
(2.7) Aa = ATA@ - T S AT A @]12),

where 4@ = ((R/m — )p(UD): ¢ (UD) € L2(0)}.
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PROPOSITION2.1. K C gC £ and P;-NP C X.

REMARK. Any function b € (£;5)¢ with (b,17) = J, the d x d identity
matrix, is an influence function for estimation éfe ® c R¢ in the model
for the observed data (see, e.g., BKRW, page 73, Proposition 3.4.2), and the
decomposition ob = Aa given in (2.7) shows how = Aa € (9;-) is related to

the influence functiol” Aa for estimation of9 in the model@ for the complete
data. Note thatR /7 ) (AT A)a is then the influence function of an inverse-weighted
estimator o® in # of the basic type proposed by Horvitz and Thompson (1952).

LEMMA 2.4. Given a subspace M of Lg(P) thereisa unique projection map
II(-|-M) from Lg(P) onto M. In particular:

A. For a* € #,, h € LY(P) we have a* = TI(h|%,) if and only if (h — a*,
a)=0for all a € #,.

B. For b* € 5, h € LY(P) we have b* = T (h|P;) if and only if (b,
h—b*)=0forall b e ;.

C. For b* € #- N P, h € £, we have b* = T(h|P;- N £) if and only if
(b,h —b*) =0 forall be P;-NP.

D. Suppose that 1 € M with $ € M C Lg(P), M a closed subspace. Then
for b* € P;- N M, b* = (kP N M) if and only if (b, h — b*) =0 for all
be J’,]L NnM.

E. For h € 2, the projection TL(h|P;- N M) = T (k| P- N P) € P.

The following proposition is an immediate consequence of Proposition 2.1 and
Lemma 2.4, part E. It is a special case of Proposition 8.1el of Robins, Rotnitzky
and Zhao (1994).

PROPOSITION2.2. [} = M[lp| K] = B¢ — BZ E[¢¥|UD], where I} is the
efficient score for 6 in model 5 and ¢ * is the unique element of (Q;1)? satisfying

2.8) n(lg*— 1‘”E[;*|Uf]\@;) — 10,
T T

where /;° is the efficient scorefor 9 in the complete data model @.

3. The Cox model with missing covariate data. In this section we discuss
the efficient score and information calculations for Cox regression models with
missing covariates as introduced in the example in Section 2. This model is
very useful in epidemiology studies, especially in two-stage designs (also called
two-phase designs) where the probabilitesre determined by the investigator.
Equation (2.1) gives the joint density of the complete défaA, X, V) =
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(Y, A, Z) and (2.2) gives the joint density of the observed d&taA, RX, V, R).

The finite-dimensional parametéris the parameter of interest and the nuisance
parametern = (A, Ag,h) is a vector of three infinite-dimensional nuisance
parameters. We will use Proposition 2.2 to obtain the efficient stpie the
observed model? for Cox regression. The efficient score function in the full
model@, l;o, has been studied by many authors, such as Efron (1977), Andersen
and Gill (1982), Begun, Hall, Huang and Weliner (1983) and Bickel, Klaassen,
Ritov and Wellner (1993). Hence our main job will be to characterize the
spaced;.

3.1. The nuisance parameter tangent space (,‘2,7L of thefull data model @. The
scores for the parameter of interéstand the score operators for the nuisance
parameterg., Ag and# in the “full” model @ given in (2.1) are the following:

3.1) B, A2) =000, A,2)=AZ - ZA(Y)E = / ZdM@),

Sv,A,z)=0%Y, A, Z)

(3.2) Y
= Aa(Y) —e“/ a(t)dA(t):/a(t)dM(t),
0
B,A,2)=12 b(Y,A, Z)
Y
= (1— A)b(Y, Z)—f b(t, Z)dAg(t|Z)
(3.3) 0

:/b(t,Z)dMG(t),
(3.4) . A, z2)=0c(Y. A, Z)=c(2),

whereM and M are martingales, conditional ofy for the failure and censoring
counting processes, respectively;

M@)=ALY <t) — /Ot 1Y =s5)dA(s|2),

Mg(t) = A — ALY <1) — /t 1Y =s5)dAG(s]Z),
(3.5) 5 0
a(t) = a'o‘ﬂx(f)’

3 9
b(t,Z) = v l0ghay (11Z).  ¢(Z) = -loghc(Z).

for regular parametric submoddls, }, {Agy} and{h,} passing through the true
parametersk, A and h when x =0, ¢ = 0 and«x = 0, respectively. Here
we abuse notation slightly by writing(-) for the baseline cumulative hazard
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function andA (| Z) for the cumulative hazard funption conditional @n Under
the proportional hazards assumptiag|Z) = A(-)e? .
Then the scores in the observed model (2.2) are the following:

[;(Y,A,RX,V,R)=RI2Y,A,Z)+ Q- RE[(Y, A, Z)|Y,A, V),
i=1...,4
Hence the tangent spaces for the parameters in the two models are

(3.6) Q; =9, P=[;, i=1...,4

Here[«] denotes the closed linear span of theas'netLg(Q) orLg(P) as in Bickel,
Klaassen, Ritov and Wellner [(1993), page 49]. By definition all the elements
in @; and;, i =1, ..., 4, are square integrable. It is easy to see thatQ3 and
@4 are mutually orthogonal. Since they are closed (by definition), the nuisance
tangent space i€, = @ + @3 + Q4.

Let W1 and W> be subdistributions oR¢+1 defined by

Wiy, =0 <3, Z <z, A=1)
=/ / (1— G(t1))dF(11Z)dH(),
(=00,21 /(0,y]
Waly.0)= QY <3, Z <2, A=0)
= 1-F(tz))dGt|Z')dH (2,
[, @ e dGe)ane)

corresponding to the uncensored and censored data. HéredV; + W is the
marginal distribution of(Y, Z). Then we can definé, spaces corresponding to
the subprobability measures

Lz(Wl-):{u(Y, Z)://uz(y,z)dWi(y,z)<oo}, i=12.

These spaces will be used in characterizidg @3 and thus@;. It is easy
to see thatLo(W) = L2(Qy,z) = L2(W1) N La(W2), L2(Qr1,z) C L2(W1)
and L2(Qc.z) C La(W2). Here Qy 7z, Or.z and Qc,z denote the marginal
distributions of(Y, Z), (T, Z) and(C, Z) underQ € Q.

Then the conditional distribution and conditional subdistributions givenZ,
W(y|z), Wi(y|z) andWa(y|z) have the following forms:

y y
WOl = [* (0= Galo)dra + [ 1= F12)dGa)
=1-(1-F(2)1-GOl2),

y
Wi(yl) = fo (1 G(t12)dF(]z).

y
Wz(ylz)=/o (1— F(t12))dG(t]2).
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Now we define two operatoi®; andR> as follows:

©b(t,1,2)dW b(t,0,z)dW
(3.7) Rib(y.2)— by 1.2y — D 2O LDAWD 450, 0.2 dWa(tl)

’

1-W(ylz)
JOb(t,1,2)dWilt|z) 4 b(t, 0, 2) dWa(t|2)
(3.8) R2b(y,z) =b(y,0,2) - y - 2
1-W(ylz)
They can be rewritten as
(3.9) Rib(y,2) =b(y,1,2) — E[b(Y, A, 2)|Y > y,Z =2z],
(3.10) Rab(y,2) =b(y,0,2) — E[b(Y, A, 2)|Y > y, Z =z].

We will show later in Proposition 3.1 th&; andR» mapLg(Q) to L»(W7) and
L2(W>), respectively. These operators are similar toRheperator discussed by
Ritov and Wellner (1988), Efron and Johnstone (1990) and Bickel, Klaassen, Ritov
and Wellner (1993).

The following Proposition 3.1 plays a key role in characterizing the sp'z#ce
which will be used to derive the efficient scdjefor 6 in the models in the next
subsection.

PROPOSITION3.1. Anyfunctionb € Lg(Q) can be decomposed as follows:
(3.11) b(Y,A,Z)=/R1b(t,Z)dM(t)—l—/sz(t,Z)dM(;(t) + E(|2),

where
(3.12) R1b(Y, Z) € Lo(W1), Raob(Y, Z) € Lo(W>).

The decomposition is unique in the sense that R1b is unique a.e. W1 and R2b is
uniquea.e. W».

To prove Proposition 3.1, we will use the following two lemmas.

LEmmA 3.1. For the failure counting process martingale {M(¢):t > 0}
defined by (3.5), we have

(3.13) /hl(t, Z)dM(t) € Lg(Q) ifandonly if h1(Y, Z) € Lo(Wy),
and similarly for the censoring counting process martingale,

(3.14) / hao(t, Z)dMg(1) € LU(Q)  if and onlyif ha(Y, Z) € Lo(Wa).
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PrROOF By using the methods of Chapter 6 of Shorack and Wellner (1986)
we can easily show that

2
E(/hl(t, Z)a’M(t)) :f/ h3(t, ) dWi(t, s),
2

E(/hz(t, Z)dMg(t)> // h3(t,s)dWalt, s).

The zero means are trivial [J
LEMMA 3.2. For anyfunctionss; :RT x RY — RY in Lo(Wy), j =1,2,
E[/hl(t, Z) dM(t)/hz(t, Z) dM(t)] = E[Ah1(Y, Z)ho(Y, Z)].
Smilarly, for any functions ‘Rt x R? - RYinLa(Wo), j =1,2,
E[/hl(z‘, Z)dMg(t)/hz(t, Z) dMG(t)} =E[(1— A)h1(Y, Z)ho(Y, Z2)].
ProoF This follows from Lemma 1 of Sasieni (1992a)]

PROOF OFPROPOSITION3.1. Equation (3.11) can be verified directly by the
definitions ofR; andR2 operators in (3.7) and (3.8). See Nan (2001) for details.
By Lemma 3.1 we know that the right-hand side of (3.11) iiqu) if (3.12) is
true. Now we show (3.12). Let
Sy b(t, 1, 2) dWit|z) + b(t, 0, 2) dWa(t|2)

1—W(ylz) '

Obviously,b(Y, 1, Z) € L»(W1) andb(Y, 0, Z) € Lo(W>) since

m(y,z) =

E[b2(Y, A, Z)] = E[AV2(Y, 1, Z) + (1 — A)b?(Y,0, Z)]
= [[Por0ame.+ [[20.0.0aWa0.2) < co.

Thus we only need to show that(Y, Z) € Lo(W). We rewritem (Y, Z) as

1 [ee]
m(Y, Z)=mfy Ib(t,1, Z)a(t, Z) + b(t,0, Z)B(t, Z)} AW (| Z),
where
wlt.Z) = dWy(t|Z) (1. 7) = dWo(t|Z)
AW (2)” T AW Z2)
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It is obvious that O< ¢ <1 and O< 8 < 1. Then by the same argument as that on
page 423 of Bickel, Klaassen, Ritov and Wellner (1993), we have

E[m3(Y, Z)|Z]

dWa(t|12) dWo(t1Z) )2
<4/ {b(r 1, Z)dW( 07) + b(t, 0, Z)W} dw (t|Z2)

< 8{/[)2(1‘, 1, Z)a(t, Z)dW1(t|Z) +/b2(t, 0, 2)B(t, Z)sz(t|Z)}

58{/[720, 1, 2)dW1(t|2) +/b2(t,0, Z)de(tlZ)}.
Then by Fubini’'s theorem we have
E[m2(Y. Z)] < 8{ // b2(1. 1. 5)dWi(r. 5) +// bz(t,O,s)sz(t,s)} < o0

Actually, from the above proof we have also shown that

19(0) = {ho<Z> + [ 1 2yam

+/h2(t, Z)YdMg(t)  hg € Lg(H), hi1€ La(Wy),ho € L2(W2)}.

The uniqueness can be proved by showing that any two decompositions of an
element inLg(Q) are identical. Suppose we have

b=/h1(t,Z)dM(t)+fh2(t,Z)dMG(t) + ho(Z);

b:/h/l(t,Z)dM(t)+/h/2(t,Z)dMg(t) +hY(2).

Taking the expectation of the square of the difference of the right-hand sides of the
two equalities and using the orthogonality &f, M, and any function oZ, by
Lemma 3.2 we have

0=/(h1—h/l)zdwl—i-/(hz—h’z)deZ—i-f(ho—h{))de.

Thushy=ho a.s.H, hy =h; a.e.Wy andh, =hp a.e.Wo. O
Now we are ready to discuss the spéz;b.

ProPOSITION3.2. For any function s(Y, Z) € Lo(W1) define the operator B
by

(3.15) Bs=/{s(t,Z)—E[s(Y, DY =1, A =1} dM@).
Then:
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(i) Bs L@,inL3Q).
(ii) For any b € L%(Q) we have I (b|@;) = B o Ryb.
(i) @ =(@2+ @3+ Q)" ={Bs:s € La(W1)).

PROOF (i) Since@,, @3 and@4 are mutually orthogonal antf L Mg, we
have
M(Bs|@2 + Q3+ Q4) = N(Bs|Q2) + M(Bs|@3) + M (Bs|@Q4) = I (Bs|Q@y).
Let m(Y,A,Z) = [s(t,Z)dM(t). Then M(m|Qo) = [a*(t)dM(t) for some
a*(Y) € Lo(W,) satisfying

E[/{s(t, Z) — a*(t)}dM(t)/a(t)dM(t)] =0

for any a(Y) € L2(W1). Now by Lemma 3.2 the left-hand side of the above
equation is equal to

E[A{s(Y,Z) —a*(")}a(Y)] = E[{E[As(Y, 2)|Y] = a*(Y)E[A[Y [}a(Y)]

and hence

_ E[As(Y, 2)Y]

a (¥) E[A|Y]

— E[s(Y, 2)|Y,A=1].

SoBs L @y, and this yieldBs L @, + Q3+ Q4= Q,,.
(i) From Proposition 3.1 we know that for anly e Lg(Q) we have the
decomposition (3.11). Hence, from the proof of part (i) we know that

H(b|@2+@3+@4)
=T1(b|Qp) + T (b|Q@3) + M (b|Q4)
=/E[R1b(Y, DY =t,A=1]1dM(¢)

+/R2b(t,Z)nd;(t) +EOb|2).
Thus,
M(b|(Q2+ Q3+ Qa)t) =b — M (b|@2+ Q3+ Q4) =BoRyb.

(i) This is an immediate consequence of (i) and (i)

If we chooses(t, Z) = Z, thenBs is the efficient score fof in the (“full” or
“complete” data) modef.
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3.2. Efficient scorefor 9 in observed model &. In this subsection we will use
the results in Section 2 and the previous subsection to derive the efficient$core
of #. Since from Proposition 3.2 we know thé'(ﬂL = {Bs, s € Ly(W1)}, for the
model2, with P € 2, we define the clas& of all functions with the form

R R —
k(Y,A,RX,V,R)=—B(s(Y, X,V)) — —T[E[B(S(Y, X, )|y, A, V],
b4 /4

wheres € L2(W1). Note that we can rewrite the functiohén terms of the operator
D:Ly(W1) — LY(Q) defined by

(3.16) Du(Y. A, Z) =/u(t, Z)dM(@).

ThusBs = D o I11s = Du, where
(3.17) wl,Z2)y=Mys=s(Y,Z)— E[s(Y,Z)|Y,A=1].

Then we have the following proposition:

PrRoOPOSITION3.3. Theéfficient score/; for 6 inthemodel & for the observed
data is given by

IX(R.Y,A,R-X,V)
R R—
— k" = DU (Y, A, Z) — —— L E[Dut(Y. A, Z)|Y. A, V],
T T

whereu* e (Lo2(W1))¢ isthe unique a.e. Wy solution of the equation

1_
H1Z=H10R1{Du*+< ”)[Du*—E(Du*w,A,V)]}
(3.18) w
=u*+Tu*,
where
(3.19) T=I0R10H
and
* l1-n * *
(3.20) Hu* = (== )[Du* — E(Du*|Y, A, V).
T

COROLLARY 3.1. The function u* in Proposition 3.3 also satisfies, equiva-
lently,

u*(Y,Z) — {Ku*(Y, Z)

(3.21) 4N %)
E[n(Y,1, V)|V, A =1]

=7(Y,1, V){Z — E[Z|Y, RA =1]},

E[Ku*(Y, Z)|TY,A:1]}
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where the operator K isa linear operator defined by
Ku*(Y, Z2)
=—E[Du*(Y',A,2)|Y' > 7Y, Z]

Du*(Y', A, Z)
(Y, A, V)

+ (1 -7, 1, V))E[Du*|Y, A, V]a=1

1-7(Y,A,V)
n(Y', A, V)

+ (Y, 1, V)E( Y >7Y, Z)

(3.22)

—n(Y,1, V)E(

x E[Du*(Y', A, Z)|Y', A, V]

Y >, Z).
Our proof of Proposition 3.3 will use the following lemma.

LEMMA 3.3. Denote the adjoint of D by D” :Lg(Q) — Lo(W7). Let II1 be
defined asin (3.17).Then:

(i) DT =Ry.
(i) RioD=I.
(iii) T4 isa projection operator on Lo (Wy).

PROOF (i) Let a € La(Wy), b € LY(Q). Then we havela, DTb) 1wy =
(Da, b)Lg(Q). By Proposition 3.1,

b, 8,2) = [Rab(t. 2)dM©) + [ Rab(t, 2) MG (1) + Eb(Y. A, 2)]Z).
Then we have
(Da. b) 190, =EQUa(;, Z)dM(t)/Rlb(t,Z)dM(t)}
= Ep{Aa(Y, Z)R1b(Y, Z)}
= [[ at.9Rwb(, 2 aWa(t,2) = (@, RabLaowy.
(i) For all h € Ly(W1), by Proposition 3.1 we havbh = [hdM = [Rj o
DhdM and thush = Ry 0 Dh a.e.W;.
(i) That I»(-) = E(-|Y, A = 1) is a projection operator oh>(W;) can be

shown by checking the three properties in Proposition A.2.2 of Bickel, Klaassen,
Ritov and Wellner (1993). So H; =1 — . O
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PROOF OF ProOPOSITION 3.3. We use Proposition 2.2 directly to prove
Proposition 3.3. For the Cox regression model we H@Q/& BZ=DoIl1Z and
* =Du*. Let

1 ., 1-= «
b(Y,A,Z)=BZ - —Du" + ——E[Du™|Y,A,V].
b4 b4

Then by Proposition 2.2 and Proposition 3.2(ii) we hﬂ(@@#) =BoR1p=0.
Since by Lemma 3.3 we halBo Rib =D oIl 0o Rib=DoN1D'b=Do
(DoM)Tb=DoB’handRyoD =1, BoR1b =0 impliesRy o BoR1b =
RioDoB”h=B"bh=0whichis

(3.23) BT (BZ =

1 1-
“pu* + ——ZE[Du|Y, A, V]) —0.
T

Sinceu*(Y,Z2) =s*(Y, Z) — E[s*(Y, Z)|Y, A = 1] € Lo(W) satisfies
(3.24) E[u*(Y,2)|Y,A=1]=0,

we must solve the pair of equations (3.23) and (3.24) for the funetioNote that
I1; is a projection operator and thus we have

BTOBZ:H{ODTOBZ
=Mi0Ri0DoMZ=MN2Z=MZ=2Z—E(Z|Y,A=1).
Hence (3.23) can be rewritten, using Lemma 3.3 (ii) and (iii), as

Z —E[Z|]Y,A=1]

Du* 1-—
:HloRl{ “ i
T

E(Du*|Y, A, V)}

(3.25) L
=I0 Rl{Du* + ——(Du* — E(Du*|Y, A, V))}
b1

=u*+Tu",

whereT = I11 o Ry o H andH is given by (3.20). Thus (3.18) holds.

To see that the solution is unique, we argue as followg:*let Du*. Then from
Proposition 2.2 we know that* € (@;)¢ is the unique solution of the operator
equation

1 1- .
H(_é-*_ ”E[§*|Y,A7V]‘@;7L)=l§0,
b3 b3
Suppose we have

0= Du”l‘:/u’{(t, Z)dM(@t) and ¢*= Du;‘:/u;(z, Z)dM ().
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Then taking the expectation of the square of the difference of the two equalities
componentwise and using Lemma 3.2 (componentwise), we have

0=/|u;—u§|2dwl.
It follows thatu] =u3 a.e.Wy. O

PROOF OFCOROLLARY 3.1. It also follows from (3.25) that
(3.26) Z—E[Z|Y,A=1]

Du* 1
=1'[10R1{ ° nE(Du*|Y,A,V)}
T
Du* 1-—
=R1{ “o_ nE(Du*lY,A,V)}
T
k

Du* 1—
—E{Rl{ ‘o ”E(Du*w,A,V)}Y,A:l}
T T

Du* 1-—
(3.27) le{ v ”E(Du*w,A,V)}— Fur (V).
T
Now
Du*\  Du*[s_ Du*(Y'. A, Z
(3.28) Rl( " ): ula-1 —E( u( )Y’>Y,Z>
T n(Y,1 V) a(Y',A,V)
and
1—7m
R1< E[Du*|Y, A, V])
T
1—7(Y.1,V)
3.29 2T ) BiDutY. AL V] A
( ) <. LV) [Du™Y, lla=1
1—n(Y.A.Z
_ ( 7 ( ) EDU (Y. A. Z) Y. AL V] Y’>Y,Z>.
T(Y' . ALV)

Substituting (3.28) and (3.29) into (3.27) yields
Z—E[Z]Y,A=1]+ f,+(Y)
_ Du*|a1 _E<Du*(Y’,A,Z)
n(Y,1 V) a(Y',A,V)
1-7(Y,L,V)
A, LV)
1-n(Y',A,V)
+ E(
a(Y',A,V)

Y >, Z)

(3.30) E[Du*|Y, A, V]|a=1

E[Du*|Y', A, V]

Y' >, Z)
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Here we use
Du*|a=1 =R10Du*(Y, Z) + E[Du*(Y', A, Z)|Y' > Y, Z],
and the operatd is defined as (3.22). Then we have
(3.31) u*(Y,Z) —Ku*(Y,2)=n(Y,1,V)[{Z - E(Z|Y,A=1) + fu~(V)}.

Thus, taking conditional expectations givéhA = 1 and usingE (u*|Y, A =
1) =0 as required by (3.24),

—E[Ku*|Y,A=1]=E[x(Y,1, V)|Y, A =1]f,+(Y)
+ E[n(Y,1,V)(Z — E(Z|Y,A=1))
Solving this for f,«(Y) yields
E[Ku*|Y, A =1]

Y, A=1].

fu*(Y)=_E —

[7(Y,1, V)Y, A=1]

(3.32) B Eln(Y,1,VYZ—-EZ|Y,A=1)|Y,A=1]
E[z(Y,1, V)|Y,A=1] '

Note that

En(Y,1,VY(Z—-E(Z|Y,A=1)|Y,A=1]
E[z(Y,1, V)|Y,A=1]
(3.33) _ﬂmemmxA:u_EMMA:u

~ Elr(Y,LV)|Y,A=1]
=E[Z|Y,A=1,R=1]—E[Z|Y, A=1].
Combining (3.32) and (3.33) with (3.31), we obtain (3.21)]

The reason that we solve far* instead ofs* is that there is no unique
solution if we solve fors*: if s*(Y, Z) satisfies (3.23) withu™ replaced by
s* — E[s*|Y, A=1], thens*(Y,Z) + f(Y) will satisfy (3.23) for any func-
tion f(Y). From the form ofk € X we know thatk is determined by(Y, Z) =
s(Y,Z) — E[s(Y,Z)|Y,A = 1]. So we only need to solve fon*(Y,Z) =
s*(Y,Z) — E[s*(Y, Z2)|Y, A =1] and then computg = k*.

The parts of (3.18) and (3.21) involving andK, respectively, can be viewed
as integral operators on the unknown functioh But these equations are not
standard Fredholm integral equations of the second kind [see, e.g., Kress (1999)
and Rudin (1973), Chapter 4]. Note that the termsKofnvolving conditional
expectation giverY’ > Y correspond to noncompact operators [see, e.g., Rudin
(1973), Problem 17, page 107] in general.

REMARK. The equation corresponding to our (3.18) given by Robins,
Rotnitzky and Zhao [(1994) Section 8.3, page 862, column 1] is incorrect.
According to personal communications with Robins, their incorrect result is due
to algebraic errors.
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3.3. Alternativemodels. The survival model we have discussed so far assumes
thatY is always observable and is also a vector of covariates of interest. We
now consider some alternative scenarios for the models involved in the two-phase
designs.

When Z = (X, V) but the Cox model only involves X. WhenZ = (X, V), but
the Cox model for the conditional distribution dfgiven Z includes onlyX, then
0’z is replaced by'x in the model (2.1). After going through the same procedure
as deriving equation (3.18), we obtain

u (Y, z2)— {Ku*(Y, Z)

n(Y,1,V)
E[x(Y,1,V)|Y,A=1]
=m(Y,1, V){X — E[X|Y,RA = 1]},
where the operatdf is as defined in (3.22).

(3.34) E[Ku*(Y, Z)|Y,A = 1]}

When Y ishot observed at phase 1. If we are not able to obsen# in the first
phase, we will observe the data
Y, A, X, VR, vk
1
0,

Y, A, X, V), R
(A, V), R

= (RY,A,RX,V,R) = {

and the efficient score will have the form
R R —

K* = SDu*(Y, X, V) — — L E[Du*(Y, X, V)|A, V].
T T

By the same method used to derive (3.18), we find, for estimation of the coefficient
of Z, thatu™® satisfies

u*(Y, Z) — {Ku*(Y 7) — 7L V) E[Ku*(Y, Z)|Y A—l]}
(3.35) ’ ’ Elx(L.V)|Y,A=1] e
=7(1 V){Z — E[Z|Y, RA =1]},
where
Ku*(Y,Z) = —E[Du*(Y', A, Z)|Y' > Y, Z]
rxae(PEYLA Dy,
”(’)< (AL V) >’)

(3.36)

+(1—n(1, V))E[Du*|A, V]|a=1

(1, V)E(ME[DM*(Y/, A, Z2)|A, VY > Y, z).

T(A,V)
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When Y is not observed at phase 1, Z = (X, V), and the Cox model only
involves X. When the Cox model involves onf/ X and just(A, V) is observed
in the first phasey™ must satisfy

71, V)
Eln(1, V)|Y,A=1]
=m(1, V){X — E[X|Y,RA = 1]},
with K defined in (3.36).

u*(Y, Z) — {Ku*(Y, Z) — E[Ku*(Y, 2)|Y, A = 1]}

(3.37)

When Z = (X, V), V = (V1, Vo) and the Cox model only involves (X, V7).
Suppose tha¥ = (V1, V») and thatT and V> are conditionally independent given
(X, V1), that is, the Cox model for the conditional distributionoinvolves only
(X, V1). This is a generalization of the previous models. In order to avoid repeating
calculation of the efficient score function, we can reduce the general model to
the model either in Section 3.1 or in Section 3.3 and apply those existing results.
Let X = (X, V1) and assume tha¥ is missing at random. Thu¥ andV would,
respectively, play the role gf andV in our Sections 3.1 and 3.2. Althoudh can
be missing inX, it is fully recovered fromV. Then we can directly use the results
of alternative models in Sections 3.1 and 3.3 for the general model.

4. Examples of information bound calculations. The case-cohort design,
studied by Prentice (1986) and Self and Prentice (1988), and the exposure
stratified case-cohort design, studied by Borgan, Langholz, Samuelsen, Goldstein
and Pogoda (2000), are two special cases in the class of two-phase designs. In
the case-cohort design the complete information is essentially observed for all
the failures and a simple random subsample of the nonfailures. The exposure
stratified case-cohort design is a modification of the classical case-cohort design
in which complete covariate data is observed for all failures and for a stratified
random subsample of the nonfailures. The stratification is based upon a correlate
(or surrogate variable, available for everyone) of the true exposure (or prognostic
factor) of interest. In this section we treat the simplified i.i.d. versions of these
sampling designs.

Pseudo-likelihood type (inefficient) estimators have been proposed by Prentice
(1986) for case-cohort designs, and by Borgan, Langholz, Samuelsen, Goldstein
and Pogoda (2000) for exposure stratified case-cohort designs. For discussions
of efficient estimators for these designs we refer to Nan (2001). But information
bound calculations can tell us how much information we could potentially gain
from fully efficient estimators and which design methods use the observed data
more efficiently, if efficient estimators were available. Here we give two examples
in which the information bound calculations can be carried out analytically.
Although these two hypothetical examples are rather special cases involving
evaluation of the information for a simple parametric subfamily, the calculations
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in this section may tell us the fundamental properties of the designs and potential
estimators. The results may give some guidance for designing and analyzing real
studies.

4.1. A case-cohort study. We assume that the true distribution has expo-
nentially distributed failure times and a single binary covariatéaking values
0 and 1. Leti(z) = P(Z = z) be the probability that a subject has covariate value
z € {0,1}; thus h(0) + h(1) = 1. The censoring time is distributed with point
mass 1 at = 1, which means that all subjects in the cohort are followed from
time zero to either failure or to the end of the study at 1. This is discussed as
an example by Self and Prentice (1988). The density of the complete data can be
written as

w1(y[)h(2) =2 h(z),  §=1,0<y<1,
wa(y[2)h(2) = e 2" h(z), 5=0,y=1.

In the i.i.d. version of the case-cohort study, a simple random subsample is taken
from the nonfailures with sampling (inclusion) probability. The values of the
covariateZ are measured for all the failures and only the sampled nonfailures.
Hence it is a special case of the two-phase design discussed in the previous section
with 7 (Y, A) = P(R = 1|Y, A) = n(A) only, and wherer(1) = 1, 7(0) = g €

(0,1). Note that we do not have a surrogate covariété this example. In a
classical case-cohort desigin,may not be observed if the subject is not a failure
and not in the subcohort. But for this special example: 0 impliesY = 1. So for
information bound calculations it does not matter whether we tfest known or

not. Detailed calculation is omitted here and can be found in Nan (2001).

Figure 1 displays the ratios of asymptotic variance of the Self and Prentice
(1988) pseudo-likelihood estimator (SP Variance) to the information lower bound
for & as a function of the sampling fraction for nonfailures in the i.i.d. case-
cohort model shown above. Figure 1 shows that when the disease is rare, that
is, the baseline failure probability is very low, the pseudo-likelihood estimator is
close to fully efficient. As the failure probability increases, the pseudo-likelihood
estimator loses more efficiency, especially when the subcohort fraction is small.
Hence development of more efficient estimators may be worthwhile for case-
cohort designs where increasing the subcohort fraction is costly and the failure
probability is moderate.

Figure 2 displays the ratio of the information lower bound for estimatiof of
based on the “observed data”/(} wherel; is the information ford) and the
asymptotic variance of the partial-likelihood estimatorfddrased on “complete”

(or “full”) data. This ratio is shown as a function of the sampling fraction for the
nonfailures under different baseline failure probabilities whér= 2. Figure 2
shows that the case-cohort design loses more information (supposing that an
efficient estimator is available), relative to complete data, as the failure probability

(4.1) qyaz(y,8,2)=
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high failure probability cases in practice. From Figure 2 we can see that a great
deal of precision may be lost by using a case-cohort design as opposed to data
collection on the full cohort, even when a fully efficient estimator is used for
the case-cohort study. With this knowledge investigators can weigh the trade-off
between precision and study cost. Further work is needed to explore presumably
more efficient designs: for example, an alternative design might be an “exposure
stratified case-cohort design” as in our second example.

Perhaps the more interesting phenomena appear in Figure 3 and Figure 4. In
Figure 3 we look at the asymptotic relative efficiency of the pseudo-likelihood
estimator as a function @f. Figure 4 shows the relative efficiency of the optimal
variances for the i.i.d. case-cohort design versus the full data design as a function
of 6. Whend is near zero Figure 3 shows that the pseudo-likelihood estimator does
not lose much efficiency compared to the optimal estimator for the case-cohort
design. However, Figure 4 shows that the case-cohort design (with an optimal
estimator) loses considerable information compared to the full data design. The
minimum ARE (as a function of) depends on the baseline failure probability;
the minimum increases and it moves away frém= 0 as the baseline failure
probability decreases. Whéris away from zero, that is, the effect of the covariate
Z is large, the pseudo-likelihood estimator loses significant efficiency, especially
whend is positive and the baseline failure probability is high. However, away from
zero the design itself starts to gain information and is very close to the full data
design when the absolute valuefs large. The conclusion is that if we expect

5

SP Variance / Optimal Variance

FiG. 3. Ratio of the variance for the Salf and Prentice pseudo-likelihood estimator (SP)to the
Optimal Variance as a function of 6 (log of relative risk) for different baseline failure probabilities
P(T <1]Z =0) inthei.i.d. case-cohort design. Here the sampling fraction for nonfailuresis0.1.
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Fic. 4. Asymptotic relative efficiency of the optimally efficient estimator in the case-cohort design
relative to the optimally efficient estimator in the full cohort design as a function of 6 (log of relative
risk) for different baseline failure probabilities P(T < 1|Z = 0). Here the sampling fraction for
nonfailuresis0.1.

intermediate to large covariate effects, it may be very worthwhile to find efficient
estimators fol. Certainly, developing more efficient designs is also valuable, as
can be seen from Figures 2 and 4.

4.2. An exposure stratified case-cohort study. Assume thatX is the variable
of interest and thaV is a surrogate variable faX, or measurement oX with
error, andV is conditionally independent df given X. We suppose that can be
observed for everyone in the entire cohort, Buis only observed for subjects
in the subcohort and failures. Then the model for this type of data is the first
alternative model discussed in the previous section. The i.i.d. version of the
exposure stratified case-cohort design studied by Borgan, Langholz, Samuelsen,
Goldstein and Pogoda (2000) is a special case of this model. Here we discuss
an example with a binary covariaté € {0, 1} and a binary surrogate variable
V € {0, 1}. The distribution forX andV has the form of a % 2 table. Let

PV=1X=1l)=1-a, P(V=0X=0=1—8.

If we considerV =1 as a “positive” test forX, then 1— « is the sensitivity
and 1— g is the specificity of the test. We assume exponentially distributed failure
times. All subjects in the cohort are followed from time zero to either failure or
to the end of the study at time= 1. For our calculations the exponential failure
rate parametex will be set to achieve a specified baseline failure probability as
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in Section 4.1. Let the joint mass function@, V) beh(x, v). Thus we have the
joint density for the underlying complete data,

AP e pe y), §=1,0<y<1,
e hx, v), §=0,y=1.

By the same argument as in the previous example, we may assuniedinatys is
observed. The cohortis then categorized into three sfrate: 1}, {A =0, V = 0}
and{A =0,V = 1}. We observe complete information for all the subjects in the
first stratum, and ofrg, 1 fractions (constants) of the subjects in the second
and third strata, respectively. We only obsefe A, V) for other subjects. In
probability language we hav®@(R=1A=1Y,V)=#(Y,1,V)=1, P(R =
1IA=0,Y,V)=n(Y,0,V)=mng if V=0 andn if V= 1. Again, we omit the
detailed calculations here and refer to Nan (2001).

We calculatel; for different «, 8, P(X = 0), o, m1, 6 and A by using
numerical integration. Whem = 8 = 0.5, the exposure stratified case-cohort
design is equivalent to the classical case-cohort design (previous example)
since V is not correlated withX under this condition. Figures 5 and 6 show
the comparisons of the asymptotic relative efficiency (ARE) of fully efficient
estimators (if they exist) for the exposure stratified sfat= 71 and =g # 71)
and classical case-cohort designSeeatz 2 andP(X =0) = 0.9. When# = 0,

(4.2) gy.axv(®y,é,x,v)=

Q |
-

0.8

0.6

ARE (Case cohort, Full)
0.4

0.2

0.0

0.0 0.05 0.10 0.15 0.20
Baseline Failure Probability Prior to t=1

Fic. 5. Asymptotic efficiency of the optimally efficient estimator for the case-cohort design with a
surrogate variable, relative to that for the full cohort design, as a function of the baseline failure
probability, P(T < 1|X = 0). Here 6 =In(2), P(X =0) =09, ng =71 = 0.1 (i.e, stage 2
sampling is not stratified).
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0.4 0.6

0.2

ARE (Stratified Case Cohort, Full)

0.0

0.0 0.05 0.10 0.15 0.20
Baseline Failure Probability Prior to t=1

FiG. 6. Asymptotic efficiency of the optimally efficient estimator for thei.i.d. stratified case-cohort
design with a surrogate variable, relative to that for the full cohort design, as a function of the
baseline failure probability P(T < 1|X = 0). Here, 6 =In(2), P(X =0) =0.9, ng # m1 (i.e, with
stratified sampling at stage 2).

the corresponding figures (not shown) have similar patterns but slightly different
magnitude. In Figure 5 the sampling probabilities in the two strata are equal, that
is, mo = m1 = 0.1. In Figure 679 and r; are different, such that the expected
numbers of sampled subjects in strgta = 0,V =0} and {A =0,V = 1}

are the same (or approximately the same), and the fraction of sampled subjects
from the two strata all together isX(or approximately ). We can see from
Figure 5 that the efficiency increases as the sensitivity (1) and specificity

(1 — B) increase as a result of incorporating the surrogate variable into the model,
even without stratification. Note that an efficient estimator will incorpovater
subjects outside the subsample, providing information for the estimati@rviaf

the correlation betweeX and V. When we do stratified samplingtd # 1),
Figure 6 shows that the efficiency gains are even greater. So both incorporating
surrogate information and stratified sampling will increase the efficiency. Note
that the information bound calculation illustrated here is for a measurement error
problem without making any assumptions on the structure of the joint distribution
of (X, V).

Borgan, Langholz, Samuelsen, Goldstein and Pogoda (2000) study inverse
probability weighted estimators in this model. In order to show how much
efficiency the inverse probability estimator loses, we calculate the ARE of their
estimator relative to a fully efficient estimator with asymptotic variance given by
our information bound A7) for the setting of their Example 1. We choose their



750 B. NAN, M. J. EMOND AND J. A. WELLNER

TABLE 1
Comparisons of asymptotic relative efficiency (ARE relative to a full cohort study): the approximate

ARES of pseudo-likelihood estimators and the AREs of information bounds for a stratified

case-cohort design, which has only the binary covariate of interest, X, and a binary
covariate V, which isa surrogate for X. The specificity of V =1 asatestfor X =1is1— g,

and the sensitivity is 1 — «. The subcohort size equals the expected number of cases

(PL = Pseudo-Likelihood. This part is taken from Table 1 of Borgan, Langholz, Samuelsen,

Goldstein anf Pogoda (2000).I1B = Information Bound.)

(@) P(X =1) =0.05

ARE(PL), % ARE(IB), % %(('fg)),%
1-8 1-8 1-8
1-a« 050 070 0.90 050 0.70 0.90 050 070 0.90
050 355 365 408 360 378 459 986 966 889
070 365 396 473 377 430 559 968 921 846
090 408 473 605 439 530 703 929 892 861

(b) P(X =1) =050

1-8 1-8 1-8
l-« 0.50 0.70 0.90 0.50 0.70 0.90 0.50 0.70 0.90
0.50 529 540 584 535 555 632 989 97.3 924
0.70 540 573 647 555 611 720 97.3 938 899
0.90 584 647 758 626 712 836 933 909 907

optimal sampling fractions and a very small failure ratex= 0.01, which we
believe is small enough to be able to make valid comparisons to their results.
Note that the results in Table 1 are calculated under the condition that the
subcohort fraction equals the expected number of cases, providing approximately
one “control” per case, a frequently used design.

5. Conclusionsand further problems. We have established new information
bounds for the Cox model with missing data. Along the way we have developed
a new decomposition oLg(Q), characterized the structure of the orthogonal
complement of the nuisance parameter tangent sp}#c,eand shown how to
project onto the spacénL using conditional version®; and R2 of the mean
residual life operatorR introduced by Efron and Johnstone (1990) and Ritov
and Wellner (1988). The new bounds can be used to examine the loss of
efficiency of pseudo-likelihood estimators for a given design and the amount of
information loss due to a given design relative to complete data collection or to an
alternative two phase design. While it has been known for some time that pseudo-
likelihood estimators are not semiparametrically efficient, our explicit calculations
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guantify the loss of efficiency and also show that two-phase designs with stratified
subsampling can partially recover the information that is lost due to missing data.

Further problems.

1. Construction of efficient estimators when covariates are discrete. Efficient
estimators can be constructed explicitly using one-step methods when the
covariates are discrete. For a preliminary study of such estimators, see
Nan (2001).

2. Construction of efficient estimators in general. This will depend crucially on
understanding the properties of the integral equation defining the efficient score
and influence function. A major difficulty in constructing efficient estimators is
the fact that the conditional cumulative hazard functivp(y|z) enters into
the key equation (3.18) which determing$ and hence the efficient score
function /3. This function is typically completely unknown and is a function
of d + 1 variables which must be estimated nonparametrically. This is, of
course, a difficult task for even moderately lajeHowever, our goal is not
to estimateAs well, but instead to estimateé well, and it is not yet clear
how crucial the difficulty in estimating. ¢ will be for construction of (nearly)
efficient estimates of. We remain optimistic about this at least for moderate
values ofd, and regard this as an important question for future work.

3. How canwe “optimize” the sampling design for a particular study? If we focus
on the variance of the estimator of a particular regression coefficient (e.g., the
coefficient corresponding to a binary treatment-control covariate), then it would
be very interesting to know how to allocate the sampling effort in the second
phase to minimize the (asymptotic) variance. Our results provide the tools to
graphically address this extremely important question.

4. Are there better compromise estimators based on pseudo-likelihood? Here the
approaches of Chatterjee, Chen and Breslow (2003) and Chatterjee (1999) may
be useful.
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