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INFORMATION BOUNDS FOR COX REGRESSION MODELS
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We derive information bounds for the regression parameters in Cox
models when data are missing at random. These calculations are of interest
for understanding the behavior of efficient estimation in case-cohort designs,
a type of two-phase design often used in cohort studies. The derivations make
use of key lemmas appearing in Robins, Rotnitzky and Zhao [J. Amer. Statist.
Assoc. 89 (1994) 846–866] and Robins, Hsieh and Newey [J. Roy. Statist.
Soc. Ser. B 57 (1995) 409–424], but in a form suited for our purposes here.
We begin by summarizing the results of Robins, Rotnitzky and Zhao in a
form that leads directly to the projection method which will be of use for
our model of interest. We then proceed to derive new information bounds for
the regression parameters of the Cox model with data Missing At Random
(MAR). In the final section we exemplify our calculations with several
models of interest in cohort studies, including an i.i.d. version of the classical
case-cohort design of Prentice [Biometrika 73 (1986) 1–11] and Self and
Prentice [Ann. Statist. 16 (1988) 64–81].

1. Introduction. Models for missing data have been the subject of intense
research over the past decade. In particular, the landmark paper of Robins,
Rotnitzky and Zhao (1994) (hereafter RRZ) provides theoretical results for
information bounds in semiparametric regression models with some covariates
missing at random. RRZ studied extensively the special case where the model for
the complete data is restricted only by specification of its mean, conditional on the
covariates. They provided a brief treatment of the case where the full data model
is the Cox regression model. In related work, Robins, Hsieh and Newey (1995)
(hereafter RHN) provided information bounds for classical regression models with
missing covariate data.

Meanwhile, case-cohort and stratified case-cohort designs have become increas-
ingly important and popular in epidemiology since the basic work of Prentice
(1986) and Self and Prentice (1988). For reports of studies using these designs, see,
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for example, Bell, Hertz-Picciotto and Beaumont (2001), Dome, Chung, Berge-
mann, Umbricht, Saji, Carey, Grundy, Perlman, Breslow and Sukumar (1999),
Margolis, Knauss and Bilker (2002), Mark, Qiao, Dawsey, Wu, Katki, Guntere,
Fraumeni, Blot, Dong and Taylor (2000), Rasmussen, Folsom, Catellier, Tsai, Garg
and Eckfeldt (2001), Zeegers, Goldbohm and van den Brandt (2001) and Zeegers,
Swaen, Kant, Goldbohm and van den Brandt (2001). These study designs corre-
spond to missing data models, since complete data are collected only on a subsam-
ple of the study cohort. The currently used estimators for the Cox model with these
designs are not known to be efficient, being based on pseudo-likelihoods or various
ad hoc estimating equations. Because of the sheer volume of studies using these
designs, it is becoming increasingly important to better understand the following:

(1) What are the information bounds for these types of designs and models?
(2) How much information is being lost by use of ad hoc estimators?
(3) Is it possible to construct reasonable, easily computable estimators which

achieve the information bounds?

Our goal here is to begin to address the first two of these issues.
We begin by reorganizing and summarizing some results appearing in

RRZ and RHN. Our summary (in Section 2) is formulated in a way which will lead
quickly to information bounds for the models of primary concern here, namely Cox
regression models with missing data. Our new information bounds for the Cox re-
gression model with missing data are presented in Section 3. The efficient scores
are characterized in terms of the solution of an integral equation.

In Section 4 the information bounds arecalculated explicitly for particular
submodels in several special cases, including case-cohort and exposure-stratified
case-cohort versions of the Cox model. Although it has been known for some time
that pseudo-likelihood estimators are not semiparametrically efficient, our explicit
calculations quantify the loss of efficiency, and also show that two-phase designs
with stratified subsampling can partially recover the information that is lost due to
missing data.

Although we will not address question (3) in this paper, we note that for
complex models such as those under study in Sections 3 and 4 of this paper, it
is not uncommon for the calculation of information bounds to precede and aid
in the development of efficient estimators. For example, the information bounds
obtained by Sasieni (1992a, b) came seven or eight years before the development
of efficient estimators for “partly linear” extensions of the Cox model in Huang
(1999). Construction of efficient estimators for case-cohort designs, with and
without stratification, will be treated by the first author. For preliminary work in
this direction, see Nan (2001).

While our focus here is on information bounds rather than on construction
of estimators, we comment briefly here on work on the estimation side of the
problem. Most of the recent work on estimators for missing data in the Cox model
focuses on improvements of the pseudo-likelihood estimators of Self and Prentice
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(1988); see, for example, Borgan, Langholz, Samuelsen, Goldstein and Pogoda
(2000), Chen and Lo (1999) and the methods developed for related missing data
models in Chatterjee, Chen and Breslow (2003).

2. Information bounds for models with missing data. We first give a brief
review of the general setting for information bound calculations with missing
data. This material is a reworking of important results in Robins, Rotnitzky and
Zhao (1994) in a form suitable for our present calculations. Readers new to these
calculations may also be interested in van der Vaart [(1998), pages 379–383] and
Emond and Wellner (1995).

The general setup in this article is as follows: we suppose thatU0 is a random
vector with distributionQ in the modelQ: U0 represents the “full” or “complete
data.” The complete or “full data” modelQ may be parametric, semiparametric
or nonparametric, but in our examples it will be semiparametric:Q = {Qθ,η : θ ∈
� ⊂ R

d , η ∈ H} whereθ is the parameter of primary interest andη is an infinite-
dimensional “nuisance parameter.” The “observed data” isU , where typically
U0 = (U0

1 ,U0
2 ), and thenU = (U0,R) = (U0,1) when the indicator variable

R = 1, andU = (U0
1 ,R) = (U0

1 ,0) when R = 0. The distribution ofU is P ,
an element of the (induced) “observed data” modelP . In our examplesP is
semiparametric, parametrized by(θ, η), whereθ ∈ � ⊂ R

d is the parameter of
interest andη is a nuisance parameter. The goal is to find the information bound
for estimation ofθ whenη is unknown based on observation ofU1, . . . ,Un i.i.d.
asU ∼ Pθ,η ∈ P .

Here is the primary model of interest for which the information bound is derived
in Sections 3–5.

EXAMPLE (The Cox model with missing covariates). LetT be a failure time,
C be a censoring time andZ = (X,V ) ∈ R

d be a covariate vector which is not time
dependent. The dataX are missing at random, whileY ≡ T ∧ C, � ≡ 1[T ≤C] and
V andR are always observed, whereR is an indicator of missingness as above. The
full data areU0 = (Y,�,X,V ) and the observed data areU = (Y,�,RX,V,R)

in the general notation introduced above. Note thatX may be missing by design,
as in two-phase studies. In a two-phase study(Y,�,V ) is observed for all subjects
in phase 1 of the study. [In some “classical” case-cohort designs, only(�,V ) is
observed in phase 1. We will treat this case briefly in Section 3.3.] In phase 2X is
obtained on a subsample of the subjects. The probability of being included in this
subsample may depend on what was observed in phase 1. We are interested in
estimating the effect onT of the covariateZ = (X,V ). Let (T |Z) ∼ F(·|Z) with
densityf = fθ,λ, where

1− Fθ,λ(t|z) = exp
(−eθ ′z�(t)

)
so

fθ,λ(t|z)
1− Fθ,λ(t|z) = eθ ′zλ(t),
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whereλ is the (Lebesgue) density of�. Also, let(C|Z) ∼ G(·|Z) with densityg,
where

g(c|z)
1− G(c|z) = λG(c|z) and �G(c|z) =

∫ c

0
λG(t|z) dt.

We assume thatT andC are conditionally independent givenZ (noninformative
censoring). LetZ ∼ H with densityh. ThenQ is the set of all densities of the
form

qθ,λ,λG,h(y, δ, z)

= q(y, δ, x, v)

=
[
f (y|z)

∫
(y,∞)

g(t|z) dt

]δ[
g(y|z)

∫
(y,∞)

f (t|z) dt

]1−δ

h(z)(2.1)

= (
eθ ′zλ(y)

)δ exp
(−eθ ′z�(y)

)(
λG(y|z))1−δ exp

(−�G(y|z))h(z).

The regression parameterθ is the parameter of interest, and the nuisance
parameterη is (λ,λG,h). This is basically the model introduced by Cox (1972).
The modelP for the observed data is the set of all distributions with densities of
the form

p
(
r, y, δ, (r · x), v

) = (
π(y, δ, v)q(y, δ, x, v)

)r
×

((
1− π(y, δ, v)

) ∫
q(y, δ, x, v) dµ(x)

)1−r

,
(2.2)

where π(Y,�,V ) = P (R = 1|U0
1 ), with π(Y,�,V ) ≥ σ > 0, and µ is a

dominating measure onX.

Now we give a brief introduction to efficiency calculations in general; for more
details see Bickel, Klaassen, Ritov and Wellner (1993) or van der Vaart [(1998),
pages 362–371].

2.1. Introduction to information bounds for semiparametric models. The
information bound for estimation ofθ in the modelP is equal toI ∗−1

θ . Here,
I ∗
θ is the efficient information matrix forθ in P , given by

I ∗
θ = EP

(
l∗θ l∗T

θ

) ≡ EP

(
l∗⊗2
θ

)
,(2.3)

where l∗θ is the efficient score forθ . The efficient score forθ in a modelP =
{Pθ,η : θ ∈ �,η ∈ H} with nuisance parametersη is the (componentwise) projec-
tion of the vector of scoreṡlθ ∈ (L0

2(P ))d for θ onto the orthogonal complement
of the (closure of the linear span) of all scores for the nuisance parameters,Ṗη.
Intuitively, whenη is unknown information aboutθ can only come from that com-
ponent ofl̇θ that is statistically independent of variability in the data controlled
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by the nuisance parameter. This component isl∗θ . Formally, each component of
the efficient score forθ is orthogonal to all scores for nuisance parameters, where
orthogonality is relative to the inner product〈b(U), a(U)〉L0

2(P ) ≡ EP {ba} in the
spaceL0

2(P ), the space of all mean-zero square-integrable functions ofU . Let Ṗ
be the tangent space forP . Ṗ is the closure of the linear span of the scores of all
submodels ofP passing throughP (see BKRW). The tangent space for a model
can be thought of as the space of all components of its score, and the “size” ofṖ
corresponds to the amount of unknown information aboutP . For example, when
P is completely nonparametric,̇P is all of L0

2(P ). Now let Ṗθ and Ṗη be the
tangent spaces for the submodels ofP whereη andθ are assumed known, respec-
tively. Analogous definitions hold foṙQθ andQ̇η. ThenṖθ + Ṗη ⊂ Ṗ and we may
assume for our purposes thatṖθ + Ṗη = Ṗ ; see BKRW (page 76) for a discussion.
The orthogonality condition described above forl∗θ ∈ (Ṗ ⊥

η )d is

l∗θ ⊥ Ṗη in L0
2(P );(2.4)

that is,EP (l∗θ b) = 0 for all b ∈ Ṗη, where the orgonality is componentwise (i.e., it
holds for each component of the vector of functionsl∗θ ). Thus, our approach
to calculatingl∗θ and the resulting efficiency bound is to projectl̇θ onto the
orthocomplementṖ ⊥

η of Ṗη in L0
2(P ):

l∗θ = �
(
l̇θ |Ṗ ⊥

η

)
,(2.5)

where � denotes the projection operator; see, for example, Bickel, Klaassen,
Ritov and Wellner [(1993), Appendix A.2]. [Here the⊥ (orthogonal complement)
denotes the ortho-complement inL0

2(P ) or L0
2(Q), depending on the context.] The

spaceṖ ⊥
η is of further importance, because it contains all influence functions for

all regular estimators ofθ in P . Note thatl∗θ = �(l̇θ |Ṗ ⊥
η ) = b∗ if and only if

〈b, l̇θ − b∗〉 = 0 for all b ∈ Ṗ ⊥
η .(2.6)

This implies that we can find the desired projection by proposing a guessb∗ for
l∗θ and then showing that (2.6) holds. This requires some understanding ofṖ ⊥

η .

However, this last requirement can be relaxed somewhat. Sincel̇θ ∈ Ṗ = Ṗθ + Ṗη,
we have

�
(
l̇θ |Ṗ ⊥

η

) = �
(
l̇θ |Ṗ ∩ Ṗ ⊥

η

) = �
(
l̇θ |M ∩ Ṗ ⊥

η

)
for any (closed) subspaceM such thatṖ ⊂ M ⊂ L0

2(P ). So it is sufficient to be
able to identify allb in some setM ∩ Ṗ ⊥

η , which might not be all ofṖ ⊥
η . Note that

Ṗ ∩ Ṗ ⊥
η ⊂ M ∩ Ṗ ⊥

η ⊂ Ṗ ⊥
η . This is essentially the approach of Robins, Rotnitzky

and Zhao (1994); see also the discussion in van der Vaart [(1998), pages 379–383].
The approach proceeds by identifying an “intermediate” setK = M ∩ Ṗ ⊥

η , and
then knowingl∗θ ∈ (K)d provides a general form forl∗θ . An expression forl∗θ
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will be obtained by finding the specific element ofK that is the projection oḟlθ
ontoK . The next subsection provides the formal results necessary to carry out this
approach.

2.2. Information bounds with missing data. The following material is essen-
tially a special case of results appearing in Robins, Rotnitzky and Zhao (1994).
Throughout this subsection we take the complete data to beU0 = (U0

1 ,U0
2 ) ∼

Q ∈ Q, with U0
2 Missing At Random (MAR) in the observed data: thusR is an

indicator of whetherU0
2 is observed withP (R = 1|U0) = P (R = 1|U0

1) ≡ π(U0
1)

with π(U0
1) ≥ σ > 0. If π = πγ is allowed to be unknown via parametersγ ∈ �,

then we letR = {πγ :γ ∈ �} denote the model for the “missingness probabili-
ties” π . The observed data areU ≡ (U0

1 ,U0
2 ,R)R(U0

1 ,R)1−R ≡ (U0
1 ,RU0

2 ,R).

Because there is a measurable map from(U0,R) to U , the tangent space forQ×R
can be mapped tȯP via an operatorA that we call thescore operator. The tangent
spaceQ̇ × Ṙ for Q × R is justQ̇ under our assumption thatπ(U0

1) is known, and
we indeed impose this assumption throughout the rest of this paper.

REMARK. We have not includedR in U0 because the functions iṅQ do
not depend onR. However, if π were partially unknown, then the parameters
of π would be additional nuisance parameters,R would be included inU0, and
Q̇ would be replaced bẏQ + Ṙ in Lemmas 2.1 and 2.2.

Fora ∈ L0
2(Q) define the (score) operatorA :L0

2(Q) → L0
2(P ) by

Aa(U) ≡ (Aa)(U) ≡ E{a(U0)|U } = Ra(U0) + (1− R)E
(
a(U0)|U0

1
)
.

LEMMA 2.1.

A. {Aa(U) :a ∈ Q̇} ⊂ Ṗ .
B. The adjoint AT :L0

2(P ) → L0
2(Q) of A is given by AT b(U0) ≡ E{b(U)|U0}

for b ∈ L0
2(P ).

C. AT Aa = π(U0
1)a(U0) + (1− π(U0

1))E[a|U0
1 ] for a ∈ L0

2(Q).
D. The operator (AT A)−1 is given by

(AT A)−1a = a(U0)

π(U0
1)

− 1− π(U0
1)

π(U0
1 )

E[a|U0
1 ].

Robins, Rotnitzky and Zhao (1994) denote the operatorAT A by m. Then
C and D are special cases of their Propositions 8.2a2 and 8.2e. The next lemma
is key since it identifiesṖ ⊥

η onceQ̇⊥
η is known.

LEMMA 2.2. Suppose that π(U0
1) ≥ σ > 0. Then:
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A. Range(A) is closed [and so is Range(A|Q̇) or the range of A restricted to
any other closed subspace of L0

2(Q)].
B. Let b ∈ L0

2(P ). Then b ∈ Ṗ ⊥
η if and only if AT b ∈ Q̇⊥

η .

Part B of Lemma 2.2 is Lemma A.6 of Robins, Rotnitzky and Zhao (1994),
while part A of Lemma 2.2 is proved in Robins and Rotnitzky [(1992), proof of
Theorem 4.1, page 326]. It is also in the proof of Lemma A.4 in Robins, Rotnitzky
and Zhao [(1994), page 862]. Note that the condition of Lemma 2.2 is used by
Robins, Rotnitzky and Zhao (1994) in the proofs of both parts A and B since
RRZ’s proof of Lemma A.6 uses their Lemma A.2 which in turn has their (36) as
a hypothesis.

Now suppose thaṫQ⊥
η is known. Then for the subspaceM in the discussion

earlier in this section we will takeṖη + K , whereK consists of the closed
subspace of all functionsk(U) of the form

k(U) = R

π
ζ(U0) − R − π

π
E[ζ(U0)|U0

1 ],

whereζ(U0) ∈ Q̇⊥
η . Moreover, letJ be the set of allj (U) such that

j (U) = R

π
ζ(U0) − R − π

π
φ(U0

1),

whereζ(U0) ∈ Q̇⊥
η andφ(U0

1 ) is any function inL2(PU0
1
). The setJ is discussed

by Robins, Rotnitzky and Zhao (1994) and by van der Vaart [(1998), page 383].
As noted by RRZ, the particular functionφ(U0

1 ) in the definition ofk yields the
smallest variance for a given functionζ .

The next three lemmas and two propositions characterizeJ andK in terms of
Ṗ andṖ ⊥

η and show thatK has the desired properties. These propositions form
the basis for our specific information bound calculations for the Cox model in the
sections to follow.

The next lemma shows that everyb = Aa ∈ L0
2(P ) for a ∈ L0

2(Q) can be
decomposed into the form(R/π)(AT A)a − �((R/π)(AT A)a|J(2)), whereJ(2)

is the subspace ofL0
2(P ) with form of the second term in the definition of the

classJ. The following Lemma 2.3 is a special case of Lemma A.3 of Robins,
Rotnitzky and Zhao (1994).

LEMMA 2.3. Suppose a(U0) ∈ L0
2(Q). Then Aa ⊥ R−π

π
φ(U0

1 ) for all a ∈
L0

2(Q), φ ∈ L2(Q); equivalently

Aa = R

π
(AT A)(a) − �

(
R

π
(AT A)(a)

∣∣∣J(2)

)
,(2.7)

where J(2) ≡ {(R/π − 1)φ(U0
1 ) :φ(U0

1) ∈ L2(Q)}.
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PROPOSITION2.1. K ⊂ J ⊂ Ṗ ⊥
η and Ṗ ⊥

η ∩ Ṗ ⊂ K .

REMARK. Any function b ∈ (Ṗ ⊥
η )d with 〈b, l∗θ 〉 = J , the d × d identity

matrix, is an influence function for estimation ofθ ∈ � ⊂ R
d in the modelP

for the observed data (see, e.g., BKRW, page 73, Proposition 3.4.2), and the
decomposition ofb = Aa given in (2.7) shows howb = Aa ∈ (Ṗ ⊥

η )d is related to
the influence functionAT Aa for estimation ofθ in the modelQ for the complete
data. Note that(R/π)(AT A)a is then the influence function of an inverse-weighted
estimator ofθ in P of the basic type proposed by Horvitz and Thompson (1952).

LEMMA 2.4. Given a subspace M of L0
2(P ) there is a unique projection map

�(·|M) from L0
2(P ) onto M. In particular:

A. For a∗ ∈ Ṗη, h ∈ L0
2(P ) we have a∗ = �(h|Ṗη) if and only if 〈h − a∗,

a〉 = 0 for all a ∈ Ṗη.
B. For b∗ ∈ Ṗ ⊥

η , h ∈ L0
2(P ) we have b∗ = �(h|Ṗ ⊥

η ) if and only if 〈b,

h − b∗〉 = 0 for all b ∈ Ṗ ⊥
η .

C. For b∗ ∈ Ṗ ⊥
η ∩ Ṗ , h ∈ Ṗ , we have b∗ = �(h|Ṗ ⊥

η ∩ Ṗ ) if and only if

〈b,h − b∗〉 = 0 for all b ∈ Ṗ ⊥
η ∩ Ṗ .

D. Suppose that h ∈ M with Ṗ ⊂ M ⊂ L0
2(P ), M a closed subspace. Then

for b∗ ∈ Ṗ ⊥
η ∩ M, b∗ = �(h|Ṗ ⊥

η ∩ M) if and only if 〈b,h − b∗〉 = 0 for all

b ∈ Ṗ ⊥
η ∩ M.

E. For h ∈ Ṗ , the projection �(h|Ṗ ⊥
η ∩ M) = �(h|Ṗ ⊥

η ∩ Ṗ ) ∈ Ṗ .

The following proposition is an immediate consequence of Proposition 2.1 and
Lemma 2.4, part E. It is a special case of Proposition 8.1e1 of Robins, Rotnitzky
and Zhao (1994).

PROPOSITION 2.2. l∗θ = �[l̇θ |K] = R
π
ζ ∗ − R−π

π
E[ζ ∗|U0

1 ], where l∗θ is the
efficient score for θ in model P and ζ ∗ is the unique element of (Q̇⊥

η )d satisfying

�

(
1

π
ζ ∗ − 1− π

π
E[ζ ∗|U0

1 ]
∣∣∣Q̇⊥

η

)
= l∗0

θ ,(2.8)

where l∗0
θ is the efficient score for θ in the complete data model Q.

3. The Cox model with missing covariate data. In this section we discuss
the efficient score and information calculations for Cox regression models with
missing covariates as introduced in the example in Section 2. This model is
very useful in epidemiology studies, especially in two-stage designs (also called
two-phase designs) where the probabilitiesπ are determined by the investigator.
Equation (2.1) gives the joint density of the complete data(Y,�,X,V ) ≡
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(Y,�,Z) and (2.2) gives the joint density of the observed data(Y,�,RX,V,R).
The finite-dimensional parameterθ is the parameter of interest and the nuisance
parameterη = (λ,λG,h) is a vector of three infinite-dimensional nuisance
parameters. We will use Proposition 2.2 to obtain the efficient scorel∗θ in the
observed modelP for Cox regression. The efficient score function in the full
modelQ, l∗0

θ , has been studied by many authors, such as Efron (1977), Andersen
and Gill (1982), Begun, Hall, Huang and Wellner (1983) and Bickel, Klaassen,
Ritov and Wellner (1993). Hence our main job will be to characterize the
spaceQ̇⊥

η .

3.1. The nuisance parameter tangent space Q̇⊥
η of the full data model Q. The

scores for the parameter of interestθ and the score operators for the nuisance
parametersλ, λG andh in the “full” model Q given in (2.1) are the following:

l̇01(Y,�,Z) ≡ l̇0θ (Y,�,Z) = �Z − Z�(Y )eθ ′Z =
∫

Z dM(t),(3.1)

l̇02(Y,�,Z) ≡ l̇0λa(Y,�,Z)
(3.2)

= �a(Y ) − eθ ′Z
∫ Y

0
a(t) d�(t) =

∫
a(t) dM(t),

l̇03(Y,�,Z) ≡ l̇0λG
b(Y,�,Z)

= (1− �)b(Y,Z) −
∫ Y

0
b(t,Z)d�G(t|Z)

(3.3)
=

∫
b(t,Z)dMG(t),

l̇04(Y,�,Z) ≡ l̇0hc(Y,�,Z) = c(Z),(3.4)

whereM andMG are martingales, conditional onZ, for the failure and censoring
counting processes, respectively;

M(t) = �1(Y ≤ t) −
∫ t

0
1(Y ≥ s) d�(s|Z),

MG(t) = (1− �)1(Y ≤ t) −
∫ t

0
1(Y ≥ s) d�G(s|Z),

(3.5)
a(t) = ∂

∂χ
logλχ(t),

b(t,Z) = ∂

∂ψ
logλGψ(t|Z), c(Z) = ∂

∂κ
loghκ(Z),

for regular parametric submodels{λχ }, {λGψ} and{hκ} passing through the true
parametersλ, λG and h when χ = 0, ψ = 0 and κ = 0, respectively. Here
we abuse notation slightly by writing�(·) for the baseline cumulative hazard
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function and�(·|Z) for the cumulative hazard function conditional onZ. Under
the proportional hazards assumption�(·|Z) = �(·)eθ ′Z .

Then the scores in the observed model (2.2) are the following:

l̇i (Y,�,RX,V,R) = Rl̇0i (Y,�,Z) + (1− R)E
{
l̇0i (Y,�,Z)

∣∣Y,�,V
}
,

i = 1, . . . ,4.

Hence the tangent spaces for the parameters in the two models are

Q̇i ≡ [l̇0i ], Ṗi ≡ [l̇i], i = 1, . . . ,4.(3.6)

Here[α] denotes the closed linear span of the setα in L0
2(Q) orL0

2(P ) as in Bickel,
Klaassen, Ritov and Wellner [(1993), page 49]. By definition all the elements
in Q̇i andṖi , i = 1, . . . ,4, are square integrable. It is easy to see thatQ̇2, Q̇3 and
Q̇4 are mutually orthogonal. Since they are closed (by definition), the nuisance
tangent space iṡQη = Q̇2 + Q̇3 + Q̇4.

Let W1 andW2 be subdistributions onRd+1 defined by

W1(y, z) ≡ Q(Y ≤ y,Z ≤ z,� = 1)

=
∫
(−∞,z]

∫
(0,y]

(
1− G(t|z′)

)
dF (t|z′) dH(z′),

W2(y, z) ≡ Q(Y ≤ y,Z ≤ z,� = 0)

=
∫
(−∞,z]

∫
(0,y]

(
1− F(t|z′)

)
dG(t|z′) dH(z′),

corresponding to the uncensored and censored data. HenceW = W1 + W2 is the
marginal distribution of(Y,Z). Then we can defineL2 spaces corresponding to
the subprobability measures

L2(Wi) =
{
u(Y,Z) :

∫ ∫
u2(y, z) dWi(y, z) < ∞

}
, i = 1,2.

These spaces will be used in characterizingQ̇2, Q̇3 and thusQ̇⊥
η . It is easy

to see thatL2(W) ≡ L2(QY,Z) = L2(W1) ∩ L2(W2), L2(QT,Z) ⊂ L2(W1)

and L2(QC,Z) ⊂ L2(W2). Here QY,Z , QT,Z and QC,Z denote the marginal
distributions of(Y,Z), (T ,Z) and(C,Z) underQ ∈ Q.

Then the conditional distribution and conditional subdistributions ofY givenZ,
W(y|z), W1(y|z) andW2(y|z) have the following forms:

W(y|z) =
∫ y

0

(
1− G(t|z))dF (t|z) +

∫ y

0

(
1− F(t|z))dG(t|z)

= 1− (
1− F(y|z))(1− G(y|z)),

W1(y|z) =
∫ y

0

(
1− G(t|z))dF (t|z),

W2(y|z) =
∫ y

0

(
1− F(t|z))dG(t|z).
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Now we define two operatorsR1 andR2 as follows:

R1b(y, z) = b(y,1, z) −
∫ ∞
y b(t,1, z) dW1(t|z) + b(t,0, z) dW2(t|z)

1− W(y|z) ,(3.7)

R2b(y, z) = b(y,0, z) −
∫ ∞
y b(t,1, z) dW1(t|z) + b(t,0, z) dW2(t|z)

1− W(y|z) .(3.8)

They can be rewritten as

R1b(y, z) = b(y,1, z) − E[b(Y,�,Z)|Y > y,Z = z],(3.9)

R2b(y, z) = b(y,0, z) − E[b(Y,�,Z)|Y > y,Z = z].(3.10)

We will show later in Proposition 3.1 thatR1 andR2 mapL0
2(Q) to L2(W1) and

L2(W2), respectively. These operators are similar to theR operator discussed by
Ritov and Wellner (1988), Efron and Johnstone (1990) and Bickel, Klaassen, Ritov
and Wellner (1993).

The following Proposition 3.1 plays a key role in characterizing the spaceQ̇⊥
η

which will be used to derive the efficient scorel∗θ for θ in the modelP in the next
subsection.

PROPOSITION3.1. Any function b ∈ L0
2(Q) can be decomposed as follows:

b(Y,�,Z) =
∫

R1b(t,Z)dM(t) +
∫

R2b(t,Z)dMG(t) + E(b|Z),(3.11)

where

R1b(Y,Z) ∈ L2(W1), R2b(Y,Z) ∈ L2(W2).(3.12)

The decomposition is unique in the sense that R1b is unique a.e. W1 and R2b is
unique a.e. W2.

To prove Proposition 3.1, we will use the following two lemmas.

LEMMA 3.1. For the failure counting process martingale {M(t) : t ≥ 0}
defined by (3.5),we have∫

h1(t,Z) dM(t) ∈ L0
2(Q) if and only if h1(Y,Z) ∈ L2(W1),(3.13)

and similarly for the censoring counting process martingale,∫
h2(t,Z) dMG(t) ∈ L0

2(Q) if and only if h2(Y,Z) ∈ L2(W2).(3.14)
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PROOF. By using the methods of Chapter 6 of Shorack and Wellner (1986)
we can easily show that

E

(∫
h1(t,Z) dM(t)

)2

=
∫∫

h2
1(t, s) dW1(t, s),

E

(∫
h2(t,Z) dMG(t)

)2

=
∫∫

h2
2(t, s) dW2(t, s).

The zero means are trivial.�

LEMMA 3.2. For any functions hj :R+ × R
d → R

q in L2(W1), j = 1,2,

E

[∫
h1(t,Z) dM(t)

∫
h2(t,Z) dM(t)

]
= E[�h1(Y,Z)h2(Y,Z)].

Similarly, for any functions hj :R+ × R
d → R

q in L2(W2), j = 1,2,

E

[∫
h1(t,Z) dMG(t)

∫
h2(t,Z) dMG(t)

]
= E[(1− �)h1(Y,Z)h2(Y,Z)].

PROOF. This follows from Lemma 1 of Sasieni (1992a).�

PROOF OFPROPOSITION3.1. Equation (3.11) can be verified directly by the
definitions ofR1 andR2 operators in (3.7) and (3.8). See Nan (2001) for details.
By Lemma 3.1 we know that the right-hand side of (3.11) is inL0

2(Q) if (3.12) is
true. Now we show (3.12). Let

m(y, z) =
∫ ∞
y b(t,1, z) dW1(t|z) + b(t,0, z) dW2(t|z)

1− W(y|z) .

Obviously,b(Y,1,Z) ∈ L2(W1) andb(Y,0,Z) ∈ L2(W2) since

E[b2(Y,�,Z)] = E
[
�b2(Y,1,Z) + (1− �)b2(Y,0,Z)

]
=

∫∫
b2(y,1, z) dW1(y, z) +

∫∫
b2(y,0, z) dW2(y, z) < ∞.

Thus we only need to show thatm(Y,Z) ∈ L2(W). We rewritem(Y,Z) as

m(Y,Z) = 1

1− W(Y |Z)

∫ ∞
Y

{
b(t,1,Z)α(t,Z) + b(t,0,Z)β(t,Z)

}
dW(t|Z),

where

α(t,Z) = dW1(t|Z)

dW(t|Z)
, β(t,Z) = dW2(t|Z)

dW(t|Z)
.
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It is obvious that 0≤ α ≤ 1 and 0≤ β ≤ 1. Then by the same argument as that on
page 423 of Bickel, Klaassen, Ritov and Wellner (1993), we have

E[m2(Y,Z)|Z]

≤ 4
∫ {

b(t,1,Z)
dW1(t|Z)

dW(t|Z)
+ b(t,0,Z)

dW2(t|Z)

dW(t|Z)

}2

dW(t|Z)

≤ 8
{∫

b2(t,1,Z)α(t,Z)dW1(t|Z) +
∫

b2(t,0,Z)β(t,Z)dW2(t|Z)

}

≤ 8
{∫

b2(t,1,Z)dW1(t|Z) +
∫

b2(t,0,Z)dW2(t|Z)

}
.

Then by Fubini’s theorem we have

E[m2(Y,Z)] ≤ 8
{∫∫

b2(t,1, s) dW1(t, s) +
∫∫

b2(t,0, s) dW2(t, s)

}
< ∞.

Actually, from the above proof we have also shown that

L0
2(Q) ≡

{
h0(Z) +

∫
h1(t,Z) dM(t)

+
∫

h2(t,Z) dMG(t) :h0 ∈ L0
2(H),h1 ∈ L2(W1), h2 ∈ L2(W2)

}
.

The uniqueness can be proved by showing that any two decompositions of an
element inL0

2(Q) are identical. Suppose we have

b =
∫

h1(t,Z) dM(t) +
∫

h2(t,Z) dMG(t) + h0(Z);

b =
∫

h′
1(t,Z) dM(t) +

∫
h′

2(t,Z) dMG(t) + h′
0(Z).

Taking the expectation of the square of the difference of the right-hand sides of the
two equalities and using the orthogonality ofM , MG, and any function ofZ, by
Lemma 3.2 we have

0 =
∫

(h1 − h′
1)

2 dW1 +
∫

(h2 − h′
2)

2 dW2 +
∫

(h0 − h′
0)

2dH.

Thush′
0 = h0 a.s.H , h′

1 = h1 a.e.W1 andh′
2 = h2 a.e.W2. �

Now we are ready to discuss the spaceQ̇⊥
η .

PROPOSITION3.2. For any function s(Y,Z) ∈ L2(W1) define the operator B
by

Bs =
∫ {

s(t,Z) − E[s(Y,Z)|Y = t,� = 1]}dM(t).(3.15)

Then:
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(i) Bs ⊥ Q̇η in L0
2(Q).

(ii) For any b ∈ L0
2(Q) we have �(b|Q̇⊥

η ) = B ◦ R1b.
(iii) Q̇⊥

η = (Q̇2 + Q̇3 + Q̇4)
⊥ = {Bs : s ∈ L2(W1)}.

PROOF. (i) SinceQ̇2, Q̇3 andQ̇4 are mutually orthogonal andM ⊥ MG, we
have

�(Bs|Q̇2 + Q̇3 + Q̇4) = �(Bs|Q̇2) + �(Bs|Q̇3) + �(Bs|Q̇4) = �(Bs|Q̇2).

Let m(Y,�,Z) = ∫
s(t,Z) dM(t). Then �(m|Q̇2) = ∫

a∗(t) dM(t) for some
a∗(Y ) ∈ L2(W1) satisfying

E

[∫
{s(t,Z) − a∗(t)}dM(t)

∫
a(t) dM(t)

]
= 0

for any a(Y ) ∈ L2(W1). Now by Lemma 3.2 the left-hand side of the above
equation is equal to

E
[
�{s(Y,Z) − a∗(Y )}a(Y )

] = E
[{E[�s(Y,Z)|Y ] − a∗(Y )E[�|Y ]}a(Y )

]
and hence

a∗(Y ) = E[�s(Y,Z)|Y ]
E[�|Y ] = E[s(Y,Z)|Y,� = 1].

SoBs ⊥ Q̇2, and this yieldsBs ⊥ Q̇2 + Q̇3 + Q̇4 ≡ Q̇η.
(ii) From Proposition 3.1 we know that for anyb ∈ L0

2(Q) we have the
decomposition (3.11). Hence, from the proof of part (i) we know that

�(b|Q̇2 + Q̇3 + Q̇4)

= �(b|Q̇2) + �(b|Q̇3) + �(b|Q̇4)

=
∫

E[R1b(Y,Z)|Y = t,� = 1]dM(t)

+
∫

R2b(t,Z)dMG(t) + E(b|Z).

Thus,

�
(
b|(Q̇2 + Q̇3 + Q̇4)

⊥) = b − �(b|Q̇2 + Q̇3 + Q̇4) = B ◦ R1b.

(iii) This is an immediate consequence of (i) and (ii).�

If we chooses(t,Z) = Z, thenBs is the efficient score forθ in the (“full” or
“complete” data) modelQ.
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3.2. Efficient score for θ in observed model P . In this subsection we will use
the results in Section 2 and the previous subsection to derive the efficient scorel∗θ
of P . Since from Proposition 3.2 we know thatQ̇⊥

η = {Bs, s ∈ L2(W1)}, for the
modelP , with P ∈ P , we define the classK of all functions with the form

k(Y,�,RX,V,R) = R

π
B

(
s(Y,X,V )

) − R − π

π
E

[
B

(
s(Y,X,V )

)∣∣Y,�,V
]
,

wheres ∈ L2(W1). Note that we can rewrite the functionsk in terms of the operator
D :L2(W1) → L0

2(Q) defined by

Du(Y,�,Z) =
∫

u(t,Z)dM(t).(3.16)

ThusBs = D ◦ �1s = Du, where

u(Y,Z) ≡ �1s ≡ s(Y,Z) − E[s(Y,Z)|Y,� = 1].(3.17)

Then we have the following proposition:

PROPOSITION3.3. The efficient score l∗θ for θ in the model P for the observed
data is given by

l∗θ (R,Y,�,R · X,V )

= k∗ ≡ R

π
Du∗(Y,�,Z) − R − π

π
E[Du∗(Y,�,Z)|Y,�,V ],

where u∗ ∈ (L2(W1))
d is the unique a.e. W1 solution of the equation

�1Z = �1 ◦ R1

{
Du∗ +

(
1− π

π

)
[Du∗ − E(Du∗|Y,�,V )]

}

= u∗ + Tu∗,
(3.18)

where

T ≡ �1 ◦ R1 ◦ H(3.19)

and

Hu∗ =
(

1− π

π

)
[Du∗ − E(Du∗|Y,�,V )].(3.20)

COROLLARY 3.1. The function u∗ in Proposition 3.3 also satisfies, equiva-
lently,

u∗(Y,Z) −
{

Ku∗(Y,Z)

− π(Y,1,V )

E[π(Y,1,V )|Y,� = 1]E[Ku∗(Y,Z)|T Y,� = 1]
}

= π(Y,1,V )
{
Z − E[Z|Y,R� = 1]},

(3.21)
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where the operator K is a linear operator defined by

Ku∗(Y,Z)

= −E[Du∗(Y ′,�,Z)|Y ′ > Y,Z]
+ π(Y,1,V )E

(
Du∗(Y ′,�,Z)

π(Y ′,�,V )

∣∣∣Y ′ > Y,Z

)
(3.22) + (

1− π(Y,1,V )
)
E[Du∗|Y,�,V ]|�=1

− π(Y,1,V )E

(
1− π(Y ′,�,V )

π(Y ′,�,V )

× E[Du∗(Y ′,�,Z)|Y ′,�,V ]
∣∣∣Y ′ > Y,Z

)
.

Our proof of Proposition 3.3 will use the following lemma.

LEMMA 3.3. Denote the adjoint of D by DT :L0
2(Q) → L2(W1). Let �1 be

defined as in (3.17).Then:

(i) DT = R1.
(ii) R1 ◦ D = I.
(iii) �1 is a projection operator on L2(W1).

PROOF. (i) Let a ∈ L2(W1), b ∈ L0
2(Q). Then we have〈a,DT b〉L2(W1) =

〈Da, b〉L0
2(Q). By Proposition 3.1,

b(Y,�,Z) =
∫

R1b(t,Z)dM(t) +
∫

R2b(t,Z)dMG(t) + E[b(Y,�,Z)|Z].

Then we have

〈Da, b〉L0
2(Q) = EQ

{∫
a(t,Z)dM(t)

∫
R1b(t,Z)dM(t)

}

= EQ

{
�a(Y,Z)R1b(Y,Z)

}
=

∫∫
a(t, z)R1b(t, z) dW1(t, z) = 〈a,R1b〉L2(W1).

(ii) For all h ∈ L2(W1), by Proposition 3.1 we haveDh = ∫
hdM = ∫

R1 ◦
DhdM and thush = R1 ◦ Dh a.e.W1.

(iii) That �2(·) = E(·|Y,� = 1) is a projection operator onL2(W1) can be
shown by checking the three properties in Proposition A.2.2 of Bickel, Klaassen,
Ritov and Wellner (1993). So is�1 = I − �2. �
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PROOF OF PROPOSITION 3.3. We use Proposition 2.2 directly to prove
Proposition 3.3. For the Cox regression model we havel∗0

θ = BZ = D ◦ �1Z and
ζ ∗ = Du∗. Let

b(Y,�,Z) = BZ − 1

π
Du∗ + 1− π

π
E[Du∗|Y,�,V ].

Then by Proposition 2.2 and Proposition 3.2(ii) we have�(b|Q̇⊥
η ) = B ◦ R1b = 0.

Since by Lemma 3.3 we haveB ◦ R1b = D ◦ �1 ◦ R1b = D ◦ �1DT b = D ◦
(D ◦ �1)

T b = D ◦ BT b and R1 ◦ D = I, B ◦ R1b = 0 implies R1 ◦ B ◦ R1b =
R1 ◦ D ◦ BT b = BT b = 0 which is

BT

(
BZ − 1

π
Du∗ + 1− π

π
E[Du∗|Y,�,V ]

)
= 0.(3.23)

Sinceu∗(Y,Z) ≡ s∗(Y,Z) − E[s∗(Y,Z)|Y,� = 1] ∈ L2(W1) satisfies

E[u∗(Y,Z)|Y,� = 1] = 0,(3.24)

we must solve the pair of equations (3.23) and (3.24) for the functionu∗. Note that
�1 is a projection operator and thus we have

BT ◦ BZ = �T
1 ◦ DT ◦ BZ

= �1 ◦ R1 ◦ D ◦ �1Z = �2
1Z = �1Z = Z − E(Z|Y,� = 1).

Hence (3.23) can be rewritten, using Lemma 3.3 (ii) and (iii), as

Z − E[Z|Y,� = 1]
= �1 ◦ R1

{
Du∗

π
− 1− π

π
E(Du∗|Y,�,V )

}
(3.25)

= �1 ◦ R1

{
Du∗ + 1− π

π

(
Du∗ − E(Du∗|Y,�,V )

)}

= u∗ + Tu∗,

whereT = �1 ◦ R1 ◦ H andH is given by (3.20). Thus (3.18) holds.
To see that the solution is unique, we argue as follows: letζ ∗ = Du∗. Then from

Proposition 2.2 we know thatζ ∗ ∈ (Q̇⊥
η )d is the unique solution of the operator

equation

�

(
1

π
ζ ∗ − 1− π

π
E[ζ ∗|Y,�,V ]

∣∣∣Q̇⊥
η

)
= l∗0

θ .

Suppose we have

ζ ∗ = Du∗
1 =

∫
u∗

1(t,Z) dM(t) and ζ ∗ = Du∗
2 =

∫
u∗

2(t,Z) dM(t).
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Then taking the expectation of the square of the difference of the two equalities
componentwise and using Lemma 3.2 (componentwise), we have

0=
∫

|u∗
1 − u∗

2|2dW1.

It follows thatu∗
1 = u∗

2 a.e.W1. �

PROOF OFCOROLLARY 3.1. It also follows from (3.25) that

Z − E[Z|Y,� = 1](3.26)

= �1 ◦ R1

{
Du∗

π
− 1− π

π
E(Du∗|Y,�,V )

}

= R1

{
Du∗

π
− 1− π

π
E(Du∗|Y,�,V )

}

− E

{
R1

{
Du∗

π
− 1− π

π
E(Du∗|Y,�,V )

}∣∣∣Y,� = 1
}

≡ R1

{
Du∗

π
− 1− π

π
E(Du∗|Y,�,V )

}
− fu∗(Y ).(3.27)

Now

R1

(
Du∗

π

)
= Du∗|�=1

π(Y,1,V )
− E

(
Du∗(Y ′,�,Z)

π(Y ′,�,V )

∣∣∣Y ′ > Y,Z

)
(3.28)

and

R1

(
1− π

π
E[Du∗|Y,�,V ]

)

= 1− π(Y,1,V )

π(Y,1,V )
E[Du∗|Y,�,V ]|�=1(3.29)

− E

(
1− π(Y ′,�,Z)

π(Y ′,�,V )
E[Du∗(Y ′,�,Z)|Y ′,�,V ]

∣∣∣Y ′ > Y,Z

)
.

Substituting (3.28) and (3.29) into (3.27) yields

Z − E[Z|Y,� = 1] + fu∗(Y )

= Du∗|�=1

π(Y,1,V )
− E

(
Du∗(Y ′,�,Z)

π(Y ′,�,V )

∣∣∣Y ′ > Y,Z

)

− 1− π(Y,1,V )

π(Y,1,V )
E[Du∗|Y,�,V ]|�=1(3.30)

+ E

(
1− π(Y ′,�,V )

π(Y ′,�,V )
E[Du∗|Y ′,�,V ]

∣∣∣Y ′ > Y,Z

)

≡ 1

π(Y,1,V )

(
u∗(Y,Z) − Ku∗(Y,Z)

)
.
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Here we use

Du∗|�=1 = R1 ◦ Du∗(Y,Z) + E[Du∗(Y ′,�,Z)|Y ′ > Y,Z],
and the operatorK is defined as (3.22). Then we have

u∗(Y,Z) − Ku∗(Y,Z) = π(Y,1,V )
{
Z − E(Z|Y,� = 1) + fu∗(Y )

}
.(3.31)

Thus, taking conditional expectations givenY,� = 1 and usingE(u∗|Y,� =
1) = 0 as required by (3.24),

−E[Ku∗|Y,� = 1] = E[π(Y,1,V )|Y,� = 1]fu∗(Y )

+ E
[
π(Y,1,V )

(
Z − E(Z|Y,� = 1)

)∣∣Y,� = 1
]
.

Solving this forfu∗(Y ) yields

fu∗(Y ) = − E[Ku∗|Y,� = 1]
E[π(Y,1,V )|Y,� = 1]

(3.32)
− E[π(Y,1,V )(Z − E(Z|Y,� = 1))|Y,� = 1]

E[π(Y,1,V )|Y,� = 1] .

Note that
E[π(Y,1,V )(Z − E(Z|Y,� = 1))|Y,� = 1]

E[π(Y,1,V )|Y,� = 1]
= E[π(Y,1,V )Z|Y,� = 1]

E[π(Y,1,V )|Y,� = 1] − E[Z|Y,� = 1](3.33)

= E[Z|Y,� = 1,R = 1] − E[Z|Y,� = 1].
Combining (3.32) and (3.33) with (3.31), we obtain (3.21).�

The reason that we solve foru∗ instead ofs∗ is that there is no unique
solution if we solve fors∗: if s∗(Y,Z) satisfies (3.23) withu∗ replaced by
s∗ − E[s∗|Y,� = 1], then s∗(Y,Z) + f (Y ) will satisfy (3.23) for any func-
tion f (Y ). From the form ofk ∈ K we know thatk is determined byu(Y,Z) ≡
s(Y,Z) − E[s(Y,Z)|Y,� = 1]. So we only need to solve foru∗(Y,Z) ≡
s∗(Y,Z) − E[s∗(Y,Z)|Y,� = 1] and then computel∗θ ≡ k∗.

The parts of (3.18) and (3.21) involvingT andK, respectively, can be viewed
as integral operators on the unknown functionu∗. But these equations are not
standard Fredholm integral equations of the second kind [see, e.g., Kress (1999)
and Rudin (1973), Chapter 4]. Note that the terms ofK involving conditional
expectation givenY ′ > Y correspond to noncompact operators [see, e.g., Rudin
(1973), Problem 17, page 107] in general.

REMARK. The equation corresponding to our (3.18) given by Robins,
Rotnitzky and Zhao [(1994) Section 8.3, page 862, column 1] is incorrect.
According to personal communications with Robins, their incorrect result is due
to algebraic errors.
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3.3. Alternative models. The survival model we have discussed so far assumes
that Y is always observable andV is also a vector of covariates of interest. We
now consider some alternative scenarios for the models involved in the two-phase
designs.

When Z = (X,V ) but the Cox model only involves X. WhenZ = (X,V ), but
the Cox model for the conditional distribution ofT givenZ includes onlyX, then
θ ′z is replaced byθ ′x in the model (2.1). After going through the same procedure
as deriving equation (3.18), we obtain

u∗(Y,Z) −
{

Ku∗(Y,Z)

− π(Y,1,V )

E[π(Y,1,V )|Y,� = 1]E[Ku∗(Y,Z)|Y,� = 1]
}

(3.34)

= π(Y,1,V )
{
X − E[X|Y,R� = 1]},

where the operatorK is as defined in (3.22).

When Y is not observed at phase 1. If we are not able to observeY in the first
phase, we will observe the data

(Y,�,X,V )R(�,V )1−R

≡ (RY,�,RX,V,R) ≡
{

(Y,�,X,V ), R = 1

(�,V ), R = 0 ,

and the efficient score will have the form

k∗ = R

π
Du∗(Y,X,V ) − R − π

π
E[Du∗(Y,X,V )|�,V ].

By the same method used to derive (3.18), we find, for estimation of the coefficient
of Z, thatu∗ satisfies

u∗(Y,Z) −
{

Ku∗(Y,Z) − π(1,V )

E[π(1,V )|Y,� = 1]E[Ku∗(Y,Z)|Y,� = 1]
}

= π(1,V )
{
Z − E[Z|Y,R� = 1]},

(3.35)

where

Ku∗(Y,Z) = −E[Du∗(Y ′,�,Z)|Y ′ > Y,Z]
+ π(1,V )E

(
Du∗(Y ′,�,Z)

π(�,V )

∣∣∣Y ′ > Y,Z

)
(3.36) + (

1− π(1,V )
)
E[Du∗|�,V ]|�=1

− π(1,V )E

(
1− π(�,V )

π(�,V )
E[Du∗(Y ′,�,Z)|�,V ]

∣∣∣Y ′ > Y,Z

)
.
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When Y is not observed at phase 1, Z = (X,V ), and the Cox model only
involves X. When the Cox model involves onlyθ ′X and just(�,V ) is observed
in the first phase,u∗ must satisfy

u∗(Y,Z) −
{

Ku∗(Y,Z) − π(1,V )

E[π(1,V )|Y,� = 1]E[Ku∗(Y,Z)|Y,� = 1]
}

= π(1,V )
{
X − E[X|Y,R� = 1]},

(3.37)

with K defined in (3.36).

When Z = (X,V ), V = (V1,V2) and the Cox model only involves (X,V1).
Suppose thatV = (V1,V2) and thatT andV2 are conditionally independent given
(X,V1), that is, the Cox model for the conditional distribution ofT involves only
(X,V1). This is a generalization of the previous models. In order to avoid repeating
calculation of the efficient score function, we can reduce the general model to
the model either in Section 3.1 or in Section 3.3 and apply those existing results.
Let X̃ = (X,V1) and assume that̃X is missing at random. Thus̃X andV would,
respectively, play the role ofX andV in our Sections 3.1 and 3.2. AlthoughV1 can
be missing inX̃, it is fully recovered fromV . Then we can directly use the results
of alternative models in Sections 3.1 and 3.3 for the general model.

4. Examples of information bound calculations. The case-cohort design,
studied by Prentice (1986) and Self and Prentice (1988), and the exposure
stratified case-cohort design, studied by Borgan, Langholz, Samuelsen, Goldstein
and Pogoda (2000), are two special cases in the class of two-phase designs. In
the case-cohort design the complete information is essentially observed for all
the failures and a simple random subsample of the nonfailures. The exposure
stratified case-cohort design is a modification of the classical case-cohort design
in which complete covariate data is observed for all failures and for a stratified
random subsample of the nonfailures. The stratification is based upon a correlate
(or surrogate variable, available for everyone) of the true exposure (or prognostic
factor) of interest. In this section we treat the simplified i.i.d. versions of these
sampling designs.

Pseudo-likelihood type (inefficient) estimators have been proposed by Prentice
(1986) for case-cohort designs, and by Borgan, Langholz, Samuelsen, Goldstein
and Pogoda (2000) for exposure stratified case-cohort designs. For discussions
of efficient estimators for these designs we refer to Nan (2001). But information
bound calculations can tell us how much information we could potentially gain
from fully efficient estimators and which design methods use the observed data
more efficiently, if efficient estimators were available. Here we give two examples
in which the information bound calculations can be carried out analytically.
Although these two hypothetical examples are rather special cases involving
evaluation of the information for a simple parametric subfamily, the calculations
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in this section may tell us the fundamental properties of the designs and potential
estimators. The results may give some guidance for designing and analyzing real
studies.

4.1. A case-cohort study. We assume that the true distribution has expo-
nentially distributed failure times and a single binary covariateZ taking values
0 and 1. Leth(z) = P (Z = z) be the probability that a subject has covariate value
z ∈ {0,1}; thus h(0) + h(1) = 1. The censoring time is distributed with point
mass 1 att = 1, which means that all subjects in the cohort are followed from
time zero to either failure or to the end of the study att = 1. This is discussed as
an example by Self and Prentice (1988). The density of the complete data can be
written as

qY,�,Z(y, δ, z) =
{

w1(y|z)h(z) = λeθz−λyeθz
h(z), δ = 1, 0≤ y ≤ 1,

w2(y|z)h(z) = e−λeθz
h(z), δ = 0, y = 1.

(4.1)

In the i.i.d. version of the case-cohort study, a simple random subsample is taken
from the nonfailures with sampling (inclusion) probabilityπ0. The values of the
covariateZ are measured for all the failures and only the sampled nonfailures.
Hence it is a special case of the two-phase design discussed in the previous section
with π(Y,�) ≡ P (R = 1|Y,�) = π(�) only, and whereπ(1) = 1, π(0) = π0 ∈
(0,1). Note that we do not have a surrogate covariateV in this example. In a
classical case-cohort design,Y may not be observed if the subject is not a failure
and not in the subcohort. But for this special example� = 0 impliesY = 1. So for
information bound calculations it does not matter whether we treatY as known or
not. Detailed calculation is omitted here and can be found in Nan (2001).

Figure 1 displays the ratios of asymptotic variance of the Self and Prentice
(1988) pseudo-likelihood estimator (SP Variance) to the information lower bound
for θ as a function of the sampling fraction for nonfailures in the i.i.d. case-
cohort model shown above. Figure 1 shows that when the disease is rare, that
is, the baseline failure probability is very low, the pseudo-likelihood estimator is
close to fully efficient. As the failure probability increases, the pseudo-likelihood
estimator loses more efficiency, especially when the subcohort fraction is small.
Hence development of more efficient estimators may be worthwhile for case-
cohort designs where increasing the subcohort fraction is costly and the failure
probability is moderate.

Figure 2 displays the ratio of the information lower bound for estimation ofθ

based on the “observed data” (1/I ∗
θ whereI ∗

θ is the information forθ ) and the
asymptotic variance of the partial-likelihood estimator forθ based on “complete”
(or “full”) data. This ratio is shown as a function of the sampling fraction for the
nonfailures under different baseline failure probabilities wheneθ = 2. Figure 2
shows that the case-cohort design loses more information (supposing that an
efficient estimator is available), relative to complete data, as the failure probability
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FIG. 1. Ratio of the variance of the Self and Prentice pseudo-likelihood estimator (SP) to the
Optimal Variance as a function of the sampling fraction for nonfailures under different baseline
failure probabilities, P(T ≤ 1|Z = 0). Here θ = ln(2).

increases and as the subcohort fraction decreases. Actually, when the baseline
failure probability is above 0.5, the curves in Figure 2 move toward the upper
left again as the failure probability increases, but there is less interest in these

FIG. 2. Asymptotic relative efficiency of optimally efficient estimators for the i.i.d. case-cohort
design as a function of the sampling fraction for nonfailures under different baseline failure
probabilities, P(T ≤ 1|Z = 0). Here θ = ln(2).
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high failure probability cases in practice. From Figure 2 we can see that a great
deal of precision may be lost by using a case-cohort design as opposed to data
collection on the full cohort, even when a fully efficient estimator is used for
the case-cohort study. With this knowledge investigators can weigh the trade-off
between precision and study cost. Further work is needed to explore presumably
more efficient designs: for example, an alternative design might be an “exposure
stratified case-cohort design” as in our second example.

Perhaps the more interesting phenomena appear in Figure 3 and Figure 4. In
Figure 3 we look at the asymptotic relative efficiency of the pseudo-likelihood
estimator as a function ofθ . Figure 4 shows the relative efficiency of the optimal
variances for the i.i.d. case-cohort design versus the full data design as a function
of θ . Whenθ is near zero Figure 3 shows that the pseudo-likelihood estimator does
not lose much efficiency compared to the optimal estimator for the case-cohort
design. However, Figure 4 shows that the case-cohort design (with an optimal
estimator) loses considerable information compared to the full data design. The
minimum ARE (as a function ofθ ) depends on the baseline failure probability;
the minimum increases and it moves away fromθ = 0 as the baseline failure
probability decreases. Whenθ is away from zero, that is, the effect of the covariate
Z is large, the pseudo-likelihood estimator loses significant efficiency, especially
whenθ is positive and the baseline failure probability is high. However, away from
zero the design itself starts to gain information and is very close to the full data
design when the absolute value ofθ is large. The conclusion is that if we expect

FIG. 3. Ratio of the variance for the Self and Prentice pseudo-likelihood estimator (SP) to the
Optimal Variance as a function of θ (log of relative risk) for different baseline failure probabilities
P(T ≤ 1|Z = 0) in the i.i.d. case-cohort design. Here the sampling fraction for nonfailures is 0.1.
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FIG. 4. Asymptotic relative efficiency of the optimally efficient estimator in the case-cohort design
relative to the optimally efficient estimator in the full cohort design as a function of θ (log of relative
risk) for different baseline failure probabilities P(T ≤ 1|Z = 0). Here the sampling fraction for
nonfailures is 0.1.

intermediate to large covariate effects, it may be very worthwhile to find efficient
estimators forθ . Certainly, developing more efficient designs is also valuable, as
can be seen from Figures 2 and 4.

4.2. An exposure stratified case-cohort study. Assume thatX is the variable
of interest and thatV is a surrogate variable forX, or measurement ofX with
error, andV is conditionally independent ofT givenX. We suppose thatV can be
observed for everyone in the entire cohort, butX is only observed for subjects
in the subcohort and failures. Then the model for this type of data is the first
alternative model discussed in the previous section. The i.i.d. version of the
exposure stratified case-cohort design studied by Borgan, Langholz, Samuelsen,
Goldstein and Pogoda (2000) is a special case of this model. Here we discuss
an example with a binary covariateX ∈ {0,1} and a binary surrogate variable
V ∈ {0,1}. The distribution forX andV has the form of a 2× 2 table. Let

P (V = 1|X = 1) = 1− α, P (V = 0|X = 0) = 1− β.

If we considerV = 1 as a “positive” test forX, then 1− α is the sensitivity
and 1−β is the specificity of the test. We assume exponentially distributed failure
times. All subjects in the cohort are followed from time zero to either failure or
to the end of the study at timet = 1. For our calculations the exponential failure
rate parameterλ will be set to achieve a specified baseline failure probability as



748 B. NAN, M. J. EMOND AND J. A. WELLNER

in Section 4.1. Let the joint mass function of(X,V ) beh(x, v). Thus we have the
joint density for the underlying complete data,

qY,�,X,V (y, δ, x, v) =
{

λeθx−λyeθx
h(x, v), δ = 1, 0≤ y ≤ 1,

e−λeθx
h(x, v), δ = 0, y = 1.

(4.2)

By the same argument as in the previous example, we may assume thatY always is
observed. The cohort is then categorized into three strata:{� = 1}, {� = 0,V = 0}
and{� = 0,V = 1}. We observe complete information for all the subjects in the
first stratum, and ofπ0, π1 fractions (constants) of the subjects in the second
and third strata, respectively. We only observe(Y,�,V ) for other subjects. In
probability language we haveP (R = 1|� = 1, Y,V ) ≡ π(Y,1,V ) = 1, P (R =
1|� = 0, Y,V ) ≡ π(Y,0,V ) ≡ π0 if V = 0 andπ1 if V = 1. Again, we omit the
detailed calculations here and refer to Nan (2001).

We calculateI ∗
θ for different α, β, P (X = 0), π0, π1, θ and λ by using

numerical integration. Whenα = β = 0.5, the exposure stratified case-cohort
design is equivalent to the classical case-cohort design (previous example)
sinceV is not correlated withX under this condition. Figures 5 and 6 show
the comparisons of the asymptotic relative efficiency (ARE) of fully efficient
estimators (if they exist) for the exposure stratified (atπ0 = π1 and π0 �= π1)
and classical case-cohort designs ateθ = 2 andP (X = 0) = 0.9. Whenθ = 0,

FIG. 5. Asymptotic efficiency of the optimally efficient estimator for the case-cohort design with a
surrogate variable, relative to that for the full cohort design, as a function of the baseline failure
probability, P(T ≤ 1|X = 0). Here θ = ln(2), P (X = 0) = 0.9, π0 = π1 = 0.1 (i.e., stage 2
sampling is not stratified).
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FIG. 6. Asymptotic efficiency of the optimally efficient estimator for the i.i.d. stratified case-cohort
design with a surrogate variable, relative to that for the full cohort design, as a function of the
baseline failure probability P(T ≤ 1|X = 0). Here, θ = ln(2), P (X = 0) = 0.9, π0 �= π1 (i.e., with
stratified sampling at stage 2).

the corresponding figures (not shown) have similar patterns but slightly different
magnitude. In Figure 5 the sampling probabilities in the two strata are equal, that
is, π0 = π1 = 0.1. In Figure 6π0 and π1 are different, such that the expected
numbers of sampled subjects in strata{� = 0,V = 0} and {� = 0,V = 1}
are the same (or approximately the same), and the fraction of sampled subjects
from the two strata all together is 0.1 (or approximately 0.1). We can see from
Figure 5 that the efficiency increases as the sensitivity (1− α) and specificity
(1− β) increase as a result of incorporating the surrogate variable into the model,
even without stratification. Note that an efficient estimator will incorporateV for
subjects outside the subsample, providing information for the estimation ofθ via
the correlation betweenX and V . When we do stratified sampling (π0 �= π1),
Figure 6 shows that the efficiency gains are even greater. So both incorporating
surrogate information and stratified sampling will increase the efficiency. Note
that the information bound calculation illustrated here is for a measurement error
problem without making any assumptions on the structure of the joint distribution
of (X,V ).

Borgan, Langholz, Samuelsen, Goldstein and Pogoda (2000) study inverse
probability weighted estimators in this model. In order to show how much
efficiency the inverse probability estimator loses, we calculate the ARE of their
estimator relative to a fully efficient estimator with asymptotic variance given by
our information bound 1/I ∗

θ for the setting of their Example 1. We choose their
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TABLE 1
Comparisons of asymptotic relative efficiency (ARE relative to a full cohort study): the approximate

AREs of pseudo-likelihood estimators and the AREs of information bounds for a stratified
case-cohort design, which has only the binary covariate of interest, X, and a binary

covariate V, which is a surrogate for X. The specificity of V = 1 as a test for X = 1 is 1− β,

and the sensitivity is 1− α. The subcohort size equals the expected number of cases
(PL = Pseudo-Likelihood. This part is taken from Table 1 of Borgan, Langholz, Samuelsen,

Goldstein anf Pogoda (2000).IB = Information Bound.)

(a)P(X = 1) = 0.05

ARE(PL),% ARE(IB),% ARE(PL)
ARE(IB) ,%

1 − β 1 − β 1 − β

1 − α 0.50 0.70 0.90 0.50 0.70 0.90 0.50 0.70 0.90

0.50 35.5 36.5 40.8 36.0 37.8 45.9 98.6 96.6 88.9
0.70 36.5 39.6 47.3 37.7 43.0 55.9 96.8 92.1 84.6
0.90 40.8 47.3 60.5 43.9 53.0 70.3 92.9 89.2 86.1

(b) P(X = 1) = 0.50

1 − β 1 − β 1 − β

1 − α 0.50 0.70 0.90 0.50 0.70 0.90 0.50 0.70 0.90

0.50 52.9 54.0 58.4 53.5 55.5 63.2 98.9 97.3 92.4
0.70 54.0 57.3 64.7 55.5 61.1 72.0 97.3 93.8 89.9
0.90 58.4 64.7 75.8 62.6 71.2 83.6 93.3 90.9 90.7

optimal sampling fractions and a very small failure rate,λ = 0.01, which we
believe is small enough to be able to make valid comparisons to their results.
Note that the results in Table 1 are calculated under the condition that the
subcohort fraction equals the expected number of cases, providing approximately
one “control” per case, a frequently used design.

5. Conclusions and further problems. We have established new information
bounds for the Cox model with missing data. Along the way we have developed
a new decomposition ofL0

2(Q), characterized the structure of the orthogonal
complement of the nuisance parameter tangent spaceQ̇⊥

η , and shown how to
project onto the spacėQ⊥

η using conditional versionsR1 and R2 of the mean
residual life operatorR introduced by Efron and Johnstone (1990) and Ritov
and Wellner (1988). The new bounds can be used to examine the loss of
efficiency of pseudo-likelihood estimators for a given design and the amount of
information loss due to a given design relative to complete data collection or to an
alternative two phase design. While it has been known for some time that pseudo-
likelihood estimators are not semiparametrically efficient, our explicit calculations
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quantify the loss of efficiency and also show that two-phase designs with stratified
subsampling can partially recover the information that is lost due to missing data.

Further problems.

1. Construction of efficient estimators when covariates are discrete. Efficient
estimators can be constructed explicitly using one-step methods when the
covariates are discrete. For a preliminary study of such estimators, see
Nan (2001).

2. Construction of efficient estimators in general. This will depend crucially on
understanding the properties of the integral equation defining the efficient score
and influence function. A major difficulty in constructing efficient estimators is
the fact that the conditional cumulative hazard function�G(y|z) enters into
the key equation (3.18) which determinesu∗ and hence the efficient score
function l∗θ . This function is typically completely unknown and is a function
of d + 1 variables which must be estimated nonparametrically. This is, of
course, a difficult task for even moderately larged . However, our goal is not
to estimate�G well, but instead to estimateθ well, and it is not yet clear
how crucial the difficulty in estimating�G will be for construction of (nearly)
efficient estimates ofθ . We remain optimistic about this at least for moderate
values ofd , and regard this as an important question for future work.

3. How can we “optimize” the sampling design for a particular study? If we focus
on the variance of the estimator of a particular regression coefficient (e.g., the
coefficient corresponding to a binary treatment-control covariate), then it would
be very interesting to know how to allocate the sampling effort in the second
phase to minimize the (asymptotic) variance. Our results provide the tools to
graphically address this extremely important question.

4. Are there better compromise estimators based on pseudo-likelihood? Here the
approaches of Chatterjee, Chen and Breslow (2003) and Chatterjee (1999) may
be useful.
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and the other participants in theMissing Data Working Group at the University
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