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ESTIMATION OF A k-MONOTONE DENSITY: LIMIT
DISTRIBUTION THEORY AND THE SPLINE

CONNECTION

BY FADOUA BALABDAOUI1 AND JON A. WELLNER2

University of Goettingen and University of Washington

We study the asymptotic behavior of the Maximum Likelihood and Least
Squares Estimators of a k-monotone density g0 at a fixed point x0 when
k > 2. We find that the j th derivative of the estimators at x0 converges at
the rate n−(k−j)/(2k+1) for j = 0, . . . , k − 1. The limiting distribution de-
pends on an almost surely uniquely defined stochastic process Hk that stays
above (below) the k-fold integral of Brownian motion plus a deterministic
drift when k is even (odd). Both the MLE and LSE are known to be splines
of degree k − 1 with simple knots. Establishing the order of the random gap
τ+
n − τ−

n , where τ±
n denote two successive knots, is a key ingredient of the

proof of the main results. We show that this “gap problem” can be solved
if a conjecture about the upper bound on the error in a particular Hermite
interpolation via odd-degree splines holds.

1. Introduction.

1.1. The estimation problem and motivation. A density function g on R
+ is

monotone (or 1-monotone) if it is nonincreasing. It is 2-monotone if it is nonin-
creasing and convex, and k-monotone for k ≥ 3 if and only if (−1)jg(j) is non-
negative, nonincreasing and convex for j = 0, . . . , k − 2.

We write Dk for the class of all k-monotone densities on R
+ and Mk for the

class of all k-monotone functions (without the density restriction). Suppose that
g0 ∈ Dk and that X1, . . . ,Xn are i.i.d. with density g0. We write Gn for the em-
pirical distribution function of X1, . . . ,Xn. Our main interest is in the Maximum
Likelihood Estimators (or MLE’s) ĝn of g0 ∈ Dk .

When k = 1, it is well known that the maximum likelihood estimator ĝn of g0 ∈
D1 is the Grenander [14] estimator, that is, the left derivative of the least concave
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majorant Ĝn of Gn, and if g′
0(x0) < 0 with g′

0 continuous in a neighborhood of x0,
then

n1/3(ĝn(x0) − g0(x0)
) d→ (1

2g0(x0)|g′
0(x0)|)1/32Z,(1.1)

where 2Z is the slope at zero of the greatest convex minorant of two-sided Brown-
ian motion +t2, t ∈ R; see Prakasa Rao [35], Groeneboom [15] and Kim and
Pollard [24].

When k = 2, Groeneboom, Jongbloed and Wellner [18] considered both the
MLE and LSE and established that if the true convex and nonincreasing density g0
satisfies g′′

0 (x0) > 0 (and g′′
0 is continuous in a neighborhood of x0), then(

n2/5(ḡn(x0) − g0(x0)
)

n1/5(ḡ′
n(x0) − g′(x0)

) ) d→
( ( 1

24g2
0(x0)g

′′
0 (x0)

)1/5
H(2)(0)( 1

243 g0(x0)g
′′
0 (x0)

3)1/5
H(3)(0)

)
,(1.2)

where ḡn is either the MLE or LSE and H is a random cubic spline function
such that H(2) is convex and H stays above integrated two-sided Brownian motion
+t4, t ∈ R, and touches exactly at those points where H(2) changes its slope; see
Groeneboom, Jongbloed and Wellner [17].

Our main interest in this paper is in establishing a generalization of the point-
wise limit theory given in (1.1) and (1.2) for general k ∈ N, k ≥ 1.

Beyond the obvious motivation of extending the known results for k = 1 and
k = 2 as listed above, there are several further reasons for considering such exten-
sions:

(a) Pointwise limit distribution theory for natural nonparametric estimators of
the piecewise smooth regression models of smoothness k considered by Mam-
men [29] is only available for k ∈ {1,2}. Similar models (with just one element
in the partition) have been proposed for software reliability problems by Miller
and Sofer [33]. Similarly, pointwise limit distribution theory is still lacking for the
locally adaptive regression spline estimators considered by Mammen and van de
Geer [30].

(b) The classes of densities Dk have mixture representations as scale mixtures
of Beta(1, k) densities: as is known from Williamson [43] (see also Lévy [26],
Gneiting [13] and Balabdaoui and Wellner [2]), g ∈ Dk if and only if there is a
distribution function F on (0,∞) such that

g(x) =
∫ ∞

0

k

yk
(y − x)k−1+ dF(y) =

∫ ∞
0

w

(
1 − wx

k

)k−1

+
dF̃ (w),(1.3)

where z+ ≡ z1{z ≥ 0} and F̃ = F(k/·). The second form of the mixture repre-
sentation in the last display makes it clear that the limiting class of densities as
k → ∞, namely D∞, is the class of scale mixtures of exponential distributions. In
view of Feller [11], pages 232–233, this is just the class of completely monotone
densities; see also Widder [42] and Gneiting [12]. To the best of our knowledge,
there is no pointwise limit distribution theory available for the MLE in any class



2538 F. BALABDAOUI AND J. A. WELLNER

of mixed densities based on a smooth mixing kernel, including this particular case
in which the kernel (or mixture density) is the exponential scale family as stud-
ied by Jewell [22]. On the other hand, maximum likelihood estimators in various
classes of mixture models with smooth kernels have been proposed in a wide range
of applications including pharmacokinetics (Mallet [27], Mallet, Mentré, Steimer
and Lokiec [28] and Davidian and Gallant [6]), demography (Vaupel, Manton and
Stallard [41]) and shock models and variations in hazard rates (Harris and Singpur-
walla [20], McNolty, Doyle and Hansen [31] and Hill, Saunders and Laud [21]).

(c) The whole family of mixture models Dk corresponding to k ∈ (0,∞) in
(1.3) might eventually be of some interest, especially since the family of distri-
butions corresponding to the classical Wicksell problem is contained in the class
D1/2; see, for example, Groeneboom and Jongbloed [16].

(d) The subclass of k-monotone densities with mixing distribution F satisfying
g(k−1)(0) = k! ∫∞

0 y−k dF (y) < ∞ can be regarded as the class of distributions
arising in a generalization of Hampel’s bird-watching problem (Hampel [19]), in
which birds are captured k times, but only one “intercatch” time is recorded. Based
on those observed intercatch times, the goal is to estimate the true distribution F

of the resting times Y of the migrating birds, which we assume to have a density
f with kth moment μk(f ) < ∞. Furthermore, we assume that the time points of
capture form the arrival time points of a Poisson process with rate λ, that given
Y = y, the number of captures by time y is Poisson(λy) with λ small enough so
that exp(−λy) ≈ 1 and that the probability of catching a bird more than k times is
negligible (see also Hampel [19] and Anevski [1]). If Sk,1 denotes the elapsed time
between the first and second captures (the only observed intercatch time), then it
follows by a derivation analogous to Hampel’s that the density of the time Sk,1 is
given by

g(x) = 1

μk(f )

∫ ∞
0

k(y − x)k−1+ f (y) dy,

which is clearly k-monotone. We obtain F , the probability distribution of Y , by
inverting the previous mixture representation, that is,

F(t) = 1 − g(k−1)(t)

g(k−1)(0+)

at any point of continuity t > 0 of F .
In connection with (a), it is interesting to note that the definition of the fam-

ily Dk is equivalent to g ∈ Dk if and only if (−1)k−1g(k−1) (where g(k−1) is
either the left or right derivative of g(k−2)) is nonincreasing. This follows from
Lemma 4.3 of Gneiting [13] since Gneiting’s condition limx→∞ g(x) = 0 is auto-
matic for densities. Thus the equivalent definition of Dk has a natural connection
with the work of Mammen [29] in the nonparametric regression setting. In parallel
to the treatment of convex regression estimation given by Groeneboom, Jongbloed



k-MONOTONE DENSITY ESTIMATION 2539

and Wellner [18], it seems clear that pointwise distribution theory for nonparamet-
ric least squares estimators for the regression problems in (a) could be developed
if adequate theory were available for the Maximum Likelihood and Least Squares
estimators of densities in the class Dk , so we focus exclusively on the density case
in this paper. In Section 5, we comment further on the difficulties in obtaining
corresponding limit theory for the smooth kernel cases discussed in (b).

1.2. Description of the key difficulty: the gap problem. The key result that
Groeneboom, Jongbloed and Wellner [18] used to establish (1.2) is that τ+

n −τ−
n =

Op(n−1/5) as n → ∞, where τ−
n and τ+

n are two successive jump points of the first
derivative of ḡn in the neighborhood of x0. Such a result was already proved by
Mammen [29] (see Lemma 8) in the context of nonparametric regression, where
the true regression curve, m, is piecewise concave/convex or convex/concave
such that m is twice continuously differentiable in the neighborhood of x0, and
m′′(x0) 	= 0. Furthermore, Mammen [29] conjectured the right form of the asymp-
totic distribution of his Least Squares estimator, which was later established by
Groeneboom, Jongbloed and Wellner [18].

To obtain the stochastic order n−1/5 for the gap, Groeneboom, Jongbloed and
Wellner [18] used the characterizations of the estimators, together with the “mid-
point property” which we review in Section 4. For k = 1, the same property can
be used to establish that n−1/3 is the order of the gap. As a function of k, it is
natural to conjecture that n−1/(2k+1) is the general form of the order of the gap.
In the problem of nonparametric regression via splines, Mammen and van de Geer
[30] have conjectured that n−1/(2k+1) is the order of the distance between the knot
points of their regression spline m̂ under the assumption that the true regression
curve m0 satisfies our same working assumptions, but the question was left open
(see Mammen and van de Geer [30], page 400). In this paper, we refer to the prob-
lem of establishing the order of τ+

n − τ−
n as the gap problem.

In Section 4, we show that when k > 2, the gap problem is closely related to
a “nonclassical” Hermite interpolation problem via odd-degree splines. To put the
interpolation problem encountered in the next section in context, it is useful to
review briefly the related complete interpolation problem for odd-degree splines
which is more “classical” and for which error bounds uniform in the knots are
now available. Given a function f ∈ C(k−1)[0,1] and an increasing sequence 0 =
y0 < y1 < · · · < ym < ym+1 = 1, where m ≥ 1 is an integer, it is well known that
there exists a unique spline, called the complete spline and denoted here by Cf , of
degree 2k − 1 with interior knots y1, . . . , ym that satisfies the 2k + m conditions

(Cf )(yi) = f (yi), i = 1, . . . ,m,

(Cf )(l)(y0) = f (l)(y0), (Cf )(l)(ym+1) = f (l)(ym+1), l = 0, . . . , k − 1;
see Schoenberg [36], de Boor [8] or Nürnberger [34], page 116, for further discus-
sion. If j ∈ {0, . . . , k} and f ∈ C(k+j)[0,1], then there exists ck,j > 0 such that

sup
0<y1<···<ym<1

‖f − Cf ‖∞ ≤ ck,j

∥∥f (k+j)
∥∥∞.(1.4)
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For j = k, this “uniform in knots” bound in the complete interpolation problem
was first conjectured by de Boor [7] for k > 4 as a generalization that goes beyond
k = 2,3 and 4, for which the result was already established (see also de Boor [8]).
By a scaling argument, the bound (1.4) implies that if f ∈ C(2k)[a, b], a < b ∈ R,
then the interpolation error in the complete interpolation problem is uniformly
bounded in the knots and the bound is of the order of (b − a)2k . One key property
of the complete spline interpolant Cf is that (Cf )(k) is the Least Squares approxi-
mation of f (k) when f (k) ∈ L2([0,1]), that is, if Sk(y1, . . . , ym) denotes the space
of splines of order k (degree k − 1) and interior knots y1, . . . , ym, then∫ 1

0

(
(Cf )(k) − f (k)(x)

)2
dx = min

S∈Sk(y1,...,ym)

∫ 1

0

(
S(x) − f (k)(x)

)2
dx(1.5)

(see, e.g., Schoenberg [36], de Boor [8], Nürnberger [34]). Consequently, if L∞
denotes the space of bounded functions on [0,1], then the properly defined map

C(k)[0,1] → Sk(y),

f (k) → (Cf )(k),

where y = (y1, . . . , ym), is the restriction of the orthoprojector PSk(y) from L∞ to

Sk(y) with respect to the inner product 〈g,h〉 = ∫ 1
0 g(x)h(x) dx which assigns to

a function g ∈ L∞ the k-th derivative of the complete spline interpolant of any
primitive of g of order k (note that the difference between two primitives of g of
order k is a polynomial of degree k − 1).

de Boor [8] pointed out that in order to prove the conjecture, it is enough to
prove that

sup
y

∥∥PSk(y)

∥∥∞ = sup
y

sup
g∈L∞

‖PSk(y)(g)‖∞
‖g‖∞

is bounded. This was successfully achieved by Shadrin [38].
The Hermite interpolation problem which arises naturally in Section 4 ap-

pears to be another variant of interpolation problems via odd-degree splines which
has not yet been studied in the approximation theory or spline literature. More
specifically, if f is some real-valued function in C(j)[0,1] for some j ≥ 1 and
0 = y0 < y1 < · · · < y2k−4 < y2k−3 = 1 is a given increasing sequence, then there
exist a unique spline Hkf of degree 2k − 1 and interior knots y1, . . . , y2k−4 satis-
fying the 4k − 4 conditions

(Hkf )(yi) = f (yi) and (Hkf )′(yi) = f ′(yi), i = 0, . . . ,2k − 3.(1.6)

It turns out that deriving the stochastic order of the distance between two succes-
sive knots of the MLE and LSE in the neighborhood of the point of estimation is
very closely linked to bounding the error in this new Hermite interpolation inde-
pendently of the locations of the knots of the spline interpolant. More precisely, if
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gt (x) = (x − t)k−1+ /(k − 1)! is the power truncated function of degree k − 1 with
unique knot t , then we conjecture that there is a constant dk > 0 such that

sup
t∈(0,1)

sup
0<y1<···<y2k−4<1

‖gt − Hkgt‖∞ ≤ dk.(1.7)

As shown in Balabdaoui and Wellner [3], the preceding formulation implies that
boundedness of the error uniformly in the knots of the spline interpolant holds true
for any f ∈ C(k+j), that is,

sup
0<y1<···<y2k−4<1

‖f − Hkf ‖∞ ≤ dk,j

∥∥f (k+j)
∥∥∞.

If j = k and ‖f (2k)‖∞ ≤ 1, it follows from Proposition 1 of Balabdaoui and Well-
ner [3] that the interpolation error must be bounded above by the error for interpo-
lating the perfect spline,

S∗(t) = 1

(2k)!
(
t2k + 2

2k−4∑
i=1

(−1)i(t − τj )
2k+

)
.

For a definition of perfect splines, see, for example, Bojanov, Hakopian and Sa-
hakian [5], Chapter 6. Based on a large number of simulations, we found that

sup
0<y1<···<y2k−4<1

‖S∗ − HkS
∗‖∞ ≤ 2

(2k)!
for fairly large values of k (see the last column in Table 2 in Balabdaoui and Well-
ner [3]). The latter strongly suggests that for f ∈ C(2k)[0,1], we have

sup
0<y1<···<y2k−4<1

‖f − Hkf ‖∞ ≤ 2

(2k)!
∥∥f (2k)

∥∥∞.(1.8)

Based on conjecture (1.7), we will prove that the distance between two consecutive
knots in a neighborhood of x0 is Op(n−1/(2k+1)).

After a brief introduction to the MLE and LSE and their respective characteri-
zations, we give in Section 3 a statement of our main result which gives the joint
asymptotic distribution of the successive derivatives of the MLE and LSE. The
obtained convergence rate n−(k−j)/(2k+1) for the j th derivative of any of the es-
timators was found by Balabdaoui and Wellner [2] to be the asymptotic minimax
lower bound for estimating g

(j)
0 (x0), j = 0, . . . , k − 1, under the same working

assumptions. The limiting distribution depends on the higher derivatives of Hk , an
almost surely uniquely defined process that stays above (below) the (k − 1)-fold
integral of Brownian motion plus the drift (k!/(2k)!)t2k when k is even (odd) and
whose derivative of order 2k − 2 is convex [Hk is also said to be (2k − 2)-convex].
The process Hk is studied separately in Balabdaoui and Wellner [2]. Proving the
existence of Hk also relies on our conjecture in (1.7) since the key problem, also
referred to as the gap problem, depends on a very similar Hermite interpolation
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problem, except that the knots of the estimators are replaced by the points of touch
between the (k − 1)-fold integral of Brownian motion plus the drift (k!/(2k)!)t2k

and Hk . For more discussion of the background and related problems, see Balab-
daoui and Wellner [2]. For a discussion of algorithms and computational issues,
see Balabdaoui and Wellner [2].

2. The estimators and their characterization. Let X1, . . . ,Xn be n inde-
pendent observations from a common k-monotone density g0. We consider non-
parametric estimation of g0 via the Least Squares and Maximum Likelihood meth-
ods, and that of its mixture distribution F0, that is, the distribution function on
(0,∞) such that

g0(x) =
∫ ∞

0

k(t − x)k−1+
tk

dF0(t), x > 0.

In other words, g0 is a scale mixture of Beta(1, k) densities. The mixing distribu-
tion is, furthermore, given at any point of continuity t by the inversion formula

F0(t) =
k∑

j=0

(−1)j
tj

j !G
(j)
0 (t),(2.1)

where G0(t) = ∫ t
0 g0(x) dx. An estimator for F0 can be obtained by simply plug-

ging in estimators of G
(j)
0 = g

(j−1)
0 , j = 0, . . . , k, in the inversion formula (2.1).

We call estimation of the (mixed) k-monotone density g0 the direct problem and
estimation of the mixing distribution function F0 the inverse problem. For more
technical details on the mixture representation and the inversion formula, see
Lemma 2.1 of Balabdaoui and Wellner [2].

We now give the definitions of the Least Squares and Maximum Likelihood
estimators; these were already considered in the case k = 2 by Groeneboom, Jong-
bloed and Wellner [18]. The LSE, g̃n, is the minimizer of the criterion function

�n(g) = 1
2

∫ ∞
0

g2(t) dt −
∫ ∞

0
g(t) dGn(t)

over the class Mk , whereas the MLE, ĝn, maximizes the “adjusted” log-likelihood
function, that is,

ln(g) =
∫ ∞

0
logg(t) dGn(t) −

∫ ∞
0

g(t) dt,

over the same class. In Balabdaoui and Wellner [2], we find that both estimators
exist and are splines of degree k − 1, that is, their (k − 1)st derivative is stepwise.
Furthermore, as shown in Balabdaoui and Wellner [2], the LSE’s and MLE’s are
characterized as follows: let H̃n and Yn be the processes defined for all x ≥ 0 by

Yn(x) =
∫ x

0

∫ tk−1

0
· · ·

∫ t2

0
Gn(t1) dt1 dt2 · · · dtk−1

(2.2)

=
∫ x

0

(x − t)k−1

(k − 1)! dGn(t)
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and

H̃n(x) =
∫ x

0

∫ tk

0
· · ·

∫ t2

0
g̃n(t1) dt1 dt2 · · · dtk

(2.3)

=
∫ x

0

(x − t)k−1

(k − 1)! g̃n(t) dt.

Then the k-monotone function g̃n is the LSE if and only if

H̃n(x)

{≥ Yn(x), for all x ≥ 0,
= Yn(x), if (−1)k−1g̃

(k−1)
n (x−) < (−1)k−1g̃

(k−1)
n (x+).

(2.4)

For the MLE, we define the process

Ĥn(x, g) =
∫ x

0

k(x − t)k−1

xkĝn(t)
dGn(t)(2.5)

for all x ≥ 0 and g ∈ Dk . A necessary and sufficient condition for the k-monotone
function ĝn to be the MLE is then given by

Ĥn(x, ĝn)

{≤ 1, for all x ≥ 0,
= 1, if (−1)k−1ĝ

(k−1)
n (x−) < (−1)k−1ĝ

(k−1)
n (x+).

(2.6)

These characterizations are crucial for understanding the local asymptotic behavior
of the LSE and MLE. They were exploited in Balabdaoui and Wellner [2] to show
uniform strong consistency of the estimators on intervals of the form [c,∞), c > 0.
Here, they prove to be once again very useful for establishing the limit theory in
both the direct and inverse problems.

3. The asymptotic distribution.

3.1. The main convergence theorem. To prepare for a statement of the main
result, we first recall the following theorem from Balabdaoui and Wellner [2] giv-
ing existence of the processes Hk .

THEOREM 3.1. For all k ≥ 1, let Yk denote the stochastic process defined by

Yk(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ t

0

(t − s)k−1

(k − 1)! dW(s) + (−1)kk!
(2k)! t2k, t ≥ 0,∫ 0

t

(t − s)k−1

(k − 1)! dW(s) + (−1)kk!
(2k)! t2k, t < 0.

If conjecture (1.7) holds (see also the discussion in Balabdaoui and Wellner [2]),
then there exists an almost surely uniquely defined stochastic process Hk charac-
terized by the following four conditions:

(i) the process Hk stays everywhere above the process Yk :

Hk(t) ≥ Yk(t), t ∈ R;
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(ii) (−1)kHk is 2k-convex, that is, (−1)kH
(2k−2)
k exists and is convex;

(iii) the process Hk satisfies∫ ∞
−∞

(
Hk(t) − Yk(t)

)
dH

(2k−1)
k (t) = 0;

(iv) if k is even, lim|t |→∞(H
(2j)
k (t) − Y

(2j)
k (t)) = 0 for j = 0, . . . , (k − 2)/2; if

k is odd, limt→∞(Hk(t) − Yk(t)) = 0 and lim|t |→∞(H
(2j+1)
k (t) − Y

(2j+1)
k (t)) = 0

for j = 0, . . . , (k − 3)/2.

We are now able to state the main result of this paper, which generalizes The-
orem 6.2 of Groeneboom, Jongbloed and Wellner [18] for estimating convex
(2-monotone) densities.

THEOREM 3.2. Let x0 > 0 and g0 be a k-monotone density such that g0 is
k-times differentiable at x0 with (−1)kg

(k)
0 (x0) > 0 and assume that g

(k)
0 is contin-

uous in a neighborhood of x0. Let ḡn denote either the LSE g̃n or the MLE ĝn and
let F̄n be the corresponding mixing measure defined in terms of Ḡn = ∫ ·

0 ḡn(s) ds

via (2.1). If conjecture (1.7) holds, then⎛⎜⎜⎜⎝
nk/(2k+1)

(
ḡn(x0) − g0(x0)

)
n(k−1)/(2k+1)

(
ḡ

(1)
n (x0) − g

(1)
0 (x0)

)
...

n1/(2k+1)
(
ḡ

(k−1)
n (x0) − g

(k−1)
0 (x0)

)
⎞⎟⎟⎟⎠ d→

⎛⎜⎜⎜⎜⎝
c0(x0)H

(k)
k (0)

c1(x0)H
(k+1)
k (0)
...

ck−1(x0)H
(2k−1)
k (0)

⎞⎟⎟⎟⎟⎠
and

n1/(2k+1)(F̄n(x0) − F(x0)
) d→ (−1)kxk

0

k! ck−1(x0)H
(2k−1)
k (0),

where

cj (x0) =
{
(g0(x0))

k−j

(
(−1)kg

(k)
0 (x0)

k!
)2j+1}1/(2k+1)

,

for j = 0, . . . , k − 1.

3.2. The key results and outline of the proofs. Our proof of Theorem 3.2 pro-
ceeds by solving the key gap problem assuming that our conjecture (1.7) holds.
This is carried out in Section 4 in which the main result is the following.

LEMMA 3.1. Let k ≥ 3 and ḡn denote either the LSE g̃n or the MLE ĝn.
If g0 ∈ Dk satisfies g

(k)
0 (x0) 	= 0 and conjecture (1.7) holds, then τ2k−3 − τ0 =

Op(n−1/(2k+1)), where τ0 < · · · < τ2k−3 are 2k − 2 successive jump points of

ḡ
(k−1)
n in a neighborhood of x0.

Using Lemma 3.1, we can establish the rate(s) of convergence of the estimators
g̃n and ĝn and their derivatives viewed as local processes in n−1/(2k+1) neighbor-
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hoods of the fixed point x0. This is accomplished in Proposition 3.1. Once the rates
have been established, we define for the LSE localized versions Y

loc
n , H̃ loc

n of the
processes Yn, H̃n given in (2.2) and (2.3), respectively, and Ŷ

loc
n , Ĥ loc

n related to
the process Ĥn given in (2.5) in the case of the MLE. The proof then proceeds by
showing that:

• the localized processes Y
loc
n and Ŷ

loc
n converge weakly to Ya,σ , where

Ya,σ (t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σ

∫ t

0

∫ sk−1

0
· · ·

∫ s2

0
W(s1) ds1 · · · dsk−1 + a(−1)k

k!
(2k)! t

2k,

t ≥ 0,

σ

∫ 0

t

∫ 0

sk−1

· · ·
∫ 0

s2

W(s1) ds1 · · · dsk−1 + a(−1)k
k!

(2k)! t
2k,

t ≤ 0,

with σ = √
g(x0), a = (−1)kg

(k)
0 (x0)/k!, and where W is a two-sided Brown-

ian motion process starting from 0; this can be shown by classical methods from
Shorack and Wellner [39] or alternatively via the strong approximation of Kom-
lós, Major and Tusnády [25];

• the localized processes H̃ loc
n and Ĥ loc

n satisfy Fenchel (inequality and equality)
relations relative to the localized processes Y

loc
n and Ŷ

loc
n , respectively.

We then show via tightness that the localized processes H̃ loc
n and Ĥ loc

n (and
all their derivatives up to order 2k − 1) converge to a limit process satisfying the
conditions (i)–(iv) of Theorem 3.1 and hence the limit process in both cases is
just Hk (up to scaling by constants). When specialized to t = 0, this gives the
conclusion of Theorem 3.2.

The following is the key proposition concerning rates of convergence.

PROPOSITION 3.1. Fix x0 > 0 and let g0 be a k-monotone density such
that (−1)kg

(k)
0 (x0) > 0. Let ḡn denote either the MLE ĝn or the LSE g̃n. If conjec-

ture (1.7) holds, then for each M > 0, we have

sup
|t |≤M

∣∣∣∣∣ḡ(j)
n

(
x0 + n−1/(2k+1)t

)−
k−1∑
i=j

n−(i−j)/(2k+1)g
(i)
0 (x0)

(i − j)! t i−j

∣∣∣∣∣
(3.1)

= Op

(
n−(k−j)/(2k+1)) for j = 0, . . . , k − 1.

For the LSE, we define the local Yn- and H̃n-processes by

Y
loc
n (t) = n2k/(2k+1)

∫ x0+tn−1/(2k+1)

x0

∫ vk−1

x0

· · ·
∫ v2

x0

{
Gn(v1) − Gn(x0)

−
∫ v1

x0

k−1∑
j=0

(u − x0)
j

j ! g
(j)
0 (x0) du

}
k−1∏
i=1

dvi
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and

H̃ loc
n (t) = n2k/(2k+1)

∫ x0+tn−1/(2k+1)

x0

∫ vk

x0

· · ·
∫ v2

x0

{
g̃n(v1)

−
k−1∑
j=0

(v1 − x0)
j

j ! g
(j)
0 (x0)

}
dv1 · · · dvk

+ Ãk−1,nt
k−1 + Ãk−2,nt

k−2 + · · · + Ã1,nt + Ã0,n,

respectively, where

Ãj,n = n(2k−j)/(2k+1)

j !
(
H̃ (j)

n (x0) − Y
(j)
n (x0)

)
, j = 0, . . . , k − 1.

Let rk ≡ 1/(2k + 1). In the case of the MLE, the local processes Ŷ
loc
n and Ĥ loc

n are
defined as

Ŷ
loc
n (t)

g0(x0)
= n2krk

∫ x0+tn−rk

x0

∫ vk−1

x0

· · ·
∫ v1

x0

g0(v) −∑k−1
j=0(v − x0)

j /j !g(j)
0 (x0)

ĝn(v)

dv dv1 · · · dvk−1

+ n2krk

∫ x0+tn−rk

x0

∫ vk−1

x0

· · ·
∫ v1

x0

1

ĝn(v)
d(Gn − G0)(v)dv1 · · ·dvk−1

and

Ĥ loc
n (t)

g0(x0)
= n2krk

∫ x0+tn−rk

x0

∫ vk−1

x0

· · ·
∫ v1

x0

ĝn(v) −∑k−1
j=0(v − x0)

j /j !g(j)
0 (x0)

ĝn(v)

dv dv1 · · · dvk−1

+ Âk−1,nt
k−1 + · · · + Â0,n,

where

Âj,n = − n(2k−j)rk

(k − 1)!j !g0(x0)

(
Ĥ (j)

n (x0) − (k − 1)!
(k − j)!x

k−j
0

)
, j = 0, . . . , k − 1.

In the following lemma, we will give the asymptotic distribution of the local
processes Y

loc
n and Ŷ

loc
n in terms of the (k−1)-fold integral of two-sided Brownian

motion, g0(x0), and g
(k)
0 (x0) assuming that the true density g0 is k-times continu-

ously differentiable at x0. We denote by Ȳ
loc
n either Y

loc
n or Ŷ

loc
n .

LEMMA 3.2. Let x0 be a point where g0 is continuously k-times differentiable
in a neighborhood of x0 with (−1)kg

(k)
0 (x0) > 0. Then Ȳ

loc
n ⇒ Ya,σ in C[−K,K]
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for each K > 0 where

Ya,σ (t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σ

∫ t

0

∫ sk−1

0
· · ·

∫ s2

0
W(s1) ds1 · · · dsk−1 + a(−1)k

k!
(2k)! t

2k, t ≥ 0,

σ

∫ 0

t

∫ 0

sk−1

· · ·
∫ 0

s2

W(s1) ds1 · · · dsk−1 + a(−1)k
k!

(2k)! t
2k, t < 0,

where W is standard two-sided Brownian motion starting at 0, σ = √
g0(x0) and

a = (−1)kg
(k)
0 (x0)/k!.

Now, let H̄ loc
n denote either H̃ loc

n or Ĥ loc
n .

LEMMA 3.3. The localized processes Ȳ
loc
n and H̄ loc

n satisfy

H̄ loc
n (t) − Ȳ

loc
n (t) ≥ 0 for all t ≥ 0,

with equality if x0 + tn−1/(2k+1) is a jump point of ḡ
(k−1)
n .

LEMMA 3.4. The limit process Ya,σ in Lemma 3.2 satisfies

Ya,σ (t)
d= 1

s1
Y1,1

(
t

s2

)
,

where

s1 = 1√
g0(x0)

(
(−1)kg

(k)
0 (x0)

k!√g0(x0)

)(2k−1)/(2k+1)

,(3.2)

s2 =
( √

g0(x0)

(−1)kg
(k)
0 (x0)/k!

)2/(2k+1)

.(3.3)

To show that the derivatives of H̄ loc
n are tight, we need the following lemma.

LEMMA 3.5. For all j ∈ {0, . . . , k − 1}, let Āj,n denote either Ãj,n or Âj,n.
If conjecture (1.7) holds, then

Āj,n = Op(1).(3.4)

We now rescale the processes Ȳ
loc
n and H̄ loc

n so that the rescaled Ȳ
loc
n converges

to the canonical limit process Yk defined in Lemma 3.4. Since the scaling of Ȳ
loc
n

will be exactly the same as the one we used for Yk , we define H̄ l
n and Ȳ

l
n by

H̄ l
n(t) = s1H̄

loc
n (s2t), Ȳ

l
n(t) = s1Ȳ

loc
n (s2t),

where s1 and s2 are given by (3.2) and (3.3), respectively.
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LEMMA 3.6. Let c > 0. Then(
(H̄ l

n)
(0), (H̄ l

n)
(1), . . . , (H̄ l

n)
(2k−1)) ⇒ (

H
(0)
k ,H

(1)
k , . . . ,H

(2k−1)
k

)
in (D[−c, c])2k , where Hk is the stochastic process defined in Theorem 3.1.

To keep this paper to a reasonable length, proofs of the results of Section 3.2 and
of the main convergence Theorem 3.2 can be found in Balabdaoui and Wellner [4],
Appendix 1. The arguments there are constructed along the lines of Groeneboom,
Jongbloed and Wellner [18]. However, those arguments had to be adapted and fur-
ther developed to be able to treat k-monotonicity for an arbitrary integer k ≥ 2. In
this general case, we found that it is very useful to consider perturbation functions
to learn about the asymptotic behavior of the estimators. Such perturbation func-
tions need, of course, to be permissible, that is, the resulting perturbed function
must belong to the k-monotone class, but they also need to have a compact support
to suit the local nature of the current estimation problem. It turns out that choices
are rather limited and that B-splines with degree k − 1 and support [τn,1, τn,k+1],
where τn,1, . . . , τn,k+1 are knots of either the LSE or MLE in the neighborhood of
x0, are found to be the most sensible perturbation functions to consider. For a defi-
nition of B-splines, see, for example, Nürnberger [34], Theorem 2.2. For technical
details on the use of B-splines for constructing perturbations, see, for example,
Proposition 6.1 in Balabdaoui and Wellner [4], Appendix 1.

4. The gap problem—spline connection. Recall that it was assumed that g0

is k-times continuously differentiable at x0 and that (−1)kg
(k)
0 (x0) > 0. Under a

weaker assumption, Balabdaoui and Wellner [2] proved strong consistency of the
(k − 1)st derivative of the MLE and LSE. This consistency result and the above
assumptions collectively imply that the number of jump points of this derivative,
in a small neighborhood of x0, diverges to infinity almost surely as the sample
size n → ∞. This “clustering” phenomenon is one of the most crucial elements
in studying the local asymptotics of the estimators. The jump points then form a
sequence that converges to x0 almost surely and therefore the distance between two
successive jump points, for example, located just before and after x0, converges to
0 as n → ∞. But it is not enough to know that the “gap” between these points
converges to 0: an upper bound for this rate of convergence is needed.

To prove Lemma 3.1, we will focus first on the LSE because it is somewhat
easier to handle through the simple form of its characterization. The arguments for
the MLE could be built upon those used for the LSE, but in this case one has to
deal with some extra difficulties due to the nonlinear nature of its characterization.

We start by describing the difficulties of establishing this result for the general
case k > 2.
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4.1. Fundamental differences. Let τ−
n and τ+

n be the last and first jump points
of the (k − 1)st derivative of the LSE g̃n, located before and after x0, respectively.
To obtain a better understanding of the gap problem, we describe the reasoning
used by Groeneboom, Jongbloed and Wellner [18] in order to prove that τ+

n −τ−
n =

Op(n−1/5) for the special case k = 2. The characterization of the estimator is given
by

H̃n(x)

{≥ Yn(x), x ≥ 0,
= Yn(x), if x is a jump point of g̃′

n,(4.1)

where H̃n(x) = ∫ x
0 (x − t)g̃n(t) dt and Yn(x) = ∫ x

0 Gn(t) dt . On the interval
[τ−

n , τ+
n ), the function g̃′

n is constant since there are no more jump points in this
interval. This implies that H̃n is a polynomial of degree 3 on [τ−

n , τ+
n ). But from

the characterization in (4.1), it follows that

H̃n(τ
±
n ) = Yn(τ

±
n ), H̃ ′

n(τ
±
n ) = Y

′
n(τ

±
n ).

These four boundary conditions allow us to fully determine the cubic polynomial
H̃n on [τ−

n , τ+
n ]. Using the explicit expression for H̃n and evaluating it at the mid-

point τ̄ = (τ−
n + τ+

n )/2, Groeneboom, Jongbloed and Wellner [18] established that

H̃n(τ̄n) = Yn(τ
−
n ) + Yn(τ

+
n )

2
− Gn(τ

+
n ) − Gn(τ

−
n )

8
(τ+

n − τ−
n ).

Groeneboom, Jongbloed and Wellner [18] refer to this as the “midpoint property.”
By applying the first condition (the inequality condition) in (4.1), it follows that

Yn(τ
−
n ) + Yn(τ

+
n )

2
− Gn(τ

+
n ) − Gn(τ

−
n )

8
(τ+

n − τ−
n ) ≥ Yn(τ̄n).

The inequality in the last display can be rewritten as

Y0(τ
−
n ) + Y0(τ

+
n )

2
− G0(τ

+
n ) − G0(τ

−
n )

8
(τ+

n − τ−
n ) ≥ En,

where G0 and Y0 are the true counterparts of Gn and Yn, respectively, and En

is a random error. Using empirical process theory, Groeneboom, Jongbloed and
Wellner [18] showed that

|En| = Op(n−4/5) + op

(
(τ+

n − τ−
n )4).(4.2)

On the other hand, Groeneboom, Jongbloed and Wellner [18] established that there
exists a universal constant C > 0 such that

Y0(τ
−
n ) + Y0(τ

+
n )

2
− G0(τ

+
n ) − G0(τ

−
n )

8
(τ+

n − τ−
n )

(4.3)
= −Cg′′

0 (x0)(τ
+
n − τ−

n )4 + op

(
(τ+

n − τ−
n )4).

Combining the results in (4.2) and (4.3), it follows that

τ+
n − τ−

n = Op(n−1/5).
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The problem has two main features that make the above arguments work. First, the
polynomial H̃n can be fully determined on [τ−

n , τ+
n ] and can therefore be evaluated

at any point between τ−
n and τ+

n . Second, it can be expressed via the empirical
process Yn and that enables us to “get rid of” terms depending on g̃n whose rate
of convergence is still unknown at this stage. We should also add that the problem
is symmetric about τ̄n, a property that helps in establishing the formula derived
in (4.3).

When k > 2, it follows from the characterization of the LSE given in (2.4) that
for any two successive jump points of g̃

(k−1)
n , τ−

n , τ+
n , the four equalities

H̃n(τ
±
n ) = Yn(τ

±
n ) and H̃ ′

n(τ
±
n ) = Y

′
n(τ

±
n )

still hold. However, these equations are not enough to determine the polynomial
H̃n, now of degree 2k − 1, on the interval [τ−

n , τ+
n ]. One would need 2k conditions

to be able to achieve this. [We would be in this situation if we had equality of the
higher derivatives of H̃n and Yn at τ−

n and τ+
n , i.e.,

H̃ (j)
n (τ−

n ) = Y
(j)
n (τ−

n ), H̃ (j)
n (τ+

n ) = Y
(j)
n (τ+

n ),(4.4)

for j = 0, . . . , k − 1, but the characterization (2.4) does not give this much.] Thus
it becomes clear that two jump points are not sufficient to determine the piecewise
polynomial H̃n. However, if we consider p > 2 jump points τn,0 < · · · < τn,p−1

(all located, e.g., after x0), then H̃n is a spline of degree 2k − 1 with inte-
rior knots τn,1, . . . , τn,p−2, that is, H̃n is a polynomial of degree 2k − 1 on
(τn,j , τn,j+1) for j = 0, . . . , p − 2 and is (2k − 2)-times differentiable at its knot
points τn,0, . . . , τn,p−1. In the next subsection, we prove that if p = 2k − 2, the
spline H̃n is completely determined on [τn,0, τn,2k−3] by the conditions

H̃n(τn,i) = Yn(τn,i) and H̃ ′
n(τn,i) = Y

′
n(τn,i),

(4.5)
i = 0, . . . ,2k − 3.

This result proves to be very useful for determining the stochastic order of the
distance between two successive jump points in a small neighborhood of x0 if
conjecture (1.7) on the uniform boundedness of the error in the “nonclassical”
Hermite interpolation problem via splines of odd degree defined in (1.6) holds.

4.2. The gap problem for the LSE—Hermite interpolation. In the next lemma,
we prove that given 2k − 2 successive jump points τn,0 < · · · < τn,2k−3 of g̃

(k−1)
n ,

H̃n is the unique solution of the Hermite problem given by (4.5). In the following,
we will omit writing the subscript n explicitly in the knots, but their dependence
on the sample size should be kept in mind.

LEMMA 4.1. The function H̃n characterized by (2.4) is a spline of degree
2k − 1. Moreover, given any 2k − 2 successive jump points of H̃

(2k−1)
n , τ0 < · · · <

τ2k−3, the (2k − 1)st spline H̃n is uniquely determined on [τ0, τ2k−3] by the values
of the process Yn and of its derivative Y

′
n at τ0, . . . , τ2k−3.
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PROOF. We know that for any jump point τ of H̃
(2k−1)
n , we have

H̃n(τ ) = Yn(τ ) and H̃ ′
n(τ ) = Y

′
n(τ ).

This can be viewed as a Hermite interpolation problem if we consider that the
interpolated function is the process Yn and that the interpolating spline is H̃n

(see, e.g., Nürnberger [34], Definition 3.6, pages 108 and 109). Existence and
uniqueness of the spline interpolant follows easily from the Schoenberg–Whitney–
Karlin–Ziegler theorem (Schoenberg and Whitney [37], Theorem 3, page 258;
Karlin and Ziegler [23], Theorem 3, page 529; Nürnberger [34], Theorem 3.7,
page 109; DeVore and Lorentz [9], Theorem 9.2, page 162). �

In the following lemma, we prove a preparatory result that will be used
later for deriving the stochastic order of the distance between successive knots,
τ0, . . . , τ2k−3, of g̃n in a neighborhood of x0. Let Hk again denote the spline in-
terpolation operator which assigns to each differentiable function f the unique
spline Hk[f ] with interior knots τ1, . . . , τ2k−4 and degree 2k − 1, and satisfying
the boundary conditions given in (1.6).

LEMMA 4.2. Let τ̄ ∈ ⋃2k−4
i=0 (τi, τi+1). If ek(t) denotes the error at t of the

Hermite interpolation of the function x2k/(2k)!, that is,

ek(t) = t2k

(2k)! − Hk

[
x2k

(2k)!
]
(t),

then

g
(k)
0 (τ̄ )ek(τ̄ ) ≤ En + Rn,(4.6)

where En defined in (4.8) is a random error and Rn defined in (4.9) is a remainder
that both depend on the knots τ0, . . . , τ2k−3 and the point τ̄ .

PROOF. Let τ̄ ∈ ⋃2k−4
i=0 (τi, τi+1). From the characterization in (2.4) and the

fact that H̃n = Hk[Yn] on [τ0, τ2k−3], it follows that

Hk[Yn](τ̄ ) ≥ Yn(τ̄ ).

Let Y0 be the true counterpart of Yn, that is, Y0(x) = ∫ x
0 (x − t)k−1 g0(t) dt/(k −

1)!. We can then rewrite the previous inequality as

Hk[Y0](τ̄ ) − Y0(τ̄ ) ≥ −En(τ̄ ),(4.7)

where

En = Hk[Yn − Y0](τ̄ ) − [Yn − Y0](τ̄ ).(4.8)
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Based on the working assumptions, the function Y0 is (2k)-times continuously
differentiable in a small neighborhood of x0. Now, Taylor expansion of Y0(t) with
integral remainder around τ̄ up to the order 2k yields

Y0(t) =
2k−1∑
j=0

(t − τ̄ )j

j ! Y
(j)
0 (τ̄ ) +

∫ τ2k−3

τ̄

(t − u)2k−1+
(2k − 1)! g

(k)
0 (u) du,

for all t ∈ [τ0, τ2k−3]. Using this expansion, along with the fact that the opera-
tor Hk is linear and preserves polynomials of degree 2k − 1, we can rewrite the
inequality in (4.7) as

1

(2k − 1)!
∫ τ2k−3

τ̄
Hk[(t − u)2k−1+ ](τ̄ )g

(k)
0 (u) du ≥ −En.

In the previous display, Hk[(t − u)2k−1+ ](τ̄ ) is the Hermite spline interpolant of
the truncated power function t �→ (t −u)2k−1+ (u is fixed), evaluated at the point τ̄ .
Now, we can rewrite the left-hand side of the previous inequality as∫ τ2k−3

τ̄

1

(2k − 1)!Hk[(t − u)2k−1+ ](τ̄ )g
(k)
0 (u) du

= g
(k)
0 (τ̄ )

1

(2k − 1)!
∫ τ2k−3

τ̄
Hk[(t − u)2k−1+ ](τ̄ ) du

(4.9)

+ 1

(2k − 1)!
∫ τ2k−3

τ̄
Hk[(t − u)2k−1+ ](τ̄ )

(
g

(k)
0 (u) − g

(k)
0 (τ̄ )

)
du

= g
(k)
0 (τ̄ )

1

(2k − 1)!Hk

[∫ τ2k−3

τ̄
[(t − u)2k−1+ ]du

]
(τ̄ ) + Rn,

once again using linearity of the operator Hk . The remainder Rn is equal to the
Hermite interpolant of the function

t �→ 1

(2k − 1)!
∫ t

τ̄

(t − u)2k−1

(2k − 1)!
(
g

(k)
0 (u) − g

(k)
0 (τ̄ )

)
du

at the point τ̄ . On the other hand, we can further rewrite the integral term in (4.9)
as

1

(2k − 1)!Hk

[∫ τ2k−3

τ̄
(t − u)2k−1+ du

]
(τ̄ )

= 1

(2k − 1)!Hk

[∫ t

τ̄
(t − u)2k−1 du

]
(τ̄ )

= 1

(2k)!Hk[(t − τ̄ )2k](τ̄ ).

In other words, the integral term in (4.9) is nothing but the value of the Hermite
spline interpolant of the function t �→ (t − τ̄ )2k/(2k)! at the point τ̄ . As claimed in
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the lemma, this value is also equal to −ek(τ̄ ), where ek is the error of the Hermite
interpolation of the function x2k/(2k)!. Indeed, let P2k−1(t) = (t − τ̄ )2k/(2k)! −
t2k/(2k)!. Since P2k−1 is a polynomial of degree 2k − 1, we have

Hk

[
(x − τ̄ )2k

(2k)!
]
(t) = Hk

[
x2k

(2k)!
]
(t) + P2k−1(t).

If t = τ̄ , P2k−1(τ̄ ) = 0 − τ̄ 2k/(2k)! = −τ̄ 2k/(2k)!, which implies that

Hk

[
(x − τ̄ )2k

(2k)!
]
(τ̄ ) = Hk

[
x2k

(2k)!
]
(τ̄ ) − τ̄ 2k

(2k)! = −ek(τ̄ ). �

The error ek defined in Lemma 4.2 can be recognized as a monospline of degree
2k with 2k−2 simple knots τ0, . . . , τ2k−3. For a definition of monosplines, see, for
example, Micchelli [32], Bojanov, Hakopian and Sahakian [5], Nürnberger [34],
page 194, or DeVore and Lorentz [9], page 136. In the next lemma, we state an
important property of ek .

LEMMA 4.3. The function x �→ ek(x) has no zeros other than τ0, . . . , τ2k−3
in [τ0, τ2k−3]. Furthermore, (−1)kek ≥ 0 on [τ0, τ2k−3].

PROOF. See Balabdaoui and Wellner [4], Appendix 3. �

In Lemma 4.2, the key inequality in (4.6) can be rewritten as

(−1)kg
(k)
0 (τ̄ ) · (−1)kek(τ̄ ) ≤ En + Rn,(4.10)

where the first factor on the right-hand side is already known to be positive by
k-monotonicity of g0. Lemmas 4.4 and 4.5 are the final steps toward establishing
the order of the gap for the LSE based on conjecture (1.7).

LEMMA 4.4. If conjecture (1.7) holds, then En in (4.6) of Lemma 4.2 satisfies

|En| = Op

(
n−k/(2k+1))+ op

(
(τ2k−3 − τ0)

2k).
PROOF. We have

En = Hk[Yn − Y0](τ̄ ) − [Yn − Y0](τ̄ ).

Using (generalized) Taylor expansions of Yn and Y0 around the point τ̄ up to order
k − 1 yields

Yn(t)−Y0(t) =
k−1∑
j=0

(t − τ̄ )j

j !
[
Y

(j)
n (τ̄ )−Y

(j)
0 (τ̄ )

]+∫ t

τ̄

(t − x)k−1

(k − 1)! d(Gn −G0)(x),
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and therefore,

En = Hk

[∫ t

τ̄

1

(k − 1)!(t − x)k−1 d(Gn − G0)(x)

]
(τ̄ )

= Hk

[∫ τ2k−3

τ̄
gt (x) d(Gn − G0)(x)

]
(τ̄ ), where gt (x) = (t − x)k−1+

(k − 1)!
=

∫ τ2k−3

τ̄
Hk[gt (x)](τ̄ ) d(Gn − G0)(x), by linearity of Hk

=
∫ τ2k−3

τ0

fτ̄ (x) d(Gn − G0)(x).

Given x ∈ [τ̄ , τ2k−3], fτ̄ (x) = Hk[gt (x)](τ̄ )1[τ̄ ,τ2k−3](x), where Hk[gt (x)](τ̄ ) is
the value at τ̄ of the Hermite spline interpolant of the function t �→ gt (x) = (t −
x)k−1+ /(k − 1)!. Thus fτ̄ (x) depends on the knots τ0, . . . , τ2k−3 and the point s =
τ̄ ∈ [τ0, τ2k−3] and can be viewed as an element of the class of functions

Fy0,R = {fs(x) = fs,y0,...,y2k−3(x) :x ∈ [y0, y2k−3], s ∈ [y0, y2k−3],
(4.11)

x0 − δ ≤ y0 < y1 < · · · < y2k−3 ≤ y0 + R ≤ x0 + δ},
where δ > 0 is a fixed small number. In view of conjecture (1.7), together with the
triangle inequality, there exists a constant C > 0 depending only on k such that

|fs(x)| ≤ C(y2k−3 − y0)
k−11[y0,y2k−3](x)

and hence the collection Fy0,R has envelope function Fy0,R given by

Fy0,R(x) = CRk−11[y0,y0+R](x).

Furthermore, Fy0,R is a VC-subgraph collection of functions (see Proposition A.1
in the Appendix for a detailed argument) and hence by van der Vaart and Wellner
[40], Theorem 2.6.7, page 141,

sup
Q

N(ε‖F‖Q,2,Fy0,R,L2(Q)) ≤
(

K

ε

)Vk

,

for 0 < ε < 1, where Vk = 2(V (Fy0,R) − 1) with V (Fy0,R) the VC-dimension of
the collection of subgraphs and where the constant K depends only on V (Fy0,R)

[note that from our proof of Proposition A.1, it is clear that V (Fy0,R) depends only
of k]. It follows that

sup
Q

∫ 1

0

√
1 + logN(ε‖Fy0,R‖Q,2,Fy0,R,L2(Q))dε < ∞.

On the other hand,

EF 2
y0,R

(X1) = C2R2(k−1)
∫ y0+R

y0

g0(x) dx ≤ C2MR2k−1
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with M ≡ g0(x0 − δ). Application of Lemma A.1 with d = k yields

|En| = op

(
(τ2k−3 − τ0)

2k)+ Op

(
n−2k/(2k+1)). �

LEMMA 4.5. If the bound in (1.8) holds, then Rn of Lemma 4.2 satisfies

|Rn| = op

(
(τ2k−3 − τ0)

2k).
PROOF. By definition, Rn is the value at τ̄ of the Hermite spline interpolant

of the function

t �→
∫ t

τ̄

(t − u)2k−1

(2k − 1)!
(
g

(k)
0 (u) − g

(k)
0 (τ̄ )

)
du.(4.12)

By (1.8), there exists a constant D > 0 depending only on k such that

|Rn| ≤ D sup
t∈[τ0,τ2k−3]

∣∣g(k)
0 (t) − g

(k)
0 (τ̄ )

∣∣(τ2k−3 − τ0)
2k.

In the previous bound, we used the fact that the (2k)-times derivative of the func-
tion in (4.12) is g

(k)
0 (t) − g

(k)
0 (τ̄ ). But, note that this derivative is op(1), which

follows from uniform continuity of g
(k)
0 on compacts. This, in turn, implies the

claimed bound. �

PROOF OF LEMMA 3.1 FOR THE LSE. Let j0 ∈ {0, . . . ,2k − 4} be such that
[τj0, τj0+1] is the largest knot interval, that is, τj0+1 − τj0 = max0≤j≤2k−4(τj+1 −
τj ). Let a = τ0, b = τ2k−3. Using the inequality in (4.10) and noting that the
bounds on Rn and En are independent of the choice of τ̄ in

⋃2k−4
j=0 (τj , τj+1), it

follows that

sup
τ̄∈(τj0 ,τj0+1)

(−1)kek(τ̄ ) ≤ Op

(
n−2k/(2k+1))+ op

(
(τ2k−3 − τ0)

2k).
Now, on the interval [τj0, τj0+1], the Hermite spline interpolant of the function
x2k/(2k)! reduces to a polynomial of degree 2k − 1. On the other hand, the best
uniform approximation of the function x2k on [τj0, τj0+1] from the space of poly-
nomials of degree ≤ 2k − 1 is given by the polynomial

x �→ x2k −
(

τj0+1 − τj0

2

)2k 1

22k−1 T2k

(
2x − (τj0 + τj0+1)

τj0+1 − τj0

)
,(4.13)

where T2k is the Chebyshev polynomial of degree 2k (defined on [−1,1]); see,
for example, Nürnberger [34], Theorem 3.23, page 46, or DeVore and Lorentz [9],
Theorem 6.1, page 75. It follows that

sup
τ̄∈(τj0 ,τj0+1)

(−1)kek(τ̄ ) ≥
∥∥∥∥ T2k

24k−1(2k)!
∥∥∥∥∞

(τj0+1 − τj0)
2k(4.14)

= 1

24k−1(2k)!(τj0+1 − τj0)
2k
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since ‖T2k‖∞ = 1. But

τ2k−3 − τ0 =
2k−4∑
j=0

(τj+1 − τj ) ≤ (2k − 3)(τj0+1 − τj0).

Hence,

sup
τ̄∈(τj0 ,τj0+1)

(−1)kek(τ̄ ) ≥ 1

(2k − 3)2k24k−1(2k)!(τ2k−3 − τ0)
2k.

Combining the results obtained above, we conclude that

(−1)kg
(k)
0 (x0)

(2k − 3)2k24k−1(2k)! (τ2k−3 − τ0)
2k ≤ Op

(
n−2k/(2k+1))+ op

(
(τ2k−3 − τ0)

2k),
which implies that τ2k−3 − τ0 = Op(n−1/(2k+1)). �

4.3. The gap problem for the MLE. To show Lemma 3.1 for the MLE, one
needs to deal with an extra difficulty posed by the nonlinear form of the charac-
terization of this estimator as given in (2.6). In the following, we show how one
can get around this difficulty. The main idea is to “linearize” the characterization
of the MLE and hence be able to re-use the arguments developed for the LSE in
the previous subsection.

LEMMA 4.6. Let τ0, . . . , τ2k−3 be 2k − 2 successive jump points of ĝ
(k−1)
n .

Then

Hk[Yn] − Yn ≥ g0(τ0)(f̌n − Hk[f̌n] + �n − Hk[�n])
on [τ0, τ2k−3], where Yn is the same empirical process introduced in (2.2),

f̌n(x) ≡ −
∫ t

τ0

(x − t)k−1

(k − 1)!
(

1

ĝn(t)
− 1

g0(τ0)

)
d
(
Ĝn(t) − G0(t)

)
and

�n(x) ≡
∫ x

τ0

(x − t)k−1

(k − 1)!
(

1

ĝn(t)
− 1

g0(τ0)

)
d
(
Gn(t) − G0(t)

)
.

PROOF. Let Ĝn(x) = ∫ x
0 ĝn(s) ds. The characterization in (2.6) can be rewrit-

ten as ∫ x

0

(x − t)k−1

ĝn(t)
d
(
Ĝn(t) − Gn(t)

) {≥ 0, for x > 0,
= 0, if x is a jump point of ĝ

(k−1)
n .

(4.15)

Note that when x is a jump point of ĝ
(k−1)
n , the two parts of (4.15) imply that the

first derivative of the function on the right-hand side is equal to 0 at the jump point
x, that is, ∫ x

0

(x − t)k−2

ĝn(t)
d
(
Ĝn(t) − Gn(t)

) = 0.(4.16)
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For x > 0, let

Ĥn(x) =
∫ x

0

(x − t)k−1

(k − 1)! dĜn(t).

Note that Ĥn 	= Ĥn defined in (2.5) and that on [τ0, τ2k−3], Ĥn is a spline of degree
2k − 1 with knots τ0, . . . , τ2k−3. For x ∈ [τ0, τ2k−3], we can write∫ x

0

(x − t)k−1

ĝn(t)
d
(
Ĝn(t) − Gn(t)

)
= 1

g0(τ0)

∫ x

0
(x − t)k−1 d

(
Ĝn(t) − Gn(t)

)
+
∫ x

0
(x − t)k−1

(
1

ĝn(t)
− 1

g0(τ0)

)
d
(
Ĝn(t) − Gn(t)

)
= (Ĥn(x) − Yn(x))

g0(τ0)
+
∫ τ0

0
(x − t)k−1

(
1

ĝn(t)
− 1

g0(τ0)

)
d
(
Ĝn(t) − Gn(t)

)
+
∫ x

τ0

(x − t)k−1
(

1

ĝn(t)
− 1

g0(τ0)

)
d
(
Ĝn(t) − G0(t)

)
+
∫ x

τ0

(x − t)k−1
(

1

ĝn(t)
− 1

g0(τ0)

)
d
(
G0(t) − Gn(t)

)
= 1

g0(τ0)

(
Ĥn(x) − Yn(x)

)+ pn(x) − f̌n(x) − �n(x).

Note that

pn(x) ≡
∫ τ0

0
(x − t)k−1

(
1

ĝn(t)
− 1

g0(τ0)

)
d
(
Ĝn(t) − Gn(t)

)
is a polynomial of degree k − 1. From (4.15) and (4.16), it follows that Ĥn is the
Hermite spline interpolant of the function

Yn + g0(τ0){−pn + f̌n + �n}
such that

Ĥn ≥ Yn + g0(τ0)(−pn + f̌n + �n).

Hence,

Hk[Yn + g0(τ0){−pn + f̌n + �n}] ≥ Yn + g0(τ0){−pn + f̌n + �n}
on [τ0, τ2k−3] or, equivalently,

Hk[Yn] − Yn ≥ g0(τ0)(f̌n − Hk[f̌n] + �n − Hk[�n]). �
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Since Hk[Yn] − Yn has already been studied for the purposes of proving the
order of the gap in the case of the LSE, the final step is to evaluate each of the
interpolation errors

E1 = f̌n − Hk[f̌n] and E2 = �n − Hk[�n].(4.17)

LEMMA 4.7. Let E1 and E2 be the interpolation errors defined in (4.17). Then

‖E1‖∞ = op

(
(τ2k−3 − τ0)

2k)
and

‖E2‖∞ = op

(
(τ2k−3 − τ0)

2k)+ Op

(
n−2k/(2k+1)).

PROOF. A detailed proof can be found in Balabdaoui and Wellner [4], Appen-
dix 3. �

PROOF OF LEMMA 3.1 FOR THE MLE. From our study of the distance be-
tween the knots of the LSE, and using very similar calculations, we can show that
for all τ̄ ∈ ⋃2k−4

j=0 (τj , τj+1),

(−1)kg
(k)
0 (τ̄ )(−1)kek(τ̄ ) ≤ En + Rn − g0(τ0)

(
E1(τ̄ ) + E2(τ̄ )

)
,

which implies that by the results obtained for the LSE,

D(τ2k−3 − τ0)
2k(1 + op(1)

) ≤ Op

(
n−2k/(2k+1))+ g0(τ0)(‖E1‖∞ + ‖E2‖∞)

for some constant D > 0 depending on k and x0. Hence, it follows from
Lemma 4.7 that

D(τ2k−3 − τ0)
2k(1 + op(1)

) ≤ Op

(
n−2k/(2k+1)),

which yields the order n−1/(2k+1) for the distance between the knots of the MLE
in the neighborhood of x0. �

5. Conclusions and discussion. As noted in Section 1, one of the motiva-
tions for this work was to try to approach the problem of pointwise limit theory for
the MLE’s in both the forward and inverse problems for the family of completely
monotone densities on R

+. This is one very important special case of the family of
nonparametric mixture models with a smooth kernel as was mentioned in part (b)
of our discussion in Section 1. Jewell [22] established consistency of the MLE’s
of g ∈ D∞ and the corresponding mixing distribution function F in this setting,
but local rates of convergence and limiting distribution theory remain unknown.
Our initial hope was that we might be able to learn about the problem with k = ∞
by studying the problem for fixed k and then taking limits as k → ∞. Unfortu-
nately, we now believe that new tools and methods will be needed. The following
discusses the state of affairs as we understand it now.
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In terms of rates of convergence and localization properties, our development
here shows that the local behavior of the estimators near a fixed point x0 > 0 be-
comes dependent on an increasing number of jump points or knots in the spline
problem. In other words, one needs to consider 2k − 2 consecutive jump points
(knots) τ0,n < · · · < τn,2k−3 of the (k − 1)st derivative of the estimators in a
neighborhood of x0 in order to be able to find a bound on τn,j+1 − τn,j , j =
0, . . . ,2k − 4, as n → ∞. Thus the problem becomes increasingly “less local”
with increasing k and this leads us to suspect that the situation in the k = ∞
(or completely monotone) problem might be only “weakly local” or perhaps even
“completely nonlocal” in senses yet to be precisely defined.

Another aspect of this problem is that although the MLE is asymptotically
equivalent to the (mass-unconstrained) LSE for each fixed k if our conjecture (1.7)
holds, they seem to differ increasingly as k increases. For k = 1, the MLE and
the LSE are identical; for k = 2, the MLE differs from the (mass-unconstrained)
LSE, but the LSE always has total mass 1. For k ≥ 3, the MLE and LSE differ,
and, moreover, the total amount of mass in the unconstrained LSE for n = 1 is
Mk = ((2k − 1)/k)(1 − 1/(2k − 1))k−1 ↗ 2e−1/2 ≈ 1.21306 . . . 	= 1 as k → ∞.
We do not know how the mass of the unconstrained LSE behaves jointly in n and k,
even though (by consistency) the mass of the LSE converges to 1 as n → ∞ for
fixed k. We also do not even know if the unconstrained LSE exists for the scale
mixture of exponentials, even though it is clear that the constrained estimator (de-
fined by the least squares criterion minimized over Dk rather than Mk) with mass 1
does exist. Since our current proof techniques rely so heavily on showing equiv-
alence between the MLE and the (unconstrained) LSE, it seems likely that new
methods will be required. We do not know if the (mass)-constrained LSE’s and
the MLE’s are asymptotically equivalent either for finite k or for k = ∞. Our cur-
rent plan is to study the constrained LSE’s with total mass constrained to be 1 for
finite sample sizes in order to investigate the asymptotic equivalence of these mass-
constrained LSE’s and the MLE’s and to (perhaps) extend this study to k = ∞ via
limits on k. We do not yet know the “right” Gaussian version of the estimation
problem in the completely monotone case.

Another way to view these difficulties might be to take the following perspec-
tive: since more knowledge is available concerning the MLE’s for the families Dk

with k finite and since D∞ is the intersection of all of the Dk’s (and hence well
approximated by Dk with k large), we can fruitfully consider estimation via model
selection, choosing k based on the data, over the collection

⋃∞
k=1 Dk .

In summary, we have tried to shed some more light on the local behavior of two
nonparametric estimators of a k-monotone density, the Maximum Likelihood and
Least Squares estimators. We have shown that they are both adaptive splines of
degree k − 1 with knots determined by the data and their corresponding criterion
functions. When (−1)kg

(k)
0 (x0) > 0, the distance between their knots in a neigh-

borhood of a point x0 > 0 was shown to be n−1/(2k+1) if a conjecture concerning
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the uniform boundedness of the interpolation error in a new Hermite interpolation
problem holds. Once this control of the distance between the knots is available,
pointwise limit distribution theory follows via a route paralleling previous results
for k = 1,2. Although we do not exclude the possibility that this order could be es-
tablished via other approaches, we hope that the techniques developed here demon-
strate that there could still be many interesting and powerful connections between
statistics and approximation theory.

APPENDIX: PROOFS FROM EMPIRICAL PROCESSES THEORY

The following proposition is a slight generalization of Lemma 4.1 of Kim and
Pollard [24], page 201.

LEMMA A.1. Let F be a collection of functions defined on [x0 − δ, x0 + δ],
with δ > 0 small. Suppose that for a fixed x ∈ [x0 − δ, x0 + δ] and R > 0 such that
[x, x + R] ⊆ [x0 − δ, x0 + δ], the collection

Fx,R = {
fx,y ≡ f 1[x,y], f ∈ F , x ≤ y ≤ x + R

}
admits an envelope Fx,R such that

EF 2
x,R(X1) ≤ KR2d−1, R ≤ R0,

for some d ≥ 1/2, where K > 0 depends only on x0 and δ. Moreover, suppose that

sup
Q

∫ 1

0

√
logN(η‖Fx,R‖Q,2,Fx,R,L2(Q))dη < ∞.(A.1)

Then for each ε > 0, there exist random variables Mn of order Op(1) such that

|(Gn − G0)(fx,y)| ≤ ε|y − x|k+d + n−(k+d)/(2k+1)Mn
(A.2)

for |y − x| ≤ R0.

PROOF. By van der Vaart and Wellner [40], Theorem 2.14.1, page 239, it fol-
lows that

E

{
sup

fx,y∈Fx,R

|(Gn − G0)(fx,R)|
}2

≤ K

n
EF 2

x,R(X1) = O(n−1R2d−1)(A.3)

for some constant K > 0 depending only on x0, δ and the entropy integral in (A.1).
For any fx,y ∈ Fx,R , we write

(Pn − P0)(fx,y) = (Gn − G0)(fx,y)

and define Mn by

Mn = inf
{
D > 0 : |(Pn − P0)(fx,y)| ≤ ε(y − x)k+d + n−(k+d)/(2k+1)D,

for all fx,y ∈ Fx,R

}
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and Mn = ∞ if no D > 0 satisfies the required inequality. For 1 ≤ j ≤
�Rn1/(2k+1)� = jn, we have

P(Mn > m)

≤ P
(|(Pn − P0)(fx,y)| > ε(y − x)k+d + n−(k+d)/(2k+1)m

for some fx,y ∈ Fx,R

)
≤ ∑

1≤j≤jn

P
{
n(k+d)/(2k+1)|(Pn − P0)(fx,y)| > ε(j − 1)k+d + m

for some fx,y ∈ Fx,R, (j − 1)n−1/(2k+1) ≤ y − x ≤ jn−1/(2k+1)}
≤ ∑

1≤j≤jn

n2(k+d)/(2k+1)
E{supy:0≤y−x<jn−1/(2k+1) |(Pn − P0)(fx,y−x)|}2

(ε(j − 1)k+d + m)2

= ∑
1≤j≤jn

n2(k+d)/(2k+1)
E{supfx,y−x∈F

x,jn−1/(2k+1)
|(Pn − P0)(fx,y−x)|}2

(ε(j − 1)k+d + m)2

≤ C
∑

1≤j≤jn

n2(k+d)/(2k+1)n−1n−(2d−1)/(2k+1) j2d−1

(ε(j − 1)k+d + m)2

= C
∑

1≤j≤jn

j2d−1

(ε(j − 1)k+d + m)2 ≤ C

∞∑
j=1

j2d−1

(ε(j − 1)k+d + m)2 ↘ 0

as m ↗ ∞, where C > 0 is a constant that depends only on x0, δ. Therefore, it
follows that (A.2) holds. �

In the following, we present VC-subgraph proofs for Lemma 4.4.

PROPOSITION A.1. For k ≥ 2, the class of functions Fy0,R given in (4.11) is
a VC-subgraph class.

PROOF. We first show that the class of subgraphs

C = {{(t, c) ∈ R
+ × R : c < ft (x)} :

x ∈ [τ0, τ2k−3], x0 − δ ≤ y0 < y1 < · · · < y2k−3 ≤ y0 + R ≤ x0 + δ
}

is a VC class of sets in R
+ × R. If we show this, then the class of functions (4.11)

is VC-subgraph. Alternatively, from van der Vaart and Wellner [40], problem 11,
page 152, it suffices to show that the “between graphs”

C1 = {{(t, c) ∈ R
+ × R : 0 ≤ c ≤ ft (x) or ft (x) ≤ c ≤ 0} :

x ∈ [y0, y2k−3], x0 − δ ≤ y0 < y1 < · · · < y2k−3 ≤ y0 + R ≤ x0 + δ
}
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constitute a VC class of sets. Let

C1,j = {{
(t, c) ∈ R

+ × R : 0 ≤ c ≤ ft (x)1[yj−1,yj ](t)

or ft (x)1[yj−1,yj ](t) ≤ c ≤ 0
}

:

x ∈ [τ0, τ2k−3], x0 − δ ≤ y0 < y1 < · · · < y2k−3 ≤ y0 + R ≤ x0 + δ
}

for j = 1, . . . ,2k − 3. Since t �→ ft (x)1[yj−1,yj ](t) is a polynomial of degree at
most k − 1 for each j = 1, . . . , k, the classes C1,j are all VC classes. Also, note
that

C1 ⊂ C1,1 � · · · � C1,2k−3 ≡ C�k.

By Dudley [10], Theorem 2.5.3, page 153, C�k is a VC class (or see van der Vaart
and Wellner [40], Lemma 2.6.17, part (iii), page 147). Hence, C1 is a VC class and
Fy0,R is a VC-subgraph class. �
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