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Abstract: Case-cohort design, an outcome-dependent sampling design for censored

survival data, is increasingly used in biomedical research. The development of

asymptotic theory for a case-cohort design in the current literature primarily re-

lies on counting process stochastic integrals. Such an approach, however, is rather

limited and lacks theoretical justification for outcome-dependent weighted meth-

ods due to non-predictability. Instead of stochastic integrals, we derive asymptotic

properties for case-cohort studies based on a general Z-estimation theory for semi-

parametric models with bundled parameters using empirical process theory. Both

the Cox model and the additive hazards model with time-dependent covariates are

considered.
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1. Introduction

Case-cohort designs, originally proposed by Prentice (1986) for right-censored

survival data, are very useful in large epidemiologic cohort studies, and their

applications are increasingly common in biomedical research. In a case-cohort

study, complete data are only obtained for all failures observed during follow-up

and for a sub-sample, called the subcohort, of the entire cohort. The subcohort

can be a simple random or stratified sub-sample. Such a design is cost-effective

for studies of rare events, and has been extended to other models including the

additive hazards model (Kulich and Lin (2000)), transformation models (Chen

and Zucker (2009); Kong, Cai, and Sen (2004); Lu and Tsiatis (2006)), and the

accelerated failure time model (Nan, Kalbfleisch, and Yu (2009); Nan, Yu, and

Kalbfleisch (2006)), and also to other censoring mechanisms (Li, Gilbert, and

Nan (2008); Li and Nan (2011)), among many others.

For right-censored data, the pseudo likelihood approach of Self and Pren-

tice (1988) constructs risk sets from subcohort only, thus the counting process

martingale theory is naturally applicable for deriving the asymptotic properties

for the Cox-type regression models. This same strategy can be applied to some
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other regression models for right-censored data, for example, the accelerated fail-

ure time model studied by Nan, Yu, and Kalbfleisch (2006). Since complete

information is also observed for all the failures, constructing risk sets from all

observed data including failures outside the subcohort would yield more efficient

estimation. This has been observed by many authors particularly through exten-

sive simulations, for example, Borgan et al. (2000); Chen and Lo (1999); Chen

and Zucker (2009); Kalbfleisch and Lawless (1988); Kulich and Lin (2000, 2004).

The development of corresponding asymptotic theories has been primarily based

on calculations of counting process stochastic integrals. Such a method, however,

lacks theoretical justification because the integrands of those stochastic integrals

are not predicable, not even adapted with respect to any filtration generated

from the history.

To overcome this technical hurdle, we consider a general semiparametric Z-

estimation method for bundled parameters using empirical process theory, see

e.g., van der Vaart and Wellner (1996, 2007). Our approach does not use the

stochastic integral formulation, thus there is no predictability requirement. The

main body of the article is as follows. In Section 2, we introduce a general

asymptotic theory for semiparametric Z-estimation with bundled parameters.

We then apply the Z-estimation theory to case-cohort studies in Section 3. Both

the Cox model and the additive hazards model with time-dependent covariates

will be considered. We make some concluding remarks in Section 4. Detailed

proofs are provided in Appendices A and B.

2. Semiparametric Z-estimation for Bundled Parameters

Let θ ∈ Θ ⊂ Rd be the parameter of interest, and η : X ×Θ → RJ be infinite

dimensional nuisance parameter(s) in a Banach space H ≡ {(x, θ) 7→ η(x, θ) ∈
RJ : x ∈ X , θ ∈ Θ}. Such a parametrization allows the nuisance parameter to

be a function of the parameter of interest, thus the two types of parameters are

bundled together, a terminology originally used by Huang and Wellner (1997) and

further studied by, for example, Ding and Nan (2011). Denote the random map

X n 7→ Rd with n observations X1, . . . , Xn as

Ψn(θ, η) ≡ Ψn(X1, . . . , Xn; θ, η(·; θ)) . (2.1)

This becomes an estimating function for θ when η is given or replaced by its

estimator. For independent and identically distributed (i.i.d.) observations

X1, . . . , Xn, very often Ψn(θ, η) takes the form:

Ψn(θ, η) =
1

n

n∑
i=1

ψ(Xi; θ, η(·; θ)), (2.2)
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where ψ(θ, η) ≡ ψ(X; θ, η(·; θ)) is a random map X 7→ Rd with a single obser-

vation X.

Here we use the term “nuisance parameter” in a rather loose sense. It does

not need to be an actual parameter (for example, the baseline hazard function in

the Cox model) in the original parametrization of the distribution of X. Broadly

speaking, it is an unknown quantity in the estimating function in addition to the

parameter of interest. The unknown quantity η as a function of θ needs to be

estimated prior to estimating θ. We call the solution to Ψn(θ, η̂n(·; θ)) = 0 the Z-

estimator for θ, where η̂n is some estimator for η. This type of generalization has

been considered in the econometrics literature; see for example, Newey (1994);

Chen, Linton, and Van Keilegom (2003). We provide slightly modified results

of Chen, Linton, and Van Keilegom (2003) with a focus on Z-estimation in the

following lemmas, which are used for the estimates in the considered case-cohort

studies. Proofs of the lemmas are provided in Appendix A.

Let θ0 denote the true value of θ and η0 be the true functional form of

η. Let Ψ(θ, η) be a deterministic function, which usually denotes the limit of

Ψn(θ, η) as n → ∞. We use p∗ to denote “in outer probability”, where the

outer probability P ∗ is defined as P ∗(B) = inf{P (A) : A ⊃ B,A ∈ A} for any

subset B of Ω in a probability space (Ω,A, P ). We refer its detailed discussion

to van der Vaart and Wellner (1996). Note that the lemmas in this section do

not require i.i.d. data, though data in the case-cohort studies we consider are

assumed to be i.i.d. Let | · | be the Euclidian norm and let ∥η∥ = supθ∈Θ ρ(η(·; θ))
for some norm or semi-norm ρ; for example, ρ(η(·; θ)) = supx∈X |η(x; θ)|, which
gives ∥η∥ = supθ∈Θ supx∈X |η(x; θ)|.

Lemma 1 (Consistency). Suppose θ0 is the unique solution to Ψ(θ, η0(·; θ)) = 0

in the parameter space Θ, and η̂n is an estimator of η0 such that ∥η̂n − η0∥ =

op∗(1). If

sup
θ∈Θ,∥η−η0∥≤δn

|Ψn(θ, η(·; θ))−Ψ(θ, η0(·; θ))|
1 + |Ψn(θ, η(·; θ))|+ |Ψ(θ, η0(·; θ))|

= op∗(1) (2.3)

for every sequence {δn} ↓ 0, then θ̂n satisfying Ψn(θ̂n, η̂n(·; θ̂n)) = op∗(1) con-

verges in outer probability to θ0.

Consistency is a global property. Our main condition (2.3) is therefore nec-

essarily global. The p∗ in (2.3) indicates that the left-hand side converges to 0

in outer probability in case the term on the left is not Borel measurable. It is a

stronger condition to require that the convergence holds when the denominator

is replaced by 1. The purpose of adding an extra term in the denominator is to

control the numerator when it blows up to infinity for some θ ∈ Θ.
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Lemma 2 (Rate of convergence and asymptotic representation). Let H0 =

{η(x; θ) : x ∈ X , θ ∈ Θ0} be a collection of sets of J functions that are con-

tinuously differentiable in θ for all x ∈ X with bounded derivative matrices

{η̇(·; θ)}, where Θ0 ⊂ Θ is a neighborhood of θ0. Suppose that θ̂n satisfying

Ψn(θ̂n, η̂n(·; θ̂n)) = op∗(n
−1/2) is a consistent estimator of θ0 that is the unique

solution to Ψ(θ, η0(·; θ)) = 0 in Θ, and that η̂n ∈ H0 is an estimator of η0 ∈ H0

satisfying ∥η̂n − η0∥ = Op∗(n
−β) for some β > 0. Suppose the following four

conditions are satisfied.

(i) (Stochastic equicontinuity.)

|n1/2(Ψn −Ψ)(θ̂n, η̂n(·; θ̂n))− n1/2(Ψn −Ψ)(θ0, η0(·; θ0))|
1 + n1/2|Ψn(θ̂n, η̂n(·; θ̂n))|+ n1/2|Ψ(θ̂n, η̂n(·; θ̂n))|

= op∗(1) .

(ii) n1/2Ψn(θ0, η0(·; θ0)) = Op∗(1).

(iii) (Smoothness.) (a) If β = 1/2, the function Ψ(θ, η(·; θ)) : Θ0 × H0 → Rd

is Fréchet differentiable at (θ0, η0(·; θ0)), i.e., there exists a continuous d × d

matrix Ψ̇1(θ0, η0(·; θ0)) and continuous linear functionals Ψ̇2(θ0, η0(·; θ0)) with

Ψ̇2[a] =
∑J

j=1 Ψ̇2j [a] such that

|Ψ(θ, η(·; θ))−Ψ(θ0, η0(·; θ0))
− {Ψ̇1(θ0, η0(·; θ0)) + Ψ̇2(θ0, η0(·; θ0))[η̇0(·; θ0)]}(θ − θ0)

− Ψ̇2(θ0, η0(·; θ0))[(η − η0)(·; θ0)]|
= o(|θ − θ0|) + o(∥η − η0∥) ; (2.4)

or (b) if 0 < β < 1/2, for some α > 1 satisfying αβ > 1/2 we have

|Ψ(θ, η(·; θ))−Ψ(θ0, η0(·; θ0))
− {Ψ̇1(θ0, η0(·; θ0)) + Ψ̇2(θ0, η0(·; θ0))[η̇0(·; θ0)]}(θ − θ0)

− Ψ̇2(θ0, η0(·; θ0))[(η − η0)(·; θ0)]|
= o(|θ − θ0|) +O(∥η − η0∥α) . (2.5)

Here the subscripts 1 and 2 correspond to the first and the second arguments

in Ψ(·, ·), respectively, and we assume that the matrix A = −Ψ̇1(θ0, η0(·; θ0)) −
Ψ̇2(θ0, η0(·; θ0))[η̇0(·; θ0)] is nonsingular.

(iv) n1/2Ψ̇2(θ0, η0(·; θ0))[(η̂n − η0)(·; θ0)] = Op∗(1).

Then θ̂n is n1/2-consistent, and further we have

n1/2(θ̂n − θ0) = A−1n1/2
{
(Ψn −Ψ)(θ0, η0(·; θ0))

+ Ψ̇2(θ0, η0(·; θ0))[(η̂n − η0)(·; θ0)]
}
+ op∗(1). (2.6)



Z-ESTIMATION AND CASE-COHORT DESIGN 1159

Remark. For i.i.d. data, Condition (i) in Lemma 2 holds if the class of func-

tions {ψ(θ, η) : |θ − θ0| < δ, ∥η − η0∥ < δ} is Donsker for some δ > 0, and

satisfies E0|ψ(X; θ, η) − ψ(X; θ0, η0)|2 → 0 as |θ − θ0| → 0 and ∥η − η0∥ → 0

(see e.g., Corollary 2.3.12 of (van der Vaart and Wellner, 1996, p.115)). Though

simpler, this is stronger than Condition (i). Condition (ii) holds automatically

for i.i.d. data if E0|ψ(θ0, η0)|2 < ∞ and Ψn takes the form (2.2). In Condition

(iii), {Ψ̇1(θ0, η0(·; θ0))+Ψ̇2(θ0, η0(·; θ0))[η̇0(·; θ0)]}(θ−θ0) is obtained by the chain

rule, which is the usual inner product of a d×d matrix and a d×1 vector; whereas

Ψ̇2(θ0, η0(·; θ0))[(η−η0)(·; θ0)] =
∑J

j=1 Ψ̇2j (θ0, η0(·; θ0))[(ηj−η0j)(·; θ0)], here J is

the number of infinite dimensional parameters contained in η, is the sum of sepa-

rate terms with each Ψ̇2j being a bounded linear functional that brings η− η0 to

a real number, where η is close to η0 in nβ-rate for some β > 0. Proposition 1 of

Bickel et al. (1993), page 455, provides useful tools for checking Fréchet differen-

tiability for infinite-dimensional parameters. Condition (iv) holds automatically

under (i)−(iii) if η̂n is n1/2-consistent, but may require extensive work for slower

than root-n convergence rate, see e.g., Wong and Severini (1991) and Huang and

Wellner (1995). In view of the structure of (2.6), the asymptotic distribution

of n1/2(θ̂n − θ0) is determined by the asymptotic joint distribution of the ran-

dom variables n1/2(Ψn−Ψ)(θ0, η0(·; θ0)) and n1/2Ψ̇2(θ0, η0(·; θ0))[(η̂n−η0)(·; θ0)],
particularly if the asymptotic joint distribution is multivariate Gaussian.

In the case that η is free of θ, we have η̇ = 0. Then Lemma 2 reduces to the

following corollary that was studied by Hu (1998). The corollary is particularly

useful for the case-cohort additive hazards model in the next section. Now we

replace Ψ̇1 by Ψ̇θ and Ψ̇2 by Ψ̇η without causing any confusion, and the notation

∥ · ∥ becomes a norm.

Corollary 1 (Rate of convergence and asymptotic representation). Suppose that

θ̂n satisfying Ψn(θ̂n, η̂n) = op∗(n
−1/2) is a consistent estimator of θ0 that is the

unique solution to Ψ(θ, η0) = 0 in Θ, and that η̂n is an estimator of η0 satisfying

∥η̂n− η0∥ = Op∗(n
−β) for some β > 0. Suppose the following four conditions are

satisfied.

(i) (Stochastic equicontinuity.)

|n1/2(Ψn −Ψ)(θ̂n, η̂n)− n1/2(Ψn −Ψ)(θ0, η0)|
1 + n1/2|Ψn(θ̂n, η̂n)|+ n1/2|Ψ(θ̂n, η̂n)|

= op∗(1) .

(ii) n1/2Ψn(θ0, η0) = Op∗(1).

(iii) (Smoothness.) (a) If β = 1/2, function Ψ(θ, η) is Fréchet differentiable at

(θ0, η0), i.e., there exists a continuous and nonsingular d × d matrix Ψ̇θ(θ0, η0)
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and a continuous linear functional Ψ̇η(θ0, η0) such that

|Ψ(θ, η)−Ψ(θ0, η0)− Ψ̇θ(θ − θ0)− Ψ̇η(θ0, η0)[η − η0]|
= o(|θ − θ0|) + o(∥η − η0∥); (2.7)

or (b) if 0 < β < 1/2, for some α > 1 satisfying αβ > 1/2 we have

|Ψ(θ, η)−Ψ(θ0, η0)− Ψ̇θ(θ − θ0)− Ψ̇η(θ0, η0)[η − η0]|
= o(|θ − θ0|)+O(∥η − η0∥α). (2.8)

(iv) n1/2Ψ̇η(θ0, η0)[η̂n − η0] = Op∗(1).

Then θ̂n is n1/2-consistent, and further we have

n1/2(θ̂n − θ0) =
{
− Ψ̇θ(θ0, η0)

}−1
n1/2

{
(Ψn −Ψ)(θ0, η0) + Ψ̇η(θ0, η0)[η̂n − η0]

}
+op∗(1). (2.9)

3. Case-Cohort Studies

We consider two models that are used for analyzing case-cohort data: the Cox

model and the additive hazards model. Let X be the generic random variable

that consists of several random variables. Let T be the failure time and C

the censoring time; we only observe Y = min(T,C) and the failure indicator

∆ = 1(T ≤ C). Let Z(·) be the d-dimensional covariate process and Z̄(t) be the

covariate history up to time t. We assume that for all t, events {T ≥ t} and

{C ≥ t} are conditionally independent given Z̄(t), and both are independent of

{Z̄(s) : s > t}. In other words, Z(·) is an external covariate, see Kalbfleisch and

Prentice (2002). Suppose potentially we would have n i.i.d. copies of (Y,∆, Z̄(Y ))

in the full cohort, but we only observe Z̄(Y ) for all failures and subjects in the

subcohort that is a sub-sample of the entire cohort. The subcohort may be

selected using a variety of sampling schemes including simple random sampling

and stratified sampling based on some auxiliary variable Z∗(·) that can be a

subset of Z(·), may or may not be time-dependent, and is available to everyone in

the cohort. We focus on the independent Bernoulli sampling method for selecting

the subcohort, by which a coin is flipped for each subject i in the cohort with

a given success probability πi that may depend on Z∗
i . For finite population

sampling methods, as applied in Breslow and Wellner (2007), we expect the

weighted bootstrap empirical process theory of Præstgaard and Wellner (1993)

to be a useful tool to verify conditions in Lemmas 1 and 2. See Saegusa and

Wellner (2012) for a related problem using weighted bootstrap empirical process

theory.
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Let Ri be the subcohort indicator that equals 1 if the ith subject is selected

into the subcohort and 0 otherwise. Then πi = P (Ri = 1|Z∗
i ). Thus the observed

data in such a case-cohort study are i.i.d. and the missing data mechanism is

missing at random (Little and Rubin (2002)). The following is a set of common

regularity conditions for both the Cox model and the additive hazards model.

Assumption (A): The sample paths of Z(·) ∈ Z are bounded with bounded

variation, and the parameter space Θ is compact.

Assumption (B): The conditional distribution of T given Z̄(·) possesses a con-

tinuous Lebesgue density.

Assumption (C): The study stops at a finite time τ > 0 such that, for constants

σ1 and σ2, infz∈Z P (C ≥ τ |Z̄(τ) = z̄(τ)) = σ1 > 0 and infz∈Z P (T > τ |Z̄(τ) =
z̄(τ)) = σ2 ∈ (0, 1).

Assumption (D): The map Ψ(θ, η(·; θ)) = Pψ(θ, η(·; θ)) has a nonsingular par-

tial derivative with respect to θ at (θ0, η0(·; θ0)), where ψ(θ, η(·; θ)) is given in

(3.1) for the Cox model and in (3.7) for the additive hazards model.

Assumption (E): In case-cohort studies, data are missing at random with πi ≥
σ3 > 0 for all i and a constant σ3.

Note that the assumption of compact Θ is only for technical convenience,

which may be unnecessarily strong. Later we will see that for the additive hazards

model, η is free of θ. Also note that ψ(θ, η(·; θ)) reduces to ψ(η(·; θ)) for the Cox
model, but the first argument still stays in order to keep a clear and consistent

notation. The following are some standard empirical process notations that we

use in the rest of the paper. Suppose X1, . . . , Xn are i.i.d. p-dimensional random

variables that follow the distribution P on a measurable space (X ,A). For a

measurable function f : X 7→ R, let

Pnf =
1

n

n∑
i=1

f(Xi) , Pf =

∫
fdP ,

and

Gnf = n−1/2
n∑

i=1

{f(Xi)− Pf} = n1/2(Pn − P )f .

Function f can be replaced by a random function x 7→ f̂n(x;X1, . . . , Xn). Thus,

Pnf̂n =
1

n

n∑
i=1

f̂n(Xi;X1, . . . , Xn) , P f̂n =

∫
f̂n(x;X1, . . . , Xn)dP (x) ,

and

Gnf̂n = n−1/2
n∑

i=1

{f̂n(Xi;X1, . . . , Xn)− P f̂n} = n1/2(Pn − P )f̂n .
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3.1. Case-cohort study: the Cox model

For the Cox model with external time-dependent covariates, we have

λ(t|Z̄(t)) = λ0(t)e
θ′0Z(t) ,

1− FT |Z̄(τ)(t|z̄(τ)) = 1− FT |Z̄(t)(t|z̄(t)) = exp

{
−
∫ t

0
eθ

′
0z(s)dΛ0(s)

}
,

where FT |Z̄(τ) is the conditional distribution function of T given Z̄(τ), Λ0 is the
baseline cumulative hazard function, and θ0 is the parameter of interest. Let Xi

be the i-th observation in the case-cohort study. We define the following random
map

Ψn(θ, η) =
1

n

n∑
i=1

ψ(Xi; θ, η) =
1

n

n∑
i=1

Ωi(Yi){Zi(Yi)− η(Yi; θ)}∆i , (3.1)

with true η given by

η0(t; θ) =
E{Z(t)eθ′Z(t)1(Y ≥ t)}
E{eθ′Z(t)1(Y ≥ t)}

,

where Ωi’s are diagonal weight matrices with subject and covariate specific ran-
dom weights on the diag that are allowed to depend on time and have ex-
pectation 1 given underlying complete data (Yi,∆i, Z̄i(Yi), Z̄

∗
i (Yi)). By choos-

ing a weight matrix, we are allowed to weight each component of ψ(Xi; θ, η)
differently, as in Kulich and Lin (2004). For notational simplicity, we con-
sider a scalar weight Ωi in the rest of the article. The proof for matrices
Ωi’s is almost identical. It has been shown by Andersen and Gill (1982) that
Eψ(θ0, η0(·; θ0)) = E[{Z(Y )− η0(Y ; θ0)}∆] = 0. The explicit functional form of
η0 is unknown and needs to be estimated first in order to estimate θ from (3.1).

For full-cohort data, Ωi = 1, and the partial likelihood estimating function
is

Ψn(θ, η̂
F
n ) =

1

n

n∑
i=1

{Zi(Yi)− η̂Fn (Yi; θ)}∆i , (3.2)

where η̂Fn is an estimator of η0 using full data, of the form

η̂Fn (t; θ) =

∑n
j=1 Zj(t)e

θ′Zj(t)1(Yj ≥ t)∑n
j=1 e

θ′Zj(t)1(Yj ≥ t)
.

For case-cohort data where the subcohort is a sub-sample of the entire cohort
selected with a constant probability πi for all i, and with Ωi = 1, the pseudo-
likelihood estimating function of Self and Prentice (1988) is

Ψn(θ, η̂
SP
n ) =

1

n

n∑
i=1

{Zi(Yi)− η̂SPn (Yi; θ)}∆i , (3.3)
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where η̂SPn is the estimator of η0 considered by Self and Prentice (1988) using

the subcohort data only, of the form

η̂SPn (t; θ) =

∑
j∈SC Zj(t)e

θ′Zj(t)1(Yj ≥ t)∑
j∈SC e

θ′Zj(t)1(Yj ≥ t)
.

Here SC denotes the set of subjects in the subcohort.

In order to improve efficiency, the subcohort can be chosen by stratified

sampling and, furthermore, it is tempting to include failures outside the subco-

hort to estimate η0, see e.g., Kalbfleisch and Lawless (1988). The corresponding

estimating function then becomes

Ψn(θ, η̂
W
n ) =

1

n

n∑
i=1

Ωi(Yi){Zi(Yi)− η̂Wn (Yi; θ)}∆i , (3.4)

where η̂Wn is a weighted estimator of η0 of the form

η̂Wn (t; θ) =

∑n
j=1Wj(t)Zj(t)e

θ′Zj(t)1(Yj ≥ t)∑n
j=1Wj(t)eθ

′Zj(t)1(Yj ≥ t)
.

HereWi could also be diagonal weight matrices with subject and covariate specific

random weights on the diag. Again for notational simplicity, we consider scalar

Wi, which may or may not equal to Ωi. We also require thatWi have expectation

1 given the complete data (Yi,∆i, Zi(·), Z∗
i (·)). We consider a broad class of

weighted problems by allowing both weights Ω andW to be time-dependent. The

commonly used weights, originally proposed by Kalbfleisch and Lawless (1988),

are the inverse-probability weights

Wi = ∆i +
Ri

πi
(1−∆i) , (3.5)

where πi can be time-dependent, see Kulich and Lin (2004) for example.

Note that the estimating functions in (3.2) and (3.3) can be expressed by

using counting process stochastic integrals, and martingale theory applies in de-

riving asymptotic properties of the corresponding estimators, see e.g., Andersen

and Gill (1982) and Self and Prentice (1988). Using a similar stochastic integral

for the estimating function (3.4) with weights (3.5), however, creates a measur-

ability problem because the integrand is no longer adapted to any meaningful

filtration (and hence not predictable). See e.g., Chung and Williams (1990) and

Protter (2004) for detailed discussions on stochastic integration. In this article,

instead of using stochastic integrals, we give a rigorous proof of asymptotic prop-

erties of the estimators obtained from the estimating function (3.4) using the

general Z-estimation theory provided in Section 2.
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It grants great flexibility in estimating θ from (3.4) to use two possibly
different weights Ωi and Wi . When Ωi = Wi = 1, the estimating function
Ψn(θ, η̂

W
n (·; θ)) reduces to (3.2), the partial likelihood estimating function of

Cox (1972) for full-cohort data. When Ωi = 1 and Wi = Ri/πi with constant
πi = π > 0 for all i, Ψn(θ, η̂

W
n (·; θ)) is (3.3), the pseudo-likelihood estimating

function of Self and Prentice (1988). When Ωi =Wi as in (3.5), Ψn(θ, η̂
W
n (·; θ)) is

equivalent to the weighted estimating function of Kalbfleisch and Lawless (1988).
When Ωi = Wi = R∗

i /π
∗
i , with R∗

i being 1 if subject i has complete data and
0 otherwise, and π∗i = P (R∗

i = 1|Yi,∆i, Z̄i(Yi), Z̄
∗
i (Yi)), Ψn(θ, η̂

W
n (·; θ)) is the

estimating function proposed by Pugh et al. (1992). The corresponding asymp-
totic properties have been studied by Breslow and Wellner (2007) for both in-
dependent stratified Bernoulli sampling and finite population stratified sampling
when covariates are time-independent. To improve efficiency, Kulich and Lin
(2004) considered the estimating function Ψn(θ, η̂

W
n (·; θ)) with Ωi = 1 and Wi

being time-dependent weights. A clear advantage of introducing weights Ωi in
Ψn(θ, η̂

W
n (·; θ)) is that it allows one to estimate θ from a data set in which some

failures may have missing data, e.g., the two-phase design studied by Breslow
and Wellner (2007). This is more general than a traditional case-cohort study
that requires all failures to be completely observed. It is obvious that all the
above weights are nonnegative and bounded, have unit conditional expectation
given complete data by Assumption (E), and are zero if corresponding covariates
are missing. We assume this holds throughout the rest of the paper.

The main results are as follows.

Proposition 1. Let η̂n(t; θ) = η̂Wn (t; θ) as in (3.4), and suppose the weight pro-
cess W (t) has bounded sample paths of bounded variation. Then both η̂n(t; θ) and
η0(t; θ) belong to a Donsker class, and further we have ∥η̂n − η0∥ = Op∗(n

−1/2).

Proposition 1 plays an important role in the proofs of consistency and asymp-
totic normality provided in Propositions 2 and 3, respectively. The proof of
Proposition 1 is deferred to Appendix B.

Proposition 2. If the conditions in Proposition 1 hold and the weight process
Ω(t) has bounded sample paths of bounded variation, then the root of (3.4), de-
noted as θ̂n, is a consistent estimator of θ0.

Proposition 2 can be proved by verifying conditions in Lemma 1. Details are
given in Appendix B.

Proposition 3. If the conditions in Propositions 3.1 and 3.2 hold, then the root
of (3.4) has the asymptotic representation

n1/2(θ̂n − θ0) =
{
− ∂

∂θ
Ψ(θ0, η0(·; θ))

∣∣∣
θ=θ0

}−1
Gn

[
Ω(Y ){Z(Y )− η0(Y ; θ0)}∆

−
∫
W (t){Z(t)− η0(t; θ0)}eθ

′
0Z(t)1(Y ≥ t)dΛ0(t)

]
+op∗(1). (3.6)
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The limit distribution of n1/2(θ̂n − θ0) is Gaussian with zero mean and variance

A−1B
(
A−1

)′
, where

A = − ∂

∂θ
Ψ(θ, η0(·; θ))

∣∣∣
θ=θ0

,

B = P
[
Ω(Y ){Z(Y )− η0(Y ; θ0)}∆

−
∫
W (t){Z(t)− η0(t; θ0)}eθ

′
0Z(t)1(Y ≥ t)dΛ0(t)

]⊗2
,

where a⊗2 = aa′.

Equation (3.6) can be derived following Lemma 2, and the asymptotic nor-

mality follows directly from the Central Limit Theorem. The proof of Proposition

3 is in Appendix B.

It is worth noting that (3.6) reduces to the asymptotic representation of

the partial likelihood estimator of Cox (1972) when Ωi = Wi = 1 for all i. It

also reduces to the asymptotic representation of Self and Prentice (1988) when

Ωi = 1 and Wi is the inverse selection probability weight of subject i into the

subcohort, and of Breslow and Wellner (2007) when Ωi and Wi are the inverse

selection probability weight in a two-phase sampling design. The estimators here

are generally not semiparametric efficient except for the case of full-cohort data

where Ωi = Wi = 1 for all i. Efficient estimation is not our focus here. See

Nan, Emond, and Wellner (2004) for calculations of information bounds, and

Nan (2004) for an efficient estimator when covariates are discrete.

We have taken the weights Ωi and Wi as given for each i. It has been shown

in the missing data literature that using estimated rather than known weights

can improve efficiency, see e.g., Robins, Rotnitzky, and Zhao (1994), Breslow

and Wellner (2007), and Li and Nan (2011). In particular, Breslow and Wellner

(2007) showed that, for the Cox model with time-independent covariates, the

weighted estimator from a finite population sampling has the same asymptotic

distribution as the weighted estimator from an i.i.d. Bernoulli sampling with

the same selection probability but using the estimated weights. The asymptotic

variance is smaller than that obtained using the true weights for the case of i.i.d.

sampling. The same property holds for the Cox model with time-dependent

covariates and time-dependent weights in the case of i.i.d. sampling.

3.2. Case-cohort study: the additive hazards model

Lin and Ying (1994) proposed an additive hazards model in which the hazard

function given covariate history Z̄(·) is

λ(t|Z̄(t)) = λ0(t) + θ′0Z(t) ,
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where λ0 is the baseline hazard and θ0 is the parameter of interest. This model

allows one to estimate the covariate effect on the absolute risk. Define the random

map

Ψn(θ, η) =
1

n

n∑
i=1

ψ(Xi; θ, η)

=
1

n

n∑
i=1

{
Ωi(Yi){Zi(Yi)− η(Yi)}∆i

−
∫

Ωi(t){Zi(t)− η(t)}1(Yi ≥ t)θ′Zi(t)dt
}

(3.7)

with

η0(t) =
E{Z(t)1(Y ≥ t)}
E{1(Y ≥ t)}

,

where the Ωi are defined in the same way as done for the Cox model. Then the

estimating function proposed by Lin and Ying (1994) can be viewed as (3.7) with

Ωi = 1 and η0 being estimated empirically:

Ψn(θ, η̃
F
n ) =

1

n

n∑
i=1

{
{Zi(Yi)− η̃Fn (Yi)}∆i

−
∫

{Zi(t)− η̃Fn (t)}1(Yi ≥ t)θ′Zi(t) dt
}

(3.8)

with

η̃Fn (t) =

∑n
j=1 Zj(t)1(Yj ≥ t)∑n

j=1 1(Yj ≥ t)
.

Note that both η0 and η̃Fn do not involve θ. The estimator of θ is

θ̃n =
[ 1
n

n∑
i=1

∫
{Zi(t)− η̃Fn (t)}⊗21(Yi ≥ t)dt

]−1 1

n

n∑
i=1

{Zi(Yi)− η̃Fn (Yi)}∆i . (3.9)

Lin and Ying (1994) defined Ψn(θ, η̃
F
n ) and θ̃n using the stochastic integral for-

mulation and studied their asymptotic properties using martingale theory.

For case-cohort studies, Kulich and Lin (2000) modified the estimating func-

tion (3.8) and proposed the estimating function (with Ωi =Wi)

Ψn(θ, η̃
W
n ) =

1

n

n∑
i=1

{
Ωi(Yi){Zi(Yi)− η̃Wn (Yi)}∆i

−
∫

Ωi(t){Zi(t)− η̃Wn (t)}1(Yi ≥ t)θ′Zi(t) dt
}

(3.10)
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with

η̃Wn (t) =

∑n
j=1Wj(t)Zj(t)1(Yj ≥ t)∑n

j=1Wj(t)1(Yj ≥ t)
. (3.11)

The estimator is

θ̃n =
[ 1
n

n∑
i=1

∫
Ωi(t){Zi(t)− η̃Wn (t)}Zi(t)

′1(Yi ≥ t)dt
]−1

× 1

n

n∑
i=1

Ωi(Yi){Zi(Yi)− η̃Wn (Yi)}∆i . (3.12)

Here we have extended the method of Kulich and Lin (2000) by introducing two

weight matrices Ω and W in (3.7) and (3.11), respectively, as in the previous

subsection.

When weightsWi or Ωi depend on ∆i as in (3.5), for the same reason as that

in the previous example, martingale theory does not apply. Here we provide a

proof without using stochastic integrals. As we assumed for the Cox model, Ωi

and Wi are nonnegative with unit conditional expectation given complete data.

We consider the weighted estimating function (3.10) that reduces to (3.8)

when Ωi = Wi = 1 for all i. We assume a one-dimensional covariate Z and thus

a one-dimensional θ in the following, the multi-dimensional case is a straight-

forward extension. The main results for the additive hazards model are the

following.

Proposition 4. Let η̃n(t) = η̂Wn (t) as in equation (3.10). If the weight process

W (t) has bounded sample paths of bounded variation, then both η̃n(t) and η0(t)

belong to a Donsker class, and furthermore, ∥η̃n − η0∥ = Op∗(n
−1/2).

This is a special case of Proposition 1.

Proposition 5. If the conditions in Proposition 3.4 hold and the weight process

Ω(t) has bounded sample paths of bounded variation, then the root of (3.10) is a

consistent estimator of θ0.

Similar to the proof of Proposition 2, we only need to verify the conditions

in Lemma 1. Details are given in Appendix B.

Proposition 6. If the conditions in Propositions 4 and 5 hold, then n1/2(θ̃n−θ0)
converges in distribution to a zero mean Gaussian random variable.

The proof is in Appendix B.

4. Discussion

We have discussed the proportional hazards model and the additive hazards
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model in case-cohort studies, though our method applies to a much broader range

of semiparametric estimation problems. The parameter estimation in the case-

cohort studies is hard to handle by traditional martingale-based methods when

certain more efficient but unpredictable weights are considered, but becomes

straightforward by using the general Z-estimation theory.

For case-cohort studies, Breslow and Wellner (2007) considered finite popu-

lation stratified sampling and applied the exchangeably weighted bootstrap em-

pirical process theory of Præstgaard and Wellner (1993) for the Cox model with

time-independent covariates. The general Z-estimation theory in Section 2 is

likely to be applicable to the finite population stratified sampling designs for

time-dependent covariates.

Another widely used cost-effective design for censored survival data, the

nested case-control study, samples controls from risk populations at different

observed failure times. The sampling probabilities for controls are thus dependent

upon information from other subjects (observed failures in this case), creating a

complicated dependent sampling. In such a design, the constructed risk sets and

the sampling probabilities are predictable, allowing the standard counting process

martingale theory to be applied to the proofs of asymptotic properties, see e.g.,

Goldstein and Langholz (1992) and Borgan, Goldstein, and Langholz (1995).

The general Z-estimation theory, however, may provide alternative (potentially

more concise) proofs for the nested case-control study. The key is to establish

desirable properties for η̂n, which highly depend on the sampling scheme for

selecting controls at each failure time point and the construction of estimating

method.

For missing data problems, the estimated likelihood method of Pepe and

Fleming (1991), the mean score method of Reilly and Pepe (1995), and the

pseudoscore method of Chatterjee, Chen, and Breslow (2003), among others,

also fit into the general Z-estimation framework nicely. Let Y be the response

variable and (Z, V ) be covariates where Z is sometimes missing. Let R be 1 if Z

is observed and 0 otherwise, and let X denote the observed data. Suppose that

the parameter of interest θ ∈ Θ ⊂ Rd could be estimated by using the complete

data score function l̇0θ(·; θ) as the estimating function if there were no missing

data. When Z is sometimes missing at random (Little and Rubin (2002)), then

the observed data score function for θ is

l̇θ(X; θ, η0(·; θ)) = Rl̇0θ(Y, Z, V ; θ) + (1−R)η0(Y, V ; θ) ,

where η0(Y, V ; θ) = E{l̇0θ(Y, Z, V ; θ)|Y, V } has unknown functional form. If

ψ(·; θ, η(·; θ)) = l̇θ(·; θ, η(·; θ)), then ψ(·; θ, η̂n(·; θ)) is an estimating function for

θ where η̂n(·; θ)) is an estimator of η0(·; θ). The asymptotic properties of the

Z-estimator for θ depend on the behavior of η̂n and can be derived from the
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theorems given in Section 2. Nonparametric methods have been proposed to
estimate η0(·; θ). Apparently efficiency can be improved by using the weighted
estimating function of Robins, Rotnitzky, and Zhao (1994). This may also apply
to the composite likelihoods for semiparametric models, see e.g., Lindsay (1987)
and Varin, Reid, and Firth (2011), particularly for missing data problems.

The theory in Section 2 requires smooth η with respect to θ, according to
(2.4) or (2.5). For the rank-based estimating function for the accelerated failure
time model, the smoothness condition does not hold. Nan, Kalbfleisch, and Yu
(2009) have shown that a similar idea for bundled parameters with missing data
is applicable to the rank-based estimator for the accelerated failure time model.
For models with bundled parameters in the original parameterization, Ding and
Nan (2011) have proposed a sieve maximum likelihood estimating method and
applied the method to the efficient estimation of the accelerated failure time
model.
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Appendix A: Proofs of Lemmas 1 and 2

A.1. Proof of Lemma 1

Since θ0 is the unique solution to Ψ(θ, η0(·; θ)) = 0, for any fixed ϵ > 0 there
exists a δ > 0 such that

P
[
|θ̂n − θ0| > ϵ

]
≤ P

[
|Ψ(θ̂n, η0(·; θ̂n))| > δ

]
.

If we can prove |Ψ(θ̂n, η0(·; θ̂n))| →p∗ 0, then the consistency of θ̂n follows imme-
diately.

Now, since ||η̂n − η0|| = op∗(1), there exists a sequence {δn} ↓ 0 such that
||η̂n − η0|| ≤ δn with probability tending to one. Hence taking η = η̂n in (2.3),
we have

|Ψ(θ̂n, η0(·; θ̂n))|
≤ |Ψn(θ̂n, η̂n(·; θ̂n))|+ |Ψ(θ̂n, η0(·; θ̂n))−Ψn(θ̂n, η̂n(·; θ̂n))|

≤ |Ψn(θ̂n, η̂n(·; θ̂n))|+ op∗
(
1 + |Ψn(θ̂n, η̂n(·; θ̂n))|+ |Ψ(θ̂n, η0(·; θ̂n))|

)
≤ op∗(1) + op∗

(
1 + op∗ (1) + |Ψ(θ̂n, η0(·; θ̂n))|

)
,

which implies |Ψ(θ̂n, η0(·; θ̂n))| = op∗(1).
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A.2. Proof of Lemma 2

We first show the following result that will be used later:

n1/2
∣∣∣Ψ(θ̂n, η̂n(·, θ̂n))

∣∣∣ = Op∗(1). (A.1)

By Condition (i),

n1/2
∣∣∣(Ψn −Ψ)(θ̂n, η̂n(·; θ̂n))− (Ψn −Ψ)(θ0, η0(·; θ0))

∣∣∣
= op∗(1) + op∗

(
n1/2

∣∣∣Ψn(θ̂n, η̂n(·; θ̂n))
∣∣∣)+ op∗

(
n1/2

∣∣∣Ψ(θ̂n, η̂n(·; θ̂n))
∣∣∣) .

By the triangle inequality−|a|+|b|−|c| ≤ |a−b−c| and the fact that Ψ(θ0, η0(·; θ0))
= 0,

n1/2
∣∣∣Ψ(θ̂n, η̂n(·; θ̂n))

∣∣∣− n1/2
∣∣∣Ψn(θ̂n, η̂n(·; θ̂n))

∣∣∣− n1/2 |Ψn(θ0, η0(·; θ0))|

≤ n1/2
∣∣∣(Ψn −Ψ)(θ̂n, η̂n(·; θ̂n))− (Ψn −Ψ)(θ0, η0(·; θ0))

∣∣∣
= op∗(1) + op∗

(
n1/2

∣∣∣Ψn(θ̂n, η̂n(·; θ̂n))
∣∣∣)+ op∗

(
n1/2

∣∣∣Ψ(θ̂n, η̂n(·; θ̂n))
∣∣∣) ,

which implies

n1/2
∣∣∣Ψ(θ̂n, η̂n(·; θ̂n))

∣∣∣ [1− op∗(1)]

≤ op∗(1) + n1/2
∣∣∣Ψn(θ̂n, η̂n(·; θ̂n))

∣∣∣ [1 + op∗(1)] + n1/2 |Ψn(θ0, η0(·; θ0))|

= op∗(1) + op∗(1) +Op∗(1).

Hence (A.1) holds.

We then show the root-n consistency of θ̂n. Since |θ̂n − θ0| = op∗(1) and

||η̂n − η0|| = Op∗(n
−β) with β > 0, there exists a sequence {δn} ↓ 0 and c > 0

such that |θ̂n− θ0| ≤ δn and ||η̂n−η0|| ≤ cn−β with probability approaching one.

Hence, taking (θ, η) = (θ̂n, η̂n) in the smoothness condition (2.5),∣∣∣n1/2 {Ψ(θ̂n, η̂n(·; θ̂n))−Ψ(θ0, η0(·; θ0))
}

−n1/2
{
Ψ̇1(θ0, η0(·; θ0)) + Ψ̇2(θ0, η0(·; θ0))[η̇0(·; θ0)]

}
(θ̂n − θ0)

− n1/2Ψ̇2(θ0, η0(·; θ0))[(η̂n − η0)(·; θ0)]
∣∣∣

= op∗
(
n1/2|θ̂n − θ0|

)
+Op∗

(
n1/2∥η̂n − η0∥α

)
= op∗

(
1 + n1/2|θ̂n − θ0|

)
, (A.2)

since n1/2Op∗(||η̂n−η0||α) = op∗(1) by αβ > 1/2. The same result can be obtained

by using the smoothness condition (2.4) for β = 1/2. By (A.1), the fact that
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Ψ(θ0, η0(·; θ0)) = 0, and the triangle inequality −|a|+ |b| − |c| ≤ |a− b− c|, (A.2)

implies

−Op∗(1) +
∣∣∣n1/2 {Ψ̇1(θ0, η0(·; θ0)) + Ψ̇2(θ0, η0(·; θ0))[η̇0(·; θ0)]

}
(θ̂n − θ0)

∣∣∣
−

∣∣∣n1/2Ψ̇2(θ0, η0(·; θ0))[(η̂n − η0)(·; θ0)]
∣∣∣

≤ op∗
(
1 + n1/2

∣∣∣θ̂n − θ0

∣∣∣) . (A.3)

Since the d× d matrix Ψ̇1(θ0, η0(·; θ0))+ Ψ̇2(θ0, η0(·; θ0))[η̇0(·; θ0)] is nonsingular,
there exist a constant c1 > 0 such that∣∣∣{Ψ̇1(θ0, η0(·; θ0)) + Ψ̇2(θ0, η0(·; θ0))[η̇0(·; θ0)]

}
(θ − θ0)

∣∣∣ ≥ c1|θ − θ0|

for |θ − θ0| → 0. On the other hand, by Condition (iv), in combination with

inequality (A.3),

Op∗(1) ≥
∣∣∣n1/2 {Ψ̇1(θ0, η0(·; θ0)) + Ψ̇2(θ0, η0(·; θ0))[η̇0(·; θ0)]

}
(θ̂n − θ0)

∣∣∣
−
∣∣∣n1/2Ψ̇2(θ0, η0(·; θ0))[(η̂n − η0)(·; θ0)]

∣∣∣− op∗
(
1 + n1/2

∣∣∣θ̂n − θ0

∣∣∣)
≥ c1n

1/2
∣∣∣θ̂n − θ0

∣∣∣−Op∗(1)− op∗
(
1 + n1/2

∣∣∣θ̂n − θ0

∣∣∣)
= {Op∗(1)− op∗(1)}n1/2

∣∣∣θ̂n − θ0

∣∣∣−Op∗(1).

Hence the sequence n1/2
∣∣∣θ̂n − θ0

∣∣∣ must be bounded in outer probability.

Now we are ready to prove (2.6). Because

n1/2
[
Ψ(θ̂n, η̂n(·; θ̂n))−Ψ(θ0, η0(·; θ0))

]
= n1/2

[
Ψ(θ̂n, η̂n(·; θ̂n))−Ψn(θ̂n, η̂n(·; θ̂n)) + Ψn(θ̂n, η̂n(·; θ̂n))−Ψ(θ0, η0(·; θ0))

]
= n1/2(Ψ−Ψn)(θ̂n, η̂n(·; θ̂n)) + op∗(1)− 0

= −n1/2(Ψn −Ψ)(θ0, η0(·; θ0))± op∗
(
1 + n1/2

∣∣∣Ψn(θ̂n, η̂n(·; θ̂n))
∣∣∣

+ n1/2
∣∣∣Ψ(θ̂n, η̂n(·; θ̂n))

∣∣∣ ) (by Condition (i))

= −n1/2(Ψn −Ψ)(θ0, η0(·; θ0))± op∗(1) (by equation (A.1)), (A.4)

after replacing (A.4) into the first term in the first line of (A.2) we obtain∣∣∣−n1/2(Ψn −Ψ)(θ0, η0(·; θ0))± op∗(1)

−n1/2
{
Ψ̇1(θ0, η0(·; θ0)) + Ψ̇2(θ0, η0(·; θ0))[η̇0(·; θ0)]

}
(θ̂n − θ0)
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−n1/2Ψ̇2(θ0, η0(·; θ0))[(η̂n − η0)(·; θ0)]
∣∣∣

= op∗
(
1 + n1/2

∣∣∣θ̂n − θ0

∣∣∣)
= op∗(1),

which implies

n1/2(θ̂n − θ0) =
{
− Ψ̇1(θ0, η0(·; θ0))− Ψ̇2(θ0, η0(·; θ0))[η̇0(·; θ0)]

}−1

×n1/2
{
(Ψn −Ψ)(θ0, η0(·; θ0))

+Ψ̇2(θ0, η0(·; θ0))[(η̂n − η0)(·; θ0)]
}
+ op∗(1) .

Appendix B: Proofs of Propositions 1 to 6

B.1. Proof of Proposition 1

We consider one nuisance parameter η for simplicity. The vector η can be

dealt with by examining each of its components. Define

D(0)
n (t, θ) ≡ Pn

{
W (t)eθ

′Z(t)1(Y ≥ t)
}
,

d(0)(t, θ) ≡ P
{
W (t)eθ

′Z(t)1(Y ≥ t)
}
= P

{
eθ

′Z(t)1(Y ≥ t)
}
;

D(1)
n (t, θ) ≡ Pn

{
W (t)Z(t)eθ

′Z(t)1(Y ≥ t)
}
,

d(1)(t, θ) ≡ P
{
W (t)Z(t)eθ

′Z(t)1(Y ≥ t)
}
= P

{
Z(t)eθ

′Z(t)1(Y ≥ t)
}
.

Then we have

η̂n(t; θ) =
D

(1)
n (t, θ)

D
(0)
n (t, θ)

, η0(t; θ) =
d(1)(t, θ)

d(0)(t, θ)
.

Apparently the sets of functions F0 = {W (t)1(Y ≥ t)eθ
′Z(t) : 0 ≤ t ≤ τ, θ ∈

Θ} and F1 = {W (t)1(Y ≥ t)Z(t)eθ
′Z(t) : 0 ≤ t ≤ τ, θ ∈ Θ} are well-behaved and

belong to Donsker classes, see e.g., van der Vaart and Wellner (1996), Section

2.10. Hence we have that n1/2{D(k)
n (t, θ) − d(k)(t, θ)} converge weakly to zero

mean Gaussian processes, and ∥D(k)
n − d(k)∥ = Op∗(n

−1/2), k = 0, 1. Let F̄k

be the closure of Fk, k = 0, 1, respectively, in which the convergence is both

pointwise and in L2(P ). Then D
(k)
n (t, θ) and d(k)(t, θ) are in the convex hull of

F̄k, k = 0, 1, and thus Donsker. See e.g., van der Vaart and Wellner (1996),

Theorems 2.10.2 and 2.10.3. Hence both {η̂n(t; θ)} and {η0(t; θ)} are Donsker

by van der Vaart and Wellner (1996), Example 2.10.9, where D
(0)
n and d(0) are

bounded away (almost surely) from zero by Assumption (C).
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Now we verify that η̂n is n1/2-consistent by the calculation

n1/2{η̂n(t; θ)− η0(t; θ)}

= n1/2
[ 1

d(0)(t, θ)
{D(1)

n (t, θ)− d(1)(t, θ)}

− D
(1)
n (t, θ)

D
(0)
n (t, θ)d(0)(t, θ)

{D(0)
n (t, θ)− d(0)(t, θ)}

]
= n1/2

[ 1

d(0)(t, θ)
{D(1)

n (t, θ)− d(1)(t, θ)}

− d(1)(t, θ)

d(0)(t, θ)2
{D(0)

n (t, θ)− d(0)(t, θ)}
]
+ op∗(1)

= d(0)(t, θ)−1Gn

[
W (t){Z(t)− η0(t; θ)}eθ

′Z(t)1(Y ≥ t)
]
+ op∗(1) .

Since the classes of functions {W (t)}, {1(Y ≥ t)}, {Z(t)}, and {eθ′Z(t)} are all
Donsker, and η0 is a bounded deterministic function, we know that the class
{W (t){Z(t) − η0(t; θ)}eθ

′Z(t)1(Y ≥ t)} is Donsker (see e.g., van der Vaart and
Wellner (1996), Section 2.10). We then obtain the desired result.

B.2. Proof of Proposition 2

The uniqueness of θ0 as a root of Ψ(θ, η0(·; θ)) is proved by Andersen and
Gill (1982), here Ψ(θ, η0(·; θ)) corresponds to the derivative of the limit of their
function (2.7). The uniform consistency of η̂n is given by Proposition 3.1. Now
we verify condition (2.3). We consider one-dimensional θ for simplicity. Suppose
that Ωi < K < ∞ for all i for a constant K. Let ∥η − η0∥ ≤ δn ↓ 0. Then we
have

|Ψn(θ, η(·; θ))−Ψ(θ, η0(·; θ))|

=
∣∣∣Pn[Ω(Y ){Z(Y )− η(Y ; θ)}∆]− P [Ω(Y ){Z(Y )− η0(Y ; θ)}∆]

∣∣∣
≤

∣∣∣Pn[Ω(Y )Z(Y )∆]− P [Ω(Y )Z(Y )∆]
∣∣∣+ ∣∣∣Pn [Ω(Y ){η(Y ; θ)− η0(Y ; θ)}∆]

∣∣∣
+

∣∣∣(Pn − P )[Ω(Y )η0(Y ; θ)∆]
∣∣∣ .

The first term on the right side of the above inequality converges to zero in
probability by the Weak Law of Large Numbers, while the second term∣∣∣Pn[Ω(Y ){η(Y ; θ)− η0(Y ; θ)}∆]

∣∣∣ ≤ Pn[Ω(Y )∥η − η0∥∆] ≤ Kδn → 0

uniformly over θ. The last term converges uniformly to zero in outer probability
because {η0(t; θ) : 0 ≤ t ≤ τ, θ ∈ Θ} is a Donsker class, and {Ω(t)} and {∆} are
also Donsker. Thus {Ω(t)η0(t; θ)∆} is Donsker and hence a Glivenko-Cantelli
class.
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B.3. Proof of Proposition 3

Let H0 defined in Lemma 2 consist of functions of η0 and η̂n = η̂Wn , thus

a Donsker class. Obviously the class of functions {ψ(θ, η(t; θ)) = Ω(t){Z(t) −
η(t; θ)}∆ : θ ∈ Θ0, η ∈ H0, 0 ≤ t ≤ τ} is a Donsker class that satisfies P0|ψ(θ, η)−
ψ(θ0, η0)|2 → 0 as |θ− θ0| → 0 and ∥η− η0∥ → 0 by the Dominated Convergence

Theorem. The Fréchet differentiability of {Ψ(θ, η(·; θ)) : θ ∈ Θ0, η ∈ H0} can

be verified via direct calculation. Thus from Propositions 1, 2, and the remark

following Lemma 2 together with Assumption (D), we have the conditions in

Lemma 2 satisfied and thus (2.6) holds.

Now we calculate the right side of (2.6) for the Cox model. Interchanging

differentiation and integration yields

n1/2Ψ̇2(θ0, η0(·; θ0))[(η̂n − η0)(·; θ0)]
= − n1/2P [Ω(Y ){η̂n(Y ; θ0)− η0(Y ; θ0)}∆]

= − n1/2
∫ [ 1

d(0)(t, θ0)
{D(1)

n (t, θ0)− d(1)(t, θ0)}

− D
(1)
n (t, θ0)

D
(0)
n (t, θ0)d(0)(t, θ0)

{D(0)
n (t, θ0)− d(0)(t, θ0)}

]
δdPY,∆(t, δ)

= − n1/2
∫ [ 1

d(0)(t, θ0)
{D(1)

n (t, θ0)− d(1)(t, θ0)}

− d(1)(t, θ0)

d(0)(t, θ0)2
{D(0)

n (t, θ0)− d(0)(t, θ0)}
]
δdPY,∆(t, δ) + op∗(1)

= − Gn

{∫ {
W (t){Z(t)− η0(t; θ0)}eθ

′
0Z(t)1(Y ≥ t)

}
×
{
d(0)(t, θ0)

}−1
dPY,∆(t, 1)

}
+ op∗(1) .

The second equality in the above holds because E(Ω|X) = 1, and the third

equality holds because the absolute difference between the two sides, except the

term op∗(1), is∣∣∣∫ { d(1)(t, θ0)

d(0)(t, θ0)2
− D

(1)
n (t, θ0)

D
(0)
n (t, θ0)d(0)(t, θ0)

}
n1/2

{
D(0)

n (t, θ0)−d(0)(t, θ0)
}
δdPY,∆(t, δ)

∣∣∣
≤ sup

t≤τ

∣∣∣ d(1)(t, θ0)
d(0)(t, θ0)2

− D
(1)
n (t, θ0)

D
(0)
n (t, θ0)d(0)(t, θ0)

∣∣∣ sup
t≤τ

∣∣∣n1/2{D(0)
n (t, θ0)− d(0)(t, θ0)

}∣∣∣
= op∗(1) ·Op∗(1) = op∗(1)

by Proposition 1 and tail bounds for the supremum of empirical processes in van

der Vaart and Wellner (1996), Section 2.14.



Z-ESTIMATION AND CASE-COHORT DESIGN 1175

Let G(t|z̄(t)) be the conditional distribution function of the censoring time

C at t given Z̄(t) = z̄(t), or equivalently given Z̄(τ) = z̄(τ) where t ≤ τ , and Ht

be the joint distribution function of Z̄(t). Then

d(0)(t, θ0) = P
{
W (t)1(Y ≥ t)eθ

′
0Z(t)

}
= P

{
1(Y ≥ t)eθ

′
0Z(t)

}
= E

[
eθ

′
0Z(t)E{1(Y ≥ t)|Z̄(t)}

]
= E

[
eθ

′
0Z(t)P (T ≥ t|Z̄(t))P (C ≥ t|Z̄(t))

]
=

∫
eθ

′
0z(t)exp

{
−

∫ t

0
eθ

′
0z(s)dΛ0(s)

}
{1−G(t−|z̄(t))}dHt(z̄(t)) .

On the other hand, from the joint distribution of (Y,∆, Z̄(Y )), or equiva-

lently of (Y,∆, Z̄(τ)), we obtain

dPY,∆(t, 1) =
[ ∫

eθ
′
0z(t)exp

{
−

∫ t

0
eθ

′
0z(s)dΛ0(s)

}
×{1−G(t−|z̄(t))}dHt(z̄(t))

]
dΛ0(t)

= d(0)(t, θ0)dΛ0(t).

Thus we have

n1/2Ψ̇2(θ0, η0(·; θ0))[(η̂n − η0)(·; θ0)]

= −Gn

[ ∫ {
W (t){Z(t)− η0(t; θ0)}eθ

′
0Z(t)1(Y ≥ t)

}
dΛ0(t)

]
+ op∗(1).

It is obvious that Ψ̇1 = 0 and, by interchanging differentiation and integration,

we have

Ψ̇2(θ0, η0(·; θ0))[η̇0(·; θ0)] = −P∆η̇0(Y ; θ0)

= P
[ ∂
∂θ
ψ(θ0, η0(·; θ))

]
θ=θ0

=
∂

∂θ
Ψ(θ0, η0(·; θ))

∣∣∣
θ=θ0

.

Then by (2.6) we have

n1/2(θ̂n − θ0) =
{
− ∂

∂θ
Ψ(θ0, η0(·; θ))

∣∣∣
θ=θ0

}−1
Gn

[
Ω(Y ){Z(Y )− η0(Y ; θ0)}∆

−
∫
W (t){Z(t)− η0(t; θ0)}eθ

′
0Z(t)1(Y ≥ t)dΛ0(t)

]
+ op∗(1) ,

which converges in distribution to a zero mean Gaussian random variable by the

Central Limit Theorem for i.i.d. data.
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B.4. Proof of Proposition 4

The function η̃Wn (t) is the same as that in (3.4) at θ = 0, and η0(t) is the

same as its counterpart in the Cox model at θ = 0. Hence the stated result is

just a consequence of Proposition 1.

B.5. Proof of Proposition 5

Obviously Ψ(θ, η0) = P{ψ(θ, η0)} is a linear function for θ with a non-

zero slope by Assumption (D), hence θ0 is the unique solution of Ψ(θ, η0) = 0.

Proposition 4 provides the uniform consistency of η̂n. We now verify (2.3). Let

∥η − η0∥ ↓ 0. We have

|Ψn(θ, η)−Ψ(θ, η0)|
≤

∣∣Pn[Ω(Y ){Z(Y )− η(Y )}∆]− P [Ω(Y ){Z(Y )− η0(Y )}∆]
∣∣

+

∣∣∣∣Pn

∫
Ω(t){Z(t)− η(t)}1(Y ≥ t)θZ(t) dt

− P

∫
Ω(t){Z(t)− η0(t)}1(Y ≥ t)θZ(t) dt

∣∣∣∣
≤

∣∣(Pn − P )[Ω(Y ){Z(Y )− η0(Y )}∆]
∣∣+ ∣∣Pn[Ω(Y ){η(Y )− η0(Y )}∆]

∣∣
+

∣∣∣∣(Pn − P )

∫
Ω(t){Z(t)− η0(t)}1(Y ≥ t)θZ(t) dt

∣∣∣∣
+

∣∣∣∣Pn

∫
Ω(t){η(t)− η0(t)}1(Y ≥ t)θZ(t) dt

∣∣∣∣
≤

∣∣(Pn − P )[Ω(Y ){Z(Y )− η0(Y )}∆]
∣∣

+

∣∣∣∣(Pn − P )

∫
Ω(t){Z(t)− η0(t)}1(Y ≥ t)θZ(t) dt

∣∣∣∣
+δnPn

{
Ω(Y )∆ +

∫
Ω(t)1(Y ≥ t)|θZ(t)| dt

}
,

in which the first two terms on the right hand side of the last inequality converge

to zero in probability by the Weak Law of Large Numbers, and the third term

converges to zero because δn → 0. We then have the desired result by Lemma 1.

B.6. Proof of Proposition 6

As in the proof of Proposition 3.3, the Fréchet differentiability of {Ψ(θ, η) :

θ ∈ Θ0, η ∈ H0} can be verified via direct calculation. The set {Ω(t)∆{Z(t) −
η(t)} : η ∈ H0, 0 ≤ t ≤ τ} is Donsker, thus we only need to show the class of func-

tions {
∫ τ
0 Ω(t){Z(t) − η(t)}1(Y ≥ t)θZ(t)dt : θ ∈ Θ0, η ∈ H0} is Donsker, here

H0 is reduced from that in the proof of Proposition 3.3. Let f =
∫ τ
0 Ω(t){Z(t)−
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η(t)}Z(t)1(Y ≥ t)dt and

fm =

m∑
i=1

Ω(ti){Z(ti)− η(ti)}Z(ti)1(Y ≥ ti)(ti+1 − ti) =

m∑
i=1

fiλi ,

where

fi = Ω(ti){Z(ti)− η(ti)}Z(ti)1(Y ≥ ti), λi = ti+1 − ti,

and {(t1, t2], . . . , (tm, τ ]} forms a partition of the interval (0, τ ]. The set {fm} is

the convex hull of F = {fi}, and thus a Donsker class by Theorem 2.10.3 in van

der Vaart and Wellner (1996) since F is Donsker. Now we know that fm → f

both pointwise and in L2(P ) by the boundedness of Y and η, then {f(·)} is

Donsker by Theorem 2.10.2 in van der Vaart and Wellner (1996).

We now calculate the right side of equation (2.9). Direct calculation yields

n1/2Ψ̇η(θ0, η0)[η̃n − η0] = −n1/2P [{η̃n(Y )− η0(Y )}∆]

+n1/2P

[ ∫
{η̃n(t)− η0(t)}1(Y ≥ t)θ0Z(t)dt

]
(B.1)

by applying E(Ω|X) = 1. Let d(0)(t) ≡ P{W (t)1(Y ≥ t)} = P{1(Y ≥ t)} and

d(1)(t) ≡ P{W (t)Z(t)1(Y ≥ t)} = P{Z(t)1(Y ≥ t)}, where E(W |X) = 1. The

first term on the right side of (B.1) can be written as

− n1/2P [{η̃n(Y )− η0(Y )}∆]

= − Gn

[ ∫
W (t){Z(t)− η0(t)}1(Y ≥ t)d(0)(t)−1dPY,∆(t, 1)

]
+ op∗(1)

= − Gn

[ ∫
W (t){Z(t)− η0(t)}1(Y ≥ t)λ0(t)dt

+

∫
W (t){Z(t)− η0(t)}1(Y ≥ t)θ0η0(t)dt

]
+ op∗(1)

since, from the joint distribution of (Y,∆, Z̄(Y )), we have

dPY,∆(t, 1)

dt
=

∫
{λ0(t) + θ0z(t)}{1− F (t|z̄(t))}{1−G(t−|z̄(t))}dHt(z̄(t))

= λ0(t)P{1(Y ≥ t)}+ θ0P{Z(t)1(Y ≥ t)}
= λ0(t)d

(0)(t) + θ0d
(1)(t) .

From the proof of Proposition 1 we have

n1/2{η̃n(t)− η0(t)} = d(0)(t)−1Gn

[
W (t){Z(t)− η0(t)}1(Y ≥ t)

]
+ op∗(1) ,
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so the second term on the right side of (B.1) can be rewritten as∫
n1/2{η̃n(t)− η0(t)}P{1(Y ≥ t)θ0Z(t)} dt

=

∫
d(0)(t)−1Gn

[
W (t){Z(t)− η0(t)}1(Y ≥ t)

]
θ0d

(1)(t) dt+ op∗(1)

= Gn

[ ∫
W (t){Z(t)− η0(t)}1(Y ≥ t)θ0η0(t) dt

]
+ op∗(1).

Thus from (2.9) we obtain

n1/2(θ̃n − θ0) =

[
P

{∫
Ω(t){Z(t)− η0(t)}1(Y ≥ t)Z(t) dt

}]−1

×Gn

[
Ω(Y ){Z(Y )− η0(Y )}∆

−
∫

{Ω(t)θ0Z(t)+W (t)λ0(t)}{Z(t)−η0(t)}1(Y ≥ t)dt
]
+op∗(1),

which is asymptotic normal by the Central Limit Theorem. This asymptotic

representation reduces to that in Kulich and Lin (2000) when Ωi = Wi. Again,

we do not require Ωi and Wi to be predictable.
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