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ABSTRACT. We consider semiparametric models for which solution of Horvitz–Thompson
or inverse probability weighted (IPW) likelihood equations with two-phase stratified samples
leads to

√
N consistent and asymptotically Gaussian estimators of both Euclidean and non-

parametric parameters. For Bernoulli (independent and identically distributed) sampling, standard
theory shows that the Euclidean parameter estimator is asymptotically linear in the IPW influ-
ence function. By proving weak convergence of the IPW empirical process, and borrowing results
on weighted bootstrap empirical processes, we derive a parallel asymptotic expansion for finite
population stratified sampling. Several of our key results have been derived already for Cox regres-
sion with stratified case–cohort and more general survey designs. This paper is intended to help
interpret this previous work and to pave the way towards a general Horvitz–Thompson approach to
semiparametric inference with data from complex probability samples.
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1. Introduction

Two-phase stratified sampling, also known as double sampling, was introduced by Neyman
(1938) to estimate the population mean of a target variable that is costly or difficult to
measure. At phase 1 a relatively large random sample is drawn and measurements are made
on an auxiliary variable that is correlated with the target variable but easier to measure. At
phase 2 measurements on the target variable are made for a subsample drawn randomly,
without replacement, from within strata defined by the auxiliary variable. Neyman showed
that the optimal, design unbiased linear estimator of the population mean is the Horvitz &
Thompson (1952) estimator that weights each observation by the inverse of the probability
of its inclusion in the phase 2 sample.

Two-phase stratified sampling designs can dramatically reduce the costs of regression model-
ling when the strata depend on (correlates of) both outcome and explanatory variables.
A common method of estimation is ‘weighted exogenous sampling maximum likelihood’, here
simply weighted likelihood or WL, in which one maximizes the inverse probability weighted
(IPW) sum of log-likelihood contributions from the phase 2 observations (Manski & Lerman,
1977; Kalbfleisch & Lawless, 1988). Equivalently, one may solve an IPW version of the score
equations (Skinner et al., 1989, section 3.4). Although easy to implement, WL estimators
are sometimes seriously inefficient (Robins et al., 1994). Survey statisticians may still advo-
cate their use, however, because even when the model is wrong they consistently estimate the
finite population parameters that would be obtained by fitting the model to complete phase
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1 data (Xie & Manski, 1989; Binder, 1992). Fully efficient estimators are available for logistic
and other parametric regression models in situations where the phase 1 data consist only of
stratum frequencies; see, e.g. Breslow et al., 2003 and the references cited therein.

The asymptotic properties of WL estimators of Euclidean parameters in parametric
models follow readily from standard results for M- and Z-estimators (van der Vaart, 1998,
chapter 5). WL may also be used for estimation of both Euclidean and infinite dimensional
parameters in semiparametric models, for which the paradigm is Cox (1972) proportional
hazards regression. Lin (2000) developed asymptotic results for both regression coefficients
and baseline cumulative hazard when fitting the Cox model to survey data including those
obtained using two-phase sampling. Borgan et al. (2000) obtained the same results for the
regression parameters when fitting the Cox model to data from exposure stratified case–cohort
studies, in which all subjects who have a failure event (the cases) are sampled at phase 2.
One purpose of this paper is to develop a modern theory of WL estimation in semipara-
metric models that encompasses these previous results, helps to interpret them and paves the
way towards further applications. We also explore the relationship between results based on
finite population stratified sampling at phase 2 and those based on independent and identi-
cally distributed (i.i.d.) variable probability sampling with sampling weights estimated using
information from phase 1.

2. Notation, assumptions and problem statement

Suppose P�, � denotes a probability distribution in a semiparametric model for a random vari-
able X ∈X , where �∈�⊂Rp is the Euclidean parameter and �, taking values in a subset H
of some Banach space B, is the non-parametric one. Let P0 =P�0, �0 denote the distribution
from which X is actually sampled. Following closely section 25.12 of van der Vaart (1998),
suppose maximum likelihood (ML) estimators (�̂, �̂) are obtained by solving the system

�N1(�, �)=PN ˙̀�, � = 0

�N2(�, �)h=PN B�, �h−P�, �B�, �h = 0 ∀h∈H.
(1)

Here ˙̀�, � is the p-dimensional likelihood score for �, B�, � is the score operator (Begun et al.,
1983) working on an infinite dimensional class H of directions h from which paths of one-
dimensional submodels for � may approach �0, and PN is the empirical measure based on
the i.i.d. sequence X1, . . . , XN . Set ˙̀0 = ˙̀�0, �0 and B0 =B�0, �0. Often H is selected to be the
unit ball in B.

Suppose the following assumptions, which slightly strengthen the hypotheses of van der
Vaart (1998, theorem 25.90), are satisfied so that

√
N(�̂ − �0, �̂ − �0) is asymptotically

Gaussian:

A1 for (�, �) in a �-neighbourhood of (�0, �0) the functions ˙̀�, � and {B�, �h, h ∈ H} are
contained in a P0-Donsker class F ;

A2 P0‖ ˙̀�, � − ˙̀0‖2 and suph∈H P0|B�, �h−B0h|2 converge to 0 as (�, �)→ (�0, �0);
A3 the map �= (�1, �2) :�×H �→Rp ×`∞(H) with components

�1(�, �)=P0 ˙̀�, �

�2(�, �)h=P0B�, �h−P�, �B�, �h, h∈H,
(2)

which is the expectation of the random map �N = (�N1, �N2) in (1), has a Fréchet deri-
vative �̇0 at (�0, �0) that is continuously invertible on its range.

A4 (�̂, �̂) is consistent for (�0, �0) and satisfies �N (�̂, �̂)=0.
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Assumption A3 is typically established by showing that the information operator B∗
0B0 is

continuously invertible and thus that � is estimable at a
√

N rate. This is the most restrictive
assumption, but one that leads quickly to our main result.

With two-phase sampling, however, X is not observed for all N subjects. At phase 1 we
observe only a coarsening X̃ = X̃ (X ) of X plus auxiliary variables U ∈U that serve to deter-
mine the sampling strata. X is fully observed for subjects sampled at phase 2. Let W =
(X , U )∈W =X ×U denote the variables potentially available for everyone, but in fact fully
observed only for those in the phase 2 sample, and V = (X̃ , U ) ∈ V = X̃ × U denote the
variables actually observed for everyone. We write P̃0 for the distribution of W = (X , U ) and
denote by �N =�[W1, . . . , WN ] the sigma field of information, also referred to as the com-
plete data, potentially available for N subjects. A sequence of binary indicators (�1, . . . , �N )
shows which subjects are selected (�i =1) at phase 2 for observation of Xi . We consider two
probability models for the indicators �i . In the first, known as Bernoulli or Manski &
Lerman (1997) sampling, each phase 1 subject is examined in succession for the value of
Vi and the indicator �i is independently generated with Pr(�i =1 |Wi)=Pr(�i =1 |Vi)=�0(Vi),
where �0 is a known sampling function. This preserves the i.i.d. structure for the observa-
tions (�i , Vi , �iXi). Note the crucial missing at random (MAR) assumption: �0 depends only
on what is observed at phase 1. We write Q0 for the distribution of (Wi , �i). If V is parti-
tioned into J strata V1 ∪ . . . ∪VJ , stratified Bernoulli sampling corresponds to the special case
where �0(v)=pj for v∈Vj . We assume that all J strata are sampled with positive probability
or more generally that

0 <�≤�0(v)≤1 for v∈V. (3)

Our derivation of the asymptotic properties of the WL estimator for Bernoulli sampling
applies to any known sampling function �0 that satisfies (3), not just to stratified Bernoulli
sampling. Even though �0 is known, however, it is advisable to estimate it using a correct
parametric model so as to increase efficiency (Pierce, 1982; Robins et al., 1994). WL esti-
mating equations with known sampling weights only involve data for subjects sampled at
phase 2; estimation of the weights allows incorporation of phase 1 data available for all
subjects. Provided the weights are estimated efficiently, this increases the efficiency of the
WL estimators of the Euclidean parameters of interest (Henmi & Eguchi, 2004). When fit-
ting logistic regression models by WL to phase 2 case–control samples, for example, use of
the empirical (estimated) weights leads to fully efficient estimates of odds ratio parameters
whereas use of the a priori sampling weights may be seriously inefficient (Scott & Wild, 1986).
We consider parametric estimation of �0 in section 6.

The second stratified sampling model corresponds to Neyman’s original design and is
usually closer to actual practice. Here, we observe the entire phase 1 sample at once and
record the stratum frequencies

Nj =
N∑

i =1

1Vj (Vi) for j =1, . . . , J .

At phase 2 samples of size nj ≤Nj are drawn at random, without replacement, from each of
the J finite phase 1 strata. Using now a doubly subscripted notation where �j, i denotes the
indicator variable for ith subject in stratum j, the essential features of this design are that,
conditionally on �N : (i) for j =1, . . . , J the random variables (�j1, . . . , �jNj

) are exchangeable
with Pr(�j, i =1 |�N )=nj /Nj ; and (ii) the J random vectors (�j1, . . . , �jNj

) are independent. Our
problem is to estimate (�, �) using the incomplete observations Vi on everyone and the com-
plete observations Xi on subjects sampled at phase 2.

© Board of the Foundation of the Scandinavian Journal of Statistics 2006.
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3. Weighted likelihood estimator

WL estimates are obtained by solving Horvitz–Thompson (IPW) versions of the likelihood
equations. Define the IPW empirical measure by

P�
N = 1

N

N∑
i =1

�i

�i
�Xi , (4)

where �Xi denotes Dirac measure placing unit mass on Xi and

�i =
⎧⎨
⎩

�0(Vi) for Bernoulli sampling
nj

Nj
if Vi ∈Vj for finite population stratified sampling. (5)

Then, instead of (1) we solve

��
N1(�, �)=P�

N
˙̀�, � =0

��
N2(�, �)h=P�

N B�, �h−P�, �B�, �h=0 for all h∈H.
(6)

In view of the MAR assumption, for any integrable function f : X �→ R and under either
Bernoulli or finite population stratified sampling,

E
�i

�i
f (Xi)=E

[
E
(

�i

�i

∣∣∣∣�N

)
f (Xi)

]
=Ef (Xi), i =1, . . . , N ,

so that EP�
N f =EPN f =P0f . Consequently, the random map ��

N = (��
N1, ��

N2) defined by
(6) has the same expectation as the random map �N in (1), namely �= (�1, �2) as in (2).
The implication is that the assumptions A1–A4 made to guarantee the asymptotic normality
of the ML estimator based on complete phase 1 data are also the assumptions needed to
guarantee the asymptotic normality of the WL estimator based on two-phase data.

Indeed, for Bernoulli sampling, van der Vaart’s (1998) theorem 25.90, or more precisely
his theorem 19.26 of which it is a restatement, applies virtually without change. The Dons-
ker class F in A1 is modified to F̃ ={[�/�0(V )] f (X ), f ∈ F}. As under the hypothesis (3)
it is the product of a fixed bounded function with the Donsker class F , the fact that F̃ is
Donsker for the joint distribution Q0 of (W , �) follows from van der Vaart & Wellner (1996,
example 2.10.10). The random map �N corresponding to the estimating functions (6) is the
ordinary empirical measure QN for {(Wi , �i), i =1, . . . , N} applied to the unbiased estimating
functions (�/�0) ˙̀�, � and (�/�0)B�, �h. A4 will generally follow from (3) and, together with (6),
the arguments used to establish consistency for the complete data ML estimator. A2 and A3
are unchanged.

For finite population stratified sampling, however, the more general theorem 3.3.1 of van
der Vaart & Wellner (1996) is needed to deal with the non-i.i.d. data. To verify its hypotheses,
we must first establish weak convergence of the empirical process based on P�

N for stratified
sampling.

4. Weak convergence of the IPW empirical process under finite population stratified sampling

Two-phase stratified sampling resembles the bootstrap in that it involves random sampling
from the finite, albeit incompletely observed, population {X1, . . . , XN}. Here, we use results
on weighted bootstrap empirical processes from Præstgaard & Wellner (1993, theorem 2.2),
as incorporated in van der Vaart & Wellner (1996, theorem 3.6.13), to demonstrate weak
convergence of the IPW empirical process G�

N =√
N(P�

N − P0) for finite population strati-
fied sampling. First note that, with the subscript j, i denoting the ith of Nj observations in
stratum j and with �i defined by the second expression in (5),
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P�
N = 1

N

J∑
j =1

Nj

nj

Nj∑
i =1

�j, i�Xj, i
= 1

N

J∑
j =1

N2
j

nj
P�

j, Nj
, (7)

where

P�
j, Nj

= 1
Nj

Nj∑
i =1

�j, i�Xj, i

is a ‘finite sampling empirical measure’ for the jth stratum. Similarly one can express the
ordinary empirical measure as

PN = 1
N

J∑
j =1

NjPj, Nj , (8)

where

Pj, Nj
= 1

Nj

N∑
i =1

�Xi 1Vj (Vi)= 1
Nj

Nj∑
i =1

�Xj, i (9)

denotes the empirical measure for the jth stratum. Justification of the second (doubly
indexed) form is given in appendix A.

Combining (7) and (8), and letting GN =√
N(PN − P0) denote the standard empirical

process, we have

G�
N =√

N(P�
N −P0),

=√
N(PN −P0)+

√
N(P�

N −PN ),

=GN + 1√
N

J∑
j =1

(
N2

j

nj

)(
P�

j, Nj
− nj

Nj
Pj, Nj

)
,

=GN +
J∑

j =1

√
Nj

N

(
Nj

nj

)
G�

j, NJ
, (10)

where

G�
j, Nj

=√Nj

(
P�

j, Nj
− nj

Nj
Pj, Nj

)
(11)

is the ‘finite sampling empirical process’ for stratum j.
The first term in (10) converges to the P0-Brownian bridge process G indexed by the Dons-

ker class F mentioned in A1. Let P0| j(·)=E(·|V ∈ Vj) denote P̃0 conditional on member-
ship in stratum j, i.e. for measurable A⊂X , P0| j(A)= P̃0[A1Vj (V )]/vj with vj = P̃01Vj (V ), and
let Gj denote the P0| j-Brownian bridge, also indexed by F . Our aim was to establish the
weak convergence of the remaining terms on the right-hand side of (10). If as N →∞ the
sampling fractions converge with nj /Nj → pj , the assumption on the exchangeable ‘weights’
(�j, 1, . . . , �j, Nj

) in equation (3.6.8) of van der Vaart & Wellner (1996) holds trivially with

1
Nj

Nj∑
i =1

(�j, i − �̄j.)
2 p→pj(1−pj).

Furthermore, with � denoting weak convergence in `∞(F ),
√

Nj(Pj, Nj − P0| j)�Gj ; see
appendix B for the proof. Thus their theorems 3.6.13 and 1.12.4 imply that, for almost
every sequence of complete data, G�

j, Nj
�
√

pj(1−pj)Gj . Conditionally on �N , the processes

G�
j, Nj

are mutually independent because of the independence of the {�j, i} in different strata.
Furthermore, by virtue of the fact that they also are (unconditionally) uncorrelated with
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GN =√
N(PN −P0), which follows along the lines of van der Vaart & Wellner (1996, corol-

lary 2.9.3) or that (conditionally) they have the same limiting distributions for almost all
sequences of data, the vector of processes (GN , G�

1, N1
, . . . , G�

J , NJ
) converges weakly to the

vector of independent Brownian bridge processes (G, G1, . . . , GJ ). The continuous mapping
theorem yields

G�
N�G+

J∑
j =1

√
�j

√
1−pj

pj
Gj . (12)

This result formalizes and extends proposition 1 of Self & Prentice (1988) and the arguments
in section 4 of Borgan et al. (2000).

5. Asymptotic distributions of the WL estimator

We apply theorem 19.26 of van der Vaart (1998) to conclude that, under Bernoulli sampling,

√
N�̇0

(
�̂−�0

�̂−�0

)
h=−GN

�
�0

( ˙̀0

B0h

)
+ op(1) uniformly for h∈H. (13)

Similarly, using theorem 3.3.1 of van der Vaart & Wellner (1996) together with the develop-
ment of the previous section, we conclude that for finite population stratified sampling

√
N�̇0

(
�̂−�0

�̂−�0

)
h=−G�

N

( ˙̀0

B0h

)
+ op(1) uniformly for h∈H. (14)

We have already argued that the hypotheses of the first theorem follow from appropriately
modified versions of A1–A4. Together with the weak convergence of G�

N just established, they
also suffice for the second theorem. In particular, the stochastic condition (3.3.2) of van der
Vaart & Wellner (1996) follows from A1 and A2 together with the proof of their lemma 3.3.5
applied to each of GN , G�

1, N1
, . . . , G�

1, N1
.

In practice, attention is usually focused on inferences for the Euclidean parameter �. To
derive a general expression for the asymptotic variance of �̂ we further assume

A5 �̇0 admits a partition as in equation (25.91) of van der Vaart (1998) where the informa-
tion operator B∗

0B0 is continuously invertible.

Following closely the arguments in section 25.12 of van der Vaart, we calculate from (13)
that under Bernoulli sampling

√
N(�̂−�0)=GN

�
�0

˜̀0 +op(1) (15)

whereas from (14) under finite population stratified sampling
√

N(�̂−�0)=G�
N

˜̀0 +op(1), (16)

where in both cases ˜̀0 denotes the efficient influence function

˜̀0 = Ĩ
−1
0 (I −B0

(
B∗

0B0
)−1

B∗
0) ˙̀0 (17)

and

Ĩ 0 =P0[(I −B0(B∗
0B0)−1B∗

0) ˙̀0 ˙̀T
0 ] (18)

is the efficient information. As P0 ˜̀0 =0, moreover, both (15) and (16) may be expressed as

√
N(�̂−�0)=

√
NP�

N
˜̀0 +op(1)= 1√

N

N∑
i =1

�i

�i

˜̀0(Xi)+op(1), (19)

which expansion constitutes the principal result of this paper.
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Under Bernoulli sampling with known �0 the asymptotic variance is therefore

varA

√
N(�̂−�0)=var

(
�
�0

˜̀0

)

=var E
(

�
�0

˜̀0

∣∣∣∣X
)

+E var
(

�
�0

˜̀0

∣∣∣∣X
)

=var( ˜̀0)+E

[ ˜̀⊗2
0

�2
0

var(�|X )

]

= Ĩ
−1
0 + P̃0

(
1−�0

�0

˜̀⊗2
0

)
. (20)

In the special case of stratified Bernoulli sampling, with �i =�0(Vi)=pj for Vi ∈Vj , (20) be-
comes

Ĩ
−1
0 +

J∑
j =1

�j
1−pj

pj
P0| j

(
˜̀⊗2
0

)
(21)

by averaging over the stratum-specific conditonal expectations. On the other hand, from (12)
and (16) directly, the asymptotic variance under finite population stratified sampling is

Ĩ
−1
0 +

J∑
j =1

�j
1−pj

pj
varj( ˜̀0), (22)

where varj( f )=P0| j( f ⊗2) − P⊗2
0| j ( f ). Comparing the expressions in (21) and (22) shows the

substantial potential gain from keeping track of the stratum frequencies for the phase 1 data.

6. Bernoulli sampling with estimated weights

Let V0 denote an additional stratum, possibly null, such that �i =1 for Vi ∈V0. Introduction
of this special stratum with p0 =1 does not affect the previous development; in particular,
equations (19)–(22) continue to hold. For Vi |∈V0 suppose

Pr(�i =1|Xi , Vi ;	)=Pr(�i =1|Vi ;	)=�	(Vi) < 1, (23)

where 	∈�⊂Rq is a parameter to be estimated by ML from the phase 1 observations {Vi , i =
1, . . . , N} not in V0. We assume sufficient regularity in the model for 	, e.g. to satisfy the
hypotheses of theorem 5.21 of van der Vaart (1998), so that the ML estimator 	̂ is consistent
and asymptotically normal with influence function

˜̀	
0 =1Vc

0

(
P̃01Vc

0

�̇⊗2
0

�0(1−�0)

)−1

�̇0
�−�0

�0(1−�0)
. (24)

Here for V ∈Vc
0 , the complement of V0, �0(V )=�	0 (V ) is the true sampling function while

�̇0(V ) denotes the q-vector of partial derivatives of �	(V ) with respect to 	 evaluated at 	=	0.
If �̂(	) denotes the WL estimator under two-phase Bernoulli sampling with ‘known’ sampling
function �	(V ), then from (24) and (19) we have

√
N
(

�̂(	0)−�0

	̂−	0

)
=√

N
(

P�
N

˜̀0

QN ˜̀	
0

)
+op(1). (25)

Furthermore, with �̂i =�	̂(Vi) for Vi ∈Vc
0 otherwise �̂i =1, we show in appendix C that under

some further mild assumptions regarding �	(V )

√
N(P�̂

N −P
�0
N ) ˜̀0 =−P̃0

(
1Vc

0

˜̀0�̇
T
0

�0

)√
N(	̂−	0)+op(1). (26)

© Board of the Foundation of the Scandinavian Journal of Statistics 2006.
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The joint asymptotic normality of (�̂(	0), 	̂) that follows from (25), together with the Taylor
expansion (26), are precisely the hypotheses used by Pierce (1982) to deduce the asymptotic
properties of �̂(	̂). His results lead to the conclusion that

√
N [�̂(	̂) − �0]�Z, where Z ∈ Rp

is mean zero Gaussian with covariance matrix

varA

√
N
(
�̂(	̂)−�0

)
= var

(
�
�0

˜̀0

)
− P̃01Vc

0

˜̀0�̇
T
0

�0

(
P̃01Vc

0

�̇⊗2
0

�0(1−�0)

)−1

P̃01Vc
0

�̇0 ˜̀T
0

�0
. (27)

A matrix calculation shows that, when (27) is evaluated for stratified Bernoulli sampling

�	 =�	(V )=
{

1, V ∈ V0

	j , V ∈ Vj , j =1, . . . , J ,

the asymptotic variance for the WL estimator �̂ with estimated sampling probabilities 	̂j =
nj /Nj is identical to the finite population sampling variance (22) with pj =	j, 0 = lim nj /Nj .

Two possibilities present themselves for estimation of the terms in (27). Using (20), we
could estimate the first term by

̂

var
( �

�0

˜̀0

)
= Ĩ

−1
�̂, �̂ + 1

N

N∑
i =1

�i(1− �̂i)

�̂2
i

˜̀⊗2
�̂, �̂(Xi),

the expression in the middle of the second term by

̂

P̃01Vc
0

�̇⊗2
0

�0(1−�0)
= 1

N

N∑
i =1

1Vc
0
(Vi)

�̇⊗2
	̂ (Vi)

�̂i(1− �̂i)

and similarly for P̃0( ˜̀0�̇
T
0 /�0). A more empirical approach, however, would be to use the �

and 	 influence function contributions themselves to estimate these terms as in

̂

var
(

�
�0

˜̀0

)
= 1

N

N∑
i =1

(
�i

�̂i

˜̀
�̂, �̂(Xi)

)⊗2

,

̂

P̃01Vc
0

˜̀0�̇
T
0

�0
= 1

N

N∑
i =1

1Vc
0
(Vi)

�i

�̂i

˜̀
�̂, �̂(Xi)

�̂i
�̇	̂(Vi)T

= 1
N

N∑
i =1

1Vc
0
(Vi)

(
�i

˜̀
�̂, �̂(Xi)

�̂i

)(
�̇	̂(Vi)T (�i − �̂i)

�̂i(1− �̂i)

)

and

̂

P̃01Vc
0

�̇⊗2
0

�0(1−�0)
= 1

N

N∑
i =1

1Vc
0
(Vi)

(
�̇	̂(Vi)(�i − �̂i)

�̂i(1− �̂i)

)⊗2

.

The resulting asymptotic variance for �̂ may be recognized as comprising the residual sums of
squares and of cross-products from the least squares regressions of each of the p components
of the �̂ influence function contributions �i

˜̀
�̂, �̂(Xi)/�̂i , to which subjects not in the phase 2

sample contribute 0, on the q components of the estimated 	̂ influence function contributions
(24), to which subjects having Vi ∈V0 contribute 0. See Henmi & Eguchi (2004) for a recent
discussion and interpretation. This suggests the following estimation procedure:

1 Estimate 	 from the phase 1 data and compute the estimated sampling fractions �̂i .
2 Estimate � and � from the phase 2 data by WL, using the inverse �̂i as ‘known’ weights.
3 Regress each component of the influence function contributions for �̂ on those for 	̂.
4 Estimate varA(�̂) as the matrix comprising the residual sums of squares and of cross-

products from these regressions.
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Therneau & Grambsch (2000, p. 166), who cited earlier work by Pugh et al. (1994), suggested
this procedure for the special case of Cox regression, to which we now direct our attention.

7. Application to the Cox proportional hazards model

Our development of the Cox model follows closely that of van der Vaart (1998, section 25.12)
where X = (�, T , Z) with T =min(T̃ , C) a censored failure time, �=1[T̃≤C] the failure indi-
cator and Z ∈ Rp a vector of covariates. The Euclidean parameter is the p-vector of regres-
sion coefficients � in the linear predictor z�. The non-parametric parameter �= (�, G, GZ)
has three infinite dimensional components: �(·)=∫ ·

0 
(s) ds the baseline cumulative hazard
function, assumed differentiable; G(t | z)=Pr(C ≤ t |Z = z) the conditional distribution of the
censoring time; and GZ , the marginal distribution of the covariates. We introduce the usual
notation for the ‘at-risk’ process Y (t)=1[T≥t] and the event counting process N(t)=�1[T≤t]

and we make the standard assumptions: (i) the true failure time T̃ and the censoring time
C are independent given Z; and (ii) there is a finite maximum censoring time � such that
Pr[Y (�)=1] > 0. van der Vaart (1998) makes some further ‘partly unnecessary’ assumptions
to simplify his development, namely that the covariates Z are bounded, that G and GZ have
densities as indicated below and especially that Pr( C ≥ �)=Pr(C = �) > 0 (see discussion in
section 8). Writing the density for x = (�, t, z), with z a row vector, as

exp(−ez��(t))[ez�
(t)(1−G(t −| z))]�[g(t |z)]1−�gZ(z), (28)

and noting that G and GZ factor out of the complete data likelihood, van der Vaart (1998)
considers ML estimation for (�, �) only. With H denoting the unit ball in the space B =
BV[0, �] of functions of bounded variation on [0, �], he develops the following explicit expres-
sions for the � score vector, the � score operator that maps functions h∈H to functions of
the data, its adjoint (but only evaluated for the � scores) and the information operator that
maps H onto itself:

˙̀�, �(x)=�z − z ez��(t)

B�, �h(x)=�h(t)− ez�
∫ t

0
h d�

(29)

B∗
�, �

˙̀�, �(t)=P�, �Y (t)Z eZ�

B∗
�, �B�, �h(t)=h(t)P�, �Y (t) eZ�.

(30)

These are used to calculate the efficient scores

`∗
�, �(x)= ˙̀�, � −B�, �(B∗

�, �B�, �)−1B∗
�, �

˙̀�, �

=�[z −m(t;�)]− ez�
∫ t

0
[z −m(s;�)] d�(s) (31)

and efficient information

Ĩ 0 = I0 −P0B0
(
B∗

0B0
)−1

B∗
0
˙̀0

=P0

(
eZ�0

∫ �

0
[Z −m(t;�0)]⊗2 Pr(T ≥ t |Z) d�0(t)

)
, (32)

respectively, where I0 =P0 ˙̀0 ˙̀T
0 and m(t;�)=S(1)(t;�)/S(0)(t;�) with

S(0)(t;�)=P0 eZ�Y (t)

S(1)(t;�)=P0Z eZ�Y (t).

To fit the Cox model by WL to two-phase stratified samples, first define IPW estimators
of the two quantities just considered by Ŝ(0)(t;�)=P�

N eZ�Y (t) and S(1)(t;�)=P�
N Z eZ�Y (t).

By definition the WL estimators solve
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��
N1(�, �)=P�

N
˙̀�, � =0 (33)

��
N2(�, �)h=P�

N B�, �h=0 for all h∈ H, (34)

where we have used the fact that P�, �B�, �h=0. Substituting ht defined by

ht(s) = 1[s≤t]

Ŝ(0)(s, �)
,

for h in (34) and solving using (30) gives

�̂�(t) = P�
N

�1[T ≤ t]

Ŝ(0)(T ;�)
= 1

N

N∑
i =1

∫ t

0

�i

�i

dNi(s)

Ŝ(0)(s;�)
, (35)

which may be recognized as an IPW version of the so-called Breslow (1974) estimator. For
fixed � this satisfies P�

N B�, �̂�
h=0 for all h∈H, as is easily checked, and maximizes the WL,

as in van der Vaart (1998, example 25.69). Substituting �̂� for � in (33) and evaluating using
(29) yields the IPW Cox ‘partial score’ equation

��
N1(�, �̂�) = P�

N�

[
Z − m̂(T ;�)

]
= 1

N

N∑
i =1

�i

�i
�i

[
Zi − Ŝ(1)(Ti ;�)

Ŝ(0)(Ti ;�)

]
= 0,

whose joint solution with (35) is the WL estimator (�̂, �̂�̂). According to the results of this
paper, its large sample properties follow from those already developed for the ML esti-
mator with complete data, which solves the same equations with �i =�i =1, i =1, . . . , N . The
joint asymptotic distribution of (�̂, �̂�̂) under Bernoulli sampling is obtained by applying the

inverse map �̇
−1
0 defined in assumption A2 to both sides of equation (13), where ˙̀0 and B0

are given by (29) and (30). The joint asymptotic distribution under finite population strati-
fied sampling is obtained in the same manner from (14). In either case

√
N(�̂− �0) has the

asymptotic linear expansion (19), where ˜̀0 = Ĩ
−1

`∗
0 is the well-known influence function for

the Cox model, here given explicitly by equations (31) and (32).
These are the estimators proposed for Cox regression by Binder (1992), Pugh et al. (1994),

Borgan et al. (2000, estimator II), Lin (2000) and others for a variety of complex sampling
and missing data problems.

8. Discussion

The key step in deriving asymptotic properties of a regular, asymptotically linear estimator
of a Euclidean parameter � is determination of its influence function. The principal result of
this paper states that the estimator that solves IPW versions of estimating equations has an
asymptotic expansion involving the IPW empirical measure of the usual influence function
for simple random sampling. For fully parametric models, where both � and � are of finite
dimension, this result is a straightforward consequence of the theory of unbiased esti-
mating equations. We provide the extension to semiparametric models for the special case
where the estimating equations are derived from likelihood scores for the Euclidean parame-
ter and from the score operator for the general parameter, and where the latter is estimable
at the standard

√
N rate. Our principal result, however, is likely to hold much more generally.

A first generalization would involve replacing the likelihood equation (1) with unbiased
estimating equations of the form �N1(�, �)=PN�1;�, �(X )=0 and �N2(�, �)=PN�2;�, �(X )h =
0 ∀ h ∈ H, where �1;�, � ∈ Rp and �2;�, � ∈ `∞(H) both have expectation 0 under P�, �. A1–A4
would be modified to satisfy the conditions, appropriately stated for the partitioned para-
meter, of van der Vaart (1998, theorem 19.26) for Bernoulli sampling or of van der Vaart &
Wellner (1996, theorem 3.3.1) for finite population stratified sampling. This approach would
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require continuous invertibility of �̇22, the Fréchet derivative of �2 =P0�2;�, � with respect
to �. Conclusions would be given by equation (13) or (14), replacing ˙̀0 with �1;�0, �0

and B0h
with �2;�0, �0

h. As a simple application, using the same notation as in section 7, consider the
additive hazards regression model (Lin & Ying, 1994) where 
(t | z)=
(t)+ z� and where �
and �(t)=PZY (t)/PY (t) are jointly estimated from simple random samples by solving

�N1(�, �)=PN

{
�[Z −�(T )]−

∫ �

0
[Z −�(t)]Z�Y (t) dt

}
= 0

�N2(�, �)(t)=PN [Z −�(t)]Y (t) = 0 ∀ t ∈ [0, �].

Solution of the IPW version of these equations yields the estimator for � suggested by Kulich
& Lin (2000) for case–cohort sampling, namely

�̂=
⎧⎨
⎩P�

N

�∫
0

[Z − �̂(t)]⊗2Y (t) dt

⎫⎬
⎭

−1

P�
N�[Z − �̂(T )],

where �̂(t)=P�
N ZY (t)/P�

N Y (t). Calculation of the inverse of the operator �̇= (�̇1, �̇2) in
partitioned form is facilitated by the fact that

�1(�, �)=P0�1;�, � =P0

�∫
0

[Z −�(t)][
0(t)+Z(�0 −�)]Y (t) dt

and �2(�, �)(t)=P0[Z −�(t)]Y (t) are linear in � and �, that �̇
−1
22 (�−�0)(t)=−(�−�0)(t)/P0Y (t)

and that �̇21 =0. We leave details to the interested reader.
A second generalization would be to complex probability sampling designs for selecting

phase 2 observations from the finite population obtained at phase 1. The Horvitz & Thomp-
son (1952) theorem provides design-based variances of IPW sample means for a very general
class of designs in terms of the first- and second-order inclusion probabilities: �i the proba-
bility of including the ith of N phase 1 observations in the phase 2 sample, and �ii′ the proba-
bility that the observations labelled i and i′ are both included (Overton & Stehman, 1995).
With finite population stratified sampling, for example, the first-order probabilities �i are
given by (5). If i and i′ are in separate strata, �ii′ =�i�i′ , whereas if both are in the jth stratum,
�ii′ =nj(nj −1)/[Nj(Nj −1)]. Lin (2000), building on the work of Binder (1992), considered fit-
ting the Cox model to survey data collected by means of probability sampling. Inserting the
first- and second-order inclusion probabilities for finite population stratified sampling into
the expression he derives for the asymptotic variance of the regression parameter � leads to
our equation (22), with the efficient information and influence function as defined in sec-
tion 7. We envisage development of a theory for joint estimation of Euclidean and infinite
dimensional parameters in semiparametric models fitted to two-phase data, where the second
phase observations are selected using quite general complex probability sampling procedures.

Some investigators of two-phase designs for failure time data, e.g. Borgan et al. (2000)
and Kulich & Lin (2000, 2004), have restricted attention to covariate stratified versions of
the case–cohort design. This is a stratified sampling design whereby all subjects who fail are
included at phase 2 (�=1). Although this may well be an efficient design when the failure
rate is low, the assumption that �=1 whenever �=1 is often unnecessary and may some-
times be unduly restrictive. Not only does it limit application when the phase 1 population
has large numbers of both failures and non-failures, but also does so when the sampling has
been carried out for one failure type but it is of interest to evaluate another. When follow-
ing patients enrolled in a clinical trial, for example, all deaths may be sampled as ‘cases’ but
it may later be decided to analyse the data also in terms of ‘event-free survival’. In other
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contexts, biological samples may turn out to be non-informative so that data are still miss-
ing for substantial numbers of subjects, including failed cases, who are sampled at phase 2.
Provided one is willing to make the standard MAR assumptions, the WL methods described
herein may still be used by determining the stratum frequencies for subjects having complete
data at phase 2 and using these to estimate the sampling weights. Thus the more general
stratified sampling framework considered here provides a useful extension of previous results
for covariate stratified case–cohort studies.

On the other hand, much of the previous work with Cox’s model has used a counting
process formulation that facilitates handling of time-dependent covariates, multiple failures
per subject and staggered entry into the cohort. Assumptions A1–A4 of section 2 have been
established for Cox’s model only under the much more stringent and ‘partly unnecessary’ con-
ditions imposed by van der Vaart (1998, section 25.12.1). The requirement that everyone still
‘on-study’ be censored at the common time � would apply to situations in which t referred to
calendar time, everyone was entered on study at t =0 and there was a common closing date
at t = �. It would not apply, however, if subjects were entered on study at various calendar
times but withdrawn on a common closing date, and t was taken to be ‘time-on-study’. Nor
would it apply if t was ‘age’ and subjects both entered and exited the study at various ages.
We look forward to further work that eases these restrictions, in particular to a determin-
ation as to whether or not the general approach extends to Cox regression under standard
assumptions (Andersen & Gill, 1982).

The major drawback of WL estimation is its lack of statistical efficiency. The efficiency
loss has been determined for parametric regression models fitted to two-phase stratified data,
where numerical evaluation of profile likelihoods and explicit calculation of information
bounds are both feasible (Lawless et al., 1999; Breslow et al., 2003). It can be quite seri-
ous when fitting logistic models to stratified case–control data (Robins et al., 1994; Scott &
Wild, 1997; Breslow & Holubkov, 1997). Attempts to improve efficiency with Cox regres-
sion include use of time-dependent sampling weights (Borgan et al., 2000; Kulich & Lin,
2004), and work is in progress to extend our theoretical approach to this situation. Other
methods to improve or evaluate efficiency in particular contexts have been proposed by Chen
(2001), Nan et al. (2004), Nan (2004), Scheike & Martinussen (2004) and many others. Most
of these methods are relatively recent and involve sufficiently complex calculations, or
sufficiently restrictive assumptions, that none have yet seen widespread use. These limita-
tions are certain to decline with advances in computing hardware and software, making more
efficient estimation methods more widely available. In the meantime, the WL estimation
procedure outlined at the end of section 6 offers a relatively simple and robust alternative. It is
likely to remain the method of choice for many survey statisticians for the reasons mentioned
in the introduction, namely, their interest in finite population parameters defined as solutions
to ML estimating equations. (See Scott & Wild, 2002, however, for a revised and contrary
view.) As emphasized by Robins et al. (1994), in view of the interpretation of (27) as a
residual sum of squares, enrichment of the model (23) for � can only enhance the efficiency of
� estimation. When the sampling probabilities vary, as in finite population stratified sampling,
inclusion of the stratum factors in the model is essential to avoid bias. Finer stratification or
the inclusion of auxiliary variables in the model for � serves the cause of efficiency. Equation
(22) suggests that such additional variables would be most valuable if they could somehow be
chosen to be highly correlated with the efficient scores. The doubly weighted estimator devel-
oped by Kulich & Lin (2004) for exposure stratified case–cohort studies is intriguing in that
it uses a separate set of (time dependent) weights for each covariate. A preliminary analysis
is conducted to estimate quantities that resemble within stratum conditional expectations of
partial score contributions given the phase 1 data, and these are used to form the weights. An
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extension of their approach to more general two-phase stratified or other complex sampling
designs would be of considerable interest.

In his Appendix Lin (2000) remarks ‘To our knowledge, there does not exist a general the-
ory on the conditions required for the tightness and weak convergence of Horvitz–Thompson
processes. However, the results of van der Vaart & Wellner (1996, sections 2.9, 3.6, 3.7) can
be applied to possibly stratified simple random sampling and can potentially be extended to
other survey designs.’ One purpose of this paper has been to carry out in detail the program
mentioned for stratified random sampling. We conjecture that weak convergence of the IPW
empirical process and our fundamental equation (19) for Horvitz–Thompson estimators also
hold with other complex sampling designs, and work is in progress to explore these exten-
sions.
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Appendix

In appendices A and B we establish two results slightly more general than needed for the
development in section 4. (See the end of appendix B for the special case required.) Although
the ‘i.i.d. within strata’ representation given by proposition A.1 is very simple, it is crucial for
a rigorous application of the exchangeable bootstrap limit theorem of Præstgaard & Wellner
(1993) as sketched in section 4. The notation in these two appendices should be understood
to be independent of the notation in the body of the paper.

Appendix A: a representation of stratified sampling

Suppose that (�, A, P) is a probability space and W : (�, A) → (W , B). Write PW for the
measure induced by W on (W , B); in the notation of section 2, PW = P̃0. Suppose that
W1, . . . , WJ is a (measurable) partition of W , i.e.: (i) Wj ∈B, j =1, . . . , J ; (ii) Wj ∩Wj′ = for
j /= j ′; and (iii) ∪J

j =1Wj =W . We will assume that P(W ∈ Wj) ≡ pj > 0 for j =1, . . . , J .

Now consider a new probability space (�†, A†, P†), where �† =�†
0 × �†

1 × · · · × �†
J ,
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A† =A†
0 ×A†

1 ×· · ·×A†
J and P† =P†

0 ·P†
1 · · ·P†

J . Let random variables �= (�1, . . . , �J ) and
W †

1 , . . . , W †
J be defined thereon as follows: for † = (†

0, †
1, . . . , †

J )∈�†,

�(†)=�(†
0)∼multinomialJ (1, (p1, . . . , pJ ))

W †
j (†)=W †

j (†
j )∼P†

j

for j =1, . . . , J where pj =P(W ∈Wj), j =1, . . . , J , and P†
j is defined by

P†
j (Wj ∈B)= P(W ∈B ∩Wj)

P(W ∈Wj)
= PW (B ∩Wj)

PW (Wj)
, B ∈B. (36)

Now define a random variable W † : (�†, A†)→ (W , B) by

W †(†)=�1(†
0)W †

1 (†
1)+ · · ·+�J (†

0)X †
J (†

J ).

Note that �, W †
1 , . . . , W †

J are independent by construction.

Proposition A.1

W † d=W on (W , B). That is, PW † =PW as measures on (W , B).

Proof. First note that

P†(W † ∈Wj)=P†(W †
j ∈Wj , �j =1)

=P†(W †
j ∈Wj)P†(�j =1)=1 ·pj =pj (37)

using independence of � and W †
j , the fact that W †

j takes values in Wj with P†-probability
1, and P†(�j =1)=pj by the definition of P†.

Now let B ∈B. Then since pj > 0 for j =1, . . . , J ,

P†(W † ∈B)=
J∑

j =1

P†(W † ∈B ∩Wj)=
J∑

j =1

P†(W † ∈B ∩Wj)
P†(W † ∈Wj)

P†(W † ∈Wj)

=
J∑

j =1

P†(W †
j ∈B)

P†(W †
j ∈Wj)

pj by (37)

=
J∑

j =1

PW (B ∩Wj)/PW (Wj)
1

·pj by (36)

=
J∑

j =1

PW (B ∩Wj)=PW (B)=P(W ∈B).

�
If W1, . . . , WN are i.i.d. PW , then we can represent the Wi ’s in terms of (�i , W †

1, i , . . . , W †
J , i),

i =1, . . . , N , i.i.d. as (�, W †
1 , . . . , W †

J ) as described in proposition A.1. It follows that

Pj, Nj
= 1

Nj

N∑
i =1

�Wi 1Wj (Wi) (38)

= 1
Nj

J∑
j′ =1

N∑
i =1

�j′ , i�W †
j′ , i

1Wj (W
†
j, i)

= 1
Nj

Nj∑
i =1

�Wj, i (39)
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by relabelling the W †
j, i ’s and where Nj =

∑N
i =1 �j, i on the right side is independent of the

W †
j, i ’s. This yields the promised doubly indexed form of the stratum-specific empirical mea-

sure in terms of independent Wj, i ’s distributed according to P0| j , where P0| j(B)=P0(B1Wj )/
P0(1Wj ) for B ∈B. �

Appendix B: proof of weak convergence of the stratum-specific empirical process

Let Pj, Nj be as defined in (38), where N−1Nj =PN (1Wj )→a.s. P0(Wj)≡ �j > 0.

Proposition B.1
If F is P0-Donsker and �j > 0, then F is P0| j-Donsker on stratum Wj in the sense that

Gj, Nj ≡
√

Nj(Pj, Nj −P0| j)�Gj in `∞(F ) (40)

where Gj , defined by

Gj(f )= �−1/2
j GP0 ((f −P0| j(f ))1Wj ), f ∈F , (41)

is a P0| j -Brownian bridge process.

Remark 1. Note that

var(Gj(f ))= �−1
j P0[(f −P0| j(f ))21Wj ]=varj(f )≡var(f (W ) |W ∈Wj).

Remark 2. The proposition implies that the process
√

Nj(Pj, Nj −P0| j) behaves asymptoti-
cally the same as that of a sample of fixed size drawn from the conditional distribution P0| j .

Proof. First proof. By the discussion at the beginning of section 2.10.4, p. 200, van der
Vaart and Wellner (1996), Fj ≡ {f 1Wj : f ∈ F} is P0-Donsker,and hence the collection F̃j ≡
{f 1Wj : f ∈F ∪{1}} is also P0-Donsker. Now we write

√
Nj(Pj, Nj f −P0| j f )=√Nj

(
(1/N)

∑N
i =1 f (Wi)1Wj (Wi)

(1/N)
∑N

i =1 1Wj (Wi)
− P0(f 1Wj )

P0(1Wj )

)

=
√

Nj

N

{
GN (f 1Wj )

Nj/N
− GN (1Wj )P0(f 1Wj )

(Nj/N)P0(Wj)

}

= 1√
Nj/N

{
GN (f 1Wj )−GN (1Wj )P0| j(f )

}
= 1√

Nj/N
GN ((f −P0| j(f ))1Wj )

⇒ 1√
�j

GP0 ((f −P0| j(f ))1Wj )≡GP0| j
(f ),

and, in fact,{
1√
�j

GP0 ((f −P0| j(f ))1Wj ) : f ∈F
}

d={GP0| j
(f ) : f ∈F}.

Second proof. By the second representation of the stratum-specific empirical measure Pj, Nj

as Pj, Nj
=N−1

j

∑Nj
i =1 �Wj, i where the Wj, i ’s are i.i.d. P0| j , it follows that the empirical process

Gj,Nj
=√Nj(Pj,Nj − P0| j) is just the empirical process of i.i.d. Wj, i ’s, but with a random
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sample size Nj independent of the Wj, i ’s. As Nj/N → �j > 0, it follows from theorem 3.5.1,
p. 339, van der Vaart and Wellner (1996) that Gj, Nj�Gj in `∞(F ), where Gj is a P0| j-Brown-
ian bridge process as before. �

In the application of the results of appendices A and B in section 4 we take W1, . . . , WJ to
be the measurable partition of W induced by the partition V1, . . . , VJ of V (i.e. Wj =V −1(Vj)
for j =1, . . . , J where V (W )≡ (X̃ (X ), U )). Moreover, the Donsker class F in proposition B.1
is taken to be a Donsker class of functions of X only rather than functions of W = (X , U ).
This is exactly what is needed for the development in section 4.

Appendix C: proof of equation (26)

Besides the consistency and asymptotic linearity (24) for 	̂ assumed in section 6, we further
assume that 0 <�≤�	(v) as in (3) and that∣∣∣∣ 1

�	(v)
− 1

�	0 (v)
− −�̇T

0 (v)
�2

0(v)
(	−	0)

∣∣∣∣≤�(v)|	−	0|1+ � (42)

for 	 in a neighbourhood of 	0, where �> 0 and � satisfies E�2(V ) <∞. The second assump-
tion will typically follow from the first provided that �	 has a continuous second derivative.
For example, suppose that �	 is given by a logistic regression model with linear predictor
ṽT 	, where ṽ= ṽ(v)∈Rq. Then Taylor’s formula with remainder shows that the left-hand side
of (42) equals

∣∣ 1
2 exp(−ṽT 	∗)(	−	0)T ṽṽT (	−	0)

∣∣ with 	∗ on the line segment between 	 and
	0. Thus the condition holds with �=1 provided exp(ṽT 	)=�	(v)/[1−�	(v)] is bounded away
from 0 and Ṽ has finite fourth moment. It follows that

(
P�̂

N −P
�0
N

) ˜̀0 = 1
N

N∑
i =1

1Vc
0
(Vi)

(
�i

�̂i
− �i

�0

)
˜̀0(Xi)

= 1
N

N∑
i =1

1Vc
0
(Vi)�i

˜̀0(Xi)
[

1
�	̂(Vi)

− 1
�	0 (Vi)

− −�̇T
0 (Vi)

�2
0(Vi)

(	̂−	0)
]

+ 1
N

N∑
i =1

1Vc
0
(Vi)�i

˜̀0(Xi)
[−�̇T

0 (Vi)
�2

0(Vi)

]
(	̂−	0)

≡RN − 1
N

N∑
i =1

1Vc
0
(Vi)

�i

�0(Vi)
˜̀0(Xi)

[
�̇T

0 (Vi)
�0(Vi)

]
(	̂−	0), (43)

where by (3), the similar assumption for �	 and (42),

|RN |≤
∣∣∣∣ 1
N

N∑
i =1

1Vc
0
(Vi)�i

˜̀0(Xi)
[

1
�	̂(Vi)

− 1
�	0 (Vi)

− −�̇T
0 (Vi)

�2
0(Vi)

(	̂−	0)
] ∣∣∣∣

≤ 1
�2

1
N

N∑
i =1

�(Vi)| ˜̀0(Xi)| · |	̂−	0|1+ �

=Op(1)|	̂−	0||	̂−	0|� =Op(1)Op(N−1/2)op(1).

Multiplying through (43) by
√

N , we conclude that (26) holds by virtue of
√

NRN =op(1)
and the strong law of large numbers.
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