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Abstract The infinite dimensional Z-estimation theoremoffers a systematic approach
to joint estimation of both Euclidean and non-Euclidean parameters in probability
models for data. It is easily adapted for stratified sampling designs. This is important
in applications to censored survival data because the inverse probability weights that
modify the standard estimating equations often depend on the entire follow-up his-
tory. Since the weights are not predictable, they complicate the usual theory based on
martingales. This paper considers joint estimation of regression coefficients and base-
line hazard functions in the Cox proportional and Lin–Ying additive hazards models.
Weighted likelihood equations are used for the former and weighted estimating equa-
tions for the latter. Regression coefficients and baseline hazards may be combined to
estimate individual survival probabilities. Efficiency is improved by calibrating or esti-
mating the weights using information available for all subjects. Although inefficient
in comparison with likelihood inference for incomplete data, which is often diffi-
cult to implement, the approach provides consistent estimates of desired population
parameters even under model misspecification.
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494 N. E. Breslow et al.

1 Introduction

Large cohort studies provide important evidence regarding causes of disease. The
Atherosclerosis Risk in Communities study, for example, has followed a cohort of
nearly 16,000 subjects to investigate environmental and genetic factors leading to
cardiovascular disease (Williams 1989). Over 26,000 women randomized to hor-
mone therapy or placebo as part of the Women’s Health Initiative have been fol-
lowed similarly to determine disease risks associated with exposure to exogenous
estrogens and other risk factors (Anderson et al. 2003). Both studies used strati-
fied random sampling to select limited numbers of stored serum samples for assay
of biomarkers. Both also routinely ignored extensive data on standard risk factors
available for subjects in the main cohort who were not selected as cases or con-
trols for the biomarker studies. Our goal is to provide a general statistical frame-
work (theory) that will facilitate incorporation of this additional information into the
analysis.

In previous work (Breslow and Wellner 2007, 2008) we discussed inference in
semiparametric models fitted to stratified samples using inverse probability weighted
(IPW) versions of the likelihood equations. We demonstrated how calibration or esti-
mation of sampling weights using information available for the entire cohort improved
the precision of regression coefficients, particularly of main effect or interaction terms
involving variables known for all (Breslow et al. 2009a, b). We also explored simulta-
neous inference on both finite and infinite dimensional parameters in semiparametric
models, for example, for estimation of individual survival probabilities (Breslow and
Lumley 2013).

Most of this earlier work assumed that model assumptions held. Here we focus
instead on inference in the face of generalmisspecification. The basic tool is the infinite
dimensional Z-estimation theorem, an extension of Huber’s theorem for parametric
models (Huber 1967; van der Vaart 1995). We start with a statement of this theorem
and demonstrate how, once it has been used to develop properties of estimates based
on complete cohort data, the analogous properties of calibrated IPW estimates based
on stratified samples quickly follow. The general theory is then applied to asymptotic
inference, both on and off the model, when fitting the Cox (1972) proportional and Lin
and Ying (1994) additive hazards models to stratified samples. For the most part the
mathematical exposition is informal, without close attention being paid to regularity
conditions.

2 Huber’s theorem and its extension

Huber’s (1967) paper “The behavior of maximum likelihood estimates under non-
standard conditions” was a seminal contribution that opened up new research fields
in both probability and statistics. Huber’s own interest was primarily the development
of estimators that had bounded influence functions and hence were less susceptible
than usual to the effects of “outliers” (Huber 1980). Royall (1986) emphasized the
utility of his results for construction of “robust” variances and confidence intervals for
parameters of interest when the assumed parametric probability distribution was mis-
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Z-estimation and stratified samples 495

specified. The “sandwich” variance that Huber and others1 derived ultimately became
a key element in generalized estimating equation (GEE) methodology for the analysis
of clustered data (Liang and Zeger 1986). Robust variances and confidence intervals
are now commonplace in applied statistics and, perhaps predictably, this popularity
has provoked some backlash (Freedman 2006).

Let X1, . . . , XN denote a series of independent and identically distributed (i.i.d.)
random variables, each with distribution P . Denote expectations by P f = ∫ f d P so
that PN f = 1

N

∑N
i=1 f (Xi ), where PN is the empirical measure. Here is a version

of Huber’s theorem due to van der Vaart (1998, Theorem 5.21); see also Bickel et al
(1993, Sect. 7.6 and Theorem A.10).

Theorem 1 For each θ ∈ Θ ⊂ R
p let x �→ ψθ(x) be a measurable, vector valued

estimating function. Define θ0 by Pψθ = 0 and assume that, for every θ1 and θ2 in a
neighborhood of θ0, ||ψθ1(x)−ψθ2(x)|| ≤ ψ̇(x)||θ1 − θ2|| where ψ̇ is a measurable
function with Pψ̇2 < ∞. Suppose the map θ �→ Pψθ is differentiable at θ0 with a
nonsingular derivative matrix Ψ̇ and that θ̂N satisfies PN

(
ψθ̂N

) = op
(
N−1/2

)
and

θ̂N
p−→ θ0. Then

√
N
(
θ̂N − θ0

) = −Ψ̇ −1 1√
N

N∑

i=1

ψθ0 (Xi ) + op(1)

� Z ∼ N

(

0, Ψ̇ −1Pψθ0ψ
T
θ0

(
Ψ̇ −1

)T)

where� denotes convergence in distribution, in this case toZ having a p-dimensional
normal distribution with mean 0 and the “sandwich” form of variance.

Often the estimating functions are likelihood scores from a parametricmodel:ψθ(x) =
∂ log fθ (x)/∂θ, θ ∈ Θ, and the map θ �→ P log fθ has a second-order Taylor expan-
sion with derivative matrix Ψ̇ . Then θ0, assumed to be the unique solution to Pψθ =
0, maximizes the function θ �→ P log fθ and yields the model distribution closest to
P in the sense of Kullback–Leibler distance.

The estimators in Theorem 1 were termed by Huber and others M-estimators since
they often maximized the likelihood. We call them Z -estimators to emphasize that in
some cases the zeros of estimating equations need not solve a maximization problem
(van der Vaart 1998, p. 41). Parameters in the semiparametric models of interest have
both finite and infinite dimensional components and a Z -estimation theorem involving
infinitely many estimating equations is needed. The version we cite is again due to van
der Vaart (1995, 1998, Theorem 19.26). See also van der Vaart and Wellner (1996,
Theorem 3.3.1).

Theorem 2 For each θ in a normed space Θ and every h in an arbitrary set H, let
x �→ ψθ,h(x) be a measurable function such that the class

{
ψθ,h : ||θ − θ0|| < δ

}
, for

1 Godambe (1960) had earlier studied variances based on the “information sandwich”, but was concerned
with inefficient estimators on the model rather than with misspecification. Cox (1961) derived the sandwich
in an informal treatment of tests of separate families of hypotheses, later crediting Huber for a rigorous
discussion of the distributional result.
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496 N. E. Breslow et al.

some δ > 0, is contained in a P-Donsker classF with finite envelope function. Assume
that the map Ψ : Θ �→ �∞(H) given by Ψ (θ) = Pψθ is Fréchet-differentiable at
a zero θ0, with a derivative Ψ̇ : linΘ �→ �∞(H) that has a continuous inverse on
its range. Furthermore, assume that ||P (ψθ,h − ψθ0,h

)2 ||H −→ 0 as θ −→ θ0. If

‖PNψθ̂N
‖H = op(1/

√
N ) and θ̂N

p−→ θ0, then, uniformly for h ∈ H,

Ψ̇
√
N
(
θ̂N − θ0

)
h = −GNψθ0,h + op(1)

where

GN = √
N (PN − P) � G in �∞(F )

is the empirical process indexed by the Donsker classF that converges in distribution
to the Brownian bridge process G.

Once again we think of θ0 as being defined as the solution, assumed unique, of the
population version of the estimating equations, to which the estimator converges in
large samples. Here are two examples that illustrate the content of the theorem.

Example 1 (Empirical DF) Take for Θ the class of distribution functions (DFs) F
for a real valued random variable T . Let H = R, the real line, and set ψF,t =
1[T ≤ t] − F(t), t ∈ R. The solution to supt |PNψF̂N ,t | = 0 is the empirical

DF F̂N (t) = PN1[T ≤ t] = N−1∑N
i=1 1[Ti ≤ t]. The map Ψ : Θ �→ �∞(H)

is given by Ψ (F)(t) = (F0 − F) (t), where F0(t) = P(T ≤ t) is the true DF.
Since Ψ (F) − Ψ (F∗) = F∗ − F is already a linear map, its Fréchet derivative
Ψ̇ (F − F∗) = Ψ (F) − Ψ (F∗) = F∗ − F is the negative of the identity map, as is
the inverse derivative. The conclusion of the theorem is thus

−Ψ̇
√
N
(
F̂N − F0

)
= √

N
(
F̂N − F0

)
� G,

where G is the mean zero Gaussian process indexed by t ∈ R having

Cov(G(t),G(s)) = P(1[T ≤ t]−F0(t))(1[T ≤s]−F0(s))=F0(t ∧ s)−F0(t)F0(s).

This is the classical Donsker theorem (van der Vaart 1998, Theorem 19.3) and the
conclusion of Theorem 2, that the class of functions F = {1[−∞, t] : t ∈ R} is
Donsker, is effectively just a restatement of the hypotheses.

Example 2 (Nelson-Aalen estimator) This is the standard nonparametric estimator of
the cumulative hazard from censored observations X = (T,Δ)where T is the survival
time, here assumed absolutely continuous, and Δ is the 0/1 indicator of whether T
is censored or fully observed. We take for Θ a collection of functions of the form
Λ(t) = ∫ t

0 λ(s)ds, where λ denotes the hazard, that are uniformly bounded over a
finite interval [0, τ ]. Let H denote the unit ball in the space BV[0, τ ] of bounded
functions of bounded variation on [0, τ ]. Set N(t) = Δ · 1[T ≤ t] the usual counting
process, Y (t) = 1[T ≥ t] the “at risk” process, MΛ(t) = N(t) − ∫ t0 Y (s)dΛ(s) and
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Z-estimation and stratified samples 497

suppose PY (τ ) > 0. MΛ is a martingale when Λ = Λ0, the true cumulative hazard
under P . Let

ψΛ,h(X) =
∫ τ

0
hdMΛ =

∫ τ

0
h (dN − YdΛ) = Δh(T ) −

∫ τ

0
hYdΛ.

These functions form a Donsker class since h and
∫
hYdΛ are of uniformly bounded

variation (van der Vaart 1998, Example 19.11). Setting ht (s) = 1[s ≤ t]/PNY (s) for
arbitrary t ∈ [0, τ ],2 the solution Λ̂N to ||PNψ

Λ̂N
||H = 0 satisfies

PNψ
Λ̂N ,ht

= PN

{
Δ · 1[T ≤ t]
(PNY )(T )

}

−
∫ τ

0

1[s ≤ t]PNY (s)

PNY (s)
dΛ̂N (s) = 0,

i.e., Λ̂N (t) = PN

{
Δ · 1[T ≤ t]
(PNY )(T )

}

,

the estimator proposed by Nelson (1972) and Aalen (1976). We calculate

Ψ (Λ)h = PψΛ,h =
∫ τ

0
hPY dΛ0 −

∫ τ

0
hPY dΛ = −

∫ τ

0
hPY d(Λ − Λ0).

Since for Λ,Λ∗ ∈ Θ , Ψ (Λ) − Ψ (Λ∗) is linear in Λ − Λ∗, this difference equals the
Fréchet derivative:

Ψ̇ (Λ − Λ∗)h = Ψ (Λ)h − Ψ (Λ∗)h = −
∫ τ

0
hP(Y )d(Λ − Λ∗).

For η in the range of Ψ̇ ⊂ �∞(H) given by ηh = ∫ τ

0 hdη, the inverse map is thus

Ψ̇ −1(η)h = −
∫ τ

0

h

PY
dη.

We conclude from Theorem 2 that, for random processes indexed by h ∈ H ,

√
N
(
Λ̂N − Λ0

)
h = −Ψ̇ −1

GN
(
ψΛ0,h

)+ op(1) � G

(
Ψ̇ −1ψΛ0,h

)
.

Thus,with ht nowgivenby ht (s) = 1[s ≤ t],√N
(
Λ̂N − Λ0

)
(t) = √

N
(
Λ̂N −Λ0

)

ht , t ∈ [0, τ ], is an asymptotically Gaussian stochastic process with covariance
function

P
(
Ψ̇ −1ψΛ0,ht Ψ̇

−1ψΛ0,hs

)
= P

(∫ τ

0

ht
PY

dM0 ·
∫ τ

0

hs
PY

dM0

)

=
∫ τ

0

hths
(PY )2

PYdΛ0 =
∫ t∧s

0

dΛ0(u)

P(T ≥ u)
,

2 Although ht is not itself in H , it is of bounded variation and hence may be renormalized to be in H ,
which is all that is needed in the sequel since the estimating equations are linear in h.
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498 N. E. Breslow et al.

where M0 = N − ∫ τ

0 YdΛ0 is a martingale and we have used standard results for the
covariance of martingale integrals (Aalen et al. 2008, Eqs. 2.31, 2.43). This asymptotic
distribution for Λ̂N was established by Breslow and Crowley (1974). The example
illustrates several features that arise in the application of Theorem 2 to survival models
under both simple random and stratified sampling.

We now turn to the modifications of Theorem 2 needed when θ̂N solves, at least to
order op(1/

√
N ), an IPW version of the estimating equations.

3 Two-phase stratified sampling

As mentioned in the Introduction, the studies that motivated this work involved strati-
fied random sampling from a large cohort, the “Phase I sample”, to select subjects for
a smaller Phase II sample for whom additional covariates were ascertained. Thus X is
not fully observed for all N subjects. It is commonplace, however, that some auxiliary
variables U are observed for all subjects. These are most useful if correlated with the
portions of X not observed for everyone. They are used for selection of the Phase II
subjects, to attempt to maximize their informativeness vis-à-vis study hypotheses, and
for calibration or estimation of the weights, so as to bring into the analysis more of the
Phase I information. We denote by V ∈ V the auxiliary variables U plus the portions
of X observed for all subjects. R1, . . . , RN denote sampling indicators that indicate
whether (Ri = 1) or not (Ri = 0) the i th subject is selected at Phase II.

3.1 Finite population stratified sampling

The Phase II sample is typically selected using stratified sampling. We partition V
into J strata: V = V1 ∪ · · · ∪ VJ , count the number N j of Phase I subjects in stratum
j , and sample n j of them at random without replacement. The resulting sample sizes
are as shown in Table 1.

Previously (Breslow and Wellner 2007) we considered IPW estimation in semi-
parametric models under finite population stratified sampling, assuming the truth of
the model. The sampling indicators satisfy

∑N
i=1 Ri1(Vi ∈ V j ) = n j , where

the n j are fixed by the experimenter. Hence they are dependent random variables,
albeit exchangeable within strata, which rules out application of Theorem 2. Many
researchers prefer to develop their theory under Bernoulli sampling, which preserves
the i.i.d. structure of the problem, and this is the path we now follow. In the sequel we
show how results obtained under the two sampling designs are related.

Table 1 Two-phase stratified
sampling

Stratum

1 2 · · · J Total

Phase I N1 N2 · · · NJ N

Phase II n1 n2 · · · nJ n

Sampling fractions n1
N1

n2
N2

· · · nJ
NJ

n
N
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Z-estimation and stratified samples 499

3.2 Bernoulli sampling

Instead of observing the N values of V all at once for the Phase I subjects, sup-
pose instead they are examined one by one. As subjects enter the study we generate,
independently for each one, a Phase II sampling indicator Ri with

Pr(R = 1|U, X) = Pr(R = 1|V ) = π0(V )

where π0 is a known function such that π0(v) ≥ δ > 0 for all v ∈ V . Since π0
depends only on V , the portions of X unobserved for subjects not sampled at Phase
II are “missing at random” (Little and Rubin 2002). For stratified Bernoulli sampling,
π0(v) = p j for v ∈ V j where the p j are known probabilities. This setup preserves
the i.i.d. structure of the observations {(Vi , Ri , Ri Xi ), i = 1, . . . , N }.

4 Inverse probability weighted Z-estimation

We extend P from a distribution for X alone to a distribution for (R,U, X). Define
the IPW empirical measure Pπ

N via

P
π
N ( f ) = PN

(
R

π0
f

)

= 1

N

N∑

i=1

Ri

π0(Vi )
f (Xi ) .

4.1 Application of Theorem 2

Suppose that the conditions of Theorem 2 have been verified for an i.i.d. random
sample X1, . . . , XN but that θ̂N now satisfies

∥
∥Pπ

N

(
ψθ̂N

)∥∥
H

= sup
h∈H

∣
∣
∣
∣
∣
1

N

N∑

i=1

Ri

π0(Vi )
ψθ̂N

(Xi ) h

∣
∣
∣
∣
∣

= op
(
N− 1

2

)
.

In our applications this equation is satisfied exactly, i.e., with 0 replacing op(N− 1
2 ).

Consistency of the IPW version of θ̂N generally follows from consistency of the ordi-
nary version and the fact that the sampling probabilities are bounded away from zero.

Since P
(

R
π0

ψθ

)
= P (ψθ ) for all θ , the parameter θ0 estimated by this approach is

the same as would be estimated by fitting the model to complete Phase I data. This
is especially important when the model has been misspecified. The derivative Ψ̇ is
also unchanged, which means that most of the work in determining the asymptotic
distribution of θ̂N has already been accomplished.

The conclusion of Theorem 2 for the IPW estimator is thus, uniformly for h ∈ H ,

Ψ̇
√
N
(
θ̂N − θ0

)
h = −GN

(
R

π0
ψθ0,h

)

+ op(1).

= −GN

(

ψθ0,h + R − π0

π0
ψθ0,h

)

+ op(1). (1)
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500 N. E. Breslow et al.

The two terms in parentheses on the RHS are uncorrelated. Hence the asymptotic
variance is

VarA
[
Ψ̇

√
N
(
θ̂N − θ0

)
h
]

= P
(
ψ2

θ0,h

)
+ P

(
1 − π0

π0
ψ2

θ0,h

)

.

This equals the variance obtained by fitting the model to complete data (the Phase I
variance) plus a term that reflects the loss of information due to the Phase II sampling.
Efficiency is improved by reducing this second term, the Phase II variance.

4.2 Calibration of the sampling weights

Survey samplers (Deville and Särndal 1992) improve their estimates of finite popula-
tion totals by “calibration” of the sampling weights using known population totals of
auxiliary variables associated with the variable of interest. The same technique may
be applied to improve the efficiency of IPW estimates in semiparametric models. Let
C = (C1,C2, . . . ,CK )T, where Ck = Ck(V ), denote a vector of variables known for
all Phase I subjects and suppose PCCT is nonsingular. The basic idea is to select a
new set of weightswi that are as close as possible to the sampling or “design” weights,
di = π−1

0 (Vi ), according to a specified distance measure G. The new weights must
also satisfy the calibration equations, whereby the population totals of the Ck are
exactly estimated:

∑N
i=1 Ck(Vi ) =∑N

i=1 RiwiCk(Vi ). When the distance measure is
the Poisson deviance,G(w, d) = w log(w)−w+d, this is accomplished by choosing
new weights

wi = exp
[−̂λTNC (Vi )

]

π0 (Vi )

where λ̂N is a K -vector of Lagrange multipliers for the constrained (by the calibra-
tion equations) optimization problem. Known in the survey literature as “raking”, the
procedure yields weights that are always positive; other choices for G may not.

To derive the asymptotic behavior of the estimator θ̂N (̂λN ) obtained by IPW using
calibrated weights, we use a variant of the Z -theorem with estimated nuisance para-
meters (Breslow and Wellner 2008). Consider λ as a parameter in the calibrated IPW
equations

PN

(
R

πλ(V )
ψθ

)

= 0, where πλ(V ) = exp
[
λTC(V )

]
π0(V ),

and suppose that λ̂N is the estimator that solves the calibration equations

N∑

i=1

Ri

πλ̂N
(Vi )

C (Vi ) =
N∑

i=1

C (Vi ) .
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Z-estimation and stratified samples 501

Under standard regularity conditions for design based inference, which hold for our
two-phase sampling setup, or arguing directly from the preceding equation, one may
show (Deville and Särndal 1992; Breslow et al. 2009a)

√
N λ̂N =

(
PCCT

)−1
GN

(
R − π0

π0
C

)

+ op(1). (2)

Thus λ̂N converges in probability to zero as N ↑ ∞ and the calibrated weights
converge to the design weights. Suppose also that the map

λ �→ P

(
R

πλ(V )
ψθ0,h(X)

)

is differentiable at λ = 0, uniformly in h, with derivative Ψ̇λ,h = −Pψθ0,hC
T.

Combining Eqs. (1) and (2) with Theorem 1(iv) of Breslow and Wellner (2008) we
then have, uniformly for h ∈ H ,

Ψ̇
√
N
(
θ̂N (̂λN ) − θ0

)
h = Ψ̇

√
N
(
θ̂N (0) − θ0

)
h − Ψ̇λ,h

√
N λ̂N + op(1)

= −GN

{

ψθ0,h + R − π0

π0

[

ψθ0,h − Pψθ0,hC
T
(
PCCT

)−1
C

]}

+ op(1)

= −GN

[

ψθ0,h + R − π0

π0

(
ψθ0,h − �Cψθ0,h

)
]

+ op(1) (3)

where �C denotes population least squares projection on [C1, . . . ,CK ]. Comparing
(3) with (1), the advantage of calibration is that we replace the scores in the Phase II
variance term with the residuals after their projection on [C1, . . . ,CK ]. The improve-
ment in precision would be greatest if we could select the calibration variables to be
highly correlated with the scores (Lumley 2012, Sect. 8.5.1).3

To avoid having to write out expressions like (3) in the sequel, we define

G
π̂
N ( f ) = GN

{

f + R − π0

π0
[ f − �C ( f )]

}

, f ∈ F , (4)

and refer to it as the (calibrated) IPW empirical process.

4.3 Calibrating to stratum totals

When the calibration variables are simply the stratum indicators, C j = 1[V ∈ VJ ],
the projection onto [C1, . . . ,CJ ] yields the stratum specific mean:

3 Indeed, the term GN [(R − π0)/π0]ψθ0,h in (1), which has the same limiting distribution whether the
ψθ0,h are regarded as random or fixed by conditioning (van der Vaart and Wellner 1996, Sect. 2.9), is the
normalized error arising from IPW estimation of the Phase I total of the scores. The solution to the sample
survey problem, to estimate this unknown total using two phase stratified sampling, is best achieved when
the calibration variables used to adjust the sampling weights are highly correlated with the scores.
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502 N. E. Breslow et al.

�C ( f ) =
J∑

j=1

Pj ( f )C j , where Pj (A) = P(A ∩ V j )/P(V j ).

Whereas the design weights are inverses of the a priori sampling probabilities p j , the
calibrated weights are inverses of the actual sampling fractions n j/N j . In view of (3),
furthermore, with Var j denoting the stratum-specific variance,

VarA
[
Ψ̇

√
N
(
θ̂N (̂λN ) − θ0

)
h
]

= P
(
ψ2

θ0,h

)
+

J∑

j=1

P
(
V j
) 1 − p j

p j
Var j

(
ψθ0,h

)
.

This is precisely the asymptotic variance that Breslow and Wellner (2007) derived for
IPW estimation under finite population stratified sampling, where the design weights
were the observed N j/n j .4 Hence calibration to stratum frequencies enables one to
reconcile the apparent difference between the two sampling schemes. Further cali-
bration would in principle improve the efficiency of estimation under either scheme
(Saegusa and Wellner 2013).

5 Semiparametric models

The preceding discussion considered a single infinite dimensional parameter θ . In
semiparametric models one works with a parameter θ = (β,Λ) that is partitioned
into a parametric part, β ∈ � ⊂ R

p, and a nonparametric part, Λ ∈ H ⊂ B where
B is a normed space. We consider the special case where Λ is a finite measure. We
also assume that the conditions of Theorem 2 hold so that

√
N
(
β̂N − β0, Λ̂N − Λ0

)

is asymptotically Gaussian under i.i.d. random sampling.
For the survival models, X = (T,Δ, Z) : 0 ≤ T ≤ τ < ∞, Δ ∈

{0, 1}, Z ∈ R
p, where T is the right-censored survival time, Δ the censor-

ing indicator, and Z a p-dimensional vector of covariates. The β are regression
coefficients, which may be interpreted as log hazard ratios or as excess hazards
depending on the model. Λ denotes the baseline hazard function, which we inter-
pret as a measure on [0, τ ]. We further impose the “partly unnecessary” assump-
tions made by van der Vaart (1998, Sect. 25.12.1) to guarantee applicability of The-
orem 2 to fitting the Cox model with complete Phase I data. These include that
Z is bounded, that the survival and censoring distributions are continuous and that
P[T ≥ τ ] > 0, where τ is a time at which a non-zero proportion of the cohort is still
“at risk” of “death”. See Breslow and Wellner (2007, Sect. 7) for a more complete
statement.

4 This result would be of no surprise to a survey sampler. For estimation of a population total using
stratified Bernoulli sampling, it is well known that conditioning on the Phase II stratum totals {n1, . . . , nJ }
(see Table 1) is equivalent to finite population stratified sampling (Särndal et al. 1992, Sect. 9.8, Example
9.14).
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5.1 Semiparametric likelihood equations

We follow closely the development in van der Vaart (1998, Sect. 25.12) for the model
Pβ,Λ(X) with density pβ,Λ(x). Let �̇β,Λ denote the usual likelihood scores for β

�̇β,Λ = ∂ log pβ,Λ

∂β

and let Bβ,Λ denote the score operator that maps directions h ∈ H , from which Λ is
approachedbypathsΛt,h in one dimensional submodels given bydΛt,h = (1+ht)dΛ,
into the corresponding likelihood scores:

Bβ,Λh = ∂ log pβ,Λt,h

∂t

∣
∣
∣
∣
t=0

.

Then the IPW version of the likelihood equations with calibrated weights is

P
π̂
N �̇β,Λ = 1

N

N∑

i=1

Ri

πλ̂N
(Vi )

�̇β,Λ(Xi ) = 0

P
π̂
N Bβ,Λh = 1

N

N∑

i=1

Ri

πλ̂N
(Vi )

Bβ,Λh(Xi ) = 0, h ∈ H,

where by P
π̂
N we mean the IPW empirical distribution using calibrated weights:

P
π̂
N f = PN

(
R

πλ̂N

f

)

= 1

N

N∑

i=1

Ri

πλ̂N
(Vi )

f (Xi ) .

5.2 Semiparametric inference under the model

When the model holds, i.e., P = P0 = Pβ0,Λ0 , the Fréchet derivative Ψ̇ that figures
in Theorem 2 may often be expressed in terms of �̇0 = �̇β0,Λ0 , B0 = Bβ0,Λ0 and B∗

0 ,
the adjoint of B0, all evaluated at the “true value” (van der Vaart 1998, Eq. 25.91). For
β estimation we then find (van der Vaart 1998, Sect. 25.5.1), see also (Bickel et al.
1993, Chap. 5),

�∗
0 =

[
I − B0

(
B∗
0 B0

)−1
B∗
0

]
�̇0, the efficient score,

Ĩ0 = P0�
∗
0

(
�∗
0

)T
, the efficient information, and

�̃0 = Ĩ−1
0 �∗

0, the efficient influence function.

Invertibility of the information operator B∗
0 B0 follows from the assumed invertibility

of Ψ̇ . Further defining the operator A : H �→ L2(P0) by

Ah = B0
(
B∗
0 B0

)−1
h − P0

[
B0
(
B∗
0 B0

)−1
h�̇T0

]
�̃0,
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and completing the arguments in van der Vaart (1998, p. 424) as detailed in Breslow
and Lumley (2013), the conclusion of the Z -theorem shown in (3) for IPW estimation
with calibrated weights becomes

√
N
(
β̂N (̂λN ) − β0

) = G
π̂
N (�̃0) + op(1) (5)√

N
(
Λ̂N (̂λN ) − Λ0

)
h = G

π̂
N (Ah) + op(1). (6)

These expansions provide the basics needed for asymptotic inference.

6 Applications to survival models

Cox model based inferences follow directly from Sect. 5.2. These are considered first,
followed by separate applications of Theorem 2 for “robust” inferences under general
misspecification for estimating parameters in both the Cox and the Lin–Ying models.

6.1 Cox regression on the model

Recall that X = (T,Δ, Z) for the survival models. Let N(t) and Y (t) denote the
counting and “at risk” processes as in Example 2. Define

Mβ,Λ(t) = N(t) −
∫ t

0
eZ

TβY (s)dΛ(s). (7)

M0 = Mβ0,�0 is a martingale under the model P0. The likelihood scores may then be
expressed

�̇β,Λ(X) =
∫ τ

0
ZdMβ,Λ

Bβ,Λh(X) =
∫ τ

0
hdMβ,Λ, h ∈ H,

where H is again taken to be the unit ball in BV[0, τ ]. Then van der Vaart (1998, Sect.
25.12.1) showed

B∗
0 �̇0 = P0Ze

ZTβ0Y

B∗
0 B0h = hP0e

ZTβ0Y
(
B∗
0 B0

)−1
h = h/P0e

ZTβ0Y.

Settingm(t) = P0ZeZ
Tβ0Y (t)/P0eZ

Tβ0Y (t) = P0(Z |T = t,Δ = 1), the conditional
expectation of Z for a subject who dies at t , it follows that
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�∗
0 =

∫ τ

0
[Z − m] dM0 ,

Ĩ0 = P0e
ZTβ0

∫ τ

0
[Z − m]⊗2 YdΛ0 and

Ah =
∫ τ

0

h

P0eZ
Tβ0Y

dM0 − P0

(∫ τ

0

h

P0eZ
Tβ0Y

dM0�̇
T
0

)

�̃0. (8)

The joint asymptotic distribution of (β̂N , Λ̂N ) is obtained by plugging these expres-
sions into (5) and (6). For the special case that all Phase I subjects have complete
data, i.e., under simple random sampling with β̂N and Λ̂N denoting the ordinary,
unweighted estimates, we have

√
N
(
β̂N − β0

) = GN

(
�̃0

)
+ op(1)

√
N
(
Λ̂N − Λ0

)
h = GN

[∫ τ

0

h

P0eZ
Tβ0Y

dM0 − P0

(∫ τ

0

h

P0eZ
Tβ0Y

dM0�̇
T
0

)

�̃0

]

+ op(1)

with �̃0 = Ĩ−1
0 �∗

0 as shown above. The asymptotic expansions for calibrated IPW
estimators are found by replacing GN in these equations by the Gπ̂

N in (4).
Breslow and Lumley (2013) used Taylor’s formula with the preceding equations

to derive a well known result for the estimated cumulative hazard for a subject with
Z = z0. For simple random sampling they showed

√
N
[
ez

T
0 β̂N Λ̂N (t) − ez

T
0 β0Λ0(t)

]

= ez
T
0 β0GN

{∫ t

0

dM0

P0eZ
Tβ0Y

+
[∫ t

0
(z0 − m)TdΛ0

]

�̃0

}

+ op(1) (9)

uniformly for 0 ≤ t ≤ τ . Since the efficient influence function �̃0 is constructed to
be orthogonal in L2(P0) to the closure of the range space of B0, i.e., to the “nuisance
tangent space”, the two terms inside the curly brackets are uncorrelated. Hence the
process (9) converges in distribution to the mean zero process

ez
T
0 β0

[

Z(t) +
∫ t

0
(z0 − m)TdΛ0 · Z∗

]

(10)

whereZ andZ∗ are independentlyGaussian. Using themartingale calculus, the covari-
ance function of Z is

Cov (Z(t),Z(s)) =
∫ t∧s

0

1

P0eZ
Tβ0Y

dΛ0,

while the covariance matrix of Z∗ is the inverse of the efficient information Ĩ0.
This result agrees with that of Begun et al. (1983), who had an additional term
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exp(−ez
T
0 β0Λ0)multiplying (9) and (10) since theyworkedwith the survival instead of

the cumulative hazard function. See also Tsiatis (1981) and Andersen and Gill (1982).
For calibrated IPW estimation one replacesGN byGπ̂

N . The first term in the asymp-
totic variance function is that for complete Phase I data as just described. Calculation of
the Phase II variance is more involved. For stratified Bernoulli sampling, this involves
terms of the form

J∑

j=1

P0(V j )
1 − p j

p j
Cov0, j [ ft − �C ( ft ), fs − �C ( fs)]

where

ft = ez
T
0 β

{∫ t

0

dM0

P0eZ
Tβ0Y

+
[∫ t

0
(z0 − m)TdΛ0

]

�̃0

}

and where Cov0, j denotes covariance under the distribution P0, j . Unfortunately, the
two terms between curly brackets in ft are not orthogonal in L2(P0, j ).

6.2 Cox regression off the model

Suppose now (β̂N , Λ̂N ) solves the estimating equations shown in Sect. 5.1, but that P
does not necessarily satisfy the Cox model. One must then apply Theorem 2 directly
rather than rely on the general results of Sect. 5.2. Note that Mβ,Λ(t) as defined in
(7) generally is not a martingale under P , not even at (β0,Λ0). The calibrated IPW
estimating equations may be written

P
π̂
N

∫
ZdMβ,Λ = P

π̂
N

[
ΔZ − Λ

(
ZeZ

TβY
)]

= 0 (11)

P
π̂
N

∫
hdMβ,Λ = P

π̂
N

[
Δh(T ) − Λ

(
heZ

TβY
)]

= 0, h ∈ H. (12)

Recall that Λ(h) = ∫ τ

0 hdΛ for Λ a measure.

These equations are easily solved. Substituting 1[s ≤ t]/P π̂
N e

ZTβY (s) for h(s) in
(12) and arguing as in Example 2 leads to

Λ̂N (β)(t) = P
π̂
N

(
Δ1[T ≤ t]

(
P π̂
N e

ZTβY
)
(T )

)

,

an IPW version of the Breslow estimator. Inserting this Λ̂N (β) in (11), the resulting
β̂N solves

P
π̂
NΔ

(

Z − P
π̂
N Ze

ZTβY

P
π̂
Ne

ZTβY
(T )

)

= 0,
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an IPW version of the Cox partial likelihood equations. Similarly, the “true values”
of the parameters (β0,Λ0) = (β0(P),Λ0(P)) are now defined as the solutions to the
population version of the estimating equations Ψβ,Λ = 0, which we write as

Ψ1;β,� = P
∫

ZdMβ,� = P�Z − �
(
PZeZ

TβY
)

= 0

Ψ2;β,�h = P
∫

hdMβ,� = P�h(T ) − �
(
hPeZ

TβY
)

= 0, h ∈ H.

(13)

Taking h = PZeZ
TβY/PeZ

TβY , and subtracting, β0 solves

PΔ

[

Z − PZeZ
TβY

PeZTβY
(T )

]

= 0.

The arguments of Struthers and Kalbfleisch (1986) may be adapted to demonstrate

that, under standard regularity conditions, β̂N
p−→ β0. From this it follows that

Λ̂N (t) = P
π̂
N

⎛

⎝ Δ1[T ≤ t]
(
P

π̂
Ne

ZTβ̂N Y
)

(T )

⎞

⎠ p−→ Λ0(t) = P

(
Δ1[T ≤ t]

(
PeZTβ0Y

)
(T )

)

uniformly for 0 ≤ t ≤ τ .
Partitioning Ψ̇ in the same fashion as Ψ in (13), the conclusion of Theorem 2 is

Ψ̇11
√
N
(
β̂N − β0

)
+ Ψ̇12

√
N
(
Λ̂N − Λ0

)
= −G

π̂
N

(∫
ZdM0

)

+ op(1) (14)

Ψ̇21
√
N
(
β̂N − β0

)
h + Ψ̇22

√
N
(
Λ̂N − Λ0

)
h = −G

π̂
N

(∫
hdM0

)

+ op(1), (15)

which result may be compared with van der Vaart (1998, Theorem 25.90). Here
M0 = Mβ0,Λ0 has mean zero in view of (13) but, as a reminder, in general is not
a martingale. The components of Ψ̇ are readily found from (13); in fact, Ψ̇12 and Ψ̇22
follow immediately from the linearity of these equations in Λ:

Ψ̇11 (β − β0) = −Λ0

(
PZ⊗2eZ

Tβ0Y
)

(β − β0)

Ψ̇12 (Λ − Λ0) = − (Λ − Λ0)
(
PZeZ

Tβ0Y
)

Ψ̇21 (β − β0) h = −Λ0

(
hPZTeZ

Tβ0Y
)

(β − β0)

Ψ̇22 (Λ − Λ0) h = − (Λ − Λ0)
(
hPeZ

Tβ0Y
)

.

Substituting h = PZeZ
Tβ0Y/PeZ

Tβ0Y in (15) and subtracting from (14), one finds
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√
N
(
β̂N − β0

) = G
π̂
N (D−1G) + op(1), where

D =
∫ τ

0

⎡

⎣ PZ⊗2eZ
Tβ0Y

PeZTβ0Y
−
(
PZeZ

Tβ0Y

PeZTβ0Y

)⊗2
⎤

⎦ PeZ
Tβ0YdΛ0

=
∫ τ

0

⎡

⎣ PZ⊗2eZ
Tβ0Y

PeZTβ0Y
−
(
PZeZ

Tβ0Y

PeZTβ0Y

)⊗2
⎤

⎦ (t)dP(T ≤ t,Δ = 1) (16)

equals the efficient information Ĩ0 under the model and

G =
∫ τ

0

(

Z − PZeZ
Tβ0Y

PeZTβ0Y

)

dM0.

When P is the model distribution P0, G is the efficient score, M0 is a martingale
and Var(G) = D = Ĩ0. For complete data, where GN replaces Gπ̂

N , the asymptotic
variance of the normalized β̂N is then the standard Ĩ−1

0 . Off the model one has the
sandwich variance D−1Var(G)D−1. The second equation (16) for D makes it easier
to check that this is indeed the sandwich variance derived by Lin and Wei (1989). See
Therneau and Grambsch (2000, pp. 159-60). This is also the Phase I variance of the
calibrated IPW estimator off the model, with the total variance being found using (4)
applied to f = D−1G.

A similar argument leads to an expansion for
√
N (Λ̂N −Λ0). In (15) we substitute

h/PeZ
Tβ0Y for h and subtract (14) from (15) to find

√
N
(
Λ̂N −Λ0

)
h=G

π̂
N

[∫ τ

0

h

PeZTβ0Y
dM0−Λ0

(
hPZTeZ

Tβ0Y

PeZTβ0Y

)

D−1G

]

+op(1).

This is the same formula as derived earlier under the model. To see this, note that the
second term in brackets on the RHS of the analogous expansion in Sect. 6.1 may be
rewritten using the martingale calculus as

P0

(∫ τ

0

h

P0eZ
Tβ0Y

dM0�̇
T
0

)

�̃0 = P0

(∫ τ

0

h

P0eZ
Tβ0Y

dM0

∫ τ

0
ZTdM0

)

�̃0

= P0

(∫ τ

0

hZTeZ
Tβ0Y

P0eZ
Tβ0Y

dΛ0

)

�̃0

= Λ0

(
hP0ZTeZ

Tβ0Y

P0eZ
Tβ0Y

)

D−1G.

Under the model, in L2(P0), the first and second terms in brackets in the expansion for√
N (Λ̂N − Λ0) are orthogonal. Off the model, in L2(P), they may not be. Similarly,

the asymptotic expansion (9) for the estimated cumulative hazard holds off the model,
but the two terms in curly brackets, and hence Z(t) and Z∗ in (10), may be correlated.
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The discussion in 6.1 regarding calculation of the Phase II variance for calibrated IPW
estimates applies both on and off the model.

6.3 Additive hazards regression

Asymptotic properties of (β̂N , Λ̂N ) for the additive hazardsmodel, whether for simple
random or two phase stratified sampling, are similar to those for the Coxmodel. Only a
brief outline is given here. Since no likelihood calculations are involved, the discussion
is focussed primarily on properties under general misspecification. For further details,
see the 2014 University of Washington PhD thesis by one of us (JH).

The cumulative hazard function conditional on covariates Z is assumed, under the
model, to satisfy Λ(t |Z) = Λ(t) + ZTβ · t . Whereas the Cox model may be fit easily
even in situations where it clearly does not hold, the additive hazards model imposes
rather severe restrictions on P to ensure that estimated baseline and conditional hazards
are non-negative, at least in the limit. Let N(t) and Y (t) denote the standard counting
and at risk processes. Set

Mβ,Λ(t) = N(t) −
∫ t

0
Y (s)dΛ(s) −

∫ t

0
Y (s)ZTβds, (17)

and, with m(t) = PZY (t)/PY (t), define

D =
∫ τ

0
P[Z − m(s)]⊗2Y (s)ds. (18)

We assume that D is non-singular and that, almost surely in Z ,

P
∫ t

0

dN(s)

PY (s)
−
∫ t

0
mT(s)ds D−1 P

∫ τ

0
[Z − m]dN and (19)

P
∫ t

0

dN(s)

PY (s)
+
∫ t

0
[Z − m(s)]Tds D−1 P

∫ τ

0
[Z − m]dN (20)

are non-decreasing in t on the interval [0, τ ]. These assumptions ensure that the limiting
values of the baseline hazard, and of conditional hazards estimated under the model,
are non-negative whether or not the model actually holds. When in fact Λ(t |Z) =
Λ0(t)+ ZTβ0 · t , (17) is for (β,Λ) = (β0,Λ0) a martingale under P = P0 = Pβ0,Λ0 .
Using martingale arguments, (19) may be shown to equal Λ0(t) and (20) to equal
Λ0(t) + ZTβ0 · t , both assumed non-decreasing in t . The same is true off the model
(see below) for (β0,Λ0) defined in the usual manner as functions of P .

We start with equations motivated by work of McKeague and Sasieni (1994) (see
below) that lead to the estimators proposed by Lin and Ying (1994) for simple random
sampling and byKulich andLin (2000) for the stratified case-cohort design, butmodify
them using calibrated weights for more general two-phase sampling designs.
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In partitioned form, the equations have the same form as under the Cox model:

P
π̂
Nψ1;β,Λ(X) = P

π̂
N

∫ τ

0
ZdMβ,Λ = 0 (21)

P
π̂
Nψ2;β,Λ(X)h = P

π̂
N

∫ τ

0
hdMβ,Λ = 0, h ∈ H. (22)

Inserting h = P
π̂
N ZY/Pπ̂

NY in (22) and combining with (17) lead to

P
π̂
N

∫ τ

0
ZYdΛ = P

π̂
N

∫ τ

0

P
π̂
N ZY

P
π̂
NY

dN − P
π̂
N

∫ τ

0

P
π̂
N ZY

P
π̂
NY

(t)Y (t)ZTβdt.

Substituting this expression in turn for
∫ τ

0 P
π̂
N ZYdΛ in (21), and solving for β, yields

explicit formulas for the estimators, namely

β̂N =
⎧
⎨

⎩
P

π̂
N

∫ τ

0

[

Z − P
π̂
N ZY (t)

P
π̂
NY (t)

]⊗2

Y (t)dt

⎫
⎬

⎭

−1

P
π̂
N

∫ τ

0

[

Z − P
π̂
N ZY

P
π̂
NY

]

dN

Λ̂N (t) = P
π̂
N

(
Δ1[T ≤ t]
(Pπ̂

NY )(T )

)

−
∫ t

0

P
π̂
N Z

Tβ̂NY (s)

P
π̂
NY (s)

ds,

where the last equation follows from (22) with h(s) = 1[s ≤ t]/Pπ̂
NY (s). The esti-

mated baseline cumulative hazard is the IPWNelson-Aalen estimate of the cumulative
hazard for the entire population, minus the IPW estimate of the time-weighted average
excess risk.

The joint asymptotic distribution of (β̂N , Λ̂N ) is easily determined from the explicit
expressions given for these estimators and the limiting distribution of the calibrated
IPW empirical process Gπ̂

N . Here we show that it may be obtained also by applying
the Z -estimation theorem, the conclusions of which are precisely as shown in Eqs.
(14) and (15) for the Cox model. Now, however, M0 = Mβ0,Λ0 is given by (17) and
(β0,Λ0) are the limits in probability of (β̂N , Λ̂N ), obtained by substituting P for P π̂

N
in the formulas just derived. In other words,

β0 = D−1P
∫ τ

0
(Z − m) dN,

with D defined in (18), and

Λ0(t) = P
∫ t

0

dN

PY
−
∫ t

0
mT(s)ds D−1 P

∫ τ

0
(Z − m) dN.

The assumption that (19) and (20) are non-decreasing ensures that, even off the model,
Λ0(t) and Λ0(t) + ZTβ0 · t are non-decreasing.

The Fréchet derivative of Ψβ,Λ = Pψβ,Λ, where the components of ψβ,Λ are
shown in (21) and (22), follows trivially since Mβ,Λ and hence Ψβ,Λ itself are linear
in both β and Λ:
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Ψ̇11(β − β0) = −
∫ τ

0
P
[
Z ZTY (t)

]
dt (β − β0)

Ψ̇12(Λ − Λ0) = −(Λ − Λ0)P(ZY )

Ψ̇21(β − β0)h = −
∫ τ

0
h(t)P

[
ZTY (t)

]
dt (β − β0)

Ψ̇22(Λ − Λ0)h = −(Λ − Λ0)hP(Y ).

Inserting h = m = P(ZY )/P(Y ) in the new version of Eq. (15), where M0 is defined
by (17) rather than (7) and the components of Ψ̇ are as shown above, and subtracting
(15) from (14), we find

√
N
(
β̂N − β0

) = G
π̂
N (D−1G) + op(1) (23)

where D is shown in (18) and now

G =
∫ τ

0
(Z − m) dM0.

Similar calculations lead to the expansion

√
N
(
Λ̂N − Λ0

)
h = G

π̂
N

[∫ τ

0

h

PY
dM0 −

∫ τ

0
h(t)mT(t)dtD−1G

]

+ op(1). (24)

The estimators (β̂N , Λ̂N ) are the estimators used in practice for the additive risk
model under simple random sampling (Lin and Ying 1994). ThenGN replacesGπ̂

N in
the expansions above. Since the estimators are not efficient, one still has the sandwich
form of variance for β̂:

VarA
√
N
(
β̂N − β0

) = D−1Var(G)D−1.

The only difference between the asymptotic theory on and off the model is that, on
the model, G is a martingale integral and its variance may be found via the martingale
calculus to equal

Var(G) =
∫ τ

0
P
{
[Z − m(t)]⊗2 Y (t)

(
dΛ0(t) + ZTβ0dt

)}
.

The cumulative hazard at time t for a subject with covariates z0 is estimated to
be Λ̂N (t) + zT0 β̂N · t which converges to Λ0(t) + zT0β0 · t . Using (23) and (24), the
normalized difference between the estimator and its limit satisfies

√
N
(
Λ̂N (t) − Λ0(t)

)+ zT0
√
N
(
β̂N − β0

)
t

= G
π̂
N

{∫ t

0

dM0

PY
+
∫ t

0
[z0 − m(s)]T ds D−1G

}

+ op(1),
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which expression may be compared with that derived for the Cox model under simple
random sampling in (9). The discussions at the end of Sects. 6.1 and 6.2 regarding
calculation of Phase I and Phase II terms in the asymptotic variance of estimated
cumulative hazards apply here as well as there.

Under the additive hazards model, the estimator Λ̂N of the baseline cumulative
hazard may not be monotone increasing, though it is assumed to be so in the limit.
While this does not affect the asymptotic theory, it is awkward in practice. There are
two possible remedies. One, suggested by Lin and Ying (1994), is to use the modified
estimator

Λ̂
†
N (t) ≡ sup

0≤s≤t
Λ̂N (s).

Alternatively, much as suggested by Li and Tseng (2008), we could replace Λ̂N (t)
by the isotonized estimator Λ̂iso

N (t) obtained by forming the greatest convex minorant

ĤN (t) of the cumulative sum process HN (t) ≡ ∫ t
0 Λ̂N (s)ds and setting Λ̂iso

N (t) =
Ĥ ′
N (t), where the derivative is the right derivative at each t . See, for example, Barlow et

al (1972, pp. 9-17). Lin and Ying sketched an argument for the asymptotic equivalence
of Λ̂N and their monotone modified version for complete Phase I data, assuming that
the additive model held and that the baseline hazard was strictly positive on [0, τ ]. It
remains to study these modified estimators for two-phase sampling and under model
misspecification.

A referee asked about the extension of these results to the more general additive
model of McKeague and Sasieni (1994). Here each subject has an additional q-vector
of covariates W, Λ is redefined to be a q-vector of functions in BV[0, τ ] and the
cumulative hazard at t conditional on (W, Z) is assumed to equal

cumhaz(t |W, Z) = WTΛ(t) + ZTβt.

If we now define

Mβ,Λ = N(t) −
∫ t

0
Y (s)WTdΛ(s) −

∫ t

0
Y (s)ZTβds,

and take for h a q-vector of functions in the unit ball of BV[0, τ ], the estimating
equations used by McKeague and Sasieni (1994) at the first iteration of their iterative
procedure may be written

PN

∫ τ

0
ZdMβ,Λ = 0

PN

∫ τ

0
hTWdMβ,Λ = 0, h ∈ Hq .

Our estimating Eqs. (21) and (22) for the Lin–Ying model are a special case where
q = W = 1 and PN is replaced by P

π̂
N . Explicit solutions to the new equations

generalize those shown above for β̂N , Λ̂N . Using smoothing to estimate the derivatives
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of Λ, McKeague and Sasieni (1994) iterate their procedure to convergence to find the
maximum likelihood estimates. They remark that often little is gained in practice over
the simpler estimator, even when the model holds.

7 Discussion

We have applied the infinite dimensional Z-estimation theorem to derive asymptotic
properties of both Euclidean and non-Euclidean parameters in semiparametric models
fitted to data from two-phase stratified sampling designs. The approachworkswell both
“on the model” and under general misspecification. When applied to simple random
(i.i.d.) samples, it leads quickly to well known results for the Cox proportional and
Lin–Ying additive hazards models for survival data. We have developed a general
theory that extends those results, and undoubtedly many other well known results
for semiparametric models where the non-Euclidean parameter is estimable at a

√
N

rate, to accomodate IPW estimators using calibrated weights for two-phase stratified
sampling designs.

Our approach uses IPW versions of the standard estimating equations applied to
data from the Phase II sample. When the model holds, the resulting estimates can
be seriously inefficient, even after calibration. Likelihood equations for two phase
samples, however, involve integration over the “missing data”, here the portions of
X not observed at Phase I, with respect to unknown distributions. This can pose a
substantial challenge to implementation of an efficient methodology. In applications
to the Cox model, for example, it involves consideration of three infinite dimensional
parameters, namely, the distributions of the survival times, the censoring times and the
covariates (Nan et al. 2004). To our knowledge, concrete proposals for implementation
involve assumptions that may limit applicability, for example, to discrete covariates
(Nan 2004), to complete independence (not just conditional on covariates) of survival
and censoring times (Scheike and Martinussen 2004) and to situations where all the
auxiliary variables are included in the model (Zeng and Lin 2014). Multiple imputa-
tion of the “missing data” is another option, but requires correct specification of the
imputationmodel for consistency (Marti and Chavance 2011; Keogh andWhite 2013).
Most of these proposals, furthermore, have been restricted to (stratified) versions of
the case-cohort design in which all cases (“deaths”) are sampled at Phase II (Prentice
1986; Borgan et al. 2000). In practice, including for the two studies mentioned in the
introduction, Phase II data for many cases may be missing due to loss or degradation
of stored tissue samples. Our approach handles Phase II sampling of both cases and
controls.

The advantages of “efficient” methods are less clear when the model has been
misspecified. Epidemiologists and survey samplers generally agree that the goal of
stratified sampling designs is to estimate the same parameter as would have been esti-
mated had complete data been available for the entire cohort (Phase I sample). This
goal is achieved by the IPW methods, even those that involve calibrated weights to
improve efficiency, but not by those based on likelihoods. Of course, careful model
checking is important for any statistical analysis to detect departures from the assumed
model. Lumley (2009) has argued that even when the model is “nearly correct”, to the
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extent that the departure could not be reliably detected, the bias of the semiparamet-
ric efficient estimate may be sufficient to outweigh its advantages in terms of lower
variance. This suggests that, certainly for large samples, the IPW approach is pre-
ferred. For small or even moderately sized samples, provided that an efficient method
is available, the choice is less clear. Further work is needed on this issue.

A major limitation of our approach is the restriction to covariates that are fixed
in time. By contrast, the martingale theory for survival analyses of simple ran-
dom samples, and the approaches by Borgan et al. (2000) and others to the analy-
sis of case-cohort data, some of which which also involve IPW versions of esti-
mating equations, easily accomodate time-dependent covariates. Close inspection
of the equations we use to express our results reveals that they all “make sense”
when the covariates Z(t) or z0(t) are time dependent. One could envisage a gen-
eralization of our theory to the situation where the underlying data took the form
X = (T,Δ, Z(·)). Substantial work would be needed, however, to clearly delin-
eate the appropriate boundaries of application. In particular, results we borrowed
from van der Vaart (1998, Sect. 25.12.1) regarding membership of the estimating
equations in a Donsker class would need careful extension. The interpretation of
cumulative hazards of the form Λ[t |Z(t)] is unambiguous when the covariates are
“external” in the sense of Kalbfleisch and Prentice (2002, Sect. 6.3). Correct interpre-
tation of results based on “internal” time-dependent covariates requires much more
care.

An alternative to calibration of the weights is their estimation using a parametric
model, usually logistic regression, for P(R = 1|V ) (Robins et al. 1994). Incorporation
of the sampling strata indicators into the regression equation is essential for consis-
tent estimation; adding further Phase I variables, such as those used for calibration,
increases asymptotic efficiency. Calibration and estimation yield the same weights
when V is discrete, the calibration variables identify the separate strata defined by V
and the estimation model is saturated (Lumley et al. 2011). They often yield similar
estimates in other settings. A general theory for estimated weights could be developed
along the lines presented here, again using the Z-estimation theorem with nuisance
parameters (Breslow and Wellner 2008); see Breslow et al (2009a, Eq. 14) for some
preliminary steps in this direction. Whether calibration or estimation is adopted, the
question remains as to how best select the Phase I variables used for adjustment of the
weights. Forβ estimation, the expansion (5) in terms of the efficient influence function,
or its analog off the model where D−1G replaces �̃0, suggests that the optimal cali-
bration variables are Copt(V ) = E(�̃0|V ). This choice of calibration variables yields
the optimal estimator in the class of augmented inverse probability weighted (AIPW)
estimators considered by Robins et al. (1994); see Lumley et al. (2011). Of course,
since the distribution [X |V ] is unknown, some method of approximating Copt(V ) is
needed. Robins et al. (1994) suggest a regression approach and Kulich and Lin (2004)
a “plug in” approach based on a (not necessarily correct) imputation model. Further
study of this issue would be desirable.

In summary, using theZ-estimation theorem,wehave outlined a systematicmethod-
ology for inference in semiparametric models using data from two-phase stratified
samples. The approach incorporates calibration of the weights to improve efficiency
and applies both on and off the model.
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