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Using modem theory for semi-parametric models, we provide details for an argument of Robins et al. 
showing efficiency of the standard logistic regression estimator applied to data from case-control 
studies. Our elaboration of this argument, and of a related one by Bickel et al., includes a constructive 
new proof of the result. 
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1. Introduction 

Logistic regression is widely used for the analysis of data from case-control studies in 
epidemiology (Breslow 1996). Two principal reasons for this popularity are that the regression 
coefficients in the logistic model have a desired interpretation in terms of log-odds ratios; and 
that odds ratios in models for disease probabilities are estimable from case-control samples. 
Anderson (1972) made the remarkable discovery that maximum likelihood estimates of 
logistic regression parameters from case-control samples could be obtained by fitting the 
standard logistic regression model to the case-control data, ignoring the outcome-dependent 
nature of the sampling and treating case-control status as a 'random' outcome variable. His 
results were limited, however, by the requirement that the explanatory variables were discrete 
so that the joint distribution of outcome and explanatory variables could be specified using a 
finite number of parameters. Prentice and Pyke (1979) removed this restriction and 
demonstrated that, whatever the marginal distribution of the explanatory variables, the 
regression coefficients obtained by fitting the standard logistic model were nonparametric 
maximum likelihood estimates (NPMLEs). Further argument is required however, to 
conclude that the NPMLE achieves the efficiency bounds of modern semi-parametric theory. 

Cosslett (1981) showed that the variance of the NPMLEs of parameters in binary 
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response models achieved a semi-parametric lower bound under case-control sampling. He 
specifically excluded multiplicative intercept models of which the logistic is the paradigm, 
however, because of the non-identifiability of the intercept. Robins et al. (1994) provided a 
proof of semi-parametric efficiency for the standard logistic regression coefficients under 
case-control sampling in the course of a treatise on missing data problems. Their 
arguments are elaborated further below. Rabinowitz (1997) showed that efficient estimates in 
non-multiplicative intercept models result if one first enlarges the parameter space to 
include a multiplicative intercept term. 

Bickel et al. (1993, Section 4.4) considered case-control sampling as the first of four 
concrete examples that illustrated their general theory of biased sampling models. They 
derived a formula for the efficient scores that involved projecting the parametric logistic 
regression scores onto the sum of two linear function spaces, one of which is one-
dimensional. Although they noted that this projection can be evaluated explicitly, they stated 
that 'the formula is uninstructive'. One purpose of this paper is to show that, on the 
contrary, calculation of the efficient scores for the biased sampling model using the Bickel 
et al. approach confirms that the standard estimator achieves semi-parametric efficiency. We 
also argue that this calculation could have been avoided entirely had they adopted the more 
abstract approach of Robins et al. 

2. The standard logit model 

Let Y denote a binary outcome variable taking values y = 1 (for diseased) and y = 0 (for 
non-diseased) and let Z denote a p-vector of explanatory variables. As a binary response 
model we assume the logistic relationship 

where 8 = (a, /3T)T. Nothing is assumed regarding the marginal distribution H of Z except 
that it belongs to the collection 3of distributions that have densities h with respect to some 
measure m. This defines a semi-parametric random sampling model ($ = (G(e,H): 0 E [Wpf', 

H E .%). We suppose that the data (y,, z,), i = 1, . . . , n, constitute a random sample from 
the joint distribution Q(Y, Z) with density 

4 ( ~ ,z; 8, h)  = f(ylz; O)h(z). (1) 

The scores for the parametric part of the model, lo = (I,, li)T, are given by 

ie = z e { y  -E ( Y I Z ;  0)) ( 2 )  

where Ze = (1, z ~ ) ~ .  The 'tangent space' of scores for the nonparametric part of the model 
equals L!(H) = {a = a(Z)(E(a)= 0, var(a) <CQ). Since the parametric scores (2) have 
conditional mean zero given Z, they are orthogonal to L:(H) and thus are the efficient scores 
for 0 in the semi-parametric model where h is unknown. This also follows trivially from 
Proposition 2 of Bickel et al. (1993, Section 4.3). Using standard parametric theory (Bickel et 
al. 1993, Section 2.4), the efficient scores for the odds-ratio parameters /3 of primary interest are 
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where lee= ~(lel;) = E{Ze var(Y1 z ) ( z ~ ) ~ )  denotes the Fisher information. The information 
for p at Q = Qa,B,Hin the model $ is thus given by 

The usual logistic regression coefficients 6 = (ti,pT)T, obtained by applying standard 
computer programs to the data {(yi, zi), i = 1, . . . , n), solve the score equations 
corresponding to (2 ) ,  namely 

The influence function and asymptotic variance for ,8 alone are determined by (3) and (4). 
Compare with equation (20) of Bickel et al. (1993, p. 111). 

3. The biased sampling model 

Whereas the standard model assumes random sampling from (Y, Z), the model for the case- 
control or retrospective study involves sampling from Z given Y. Specifically, suppose that 
nl cases are drawn from the conditional distribution (ZI Y = 1) and no controls are drawn 
from (ZI Y = 0). Because separate samples of fixed size are drawn from two subpopulations, 
this set-up does not strictly correspond to the theory developed by Bickel et al. (1993), for 
which the observations are independent and identically distributed (i.i.d.). Thus we modify 
the usual definition of the case-control study slightly so that it involves a simple random 
sample of size n from a biased sampling model, as follows. First, select a case or a control 
with probabilities 21 and 20 = 1 - 11, respectively. Then sample Z from the appropriate 
conditional distribution given Y = 1 or Y = 0. A similar modified sampling design was 
proposed for choice-based sampling in econometrics by Manski and Lerman (1977) and for 
case-control studies in epidemiology by Weinberg and Sandler (1991), who call it the 
randomized recruitment design. It is also known as Bernoulli sampling. The essential 
difference between it and the usual two-sample retrospective design is that the numbers of 
cases and controls, nl and no = n - nl, are random variables that result from binomial 
sampling with probability 21. The asymptotic distributions of the resulting estimators are the 
same, whether the subsample sizes are regarded as fixed or random. McNeney (1998) 
demonstrates that efficiency properties under the i.i.d. set-up also extend to subsamples of 
fixed size. 

The semi-parametric model F just described is a special case of Example 1 of Bickel et 
al. (1993, Section 4.4): F = : 6 E [W*+', H E .%) where Pi,,o,H{Pi , ,e ,~ has density 
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and the marginal probabilities P(Y = y) are fixed at A, by the experimenter. The constant 
term a is not identifiable in 9,which confirms that a is not estimable from case-control 

1: data, and the efficient score is identically zero (Bickel et al. 1993, p. 118). As will be 
shown in the next section, this model is strictly contained in $ and can be extended to 
?* = G by allowing A1 to vary freely in (0,l). 

As shown in equation (15) of Bickel et al. (1993, Section 4.4), the efficient score for P is 

$(Y, Z) = ZY - E(ZY) -ACE(ZYIZ, Y). (7) 

Here ACE(.IZ, Y) denotes the orthogonal projection onto the direct sum of two Hilbert 
spaces, L:(H) as defined earlier and, since Y takes only two values, the one-dimensional 
linear space spanned by Y - E(Y). (All expectations in this section are taken with respect to 
the biased sampling distribution ,PE 9.)According to Appendix A.4 of Bickel et al. (1993), 
especially equations (32)-(37), the projection is given by 

ACE(blZ, Y) = E(b1Z) -E(b) + A(b)[Y -E(YIZ)], 

where 

Applying this formula with b(Y, Z) = ZY, we have 

Inserting these expressions into (7) yields 

1: = ZY - E(ZY) - ZE(Y1 Z) + E(ZY) -
E{Zvar(YI Z)) 

{ Y  - E(YIZ))
E{var(YI Z)) 

The information for /3 at P = in the model ? is thus given by 

Comparison of equations (3) and (8) shows that the efficient score for P in the random 
sampling model 6-has exactly the same form as the efficient score for P in the biased 
sampling model 9.Consequently, the information for P also has the same form (equations 
(9) and (4)). These are precisely the identities anticipated by Robins et al. (1994) from the 
fact that ,P*and G correspond to two different parametrizations of the same model. The 
only difference is that expectations in the random sampling model are taken with respect to 
Q as defined in equation (I), whereas expectations in the biased sampling model are taken 
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with respect to P as defined by equation (6). The scores for one model need not, and 
generally will not, have expectation zero under the other model. We next consider in some 
detail the arguments of Robins et al. 

4. Alternate parametrizations and the Robins et al. approach 

The semi-parametric model (1) can be characterized as the set 6 of all distributions of 
(Y, Z) that have finite second moments and for which the logarithm of the odds ratio is a 
linear function of Z (Prentice and Pyke 1979). More explicitly, using the well-known 
invariance property of the odds ratio (Cornfield 1951), (1) is equivalent to 

Writing the joint distribution as the marginal of Y times the conditional of Z given Y, it 
follows that the densities of distributions in Q may be re-expressed 

where c;' = The parameters (a, P, h) and (n, P, g) are related via S e ~ p ( ~ u ~ P ) ~ ( u ) d m ( u ) .  

f [y, u; 6(a, P)] h(u) dm(u) and h(z)ny= Pr(Y = y) = g(z) = 1 + ea+BTz ' 

As noted by Prentice and Pyke (1979), (1) and (11) are precisely equivalent, and are also 
equivalent to (lo), provided that the two sets of parameters are unrestricted. Re-expression of 
the densities in the form (1 1) provides the reparametrization ?* of G obtained by extending 
the biased sampling model, as mentioned earlier. 

Somewhat more generally (Bickel et al. 1993, Section 3.3), the odds-ratio parameter P 
may be viewed as the value of a mapping v :  $ + R*. Robins, et al. correctly point out 
that this alone is sufficient to conclude that the semi-parametric efficient scores, influence 
function and variance bound for the common interest parameters /3 are identical regardless 
of which equation is used to define the model. Indeed, as shown explicitly in Proposition 2 
of Bickel et al. (1993, Section 3.4), the efficient influence function jb equals v(Q),where i, 
is the pathwise derivative of v. Regardless of the parametrization, a regular estimator with 
this influence function is the semi-parametric efficient estimator of /3. Consequently, as 
argued by Robins et al., if one has demonstrated already that ,8 is semi-parametric efficient 
for model (I), it follows that p is semi-parametric efficient in model (1 l), and vice versa. 

Efficient influence functions and estimators are usually not determined by taking 
functional derivatives but rather by working with the scores that arise from the semi-
parametric model. The advantage of (1) for random sampling is that the covariates z are 
ancillary for 6 and hence, as noted earlier, efficient estimation of /3 need only consider the 
parametric part of the model specified by f(ylz; 6). The advantage of the alternate 
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parametrization only becomes evident for biased sampling. The biased sampling model (6 )  
is equivalent to 

which is identical to ( 1 1 )  except that nl = Pr(Y = 1 )  is now fixed at 21. In fact an 
equivalence class of random sampling models ( 1 )  with parameters ( y ,P,  h) generates the 
same biased sampling model (12). Roeder et al. (1996) calculated explicitly the relationship, 
depending on the associated marginal probabilities and $1, that must hold between two 
different members of this class with parameters (a ,P,  h )  and ( y ,P,  &), respectively. One 
member has $1 = 21,the sampling fraction specified by the biased sampling design. 

The advantage of the alternate parametrization for biased sampling is that the case-
control indicator y is ancillary for ( P ,  g).  Robins et al. (1994) conclude in their Lemma 6.1 
that the efficient scores, influence functions and variance bounds for /3 are therefore 
identical whether one treats 21 as a free parameter to be estimated from the data or instead 
fixes it at the known true value. (This result is implied more formally by Corollary 1 to 
Theorem 4.4.1 of Bickel et al. (1993).) Inferences made about /3 from the biased sampling 
model 9 (12) therefore are identical to those from the alternate parametrization ,P*of the 
random sampling model (1 1 )  applied to the case-control data. As already noted, these are 
in turn identical to the inferences made by applying the original model ( 1 )  to these same 
data. This is the remarkable result first established by Anderson (1972) for discrete Z and 
later by Prentice and Pyke (1979) for arbitrary Z through their derivation of p as the 
NPMLE in the biased sampling model. 

Although we now know already that this must equal (3),  the alternate parametrization 
also leads to a simple proof of Bickel et a1.s formula (our equation (7))  for the efficient 
score. One readily calculates from (12) that the /3 score is lg = Y [ Z- E(ZI Y ) ]  and that the 
nuisance tangent space is F2= { a ( Z )- E[a(Z) IY] :  ~ ( Z ) E L ; ( P ) ) .  Following Bickel et al. 
(1993, Section 4.4), and using the fact that lg is orthogonal to the space spanned by 
Y - E(Y) ,  the projection of lg onto .22is simply A C E ( I B I Z ,  Y) and the formula follows. 

The Appendix contains explicit calculations which confirm that application of the 
estimating equations (2 )  to the case-control sample leads to a consistent, asymptotically 
linear estimate for p whose variance achieves the semi-parametric lower bound. According 
to what has been argued above, a 'corollary' is the well-known fact (see, for example, 
Chamberlain 1987) that the same estimator is consistent, asymptotically linear and efficient 
under simple random sampling. 

Appendix: Consistency, asymptotic linearity and efficiency 

Throughout this Appendix we make use of the reparametrization Pa,B,H= Qy,gBthat equates 
the biased sampling model with a specific member of the equivalence class of random 
sampling models. Suppose the data { ( y , ,z,), i = 1, . . . , n )  are a random sample 
from Po = E9,corresponding to Qo = Qyo,Bo ,~o  P,, be the empirical Pao,go,~o E $. Let 
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distribution of {(yi, zi): i = 1, . . . , n), and let ~ ( 6 ,  P,) be the term of the log-likelihood 
corresponding to 8: 

Define 6 to be the maximizer of ~ ( 6 ,  P,) and note that ~ ( 8 ,  Pn) is strictly concave in 8 if 
zl, . . . , z, are not all in a linear subspace of [WP. It follows from Theorem 7.4.1 of Bickel et 
al. (1993, p. 325), that the estimator 6 satisfies the score equations ( 5 ) ,  and is consistent for 

= (yo, Po), provided that Z is not concentrated on any hyperplane in [WP under the 
marginal distribution H. Hypothesis (2) of the theorem follows from concavity of the 
functions in 

.F= {log f(ylz; 6) = y(y + zT/3) - log(1 + eyfZTD): 6 E K c [Wpfl) 

for K compact via Theorem 11.1 of Andersen and Gill (1982). Alternatively, it follows from a 
standard Glivenko-Cantelli theorem for the class .F. 

Next we examine the asymptotic linearity of ,8 obtained by solving the system of 
equations (5) with 6 replaced by 6 = (y, /3). These equations can be rewritten as 

and 

where ?(/3) solves (14). Dividing equation (14) by n and taking the limit shows that, with 
probability one, L1= Sf (1 lz; limn y, /3)po(z)dm(z) for any limit point of y and thus that 
?(PI - y(P) where y(P) satisfies 21 = dm@). Set P(Y lz; P) - f (Y lz; S f(1 lz; y(P>, P )~O(Z> 
y(/3), p). Linearizing the same equation as a hnction of y at y(/3), 

Similarly linearizing equation (13), we find 
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where 

y ( y ,  z ;  p) = (Z  - C){Y - ~ ( 1 1 2 ;  P)) 

and 

with var(Y(Z; P) = p(l (Z; P)j(O(Z; P). This shows that p is an asymptotic M-estimator 
(Bickel et al. 1993, Sections 7.2, 7.3) with influence function -{EY(Y, Z; , 8 0 ) ) - ' ~ ( ~ ,  
Z; Po), where 

Note first that Y(Y, Z; Po) equals the efficient score I ~ ( Y ,  Z) for the biased sampling 
model as derived in equation (8). Next, since E{(Z - C)var(YIZ)) = 0, we have the 
expected identity 

-E{Y(Y, z)) = var Y(Y, Z) = E{(Z - C) var(Y1 Z)(Z - c ) ~ )  

ThusJhe influence function for equals the efficient influence function { ~ ( l ~ l ~ ~ ) ) - ~ l i  and 
f i ( P  -P) has an asymptotic normal distribution whose variance attains the semi-parametric 
lower bound: 
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