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We introduce new goodness-of-fit tests and corresponding confidence
bands for distribution functions. They are inspired by multiscale methods of
testing and based on refined laws of the iterated logarithm for the normalized
uniform empirical process Un(t)/

√
t (1 − t) and its natural limiting process,

the normalized Brownian bridge process U(t)/
√

t (1 − t). The new tests and
confidence bands refine the procedures of Berk and Jones (1979) and Owen
(1995). Roughly speaking, the high power and accuracy of the latter meth-
ods in the tail regions of distributions are essentially preserved while gaining
considerably in the central region. The goodness-of-fit tests perform well in
signal detection problems involving sparsity, as in Ingster (1997), Donoho
and Jin (2004) and Jager and Wellner (2007), but also under contiguous alter-
natives. Our analysis of the confidence bands sheds new light on the influence
of the underlying φ-divergences.

1. Introduction and motivations.

1.1. Some well-known facts. Let Fn be the empirical distribution function of independent
random variables X1,X2, . . . ,Xn with unknown distribution function F on the real line. The
main topic of the present paper is to construct a confidence band (An,α,Bn,α) for F with given
confidence level 1 −α ∈ (0,1). That is, An,α = An,α(·, (Xi)

n
i=1) and Bn,α = Bn,α(·, (Xi)

n
i=1)

are data-driven functions on the real line such that for any true distribution function F ,

(1.1) PF (An,α ≤ F ≤ Bn,α on R) ≥ 1 − α.

Let us recall some well-known facts about Fn (cf. [30, 31]). The stochastic process
(Fn(x))x∈R has the same distribution as (Gn(F (x)))x∈R, where Gn is the empirical distri-
bution of independent random variables ξ1, ξ2, . . . , ξn with uniform distribution on [0,1].
This enables the well-known Kolmogorov–Smirnov confidence bands: let

Un(t) := √
n
(
Gn(t) − t

)
,

and let κKS
n,α be the (1−α)-quantile of ‖Un‖∞ := supt∈[0,1] |Un(t)|. Then the confidence band

(AKS
n,α,BKS

n,α) with AKS
n,α := max(Fn − n−1/2κKS

n,α,0) and BKS
n,α := min(Fn + n−1/2κKS

n,α,1) sat-
isfies (1.1) with equality if F is continuous. Since Un converges in distribution in �∞([0,1])
to standard Brownian bridge U, κKS

n,α converges to the (1 − α)-quantile κKS
α of ‖U‖∞. In

particular, the width BKS
n,α − AKS

n,α of the Kolmogorov–Smirnov band is bounded uniformly
by 2n−1/2κKS

n,α = O(n−1/2). (Throughout this paper, asymptotic statements refer to n → ∞,
unless stated otherwise.) On the other hand, it is well known that Kolmogorov–Smirnov con-
fidence bands give little or no information in the tails of the distribution F ; see, for example,
[22], [19] and [20], Chapter 14, for a useful summary.

Received November 2021; revised October 2022.
MSC2020 subject classifications. Primary 60E10, 60F10; secondary 62D99.
Key words and phrases. Confidence band, goodness-of-fit, law of the iterated logarithm, limit distribution,

multiscale test statistics.

260

https://imstat.org/journals-and-publications/annals-of-statistics/
https://doi.org/10.1214/22-AOS2249
http://www.imstat.org
mailto:duembgen@stat.unibe.ch
mailto:jaw@stat.washington.edu
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


NEW CONFIDENCE BANDS 261

1.2. Confidence bands by inversion of tests. In general, confidence bands can be ob-
tained by inverting goodness-of-fit tests. For a given continuous distribution function F0, let
Tn(F0) = Tn(F0, (Xi)

n
i=1) be some test statistic for the null hypothesis that F ≡ F0. Suppose

that for any test level α ∈ (0,1), the (1 − α)-quantile κn,α of Tn(F0) under the null hypoth-
esis does not depend on F0. Then a (1 − α)-confidence band (An,α,Bn,α) for a continuous
distribution function F is given by

An,α(x) := inf
{
F(x) : Tn(F ) ≤ κn,α

}
, Bn,α(x) := sup

{
F(x) : Tn(F ) ≤ κn,α

}
.

Depending on the specific choice of Tn, these functions An,α and Bn,α can be computed
explicitly, and the constraint (1.1) is even satisfied for arbitrary, possibly noncontinuous dis-
tribution functions F ; see Section S.6 for further details.

Since (AKS
n,α,BKS

n,α) corresponds to T KS
n (F0) := √

n‖Fn −F0‖∞, one possibility to enhance
precision in the tails is to consider weighted supremum norms such as

(1.2) Tn(F0) := sup
x : 0<F0(x)<1

√
n|Fn − F0|
w(F0)

(x)

or

(1.3) Tn(F0) := sup
x∈[Xn:1,Xn:n)

√
n|Fn − F0|
w(Fn)

(x),

where Xn:1 ≤ Xn:2 ≤ · · · ≤ Xn:n are the order statistics of X1,X2, . . . ,Xn. Here, w : (0,1) →
(0,∞) is some continuous weight function such that w(1 − t) = w(t) for 0 < t < 1 and
w(t) → 0 as t → 0. Specific proposals include

w(t) := √
t (1 − t)h(t),

where h ≡ 1; see [17] and [11], or h(t) → ∞ sufficiently fast as t → 0, see [24] or [5].
Specifically, Stepanova and Pavlenko [32] propose to construct confidence bands with the
test statistic (1.3) and h(t) := log log(1/[t (1 − t)]). The latter choice is motivated by the law
of the iterated logarithm (LIL) for the Brownian bridge process U, stating that

(1.4) lim sup
t↘0

U(t)√
2t log log(1/t)

= lim sup
t↗1

U(t)√
2(1 − t) log log(1/(1 − t))

= 1

almost surely.

1.3. The tests of Berk and Jones and Owen’s bands. Another goodness-of-fit test, pro-
posed by Berk and Jones [3], uses the test statistic

(1.5) T BJ
n (F0) := n sup

x : 0<F0(x)<1
K

(
Fn(x),F0(x)

)
,

where

K(u, t) := u log
(

u

t

)
+ (1 − u) log

(
1 − u

1 − t

)

for u ∈ [0,1] and t ∈ (0,1). Note that K(u, t) is the Kullback–Leibler divergence between
the Bernoulli(u) and Bernoulli(t) distributions. Owen [25] proposed and analyzed confidence
bands for F based on this test statistic. As noted by [18], the test statistic T BJ

n (F0) can be
embedded into a general family of test statistics T BJ

n,s(F0), s ∈ R. Let

(1.6) T BJ
n,s(F0) :=

⎧⎪⎪⎨
⎪⎪⎩

sup
x : 0<F0(x)<1

nKs

(
Fn(x),F0(x)

)
if s > 0,

sup
x∈[Xn:1,Xn:n)

nKs

(
Fn(x),F0(x)

)
if s ≤ 0,



262 L. DÜMBGEN AND J. A. WELLNER

with the following divergence function Ks : for t, u ∈ (0,1):

(1.7) Ks(u, t) =

⎧⎪⎪⎨
⎪⎪⎩

(
t (u/t)s + (1 − t)

[
(1 − u)/(1 − t)

]s − 1
)
/
[
s(s − 1)

]
s �= 0,1,

u log(u/t) + (1 − u) log
[
(1 − u)/(1 − t)

]
s = 1,

t log(t/u) + (1 − t) log
[
(1 − t)/(1 − u)

]
s = 0.

(An alternative representation of Ks is given in (3.5).) Moreover, for fixed t ∈ (0,1) and
u ∈ {0,1}, the limit K(u, t) := limu′→u Ks(u

′, t) equals ∞ if s ≤ 0 and exists in (0,∞)

otherwise. A detailed discussion of these divergences is given in Section S.3 of the online
supplement A. At present, it suffices to note that for any fixed t ∈ (0,1), Ks(u, t) is strictly
convex in u with unique minimum 0 at u = t and second derivative [t (1 − t)]−1 there. Inter-
esting special cases are K = K1, K1/2(u, t) = 4(1 − √

ut − √
(1 − u)(1 − t)) and

K2(u, t) = (u − t)2

2t (1 − t)
, K−1(u, t) = (u − t)2

2u(1 − u)
.

Consequently, if w(t) := √
t (1 − t), then the test statistic T BJ

n,2(F0) coincides with 0.5 times
the square of Tn(F0) in (1.2), and T BJ

n,−1(F0) equals 0.5 times the square of (1.3). As shown by
[18], for any s ∈ [−1,2], the null distribution of T BJ

n,s(F0) has the same asymptotic behavior,
and the corresponding (1 − α)-quantiles κBJ

n,s,α satisfy

(1.8) κBJ
n,s,α = log logn + 2−1 log log logn + O(1).

From this, one can deduce that the resulting confidence band (ABJO
n,s,α,BBJO

n,s,α) for F satisfies

BBJO
n,s,α(x) − ABJO

n,s,α(x) ≤ 2
√

2γnFn(1 − Fn)(x) + 4γn,

where γn := n−1κBJ
n,s,α = (1 + o(1))n−1 log logn; see Lemma S.12 in Section S.3. Hence, the

band (ABJO
n,s,α,BBJO

n,s,α) is substantially more accurate than (AKS
nα ,BKS

n,α) in the tail regions. But
in the central region, that is, when Fn(x) is bounded away from 0 and 1, they are of width
O(n−1/2(log logn)1/2) rather than O(n−1/2).

1.4. Goals revisited. The goal of Berk and Jones [3] was to find goodness-of-fit tests
with optimal Bahadur efficiencies. They interpret their test statistic T BJ

n (F0) also as a union-
intersection test statistic, where nK(Fn(x),F0(x)) is the negative likelihood ratio statistic
for the null hypothesis that F(x) = F0(x), based on the binomial distribution of nFn(x). The
union-intersection and related paradigms for the present goodness-of-fit testing problem have
been treated in more generality by [14].

In view of the previous considerations, the confidence band (ASP
n,α,BSP

n,α) of [32], based on
the test statistic

(1.9) T SP
n (F0) := sup

x∈[Xn:1,Xn:n)

√
n|Fn − F0|√

Fn(1 − Fn)h(Fn)
(x)

with h(t) := log log(1/[t (1 − t)]), provides a trade-off between tail behavior and behavior in
the center of the distribution. Previous proposals for the same purpose include [21] and [27].
But we shall demonstrate later that with purely multiplicative correction factors as in (1.9),
the tail regions are asymptotically underemphasized in comparison with the new methods
presented here.
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1.5. Our new test statistics and confidence bands. To obtain a better compromise be-
tween the Kolmogorov–Smirnov and Berk–Jones tests, we propose a refined adjustment
of Fn(x) involving a pointwise standardization together with a pointwise additive correc-
tion, where the latter takes into account whether x is in the center or in the tails of F0
or Fn. Only after standardization and additive correction, we take a supremum over x.
This approach of pointwise standardization plus additive correction before taking a supre-
mum has been developed in the context of multiscale testing and has proved quite success-
ful there; see, for example, [7], [8], [29] and [28]. In the present setting, pointwise stan-
dardization means that we consider nKs(Fn(x),F0(x)), which behaves asymptotically like
U(F0(x))2/[2F0(x)(1 − F0(x))] under the null hypothesis, that is, a squared standard Gaus-
sian random variable times 0.5. To identify an appropriate additive correction term, we utilize
a refinement of the LIL (1.4), based on Kolmogorov’s upper class test (cf. [12], or [16], Chap-
ter 1.8). For t ∈ (0,1), define

C(t) := log log
e

4t (1 − t)
= log

(
1 − log

(
1 − (2t − 1)2)) ≥ 0,

D(t) := log
(
1 + C(t)2) ∈ [

0,min
{
C(t),C(t)2}]

.

Then, for any fixed ν > 3/4,

(1.10) Tν := sup
t∈(0,1)

(
U(t)2

2t (1 − t)
− Cν(t)

)
< ∞

almost surely, where Cν := C + νD. Note that C(t) = C(1 − t), D(t) = D(1 − t), and as
t ↘ 0,

C(t) = log log(1/t) + O
((

log(1/t)
)−1)

,

D(t) = 2 log log log(1/t) + O
((

log log(1/t)
)−1)

.

This indicates why (1.10) follows from Kolmogorov’s test (see Section S.1), and shows the
connection between (1.10) and (1.4). On (0,1/2], both functions C and D are decreasing
with C(1/2) = D(1/2) = 0 and

lim
t→1/2

C(t)

(2t − 1)2 = lim
t→1/2

D(t)

(2t − 1)4 = 1.

Consequently, we propose the following test statistics:

(1.11) Tn,s,ν(F0) :=

⎧⎪⎪⎨
⎪⎪⎩

sup
x : 0<F0(x)<1

[
nKs

(
Fn(x),F0(x)

) − Cν

(
Fn(x),F0(x)

)]
if s > 0,

sup
x∈[Xn:1,Xn:n)

[
nKs

(
Fn(x),F0(x)

) − Cν

(
Fn(x),F0(x)

)]
if s ≤ 0,

where for t, u ∈ [0,1],

Cν(u, t) := min
min(u,t)≤v≤max(u,t)

Cν(v) =

⎧⎪⎪⎨
⎪⎪⎩

Cν

(
min(u, t)

)
if min(u, t) > 1/2,

Cν

(
max(u, t)

)
if max(u, t) < 1/2,

0 else,

with C(0),C(1),D(0),D(1) := ∞. As seen later, using this bivariate version Cν(Fn(x),

F0(x)) instead of Cν(F0(x)) or Cν(Fn(x)) has computational advantages and increases
power. The additive correction term Cν(Fn(x),F0(x)) is large only if x is far in the tails
of Fn and of F0.

The remainder of this paper is organized as follows:
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• In Section 2, we show that under the null hypothesis, the test statistics Tn,s,ν(F0) in (1.11)
converge in distribution to Tν in (1.10) for any fixed value of s ∈ R.

• Section 3 discusses statistical implications of this finding. As explained in Section 3.1,
goodness-of-fit tests based on Tn,s,ν(F0) have desirable asymptotic power. In particular,
they are shown to attain a detection boundary of Ingster [15] for Gaussian mixture models.
Moreover, even under contiguous alternatives they have nontrivial asymptotic power as
opposed to goodness-of-fit tests based on T BJ

n,s in (1.6).
• In Section 3.2, we analyze the confidence bands (An,s,ν,α,Bn,s,ν,α) resulting from inver-

sion of the tests Tn,s,ν(·). It will be shown that these bands have similar accuracy as those of
Owen [25] and the bands (ABJO

n,s,α,BBJO
n,s,α) based on T BJ

n,s(·) in the tail regions while achiev-
ing the usual root-n consistency everywhere. In addition, we compare our bands with the
confidence bands of [32], confirming our claim that a purely multiplicative adjustment of
Fn − F0 is necessarily suboptimal in the tail regions.

• Our results for the confidence bands elucidate the impact of the parameter s on these bands
for large sample sizes. These considerations are based on new inequalities and expansions
for the divergences Ks , which are of independent interest.

All proofs and auxiliary results are deferred to Sections 4, 5 and an online supplement A.
References to the latter start with ‘S.’ or ‘(S.’. Essential ingredients for the proofs in Sec-
tion 4 are tools and techniques of Csörgő et al. [5]. A first version of this paper used a differ-
ent, more self-contained approach, which is probably of independent interest and outlined in
Section S.2. This also includes an alternative proof of (1.10).

2. Limit distributions under the null hypothesis. Recall the uniform empirical process
Gn mentioned in the Introduction. Under the null hypothesis that F ≡ F0, the test statistic
Tn,s,ν(F0) has the same distribution as

(2.1) Tn,s,ν :=

⎧⎪⎪⎨
⎪⎪⎩

sup
t∈(0,1)

[
nKs

(
Gn(t), t

) − Cν

(
Gn(t), t

)]
if s > 0,

sup
t∈[ξn:1,ξn:n)

[
nKs

(
Gn(t), t

) − Cν

(
Gn(t), t

)]
if s ≤ 0,

where ξn:1 < · · · < ξn:n are the order statistics of the uniform sample ξ1, . . . , ξn. In particu-
lar, the (1 − α)-quantile of Tn,s,ν(F0) under the null hypothesis coincides with the (1 − α)-
quantile κn,s,ν,α of Tn,s,ν . Here is our main result for Tn,s,ν and κn,s,ν,α .

THEOREM 2.1. For all ν > 3/4 and s ∈ R,

Tn,s,ν →d Tν.

Moreover, κn,s,ν,α → κν,α > 0 for any fixed test level α ∈ (0,1), where κν,α is the (1 − α)-
quantile of Tν .

A key step along the way to proving Theorem 2.1 will be to consider the case s = 2 and
prove the following theorem for the uniform empirical process Un = √

n(Gn − I ), where I

denotes the distribution function of the uniform distribution on [0,1].

THEOREM 2.2. For all ν > 3/4,

T̃n,ν := sup
t∈(0,1)

(
Un(t)

2

2t (1 − t)
− Cν(t)

)
→d Tν.
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REMARK 2.3 (The impact of s and the definition of Tn,s,ν). Note that the parameter s

could be an arbitrary real number. However, numerical experiments indicate that the conver-
gence to the asymptotic distribution is very slow if, say, s < −0.5 or s > 1.5. More precisely,
Monte Carlo experiments show that for parameters s /∈ [−0.5,1.5] the test statistics Tn,s,ν

are mainly influenced by just a few very small or very large order statistics. Moreover, if
s ∈ (0,0.5], one should redefine Tn,s,ν as a supremum over [ξn:1, ξn:n) rather than (0,1). As
shown in our proof of Theorem 2.1, this modification does not alter the asymptotic distribu-
tion, but for realistic sample sizes n, taking the supremum over the full set (0,1) for small
parameters s > 0 leads to distributions, which are mainly influenced by ξn:1.

Tables S.1 and S.2 provide exact critical values κn,s,ν,α for various sample sizes n, s ∈
{j/10 : −10 ≤ j ≤ 20}, ν = 1 and α = 0.5,0.1,0.05,0.01.

Similar discrepancies between asymptotic theory and finite sample behavior can be ob-
served for the Berk–Jones quantiles κBJ

n,s,α if s /∈ [−0.5,1.5]; see Tables S.3 and S.4.

3. Statistical implications.

3.1. Goodness-of-fit tests. As explained in the Introduction, we can reject the null hy-
pothesis that F is a given continuous distribution function F0 at level α if the test statistic
Tn,s,ν(F0), defined in (1.11), exceeds the (1 − α)-quantile κn,s,ν,α of Tn,s,ν . The test statis-
tics Tn,s,ν and Tn,s,ν(F0) can be represented as the maximum of at most 2n terms: with
un,i := i/n, the statistic Tn,s,ν equals

max
1≤i≤n

max
{
nKs(un,i−1, ξn:i ) − Cν(un,i−1, ξn:i), nKs(un,i, ξn:i ) − Cν(un,i, ξn:i )

}
if s > 0, and

max
1≤i<n

max
{
nKs(un,i, ξn:i) − Cν(un,i, ξn:i ), nKs(un,i, ξn:i+1) − Cν(un,i, ξn:i+1)

}
if s ≤ 0. The statistic Tn,s,ν(F0) can be represented analogously with F0(Xn:i ) in place of ξn:i .
These formulae follow from the fact that for fixed u ∈ (0,1), the function t �→ nKs(u, t) −
Cν(u, t) is continuous on (0,1), increasing on [u,1) and decreasing on (0, u]. For Ks(u, t) =
K1−s(t, u) is convex in t with minimum at t = u (see (S.12) in Section S.3), and Cν(u, t) is
increasing in t ∈ (0, u] and decreasing in t ∈ [u,1). If s > 0, these monotonicities are also
true for u ∈ {0,1}, precisely,

Cν(0, t) = Cν

(
min(t,1/2)

)
and Ks(0, t) =

{− log(1 − t) if s = 1,(
(1 − t)1−s − 1

)
/
(
s(s − 1)

)
if s �= 1,

while Cν(1, t) = Cν(0,1 − t) and Ks(1, t) = Ks(0,1 − t).

3.1.1. Noncontiguous alternatives. Now suppose that the true distribution function of the
observations Xi is a continuous distribution function Fn such that {x ∈ R : 0 < Fn(x) < 1} ⊂
{x ∈ R : 0 < F0(x) < 1}. A first question is: under what conditions on the sequence (Fn)n
does our goodness-of-fit test have asymptotic power one for any fixed test level α ∈ (0,1).
Since κn,s,ν,α → κν,α < ∞, this goal is equivalent to

(3.1) PFn

(
Tn,s,ν(F0) > κ

) → 1 for any fixed κ > 0.

To verify this property, the following function 	n : R→ [0,∞) plays a key role:

	n :=
√

n|Fn − F0|
min{Hn(Fn),Hn(F0)} with Hn(t) :=

√(
1 + C(t)

)
t (1 − t) + 1 + C(t)√

n

for t ∈ [0,1] with the conventions C(t) := ∞ and C(t)t (1 − t) := 0 for t ∈ {0,1}.
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THEOREM 3.1. Suppose that the sequence (Fn)n satisfies the condition

(3.2) sup
x∈R

	n(x) → ∞.

Then (3.1) holds true for any s ∈ [−1,2].
It follows immediately from this theorem that (3.1) is satisfied whenever Fn ≡ F∗ for all

sample sizes n, where F∗ �= F0.
As a litmus test for our procedures and Theorem 3.1, we consider a testing problem studied

in detail by [15]. The null hypothesis is given by F0 = 
, the standard Gaussian distribution
function, whereas

Fn(x) := (1 − εn)
(x) + εn
(x − μn),

for certain numbers εn ∈ (0,1) and μn > 0. By means of Theorem 3.1, one can derive the
following result.

COROLLARY 3.2.

(a) Suppose that εn = n−β+o(1) for some fixed β ∈ (1/2,1). Furthermore, let μn =√
2r logn for some r ∈ (0,1). Then (3.1) is satisfied for any s ∈ [−1,2] if

r >

⎧⎨
⎩

β − 1/2 if β ∈ (
1/2,3/4],

(1 −
√

1 − β)2 if β ∈ [3/4,1
)
.

(b) Suppose that εn = n−1/2+o(1) such that πn := √
nεn → 0. Then (3.1) is satisfied for

any s ∈ [−1,2] if μn = √
2λ log(1/πn) for some λ > 1.

As explained by [15], any goodness-of-fit test at fixed level α ∈ (0,1) has trivial asymptotic
power α whenever εn = n−β for some β ∈ (1/2,1) and μn = √

2r logn with

r <

⎧⎨
⎩

β − 1/2 if β ∈ (
1/2,3/4],

(1 −
√

1 − β)2 if β ∈ [3/4,1
)
.

Thus, part (a) of the previous corollary shows that our new family of tests achieves this
detection boundary, as do the goodness-of-fit tests of [6], [18] and [14].

A connection between parts (a) and (b) of Corollary 3.2 can be seen as follows: let εn =
n−β for some fixed β ∈ (1/2,3/4], and μn = √

2r log(n) for some r > β − 1/2. Then r =
λ(β − 1/2) for some λ > 1, and with πn = √

nεn = n1/2−β , we may write
√

2r log(n) =√
2λ log(1/πn).

3.1.2. Contiguous alternatives. Suppose that the distribution functions F0 and Fn have
densities f0 and fn, respectively, with respect to some continuous measure � on R such that,
for some function a,

(3.3)
√

n
(
f 1/2

n − f
1/2
0

) → 2−1af
1/2
0 in L2(�).

Then it follows easily that a ∈ L2(F0),
∫

adF0 = 0 and

√
n(Fn − F0)(t) → A(t) :=

∫ t

−∞
adF0 uniformly in t ∈ R.

Furthermore, since
∫ t
−∞ adF0 = ∫

R
(1[x≤t] − F0(t))a(x) dF0(x), the Cauchy–Schwarz in-

equality yields that

(3.4)
∣∣A(t)

∣∣ ≤
√

F0(t)
(
1 − F0(t)

)‖a‖L2(F0).
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LEMMA 3.3 (Power of “tail-dominated” tests under contiguous alternatives). Let (ϕn)n
be a sequence of tests with the following two properties:

(i) For a fixed level α ∈ (0,1),

EF0ϕn(X1, . . . ,Xn) → α.

(ii) For any fixed 0 < ρ < 1/2 and xρ := F−1
0 (ρ), yρ := F−1

0 (1 − ρ), there exists a test
ϕn,ρ depending only on (Fn(x))x /∈[xρ,yρ ] such that

PF0(ϕn �= ϕn,ρ) → 0.

Then under assumption (3.3),

lim sup
n→∞

EFnϕn(X1, . . . ,Xn) ≤ α.

Note that the Berk–Jones tests with T BJ
n,s(F0) satisfy the assumptions of Lemma 3.3, if

tuned to have asymptotic level α. For all of them involve a test statistic of the type,

Tn(F0) = sup
x∈R

�n

(
Fn(x)

)
,

with a function �n :R → [0,∞] such that under the null hypothesis,

sup
x∈R

�n

(
Fn(x)

) →p ∞,

but for any 0 < ρ < 1/2,

sup
x∈[xρ,yρ ]

�n

(
Fn(x)

) = Op(1).

Hence, Tn(F0) equals

T (ρ)
n (F0) := sup

x /∈[xρ,yρ ]
�n

(
Fn(x)

)

with asymptotic probability one. Thus, we may replace the test statistic Tn(F0) with T
(ρ)
n (F0)

while keeping the critical value.
By way of contrast, the goodness-of-fit test based on Tn,s,ν(F0) has nontrivial asymptotic

power in the present setting.

THEOREM 3.4 (Power of new tests under contiguous alternatives). In the setting (3.3),
the test statistic Tn,s,ν(F0) converges in distribution to

Tν(A) := sup
t∈(0,1)

(
(U(t) + A(F−1

0 (t)))2

2t (1 − t)
− Cν(t)

)
.

In particular,

PFn

[
Tn,s,ν(F0) ≥ κn,s,ν,α

] → P
[
Tν(A) ≥ κν,α

] ≥ α.

Concerning the impact of A,

P
[
Tν(A) ≥ κν,α

] → 1 as sup
t∈(0,1)

( |A(F−1
0 (t))|√

2t (1 − t)
− √

C(t)

)
→ ∞.
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3.2. Confidence bands. The confidence bands of [25], defined in terms of K = K1, may
be generalized to arbitrary fixed s ∈ [−1,2], but we restrict our attention to s ∈ (0,2],
because for s ≤ 0 and a large range of sample sizes n, the resulting bands would fo-
cus mainly on small regions in the tails and be rather wide elsewhere. With confidence
1 − α we may claim that supx : 0<F(x)<1 nKs(Fn(x),F (x)) does not exceed the (1 − α)-
quantile κBJ

n,s,α of supt∈(0,1) nKs(Gn(t), t). As explained in Section S.6, inverting the inequal-
ity nKs(Fn(x),F (x)) ≤ κBJ

n,s,α for fixed x with respect to F(x) reveals that for 0 ≤ i ≤ n and
Xn:i ≤ x < Xn:i+1,

F(x) ∈ [
ABJO

n,s,α(x),BBJO
n,s,α(x)

] = [
aBJO
n,s,α,i , b

BJO
n,s,α,i

]
,

where aBJO
n,s,α,i ≤ un,i ≤ bBJO

n,s,α,i are given by aBJO
n,s,α,0 := 0, bBJO

n,s,α,n := 1 and for 0 ≤ i < n,

bBJO
n,s,α,i := max

{
t ∈ (un,i,1] : nKs(un,i, t) ≤ κBJ

n,s,α

}
,

aBJO
n,s,α,n−i := 1 − bBJO

n,s,α,i .

Thus, computing the confidence band (ABJO
n,s,α,BBJO

n,s,α) boils down to determining the 2(n+1)

numbers aBJO
n,s,α,i and bBJO

n,s,α,i , 0 ≤ i ≤ n.
Our new method is analogous: with confidence 1−α, for 0 ≤ i ≤ n and Xn:i ≤ x < Xn:i+1,

the value F(x) is contained in[
An,s,ν,α(x),Bn,s,ν,α(x)

] = [an,s,ν,α,i , bn,s,ν,α,i],
where an,s,ν,α,0 := 0, bn,s,ν,α,n := 1 and for 0 ≤ i < n,

bn,s,ν,α,i := max
{
t ∈ (un,i,1] : nK(un,i, t) − Cν(un,i, t) ≤ κn,s,ν,α

}
,

an,s,ν,α,n−i := 1 − bn,s,ν,α,i .

To understand the asymptotic performance of these confidence bands properly, we need
auxiliary functions as, bs : [0,∞) → [0,∞). Note first that for any s ∈ [−1,2], Ks(u, t) in
(1.7) may be represented as

(3.5) Ks(u, t) = tφs(u/t) + (1 − t)φs

[
(1 − u)/(1 − t)

]
,

where

(3.6) φs(x) =

⎧⎪⎪⎨
⎪⎪⎩

(
xs − sx + s − 1

)
/
[
s(s − 1)

]
s �= 0,1,

x logx − x + 1 s = 1,

x − 1 − logx s = 0,

for x ∈ (0,∞), and φs(0) := limx↘0 φs(x) equals 1/s+. If u and t are close to 0, one may
approximate Ks(u, t) by

Hs(u, t) := tφs(u/t).

The properties of Hs : [0,∞) × (0,∞) → [0,∞] are treated in Lemma S.13. In particular, it
is shown that

as(x) :=
{

0 if x = 0,

inf
{
y ∈ (0, x) : Hs(x, y) ≤ 1

}
else,

bs(x) :=
{
s+ if x = 0,

max
{
y > x : Hs(x, y) ≤ 1

}
else,

define continuous functions as, bs : [0,∞) → [0,∞), where as is convex with as(0) = 0 =
a′
s(0), as(x) = 0 if and only if x ≤ (1−s)+, and bs is concave. Moreover, as(x) = x −√

2x +
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FIG. 1. The auxiliary functions as (below diagonal), bs (above diagonal) for s ∈ {0,0.5,1,1.5,2}.

O(1) and bs(x) = x + √
2x + O(1) as x → ∞. Finally, for fixed x > 0, as(x) and bs(x) are

nondecreasing in s ∈ [−1,2] with as(x) < x < bs(x). Figure 1 depicts these functions as , bs

on the interval [0,3] for s ∈ {0,0.5,1,1.5,2}.
Our first result shows that the confidence bands (ABJO

n,s,α,BBJO
n,s,α) and (An,s,ν,α,Bn,s,ν,α) are

asymptotically equivalent in the tail regions, that is, for Fn(x) close to zero or close to one.
Moreover, the test level α is asymptotically irrelevant there, but the parameter s does play a
role when min{Fn(x),1 − Fn(x)} ≤ O(n−1 log logn).

THEOREM 3.5. Let γn := n−1 log logn. For any fixed s ∈ (0,2], ν > 3/4 and δ ∈ (0,1),

un,i − aBJO
n,s,α,i

un,i − an,s,ν,α,i

bBJO
n,s,α,n−i − un,n−i

bn,s,ν,α,n−i − un,n−i

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= γn

(
i/ log logn − as(i/ log logn)

)(
1 + o(1)

)

and

bBJO
n,s,α,i − un,i

bn,s,ν,α,i − un,i

un,n−i − aBJO
n,s,α,n−i

un,n−i − an,s,ν,α,n−i

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= γn

(
bs(i/ log logn) − i/ log logn

)(
1 + o(1)

)
,

uniformly in i ∈ {0,1, . . . , n} ∩ [0, nδ].
REMARK 3.6 (Choice of s). Concerning the choice of s, Theorem 3.5 shows that smaller

(resp., larger) values of s lead to better upper (resp., lower) and worse lower (resp., upper)
bounds for F(x) in the left tail and better lower (resp., upper) and worse upper (resp., lower
bounds) for F(x) in the right tail. The choice s = 1 seems to be a good compromise; see also
the numerical examples later.

The next result shows that in the central region, the parameter s is asymptotically irrel-
evant, and the width of the band (An,s,ν,α,Bn,s,ν,α) is of smaller order than the width of
(ABJO

n,s,α,BBJO
n,s,α).
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THEOREM 3.7. For any fixed s ∈ (0,2], ν > 3/4 and δ ∈ (0,1),

un,i − aBJO
n,s,α,i

bBJO
n,s,α,i − un,i

}
=

√
2γnun,i(1 − un,i)

(
1 + o(1)

)
,

un,i − an,s,ν,α,i

bn,s,ν,α,i − un,i

}
=

√
2γn,ν,α(un,i)un,i(1 − un,i)

(
1 + o(1)

)
,

uniformly in i ∈ {0,1, . . . , n} ∩ [nδ, n − nδ], where γn = n−1 log logn and γn,ν,α(u) :=
n−1(Cν(u) + κν,α).

Note that (Cν(u) + κν,α)u(1 − u) → 0 as u → {0,1}. Thus, one can deduce from Theo-
rems 3.5 and 3.7 that

max
i=0,1,...,n

(
bBJO
n,i − un,i

) = max
i=0,1,...,n

(
un,i − aBJO

n,i

) =
√

γn/2
(
1 + o(1)

)
,

max
i=0,1,...,n

(bn,i − un,i) = max
i=0,1,...,n

(un,i − an,i) = O
(
n−1/2)

.

REMARK 3.8 (Comparison with Stepanova–Pavlenko [32]). The confidence band
(ASP

n,α,BSP
n,α) of [32] with the test statistic T SP

n (·) in (1.9) can be represented as follows:
for 0 ≤ i ≤ n and Xn:i ≤ x < Xn:i+1,[

ASP
n,α(x),BSP

n,α(x)
] = [

aSP
n,α,i , b

SP
n,α,i

]
,

where aSP
n,α,0 = 0, bSP

n,α,0 = bSP
n,α,1, aSP

n,α,n = aSP
n,α,n−1, bSP

n,α,n = 1, and for 1 ≤ i < n,

[
aSP
n,α,i , b

SP
n,α,i

] = [
un,i ± n−1/2κSP

n,α

√
uni(1 − un,i)h(un,i)

] ∩ [0,1].
Recall that h(t) = log log(1/[t (1− t)]). Here, κSP

n,α is the (1−α)-quantile of T SP
n,α(F0) in case

of F ≡ F0, and it converges to the (1 − α)-quantile κSP
α of

sup
t∈(0,1)

|U(t)|√
t (1 − t)h(t)

.

Consequently, for fixed s ∈ (0,2], ν > 3/4 and δ ∈ (0,1),

bSP
n,α,i − un,i

bn,s,ν,α,i − un,i

,
un,i − aSP

n,α,i

un,i − an,s,ν,α,i

= κSP
α

√
h(un,i)√

2(Cν(un,i) + κν,α)

(
1 + o(1)

)
uniformly in i ∈ {0,1, . . . , n} ∩ [nδ, n − nδ]. But

lim
u→{0,1}

κSP
α

√
h(u)√

2(Cν(u) + κν,α)
= κSP

α√
2

{≥ 1,

→ ∞ as α ↘ 0,

because h(t)/ log log(1/t) and Cν(t)/ log log(1/t) converge to 1 as t ↘ 0. Thus, the confi-
dence band (ASP

n,α,BSP
n,α) is asymptotically wider than (An,s,ν,α,Bn,s,ν,α) in the tail regions

for sufficiently small α.
Note that these considerations apply to any choice of the continuous function h : (0,1) →

(0,∞) in (1.9) as long as h(t)/ log log(1/t) → 1 as t ↘ 0.

REMARK 3.9 (Bahadur and Savage [2] revisited). On (−∞,Xn:1], the upper confidence
bounds for F are constant bBJO

n,s,α,1 or bn,s,ν,α,1, and this is of order O(n−1 log logn). Likewise,

on (Xn:n,∞), the lower confidence bounds for F are constant 1 − bBJO
n,s,α,1 or 1 − bn,s,ν,α,1.

Interestingly, for any (1 − α)-confidence band for a continuous distribution function F ,
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the upper bound has to be greater than c/n with asymptotic probability at least ecα, and
the lower bound has to be smaller than 1 − c/n with asymptotic probability at least ecα.
This follows from a quantitative version of Theorem 2 of [2], stated as Theorem 3.10 be-
low.

It is also instructive to consider Daniels’ lower confidence bound for a continuous distri-
bution function F , namely

PF

(
αFn(x) ≤ F(x) for all x ∈ R

) = 1 − α.

THEOREM 3.10. Let F be a family of continuous distribution functions, which is convex
and closed under translations, that is, F(· − μ) ∈ F for all F ∈ F and μ ∈ R. Let (An,Bn)

be a (1 − α)-confidence band for F ∈F . Then, for any F ∈ F and ε ∈ (0,1),

PF

(
inf
x∈RBn(x) < ε

)
≤ (1 − ε)−nα and PF

(
sup
x∈R

An(x) > 1 − ε
)

≤ (1 − ε)−nα.

In our context, F would be the family of all continuous distribution functions. But the
precision bounds in Theorem 3.10 apply to much smaller families F already, for instance, the
family of all convex combinations of Fo(· − μ), μ ∈ R, where Fo is an arbitrary continuous
distribution function. For the reader’s convenience, a proof of Theorem 3.10 is provided in
Section S.5.

EXAMPLE 3.11 (s = 1). The left panel in Figure 2 depicts, for n = 100, the 95%-
confidence band (An,1,1,α,Bn,1,1,α) in case of an idealized standard Gaussian sample with
order statistics Xn:i = 
−1(i/(n + 1)). In addition, one sees the Kolmogorov–Smirnov
95%-confidence band (AKS

n,α,BKS
n,α). In the right panel, one sees for the same setting the

centered upper bounds Bn,1,1,α − Fn, BBJO
n,1,α − Fn and BKS

n,α − Fn. Note that a plot of the

centered lower bounds An,1,1,α − Fn, ABJO
n,1,α − Fn and AKS

n,α − Fn would be the reflec-
tion of the plots for the centered upper bounds with respect to the point (0,0). The corre-
sponding critical values κn,1,1,α , κBJ

n,1,α and κKS
n,α have been computed numerically; see Sec-

tion S.7.
Figure 3 shows the same as the right panel in Figure 2, but with sample sizes n = 500 and

n = 4000 in the left and right panel, respectively.
In the online supplement A, these bands (An,1,1,α,Bn,1,1,α) are also compared with the

confidence bands of [32], confirming the purely asymptotic result in Remark 3.8.

FIG. 2. 95%-confidence bands for n = 100. Left panel: (An,1,1,α,Bn,1,1,α) (solid) and (AKS
n,α,BKS

n,α) (dashed).

Right panel: centered upper bounds Bn,1,1,α − Fn (solid), BBJO
n,1,α − Fn (dotted) and BKS

n,α − Fn (dashed).
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FIG. 3. Centered upper 95%-confidence bounds Bn,1,1,α − Fn (solid), BBJO
n,1,α − Fn (dotted) and BKS

n,α − Fn

(dashed) for n = 500 (left panel) and n = 4000 (right panel).

EXAMPLE 3.12 (The impact of s). Figure 4 shows for an idealized Gaussian sample of
size n = 500, the centered upper 95%-confidence bounds Bn,s,1,α − Fn for s = 0.6,1,1.4
(left panel) as well as the differences Bn,s,1,α − Bn,1,1,α for s = 0.6,1.4, right panel. As
predicted by Theorem 3.5, the upper bounds Bn,s,1(x) are increasing in s for small values of
x and decreasing in s for large values of x. The online supplement A contains further plots
illustrating the impact of s on our bands. These plots support our claim that choosing s close
to 1 is preferable. Other values of s increase the bands’ precision somewhere in the tails, but
lead to a substantial loss of precision in the central region.

REMARK 3.13 (Discontinuous distribution functions). In the previous considerations,
we focused on continuous distribution functions F , and all confidence bands (An,α,Bn,α) for
F we considered are of the form

[
An,α(x),Bn,α(x)

] = [an,α,i , bn,α,i] for x ∈ [Xn:i ,Xn:i+1) and 0 ≤ i ≤ n

with certain numbers an,α,i , bn,α,i ∈ [0,1]. Interestingly, such a band has coverage proba-
bility at least 1 − α for arbitrary, not necessarily continuous distribution functions F ; see
Section S.6.

FIG. 4. Upper 95%-confidence bounds for n = 500. Left panel: centered bounds Bn,s,1,α − Fn for s = 0.6
(dashed), s = 1.0 (solid) and s = 1.4 (dotted). Right panel: differences Bn,s,1,α − Bn,1,1,α for s = 0.6 (dashed)
and s = 1.4 (dotted).
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4. Proofs for Section 2.

4.1. Proof of Theorem 2.2. The following three facts are our essential ingredients.

FACT 4.1 ([5], Theorem 2.2 and Corollary 2.1). There exist on a common probability
space a sequence of i.i.d. U(0,1) random variables ξ1, ξ2, ξ3, . . . and a sequence of Brownian
bridge processes U(1),U(2),U(3), . . . such that, for all 0 ≤ δ < 1/4,

sup
t∈[1/n,1−1/n]

nδ|Un(t) −U
(n)(t)|

(t (1 − t))1/2−δ
= Op(1).

FACT 4.2 ([5], Theorem 4.4.1).

sup
t∈(0,1)

Un(t)
2

2t (1 − t) log logn
→p 1.

FACT 4.3 ([5], Lemma 4.4.4). For any 1 ≤ dn ≤ n such that dn/n → 0 and dn → ∞,

sup
t∈(0,dn/n]

Un(t)
2

2t (1 − t) log logdn

→p 1.

The same holds with the supremum over [1 − dn/n,1).

The asymptotic distribution of T̃n,ν will be derived from the subsequent Lemmas 4.4, 4.5
and 4.6.

LEMMA 4.4. For any sequence of constants 1 ≤ dn ≤ n such that dn/n → 0 and dn →
∞ and any choice of 0 < δ < 1/4,

sup
t∈[dn/n,1−dn/n]

|Un(t)
2 −U

(n)(t)2|
t (1 − t)

= Op

(
d−δ
n (log logn)1/2)

.

PROOF. By Fact 4.1, for 0 < δ < 1/4,

sup
t∈[dn/n,1−dn/n]

|Un(t) −U
(n)(t)|

(t (1 − t))1/2 ≤ O
(
d−δ
n

)
sup

t∈[1/n,1−1/n]
nδ|Un(t) −U

(n)(t)|
(t (1 − t))1/2−δ

= Op

(
d−δ
n

)
.

Together with Fact 4.2 and (1.4), this implies that

sup
t∈[dn/n,1−dn/n]

|Un(t)
2 −U

(n)(t)2|
t (1 − t)

≤ sup
t∈[dn/n,1−dn/n]

|Un(t) −U
(n)(t)|

(t (1 − t))1/2 ·
( |Un(t)|

(t (1 − t))1/2 + |U(n)(t)|
(t (1 − t))1/2

)

= Op

(
d−δ
n (log logn)1/2)

. �

LEMMA 4.5. For all ν ≥ 0,

sup
t∈(0,n−1 logn]

(
Un(t)

2

2t (1 − t)
− Cν(t)

)
→p −∞.

The same holds with the supremum over (0, n−1 logn] replaced by [1 − n−1 logn,1).
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PROOF. Note that with dn = logn,

(4.1) sup
t∈(0,dn/n]

(
Un(t)

2

2t (1 − t)
− Cν(t)

)
≤ sup

t∈(0,dn/n]

(
Un(t)

2

2t (1 − t)
− C(dn/n)

)

since Cν ≥ C and C is nonincreasing. By Fact 4.3,

sup
t∈(0,dn/n]

|Un(t)
2|

2t (1 − t) log log logn
→p 1,

while

C(dn/n)

log log logn
= (1 + o(1)) log logn

log log logn
→ ∞.

Thus, the right-hand side of (4.1) can be written as

sup
t∈(0,dn/n]

(
Un(t)

2

2t (1 − t) log log logn
· log log logn − C(dn/n)

)

= sup
t∈(0,dn/n]

(
Un(t)

2

2t (1 − t) log log logn
− C(dn/n)

log log logn

)
log log logn

→p (1 − ∞) · ∞ = −∞. �

LEMMA 4.6. For any fixed ν > 3/4,

sup
t∈(0,ρ]∪[1−ρ,1)

(
U(t)2

2t (1 − t)
− Cν(t)

)
→ −∞ almost surely as ρ ↘ 0.

PROOF. Recall that

Tν = sup
t∈(0,1)

(
U(t)2

2t (1 − t)
− C(t) − νD(t)

)

is finite almost surely for any ν > 3/4. If we choose ν′ ∈ (3/4, ν) and write νD(t) = ν′D(t)+
(ν − ν′)D(t), then we see that for any ρ ∈ (0,1/2],

sup
t∈(0,ρ]∪[1−ρ,1)

(
U(t)2

2t (1 − t)
− C(t) − νD(t)

)
≤ sup

t∈(0,ρ]∪[1−ρ,1)

(
Tν′ − (

ν − ν′)D(t)
)

= Tν′ − (
ν − ν′)D(ρ),

because D(·) is symmetric around 1/2 and monotone decreasing on (0,1/2]. Now the claim
follows from Tν′ < ∞ almost surely and D(ρ) → ∞ as ρ ↘ 0. �

Now we can complete the proof of Theorem 2.2. According to Lemmas 4.5 and 4.6, with
dn := logn,

T̃n,ν

Tν

}
= sup

t∈[dn/n,1−dn/n]

(
1

2t (1 − t)

{
Un(t)

2

U(t)2

}
− Cν(t)

)

with asymptotic probability one. If we replace the Brownian bridge U with the Brownian
bridge U(n), then Lemma 4.4 implies that the latter two suprema over [dn/n,1 − dn/n] differ
only by op(1). Consequently, T̃n,ν converges in distribution to Tν .
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4.2. Proof of Theorem 2.1. Note first that in case of s > 0,

sup
t∈(0,ξn:1)

(
nKs

(
Gn(t), t

) − Cν

(
Gn(t), t

)) = nKs(0, ξn:1) − Cν

(
min(ξn:1,1/2)

) →p −∞,

because Ks(0, t) = t/s + o(t) as t ↘ 0 and E(ξn:1) = 1/(n + 1). Since Ks(1, t) = Ks(0,1 −
t), Cν(t) = Cν(1 − t) and ξn:1 d= 1 − ξn:n,

sup
t∈[ξn:n,1)

(
nKs

(
Gn(t), t

) − Cν

(
Gn(t), t

)) = nKs(1, ξn:n) − Cν

(
max(ξn:n,1/2)

) →p −∞.

Consequently, it suffices to verify Theorem 2.1 with the modified test statistic

Tn,s,ν := sup
t∈[ξn:1,ξn:n)

(
nKs

(
Gn(t), t

) − Cν

(
Gn(t), t

))
,

provided that we can show that the latter converges in distribution.
In what follows, we show that replacing s with 2 and Cν(Gn(t), t) with Cν(t) has no effect

asymptotically. For these tasks, the following two facts are useful.

FACT 4.7 (Linear bounds for Gn).

A. By inequality 1, [30, 31], page 415,

sup
ξn:1≤t≤1

t

Gn(t)
= Op(1) and sup

0≤t<ξn:n

1 − t

1 −Gn(t)
= Op(1).

B. From Daniels’ theorem (Theorem 2, [30, 31], p. 341),

sup
0<t≤1

Gn(t)

t
= Op(1) and sup

0≤t<1

1 −Gn(t)

1 − t
= Op(1).

FACT 4.8. For any sequence of constants dn with 1 ≤ dn ≤ n such that dn/n → 0 and
dn → ∞,

sup
dn/n≤t≤1

|Gn(t) − t |
t

= Op

(
d−1/2
n

)
and

sup
0≤t≤1−dn/n

|Gn(t) − t |
1 − t

= Op

(
d−1/2
n

)
([34], Lemma 3 and Theorem 1S; [30, 31], Chapter 10, Section 5, p. 424). In fact,

d1/2
n sup

dn/n≤t≤1

|Gn(t) − t |
t

→d sup
0≤t≤1

∣∣W(t)
∣∣,

where W is a standard Brownian motion; see [26].

A particular consequence of Fact 4.7 is that

(4.2) Mn,1 := sup
t∈[ξn:1,ξn:n)

∣∣logit
(
Gn(t)

) − logit(t)
∣∣ = Op(1),

where logit(t) := log(t/(1 − t)), and Fact 4.8 implies that

(4.3) Mn,2 := sup
t∈[n−1 logn,1−n−1 logn]

∣∣logit
(
Gn(t)

) − logit(t)
∣∣ = Op

(
(logn)−1/2)

,

with the conventions that logit(0) := −∞ and logit(1) := ∞. This leads to the following
useful bounds.
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LEMMA 4.9. For any fixed s ∈R,

sup
t∈[ξn:1,ξn:n)

Ks(Gn(t), t)

K2(Gn(t), t)
= Op(1) and sup

t∈[ξn:1,ξn:n)

(
Cν(t) − Cν

(
Gn(t), t

)) = Op(1),

where Ks(t, t)/K2(t, t) := 1. Moreover,

sup
t∈[n−1 logn,1−n−1 logn]

∣∣∣∣Ks(Gn(t), t)

K2(Gn(t), t)
− 1

∣∣∣∣ = Op

(
(logn)−1/2)

and

sup
t∈[n−1 logn,1−n−1 logn]

(
Cν(t) − Cν

(
Gn(t), t

)) = Op

(
(logn)−1/2)

,

where Ks(0, t) = Ks(1, t) := ∞ in case of s < 1.

PROOF. With the auxiliary quantities Mn,1 in (4.2) and Mn,2 in (4.3), it follows from the
inequalities (S.14) and Lemma S.10 that for ξn:1 ≤ t < ξn:n,

Ks(Gn(t), t)

K2(Gn(t), t)
≤ exp

(|s − 2|Mn,1
) = Op(1) and

0 ≤ Cν(t) − Cν

(
Gn(t), t

) ≤ (1 + ν)Mn,1 = Op(1).

Moreover, for n−1 logn ≤ t ≤ 1 − n−1 logn,∣∣∣∣Ks(Gn(t), t)

K2(Gn(t), t)
− 1

∣∣∣∣ ≤ exp
(|s − 2|Mn,2

) − 1 = Op

(
(logn)−1/2)

) and

0 ≤ Cν(t) − Cν

(
Gn(t), t

) ≤ (1 + ν)Mn,2 = Op

(
(logn)−1/2)

).

(Note that Mn,2 = ∞ if t < ξn:1 or t ≥ ξn:n.) �

Now the statement about the (modified) test statistic Tn,s,ν is an immediate consequence
of Theorem 2.2 and the following lemma.

LEMMA 4.10. For ν > 3/4 and any s ∈ R,

Tn,s,ν = T̃n,ν + op(1).

PROOF. With dn := logn, we know that ξn:n > 1 − dn/n with asymptotic probability
one, and thus it follows from Fact 4.3 and Lemma 4.9 that

sup
t∈[ξn:1,dn/n]

nKs

(
Gn(t), t

)

≤ sup
t∈[ξn:1,1−dn/n]

Ks(Gn(t), t)

K2(Gn(t), t)
sup

t∈(0,dn/n]
nK2

(
Gn(t), t

) = Op(log log logn).

On the other hand,

min
t∈[ξn:1,dn/n]Cν

(
Gn(t), t

) ≥ C(dn/n) + Op(1) = (
1 + o(1)

)
log logn.

Hence,

sup
t∈[ξn:1,dn/n]

(
nKs

(
Gn(t), t

) − Cν

(
Gn(t), t

)) →p −∞,

and for symmetry reasons,

sup
t∈[1−dn/n,ξn:n]

(
nKs

(
Gn(t), t

) − Cν

(
Gn(t), t

)) →p −∞.
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Since T̃n,ν is equal to

T̃ restr
n,ν = sup

t∈[dn/n,1−dn/n]
(
nK2

(
Gn(t), t

) − Cν(t)
)

with asymptotic probability one, it suffices to show that

T restr
n,s,ν := sup

t∈[dn/n,1−dn/n]
(
nKs

(
Gn(t), t

) − Cν

(
Gn(t), t

)) = T̃ restr
n,ν + op(1).

To this end, note that T̃ restr
n,ν →d Tν implies that

sup
t∈[dn/n,1−dn/n]

nK2
(
Gn(t), t

) ≤ Cν(dn/n) + Op(1) = (
1 + op(1)

)
log logn.

Consequently,∣∣T restr
n,s,ν − T̃ restr

n,ν

∣∣
≤ sup

t∈[dn/n,1−dn/n]
∣∣nKs

(
Gn(t), t

) − nK2
(
Gn(t), t

)∣∣ + Op

(
(logn)−1/2)

)

≤ sup
t∈[dn/n,1−dn/n]

∣∣∣∣Ks(Gn(t), t)

K2(Gn(t), t)
− 1

∣∣∣∣ sup
t∈[dn/n,1−dn/n]

nK2
(
Gn(t), t

) + Op

(
(logn)−1/2)

)

= Op

(
(logn)−1/2)(

1 + op(1)
)

log logn = op(1). �

It remains to prove the claim that κn,s,ν,α → κν,α > 0. But this follows immediately from
the following lemma.

LEMMA 4.11. Let G(r) := P(Tν ≤ r). Then G(0) = 0, and G is continuous and strictly
increasing on [0,∞).

To prove this lemma and other results, we make use of the following well-known result.

FACT 4.12 ([4], Corollary 2.1; [13], Lemma 1.1). The distribution Q of U is a log-
concave measure on C[0,1]. That means, for Borel sets B0,B1 ⊂ C[0,1] and λ ∈ (0,1),

logQ∗
(
(1 − λ)B0 + λB1

) ≥ (1 − λ)Q(B0) + λQ(B1),

where Q∗ stands for the inner measure induced by Q, and (1 − λ)B0 + λB1 := {(1 − λ)g0 +
λg1 : g0 ∈ B0, g1 ∈ B1}.

From this fact, one can deduce the following properties of U.

PROPOSITION 4.13. For arbitrary functions h : [0,1] → [0,∞) and ho : [0,1] → R,

G1(x) := P
(|xho +U| ≤ h

)
is an even, log-concave function of x ∈ R. Furthermore, if ho ≥ 0, then

G2(x) := P
(|U| ≤ √

h + xho

)
is a nondecreasing and log-concave function of x ≥ 0.

Let W be a standard Brownian motion process on [0,1]. Then it is well known that U(t) :=
W(t) − tW(1) defines a Brownian bridge process on [0,1]. The following self-similarity
property of the Brownian bridge process U seems to be less well known.
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PROPOSITION 4.14. For fixed numbers 0 ≤ a < b ≤ 1, define a stochastic process Za,b

on [0,1] as follows:

Za,b(v) := U
(
(1 − v)a + vb

) − (1 − v)U(a) − vU(b),

that is, Za,b describes the interpolation error when replacing U on [a, b] with its linear
interpolation there. Then the two processes (U(t))t∈[0,1]\(a,b) and Za,b are stochastically
independent, and

Za,b
d= √

b − aU.

Proofs of Propositions 4.13 and 4.14 are provided in Section S.4.

PROOF OF LEMMA 4.11. Note first that the distribution function r �→ G(r) coincides
with the function G2 in Proposition 4.13, where h(t) := 2t (1− t)Cν(t) and ho(t) := 2t (1− t).
In particular, G(r) ≤ P(|U(1/2)| ≤ √

r/2), and the latter bound equals 0 for r = 0 and is
strictly smaller than 1 for any r ≥ 0.

By Proposition 4.13, G : [0,∞) → [0,1] is log-concave, and since G(r) < 1 =
lims→∞ G(s) for all r ≥ 0, this implies that G is continuous and strictly increasing on
(ro,∞), where ro := inf{r > 0 : G(r) > 0}. If we can show that ro = 0, then we know that G

is, in fact, continuous and strictly increasing on [0,∞).
To show that G(r) > 0 for any r > 0, we pick a number ρ ∈ (0,1/2) and write Tν as the

maximum of the three random variables:

T (ρ,1)
ν := max

t∈[ρ,1−ρ]
(
U(t)2/

[
2t (1 − t)

] − Cν(t)
)
,

T (ρ,2,L)
ν := max

t∈(0,ρ]
(
U(t)2/

[
2t (1 − t)

] − Cν(t)
)
,

T (ρ,2,R)
ν := max

t∈[1−ρ,1)

(
U(t)2/

[
2t (1 − t)

] − Cν(t)
)
.

Then we can write

G(r) = P
(
T (ρ,1)

ν ≤ r, T (ρ,2,L)
ν ≤ r, T (ρ,2,R)

ν ≤ r
)

≥ P
(

max
t∈[ρ,1−ρ]

∣∣U(t)
∣∣ ≤ δ, T (ρ,2,L)

ν ≤ 0, T (ρ,2,R)
ν ≤ 0

)

with δ := √
2ρ(1 − ρ)r > 0.

According to Lemma 4.6, we may choose ρ such that P(T
(ρ,2,L)
ν ≤ 0) = P(T

(ρ,2,R)
ν ≤

0) ≥ 1/2. Now we apply Proposition 4.14 twice, first with [a, b] = [0, ρ], and then with
[a, b] = [1−ρ,1]. This shows that U may be rewritten on [0, ρ] and on [1−ρ,1] as follows:
for v ∈ [0,1],

U(ρv) = vU(ρ) + √
ρU(L)(v),

U(1 − ρv) = vU(1 − ρ) + √
ρU(R)(v),

where U, U(L), U(R) are independent Brownian bridge processes. In particular,

P
(
T (ρ,2,L)

ν ≤ 0|(U(t)
)
t∈[ρ,1−ρ]

)
= P

(∣∣vU(ρ) + √
ρU(L)(v)

∣∣ ≤ √
2ρv(1 − ρv)Cν(ρv) for all v ∈ [0,1]|(U(t)

)
t∈[ρ,1−ρ]

)
= P

(∣∣U(ρ)v/
√

ρ +U
(L)(v)

∣∣ ≤ √
2v(1 − ρv)Cν(ρv) for all v ∈ [0,1]|(U(t)

)
t∈[ρ,1−ρ]

)
= G1

(
U(ρ)

)
,
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where G1(x) := P(|xho + U| ≤ h) with ho(v) := v/
√

ρ and h(v) := √
2v(1 − ρv)Cν(ρv)

for v ∈ [0,1]. Analogously,

P
(
T (ρ,2,R)

ν ≤ 0|(U(t)
)
t∈[ρ,1−ρ]

) = G1
(
U(1 − ρ)

)
.

According to Proposition 4.13, G1 is an even, log-concave function on R. Since 1/2 ≤
P(T

(ρ,2,L)
ν ≤ 0) = E[G1(U(ρ))], there exists a δo > 0 such that G1(x) ≥ 1/2 for all

x ∈ [−δo, δo]. Consequently,

G(r) ≥ E
(
1[|U|≤δ on [ρ,1−ρ]]G1

(
U(ρ)

)
G1

(
U(1 − ρ)

))
≥ 4−1P

(‖U‖∞ ≤ min(δ, δo)
)
> 0.

That P(‖U‖∞ ≤ λ) > 0 for any λ > 0 follows, for instance, from the expansion

P
(‖U‖∞ ≤ λ

) =
√

2π

8λ2 exp
(
− π2

8λ2

)(
1 + o(1)

)
as λ ↘ 0;

see [23] or [31], pages 526–527. Alternatively, one could use Proposition 4.13 and separabil-
ity of C[0,1]. �

5. Proofs for Section 3.

5.1. Proofs for Section 3.1. PROOF OF THEOREM 3.1. Let (xn)n be a sequence in R

such that 	n(xn) → ∞. Then, for any fixed κ > 0,

PFn

[
Tn,s,ν(F0) ≤ κ

] ≤ PFn[xn /∈ [Xn:1,Xn:n)]
+ PFn

[
nKs

(
Fn(xn),F0(xn)

)
≤ Cν

(
Fn(xn),F0(xn)

) + κ
]
,

(5.1)

where Ks(u, ·) := ∞ if s ≤ 0 and u ∈ {0,1}.
To ensure that the first summand on the right-hand side of (5.1) converges to 0, we show

that xn may be chosen such that dn/n ≤ Fn(xn) ≤ 1 − dn/n, where dn := log logn. To this
end, we have to analyze the auxiliary function Hn in more detail. Elementary calculus reveals
that for t ∈ [0,1], (1 + C(t))t (1 − t) is an increasing and 1 + C(t) is a decreasing function
of t (1 − t) ∈ [0,1/4]. Moreover,

1 + C(dn/n) = (
1 + o(1)

)
dn and (dn/n)(1 − dn/n) = (

1 + o(1)
)
dn/n,

whence

min
t∈[0,1]Hn(t) ≥ (

1 + o(1)
)
n−1/2dn and Hn(dn/n) = (

2 + o(1)
)
n−1/2dn.

In particular,

|Fn − F0|(xn) ≥ 	n(xn)
(
1 + o(1)

)
dn/n.

Now suppose that Fn(xn) < dn/n. With x̃n := F−1
n (dn/n), we may conclude that

Fn(x̃n) ≥ Fn(xn) > |Fn − F0|(xn) − dn/n ≥ 	n(xn)
(
1 + o(1)

)
dn/n.

In particular, max{dn/n,Fn(xn)} is of order o(Fn(x̃n)), so

	n(x̃n) ≥
√

n|Fn − F0|
Hn(Fn)

(x̃n) ≥ (1 + o(1))
√

nFn(x̃n)

(2 + o(1))n−1/2dn

≥ (
1/2 + o(1)

)
	n(xn) → ∞.
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Analogously, one can show that in case of Fn(xn) > 1 − dn/n, we may replace xn with
x̃n := F−1

n (1 − dn/n) at the cost of reducing 	n(xn) by a factor of at most 1/2 + o(1).
It remains to show that

(5.2) PFn

[
nKs

(
Fn(xn),F0(xn)

) ≤ Cν

(
Fn(xn),F0(xn)

) + κ
] → 0.

By means of the second part of Lemma S.12, the inequality for Ks(Fn(xn),F0(xn)) implies
that

√
n|Fn − F0|(xn) ≤

√
2
(
Cν(Fn,F0) + κ

)
min

{
Fn(1 − Fn),F0(1 − F0)

}
(xn)

+ 2
(
Cν(Fn,F0) + κ

)
(xn)/

√
n

≤ 2 max(1 + ν, κ)min
{
Hn(Fn),Hn(F0)

}
(xn),

because Cν(Fn,F0) ≤ min{Cν(Fn),Cν(F0)}, and for the univariate function Cν , it follows
from D ≤ C that Cν + κ ≤ max(1 + ν, κ)(1 + C). Moreover, the assumption that dn/n ≤
Fn(xn) ≤ 1 − dn/n implies that

h(Fn)

h(Fn)
(xn) →p 1 for h(t) = t,1 + C(t), t (1 − t).

Consequently, (5.2) would be a consequence of

(5.3) PFn

[√
n|Fn − F0|(xn) ≤ Op(1)min

{
Hn(Fn),Hn(F0)

}
(xn)

] → 0.

To bound the left-hand side of (5.3), we consider the quantity

Mn := max
{

F0(1 − F0)

Fn(1 − Fn)
(xn),

Fn(1 − Fn)

F0(1 − F0)
(xn)

}
≥ 1

and distinguish two cases. Suppose first that Mn ≤ 	n(xn). Since

1 + C(Fn)

1 + C(F0)
(xn) ≤ 1 ≤ Fn(1 − Fn)

F0(1 − F0)
(xn) ≤ Mn or

Fn(1 − Fn)

F0(1 − F0)
(xn) ≤ 1 ≤ 1 + C(Fn)

1 + C(F0)
(xn) ≤ 1 + logMn,

the definition of Hn implies that

Hn(Fn)

Hn(F0)
(xn) ≤ 	n(xn)

1/2.

Then it follows from
√

n(Fn − Fn)(xn) = Op(
√

Fn(1 − Fn)(xn)) = Op(Hn(Fn(xn))) that

PFn

[√
n|Fn − F0|(xn) ≤ Op(1)min

{
Hn(Fn),Hn(F0)

}
(xn)

]
≤ PFn

[√
n|Fn − F0|(xn) ≤ Op(1)min

{
Hn(Fn),Hn(F0)

}
(xn) + Op

(
Hn

(
Fn(xn)

))]
≤ PFn

[√
n|Fn − F0|(xn) ≤ Op

(
	n(xn)

1/2)
min

{
Hn(Fn),Hn(F0)

}
(xn)

]
= PFn

[
	n(xn) ≤ Op

(
	n(xn)

1/2)] → 0.

Now suppose that Mn ≥ 	n(xn)
1/2. Then

|Fn − F0|
|Fn − F0|(xn) ≥ 1 − |Fn − Fn|

|Fn − F0| (xn)

≥ 1 − |Fn − Fn|
|Fn(1 − Fn) − F0(1 − F0)|(xn) = 1 + Op(ρn)
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with

ρn :=
√

Fn(1 − Fn)√
n|Fn(1 − Fn) − F0(1 − F0)|(xn)

= Fn(1 − Fn)√
nFn(1 − Fn)|Fn(1 − Fn) − F0(1 − F0)|(xn) ≤ Mn

(1 + o(1))
√

dn(Mn − 1)
→ 0.

Consequently,

PFn

[√
n|Fn − F0|(xn) ≤ Op(1)min

{
Hn(Fn),Hn(F0)

}
(xn)

]
≤ PFn

[√
n|Fn − F0|(xn)

(
1 + op(1)

) ≤ Op(1)min
{
Hn(Fn),Hn(F0)

}
(xn)

]
≤ PFn

[
	n(xn) ≤ Op(1)

] → 0. �

PROOF OF COROLLARY 3.2. Since ‖Fn − F0‖∞ ≤ εn → 0, it suffices to show that (3.2)
is satisfied. In what follows, we use frequently the elementary inequalities

(5.4)
φ(x)

x + 1
≤ 
(−x) ≤ φ(x)

x
for x > 0,

where φ(x) := 
′(x) = exp(−x2/2)/
√

2π . In particular, as x → ∞,


(−x) = exp
(−x2/2 + O(logx)

)
and

C
(

(x)

) = log
(
O(1) + log

(
1/
(−x)

)) = 2 log(x) − log(2) + o(1).

Now consider two sequences (xn)n and (μn)n tending to ∞, and let F0 = 
, Fn = (1 −
εn)
 + εn
(· − μn). Then the inequalities (5.4) imply that[

1 + C
(
F0(xn)

)]
F0(xn)

(
1 − F0(xn)

) = [
2 log(xn) + O(1)

]

(−xn)

(
1 + o(1)

)
= exp

[−x2
n/2 + O

(
log(xn)

)]
.

Moreover,

F0(xn) − Fn(xn) = εn

(

(μn − xn) − 
(−xn)

) = εn
(μn − xn)
(
1 + o(1)

)
,

because 
(−xn) ≤ φ(xn)/xn while


(μn − xn) ≥
⎧⎪⎨
⎪⎩

1/2 if μn ≥ xn,

φ(xn − μn)

xn − μn + 1
≥ φ(xn) exp(μ2

n/2)

xn + 1
if μn < xn.

Consequently, 	n(xn) → ∞ if

(5.5)
nεn
(μn − xn)

n1/2 exp[−x2
n/4 + O(log(xn))] + O(log(xn))

→ ∞.

In part (a) with εn = n−β+o(1) and β ∈ (1/2,1), we imitate the arguments of [6] and
consider

μn =
√

2r log(n) and xn =
√

2q log(n)

with 0 < r < q ≤ 1. Then by (5.4),

nεn
(μn − xn) = n1−β−(
√

q−√
r)2+o(1),

n1/2 exp
[−x2

n/4 + O
(
log(xn)

)] = n1/2−q/2+o(1),

O
(
log(xn)

) = no(1),
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so the left-hand side of (5.5) equals

n1−β−(
√

q−√
r)2+o(1)

n1/2−q/2+o(1) + no(1)
= n1/2−β+q/2−(

√
q−√

r)2+o(1)

1 + n(q−1)/2+o(1)
= n1/2−β+2

√
r
√

q−√
q2/2−r+o(1)

1 + n(q−1)/2+o(1)
.

The exponent in the enumerator is maximal in q ∈ (r,1] if
√

q = min{2√
r,1}, that is, q =

min{4r,1}, and this leads to {
1/2 − β + r if r ≤ 1/4,

1 − β − (1 − √
r)2 if r ≥ 1/4.

Thus, when β ∈ (1/2,3/4) we should choose β − 1/2 < r < 1/4 and q = 4r . When β ∈
[3/4,1), we should choose (1 − √

1 − β)2 < r < 1 and q = 1.
As to part (b), we consider the more general setting that εn = n−β+o(1) for some β ∈

[1/2,3/4), where πn = √
nεn → 0. Note that this scenario covers also a part of part (a), so

we establish a connection between the two parts. The constraint that πn → 0 is trivial when
β > 1/2 but relevant when β = 1/2. Now we consider

μn :=
√

2λ log(1/πn) and xn :=
√

2q log(1/πn)

with arbitrary constants 0 < λ < q . Now

nεn
(μn − xn) = n1/2πn
(μn − xn)

= n1/2π
1+(

√
q−√

λ)2+o(1)
n ,

n1/2 exp
(−x2

n/4 + O
(
log(xn)

)) = n1/2πq/2+o(1)
n ,

O
(
log(xn)

) = πo(1)
n ,

so the left-hand side of (5.5) equals

n1/2π
1+(

√
q−√

λ)2+o(1)
n

n1/2π
q/2+o(1)
n + π

o(1)
n

= π
1+q/2−2

√
q
√

λ+λ+o(1)
n

1 + n−1/2π
−q/2+o(1)
n

= π
1+q/2−2

√
q
√

λ+λ+o(1)
n

1 + n−1/2+(β−1/2)q/2+o(1)
.

The exponent of πn becomes minimal in q ∈ (λ,∞) if q = 4λ. Then we obtain

π
1−λ+o(1)
n

1 + n−1/2+(2β−1)λ+o(1)
= π

1−λ+o(1)
n

1 + √
n

(4β−2)λ−1+o(1)
,

and this converges to ∞ if the limiting exponents of πn and
√

n are negative. This is the case
if 1 < λ < 1/(4β − 2). (Note that 4β − 2 < 1 because β < 3/4.) �

PROOF OF LEMMA 3.3. Standard LAN theory implies that PFn(Sn) → 0 for arbi-
trary events Sn ∈ σ(X1, . . . ,Xn) such that PF0(Sn) → 0. Thus, for any fixed 0 < ρ < 1/2,
ϕn(X1, . . . ,Xn) �= ϕn,ρ(X1, . . . ,Xn) with asymptotic probability zero, both under the null
and under the alternative hypothesis. Hence, it suffices to show that

lim sup
ρ→0

lim sup
n→∞

EFnϕn,ρ(X1, . . . ,Xn) ≤ α.

But EFnϕn,ρ(X1, . . . ,Xn) does not change if we replace fn with the modified density

fn,ρ(x) :=
{
fn(x) if x /∈ [xρ, yρ],
cn,ρf0(x) if x ∈ [xρ, yρ],
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with

cn,ρ := Fn(yρ) − Fn(xρ)

1 − 2ρ
.

This follows from the fact that the distribution function Fn,ρ of fn,ρ satisfies Fn,ρ(x) = Fn(x)

for x /∈ [xρ, yρ], so the distribution of {Fn(x)) : x /∈ [xρ, yρ]} under the alternative hypothesis
remains unchanged if we replace fn with fn,ρ . But

√
n(cn,ρ − 1) → δρ := A(yρ) − A(xρ)

1 − 2ρ
,

so
√

n
(
f 1/2

n,ρ − f
1/2
0

) → 1

2
aρf

1/2
0 in L2(λ)

with

aρ(x) =
{
a(x) if x /∈ [xρ, yρ],
δρ if x ∈ [xρ, yρ].

Hence, the asymptotic power of the test ϕn,ρ under the alternative is bounded by the asymp-
totic power of the optimal test of F0 versus Fn,ρ at level α, so

lim sup
n→∞

EFnϕn,ρ(X1, . . . ,Xn) ≤ 

(

−1(α) + ‖aρ‖L2(F0)

)
.

But

‖aρ‖2
L2(F0)

=
∫
(−∞,xρ)∪(yρ,∞)

a2 dF0 + (1 − 2ρ)δ2
ρ

=
∫
(−∞,xρ)∪(yρ,∞)

a2 dF0 + (A(yρ) − A(xρ))2

(1 − 2ρ)

converges to 0 as ρ ↘ 0, so 
(
−1(α) + ‖aρ‖L2(F0)) → α as ρ ↘ 0. �

PROOF OF THEOREM 3.4. Let ρ ∈ (0,1/2) be fixed. The test statistic Tn,s,ν for the
uniform empirical process may be written as the maximum of T

(ρ,1)
n,s,ν and T

(ρ,2)
n,s,ν , where

T (ρ,1)
n,s,ν := sup

t∈Tn,s∩[ρ,1−ρ]
(
nKs

(
Gn(t), t

) − Cν

(
Gn(t), t

))
,

T (ρ,2)
n,s,ν := sup

t∈Tn,s\[ρ,1−ρ]
(
nKs

(
Gn(t), t

) − Cν

(
Gn(t), t

))
.

Here, Tn,s := (0,1) if s > 0 and Tn := [ξn:1, ξn:n) if s ≤ 0. A supremum over the empty set is
defined to be −∞. The proofs of Theorems 2.2 and 2.1 can be easily adapted to show that

T (ρ,1)
n,s,ν →d T (ρ,1)

ν and T (ρ,2)
n,s,ν →d T (ρ,2)

ν := max
{
T (ρ,2,L)

ν , T (ρ,2,R)
ν

}
,

where T
(ρ,1)
ν , T

(ρ,2,L)
ν and T

(ρ,2,R)
ν are defined as in the proof of Lemma 4.11. In particular,

since Cν(1/2) = 0 and U(1/2) �= 0 almost surely,

lim inf
n→∞ P

(
T (ρ,1)

n,s,ν > 0
) = 1,

lim sup
n→∞

P
(
T (ρ,2)

n,s,ν ≥ 0
) ≤ π0(ρ) := P

(
T (ρ,2)

ν ≥ 0
)
.

Note that π0(ρ) → 0 as ρ → 0 by virtue of Lemma 4.6.
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Now we consider the goodness-of-fit test statistic Tn,s,ν(F0). It is the maximum of
T

(ρ,1)
n,s,ν (F0) and T

(ρ,2)
n,s,ν (F0). Here, T

(ρ,j)
n,s,ν (F0) is defined as T

(ρ,j)
n,s,ν , where t ∈ Tn,s is re-

placed with x ∈ R if s > 0 and x ∈ [Xn:1,Xn:n) if s ≤ 0, [ρ,1 − ρ] is replaced with
[xρ, yρ] = [F−1

0 (ρ),F−1
0 (1 − ρ)], and (Gn(t), t) is replaced with (Fn(x),F0(x)). Under the

null hypothesis, T
(ρ,j)
n,s,ν (F0) has the same distribution as T

(ρ,j)
n,s,ν for j = 1,2. This convergence

and standard LAN theory imply that under the alternative hypothesis,

lim inf
n→∞ PFn

(
T (ρ,1)

n,s,ν (F0) > 0
) = 1,

lim sup
n→∞

PFn

(
T (ρ,2)

n,s,ν (F0) ≥ 0
) ≤ πA(ρ) := 


(

−1(

π0(ρ)
) + ‖a‖L2(F0)

)
.

With standard empirical process theory one can show that under the alternative hypothesis,
√

n(Fn − F0) →d U ◦ F0 + A

in the space �∞(R) of bounded functions on R, equipped with the supremum norm ‖ · ‖∞.
Moreover, for arbitrary bounded functions h, hn on R such that ‖hn − h‖∞ → 0,

nKs

(
F0 + n−1/2hn,F0

) − Cν

(
F0 + n−1/2hn,F0

) → h2/
[
2F0(1 − F0)

] − Cν(F0)

uniformly on [xρ, yρ]. By virtue of an extended continuous mapping theorem, for example,
[33], Theorem 1.11.1, page 67, one can conclude that

T (ρ,1)
n,s,ν (F0) →d T (ρ,1)

ν (A),

where T
(ρ,j)
ν (A) is defined as T

(ρ,j)
ν with U + A ◦ F−1

0 in place of U. Finally, note that the
distribution QA of U+ A ◦ F−1

0 is absolutely continuous with respect to the distribution Q0

of U, where log(dQA/dQ0) has distribution N(−‖a‖2
L2(F0)

/2,‖a‖2
L2(F0)

) under Q0. This
follows from [31] (Section 4.1 and especially Theorem 4.1.5, p. 157), or [33] (Section 3.10).
Consequently,

P
(
T (ρ,2)

ν (A) ≥ 0
) ≤ πA(ρ).

All in all, we may conclude that

PFn

(
Tn,s,ν(F0) ≤ 0

) ≤ PFn

(
T (ρ,1)

n,s,ν (F0) ≤ 0
) → 0,

and for fixed r > 0,

lim sup
n→∞

PFn

(
Tn,s,ν(F0) ≤ r

) ≤ lim sup
n→∞

PFn

(
T (ρ,1)

n,s,ν (F0) ≤ r
)

≤ P
(
T (ρ,1)

ν (A) ≤ r
)

≤ P
(
Tν(A) ≤ r

) + P
(
T (ρ,2)

ν (A) > r
)

≤ P
(
Tν(A) ≤ r

) + πA(ρ),

lim sup
n→∞

PFn

(
Tn,s,ν(F0) ≥ r

) ≤ lim sup
n→∞

PFn

(
T (ρ,1)

n,s,ν (F0) < r
)

+ lim sup
n→∞

PFn

(
T (ρ,2)

n,s,ν (F0) ≥ r
)

≤ P
(
T (ρ,1)

ν (A) ≥ r
) + πA(ρ)

≤ P
(
Tν(A) ≥ r

) + πA(ρ).

Since πA(ρ) → 0 as ρ ↘ 0, this proves that Tn,s,ν(F0) converges in distribution to Tν(A)

under the alternative hypothesis.
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The convergence claimed in the second part of the theorem follows from the first part
together with convergence of the critical values κn,s,ν,α to κν,α . The inequality claimed in
the second part is a consequence of Anderson’s [1] inequality or Proposition 4.13 with ho :=
A ◦ F−1

0 and h(t) := √
2t (1 − t)(Cν(t) + κν,α).

The third part of the theorem follows from the fact that for any t ∈ (0,1),

P
(
Tν(A) > κν,α

) ≥ P

(
(U+ A ◦ F−1

0 )2(t)

2t (1 − t)
> Cν(t) + κν,α

)

≥ 


( |A(F−1
0 (t))|√

t (1 − t)
−

√
2Cν(t) + 2κν,α

)

= 


( |A(F−1
0 (t))|√

t (1 − t)
− √

2C(t) − bν,α(t)

)
,

where bν,α := (2νD + 2κν,α)/(
√

2C + 2νD + 2κν,α + √
2C) is bounded on (0,1). �

5.2. Proofs for Section 3.2. For notational convenience, we suppress the dependence of
the confidence bounds on s, ν and α and just write aBJO

n,i , an,i , bBJO
n,i and bn,i .

PROOF OF THEOREM 3.5. Note first that Hs(u, t) = γHs(u/γ, t/γ ) for arbitrary u ≥ 0,
t > 0 and γ > 0.

Now we prove the claim for the upper bounds bBJO
n,i = 1 − aBJO

n,n−i and bn,i = 1 − an,n−i .
For any integer i ∈ [0, nδ], let

xn,i := un,i/γn = i/ log logn.

For fixed λ > 0, let

b̃n,i := un,i + λγn

(
Bs(xn,i) − xn,i

) = γn

(
xn,i + λ

(
Bs(xn,i) − xn,i

))
> un,i .

It follows from x + s ≤ Bs(x) ≤ x + 1 + √
2x + 1 that

λsγn ≤ b̃n,i ≤ λγnBs

(
nδ/ log logn

) = (
λ + o(1)

)
nδ−1.

On the one hand, if λ > 1, then it follows from the first inequality in (S.15) that

nKs(un,i, b̃n,i) ≥ nHs(un,i, b̃n,i) = nγnHs

(
xn,i, xn,i + λ

(
Bs(xn,i) − xn,i

)) ≥ nγnλ,

because Hs(xn,i, xn,i + t (Bs(xn,i) − xn,i)) is convex in t with values 0 for t = 0 and 1 for
t = 1. And if λ < 1, the second inequality in (S.15) implies that

nKs(un,i, b̃n,i) ≤ nHs(un,i, b̃n,i)/(1 − b̃in)
+

= nγnHs

(
xn,i, xn,i + λ

(
Bs(xn,i) − xn,i

))
/(1 − b̃n,i)

≤ nγnλ/
(
1 − (

λ + o(1)
)
nδ−1) = nγn

(
λ + o(1)

)
.

On the other hand, κBJ
n,s,α = (1 + o(1))nγn and

Cν(ui,n, b̃i,n) + κn,s,ν,α = Cν(b̃i,n) + κn,s,ν,α{≤ Cν(λsγn) + κn,s,ν,α = (
1 + o(1)

)
nγn,

≥ Cν

((
λ + o(1)

)
nδ−1) + κn,s,ν,α = (

1 + o(1)
)
nγn.

Consequently, for any fixed λ > 1 and sufficiently large n,

nKs(un,i, b̃n,i) > max
{
Cν(un,i, b̃n,i) + κn,s,ν,α, κBJ

n,s,α

}
,



286 L. DÜMBGEN AND J. A. WELLNER

and thus

max
{
bBJO
n,i − un,i, bn,i − un,i

} ≤ λγn

(
Bs(xn,i) − xn,i

)
for all integers i ∈ [0, nδ]. Likewise, for any fixed λ ∈ (0,1) and sufficiently large n,

nKs(un,i, b̃n,i) < min
{
Cν(un,i, b̃n,i) + κn,s,ν,α, κBJ

n,s,α

}
,

and thus

min
{
bBJO
n,i − un,i, bni − un,i

} ≥ λγn

(
Bs(xn,i) − xn,i

)
for all integers i ∈ [0, nδ].

The differences un,i − aBJO
n,i = bBJO

n,n−i − un,n−i and un,i − an,i = bn,n−i − un,n−i can
be treated analogously. For each integer i ∈ [1, nδ] and fixed λ > 0, let xn,i = un,i/γn =
i/ log logn as before and

ãn,i := un,i + λγn

(
As(xn,i) − xn,i

) = γn

(
xn,i + λ

(
As(xn,i) − xn,i

))
< un,i .

On the one hand, if λ > 1 and ãn,i > 0, then As(xi,n) > 0 and

nKs(un,i, ãn,i) ≥ nHs(un,i, ãn,i) = nγnHs

(
xn,i, xn,i + λ

(
As(xn,i) − xn,i

)) ≥ nγnλ,

because Hs(xn,i, xn,i + t (As(xn,i) − xn,i)) is convex in t ∈ [0, λ] with values 0 for t = 0 and
1 for t = 1. And if λ < 1, then

nKs(un,i, ãn,i) ≤ nHs(un,i, ãn,i)/(1 − uin)

= nγnHs

(
xn,i, xn,i + λ

(
As(xn,i) − xn,i

))
/(1 − un,i)

≤ nγnλ/
(
1 − nδ−1)

.

On the other hand, κBJ
n,s,α = (1 + o(1))nγn and

Cν(ui,n, ãi,n) + κn,s,ν,α = Cν(ui,n) + κn,s,ν,α{≤ Cν

(
n−1) + κn,s,ν,α = (

1 + o(1)
)
nγn,

≥ Cν

(
min

{
nδ−1,1/2

}) + κn,s,ν,α = (
1 + o(1)

)
nγn.

Consequently, for any fixed λ > 1 and sufficiently large n,

max
{
un,i − aBJO

n,i , un,i − an,i

} ≤ λγn

(
xn,i − As(xn,i)

)
for all integers i ∈ [1, nδ]. Likewise, for any fixed λ ∈ (0,1) and sufficiently large n,

min
{
un,i − aBJO

n,i , uni − an,i

} ≥ λγn

(
xn,i − As(xn,i)

)
for all integers i ∈ [1, nδ]. �

PROOF OF THEOREM 3.7. We only prove the bounds for an,i and bn,i . The bounds
for aBJO

n,i and bBJO
n,i can be derived analogously with obvious modifications. Moreover, since

un,i − an,i = bn,n−i − un,n−i , it suffices to prove the bounds for bn,i only. For a fixed factor
λ > 0 and any integer i ∈ [nδ, n − nδ], let

b̃n,i := un,i + λ
√

2γn(un,i)un,i(1 − un,i).
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Note that

0 ≤ b̃n,i − un,i

un,i(1 − un,i)

≤ λ

√
2n−1

(
Cν

(
nδ−1

) + κν,α

)
n1−δ

(
1 − nδ−1

)−1

= O
(
n−δ/2(log logn)1/2)

,

whence

cn := max
nδ≤i≤n−nδ

∣∣logit(b̃n,i) − logit(un,i)
∣∣ = o(1).

On the one hand, the inequalities (S.14) imply that uniformly in nδ ≤ i ≤ n − nδ ,

nKs(un,i, b̃n,i) = nK1−s(b̃n,i , un,i)

= (
1 + o(1)

)
nK2(b̃n,i , un,i)

= (
1 + o(1)

)
λ2(

Cν(un,i) + κν,α

)
.

On the other hand, Lemma S.10 and Theorem 2.1 imply that uniformly in nδ ≤ i ≤ n − nδ ,∣∣Cν(un,i, b̃n,i) + κn,s,ν,α − Cν(un,i) − κν,α

∣∣ ≤ (1 + ν)cn + |κn,s,ν,α − κν,α| = o(1).

Consequently, for fixed λ > 1 and sufficiently large n,

nKs(un,i, b̃n,i) > Cν(un,i, b̃n,i) + κn,s,ν,α,

and thus

bn,i − un,i ≤ λ
√

2γn(un,i)un,i(1 − un,i)

for all integers i ∈ [nδ, n − nδ]. Likewise, for fixed λ ∈ (0,1) and sufficiently large n,

nKs(un,i, b̃n,i) < Cν(un,i, b̃n,i) + κn,s,ν,α,

and thus

bn,i − un,i ≥ λ
√

2γn(un,i)un,i(1 − un,i)

for all integers i ∈ [nδ, n − nδ]. �
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SUPPLEMENTARY MATERIAL

Supplement A to: “A new approach to tests and confidence bands for distribution
functions” (DOI: 10.1214/22-AOS2249SUPPA; .pdf). Further technical details and proofs;
additional numerical examples [9].

Supplement B to: “A new approach to tests and confidence bands for distribution
functions” (DOI: 10.1214/22-AOS2249SUPPB; .zip). Details and implementation of the
new bands: zipped arxiv with R files [10].

https://doi.org/10.1214/22-AOS2249SUPPA
https://doi.org/10.1214/22-AOS2249SUPPB
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