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The classes of monotone or convex (and necessarily monotone)
densities on R+ can be viewed as special cases of the classes of
k -monotone densities on R+. These classes bridge the gap between
the classes of monotone (1-monotone) and convex decreasing (2-
monotone) densities for which asymptotic results are known, and
the class of completely monotone (∞-monotone) densities on R+. In
this paper we consider non-parametric maximum likelihood and least
squares estimators of a k -monotone density g0. We prove existence
of the estimators and give characterizations.We also establish consis-
tency properties, and show that the estimators are splines of degree
k − 1 with simple knots. We further provide asymptotic minimax risk
lower bounds for estimating the derivatives g(j)

0 (x0), 0=1, . . ., k − 1, at
a fixed point x0 under the assumption that (−1)kg(k)

0 (x0) > 0.
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1 Introduction

Densities with monotone or convex shape are encountered in many non-para-
metric estimation problems. Monotone densities arise naturally via connections with
renewal theory and uniform mixing; see Vardi, (1989) and Woodroofe and Sun
(1993), for examples of the former, and Woodroofe and Sun (1993), for the latter in
an astronomical context. Estimation of monotone densities on (0, ∞) was initiated
by Grenander (1956a,b) with related work by Ayer et al. (1955), Brunk (1958),
and Van Eeden (1957a,b). Asymptotic theory of the maximum likelihood estimation
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46 F. Balabdaoui and J. A. Wellner

(MLE) was developed by Prakasa Rao (1969) with later contributions by Groene-
boom (1985, 1989), and Kim and Pollard (1990).

Convex densities arise in connection with Poisson process models for bird migra-
tion and scale mixtures of triangular densities; see, for example, Hampel, (1987)
and Anevski, (2003). Estimation of convex densities on (0, ∞) was apparently ini-
tiated by Anevski (1994) (see also Anevski, 2003), and was pursued by Jongbloed
(1995). The limit distribution theory for the MLE and least square (LS) estimators
and their first derivative at a fixed point was obtained by Groeneboom, Jongbloed,
and Wellner (2001). For consistent estimation of the estimators at the origin, see.
Balabdaoui (2007).

Estimation in the class of k-monotone densities on R+, denoted hereafter by
Dk, has been very recently considered in Balabdaoui and Wellner (2007) and
has several motivating components. By definition, g is k-monotone on (0, ∞) if g

is non-negative and (−1)lg(l) is non-increasing and convex for l ∈{0, . . ., k −2} for
k ≥ 2, and simply non-negative and non-increasing when k =1. As will be shown
in section 2, it follows from the results of Williamson (1956), Lévy (1962),
and Gneiting (1999) that g is a k-monotone density if and only if it can be
represented as a scale mixture of beta(1, k) densities. For k =1 this recovers the
well-known facts that monotone densities are scale mixtures of uniform densities,
and, for k =2, that convex decreasing densities are scale mixtures of the triangu-
lar, or beta(1, 2), densities. Besides the obvious goal of generalizing the existing
theory for the 1-monotone (i.e., monotone) and 2-monotone (i.e., convex and
decreasing) classes D1 and D2, these classes provide a potential link to the impor-
tant limiting case of the k-monotone classes, namely the class D∞ of completely
monotone densities. Densities g in D∞ have the property that (−1)lg(l)(x) ≥ 0
for all x ∈ (0, ∞) and l ∈{0, 1, . . .}. It follows from Bernstein’s theorem (see, e.g.,
Feller, 1971, p. 439, or Gneiting, 1998) that g ∈D∞ if and only if it can be
represented as a scale mixture of exponential densities. Completely monotone
densities arise naturally in connection with mixtures of Poisson processes and
have been used in reliability theory and empirical Bayes estimation, see Jewell
(1982) and the references therein, and Balabdaoui and Wellner (2007) for
further motivation and references.

In Balabdaoui and Wellner (2007), the joint limit distribution theory for the
MLE and LSE of a k-monotone density and their higher derivatives up to degree
k − 1 at a fixed point is established modulo a spline conjecture. The rate of con-
vergence of the j-th derivative, j =0, . . ., k −1 is shown to be n(k−j)/(2k +1). Note that
these rates coincide with the minimax lower bounds obtained here. As for the joint
limiting distribution, it depends on a Gaussian process Hk defined uniquely almost
surely as follows:

• Hk(t)≥Yk(t), t ∈R.
• (−1)kHk is 2k-convex; that is, (−1)kH (2k−2)

k exists and is convex.
• The process Hk satisfies
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∫ ∞

−∞
(Hk(t)−Yk(t)) dH (2k−1)

k (t)=0,

where Yk is the (k − 1)-th fold integral of a two-sided Brownian motion plus
(−1)kk!/(2k)!t2k, t ∈R. Jewell (1982) initiated the study of MLE in the family D∞
and succeeded in showing that the MLE F̂ n of the mixing distribution function is
almost surely weakly consistent. Although consistency of the MLE follows now
rather easily from the results of Pfanzagl (1988) and van de Geer (1993), little is
known about rates of convergence or asymptotic distribution theory for either the
estimator of the mixed density or the estimator of the mixing distribution function.
As noted in Balabdaoui and Wellner (2007), it may be possible to obtain some
insight into the asymptotics of the MLE of a completely monotone density by better
understanding the behavior of the MLE of a k-monotone density for arbitrary k > 2.
Indeed, as the class D∞ is the intersection of all of the Dks, it can be well approxi-
mated by Dk with a large k.

Existence of the MLE and LSE of a k-monotone density, their characterization,
their structure (splines of degree k − 1 and with simple knots), and consistency of
their derivatives up to degree k −1 are used in Balabdaoui and Wellner (2007). In
this paper, we give proofs of those essential properties in sections 2 and 3. In section
4, we establish asymptotic minimax lower bounds for estimation of g(j)

0 (x0), j =0, . . .,
k −1 under the assumption that g(k)

0 (x0) exists and is non-zero.
In the sequel, X1, . . ., Xn are i.i.d. random variables with density g0 ∈Dk, Gn is the

corresponding empirical distribution function. We write X(1), . . ., X(n) for the
order statistics of X1, . . ., Xn, use the notation z+ = z1[z≥0], and write � for Lebesgue
measure on R.

2 Existence and characterizations

2.1 Mixture representation

Lemma 1 characterizing integrable k-monotone functions and giving an inversion
formula follows from the results of Williamson (1956).

Lemma 1. (Integrable k-monotone characterization) A function g is an integrable
k-monotone function if and only if it is of the form

g(x)=
∫ ∞

0

k(t −x)k−1
+

tk dF (t), x > 0 (1)

where F is non-decreasing and bounded on (0, ∞). Thus g is a k-monotone density if
and only if it is of the form of Equation 1 for some distribution function F on (0, ∞).
If F in Equation 1 satisfies limt→∞ F (t)=∫∞

0 g(x)dx, then at a continuity point t > 0,
F is given by
© 2009 The Authors. Journal compilation © 2010 VVS.



48 F. Balabdaoui and J. A. Wellner

F (t)=G(t)− tg(t)+ · · ·+ (−1)k−1

(k −1)!
tk−1g(k−2)(t)+ (−1)k

k!
tkg(k−1)(t), (2)

where G(t)=∫ t
0 g(x)dx.

Proof. The representation in equation 1 follows from theorem 5 of Lévy (1962) by
taking k =n+1 and f ≡0 on (−∞, 0]. The inversion formula 2 follows from lemma
1 in Williamson (1956) together with an integration by parts argument.

For k =1 (k =2),note that the characterization matches with the well-known fact
that a density is non-decreasing (non-decreasing and convex) on (0, ∞) if and only if
it is a mixture of uniform densities (triangular densities). More generally, the char-
acterization establishes a one-to-one correspondence between the class of k-mono-
tone densities and the class of scale mixture of beta densities with parameters 1
and k. From the inversion formula in equation 2, one can see that a natural esti-
mator for the mixing distribution F is obtained by plugging in an estimator for
the density g and it becomes clear that the rate of convergence of estimators of
F will be controlled by the corresponding rate of convergence for estimators of
the highest derivative g(k−1) of g. When k increases the densities become smoother,
and therefore the inverse problem of estimating the mixing distribution F becomes
harder.

2.2 Existence and characterization of the estimators

We now consider the MLE and LSE of a k-monotone density g0. We show that these
estimators exist and give characterizations thereof. In the following, � is the Lebes-
gue measure, Mk is the class of all k-monotone functions on (0, ∞), and Mk ⊂L1(�)
is the class of all integrable k-monotone functions. Note that Dk ⊂Mk ∩L1(�).

Let

ln(g)=
∫ ∞

0
log g(x) dGn(x)

be the log-likelihood function (really n−1 times the log-likelihood function). We want
to maximize ln(g) over g ∈Dk. To do this, we change the optimization problem to
one over the whole cone Mk ∩L1(�). This can be done by introducing the ‘adjusted
likelihood function’ �n(g) defined (as in Silverman, 1982) as follows:

�n(g)=
∫ ∞

0
log g(x) dGn(x)−

∫ ∞

0
g(x) dx,

for g ∈ Mk ∩ L1(�). Note that, using the one-to-one correspondence between the
mixed k-monotone function g =gF and its corresponding mixing distribution F ,
maximizing �n over the space Mk ∩L1(�) is equivalent to maximizing
© 2009 The Authors. Journal compilation © 2010 VVS.
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�̃n(F )=
∫ ∞

0
log

(∫ ∞

0

k(t −x)k−1
+

tk dF (t)
)

dGn(x)−
∫ ∞

0

∫ ∞

0

k(t −x)k−1
+

tk dF (t) dx

over the space of bounded and non-increasing functions F on (0, ∞).

Lemma 2. The maximizer ĝn of �n over Mk ∩L1(�) exists and belongs to Dk (and
hence is a density). Furthermore, ĝn is of the form

ĝn(x)= ŵ1
k(â1 −x)k−1

+
âk

1

+ · · ·+ ŵm
k(âm −x)k−1

+
âk

m

,

where m∈N\{0}, and ŵ1, · · · , ŵm and â1, · · · , âm are respectively the weights and the
support points of the maximizing (discrete) mixing distribution F̂ n.

Remark 1. It follows from lemma 2.2 that the MLE ĝn is a k-monotone spline of
degree k −1 with m simple knots â1, · · · , âm (for a definition of splines and multiplicity
of the knots, see, e.g., de Boor, 1978, and De Vore and Lorentz, 1993). Note that
this is also equivalent to saying that ĝn is a finite mixture of beta’s with parameters 1
and k.

Remark 2. It can be shown that the support points of the mixing distribution F̂ n

fall stricty between the order statistics X(1), . . .., X(n) with at most one support point
in (X(i), X(i +1)). Note also that by definition of the MLE, the last support point has
to be strictly larger than X(n).

Proof of lemma 2. From Lindsay (1983), we conclude that there exists a unique
maximizer of ln and the maximum is achieved by a finite mixture of at most n beta
densities with parameters 1 and k. We denote this maximizer by f̂ n.

By arguing as in Groeneboom et al. (2001, p. 1662), let g ∈Mk ∩L1(�) such that∫∞
0 g(x) dx = c. Then g/c ∈Dk, and we can write

�n(f̂ n)−�n(g)=
∫ ∞

0
log f̂ n(x) dGn(x)−1−

∫ ∞

0
log g(x) dGn(x)+ c

= ln(f̂ n)− ln(g/c)− log c + c −1≥−log c + c −1≥0.

Hence, ĝn = f̂ n.

Remark 3. Considering maximization over the bigger set Mk ∩L1(�) is motivated
by the fact that this set is a cone. Characterization of the MLE takes then a simpler
form than the one we would obtain with Dk.
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Lemma 3 gives a necessary and sufficient condition for a function ĝn ∈Mk ∩L1(�)
to be the MLE.

For k ≥3 it generalizes lemma 2.4 of Groeneboom et al. (2001).

Lemma 3. Let X1, · · · , Xn be i.i.d. random variables from the true density g0. A
k-monotone spline ĝn of degree k −1 and simple knots â1, · · · , âm is the MLE if and
only if for all t > 0

Ĥn(t)≡
∫ ∞

0

k(t −x)k−1
+

tk ĝn(x)
dGn(x)≤1 (3)

=1, ift ∈{â1, · · · , âm}. (4)

Proof. See the Appendix.

Remark 4. Note that t is a knot in {â1, · · · , âm} if and only if (−1)k−1ĝ(k−1)
n (t−)

< (−1)k−1ĝ(k−1)
n (t +). Thus, the equality condition in Equation 4 can re-expressed in

terms of the left and right (k −1)-th derivative of ĝn as in Lemma 2.4 of Groene-
boom et al. (2001) in the particular case of k =2.

The MLE ĝn can be computed by means of the support reduction algorithm of
Groeneboom, Jongbloed, and Wellner (2008); also see Baladaoui and Wellner
(2004) for further details.

Now, we briefly consider the LSE. The LS criterion is:

Qn(g)= 1
2

∫ ∞

0
g2(x) dx −

∫ ∞

0
g(x) dGn(x). (5)

We want to minimize this over g ∈ Dk ∩ L2(�), the subset of square integrable
k-monotone densities. Although existence of a minimizer of Qn over Dk ∩ L2(�) is
quite easily established, the minimizer has a somewhat complicated characterization
owing to the density constraint

∫∞
0 g(x) dx =1. Therefore, we will actually consider

the alternative optimization problem of minimizing Qn(g) over Mk ∩ L2(�). Here,
one might wonder why consider the LSE when the MLE is a ‘natural’ density esti-
mator. It turns out that the random processes involved in the characterization of
the LSE for a finite sample size n gives a great insight into the limiting distribution
of the estimator and its derivatives up to degree k −1. Thus, even though the MLE
and LSE are asymptotically equivalent, it is easier to understand and establish the
asymptotic theory of the MLE through the LSE: compare the characterization of
the MLE in lemma 3 with the characterization of the LSE (over Mk ∩L2(�)) given
in lemma A.2. (For more details, see Balabdaoui and Wellner, 2007). We will not
develop the characterization of the LSE further here, but postpone this study to the
Appendix.
© 2009 The Authors. Journal compilation © 2010 VVS.
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3 Consistency

In this section, we will prove that both the MLE and LSE are strongly consistent.
Furthermore, we will show that this consistency is uniform on intervals of the form
[c, ∞), where c > 0.

Consistency of the MLEs for the classes Dk in the sense of Hellinger convergence
of the mixed density is a relatively simple straightforward consequence of the meth-
ods of Pfanzagl (1988) and van de Geer (1993). As usual, the Hellinger distance H
is given by H2(p, q)= (1/2)

∫
(
√

p−√
q)2d� for any common dominating measure �.

Proposition 1. Suppose that ĝn is the MLE of g0 in the class Dk. Then,

H(ĝn, g0)→a.s. 0 as n→∞.

Furthermore, F̂ n →d F0 almost surely where F̂ n is the MLE of the mixing distri-
bution function F0

Proof. Note that math Dk ={gF : F is a d.f. on (0, ∞)} with

gF (x)=g(x)=
∫ ∞

0
kx(t) dF (t)

and kx is the the scaled beta(1, k) kernel; that is, kx(t)= t(1 − tx/k)k−1
+ . For all x > 0,

the kernel kx is bounded, continuous, and it is easy to see that it satisfies limt↘0kx(t)=
limt→∞kx(t)=0. Hence, the map F �→ gF is continuous with respect to the vague
topology for all x > 0. This implies that the class

G =
{

gF

gF +gF0

, F is a d.f. on (0, ∞)
}

is continuous in F with respect to the vague topology for every x > 0. Now, as the
family of sub-distributions F on (0, ∞) is compact for the vague topology (see, e.g.,
Bauer, 1981), and the class G is uniformly bounded by 1, we conclude by lemma
5.1 of van der Geer (1993) that g is P0-Glivenko–Cantelli. It follows by corollary 1
of van der Vaart and Wellner (2000) that H(ĝn, g0)→a.s. 0. The second assertion
of the proposition follows from lemma 5.2 of van de Geer (1993).

Lemma 4 establishes a useful bound for k-monotone densities.

Lemma 4. If g is a k-monotone density function for k ≥2, then

g(x)≤ 1
x

(
1− 1

k

)k−1

for all x > 0.
© 2009 The Authors. Journal compilation © 2010 VVS.
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Proof. We have

g(x)=
∫ ∞

x

k
yk (y −x)k−1 dF (y)= 1

x

∫ ∞

x

kx
y

(
1− x

y

)k−1

dF (y)

≤ 1
x

supx≤y <∞
kx
y

(
1− x

y

)k−1

= k
x

sup0 < u≤1u(1−u)k−1 = 1
x

(
1− 1

k

)k−1

by an easy calculation. [Note that when k =2, this bound equals 1/(2x) which agrees
with the bound given by Jongbloed (1995, p. 117) and Groeneboom et al., (2001,
p. 1669) in this case.]

Proposition 2. Let c > 0. Then for j =0, 1, · · · , k −2

sup
x∈[c,∞)

| ĝ(j)
n (x)−g(j)

0 (x) | →a.s. 0, as n→∞,

and for each x > 0 at which g0 is (k −1)-times differentiable, ĝ(k−1)
n (x)→a.s. g

(k−1)
0 (x).

Proof. Using the first part in the characterization of the MLE, we have∫ ∞

0

g0(x)
ĝn(x)

dGn(x)≤1. (6)

Let F̂ n denote again the MLE of the mixing distribution. By the Helly–Bray
theorem, there exists a subsequence {F̂ l} that converges weakly to some distribution
function F̂ and hence for all x > 0 ĝl(x)→ ĝ(x) as l →∞ where

ĝ(x)=
∫ ∞

0

k(t −x)k−1
+

tk dF̂ (t), x > 0.

The previous convergence is uniform on [c, ∞), c > 0. This follows as ĝl and ĝ are
monotone and ĝ is continuous.

Using the inequality 6 we can show that the limit ĝ and g0 have to be the same,
which implies the consistency result. The proof follows along the lines of Groeneboom
et al. (2001, p. 1674–1675; see the Appendix). Consistency of the higher derivatives
can be shown recursively using convexity of (−1)j ĝ(j)

n for j =1, . . ., k −1 in the same
way as in the proof of lemma 3.1 of Groeneboom et al. (2001): for small h > 0,
convexity of (−1)j ĝ(j)

n allows us to write, for j =0, . . ., k −2,

(−1)j ĝ(j)
n (x −h)− (−1)j ĝ(j)

n (x)
−h

≤ (−1)j ĝ(j +1)
n (x−)≤ (−1)j ĝ(j +1)

n (x +)

≤ (−1)j ĝ(j)
n (x +h)− (−1)j ĝ(j)

n (x)
h

.

By letting n→∞, this implies that
© 2009 The Authors. Journal compilation © 2010 VVS.
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(−1)jg(j)
0 (x −h)− (−1)jg(j)

0 (x)
−h

≤ lim inf
n→∞ (−1)j ĝ(j +1)

n (x−)≤ lim sup
n→∞

(−1)j ĝ(j +1)
n (x +)

≤ (−1)jg(j)
0 (x +h)− (−1)jg(j)

0 (x)
h

.

By letting h ↘ 0, we conclude consistency of ĝ(j)
n (x), j =0, . . ., k − 1 for x ∈ (0, ∞).

Note that consistency of (−1)j ĝ(j)
n , j =1, . . ., k −2 is uniform on intervals of the form

[c, ∞) because of continuity of those derivatives. For k − 1, only pointwise strong
consistency of (−1)k−1ĝ(k−1)

n can be claimed.
We also have strong and uniform consistency of the LSE g̃n on intervals of the

form [c, ∞), c > 0. The relevant result and proof are deferred to the Appendix.

4 Asymptotic minimax risk lower bounds for the rates of convergence

In this section, our goal is to derive minimax lower bounds for the behavior of any
estimator of a k-monotone density g and its first k −1 derivatives at a point x0 for
which the k-th derivative exists and is non-zero. The proof will rely on the basic
lemma 4.1 of Groeneboom (1996); see also Jongbloed (2000). This basic method
seems to go back to Donoho and Liu (1987, 1991).

As before, let Dk denote the class of k-monotone densities on [0, ∞). Here is the
notation we will need. Consider estimation of the j-th derivative of g ∈Dk at x0 for
j ∈{0, 1, . . ., k −1}. If T̂ n is an arbitrary estimator of the real-valued functional T of
g, then the (L1-minimax risk based on a sample X1, . . ., Xn of size n from g which
is known to be in a suitable subset Dk,n of Dk is defined by

MMR1(n, T , Dk,n)= inftn supg∈Dk,n
Eg | T̂ n −Tg | .

Here the infimum ranges over all possible measurable functions tn : Rn → R, and
T̂ n = tn(X1, . . ., Xn). When the subclasses Dk,n are taken to be shrinking to one fixed
g0 ∈Dk, the minimax risk is called local at g0. The shrinking classes (parameterized
by �> 0) used here are Hellinger balls centered at g0:

Dk,n ≡Dk,n,� =
{

g ∈Dk : H2(g, g0)= 1
2

∫ ∞

0
(
√

g(x)−
√

g0(x))2 dx ≤ �/n
}
.

The behavior, for n →∞ of such a local minimax risk MMR1 will depend on n
(rate of convergence to zero) and the density g0 toward which the subclasses shrink.
Lemma 5 is the basic tool for proving such a lower bound.

Lemma 5. Assume that there exists some subset {gε : ε> 0} of densities in Dk,n such
that, as ε↓0,

H2(gε, g0)≤ ε(1+o(1)) and |Tgε −Tg0 | ≥ (cε)r(1+o(1))

for some c > 0 and r > 0. Then
© 2009 The Authors. Journal compilation © 2010 VVS.



54 F. Balabdaoui and J. A. Wellner

sup
�> 0

lim inf
n→∞ nrMMR1(n, T , Dk,n,�)≥ 1

4

( cr
2e

)r
.

Proof. See Groeneboom (1996) and Jongbloed (2000).
Here is the main result of this section.

Proposition 3. Let g0 ∈ Dk and x0 be a fixed point in (0, ∞) such that g0 is
k-times continuously differentiable at x0 (k ≥ 2). An asymptotic lower bound for the
local minimax risk of any estimator T̂ n,j for estimating the functional Tjg0 =g(j)

0 (x0),
is given by:

sup
�> 0

lim inf
n→∞ n

k−j
2k +1 MMR1(n, Tj , Dk,n,�)≥

{
|g(k)

0 (x0) | 2j +1g0(x0)k−j
}1/(2k +1)

dk,j ,

where dk,j > 0, j ∈{0, . . ., k −1}. Here

dk,j = 1
4

(
4

k − j
2k +1

e−1
)(k−j)/(2k +1) �(j)

k,1

(�k,2)(k−j)/(2k +1) ,

where

�k,2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

24(k +1) (2k +3)(k +2)
(k +1)2

((2(k +1))!)2

(4k +7)!((k−1)!)2
((

k
k/2−1

))2 , k even

24(k +2)(2k +3)(k +2)
(

(2(k +1))!/
2

(4k +7)!(k!)2
((

k +1
(k−1)/2

))2 , k odd.

Proposition 3 also yields lower bounds for estimation of the corresponding mixing
distribution function F at a fixed point.

Corollary 1. Let g0 ∈ Dk and let x0 be a fixed point in (0, ∞) such that g0 is
k-times continuously differentiable at x0, k ≥2. Then, for estimating Tg0 =F0(x0) where
F0 is given in terms of g0 by 2,

sup
�> 0

lim inf
n→∞ n1/2k +1MMR1(n, T , Dk,n,�)

≥
{

|g(k)
0 (x0) | 2k−1g0(x0)

}1/(2k +1) xk
0

k!
dk,k−1.

Proof. See the Appendix.
Both the rates of convergence n(k−j)/(2k +1) and the dependence of our lower bound

on the constants g0(x0) and g(k)
0 (x0) match with the known results for k =1 and k =2

owing to Groeneboom (1985) and Groeneboom et al. (2001), and reappears in the
limit distribution theory for k ≥3 in Balabdaoui and Wellner (2007).
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Appendix

Proof of Lemma 3. The arguments generalize those in the proof of lemma 2.4
of Groeneboom et al. (2001). If ĝn is the MLE, let gt(x)=k(t − x)k−1

+ /tk for some
t > 0. For all ε> 0, we have that ĝn + εgt ∈Mk ∩L1(�), and hence

lim
ε↘0

1
ε

(�n(ĝn + εgt)−�n(ĝn))≤0⇐⇒
∫ ∞

0

k(t −x)k−1
+ /tk

ĝn(x)
dGn(x)−1≤1

yielding the inequality in Equation 3. If t ∈ {â1, · · · , âm}, then for ε ∈ R such that
| ε | is small enough, ĝn + εgt ∈Mk ∩L1(�), and hence

lim
ε→0

1
ε

(�n(ĝn + εgt)−�n(ĝn))=0⇐⇒
∫ ∞

0

k(t −x)k−1
+ /tk

ĝn(x)
dGn(x)−1=0

yielding the identity in Equation 4.
Suppose now that ĝn is a k-monotone spline of degree k −1 and with simple knots

satisfying the condition in Equation 3, and let g ∈Mk ∩ L1(�). By lemma 1, there
exists a non-decreasing and bounded function F on (0, ∞) such that

g(x)=
∫ ∞

0

k(t −x)k−1
+

tk dF (t).

We can write

�n(ĝn)−�n(g)=
∫ ∞

0
log

(
ĝn(x)
g(x)

)
dGn(x)−1+

∫ ∞

0
g(x) dx

≥
∫ ∞

0

(
1−g(x)
ĝn(x)

)
dGn(x)−1+

∫ ∞

0
g(x) dx,

using the inequality log z ≥1−1/z, z > 0

=−
∫ ∞

0

g(x)
ĝn(x)

dGn(x)+
∫ ∞

0
g(x) dx

=−
∫ ∞

0

∫ ∞

0

k(t −x)k−1
+

tk ĝn(x)
dF (t) dGn(x)+

∫ ∞

0
dF (t)

=
∫ ∞

0

(
−
∫ ∞

0

k(t −x)k−1
+

tk ĝn(x)
dGn(x)+1

)
dF (t)≥0 by Equation 3.

Hence, ĝn is the MLE.

Establishing the characterization and structure of the LSE

In this optimization problem, existence requires more work because there is no avail-
able theory as in the case of the MLE. However, we will show that even though the
resulting estimator does not necessarily have total mass one, it does have total mass
converging almost surely to one and it consistently estimates g0 ∈Dk.
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Using arguments similar to those in the proof of theorem 1 in Williamson (1956),
one can show that g ∈Mk if and only if

g(x)=
∫ ∞

0
(t −x)k−1

+ d�(t)

for a positive measure � on (0, ∞). Thus, we can rewrite the criterion Qn in terms
of the corresponding measures �: by Fubini’s theorem∫ ∞

0
g2(x) dx =

∫ ∞

0

∫ ∞

0
rk(t, t′) d�(t) d�(t′)

where rk(t, t′)=∫ t∧t′

0 (t −x)k−1(t′ −x)k−1 dx, and∫ ∞

0
g(x) dGn(x)=

∫ ∞

0

∫ ∞

0
(t −x)k−1

+ d�(t) dGn(x)=
∫ ∞

0
sn,k(t) d�(t),

where sn,k(t)≡∫∞
0 (t −x)k−1

+ dGn(x). Hence it follows that, with g =g�

Qn(g)= 1
2

∫ ∞

0

∫ ∞

0
rk(t, t′) d�(t) d�(t′)−

∫ ∞

0
sn,k(t) d�(t)≡�n(�).

Now, we want to minimize �n over the set X of all non-negative measures � on
(0, ∞).

Proposition A.1. The functional �n admits a unique minimizer �̃, and hence the
LSE g̃n exists and is unique.

Proof. Uniqueness follows from strict convexity of �n. To prove existence, it can
be shown that �n can be restricted to a subset C of X on which it is lower semicon-
tinuous, and hence the minimization problem admits a solution by applying theorem
38.B of Zeidler (1985, p. 152). In the following, we will exhibit the subset C, and
show that the conditions of Zeidler’s theorem are satisfied.

We begin by checking the hypotheses of Zeidler’s theorem 38.B (Zeidler, p. 152
1985). We identity X of Zeidler’s theorem with the space X of non-negative
measures on [0, ∞), and we show that we can take M of Zeidler’s theorem to be

C ≡{�∈X :�(t, ∞)≤Dt−(k−1/2)}
for some constant D <∞.

First, we can, without loss, restrict the minimization to the space of non-negative
measures on [X(1), ∞), where X(1) > 0 is the first-order statistic of the data. To see
this, note that we can decompose any measure � as �=�1 +�2, where �1 is concen-
trated on [0, X(1)) and �2 is concentrated on [X(1), ∞). As the second term of Qn is
zero for �1, the contribution of the �1 component to Qn(�) is always non-negative,
so we make inf Qn(�) no larger by restricting to measures on [X(1), ∞).

We can restrict further to measures � with
∫∞

0 tk−1 d�(t) ≤ D for some finite
D=D�. To show this, we first give a lower bound for rk(s, t). For s, t≥ t0 > 0 we have
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rk(s, t)≥ (1− e−v0 )t0

2k
sk−1tk−1, (A.1)

where v0 ≈1.59. To prove Equation A.1, we will use the inequality

(1− v/k)k−1 ≥ e−v, 0≤ v≤ v0, k ≥2. (A.2)

[This inequality holds by straightforward computation; see Hall and Wellner (1979),
especially their proposition 2.]

Thus, we compute

rk(s, t)=
∫ ∞

0
(s −x)k−1

+ (t −x)k−1
+ dx

= 1
k

sk−1tk−1
∫ ∞

0

(
1− y

sk

)k−1

+

(
1− y

tk

)k−1

+
dy

≥ 1
k

sk−1tk−1
∫ v0(t∧s)

0
e−y/se−y/t dy

= 1
k

sk−1tk−1 1
c

∫ v0(t∧s)

0
ce−cy dy, c ≡1/s +1/t

= 1
k

sk−1tk−1 1
c

(
1− exp(−c(t ∧ s)v0)

)
≥ 1

k
sk−1tk−1 1

c

(
1− exp(−v0)

)
as

c(s ∧ t)= s + t
st

(s ∧ t)=
{

(t + s)/t, s ≤ t
(t + s)/s, s ≥ t

}
≥1.

But, we also have

1
c

= 1
(1/s)+ (1/t)

= st
s + t

≥ 1
2

s ∧ t ≥ 1
2

t0

for s, t ≥ t0, so we conclude that Equation A.1 holds.
From the inequality A.1, we conclude that for measures � concentrated on [X(1), ∞)

we have

∫ ∫
rk(s, t) d�(s) d�(t)≥ (1− e−v0 )X(1)

2k

(∫ ∞

0
tk−1 d�(t)

)2

.

In contrast,

∫ ∞

0
sn,k(t) d�(t)≤

∫ ∞

0
tk−1 d�(t).
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Combining these two inequalities it follows that for any measure � concentrated
on [X(1), ∞) we have

�n(�)= 1
2

∫ ∫
rk(t, s) d�(t) d�(s)−

∫ ∞

0
sn,k(t) d�(t)

≥ (1− e−v0 )X(1)

4k

(∫ ∞

0
tk−1 d�(t)

)2

−
∫ ∞

0
tk−1 d�(t)

≡Am2
k−1 −mk−1.

This lower bound is strictly positive if

mk−1 > 1/A= 4k
(1− e−v0 )X(1)

.

But for such measures � we can make � smaller by taking the zero measure. Thus,
we may restrict the minimization problem to the collection of measures � satisfying

mk−1 ≤1/A. (A.3)

Now we decompose any measure � on [X(1), ∞) as �=�1 +�2 where �1 is concen-
trated on [X(1), MX(n)] and �2 is concentrated on (MX(n), ∞) for some (large) M > 0.
Then, it follows that

�n(�)≥ 1
2

∫ ∫
rk(t, s) d�2(t) d�2(s)−

∫ ∞

0
tk−1 d�(t)

≥ (1− ev0 )MX(n)

4k
(MX(n))2k−2�(MX(n), ∞)2 −1/A

≡B�(MX(n), ∞)2 −1/A > 0

if

�(MX(n), ∞)2 >
1

AB
= 4k

(1− e−v0 )X(1)

4k
(1− e−v0 )(MX(n))2k−1 ,

and hence we can restrict to measures � with

�(MX(n), ∞)≤ 4k

(1− e−v0 )X 1/2
(1) X k−1/2

(n)

1
Mk−1/2

for every M ≥1.
But this implies that � satisfies∫ ∞

0
tk−3/4 d�(t)≤D

for some 0 < D=D� <∞, and this implies that tk−1 is uniformly integrable over �∈C.
Alternatively, for �≥1 we have
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∫
t >�

tk−1 d�(t)=�k−1�(�, ∞)+ (k −1)
∫ ∞

�
sk−2�(s, ∞)−ds

≤�k−1 K
�k−1/2 + (k −1)

∫ ∞

�
sk−2Ks−(k−1/2) ds

=K�−1/2 + (k −1)K
∫ ∞

�
s−3/2 ds

≤K�−1/2 + (k −1)2K�−1/2

→0 as �→∞
uniformly in �∈C.

This implies that for {�m}⊂C satisfying �m ⇒�0 we have

lim sup
m→∞

∫ ∞

0
sn,k(t) d�m(t)≤

∫ ∞

0
sn,k(t) d�0(t),

and hence �n is lower semicontinuous on C:

lim inf
m→∞ �n(�m)≥�n(�0).

As Qn is lower semi-compact (i.e., the sets Cr ≡{� ∈C : �n(�) ≤ r} are compact for
r ∈R), the existence of a minimum follows from Zeidler (1985, theorem 38.B, p. 152).

Lemma A.2 characterizes the LSE.

Lemma A.1. For k ≥1 define Yn and H̃n respectively by

Yn(t)=
∫ t

0

∫ tk−1

0
· · ·
∫ t2

0
Gn(t1)dt1dt2 · · ·dtk−1 =

∫ t

0

(t −x)k−1

(k −1)!
dGn(x)

and

H̃n(t)=
∫ t

0

∫ tk

0
· · ·
∫ t2

0
g̃n(t1)dt1dt2 · · ·dtk =

∫ t

0

(t −x)k−1

(k −1)!
g̃n(x)dx

for t ≥0. Then g̃n is the LSE over Mk ∩L2(�) if and only if the following conditions
are satisfied:{

H̃n(t)≥Yn(t), for t ≥0, and∫∞
0 (H̃n −Yn) dg̃(k−1)

n =0.
(A.4)

Proof. The arguments are very similar to those used in the proof of lemma 3.
Now, to prove that the LSE is a spline of degree k −1 with simple knots, we need

the following intermediate result.

Proposition A.2. Let [a, b]]⊆ (0, ∞) and let g be a non-negative and non-increasing
function on [a, b]. For any polynomial Pk−1 of degree ≤k −1 on [a, b], if the function

�(t)=
∫ t

0
(t − s)k−1g(s)ds −Pk−1(s), t ∈ [a, b]
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admits infinitely many zeros in [a, b], then there exists t0 ∈ [a, b] such that g ≡ 0 on
[t0, b] and g > 0 on [a, t0) if t0 > a.

Proof. By applying the mean value theorem k times, it follows that (k −1)!g =�(k)

admits infinitely many zeros in [a, b]. But as g is assumed to be non-negative and
non-increasing, this implies that if t0 is the smallest zero of g in [a, b], then g≡0 on
[t0, b]. By definition of t0, g > 0 on [a, t0) if t0 > a.

Now we will use the characterization of the LSE g̃n together with the previous
proposition to show that it is a finite mixture of beta(1, k)s. We know from lemma
A.1 that g̃n is the LSE if and only if Equation A.4 holds. The equality condition
in the second part of equation A.4 implies that H̃n and Yn have to be equal at
any point of increase of the monotone function (−1)k−1g̃(k−1)

n . Therefore, the set of
points of increase of (−1)k−1g̃(k−1)

n is included in the set of zeros of the function
�̃n = H̃n −Yn.

Now, note that Yn can be given by the explicit expression:

Yn(t)= 1
(k −1)!

1
n

n∑
j =1

(t −X(j))k−1
+ , for t > 0.

In other words, Yn is a spline of degree k −1 with simple knots at X(1), . . ., X(n),
the order statistics of X1, . . ., Xn. Also note that the function (−1)k−1g̃(k−1)

n cannot
have a positive density with respect to Lebesgue measure �. Indeed, if we assume
otherwise, then we can find 0 ≤ j ≤ n and an interval I ⊂ (X(j), X(j +1))(with X(0) =0
and X(n+1) =∞) such that I has a non-empty interior, and H̃n ≡ Yn on I. This

implies that H̃
(k)
n ≡Y(k)

n ≡0, as Yn is a polynomial of degree k −1 on I, and hence
g̃n ≡ 0 on I. But the latter is impossible as it was assumed that (−1)k−1g̃(k−1)

n was
strictly increasing on I. Thus, the monotone function (−1)k−1g̃(k−1)

n can have only
two components: discrete and singular. In the following, we will prove that it is actu-
ally discrete with finitely many points of jump.

Proposition A.2. There exists m ∈ N \ {0}, ã1, · · · , ãm and w̃1, · · · , w̃m such that
for all x > 0, the LSE g̃n is given by

g̃n(x)= w̃1
k(ã1 −x)k−1

+
ãk

1

+ · · ·+ w̃m
k(ãm −x)k−1

+
ãk

m

. (A.5)

Consequently, the equality part in Equation A.4 can be re-expressed as H̃n(t)=Yn(t)
if t is a point in the support of the minimizing (mixing) measure F̃ n (or a knot of g̃n).

Proof. We need to consider two cases:
(i) The number of zeros of �̃n = H̃n − Yn is finite. This implies by the equality

condition in Equation A.4 that the number of points of increase of (−1)k−1g̃(k−1)
n is
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also finite. Therefore, (−1)k−1g̃(k−1)
n is discrete with finitely many jumps and hence

g̃n is of the form given in Equation A.5.
(ii) Now, suppose that �̃n has infinitely many zeros. Let j be the smallest inte-

ger in {0, · · · , n − 1} such that [X(j), X(j +1)] contains infinitely many zeros of �̃n,k

(with X(0) =0 and X(n+1) =∞). By proposition A.2, if tj is the smallest zero of g̃n in
[X(j), X(j +1)], then g̃n ≡0 on [tj , X(j +1)] and g̃n > 0 on [X(j), tj) if tj > X(j). Note that from
the proof of proposition A.1, we know that the minimizing measure �̃n does not put
any mass on (0, X(1)], and hence the integer j has to be strictly greater than 0.

Now, by definition of j, �̃n has finitely many zeros to the left of X(j), which implies
that (−1)k−1g̃(k−1)

n has finitely many points of increase in (0, X(j)). We also know that
g̃n ≡0 on [tj , ∞). Thus we only need to show that the number of points of increase
of (−1)k−1g̃(k−1)

n in [X(j), tj) is finite, when tj > X(j). This can be argued as follows.
Consider zj to be the smallest zero of �̃n in [X(j), X(j +1)). If zj ≥ tj , then we can-
not possibly have any point of increase of (−1)k−1g̃(k−1)

n in [X(j), tj) because it would
imply that we have a zero of �̃n that is strictly smaller than zj . If zj < tj , then for the
same reason, (−1)k−1g̃(k−1)

n has no point of increase in [X(j), zj). Finally, (−1)k−1g̃(k−1)
n

cannot have infinitely many points of increase in [zj , tj) because that would imply
that �̃n has infinitely many zeros in (zj , tj), and hence by lemma A.1, we can find
t′
j ∈ (zj , tj) such that g̃n ≡0 on [t′

j , tj ]. But, this is impossible as g̃n > 0 on [X(j), tj).

Proof of the identity ĝ =g0 (proof of Proposition 2). For 0 <� < 1 define ��

=G−1
0 (1−�). Let ε> 0 be small so that ε<�ε.

By Equation 6, there exists a number Dε > 0 such that ĝl(�ε)≥Dε for sufficiently
large l. To see this, note that Equation 6, implies that

1≥
∫ ∞

0

g0(x)
ĝl(x)

dGl(x)≥
∫ ∞

�ε

g0(x)ĝl(x) dGl(x)≥ 1
ĝl(�ε)

∫ ∞

�ε

g0(x) dGl(x),

and hence

lim inf
l

ĝl(�ε)≥ lim inf
l

∫ ∞

�ε

g0(x) dGl(x)=
∫ ∞

�ε

g0(x) dG0(x) > 0,

by the choice of �ε, and the claim follows by taking Dε =
∫∞

�ε
g0(x) dG0(x)/2. Hence,

by the bound in lemma 4, we have

ĝl(z)≤ 1
z

(
1− 1

k

)k−1

≡ ek

z
, g0(z)≤ 1

z

(
1− 1

k

)k−1

≡ ek

z
.

It follows that g0/ĝl is uniformly bounded on the interval [ε, �ε]; that is, there exist
two constants cε and cε such that for all x ∈ [ε, �ε]

cε ≤
g0(x)
ĝl(x)

≤ cε.

In fact,
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g0(x)
ĝl(x)

≤ g0(ε)
ĝl(�ε)

≤ ε−1ek

Dε
,

while

g0(x)
ĝl(x)

≥ g0(�ε)
ĝl(ε)

≥ g0(�ε)
ε−1ek

Therefore,

g0(x)
ĝl(x)

→ g0(x)
ĝ(x)

uniformly on [ε, �ε]. Using Equation 6, we have for sufficiently large l and∫ �ε

ε

g0(x)
ĝ(x)

dGl(x)≤
∫ �ε

ε

(
g0(x)
ĝl(x)

+ ε

)
dGl(x)≤1+ ε.

But as Gl converges weakly to G0 the distribution function of g0 and g0/ĝ is con-
tinuous and bounded on [ε, �ε]; we conclude that∫ �ε

ε

g0(x)
ĝ(x)

dG0(x)≤1+ ε.

Now, by Lebesgue’s monotone convergence theorem, we conclude that∫ ∞

0

g0(x)
ĝ(x)

dG0(x)≤1,

which is equivalent to∫ ∞

0

g2
0(x)
ĝ(x)

dx ≤1. (A.6)

Define �=∫∞
0 ĝ(x) dx. Then, ĥ= �−1ĝ is a k-monotone density. By Equation A.6,

we have that∫ ∞

0

g2
0(x)

ĥ(x)
dx = �

∫ ∞

0

g2
0(x)
ĝ(x)

dx ≤ �.

Now, consider the function

K (g)=
∫ ∞

0

g2
0(x)
g(x)

dx

defined on the class Cd of all continuous densities g on [0, ∞). Minimizing K is
equivalent to minimizing∫ ∞

0

(
g2

0(x)
g(x)

+g(x)
)

dx.

It is easy to see that the integrand is minimized pointwise by taking g(x)=g0(x).
Hence, infCd K (g)≥1. In particular, K (ĥ)≥1 which implies that �=1.

Now, if g �=g0 at a point x, it follows that g �=g0 on an interval of positive length.
Hence, g0 �=g ⇒K (g) > 1. We conclude that we have necessarily ĥ= ĝ =g0.
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Proposition A.4. Fix c > 0 and suppose that the true k-monotone density g0 sat-
isfies

∫∞
0 x−1/2g0(x) dx <∞. Then, ‖ g̃n −g0 ‖ 2 →a.s. 0,

sup
x∈[c,∞)

| g̃(j)
n (x)−g(j)

0 (x) | →a.s. 0, as n→∞,

for j =0, 1, · · · , k − 2, and, for each x > 0 at which g0 is (k − 1)-times differentiable,
g̃(k−1)

n (x)→a.s. g
(k−1)
0 (x). Here, ‖ · ‖2 denotes the L2-norm.

Proof. The main difficulty here is that the LSE g̃n is not necessarily a density in
that it may integrate to more than one; indeed it can be shown that

∫∞
0 g̃1(x) dx =

((2k − 2)/k)(1 − 1/(2k − 1))k−2 > 1 for k ≥ 3. However, once we show that g̃n stays
bounded in L2 with high probability, the proof of consistency will be much like the
one used for k =2; that is, consistency of the LSE of a convex and decreasing density
(see Groeneboom et al., 2001). The proof for k =2 is based on the very important
fact that the LSE is a density, which helps in showing that g̃n at the last jump point
�n ∈ [0, 	] of g̃′

n for a fixed 	> 0 is uniformly bounded. The proof would have been
similar if we only knew that

∫∞
0 g̃n(x) dx =Op(1).

Here we will first show that
∫∞

0 g̃2
n d�=Op(1). Note that the equality part in Equa-

tion (A.4) can be re-written as
∫∞

0 g̃2
n(x)dx =∫∞

0 g̃n(x)dGn(x) and hence√∫ ∞

0
g̃2

n(x)dx =
∫ ∞

0
ũn(x)dGn(x), (A.7)

where ũn ≡ g̃n/ ‖ g̃n ‖ 2 satisfies ‖ ũn ‖ 2 =1. Take Fk to be the class of functions

Fk =
{

g ∈Mk,
∫ ∞

0
g2d�=1

}
.

In the following, we show that Fk has an envelope G ∈L1(G0).
Note that for g ∈Fk we have

1=
∫ ∞

0
g2d�≥

∫ x

0
g2d�≥xg2(x),

as g is decreasing. Therefore, g(x)≤1/
√

x ≡G(x) for all x > 0 and g ∈Fk; that is G
is an envelope for the class Fk. As G ∈ L1(G0) (by our hypothesis) it follows from
the strong law that∫ ∞

0
ũn(x) dGn(x)≤

∫ ∞

0
G(x) dGn(x)→a.s.

∫ ∞

0
G(x) dG0(x), as n→∞

and hence by Equation A.7 the integral
∫∞

0 g̃2
nd� is bounded (almost surely) by some

constant Mk.
Now we are ready to complete the proof. Let 	> 0 and �n be the last jump point

of g̃(k−1)
n if there are jump points in the interval (0, 	]; otherwise, we take �n to be 0.

To show that the sequence
(
g̃n(�n)

)
n stays bounded, we consider two cases:
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1. �n ≥	/2. Let n be large enough so that
∫∞

0 g̃2
nd�≤Mk. We have

g̃n(�n)≤ g̃n(	/2)= (2/	)(	/2)g̃n(	/2)≤ (2/	)
∫ 	/2

0
g̃n(x)dx

≤ (2/	)
√

	/2

√∫ 	/2

0
g̃2

n(x)dx ≤
√

2/	

√∫ ∞

0
g̃2

n(x)dx

=√2Mk/	. (A.8)

2. �n <	/2. We have∫ 	

�n

g̃n(x)dx ≤
√

	− �n

√∫ 	

�n

g̃2
n(x)dx ≤

√
	

√∫ ∞

0
g̃2

n(x)dx =√	Mk.

Using that g̃n is a polynomial of degree k −1 on the interval [�n, 	], we have

√
	Mk ≥

∫ 	

�n

g̃n(x)dx = g̃n(	)(	− �n)− g̃′
n(	)
2

(	− �n)2 + · · ·+ (−1)k−1 g̃(k−1)
n (	)

k!
(	− �n)k

≥ (	− �n)

(
g̃n(	)+ 1

k
(−1)g̃′

n(	)(	− �n)+ · · ·+ (−1)k−1 g̃(k−1)
n (	)

(k −1)!
(	− �n)k−1

)

= (	− �n)
(

g̃n(	)
(

1− 1
k

)
+ 1

k
g̃n(�n)

)
≥ 	

2k
g̃n(�n)

and hence g̃n(�n)≤2k
√

Mk/	. By combining the bounds, we have for large n, g̃n(�n)≤
2k

√
Mk/	=Ck. Now, as g̃n(	) ≤ g̃n(�n), the sequence g̃n(x) is uniformly bounded

almost surely for all x ≥	. Using a Cantor diagonalization argument, we can find a
subsequence {nl} so that, for each x ≥	, gnl (x)→ g̃(x), as l →∞. By Fatou’s lemma,
we have∫ ∞

	
(g̃(x)−g0(x))2dx ≤ lim inf

l→∞

∫ ∞

	
(g̃nl

(x)−g0(x))2dx. (A.9)

However, the characterization of g̃n implies that Qn(g̃n)≤Qn(g0), and this yields∫ ∞

0
(g̃n(x)−g0(x))2dx ≤2

∫ ∞

0
(g̃n(x)−g0(x))d(Gn(x)−G0(x)).

Thus, we can write∫ ∞

	
(g̃nl

(x)−g0(x))2dx ≤
∫ ∞

0
(g̃nl

(x)−g0(x))2dx

≤2
∫ ∞

0
(g̃nl

(x)−g0(x))d(Gnl (x)−G0(x))→a.s. 0,
(A.10)

as l →∞. The last convergence is justified as follows: as
∫∞

0 g̃2
nl

d� is bounded almost
surely, we can find a constant C > 0 such that g̃nl

−g0 admits G(x)=C/
√

x, x > 0, as
an envelope. Since G ∈ L1(G0) by hypothesis and as the class of functions
{(g − g0)1[G≤M ] : g ∈Mk ∩ L2(�)} is a Glivenko-Cantelli class for every M > 0 (each
© 2009 The Authors. Journal compilation © 2010 VVS.



k-monotone density estimation 65

element is a difference of two bounded monotone functions) Equation A.10 holds.
From Equation A.9, we conclude that

∫∞
	 (g̃(x)−g0(x))2dx≤0, and therefore, g̃≡g0

on (0, ∞) as 	> 0 can be chosen arbitrarily small. We have proved that there exists
�0 with P(�0)=1 and such that for each �∈�0 and any given subsequence g̃nk

(·, �),
we can extract a further subsequence g̃nl

(·, �) that converges to g0 on (0, ∞). It
follows that g̃n converges to g0 on (0, ∞), and this convergence is uniform on
intervals of the form [c, ∞), c > 0 by the monotonicity and continuity of g0. As for
the MLE, consistency of the higher derivatives can be shown recursively using the
convexity of (−1)j g̃(j)

n for j =1, . . ., k −2.

Proof of Proposition 3. Let � be a positive number and consider the function
g̃� defined by

g̃�(x)= (x0 +�−x)k +1(x −x0 +�)k +21[x0−�,x0 +�](x).

Now, consider the perturbation

g�(x)=g0(x)+ s(�)g̃�(x), x ∈ (0, ∞),

where s(�) is a scale to be determined later. If � is chosen small enough so that
the true density g0 is k-times continuously differentiable on [x0 −�, x0 +�], the per-
turbed function g� is also k-times differentiable on [x0 −�, x0 +�] with a continuous
k-th derivative. Now, let r be the function defined on (0, ∞) by

r(x)= (1−x)k +1(1+x)k +21[−1,1](x)= (1−x2)k +1(1+x)1[−1,1](x).

Then, we can write g̃� as g̃�(x)=�2k +3r((x −x0)/�). Then, for 0≤ j ≤k

g(j)
� (x0)−g(j)

0 (x0)= s(�)�2k +3−j r(j)(0).

The scale s(�) should be chosen so that (−1)jg(j)
� (x) > 0 for all 0 ≤ j ≤ k, for x ∈

[x0 −�, x0 +�]. But for � small enough, the sign of (−1)jg(j)
� will be that of (−1)jg(j)

0 (x0),
and hence g� is k-monotone. For j =k, g(k)

� (x0)=g(k)
0 (x0)+ s(�)�k +3r(k)(0). Assume

that r(k)(0) �=0. Set s(�)=g(k)
0 (x0)/(�k +3r(k)(0)). Then, for 0≤ j ≤k −1

g(j)
� (x0)=g(j)

0 (x0)+�k−j g
(k)
0 (x0)r(j)(0)

r(k)(0)
=g(j)

0 (x0)+o(�),

as �→0, and

(−1)kg(k)
� (x0)=2(−1)kg(k)

0 (x0) > 0.

To compute r(j)(0), note that for m≥2 and 2n≥m we have(
(1−x2)n)(m) = (((1−x2)n)′

)(m−1)

= (−2nx(1−x2)n−1)(m−1)

=−2n
(
x((1−x2)n−1)(m−1) + (m−1)((1−x2)n−1)m−2) ,
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where in the last equality we used Leibniz’s formula for the derivatives of a prod-
uct; see, for example, Apostol (1957, p. 99). Evaluating the last expression at x =0
yields

xn,m ≡ ((1−x2)n)(m)
∣∣∣∣
x =0

=−2n(m−1)xn−1,m−2.

If m is even, we find that

xn,m = (−2)m/2
m/2−1∏

i =0

(n− i)×
m/2−1∏

i =0

(m−2i −1)×xn−m/2,0

= (−2)m/2
m/2−1∏

i =0

(n− i)×
m/2−1∏

i =0

(m−2i −1)

as xn−m/2,0 =1. Similarly, when m is odd,

xn,m = (−2)(m−1)/2
(m−1)/2−1∏

i =0

(n− i)×
(m−1)/2−1∏

i =0

(m−2i −1)×xn−(m−1)/2,1

=0

as xn−(m−1)/2,1 =0. Now we have, for 1≤ j ≤k,

r(j)(x)= ((1−x2)k +1(1+x)
)(j)

= (x +1)
(
(1−x2)k +1)(j) + j

(
(1−x2)k +1)(j−1)

and hence

r(j)(0)= ((1−x2)k +1)(j)
∣∣∣∣
x =0

+ j
(
(1−x2)k +1)(j−1)

∣∣∣∣
x =0

.

Therefore, when j is even the second term vanishes and

r(j)(0)= (−2)j/2
j/2−1∏
i =0

(k +1− i)×
j/2−1∏
j =0

(j −2i −1) �=0.

When j is odd, the first term vanishes and

r(j)(0)= (−2)(j−1)/2
(j−1)/2−1∏

i =0

(k +1− i)×
(j−1)/2∏

i =0

(j −2i) �=0.

Summarizing, we have shown that

r(j)(0)=
{

(−2)j/2∏j/2−1
i =0 (k +1− i)×∏j/2−1

i =0 (j −2i −1) �=0 j even
(−2)(j−1)/2∏(j−1)/2−1

i =0 (k +1− i)×∏(j−1)/2
i =0 (j −2i) �=0 j odd.

We set Ck,j = r(j)(0) for 1≤ j ≤k. Then, Ck,k becomes

Ck,k =
{

(−2)k/2∏k/2−1
i =0 (k +1− i)×∏k/2−1

i =0 (k −2i −1) if k is even
(−2)(k−1)/2∏(k−1)/2−1

i =0 (k +1− i)×∏(k−1)/2
i =0 (k −2i) if k is odd.
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The previous expressions can be given in a more compact form. After some alge-
bra, we find that

Ck,k =
{

2× (−1)k/2(k +1)(k −1)!
( k

k/2−1

)
if k is even

(−1)(k−1)/2k!
( k +1

(k−1)/2

)
if k is odd.

(A.11)

We have for 0≤ j ≤k −1,

|Tj(g�)−Tj(g0)|=
∣∣∣∣Ck, j

Ck, k
g(k)

0 (x0)

∣∣∣∣�k−j ≡�(j)
k,1

∣∣g(k)
0 (x0)

∣∣�k−j ,

where we defined �(j)
k,1 = |Ck,j /Ck,k| for j ∈{0, . . ., k − 1}. Furthermore, by computa-

tion and change of variables,

∫ ∞

0

(g�(x)−g0(x))2

g0(x)
dx =

⎛
⎜⎝
(
g(k)

0 (x0)
)2

g0(x0)

∫ 1
−1(1− z2)2(k +1)(z +1)2dz

(Ck,k)2

⎞
⎟⎠�2k +1 +o(�2k +2)

as �↘0. This gives control of the Hellinger distance as well in view of Jongbloed
(2000, lemma 2, p. 282), or Jongbloed (1995, corollary 3.2, pp. 30–31). We set

�k, 2 =
∫ 1

−1(1− z2)2(k +1)(z +1)2dz

(Ck, k)2

=

⎧⎪⎪⎨
⎪⎪⎩

24(k +1) (2k +3)(k +2)
(k +1)2

((2(k +1)))2

(4k +7)((k−1))2
(( k

k/2−1/
)2 k even

24(k +2)(2k +3)(k +2) ((2(k +1)))2

(4k +7)(k)2
(( k +1

(k−1)/2/
)2 k odd.

Now, by using the change of variable ε=�2k +1(bk +o(1)), where

bk =�k,2(g(k)
0 (x0))2/g0(x0))

so that �= (ε/bk)1/(2k +1)(1+o(1)), then for 0≤ j ≤k −1, the modulus of continuity,
mj , of the functional Tj satisfies

mj(ε)≥�(j)
k,1g

(k)
0 (x0)

(
ε

bk

)(k−j)/(2k +1)

(1+o(1)).

The result is that mj(ε)≥ (rk,jε)(k−j)/2k+1/(1+o(1)), where rk,j =(�(j)
k,1g

(k)
0 (x0))(2k+1)/(k−j)/bk

and hence

sup
�> 0

lim
n→∞ inf n(k−j)/(2k +1)MMR1(n, Tj , Dk,n,�)

≥ 1
4

(
4

k − j
2k +1

e−1
)(k−j)/(2k +1)

(rk,j)(k−j)/(2k +1),
(A.12)

which can be rewritten as

sup
�> 0

lim
n→∞ inf n(k−j)/(2k +1)MMR1(n, Tj , Dk,n,�)

≥ 1
4

(
4

k − j
2k +1

e−1
)(k−j)/(2k +1) �(j)

k,1

(�k,2)(k−j)/(2k +1)

{∣∣g(k)
0 (x0)

∣∣(2j +1)/(2k +1)
g0(x0)(k−j)/(2k +1)

}
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for j =0, · · · , k − 1. Finally, note that the fact that the function g� is not exactly a
density will not affect the obtained constants its integral converges to 1 as �→0.

Proof of Corollary 1. Let G�(x)=∫ x
0 g�(t)dt. Using the inversion formula in

Equation 2, we have

T (g�)−T (g0)=G�(x0)−G0(x0)+
k∑

j =1

(−1)j xj
0

j!
(Tj−1(g�)−Tj−1(g0)).

For j =1, . . ., k, we have already established before that |Tj−1(g�) − Tj−1(g0) | =
�(j)

k,1 |g(k)
0 (x0) |�k−j . In constrast, we have for � > 0 small enough

G�(x0)=G0(x0)+ s(�)
∫ x0 +�

x0−�
(x0 +�−x)k +1(x −x0 +�)k +2dx

=G0(x0)+ s(�)
∫ x0 +�

x0−�
(x −x0 +�)k +1(x −x0 −�)k +1dx

=G0(x0)+ s(�)
∫ 1

−1
r(x)dx�2k +4

=G0(x0)+ g(k)
0 (x0)

�k +3r(k)(0)

(∫ 1

−1
r(x)dx

)
�2k +4

=G0(x0)+O(�k +1)).

Hence,

|T (g�)−T (g0) | = xk
0

k!
�(k−1)

k,1 |g(k)
0 (x0) |�+o(�).

Using again the change of variable ε=�2k +1(bk +o(1)), we obtain the claimed
lower bound in the same way as in proprosition 3.
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