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Abstract Bounds for the bracketing entropy of the classes of bounded k-monotone functions on
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1 Introduction

A function on (0,∞) is called k-monotone if (−1)jf (j)(x) is non-negative, non-increasing, and
convex for 0 6 j 6 k−2 if k > 2, and f is non-negative, non-increasing if k = 1. These functions
fill the gap between monotone functions and completely monotone functions. They appear very
commonly in nonparametric estimation, such as the Maximum Likelihood Estimator (MLE) in
statistics via renewal theory and mixing of uniform distributions. Indeed, k-monotone functions
have been studied since at least the 1950s; for example, Williamson[1] gave a characterization
of m-monotone functions on (0,∞) in 1956. In recent years, there has been some interest in
statistics regarding this class of functions. We refer to [2] and the references therein for recent
results and their statistical applications.

Note that a k-monotone function may not be bounded near t = 0. In order to study the
metric entropy, we restrict ourselves to the subclass that consists of only the functions that
are continuous at t = 0. We refer to this subclass as the class of k-monotone functions on
[0,∞). We denote by Mk(I) the class of k-monotone functions on I, and by Fk(I) the class of
probability densities on I that are k-monotone.

For statistical applications, we wish to estimate the bracketing entropy of Fk(R+) and
Mk(R+) under all Lp(Q) distances, where 1 6 p < ∞ and Q is any probability measure
on R+, and under the Hellinger distance h which is defined by

h(f, g) =
( ∫

[
√

f(x)−
√

g(x)]2dx

)1/2

. (1)
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Recall that the bracketing metric entropy of a function class F under distance ρ is defined as
log N[·](ε,F , ρ), where N[·](ε,F , ρ) is defined by

N[·](ε,F , ρ) := min
{

n : ∃f
1
, f1, . . . , fn

, fn s.t. ρ(fk, f
k
) 6 ε,F ⊂

n⋃

k=1

[f
k
, fk]

}
,

where
[f

k
, fk] = {g ∈ F : f

k
6 g 6 fk}.

It is easy to see that both Fk(R+) and Mk(R+) are bounded under the Hellinger distance.
However, they are not compact. Indeed, for any δ <

√
2, we can find infinitely many functions

in Fk(R+) with mutual Hellinger distance at least δ. In fact, for any α > 0, the functions
pn(t) = 2nαe−2nαt are clearly in Fk(R+). For m > n,

∫ ∞

0

[
√

pn(t)−
√

pm(t)]2dt = 2−
∫ ∞

0

2
√

2nα+mαe−(2nα+2mα)t/2dt

= 2− 4

√
2nα+mα

2nα + 2mα
= 2− 4

2−(m−n)α/2

1 + 2−(m−n)α

> 2− 4
2−α/2

1 + 2−α
= δ2

for

α = 2 log2

(
2 + δ

√
4− δ2

2− δ2

)
.

Note that the sequence {pn(t)}n>1 is unbounded near the origin. This suggests us that for
the Hellinger distance, we need to restrict ourselves to k-monotone functions whose values are
bounded near the origin. However, the sequence {pn(t)}n<0 is uniformly bounded by 1. Thus,
this example also indicates that the non-compactness of Fk(R+) under the Hellinger distance is
partly due to the fact that the interval is unbounded. Hence, we should also restrict ourselves
to bounded intervals. Therefore, in what follows, we consider the subclasses FB

k ([0, A]) and
MB

k ([0, A]) instead, where FB
k (I) and MB

k (I) denote the classes of functions that are bounded
by B and belong to Fk(I) and Mk(I) respectively.

By changing variables, it is easy to see that

N[·](ε,FB
k ([0, A]), h) = N[·](ε,FAB

k ([0, 1]), h),

N[·](ε,MB
k ([0, A]), h) = N[·](ε,MAB

k ([0, 1]), h).

Hence, we only need to consider the case A = 1.
Let us remark that when k = 1, the problem has been studied by Van de Geer[3] based on an

earlier work of Birman and Solomjak[4]. For example, it was proved that (see also [5]; Theorem
2.7.5)

log N[·](ε,MB
1 ([0, 1]), h) 6 CBε−1 (2)

for some absolute constant C > 0, and

log N[·](ε,MB
1 (R+), ‖ · ‖p,Q) 6 CpBε−1, (3)
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for some positive constant Cp depending only on p, where 1 6 p < ∞, and Q is any probability
measure on R+. For simpler proofs, see also [6, 7]. In particular, the iteration method used in
[6] is useful in our argument in this paper.

For k > 1, Gao[8] also established the following metric entropy bound for MB
k ([0, 1]):

C1B
1/kε−1/k 6 log N(ε,MB

k ([0, 1]), ‖ · ‖2) 6 C2B
1/kε−1/k. (4)

The method revealed a nice connection between the metric entropy of these function classes and
the small ball probability of k-times integrated Brownian motions. However, because for k > 1
the square root of a k-monotone function may not be k-monotone, the metric entropy estimate
under L2 distance does not yield an estimate under the Hellinger distance. Furthermore, that
method cannot produce any result on bracketing metric entropy. Thus, it cannot be readily
used to determine the convergence rate of the MLE of a k-monotone density.

In this paper, we directly estimate the bracketing metric entropy of these function classes
under the Hellinger distance and under all Lp(Q) distances, where 1 6 p < ∞, and apply these
estimates to statistical settings.

Our main tool is the following lemma, which provides a useful method to estimate bracketing
entropy. An extension to more general integral operators will appear elsewhere.

Lemma 1. Let F be a class of functions on [0, 1], and G be the class of function on [0, 1]
defined by G = {∫ α(x)

0
f(t)dt : f ∈ F}, where 0 6 α(x) 6 1 is any increasing function on [0, 1].

If log N(ε,F , ‖ · ‖1) 6 φ(ε), where ‖ · ‖1 stands for the L1 distance under the Lebesgue measure
on [0, 1], then

(i) There exists a constant C depending only on p, such that for any probability measure Q

on [0, 1]

log N[·]

(
ε

φ(ε)
,G, ‖ · ‖p,Q

)
6 Cφ(ε),

where ‖ · ‖p,Q is defined by

‖f − g‖p,Q =
( ∫ 1

0

|f(x)− g(x)|pdQ(x)
)1/p

.

(ii) If we further assume that for all functions in g ∈ G, g(x) > δ, then there exists a constant
C, such that

log N[·]

(
ε

2
√

δφ(ε)
,G, h

)
6 Cφ(ε),

where h(f, g) is defined by (1).

Proof. Let {fi}, 1 6 i 6 eφ(ε), be an ε-net for F in the L1 distance under the Lebesgue
measure on [0, 1]. For each i, and f ∈ F , we can write

∫ α(x)

0

f(t)dt =
∫ α(x)

0

(f(t)− fi(t))+dt−
∫ α(x)

0

(fi(t)− f(t))+dt +
∫ α(x)

0

fi(t)dt.

Thus, if we define

G+
i =

{
g : g(x) =

∫ α(x)

0

(f(t)− fi(t))+dt, f ∈ F , ‖f − fi‖1 6 ε

}
,



4 Gao F C & Wellner J A

G−i =
{

g : g(x) =
∫ α(x)

0

(fi(t)− f(t))+dt, f ∈ F , ‖f − fi‖1 6 ε

}
,

we have

G ⊂
⋃

i

(
G+

i − G−i +
∫ α(x)

0

fi(t)dt

)
.

Note that G+
i and G−i both consist of non-negative increasing functions bounded by ε. Thus,

by (3) we can find ecφ(ε) many ε/φ(ε)-brackets (with respect to ‖ · ‖p,Q) that cover G+
i − G−i .

Say these brackets are [hi,j , hi,j ], 1 6 j 6 ecφ(ε). Then clearly the brackets

[ ∫ α(x)

0

fi(t)dt + hi,j ,

∫ α(x)

0

fi(t)dt + hi,j

]
, 1 6 i 6 eφ(ε), 1 6 j 6 ecφ(ε)

cover G. Statement (i) follows by noticing that these are ε/φ(ε)-brackets under the ‖ · ‖p,Q

distance.
To prove Statement (ii), we notice that with the additional assumption g > δ, we have for

any g1, g2 ∈ G,

h(g1, g2) = ‖√g1 −√g2‖2 6 1
2
√

δ
‖g1 − g2‖2.

Hence,

N[·]

(
ε

2
√

δφ(ε)
,G, h

)
6 N[·]

(
ε

φ(ε)
,G, ‖ · ‖2

)
.

Thus, Statement (ii) follows from Statement (i).

2 Under Hellinger distance

Note that by scaling arguments, we can easily show that

N[·](ε,MB
k ([0, A]), h) = N[·](ε,MAB

k ([0, 1]), h) = N[·](ε/
√

AB,M1
k([0, 1]), h),

N[·](ε,FB
k ([0, A]), h) = N[·](ε,FAB

k ([0, 1]), h).

Hence, we only need to consider the classes M1
k([0, 1]) and FB

k ([0, 1]).
Before we process with the detailed calculation, we make some observations that can sim-

plify the later arguments. Firstly, because k-monotone C∞ functions are dense in M1
k([0, 1])

(cf. [8]), we can and will assume that all the densities in M1
k([0, 1]) are continuously k-times

differentiable. Secondly, if for I = [a, b] ⊂ [0, 1] we define

HB
k (I) = {f : f(u) = g(b− u), g ∈MB

k (I)}.

then for every f ∈ H1
k([0, 1]),

djf(u)
duj

=
dj

duj
(g(1− u)) = (−1)jg(j)(1− u) > 0

for all 0 6 j 6 k, and for all u ∈ [0, 1]. For f ∈ H1
k([0, 1]), we can write

f(u) = f(0) + f ′(0)u + · · ·+ f (k−2)(0)
(k − 2)!

uk−2

+
∫ u

0

∫ tk−2

0

· · ·
∫ t1

0

f (k−1)(s)dsdt1 · · · dtk−2. (5)
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All the terms on the right-hand side are non-negative. The sum of the first k − 1 terms is a
polynomial of u with degree k − 2, and non-negative coefficients.

2.1 Bounded k-monotone functions

For f ∈ H1
k([0, 1]), because f(1) 6 1, we have

k−2∑

k=0

f (k)(0) 6 f(1) 6 1.

Denote

Pk =
{

a0 + a1u + · · ·+ ak−2u
k−2 : a0, a1, . . . , ak−2 > 0;

k−2∑

i=0

ai 6 1
}

,

and denote by H̃B
k (I) the class of functions g on I ⊂ [0, 1] that satisfy 0 6 g 6 1 and are of the

form

g(u) =
∫ u

0

∫ tk−2

0

· · ·
∫ t1

0

f(s)dsdt1 · · · dtk−2

where f are non-negative increasing functions on I. By (5), we haveH1
k([0, 1]) ⊂ Pk+H̃1

k([0, 1]),
and thus

N[·](ε,H1
k([0, 1]), h) 6 N[·](ε/2,Pk, h) ·N[·](ε/2, H̃1

k([0, 1]), h). (6)

Note that the set
{

a0 + a1u + · · ·+ ak−2u
k−2 : ai ∈

{
1
N

,
2
N

, . . . ,
N

N

}
, 0 6 i 6 k − 2

}

forms a
√

k/N -net for Pk under the Hellinger distance. Indeed, for any p = a0 + a1u + · · · +
ak−2u

k−2 ∈ Pm, choose

p̃ =
da0Ne

N
+
da1Ne

N
u + · · ·+ dak−2Ne

N
uk−2.

Then

|√p−
√

p̃|2 6 |p− p̃| 6 k/N,

which implies that h(p, p̃) 6
√

k/N . Note that there are no more than Nk−1 elements in this
set. By choosing N = d4kε−2e, we obtain

log N[·](ε/2,Pk, h) 6 k log(1 + 4k/ε2). (7)

Of course, because ‖p− p̃‖2 6 k/N , we also have

log N[·](ε/2,Pk, ‖ · ‖2) 6 k log(1 + 2k/ε). (8)

Our next goal is to estimate N[·](ε/2, H̃1
k([0, 1]), h). To this end, we first consider

N[·](ε/2, H̃1
k([0, 1]), ‖ · ‖2).
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For g ∈ H̃1
k([0, 1]), we have

g(1) =
∫ 1

0

∫ tk−2

0

· · ·
∫ t1

0

f(s)dsdt1 · · · dtk−2du

>
∫ 1

1/2

∫ tk−2

1/2

· · ·
∫ t1

1/2

f(s)dsdt1 · · · dtk−2du

> f(1/2)
∫ 1

1/2

∫ tk−2

1/2

· · ·
∫ t1

1/2

dsdt1 · · · dtk−2du

= f(1/2)
1

2k−1(k − 1)!
.

Because g(1) is bounded by 1, and f is increasing, for all 0 6 u 6 1/2 we have

f(u) 6 f(1/2) 6 2k−1(k − 1)!.

Define f1 = min{f, 2k−1(k− 1)!} and f2 = f − f1. Then, by the above argument we see that f2

is non-negative and increasing, and is supported on [1/2, 1]. For g ∈ H̃1
k([0, 1]) and 0 6 u 6 1,

we can write

g(u) =
∫ u

0

∫ tk−2

0

· · ·
∫ t1

0

[f1(s) + f2(s)]dsdt1 · · · dtk−2

=
∫ u

0

· · ·
∫ t1

0

f1(s)dsdt1 · · · dtk−2 + 1[1/2,1](u)
∫ 2u−1

0

· · ·
∫ t1

0

1
2
f2(1/2 + s/2)ds · · · dtk−2.

We construct two function classes:

Uk =
{ ∫ u

0

∫ tk−2

0

· · ·
∫ t1

0

f(s)dsdt1 · · · dtk−2 : 0 6 f 6 2k−1(k − 1)!, f increases
}

,

Vk = {l(u)1[1/2,1](u) : l(u) = h(2u− 1), h ∈ H̃1
k([0, 1])}.

Then the decomposition above gives H̃1
k([0, 1]) ⊂ Uk + Vk, and thus we have for any 0 < θ < 1,

N[·](ε, H̃1
k([0, 1]), ‖ · ‖2) 6 N[·]((1− θ)ε,Uk, ‖ · ‖2) ·N[·](θε,Vk, ‖ · ‖2). (9)

We first claim that

N[·](ε,Uk, ‖ · ‖2) 6 exp(Cε−
1
k ) (10)

for some constant C depending only on k. Indeed, the claim is clearly true for k = 1, because
in this case Uk consists of monotone functions that are bounded by 1. Thus, when k = 1, the
inequality (10) is the special case of (3).

Suppose that (10) is true for k = r. That is, N[·](ε,Ur, ‖ · ‖2) 6 exp(Cε−1/r). Because

N(ε,Ur, ‖ · ‖1) 6 N[·](ε,Ur, ‖ · ‖2),

by applying Lemma 1 for L2 norm under Lebesgue measure, we have

N[·](ε1+ 1
r ,Ur+1, ‖ · ‖2) 6 eCε−1/r

, (11)
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which implies that N[·](ε,Ur+1, ‖ · ‖2) 6 exp(Cε−1/(r+1)) with a different constant C. Hence
(10) holds for all k > 1. Therefore,

N[·]((1− θ)ε,Uk, ‖ · ‖2) 6 exp(C[(1− θ)ε]−1/k). (12)

Next, we prove that

N[·](θε,Vk, ‖ · ‖2) 6 N[·](
√

2θε, H̃1
k([0, 1]), ‖ · ‖2). (13)

Indeed, if [hi, hi], 1 6 i 6 N are
√

2θε-brackets under the ‖ · ‖2 distance that cover H̃1
k([0, 1]),

then the brackets

[li(x), li(x)] =: [1[1/2,1](x)hi(2x− 1), 1[1/2,1](x)hi(2x− 1)],

1 6 i 6 N , clearly cover Vk. To see they are θε-brackets, we notice that

‖li − li‖2 =
{ ∫ 1

1/2

|hi(2x− 1)− hi(2x− 1)|2dx

}1/2

=
1√
2

{ ∫ 1

0

|hi(u)− hi(u)|2du

}1/2

6 θε.

Applying (12) and (13) to (9), we obtain

N[·](ε, H̃1
k([0, 1]), ‖ · ‖2) 6 exp(C[(1− θ)ε]−1/k)N[·](

√
2θε, H̃1

k([0, 1]), ‖ · ‖2).

Choosing 1√
2

< θ < 1 and by iteration, we obtain

N[·](ε, H̃1
k([0, 1]), ‖ · ‖2) 6 exp(C ′ε−1/k) (14)

for a different constant C depending only on k. Plugging (14) and (8) into (6), we obtain

N[·](ε,M1
k([0, 1]), ‖ · ‖2) = N[·](ε,H1

k([0, 1]), ‖ · ‖2) 6 exp(Cε−1/k). (15)

If we let
M̃δ

k(I) = {g ∈M1
k(I) : g > δ},

then because for all g1, g2 ∈ M̃δ
k([0, 1]) we have h(g1, g2) 6 1√

2δ
‖g1 − g2‖2, we obtain

N[·](ε,M̃δ
k([0, 1]), h) 6 N[·](

√
2δε,M1

k([0, 1]), ‖ · ‖2) 6 exp(Cδ−
1
2k ε−

1
k ). (16)

Back to our goal of estimating N[·](ε, H̃1
k([0, 1]), h). We define

A = {g ∈ H̃1
k([0, 1]); g(1/2) < δ} and B = {g ∈ H̃1

k([0, 1]); g(1/2) > δ}.

Then
A ⊂ δH̃1

k([0, 1/2]) +H1
k([1/2, 1]), B ⊂ H̃1

k([0, 1/2]) + M̃δ
k([1/2, 1]).

Therefore

N[·](ε,A, h) 6 N[·](θε, δH̃1
k([0, 1/2]), h) ·N[·]((1− θ)ε,H1

k([1/2, 1]), h), (17)

N[·](ε,B, h) 6 N[·]((1− η)ε, H̃1
k([0, 1/2]), h) ·N[·](ηε,M̃δ

k([1/2, 1]), h). (18)
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Note that

N[·](θε, δH̃1
k([0, 1/2]), h) 6 N[·](θε/

√
δ, H̃1

k([0, 1]), h).

Also note that

N[·]((1− θ)ε,H1
k([1/2, 1]), h) = N[·]((1− θ)ε,M1

k([0, 1/2]), h)

= N[·](
√

2(1− θ)ε,M1
k([0, 1]), h)

6 N[·](
√

2(1− θ)2ε, H̃1
k([0, 1]), h) ·N[·](

√
2(1− θ)θε,Pk, h)

6 N[·](
√

2(1− θ)2ε, H̃1
k([0, 1]), h) ·

(
1 +

2k

(1− θ)2θ2ε2

)k

,

where the last inequality follows from (7). We choose θ and δ so that
√

2(1 − θ)2 = 1.4 and
θ/
√

δ = L, where L is a large number to be fixed later. Thus by plugging the two bounds above
into (17) we obtain

N[·](ε,A, h) 6 N[·](1.4ε, H̃1
k([0, 1]), h) ·N[·](Lε, H̃1

k([0, 1]), h) ·
(

1 +
C1

ε2

)k

(19)

for some constant C1.
On the other hand, by choosing η so that

√
2(1− η) = 1.4, we have

N[·]((1− η)ε, H̃1
k([0, 1/2]), h) 6 N[·](1.4ε, H̃1

k([0, 1]), h).

Recall that by (16) we have

N[·](ηε,M̃δ
k([1/2, 1]), h) 6 exp(C2ε

−1/k),

with a constant C2 depending on L. Plugging into (??), we obtain

N[·](ε,B, h) 6 N[·](1.4ε, H̃1
k([0, 1]), h) · exp(C2ε

−1/k). (20)

But H̃1
k([0, 1]) ⊂ A ∪ B, (19) and (20) imply that

log N[·](ε, H̃1
k([0, 1]), h) 6 log N[·](1.4ε, H̃1

k([0, 1]), h) + log N[·](Lε, H̃1
k([0, 1]), h)

+C2ε
−1/k + k log

(
1 +

C1

ε2

)
+ 2.

Let Z(ε) = ε1/k log N[·](ε, H̃1
k([0, 1]), h). Then the inequality above implies that

Z(ε) 6 1.4−1/kZ(1.4ε) + L−1/kZ(Lε) + C

for some constant C, which further implies that

sup
η>ε

Z(η) 6 (1.4−1/k + L−1/k) sup
η>ε

Z(η) + C.

By choosing L large so that 1.4−1/k + L−1/k < 1, we immediate obtain

log N[·](ε, H̃1
k([0, 1]), h) 6 Cε−1/k, (21)
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for some constant C. Together with (7), we have

log N[·](ε,H1
k([0, 1]), h) 6 Cε−1/k.

Summarizing, we obtain

Theorem 2. There exists a constant C depending only on k, such that

log N[·](ε,MB
k ([0, A]), h) 6 C(AB)

1
2k ε−

1
k . (22)

2.2 Bounded k-monotone densities
Now we consider N[·](ε,FB

k ([0, 1]), h). Because FB
k ([0, 1]) ⊂MB

k ([0, 1]), the result of Theorem 2
applies to FB

k ([0, 1]). Our goal is to improve the constant CB
1
2k by using the the extra fact

that
∫ 1

0
g(u)du = 1 for g ∈ FB

k ([0, 1]). For convenience, we will actually relax the condition∫ 1

0
g(u)du = 1 in the definition of FB

k ([0, 1]) to the condition
∫ 1

0
g(u)du 6 1.

Assume B > 2. For 1/B < δ < 1, we define

Xδ =
{

f ∈ FB
k ([0, 1]) :

∫ 1/2

0

f(u)du < δ

}
and Yδ =

{
f ∈ FB

k ([0, 1]) :
∫ 1/2

0

f(u)du > δ

}
.

Then, FB
k ([0, 1]) = Xδ ∪ Yδ. For any f ∈ FB

k ([0, 1]), because f increases and
∫ 1

1/2
f(u)du 6 1,

we have f(u) 6 2 for all u ∈ [0, 1/2]. Hence, we can decompose Xδ and Yδ into two classes of
functions with disjoint supports:

Xδ ⊂ δF2/δ
k ([0, 1/2]) + FB

k ([1/2, 1]),

Yδ ⊂ F2
k ([0, 1/2]) + (1− δ)FB/(1−δ)

k ([1/2, 1]).

Therefore, we have

N[·](ε,FB
k ([0, 1]), h) 6 N[·](2

√
δε, δF2/δ

k ([0, 1/2]), h) ·N[·](
√

1− 4δε,FB
k ([1/2, 1]), h)

+N[·](
√

δε,F2
k ([0, 1/2]), h) ·N[·](

√
1− δε, (1− δ)FB/(1−δ)

k ([1/2, 1]), h)

= N[·](2ε,F2/δ
k ([0, 1/2]), h) ·N[·](

√
1− 4δε,FB

k ([1/2, 1]), h)

+N[·](
√

δε,F2
k ([0, 1/2]), h) ·N[·](ε,FB/(1−δ)

k ([1/2, 1]), h)

6 N[·](2ε,FB
k ([0, 1]), h) ·N[·](

√
1− 4δε,FB/2

k ([0, 1]), h)

+ exp(Cδ−
1
2k ε−

1
k ) ·N[·](ε,FB/(2−2δ)

k ([0, 1]), h)

6 [N[·](2ε,FB
k ([0, 1]), h) + exp(Cδ−

1
2k ε−

1
k )]

·N[·](
√

1− 4δε,FB/(2−2δ)
k ([0, 1]), h).

By iteration, we obtain

N[·](ε,FB
k ([0, 1]), h) 6 [N[·](2mε,FB

k ([0, 1]), h) + exp(Cδ−
1
2k ε−

1
k )]

·N[·]((
√

1− 4δ)mε,FB/(2−2δ)m

k ([0, 1]), h).

Let δ = 1/ log2 B and choose m = dlog2 Be, we have

N[·](ε,FB
k ([0, 1]), h) 6 exp(C(log B)−

1
2k ε−

1
k ).
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We summarize this bound in the following theorem:

Theorem 3. Let FB
k ([0, A]) be the class of k-monotone densities on [0, A] that are bounded

by B. Then
log N[·](ε,FB

k ([0, A]), h) 6 C| log AB| 1
2k ε−

1
k ,

where C is a constant depending only on k.

3 Under Lp(Q) Distances

In this section we will consider the bracketing entropy of MB
k ([0, A]) and FB

k ([0, A]) under the
Lp(Q) distance, where 1 6 p < ∞ and Q is any probability measure on [0, A]. We will prove
the following theorem:

Theorem 4. (i) There exists a constant C depending only on p and k, such that for any
probability measure Q on [0, A] that is absolutely continuous with respect to Lebesgue measure
with bounded density q,

log N[·](ε,MB
k ([0, A]), ‖ · ‖p,Q) 6 C(‖q‖∞ABp)1/(pk)ε−1/k, (23)

log N[·](ε,FB
k ([0, A]), ‖ · ‖p,Q) 6 C[log(‖q‖∞ABp)]1/(pk)ε−1/k. (24)

(ii) Let GB
k ([0, A]) consist of k-monotone functions g on [0, A], such that g′(0) > −B, and let

G̃B
k ([0, A]) consist of probability densities that belong to GB

k ([0, A]). Then there exists a constant
C depending only on p and k, such that for any probability measure Q on [0, A],

log N[·](ε,GB
k ([0, A]), ‖ · ‖p,Q) 6 CA1/(pk)B1/kε−1/k, (25)

log N[·](ε, G̃B
k ([0, A]), ‖ · ‖p,Q) 6 C[log(ABp)]1/(pk)ε−1/k. (26)

Remark 5. In view of the result proved in [8] the rate ε−1/k is sharp when p = 2.

Proof. The result is known for the case k = 1. Thus, we only need to consider the case k > 1.
To prove the first inequality in the statement (i), we note that

N[·](ε,MB
k ([0, A]), ‖ · ‖p,Q) 6 N[·]

(
ε

‖q‖1/p
∞ A1/pB

,M1
k([0, 1]), ‖ · ‖p

)
,

where ‖ · ‖p is the Lp distance under Lebesgue measure. Thus, it suffices to prove that for any
η > 0, N[·](η,M1

k([0, 1]), ‖ · ‖p) 6 Cη−1/k. However, this follows from the same argument as in
the proof of Theorem 2. Indeed, the only change needed is to replace (11) by

N[·](ε
1+ 1

k−1 ,Uk, ‖ · ‖p) 6 eCε−1/(k−1)
,

which leads to N[·](ε,Uk, ‖ · ‖p) 6 eCε−1/k

. The first inequality in the statement (i) then follows
by iteration. The proof of the second inequality is also similar to that of Theorem 3.

To prove the first inequality in the statement (ii), we note that by the change of variables
x = Au, we have

N[·](ε,GB
k ([0, A]), ‖ · ‖p,Q) = N[·](ε,GA1/pB

k ([0, 1]), ‖ · ‖p,P )

where P is the probability measure on [0, 1] defined by P ([0, u]) = Q([0, Au]). Thus, it suffices
to consider the case ABp = 1. Furthermore, by approximation, we can assume that P is



On the rate of convergence of the maximum likelihood estimator of a k-monotone density 11

absolutely continuously with respect to the Lebesgue measure on [0, 1]. Let α be the inverse
function of P ([0, x]). By the change of variable u = P ([0, x]), it is easy to see that

N[·](ε,G1
k([0, 1]), ‖ · ‖p,P ) = N[·](ε,G1

k,α([0, 1]), ‖ · ‖p)

where

G1
k,α([0, 1]) = {g(α(u)) : g ∈ G1

k([0, 1])} =

{∫ α(u)

0

f(t)dt : f ∈M1
k−1([0, 1])

}
.

By (23) we have

N[·](ε,M1
k−1([0, 1]), ‖ · ‖1) 6 exp(Cε

1
k−1 ).

Applying Lemma 1, we obtain

N[·](ε
1+ 1

k−1 ,G1
k,α([0, 1]), ‖ · ‖p) 6 exp(Cε

1
k−1 )).

which leads the inequality (25). The proof of (26) follows the same argument as Theorem 3,
and is thus omitted.

4 Rates of convergence for the maximum likelihood estimator of a bounded k-
monotone density

Let p̂n,k be the MLE of a k-monotone density p0 on [0, A] based on X1, . . . , Xn i.i.d. with
density p0 ∈ FB

k ([0, A]) for some 0 < A, B < ∞. Thus p0 is bounded and concentrated on
[0, A].

From [2] (see also [9]) we know that p̂n,k is characterized by

1 >
∫ y

0

k

yk

(y − x)k−1

p̂n,k(x)
dFn(x) for all y > 0 (27)

> 1
p̂n,k(0)

∫ y

0

k

yk
(y − x)k−1 dFn(x) =

1
p̂n,k(0)

∫ y

0

k

y

(
1− x

y

)k−1

dFn(x),

with equality in the inequality in (27) at points τ ∈ supp(Ĝn,k) = {τ1, τ2, . . . , τm}, where we
may assume that 0 < τ1 < · · · < τm (with m random) and where

p̂n,k(x) =
∫ ∞

0

k(y − x)k−1
+

yk
dĜn,k(y).

Therefore

p̂n,k(0) >
∫ ∞

0

k

yk
(y − x)k−1

+ dFn(x) for all y > 0. (28)

To apply our entropy bounds we need to show that p̂n,k is bounded with (arbitrarily) high
probability when p0 is bounded. This is the content of the following proposition.

Proposition 6. Suppose that p0 ∈ FB
k ([0, A]). Then the MLE p̂n,k satisfies

p̂n,k(0+) 6 k sup
x>0

(Fn(x)/x) = Op(1).
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Proof. The characterization of the MLE implies that

1 > k

yk

∫ y

0

(y − x)k−1

p̂n,k(x)
dFn(x) for all 0 < y 6 τ1 (29)

=
k

y

∫ y

0

(1− x/y)k−1

p̂n,k(x)
dFn(x) (30)

with equality at y = τ1:

1 =
k

τ1

∫ τ1

0

(1− x/τ1)k−1

p̂n,k(x)
dFn(x). (31)

Now note that the support of Ĝn,k is concentrated on y > τ1, so x/y 6 x/τ1, or (1 − x/y) >
(1− x/τ1) for y > τ1 and 0 6 x 6 τ1. Thus it follows that

p̂n,k(x) =
∫ ∞

0

k

y

(
1− x

y

)k−1

+

dĜn,k(y)

>
(

1− x

τ1

)k−1

+

∫ ∞

0

k

y
dĜn,k(y) =

(
1− x

τ1

)k−1

+

p̂n,k(0).

Combining the last two displays we find that

1 =
k

τ1

∫ τ1

0

(1− x/τ1)k−1

p̂n,k(x)
dFn(x)

6 k

τ1

∫ τ1

0

(1− x/τ1)k−1

p̂n,k(0)(1− x/τ1)k−1
dFn(x) 6 k

τ1p̂n,k(0)
Fn(τ1),

which yields

p̂n,k(0) 6 k
Fn(τ1)

τ1
6 k sup

t>0

Fn(t)
t

= k sup
t>0

Fn(t)
F0(t)

F0(t)
t

6 k sup
t>0

Fn(t)
F0(t)

· p0(0+) = Op(1)

by Daniels’ inequality; see [10], Theorem 9.1.2, page 345.
Now suppose that P is a collection of densities with respect to a sigma-finite measure µ. The

following theorem is a simplified version of Theorem 3.4.4 of [5] page 327. Our rate theorem
for the MLE p̂n,k over the class Pk([0, A]), the class of k-monotone densities on [0, A], will be
proved by combining the upper bound of this theorem with (an easy modification of) the rate
results given in [5], Theorem 3.2.5, page 289.

Theorem 7. Suppose that X1, . . . , Xn are i.i.d. P0 with density p0 ∈ P. Let h be the
Hellinger distance between densities, and mp be defined, for p ∈ P, by

mp(x) = log
(

p(x) + p0(x)
2p0(x)

)
.

Then
M(p)−M(p0) ≡ P0(mp −mp0) . −h2(p, p0).

Furthermore, with Mδ = {mp −mp0 : h(p, p0) 6 δ, p ∈ P0}, we also have

E∗
P0
‖Gn‖Mδ

. J̃[·](δ,P0, h)
(

1 +
J̃[·](δ,P0, h)

δ2
√

n

)
≡ φn(δ,P0), (32)
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where

J̃[·](δ,P0, h) =
∫ δ

0

√
1 + log N[·](ε,P0, h) dε.

Here is our main result of this section:

Theorem 8. Suppose that p0 ∈ FB
k ([0, A]) ⊂ Pk([0, A]) for some 0 < A, B < ∞. Then the

maximum likelihood estimator p̂n,k of p0 in Pk satisfies

h(p̂n,k, p0) = Op(n−
k

2k+1 ).

Remark 9. This generalizes the rate result of [3] (with resulting rate of convergence n−1/3)
to k > 1. For the case k = 1, closely related results with the Hellinger metric replaced by the
L1 metric, were obtained by [11–13]. The rate established in Theorem 8 is apparently consistent
with the local rate result of n−k/(2k+1) established (up to an envelope conjecture) by [2].

Proof. For simplicity, we write p̂n ≡ p̂n,k. Let M > 0 and K > 0. Then

P(rnh(p̂n, p0) > 2M ) 6 P(rnh(p̂n, p0) > 2M , p̂n(0) 6 K) + P(p̂n(0) > K)

≡ In + IIn,

where, by Proposition 6,

IIn 6 P(k‖Fn/F0‖∞p0(0+) > K) 6 kp0(0+)
K

by Daniels’ inequality, and hence IIn can be made arbitrarily small (uniformly in n) by choosing
K large. Now we essentially follow the proof of Theorem 3.2.5 of [5] (with θ identified with p),
but exploit the fact that p̂n(0+) 6 K. Thus, letting Mn(p) ≡ Pnm(p) we have for any large
η > 0,

P(rnh(p̂n, p0) > 2M , p̂n(0+) 6 K)

6
blog2(ηrn)c∑

j=M

P
(

sup
f∈Sj,n

(Mn(p)−Mn(p0) > 0
)

+ P(2h(p̂n, p0) > η)

≡ IA,n + IB,n

where the shells Sj,n are now defined with the additional restriction that p(0+) 6 K:

Sj,n = {p ∈ Pk([0, A]) : 2j−1 < rnh(p, p0) 6 2j , p(0+) 6 K}
= {p ∈ FK

k ([0, A]) : 2j−1 < rnh(p, p0) 6 2j}.

Here the term IB,n can be made arbitrarily small for all large n by the consistency of p̂n

established by [1]. Thus the same argument as in [9] yields, with P0 = FK
k in (32), and

φn(δ,FK
k ) ≡ φn(δ),

IA,n .
∑

j>M

φn(2j/rn)r2
n√

n22j
. (33)

By (32)

φn(δ) ≡ φn(δ,FK
n ) = J̃[·](δ,Fn, h)

(
1 +

J̃[·](δ,Fn, h)
δ2
√

n

)
.
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A direct calculation using Theorem 3 gives

J̃[·](δ,Fn, h) =
√

CD

1− 1
2k

δ1− 1
2k .

for the same constant C as in Theorem 3, where D ≡ | log(AK)|1/(2k). This implies,

φn(δ) =
√

CD

1− 1
2k

δ1− 1
2k

(
1 +

√
CD

1− 1
2k

δ1− 1
2k

δ2
√

n

)
.

By taking

rn ≡
(

c0

1− 1
2k√

CD

) 2k
2k+1

n
k

2k+1

where c0 ≡ (
√

5 − 1)/2, we have r2
nφn(1/rn) =

√
n. Note that the functions δ 7→ φn(δ)/δ are

decreasing, therefore for any j > 0,

φn(2j/rn)r2
n 6 2jφn(1/rn)r2

n.

Hence, (33) can be estimated by

IA,n .
∑

j>M

φn(2j/rn)r2
n√

n22j
6

∑

j>M

2−j = 2−(M−1).
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